
UNIVERSITY OF OSLO
Department of Informatics

Dynamic adaptation
and distribution of
binaries to
heterogeneous
architectures

Masteroppgave

Espen Angell
Kristiansen

Abstract

Real time multimedia workloads require progressingly more processing power.
Modern many-core architectures provide enough processing power to satisfy the
requirements of many real time multimedia workloads. When even they are un-
able to satisfy processing power requirements, network-distribution can provide
many workloads with even more computing power.

In this thesis, we present solutions that can be used to make it practical to use
the processing power that networks of many-core architectures can provide. The
research focus on solutions that can be included in our Parallel Processing Graphs
(P2G) project.

We have developed the foundation for network distribution in P2G, and we have
suggested a viable solution for execution of workloads on heterogeneous multi-
core architectures.

i

ii

Acknowledgements

I would like to express my gratitude to my supervisor, Håkon Stensland, for his
excellent guidance, and my other supervisors, Pål Halvorsen and Carsten Gri-
wodz, for valuable feedback during my study.

Thanks to everyone working on the P2G project. I would like to extends a spe-
cial thanks to Paul Beskow and Ståle Kristoffersen for invaluable input while re-
searching network distribution.

I also want to use this chance to say thank you to my friends, my family, and
especially my girlfriend Hege, for supporting me through my studies.

Oslo, May 16, 2011
Espen Angell Kristiansen

iii

iv

Contents

1 Introduction 1
1.1 Background and motivation . 1
1.2 Problem Definition / Statement . 3
1.3 Limitations . 3
1.4 Research contributions . 4
1.5 Outline . 5

2 P2G - Parallel Processing Graphs 7
2.1 Architecture . 11
2.2 Programming model . 15

2.2.1 Dependency graphs . 16
2.2.2 Kernel language . 17
2.2.3 Runtime . 18

2.3 Summary . 19

3 Supporting heterogeneous architectures using Olib 21
3.1 System virtual machines . 22
3.2 Process Virtual Machines . 23
3.3 Native binaries for any supported processing unit 24
3.4 An application format for heterogeneous architectures 25
3.5 Binding native binaries to processing units 26
3.6 Native binary loading . 27

3.6.1 Separate processes . 27
3.6.2 Dynamic loading of shared libraries 28
3.6.3 Conclusion . 29

3.7 Obese libraries on a single computer 29
3.7.1 Loading shared libraries at runtime 31

v

3.7.2 Live patching . 33
3.7.3 Communication with the scheduler 34

3.8 Summary . 34

4 P2G network communication using Sevent 35
4.1 Requirements . 36
4.2 Serialization . 37
4.3 Communication protocol . 38

4.3.1 Message passing interface . 38
4.3.2 CORBA . 39
4.3.3 D-Bus . 39
4.3.4 Remote Procedure Call . 39

4.4 Initial design: P2G-RPC . 40
4.5 Issues with P2G-RPC . 44

4.5.1 Unneeded complexity . 44
4.5.2 Error handling . 45
4.5.3 Global state with Singletons 45
4.5.4 Graceful shutdown . 47
4.5.5 Berkeley socket API and Epoll 48
4.5.6 Thread API . 48
4.5.7 Naming . 49
4.5.8 Summary of issues . 50

4.6 New design goals: Lessons learned 50
4.6.1 Minimalistic . 50
4.6.2 Modular, clean and easily maintainable 51
4.6.3 Testing . 51
4.6.4 Terminology . 52

4.7 Sevent - A socket event library . 52
4.7.1 serialize - The serialization module 53
4.7.2 event - The event handling module 55
4.7.3 socket - The network communication module 61
4.7.4 Example . 63
4.7.5 Automatic tests . 67

4.8 Summary . 69

5 Network distribution of Obese libraries 71

vi

5.1 Olib on a single heterogeneous computer 71
5.2 Olib distributed in a network of heterogeneous computers 72
5.3 Issues with our design . 73
5.4 Implementation details . 75

5.4.1 Master . 77
5.4.2 Slave . 78
5.4.3 Client . 80

5.5 A complete example . 80
5.5.1 The client application . 81
5.5.2 Shared communication code for any architecture 83
5.5.3 A standard C++ implementation for summing two arrays . 85
5.5.4 CUDA and OpenCL implementations 86

5.6 Automatic testing . 86
5.7 Distributing P2G kernel instances using Olib 87
5.8 Summary . 88

6 Viability of multimedia workloads with Olib 89
6.1 Motion JPEG . 89
6.2 How . 91
6.3 MJPEG on a single computer . 91

6.3.1 Using all available processing units 95
6.4 Network-distributed MJPEG . 97
6.5 Summary . 99

7 Conclusion 101
7.1 Future work . 102

A Source code 103

B Test-computers 105
B.1 Delano . 105
B.2 Bush and Clinton . 105
B.3 Cell-1 . 106
B.4 Leela . 106

References 106

vii

Internet-references 112

viii

List of Figures

2.1 Overview of nodes in the P2G system. 10

2.2 Intermediate implicit static dependency graph. 11

2.3 Final implicit static dependency graph. 11

2.4 Kernel and field definitions . 13

2.5 Dynamically created directed acyclic dependency graph (DC-DAG). 15

3.1 Flow of requests and responses in the single computer Olib imple-
mentation. 30

4.1 UML diagram of the P2G-RPC of the socket communication library. 41

4.2 Sevent modules. 53

4.3 UML diagram of the socket layer in Sevent. 62

5.1 Flow of requests and responses in the distributed Olib implementa-
tion. Arrows with double lines represent network communication,
while the other arrows represent internal communication within
the same process. 73

5.2 The class hierarchy of the Olib facades that makes it easy to create
custom masters, slaves and clients. 76

6.1 MJPEG with our implementations for each of the available process-
ing units on Delano. 92

6.2 MJPEG with our implementations for each of the available process-
ing units on Bush. 93

6.3 MJPEG with our implementations for each of the available process-
ing units on Clinton. 94

6.4 MJPEG with our implementations for each of the available process-
ing units on Leela. 95

ix

6.5 MJPEG with our implementations for each of the available process-
ing units on Cell-1. 95

6.6 MJPEG distributed over all available processing units on Delano. . . 96
6.7 MJPEG distributed over all available processing units on Bush. . . . 96
6.8 MJPEG distributed in a network. 97

x

Listings

2.1 C++ Equivalent of Figure 2.4 . 14
3.1 Source code of the utils library . 31
3.2 Load a shared library at runtime . 32
3.3 Making a C++ function loadable by dlsym 33
4.1 Socket client example - P2G-RPC . 42
4.2 Socket server example - P2G-RPC . 43
4.3 Pthread example . 48
4.4 Boost thread example . 49
4.5 SerializablePerson.h - A class which is serializable using Boost se-

rialization . 55
4.6 Sevent event module example . 56
4.7 Sevent StringEventId . 58
4.8 Sevent example client . 63
4.9 Sevent example server . 65
4.10 Automatic tests with Sevent . 67
5.1 Source code for a Olib master . 77
5.2 Source code for a Olib slave . 78
5.3 Client application calculating the sum of two arrays 81
5.4 Implementation of sumArraysClientHandlers.h 82
5.5 SumArrays.h - Shared communication code for all sum arrays im-

plementations . 83
5.6 Standard C++ implementation . 85

xi

xii

Chapter 1

Introduction

1.1 Background and motivation

Ever since the first integrated circuit was introduced in 1958, the strive for more
processing power has been a persisting challenge. In 1965, Gordon Moore made
his famous prediction, dubbed Moore’s Law [1], that the number of transistors
incorporated in a microchip will approximately double every 24 months. His
prediction has held true until today [68]. However, Intel [68] predicts that alter-
native computing techniques will be required as soon as in 2020 to keep up with
the computing power predicted by Moore’s Law. Real time multimedia work-
loads, such as high quality real time video encoding and calculation of 3D depth
information from camera arrays, require far more processing capacity than a sin-
gle Central Processing Unit (CPU) core can achieve. Thus, we already require
alternative computing techniques. Heterogeneous many-core architectures such
as Graphics Processing Units (GPUs) and the Cell Broadband Engine (CBE) [69]
can outperform CPUs by orders of magnitude [2–4] on many workloads.

A heterogeneous architecture is an architecture with multiple different processing
units. This can be a computer with a CPU and a Graphics Processing Unit (GPU).
We call such a computer a heterogeneous computer. Such a system is considered
heterogeneous since the CPU and GPU are different processing units, each suit-
able for different tasks. More complex heterogeneous architectures are readily
available. We can for example, build a computer with one or more CPUs, GPUs

1

from multiple different manufacturers, and a programmable network processor.
This would provide us with a high amount of processing power and processing
units optimized for many different workloads. However, making programs for
such an architecture is complex and error prone.

A common way of handling workloads that require more processing power than
a single computer can provide, is to distribute the workload over multiple com-
puters in a network. Making programs for a single heterogeneous computer is
complex and error prone, and distributing such workloads over a network adds
another level of complexity. For this reason, Microsoft and Google implemented
their respective processing frameworks MapReduce [5] and Dryad [6]. These
frameworks allow developers to think sequentially, yet benefit from parallel and
distributed execution. An inherent limitation of these frameworks is their inabil-
ity to express arbitrarily complex graphs. Their dependency graphs are often lim-
ited to directed acyclic graphs, or pre-defined stages. Algorithms that depend on
iterative execution, such as video encoding, require more complex dependency
graphs.

The Nornir runtime system for parallel programs [7], address many of these lim-
itations, however it is more difficult to use than other frameworks due to a more
complex programming model. With the Parallel Processing Graphs (P2G) project,
we seek to scale multimedia workloads efficiently and transparently with the
available resources. P2G supports arbitrarily complex dependency graphs, with
cycles, branches and deadlines. To reduce the complexity of programming ap-
plications for P2G compared to Nornir, we have adopted the use of kernels, as in
stream processing [8] [70]. An executing kernel is called a kernel instance.

P2G is designed to be language independent. The kernel language is interchange-
able, however our current kernel language captures the central concepts of P2G.
Message passing and data parallelism is implicit, and developers can think in
terms of sequential data transformations.

In a network-distributed version of P2G, we assume there will be an application,
or multiple applications, running on each computer in the network. This appli-
cation, which we call the P2G runtime, accepts jobs and communicates with the
scheduler. P2G is discussed further in Chapter 2.

2

1.2 Problem Definition / Statement

At this time, P2G only supports execution on a single computer with a x86 multi-
core CPU. The data shared between kernel instances is stored in memory accessi-
ble by the underlying framework and the kernels. In this thesis, we study meth-
ods for distribution of P2G kernel instances over all processing units in a network
of computers. The goal of our research is to find methods enabling P2G applica-
tions to parallelize and distribute workloads, especially live multimedia work-
loads, in a network of many-core homogeneous and heterogeneous computers.
Any method supporting heterogeneous computers also support homogeneous
computers, therefore we focus on heterogeneous computers throughout this the-
sis.

Network distribution of P2G kernel instances requires a method of communica-
tion that enables us to transfer data between kernel instances running on different
computers within a network. Network distribution also requires network com-
munication between the P2G runtime on each computer and the scheduler. Our
research includes these forms of network communication.

1.3 Limitations

Distribution of P2G kernel instances over all processing units on any type of het-
erogeneous computer is out of scope for this thesis. However, we can make de-
sign choices that simplifies adaptation of additional processing units. In this the-
sis, we focus on the following three types of processing units, with a primarily
focus on the first two:

• GPUs programmable with Nvidia CUDA [71] or OpenCL [72].

• The x86 family of CPUs, including 64-bit CPUs.

• The Cell Broadband Engine (CBE).

We refer to these processing units as our target architecture. The term is used
broadly, referring to computers with any combination of one or more of these

3

processing units as our target architecture. Furthermore, we refer to a network of
computers with our target architecture as our target global topology.

Some processing units only support our target architecture on specific operating
systems. The Intel OpenCL drivers [73] are only available for Microsoft Windows
Vista and Windows 7. OpenCL drivers for the IBM BladeCenter [74] are only
available on specific versions of Red Hat Enterprise Linux (RHEL). The SDK for
the CBE is only available for certain versions of Fedora Linux and RHEL. We do
not want to exclude several viable processing units, thus we try not to limit our
research to a specific operating system (OS).

We do not investigate scheduling. However, it is a part of the execution pipeline
of a P2G application. Therefore, we have considered the implications of a sched-
uler in broad terms in our work. Our work depicts a centralized scheduler, how-
ever the scheduler in a distributed P2G may not be a centralized entity. Integrat-
ing our work into P2G would require major changes to many parts of the P2G
code base, including development of the runtime, and is therefore out of scope
for this thesis.

1.4 Research contributions

During this master study, we have published an paper on the P2G framework
[9], and submitted one paper on P2G to the International Conference on Parallel
Processing 2011, and a demo paper on P2G to ACM Multimedia 2011.

Our network communication research led to the creation of a C++ socket commu-
nication library, named Sevent. This library supports communication of big data
arrays that is required for communication of data between P2G kernel instances
in a network. Sevent also supports complex data structures, such as C++ objects
and vectors, that is practical for communication between the P2G runtime on
each computer in the network and the scheduler. We have published this library
under the BSD open source license. Sevent is already integrated into the recently
initiated migration of P2G from a single computer framework to a framework
supporting network distribution.

The result of our work with heterogeneous architectures is a C++ library, named

4

Olib, that can be used by the P2G project to load native binaries on our target global
topology. The complexities of communication in Olib is handled using Sevent. Olib
achieves our goal of finding a viable solution for network distribution of P2G on
a network of heterogeneous computers in an efficient manner, and our research
has revealed several possible ways of improving our solutions in the future. We
have started working on a paper on Olib for IEEE ICPADS 2011.

How to get hold of the source code for our two libraries is described in Ap-
pendix A.

1.5 Outline

The rest of this thesis is organized as follows; Chapter 2 describes the P2G frame-
work in greater detail. Chapter 3 explores solutions for program execution on
heterogeneous architectures, and introduces Olib. In Chapter 4 we explore solu-
tions for network communication in P2G, and describe our Sevent library. Both
Chapter 3 and Chapter 4 begins with related work and alternative solutions be-
fore describing our solutions and why they are chosen over all the alternatives. In
Chapter 5, we continue describing our Olib our research, more specifically, how
we combine Olib with Sevent to provide the foundation for network distribution
of P2G kernel instances. Finally, we demonstrate the viability of our research for
multimedia workloads in Chapter 6 before we conclude our work in Chapter 7.

5

6

Chapter 2

P2G - Parallel Processing Graphs

The idea of P2G was born out of the observation that most distributed processing
frameworks lack support for real-time multimedia workloads and that data or
task parallelism, two orthogonal dimensions for expressing parallelism, is often
sacrificed in existing frameworks such as MapReduce and Dryad.

With data parallelism, multiple CPUs perform the same operation over multiple
disjoint data chunks. Task parallelism uses multiple CPUs to perform different
operations in parallel. Several existing frameworks optimize for either task or
data parallelism, not both. This can severely limit the ability to express the paral-
lelism of a given workload. For example, MapReduce and its related approaches
provide considerable power for parallelization, but restrict runtime processing to
the domain of data parallelism [10]. Functional languages such as Erlang [11]
and Haskell [12] and the event-based SDL [13], map well to task parallelism.
Here programs are expressed as communicating processes either through mes-
sage passing or event distribution, which makes it difficult to express data paral-
lelism without specifying a fixed number of communication channels.

In our multimedia scenario, Nornir improves on many of the shortcomings of
the traditional batch processing frameworks, like MapReduce and Dryad. KPNs
are deterministic; each execution of a process network produces the same out-
put given the same input. KPNs also support arbitrary communication graphs
(with cycles/iterations), while frameworks like MapReduce and Dryad restrict
application developers to a parallel pipeline structure and directed acyclic graphs

7

(DAGs). However, Nornir is task-parallel, and data-parallelism must be explic-
itly added by the programmer. Furthermore, as a distributed, multi-machine pro-
cessing framework, Nornir still has some challenges. For example, the message-
passing communication channels, having exactly one sender and one receiver, are
modeled as infinite FIFO queues. In real-life distributed implementations, how-
ever, queue length is limited by available memory. A distributed Nornir imple-
mentation would therefore require a distributed deadlock detection algorithm.
Another issue is the complex programming model. The KPN model requires the
application developer to specify the communication channels between the pro-
cesses manually. This requires the developer to think differently than for other
distributed frameworks.

With P2G, we build on the knowledge gained from developing Nornir and ad-
dress the requirements from multimedia workloads, with inherent support for
deadlines. A particularly desirable feature for processing multimedia workloads
includes automatic combined task and data parallelism. Intra-frame prediction in
H.264 AVC, for example, introduces many dependencies between sub-blocks of
a frame, and together with other overlapping processing stages, these operations
have a high potential for benefiting from both types of parallelism.

A major source of non-determinism in other languages and frameworks lies in
the arbitrary order of read and write operations from and to memory. The source
of this non-deterministic behavior can be removed by adopting strict write-once
semantics for writing to memory [14]. Languages that take advantage of the con-
cept of single assignment include Erlang [11] and Haskell [12]. It enables sched-
ulers to determine when code depending on a memory cell is runnable. This is a
key concept that we adopted for P2G. While write-once-semantics are well-suited
for a scheduler’s dependency analysis, it is not straight-forward to think about
multimedia algorithms in the functional terms of Erlang and Haskell. Multime-
dia algorithms tend to be formulated in terms of iterations of sequential transfor-
mation steps. They act on multi-dimensional arrays of data (e.g., pixels in a pic-
ture) and provide frequently very intuitive data partitioning opportunities (e.g.,
8x8-pixel macro-blocks of a picture). Prominent examples are the computation-
heavy MPEG-4 AVC encoding [15] and SIFT [16] pipelines. Both are also exam-
ples of algorithms whose subsequent steps provide data decomposition oppor-
tunities at different granularities and along different dimensions of input data.

8

Consequently, P2G should allow programmers to think in terms of fields without
loosing write-once-semantics.

Flexible partitioning requires the processing of clearly distinct data units with-
out side-effects. The idea adopted for P2G is to use kernels as in stream process-
ing [17, 18]. Such a kernel is written once and describes the transformation of
multi-dimensional fields of data. Where such a transformation is formulated as
a loop of equal steps, the field should instead be partitioned and the kernel in-
stantiated to achieve data-parallel execution. Each of these data partitions and
tasks can then be scheduled independently by the schedulers, which can analyze
dependencies and guarantee fully deterministic output independent of order due
to the write-once semantics of fields.

Together, these observations determined four basic ideas for the design of P2G:

• The use of multi-dimensional fields as the central concept for storing data in
P2G to achieve straight-forward implementations of complex multimedia
algorithms.

• The use of kernels that process slices of fields to achieve data decomposition.

• The use of write-once semantics to such fields to achieve deterministic behav-
ior.

• The use of runtime dependency analysis at a granularity finer than entire fields
to achieve task decomposition along with data decomposition.

Within the boundaries of these basic ideas, P2G should be easily accessible for
programmers who only need to write isolated, sequential pieces of code embed-
ded in kernel definitions. The multi-dimensional fields offer a natural way to
express multimedia data, and provide a direct way for kernels to fetch slices of a
field in as fine a granularity as possible, supporting data parallelism.

P2G is designed to be language independent, however, we have defined a C-
like language that captures many of P2G’s central concepts. As such, the P2G
language is inspired by many existing languages. In fact, Cray’s Chapel [19] lan-
guage antedates many of P2G’s features in a more complete manner. P2G adds,
however, write-once semantics and support for multimedia workloads. Further-
more, P2G programs consist of interchangeable language elements that formulate

9

Figure 2.1: Overview of nodes in the P2G system.

data dependencies between implicitly instantiated kernels, which are (currently)
written in C/C++.

The biggest deviation from most other modern language designs is that the P2G
kernel language makes both message passing and parallelism implicit and al-
lows users to think in terms of sequential data transformations. Furthermore,
P2G supports deadlines, which allows scheduling decisions such as termination,
branching and the use of alternative code paths based on runtime observations.

In summary, we have opted for an idea that allows programmers to focus on
data transformations in a sequential manner, while simultaneously providing
enough information for dynamically adapting the data and task parallelization.
As an end result of our considerations, P2G’s fields look mostly like global multi-
dimensional arrays in C, although their representation in memory may deviate,
i.e., they need not be placed contiguously in the memory of a single node, and
may even be distributed across multiple machines. Although this looks contrary
to our message-based KPN approach used in Nornir, it maps well when slices of
fields are interpreted as messages and the run-queues of worker threads as KPN
channels. An obvious difference is that fields can be read as often as necessary.

10

Figure 2.2: Intermediate implicit static dependency graph.

Figure 2.3: Final implicit static dependency graph.

2.1 Architecture

As shown in Figure 2.1, the P2G architecture consists of a master node and an arbi-
trary number of execution nodes. Each execution node reports its local topology (a
graph of multi-core and single-core CPUs and GPUs, connected by various kinds
of buses and other networks) to the master node, which combines this informa-
tion into a global topology of available resources. As such, the global topology
can change during runtime as execution nodes are dynamically added and re-
moved to accommodate for changes in the global load.

To maximize throughput, P2G uses a two-level scheduling approach. On the
master node, we have a high-level scheduler (HLS), and on the execution node(s),
we use a low-level scheduler (LLS). The HLS can analyze a workloads store and
fetch statements, from which it can generate an intermediate implicit static de-
pendency graph (see Figure 2.2) where edges connecting two kernels through a

11

field can be merged, circumventing the need for a vertex representing the field
(as seen in figure 2.3). From the intermediate graph, the HLS can then derive a
final implicit static dependency graph (see Figure 2.3). The HLS can then use a
graph partitioning [20] or search based [21] algorithm to partition the workload
into a suitable number of components that can be distributed to, and run, on the
resources available in the topology. Using instrumentation data collected from
the nodes executing the workload the final graph can be weighted with this pro-
filing data during runtime. The weighted final graph can then be repartitioned,
with the intent of improving the throughput in the system, or accommodate for
changes in the global load.

Given a partial workload (such as partition A from Figure 2.3), an LLS at an exe-
cution node is responsible for maximizing local scheduling decisions. We discuss
this further in section 2.2, but Figure 2.5 shows how the LLS can combine tasks
and data to minimize overhead introduced by P2G, and take advantage of spe-
cialized hardware, such as GPUs.

This idea of using a two level scheduling approach is not new. It has also been
considered by Roh et al. [22], where they have performed simulations on par-
allel scheduling decisions for instruction sets of a functional language. Simple
workloads are mapped to various simulated architectures, using a "merge-up"
algorithm, which is equivalent to our LLS, and "merge-down" algorithm, which
is equivalent to our HLS. These algorithms cluster instructions in such a way that
parallelism is not limited. Their conclusion is that utilizing a merge-down strat-
egy often is better.

Data distribution, reporting, and other communication patterns is achieved in
P2G through an event-based, distributed publish-subscribe model. Dependen-
cies between components in a workload are deterministically derived from the
code and the high-level schedulers partitioning decisions, and direct communi-
cation occurs.

As such, P2G relies on its combination of a HLS, LLS, instrumentation data and
the global topology to make best use of the performance of several heterogeneous
cores in a distributed system.

12

Figure 2.4: Kernel and field definitions

13

Listing 2.1: C++ Equivalent of Figure 2.4

1 void print(int* data, int num) {

2 for(int i= 0; i < num;++i) {

3 std::cout < < data[i] < < " ";

4 }

5 std::cout < < std::endl;

6 }

7

8 int main() {

9 int data[] = { 10, 11, 12, 13, 14 };

10 int num = (sizeof(data)/sizeof(*data));

11 print(data, num);

12 while(true) {

13 for(int i = 0; i < num; ++i) {

14 data[i] *= 2;

15 }

16 print(data, num);

17 for(int i= 0; i < num; ++i) {

18 data[i] += 5;

19 }

20 print(data, num);

21 }

22 return 0;

23 }

14

Figure 2.5: Dynamically created directed acyclic dependency graph (DC-DAG).

2.2 Programming model

The programming model of P2G consists of two central concepts, the implicit static
dependency graph (Figures 2.2 and 2.3) and the dynamically created directed acyclic de-
pendency graph (DC-DAG) (Figure 2.5). We have also developed a kernel language
(see Figure 2.4), to make it easier to develop applications using the P2G program-
ming model, though we consider this language to be interchangeable. Listing 2.1
shows C++ code that is equivalent to Figure 2.4. The C++ version must be exe-
cuted sequentially, however the P2G kernel language version is segmented into
separate kernels that P2G can execute in parallel.

The example we use throughout this discussion consists of two primary kernels:
mul2 and plus5. These two kernels form a pipeline where mul2 first multiples a
value by 2 and stores this data, which plus5 then fetches and increases by 5, mul2
then fetches the data stored by plus5, and so on. The print kernel runs orthogo-
nally to these two kernels and fetches and writes the data they have produced to
cout. In combination, these three kernels form a cycle. The kernel init runs only
once and writes some initial data for mul2 to consume. The kernels operate on
two 1-dimensional, 5 element fields. The print kernel writes {10, 11, 12, 13, 14},
{20, 22, 24, 26, 28} for the first age and {25, 27, 29, 31, 33}, {50, 54, 58, 62, 66} for
the second, etc (as seen in Figure 2.5). As such, the first iteration produces the
data: {10, 11, 12, 13, 14}, {20, 22, 24, 26, 28} and {25, 27, 29, 31, 33}, and the second
iteration produces the data: {50, 54, 58, 62, 66} and {55, 59, 63, 67, 71}, etc. Since
there is no termination condition for this program it runs indefinitely.

15

2.2.1 Dependency graphs

The intermediate implicit static dependency graph (as seen in Figure 2.2) is de-
rived from the interaction between fields and kernel definitions, more precisely
from the fetch and store statements of a kernel definition. This intermediate graph
can be further refined by merging the edges of kernels linked through a field ver-
tex, resulting in a final implicit static dependency graph, as depicted in Figure 2.3.
This final graph can serve as input to the HLS, which can use it to determine how
best to partition the workload given a global topology. The graph can be further
weighted using instrumentation data, to serve as input for repartitioning. It is
important to note that these weighted graphs can serve as input to static offline
analysis. For example, it could be used as input to a simulator to best determine
how to initially configure a workload, given various global topology configura-
tions.

During runtime, the intermediate implicit static dependency graph is expanded
to form a dynamically created directed acyclic dependency graph, as seen in Fig-
ure 2.5. This expansion from a cyclic graph to a directed acyclic graph occurs as
a result of our write-once semantics. As such, we can see how P2G is designed
to unroll loops without introducing implicit barriers between iteration. We have
chosen to call each such unrolled loop an Age. The LLS can then use the DC-
DAG to combine tasks and data to reduce overhead introduced by P2G and to
take advantage of specialized hardware, such as GPUs. It can then try different
combinations of these low-level scheduling decisions to improve the throughput
of the system.

We can see how this is accomplished in Figure 2.5. When moving from Age=1 to
Age=2, we can see how the LLS has made a decision to reduce data parallelity. In
P2G, kernels fetch slices of data, and initially mul2 was defined to work on each
single field entry in parallel, but in Age=2, the LLS has decreased the granularity
of the fetch statement to encompass the entire field. It could also have split the
field in two, leading to two kernel instances of mul2, working on disparate sets of
the field.

Moving from Age=2 to Age=3, we see how the LLS has made a decision to de-
crease the task parallelity. This is possible because mul2 and plus5 effectively
form a pipeline, information that is available from the static graphs. By combin-

16

ing these two tasks, the individual store operations of the tasks are deferred until
the data has been fully processed by each task. If the print kernel was not present,
storing to the intermediate field m_data could be circumvented in its entirety.

Finally, moving from Age=3 to Age=4, we can see how a decision to decrease both
task and data parallelity has been taken. This renders this single kernel instance
effectively into a classical for-loop, working on each data element of the field, with
each task (mul2, plus5) performed sequentially on the data.

P2G makes runtime adjustments dynamically to both data and task parallelism
based on the possibly oscillating resource availability and the reported perfor-
mance monitoring.

2.2.2 Kernel language

Considering the complexities of developing for Nornir, we came to the realization
that expressing workloads in a framework capable of supporting such complex
graphs without a high-level language is a difficult, if not an impossible, task. We
have therefore developed a kernel language. An implementation of our example
workload is outlined in Figure 2.4.

In the current version of our system, P2G is exposed to the developer through
this kernel language. The language itself is not an integral part and can be replaced
easily. However, it exposes several foundations of the P2G design. Most impor-
tant are the kernel and field definitions, which describe the code and interaction
patterns in P2G.

A kernel definition’s primary purpose is to describe the required interaction of a
kernel instance with an arbitrary number of fields (holding the application data)
through the fetch and store statements. As such, a field serves as an interaction
point for kernel definitions, as can be seen in Figure 2.2.

An important aspect of multimedia workloads is the ability to express deadlines,
where it does not make sense to encode a frame if the playback has moved past
that point in the video-stream. Consequently, we have implemented language
support for expressing deadlines. In principle, a deadline gives the application
developer the option of defining a global timer: timer t1. This timer can then be

17

polled, and updated, from within a kernel definition, for example t1+100ms or t1
= now. Given a condition based on a deadline such as t1+100ms, a timeout can
occur and an alternate code-path can be executed. Such an alternate code-path is
executed by storing to a different field then in the primary path, leading to new
dependencies and new behavior. Currently, we have basic support for expressing
deadlines in the kernel language, but the semantics of these expressions require
refinement, as their implications can be considerable.

Fields in P2G have a number of properties, including a type and a dimensional-
ity. Another property is, as mentioned above, aging, which allows kernels to be
iterative while maintaining write-once semantics in such cyclic execution. Aging
enables unique storage to the same position in a field several times, as long as the
age increases for each store operation (as seen in Figure 2.5). In essence, this adds
a dimension to the field and makes it possible to accommodate iterative algo-
rithms. Additionally, it is important to realize that fields are not connected to any
single node, and can be fully localized or distributed across multiple execution
nodes (as seen in figure 2.1).

In defining the interaction between kernels and fields, it is encouraged that the
programmer expresses the finest possible granularity of kernel definitions, and,
likewise, the most precise slices possible for the kernel within the field. This is
encouraged because it provides the low-level scheduler more control over the
granularity of task and data decomposition. Aided by instrumentation data, it
can reduce scheduling overhead by combining several instances of a kernel that
process different data, or several instances of different kernels that process data
in sequence (as seen in Figure 2.5). The scheduler makes its decisions based on
the implicit static dependency graph and instrumentation data.

2.2.3 Runtime

Following from the previous discussions, we can extrapolate the concept of ker-
nel definitions to kernel instances. A kernel instance is the unit of code that is
executed during runtime, and the number of kernel instances executed in paral-
lel for a given kernel definition depends on its fetch statements.

To clarify, a kernel instance works on an arbitrary number of slices of fields, de-

18

pending on the number of fetch statements of the kernel definition. For example,
looking at Figure 2.5 and 2.4, we can see how the mul2 kernel, given its fetch
statement on m_data with age=a and index=x fetches only a single element of the
data. Thus, since the m_data field consists of five data elements, this means that
P2G can execute a maximum possible x kernel instances simultaneously per age,
giving a*x mul2 kernel instances. Though, as we have seen, this number can be
decreased by the scheduler making mul2 work over larger slices of data from
m_data.

With P2G we support implicit resizing of fields, this can be witnessed by looking
at the kernel definition of print in Figure 2.4. Initially, the extents of m_data and
p_data are not defined, as such, with each iteration of the for-loop in init the local
field values is resized locally, leading to a resize of the global field m_data when
values is stored to it. These extents are then propagated to the respective fields
impacted by this resize, such as p_data. Following the discussion from the pre-
vious paragraph, such an implicit resize can lead to additional kernel instances
being dispatched.

It is worth noting that a kernel instance is only dispatched when all its dependen-
cies are fulfilled, i.e., that the data it fetches has been stored to the respective fields
and elements. Looking at Figure 2.5 and 2.4 again, we can see that mul2 stores its
result to p_data with age=a and index=x. This means that once mul2 has stored its
results to p_data with index=2 and age=0, this means that the kernel instance plus5
with the fetch statement fetch(0)[2] can be dispatched. In our system, each kernel
instance is only dispatched once, due to our write-once semantics. To summa-
rize, the print kernel instance working on age=0 becomes runnable when all the
elements of m_data and p_data for age=0 have been stored. Once it has become
runnable,. it is dispatched and runs only once.

2.3 Summary

P2G works on a single x86 CPU. The kernel language with implicit message pass-
ing and distribution makes programming for P2G a far less labour intensive task
than comparable solutions. P2G does not support execution of kernel instances
on all processing units in our target architecture. Furthermore, P2G does not sup-

19

port network-distributed execution. The rest of this thesis focus on solutions for
these shortcomings, starting with heterogeneous architectures in Chapter 3.

20

Chapter 3

Supporting heterogeneous
architectures using Olib

In this chapter, we explore alternative solutions to different parts of the challenge
of creating a P2G application format usable on heterogeneous architectures. We
specify our choices to each part of the challenge and compare each choice to al-
ternative solutions, before explaining how we merge our choices into a working
solution named Olib.

Distribution of P2G kernel instances over all processing units on our target ar-
chitecture may be achieved in several different ways. We want P2G applications
to automatically use the most efficient combination of available processing units.
Some processing units can only execute a limited number of concurrent tasks. For
example, NVIDIA CUDA devices with compute capability 1.0 can only execute a
single task at any given time, and only some CUDA devices with compute capa-
bility 2.0 can execute multiple concurrent tasks [70]. Even on architectures such as
multi-core CPUs, where we can start hundreds of parallel tasks, hardware prop-
erties, such as the number of CPU cores and the speed of shared memory, limits
the amount of performance gained by increasing the number of concurrent tasks.

With this in mind, we can formalize our requirements for distribution of P2G
kernel instances over all processing units in our target architecture. We require a
method that allows P2G to use every available resource in our target architecture
concurrently. Furthermore, this method must enable P2G to use the available

21

resources in a manner that achieves optimal performance for any given problem.
We will clarify what we mean by optimal performance with an example. If we
create an application that is able to be parallelized over all processing units in
our target global topology, the kernel instances executed by this application must
be able to use every available resource to such an extent that the performance of
the application is limited by available processing power.

In this chapter, we discuss methods that can be used to meet our requirements.
Furthermore, we present a method that we theorize can meet our requirements.

3.1 System virtual machines

System Virtual Machines (SVMs), such as XEN [23], KVM [24], VMWare [75] and
QEMU [25], run isolated operating systems within another operating system, or
on hardware designed to host SVMs. Running P2G on SVMs would enable us to
run P2G on multiple operating systems on the same computer at the same time.
This may enable P2G to use processing units that is supported on different op-
erating systems concurrently on the same computer. There have been numerous
performance studies on SVMs, including [26–31]. These studies show that oper-
ating systems running on SVMs in many cases achieve near-native performance.

SVMs may be usable by P2G, but they have sparse support for heterogeneous
architectures. All hardware that is to be used by an SVM must be supported by
the hardware abstraction layer in the virtual machine. There is sparse support for
GPUs, and existing research [32] does not achieve close to native performance. In
addition to sparse hardware support, P2G would have an additional delay while
waiting for support for new hardware in SVMs, in addition to driver support in
the underlying operating system before being able to use new hardware. Sparse
support for heterogeneous architectures on SVMs limits their use to hosting the
P2G runtime on multiple operating systems on computers with good hardware
support in the SVM.

22

3.2 Process Virtual Machines

Process Virtual Machines (PVMs) run as a process inside an operating system,
providing a platform-independent environment allowing a program to execute
the same way on any platform. There are several PVMs, including the Common
Language Runtime (CLR) [33] used by Microsofts .NET, and the Java Virtual Ma-
chine (JVM) [34]. PVMs can achieve performance close to native binaries for some
workloads [35–38]. However, research on multimedia workloads is hard to find.
A challenge with PVMs is programming language support. There are compil-
ers for JVM and CLR for multiple programming languages [76, 77], but research
on the performance of compilers for languages other than the most widely used
languages is hard to find.

Another challenge is the limited support for many-core processors [39]. There
has been research to overcome this challenge on CBE with CellVM [40,41], which
allows JVM binaries to make use of SPEs. Unfortunately, CellVM is a research
project without a stable code base. This makes it unsuited as a foundation for
P2G. We do not have knowledge of any PVEs capable of using commodity GPUs
in a platform independent manner. There are language bindings for OpenCL and
CUDA for CLR [78–80] and JVM [42] [81]. Language bindings makes it possi-
ble to create platform independent applications on these architectures. But such
applications are only portable to architectures with the supported GPUs. This
means that we would need separate binaries for each GPU architecture, thus in-
validating the advantage of allowing programs to execute the same way on any
platform.

PVMs have positive properties, such as platform independence on homogeneous
architectures, and performance close to native binaries on many workloads. How-
ever, they do not transparently make use of all processing units in our target ar-
chitecture, and there is little research on the performance of PVMs on multimedia
workloads. Close to native performance on many workloads is not good enough
to satisfy our performance requirements. For PVMs to be a viable solution for
P2G kernel instances, we would require research on multimedia workloads that
proves that the performance of multimedia workloads on PVMs is indistinguish-
able from optimized native binaries.

23

3.3 Native binaries for any supported processing unit

A native binary is a program compiled into native machine code for a specific
hardware architecture. It can be optimized for its target architecture, and thus
achieve optimal performance. If we are to use native binaries for every process-
ing unit in our target architecture, we require binaries for any combination of pro-
cessing units in the target architecture. Solving this challenge is twofold.

First, we have to obtain implementations of our application with optimizations
for any processing unit in our target architecture. The processing units in our tar-
get architecture do not provide the same programming interface. Thus, we would
have to implement logically equivalent code in many different ways. This is time
consuming and error prone. The P2G kernel language is designed to support
multiple heterogeneous architectures. Development of P2G kernel language com-
piler support for our target architecture is out of the scope of this thesis, but we
assume that it is possible.

The second challenge is binary loading. Since we want to achieve optimal perfor-
mance, we need to load binaries for the optimal combination of processing units.
Some processing units have strict limits to the number of concurrent tasks they
can execute. Therefore, we have to use less optimal combinations of processing
units if an application with higher priority requires the use of the most optimal
processing units for our application. This also infers that subsequent executions
of the same application do not have to use the same combination of processing
units, and thus not the same native binaries. Further, it infers that for long run-
ning applications, more optimal performance might be achieved if we can switch
to more optimal combinations of processing units at runtime.

We need to adapt dynamically to the available resources at runtime. We also need
to be able to use more than one processing unit concurrently, and we require the
ability to execute concurrent tasks on the same processing unit. Thus, a typical
application should do the following at runtime:

• Start native binaries that make use of the optimal combination of available
processing units.

• Send data between the binaries.

24

• Start and/or stop binaries if more optimal combinations of processing units
become available.

Using native binaries on a heterogeneous architecture is complex. However, by
using native binaries, we can, in theory, achieve optimal performance with a per-
fect scheduler. SVMs and PVMs can not provide the performance and processing
unit support required by P2G. Therefore, we will focus our research on using
native binaries to execute kernel instances in P2G.

3.4 An application format for heterogeneous architec-

tures

If a P2G application is to consist of native binaries for each processing unit in our
target architecture, we need a way of organizing these binaries into an application.

Fat binaries [82] bundle binaries for multiple architectures into a single binary.
Users can obtain a single binary that will run on any hardware architecture com-
patible with one of the bundled binaries. This method is called Universal Binaries
in recent versions of Apple Mac OS X [83]. Universal Binaries use the same under-
lying binary format, Mach-O [84], as used in NEXTSTEP for fat binaries. There
has been an attempt at incorporating fat binaries into the GNU Linux toolchain
with the FatELF project [85], but it has not been widely accepted, and the devel-
opment has stalled [86]. According to the FatELF project website, fat binaries has
minimal runtime overhead compared to normal native binaries. However, they
do not provide any peer reviewed research to back up this claim.

Fat binaries could serve as an archive format for all the binaries required by a
P2G application. However, operating system support is lacking. Additionally,
we believe that a single archive containing binaries for any processing unit is
suboptimal for P2G. Our target architecture contains many processing units that
are rarely used on the same computer. For example, one would rarely have an
AMD CPU and an Intel CPU on the same computer. A more optimal solution
should enable us to distribute a minimal number of binaries to each computer in
our network, to reduce network load and storage space requirements.

25

The Java Runtime Environment (JRE) supports an application file format based
on the ZIP file format, named JAR [87]. The JAR format stores all files related to a
Java application in a ZIP-file, with additional files containing meta-information,
such as how to start the application. When the JAR-file is executed through the
JRE, the Java application within the JAR-file is executed, and the JRE provides
transparent access to the resources within the JAR-file.

Another similar technique, used in Apple Mac OS X, is loadable bundles. Load-
able bundles are packages of executable code and related resources that can be
loaded at runtime [88]. Mac OS X uses a directory structure where they put bina-
ries and related resources. The directory can be moved anywhere, and when the
directory is executed, an executable defined in a configuration file in the bundle
is executed.

We propose to adopt the Loadable bundle approach for P2G. We can put all bi-
naries for a P2G application in a directory. Furthermore, we only need to install
a subset of these binaries on each computer in our network, and updates to one
binary only require us to re-install that binary. Such a format can become hard
to provide as a download from static sources such as a website. Therefore, we
recommend future study into a format similar to JAR to complement a directory-
based format.

3.5 Binding native binaries to processing units

Having a directory of binaries is little help without any way of knowing what
binary is most suitable for a processing unit. An instrumentation component
of P2G might gather information about each computer in a network distributed
version of P2G. We have no control over the level of detail such an instrumenta-
tion component may provide. Since we have no control over the level of detail,
we consider this out of the scope of our thesis. However we have considered
how to integrate this information into our application format. With a directory
based application format, we can add a configuration file for each native binary.
These configuration files can describe usable processing units for the correspond-
ing native binary, using a level of detail that the instrumentation component can
provide.

26

3.6 Native binary loading

So far, we have discussed binaries optimized for specific hardware architectures
as native binaries. A native binary is a file format containing machine code for a
specific architecture, and any other information required by the binary loader to
execute the machine code. A native binary does not have to be an executable ap-
plication, it can also be a part of an executable application, or machine code that
can be used by many applications concurrently. There are many file formats for
native binaries, such as the Executable and Linkable Format [43,44] and Portable
Executable [45]. We have not found any research into performance gains of se-
lecting a specific native binary file format, and have therefore opted to use the
de-facto native binary format on each operating system.

We have established that we will research P2G applications as directories of mul-
tiple native binaries. We assume that the P2G scheduler will load the appropriate
binaries when we execute an application using the P2G runtime. File formats for
native binaries have two ways of loading native binaries at runtime with wide
operating system support.

3.6.1 Separate processes

The P2G runtime can execute each native binary as separate processes. These
processes have to communicate with each other, and with the P2G runtime. There
are several methods for inter-process communication (IPC).

Any form of IPC must consider the binary representation of data types. Com-
pilers do not handle binary representation of data in the same manner. Some
programming languages do not specify exactly how compilers should represent
data types as raw bytes. For example, the C programming language, specifies
that the native type int has to be at least 16 bits long [46]. The compiler is free to
represent ints using more than 16 bits. When two processes communicate, they
have to use the same binary representation of data types, or provide an abstrac-
tion layer which takes care of translation between different representations.

A software pipeline is a simple form of IPC. A process has standard input and
output streams. On most operating systems, processes can communicate by writ-

27

ing to the standard input stream of another process, which in turn, can read from
its own standard input stream. Software pipelines are inflexible since each pro-
cess only have one input and one output stream.

A more flexible method of IPC is shared memory. Multiple processes can ac-
cess the same pages of memory. An issue with this scheme is cache coherence.
In multi-core systems, it is common for each processor to have its own memory
cache. This cache allows processes to access frequently used pages of memory
fast. However, when a process writes to a cached memory page, data is written
to the cache instead of to RAM. If we have multiple caches, and two communi-
cating processes use different caches, they would both manipulate data in their
respective cache, which is unavailable to the other process. POSIX systems pro-
vide the shm_open function which handles cache coherence automatically. An
issue with shared memory is security. On POSIX systems, any process can access
shared memory initialized by another process.

A more complex but very portable method of IPC is message passing, where
processes communicate messages containing data, such as raw bytes or complex
data structures. There are many message passing frameworks, including CORBA
[47], MPI [48], D-BUS [49] and SOAP [50]. Most message passing frameworks
automatically handle differences in binary representation of data types, often at
the cost of limiting what data types they can communicate.

3.6.2 Dynamic loading of shared libraries

Shared libraries are native binaries that can be loaded at run-time and used by
many applications concurrently. They are loaded into a physical page in RAM,
and any application using the library executes this page, and maps the page into
its own address space. A shared library can be loaded from a storage device
into RAM once, and used concurrently and multiple times by processes. From a
programmers perspective, a shared library behaves like a statically linked library
after it has been loaded. However, the binary loader in the operating system
provides this abstraction, and programmers have no control over how this ab-
straction is provided.

The P2G runtime can load P2G kernel instances as shared libraries into its address

28

space at runtime, and call functions within the libraries to execute the kernel in-
stance. The P2G runtime needs to load multiple kernel instances, and use them
concurrently. Threads can solve this challenge. With each kernel instance running
in its own thread within the P2G runtime, kernel instances can communicate di-
rectly within the address space of the P2G runtime.

If the P2G runtime is to be able to load kernel instances as shared libraries, the
shared libraries have to be compatible with the P2G runtime. Most low level pro-
gramming languages, such as C, C++ and Fortran can load shared libraries com-
piled from other programming languages. However, there are limits to this in-
teroperability. Programming languages have different ways of representing data
types, and they do not all have the same set of supported data types. Addition-
ally, as explained in the previous section, the binary representation of data types
differ between compilers.

3.6.3 Conclusion

We do not believe binary incompatibility of processes or shared libraries used on
the same computer on our target global topology is an issue, because we assume
the P2G runtime and kernels would use the same compiler. Both processes and
shared libraries are viable solutions for P2G kernels. We believe each approach
merit further study. Section 3.7 contains details about an implementation of the
shared library approach, thus the separate process approach is possible future
work.

3.7 Obese libraries on a single computer

We have merged the chosen solutions discussed in the previous sections in this
chapter into a C++ library, named Obese libraries (Olib), which uses directories
of shared libraries to provide P2G applications. The name is a reference to its
similarities with fat binaries, and we find the obese part of the name fitting since
a heterogeneous architecture will encourage binaries containing code for more
architectures than a homogeneous architecture.

29

Scheduler!

Client!application!

want to call a function
in an obese library!

Send "schedule
request"!

Hardware
available?!

call function!

The server does not
respond until a device

is ready!

Load shared library!

Send "schedule
response"!

Receive "schedule
response"!

Receive
"schedule
request"!

no!

yes!

Send
"unschedule

request"!

Receive
"unschedule

request"!

Figure 3.1: Flow of requests and responses in the single computer Olib implemen-
tation.

Scheduling and instrumentation is, as explained previously, out of the scope of
this thesis, therefore our implementation uses a very simple static scheduler. To
assert the viability of our solution without unneeded complexity, we choose to
make the framework usable on a single computer before considering network
distribution.

Figure 3.1 shows how requests and responses flow between request and response
handlers in the single machine Olib implementation, and Handler-listing 1 de-

30

Schedule request handler receives scheduling requests containing the file-system
path to an application directory and the name of a function which every
shared library within the application directory must provide. The scheduler
responds with the file-system path, the name of a shared library located
within the application directory, and the name of the function. The name of
the shared library is selected by the scheduler from a list of shared library
names in a round-robin manner. We assume that a scheduler integrated
into P2G would use a more dynamic method of choosing this name using
instrumentation data.

Schedule response handler receives responses to scheduling requests, loads the
given shared library, and invokes the given function within the shared li-
brary in a thread. When the execution of the function completes, the sched-
uler is notified using an unscheduling request.

Unscheduling request handler receives unscheduling requests containing the file-
system path to an application directory, and the name of a shared library
within the application directory. This is enough information for the sched-
uler to know that the hardware is used by one less kernel instance.

Handler-listing 1: Handlers in single computer Olib.

scribes each handler in detail. A client application sends a scheduling request,
receives a response, and loads the shared library that is part of the response from
the scheduler. The scheduler is deployed as a server, typically with the same
uptime as the operating system where it is deployed, while a client application
typically performs a specific task, and quits. As stated previously, we do not im-
plement the P2G runtime, however the functionality required by the P2G runtime
to integrate Olib is demonstrated through the client application.

3.7.1 Loading shared libraries at runtime

We load shared libraries using the dyld library on Mac OS X and GNU Linux. Our
implementation only supports these platforms, but other operating systems have
similar methods for shared library loading at runtime, such as the LoadLibrary-
function on Microsoft Windows [89].

Listing 3.1: Source code of the utils library

31

1 #include "utils.h"

2 int sum(int a, int b) {

3 return a + b;

4 }

Listing 3.2: Load a shared library at runtime

1 #include <dlfcn.h>

2 int main(int argc, const char *argv[]) {

3 typedef int(*sum_t)(int, int);

4 void* lib = dlopen(SHAREDLIB_PATH, RTLD_LAZY);

5 void* sumPtr = dlsym(lib, "sum");

6 sum_t sum = (sum_t) sumPtr;

7 int result += sum(1, 2);

8 dlclose(lib);

9 return 0;

10 }

Listing 3.2 shows how to load the shared library in Listing 3.1 at runtime. On
line 4, we load the shared library from the filesystem path, SHAREDLIB_PATH.
The next line locates the memory address of the sum-symbol in the library. On
line 6, we cast the symbol-pointer to our function type. On line 7 we use the
sum-function. This works because the shared library has been loaded into the
address space of the application, and therefore the sum function can be executed
from the address returned by the call to dlsym on line 5. On line 8, we close the
shared library, signaling that the underlying system can unload the library from
RAM. Exactly what happens when we call dlclose is implementation specific. For
example, on Mac OS X 10.5, the library may be kept in cache even if no application
is using it [90].

The examples above are in C. Since P2G uses C++, we need to be able to load
shared libraries written in C++. Functions in C++ can not, by default, be referred
to uniquely by their name. C++ functions support a varying number of param-
eters through multiple implementations of functions with the same name, but
with different parameter types [51]. Therefore, function names in C++ do not re-
fer to a specific function. To provide functions with unique names, their names
are mangled [52] into unique names by the compiler. There is no standardised
name mangling scheme for C++, and the Annotated C++ Reference Manual [53]

32

encourages the use of different name mangling schemes.

C++ is designed to interoperate with C programs and libraries that require a
unique name for a function within any scope [46]. Listing 3.3 demonstrates how
we can define our functions as extern C functions to give them a unique name.
As demonstrated through the use of the Person class, declaring a function as
extern C does not restrict the us of C++ specific language features. However, we
can not provide multiple functions with the same name within an extern C block.

Listing 3.3: Making a C++ function loadable by dlsym

1 #include <string>

2

3 class Person {

4 public:

5 std::string name;

6 unsigned age;

7 Person(const std::string& name_, unsigned age_) :

8 name(name_), age(age_) {}

9 };

10

11 extern "C" {

12 Person createPerson(const std::string& name,

13 unsigned age) {

14 return Person(name, age);

15 }

16 }

3.7.2 Live patching

It may not always be possible to halt, patch, and resume a running application
because of deadlines. Patching an application is an operation that changes certain
parts of an existing application. Live patching does such changes at runtime.
Since the scheduler determines what shared library to load, we can use shared
libraries for live patching of long running applications. In a version of P2G with
a dynamic scheduler, we can distribute a shared library that fixes a bug, improves
performance, or adds support for additional processing units, and instructs the
scheduler to use the new shared library instead of, or in addition to, the old one.

33

The application does not have to halt, it will only have to be told of the new
shared library.

3.7.3 Communication with the scheduler

Since scheduling is out of scope for this thesis, we do not optimize communica-
tion with our scheduler. We planned to make Olib distributed over the network,
therefore, we chose to use socket communication with the scheduler. Olib uses
a plain text protocol on top of the TCP protocol for all communication. Our re-
quests are encoded as plain text before sending, and decoded upon arrival. Even
with our simple communications, a plain text protocol on top of TCP is non-trivial
to change, thus impeding our ability to research all our alternatives effectively.

3.8 Summary

We have demonstrated that loading and using directories of shared libraries for
P2G kernel instance is a viable solution. Furthermore we have highlighted several
possible alternatives and improvements to our current solutions, such as separate
processes instead of shared libraries, support for additional operating systems,
and an addition to our application format to enable the ability to download an
application as a single file.

For a distributed version of Olib, we require a method for communication be-
tween P2G kernel instances running on different computers. A distributed ver-
sion of Olib requires changes to the various components of Olib, and how they
communicate. Our experience with scheduler communications, demonstrates
that we could benefit from another method of expressing communication. Since
communication is such an important part of distributing Olib, we have dedicated
the next chapter to this topic. We continue discussing our Olib research in Chap-
ter 5.

34

Chapter 4

P2G network communication using
Sevent

We introduced the complexities of socket communication, and why we need it,
in Chapter 3. Integrating a distributed version of Olib into the P2G framework
requires changes on many levels in the framework. Most of these changes have
to do with the fact that P2G must be able to communicate in a network.

We could ignore any communication needs except the requirements of a dis-
tributed Olib-implementation. This may enable us to make a less complex com-
munication library. However, any other component of P2G that requires network
communication would also have to solve the challenges of network communica-
tion. This may lead to multiple socket communication libraries with overlapping
functionality, or patches to our library. Overlapping functionality would make
P2G harder to maintain. Patches to a library specifically written for communica-
tion between Obese libraries may work, but it is unlikely that all design choices
made with only Obese libraries in mind would fit the overall needs of P2G.

In this chapter, we will deduce the communication requirements for P2G, and de-
scribe a modular and flexible socket communication library, named Sevent, meet-
ing these requirements.

35

4.1 Requirements

P2G kernel instances can run on any computer in our target global topology, and
they must be able to communicate. Kernel instances should be able to communi-
cate data directly to communicate data between store and fetch statements. Other
components of the system that requires communication, is scheduling and instru-
mentation. Fetch and store data is typically big arrays of a native data type, and
meta information such as the size of the array and where the output should be
sent. Instrumentation data is detailed information about hardware in the net-
work, needed for the scheduler to decide which computer in the network, and
which specific PU on a computer, is most suitable for any given application.

P2G needs to be able to send data of common types. It is hard to specify our exact
requirements without full knowledge of every workload, but it is safe to assume
that the following data should be supported:

• Signed and unsigned integers of various size. Almost anything can be rep-
resented as integers of various size.

• Floating point numbers of various precision. Complex calculations often
require floating point arithmetics, and it would be suboptimal to exclude
data communication in to and out from such calculations.

• Complex data structures such as vectors, maps and class hierarchies.

Complex data structures are not absolutely required to communicate in P2G, but
they make it easier to write clean, readable and maintainable code. For example,
consider communication of instrumentation data. Instrumentation data could
be packed as a string. A format where pairs of key and value are separated by
semicolon, and each pair is suffixed by newline would work. The code to pack
and unpack the string would be not be very complicated, but we would need
special handling of newline and semicolon.

Some parts of the instrumentation data is stored in complex date structures. There
are lists of storage devices, and each entry in the list is a map of properties. Some
of these properties are numbers. Consider the added complexity of supporting
values which themselves are complex data structures, or of various data types.
The separators on each level will have to be chosen carefully, and we would need

36

a way of knowing the data type of each value. One may end up writing custom
serialization for each message type. Serialization is just one of many examples
where complex data structures are required. If we limit the data types supported
for this communication, we effectively limit the kind of tasks we can distribute
with obese libraries. Custom solutions for serialization of complex data structures
would increase the overall complexity of P2G, since we would have a multitude
of solutions to maintain instead of one. This added complexity would make P2G
harder to stabilize and maintain. We conclude that we need to support serializa-
tion of complex data types.

4.2 Serialization

There are several good serialization libraries available for C++. Boost serializa-
tion [91] supports serialization of any C++ type, even complex types such as vec-
tors and maps. Google Protocol Buffers [92] take a different approach. They let
the programmer define a data format using their own language. This data format
definition can then be compiled into source code for many different programming
languages, including C++. Apache Trift [93] works in the same way as protcol
buffers. External Data Representation (XDR) [94] is an Internet Engineering Task
Force (IETF) standard from 1995, which allows a specific set of data types to be
wrapped in an architecture independent manner. Since XDR, Protocol Buffers
and Trift only support a very specific set of data types, they can optimize their
binary format for speed and compression. Boost serialization is much more flex-
ible, and meet all of our requirements for a serialization library. The speed and
compression of Boost serialization depend on the archive format. Boost serializa-
tion supports compressed and fast binary archives, and uncompressed and slow
plain text archives. Boosts official binary serialization format is not endian safe,
however there is an endian safe binary archive in their source code repository.

P2G needs the flexibility of Boost serialization, and we also need efficient trans-
port of arrays of native data types. Our conclusion is that no serialization library
meets all our requirement. Thus, we need to make it possible to use the library
best suited in each case. This may lead to complex code, so we need to make an
API which minimizes this complexity.

37

4.3 Communication protocol

All communication in the system needs to be reliable and efficient. For reliability,
Transmission Control Protocol (TCP) is a natural choice. An approach using User
Datagram Protocol (UDP) may lead to better throughput with small messages,
since the overhead of establishing a connection, startup and sequential transfer is
avoided. But, it would require a much more complex application layer communi-
cation protocol, since we would need to make reliability a part of our application
layer protocol. Some network hardware guarantee reliability, and would there-
fore be able to achieve higher throughput with a custom UDP based application
layer protocol. However, such optimizations are outside the scope of this the-
sis. For big messages the overhead of TCP would be far less noticeable. There is
much recent research on this topic. Several new protocols have been suggested,
and there have been numerous improvements to the TCP protocol [54–56]. Un-
til we can prove that the choice of a more complex solution would improve the
overall efficiency of the entire framework, we choose to use TCP.

TCP communication is usually achieved using socket API, such as Berkeley sock-
ets. Berkeley is far too complex to work with directly, when we only need a small
subset of its features. Thus we would benefit from a higher level method of com-
munication.

4.3.1 Message passing interface

The Message Passing Interface (MPI) [48] is a language independent communica-
tion protocol coupled with a process distribution framework. There are multiple
versions MPI, and many different vendors provide their own implementations.
MPI provides a virtual topology, synchronization, and communication between
processes. P2G provides the same features, but MPI is designed to distribute
processes in a homogeneous topology, while P2G is designed to distribute finer
grained parts of an application in a heterogeneous topology. While MPI is a sta-
ble and widely used API, it is a process oriented approach for a homogeneous
environment, and thus not compatible with our requirements.

38

4.3.2 CORBA

The Common Object Request Broker Architecture (CORBA) [47] is a standard that
enables programs written in different programming languages to communicate.
CORBA supports communication between programs on the same machine, and
between programs on multiple computers. CORBA uses an interface definition
language (IDL) to described the objects used in communications. Languages such
as Java and Python are easy to map to IDLs. However, the C++ language map-
ping for CORBA is difficult to use because the API is complex, and error prone,
especially with respect to thread safety, exception safety and memory manan-
gent [57]. These issues makes CORBA unsuited for P2G.

4.3.3 D-Bus

D-Bus [49] is an inter-process communication system designed for communica-
tion between applications in desktop systems. Applications can register objects
with the D-Bus daemon, and other applications can communicate with these ob-
jects. D-Bus has many attractive properties for P2G, such as asynchronous com-
munication and cross-platform communication, however P2G requires support
for complex data types. D-Bus can send multi-part messages, however these mes-
sages are limited to specific set of data types.

4.3.4 Remote Procedure Call

Remote Procedure Call (RPC) is a method of communication enabling procedures
within another address space to be called. The term procedure is used broadly in
this context, meaning function, method, or subroutine. This address space may
be within another process on the same computer, or within a process on another
computer on the same network, such as any computer connected on the Internet.

Our focus on high performance leads us to conclude that the RPC approach is
too inefficient. A procedure call is a blocking operation, thus making the calling
thread wait for the remote call to finish and transfer of response data to complete.

39

This issue could be solved using a thread for each remote procedure call. How-
ever, in a system with many small messages this will lead to a huge number of
threads. A thread pool would be able to limit the number of threads, but then
we would run the risk of deadlock when a running thread waits for data from a
thread which has not yet been scheduled. All these issues could be solved using
asynchronous communication.

It is possible to implement an asynchronous RPC, and the RPC term is often used
more generally to describe any method of invoking processes in another address
space. This confusion in the way the RPC is defined, makes us conclude that
we do not wish to the express the communication within P2G using the RPC
terminology. Using a terminology with multiple definitions would make it hard
to understand and discuss communication within P2G, and misunderstandings
would be very likely to occur.

4.4 Initial design: P2G-RPC

Since no solution fulfilling all our requirements of a socket communication li-
brary exists, we need to create our own. At an early stage of the development of
P2G, prototypes of instrumentation and simple distribution was in progress, and
their exact requirements were still under development. At this early stage, our
first communication library was developed. Unspecified requirements led us to
design a complicated library, called P2G-RPC, that did not fit our needs perfectly.

The design of P2G-RPC is outlined in Figure 4.1. Socket multiplexing is handled
by worker threads polling data from the queue of incoming and outgoing data
within the IOService. Worker threads look up the correct handler, and invoke
the handle-method in ServerHandler or CommunicationHandler. On a lis-
tening server, ServerHandler is responsible for new connections from clients.
The establish_connection-method in Connector establishes a new connection
from a client. Each CommunicationHandler handles a single connection, and
it does not know if the ServerHandler or the Connector initiated the connec-
tion.

The SenderPool is a queue of outgoing messages. A message contains the ad-

40

Figure 4.1: UML diagram of the P2G-RPC of the socket communication library.

dress of the receiver, and the SenderPool establishes a new connection to the
receiver, unless the receiver is in the ConnectionRegister, which is a cache of
open connections.

When CommunicationHandler receives a message, it adds the message to a
queue in RPCService. Several threads pop messages from this queue and in-
voke user defined services. These user defined services are subclasses of Service.

41

Clients and servers are uniquely identified through an address, which consists
of an IP-address and a port. Each message sent in the framework looks up this
address in the ConnectionRegister, and creates a new connection if needed.
This is a design choice that greatly simplifies communication since the commu-
nicators do not have to know if they are a client or a server, or even if they are
connected. The cost of looking up the address in a map for each communication
should be unnoticeable compared to the cost network communication.

Listing 4.1: Socket client example - P2G-RPC

1 struct HelloResponseHandlerService: public Service {

2 HelloResponseHandlerService(int id) {

3 RPCService::getInstance()->addService(id, this);

4 }

5 virtual void invoke(Message_ptr msg) {

6 std::string response;

7 msg->msg >> response; / / D e s e r i a l i z e
8 std::cout << "Response: " << response << std::endl;

9 }

10 };

11

12 int main(int argc, const char *argv[]) {

13 const char* masterip = "127.0.0.1";

14 const char* masterport = "2000";

15 int port = 3000;

16 IOService* service = IOService::getInstance();

17 new ServerHandler(port);

18 SenderPool::getInstance()->setMessageSenderCallback(

msgSenderCallback);

19 Config::getInstance()->setPort(port);

20 Config::getInstance()->setMaster(

21 addr_ptr(new addr_type(masterip, masterport)));

22 RPCService::getInstance()->spawn_threads(1);

23 SenderPool::getInstance()->spawn_threads(1);

24 new HelloResponseHandlerService(

SIMPLE_RESPONSEHANDLER_SERVICE_ID);

25

26 std::string hello("hello");

27 Buffer_ptr buffer(new Buffer(BUFFER_ENCODE,

28 "isi", hello.size()));

29 / / S e r i a l i z e and send
30 buffer << SIMPLE_RECEIVER_SERVICE_ID << hello << 42;

42

31 Sender::send(buffer, Config::getInstance()->getMaster());

32

33 while(true) { / / Event l o o p
34 int events = service->waitForEvents(

35 IOService::TIMEOUT_INSTANT);

36 for(int eventnum=0; eventnum<events; eventnum++) {

37 service->handleEvent(eventnum);

38 }

39 }

40 }

Listing 4.2: Socket server example - P2G-RPC

1 struct HelloReceiverService: public Service {

2 HelloReceiverService(int id) {

3 RPCService::getInstance()->addService(id, this);

4 }

5 virtual void invoke(Message_ptr msg) {

6 std::string question;

7 int i;

8 msg->msg >> question >> i; / / D e s e r i a l i z e
9 std::cout << "Received: " << question

10 << ":" << i << std::endl;

11 std::string response("Hello world");

12 Buffer_ptr buffer(new Buffer(

13 BUFFER_ENCODE, "is", response.size()));

14 buffer << SIMPLE_RESPONSEHANDLER_SERVICE_ID

15 << response;

16 Sender::send(buffer, msg->addr);

17 }

18 };

19

20 int main(int argc, const char *argv[]) {

21 int port = 2000;

22 new ServerHandler(port);

23 IOService* service = IOService::getInstance();

24 Config::getInstance()->setPort(port);

25 RPCService::getInstance()->spawn_threads(1);

26 SenderPool::getInstance()->spawn_threads(1);

27 new HelloReceiverService(SIMPLE_RECEIVER_SERVICE_ID);

43

28 while(true) { / / Event l o o p
29 int events = service->waitForEvents(

30 IOService::TIMEOUT_INSTANT);

31 for(int eventnum=0; eventnum<events; eventnum++) {

32 service->handleEvent(eventnum);

33 }

34 }

35 }

Listing 4.1 and Listing 4.2 show how the library works from the programmers
point of view. On lines 26-31 in Listing 4.1, the client creates and sends a message
containing a string and a integer to the server. In the invoke-method on lines 5-17
in Listing 4.2, the server receives the message and responds with a string. The
client in Listing 4.1 receives the response in HelloResponseHandlerService.
These examples show that simple one-way communication requires a high amount
of code.

4.5 Issues with P2G-RPC

Use of P2G-RPC in our Olib research, and in the instrumentation component of
P2G revealed several issues with the design of P2G-RPC.

4.5.1 Unneeded complexity

The example in Listing 4.1 and Listing 4.2 shows message passing between two
endpoints, which raises a question about unneeded complexity in the external
API. This is a simple operation, and the API should reflect this simplicity:

Server

• Starts listening on a specific IP-address and port.

• Registers a callback listening for the request.

• Waits for all threads polling socket events to finish their work.

44

Client

• Connects to the server.

• Registers a callback listening for the response.

• Waits for all threads polling socket events to finish their work.

In a fundamental library that is designed to be re-used, the simplicity of the ex-
ternal API is important. The risk of bugs in the code using a library increases
with the complexity of using the library. A simple external API does not have to
limit the internal complexity or flexibility of the library. The library only needs to
provide a higher level interface tailored for the most common usage pattern. This
kind of higher-level interface is called a Facade [58]. Those few scenarios where
such a Facade is too inflexible can be handled through a lower level API, such
as the one in Listing 4.1 and Listing 4.2. If a scenario not covered by the Facade
should become more common than first assumed, another Facade can be created.

4.5.2 Error handling

We can also deduce another important shortcoming from these examples. There
is no apparent way of handling errors. Debugging of multi threaded network
applications is complicated, and bad error handling makes it even more compli-
cated. We spawn threads, but do not have any control over their errors. Since
these threads handle socket communication, errors such as links going down, is-
sues when establishing a connection, and messages too big to fit in memory, must
either crash the program or be silently ignored. Logging of these errors does not
really improve these matters, since many such errors have to result in some ac-
tion that ensures that the error does not happen again. Another issue with silent
errors is testing. One can not write automatic tests for silent errors.

4.5.3 Global state with Singletons

Automatic testing, such as unit testing, revealed another problem with the de-
sign, i.e. the use of global state through the Singleton pattern [58]. A Singleton
is a design pattern that ensures that a class only has one instance, and provide

45

a global point of access to it. This essentially makes a Singleton a process global
variable. The motivation behind the Singleton pattern is to ensure that a class
has only one instance in situations where this is required. For example, some
GPUs can not be used concurrently. If all communication with such GPUs are
performed through a Singleton that disallows concurrent access to the GPU, we
can assure that the GPU will not be used concurrently. P2G-RPC used Singletons
in places where such restrictions are not required. Misuse of Singletons led to
several issues.

Services register themselves with the RPCService-Singleton in Figure 4.1. From
an external perspective, it is impossible to know what parts of the library actu-
ally use these services, since any part of the library may access them through the
globally accessible RPCService->getInstance(). Maintaining tests involv-
ing global state is error prone, since any new addition to the library may change
the result of any test. One of the reasons for writing tests is safety when extend-
ing and changing code. If changes to some part of the code change the result of
unrelated tests, one can not trust these tests. If the RPCService had been a nor-
mal class, objects of this class within a scope defined by the user, the user would
know what classes or functions depended on these services since they would
need a RPCService-object as argument. This not only makes it possible to write
isolated tests, but it also enables the user of the library to trace the workflow of
the library to a much greater extent. Tracing the logical workflow of a library is
very important when dealing with threaded applications, since misunderstand-
ings may lead to deadlocks and starvation.

The general issue of how singletons are used is tight coupling. This is apparent
with the Config-singleton in Figure 4.1. The Config-class makes configuration
globally available, thus tightly coupling many classes within the library with the
Config-class. Not only does this make it hard to trace the workflow of appli-
cations using the library, tight coupling also makes it very hard to write good
tests. Many tests need to initialize mock-up data [59]. With tight coupling, we
need to make mock-ups for every component coupled with the component we
are testing, or we can make less fine grained tests where we test every coupled
component as one. Each approach results in complex tests that are hard to verify.

All these issues related to testing and tight coupling may be ignored if the library
works and never has to be changed. It is possible to write complex tests, work

46

out any bugs, and never touch the code again. However, when developing a
library where requirements may change as a result of further research, this kind
of approach is unrealistic.

Through further research with our framework for distribution of computation-
ally intensive tasks, we realized that we need to be able to use multiple network
connections between the same computers in a network to maximize through-
put. Tight coupling of the Config-class with several other components made
this change a major rewrite. The global Config-object contains the listening
port. Every message to a single process will have to be received on this port. We
should have been able to create listeners on two separate ports within the same
process, but in P2G-RPC, we can only configure a single global port. We would
also prefer to cleanly separate handlers on each of these interfaces. However, the
RPCService where we register handlers is a Singleton, making this impossible.

4.5.4 Graceful shutdown

P2G-RPC has no way of executing any kind of shutdown. The worker threads run
until the program is killed. With no way of shutting down our threads, automatic
tests become very hard. We believe it is important to stress that this does not only
make it very hard to write test for our framework, but it also makes it hard to get
full test coverage in any application using the library.

When debugging, it is often useful for the threads to crash at the first error, while
a production environment may handle certain errors, or at least shut down grace-
fully. A graceful shutdown should let any active handlers complete their work,
and refuse subsequent incoming data and connections. Closing a socket is an er-
ror prone action. One peer closes the socket, and any thread within any of the
two peers reading or writing the socket will finish with an error. With graceful
shutdown, only one of the peers fail with an error, and it will only fail at the
beginning of a read, write or connection. In conclusion, graceful shutdown sim-
plifies debugging through better error messages and support for automatic tests.

47

4.5.5 Berkeley socket API and Epoll

The Berkeley socket API is a low level API for socket programming. Implementa-
tions vary a bit between platforms, making it a bit hard to write portable Berkeley
socket code. There are many methods for efficient socket multiplexing. A very ef-
ficient, Linux only implementation, is Epoll [95]. We chose Epoll for P2G-RPC for
its efficiency. Further research revealed several libraries that makes Epoll avail-
able on Linux, and other implementations with comparable performance avail-
able on other platforms through the same API. Two widely used such libraries are
libevent [96] and Boost ASIO [97]. The P2G project already depends on the Boost
library. Boost ASIO has a good API that is low-level enough for us to optimize
communications if required, and it has higher level interfaces for common oper-
ations. Libevent has many of the same qualities, however it is written in C. In a
C++ codebase, a good object oriented library, such as Boost ASIO, integrates far
better. Since nothing else significantly distinguishes these libraries, Boost ASIO
is a natural choice.

4.5.6 Thread API

POSIX threads is a powerful and portable threading API written in C. The latest
working draft of the next standard for the C++ language, dubbed C++0x, contains
a new thread API. This API integrates much better into a C++ codebase such as
P2G. The new thread API in C++0x [98] is not yet widely implemented by com-
pilers, but the Boost thread [99] implements the API, only in the boost namespace
instead of in the std namespace as the standard specify.

One challenge when using POSIX threads in C++ programs is good ways to com-
bine locking with exceptions. Locks in POSIX threads are not scoped, which
means that every exception between acquiring a lock and its release has to be
caught, followed by code to release acquired locks, followed by re-throwing the
exception. Listing 4.3 shows this with C++ code, while Listing 4.4 shows how
much easier this is with the new thread API.

Listing 4.3: Pthread example

1 void example(int protected_int) {

48

2 try {

3 pthread_mutex_lock(&mutex);

4 protected_int += 1;

5 } catch(...) {

6 pthread_mutex_unlock(&mutex);

7 throw;

8 }

9 pthread_mutex_unlock(&mutex);

10 return protected_int;

11 }

Listing 4.4: Boost thread example

1 void example(int protected_int) {

2 boost::lock_guard<boost::mutex> lock(mutex);

3 return protected_int;

4 }

Another challenge with POSIX threads is sending arguments into a thread. With
POSIX threads, one can only send a single void pointer. C++0x makes this easier
by allowing an arbitrary number of arguments of any copyable type.

POSIX threads is a far more complete and well tested API than C++0x threads.
However, the discussed improvements with C++0x threads over POSIX threads
simplify our programs to such an extent that we consider this a risk worth taking.

4.5.7 Naming

There is much research that shows the importance of good naming [60–63]. In
P2G-RPC, we have a template-based thread-safe general purpose queue that is
called MsgQueue. This should be given a name reflecting its true nature, such
as ThreadSafeQueue. Our SenderPool is not really a pool, but a queue, thus
SenderQueuewould be a better name. The RPCService has nothing to do with
RPC, and neither RPCService nor IOService are subclasses of the Service-
class, and would be described better with names such as ServiceQueue and
IOEventHandler.

49

4.5.8 Summary of issues

The issues we have discussed can be broken down into two groups.

1. Unneeded complexity. Not only in our code, but also in our library choices.

2. Code that is hard to test.

P2G-RPC did exactly what a prototype is supposed to do. However, as the P2G
project developed further and as we worked on the implementation on P2G-RPC,
we figured out, to a far greater extent, what we require. P2G-RPC has so many
issues and bugs that we decided to create a new version from scratch. We needed
to make it from scratch to overcome the issues with global data in Singletons and
testing.

4.6 New design goals: Lessons learned

Creating a new version of the socket library allowed us to incorporate our so-
lutions to all our issues with the initial design. Our goal was a minimalistic,
modular, clean, well tested library which is easy to maintain and optimize.

4.6.1 Minimalistic

We made three design choices based on the goal of minimalism. Our first choices
are based on the issues discussed above.

• All threads come from a single pool. This pool can be joined just like any
single thread, and they can be asked to stop after completing their current
job, thus allowing for graceful shutdown.

• We use the Boost thread API, since it provides us with an API that integrates
with C++ in ways that reduce the complexity of all threading code.

• Our socket code is hidden behind an interface which can be implemented
with any socket library. The current implementation uses Boost ASIO.

50

4.6.2 Modular, clean and easily maintainable

A clean modular design makes it easy to replace any part of a system. Continuing
change is an inherent part of research, so a modular design makes sense. Our
design was made with the following four general design principles in mind.

• Each function or method does exactly one thing, and it should be very short
[63].

• Each class has exactly one responsibility [63].

• Each namespace represents exactly one layer of functionality.

• All names are self documenting.

The first three items in the list encourages modular code that is easy to test and
maintain. Item 4 requires further explanation and justification.

Lessons learned from our central role in designing, maintaining and stabilizing
the Devilry open source project [100], and ideas from the KDE project [101] and
the Google C++ style guide [102], have shown that this rule should be used for
all names, even internal variables. Consider a service receiving an event. The ser-
vice is a method with the received event as one parameter. It might be tempting
to name this parameter e, or event. The issue with naming arise when our service
need to create an event of its own, and many choose to solve this with a new vari-
able, e2, or even x. If we had given the parameter a proper name to begin with,
such as receivedEvent, and our second event was given a good self documenting
name such as requestMoreResourcesEvent, our code instantly would have become
easier to read, harder to misunderstand, and thus easier to maintain.

4.6.3 Testing

Our communication library is designed to be a fundamental component of P2G,
which has a large and steadily growing code base. Without tests ensuring that at
least the fundamental parts of the library works, any integration into P2G would
have to consider errors in both the new P2G code and in the communication li-
brary. Automatic tests are far more useful than tests that require any kind of user

51

interaction, since they can be run after every change in the library to ensure that
new changes do not break any existing features. Our updated communication li-
brary has no global state, and minimal dependencies on other parts of the library,
which enables us to test any independent part of the library in isolation from any
other part of the library.

4.6.4 Terminology

The issues with naming in the initial design, and the unclear definition of the
RPC terminology, made us reconsider our terminology. We realized that asyn-
chronous message passing is basically the same as event handling. Our listeners
behave like event listeners, and messages have some unique property identifying
its purpose, just like events. This research made us realize that our library could
be designed to handle events in a transport independent manner, thus enabling
event listeners both within the same address space and on a different computer
in the network. Such a design enables us to design applications in terms of ser-
vices without considering their location. Location of services can be deferred to
the optimization stage, and it can be adaptive over time. This complements P2Gs
design, where tightly coupled processes are migrated as close to each other as
possible.

4.7 Sevent - A socket event library

Changing terminology, coupled with a rewrite from scratch made it natural to
choose a name for the library reflecting these changes. We named it Socket Event
(Sevent), reflecting the use of the event terminology, and sockets for communica-
tion. The library is split into the four modules shown in Figure 4.2. Each mod-
ule has minimal dependencies on the other modules, and their dependencies are
clearly defined, making it possible to replace each module. The socket module
takes care of all network communication, the serialize module contains utilities
for serialization for various data types, and the event module implements event
handling on top of the socket module. The datastruct module has no depen-

52

socket! event!

serialize!datastruct! Depends on!

Depends on!

Depends on!

Figure 4.2: Sevent modules.

dencies on any other part of the library, it only contains general purpose data
structures required by other parts of the library.

4.7.1 serialize - The serialization module

The serialize module is a framework which enables delayed serialization of many
data types, and an API which makes it easy to add support for any data type.

Delayed serialization means that the framework enables us to delay serialization
until it is required, such as when communicating the data via a socket. In P2G,
tasks often run on the same machine. It would be inefficient for such local tasks
to serialize their communications. Delayed serialization enables our event mod-
ule to only serialize communications with other computers on the network. To
achieve delayed serialization, we couple our data with a pair of serialization and
deserialization functions, and when we need to serialize or deserialize our data,
we use this pair.

With delayed serialization, the sender and the receiver have no way of knowing if
the data originated locally, or on another machine. With local transfer, a pointer
to the data is given directly to the receiver without any changes. With transfer
via a remote connection, the receiver will get a pointer to deserialized data. To
avoid memory leaks, we can free the local data after serializing it. However, the
sender may need to continue using the data after sending it. If we free the data
automatically, the sender would have to copy the data before sending it. If we

53

do not free the data automatically, the sender and receiver will have to know if
the data was transferred locally or via a remote connection, and handle each case
differently to avoid memory leaks. With local transfer, the receiver could free the
data, but only after making sure that the sender is done using it. With transfer
via a remote connection, the sender can free the data at any time after it has been
sent.

A solution to this issue is to use a smart pointer [64] implementation such as the
shared_ptr type [103] in the Boost library. shared_ptr objects store a pointer to a dy-
namically allocated object, and guarantees that the object is deallocated when the
last shared_ptr pointing to the object is destroyed. If all data to be transferred are
smart pointers, the data will be deallocated as soon as it goes out of scope. For lo-
cal transfers, the smart pointer will be copied to the receiver, and when the smart
pointer goes out of scope on both sender and receiver, it will be deallocated. For
transfer via a remote connection, the sender will treat the smart pointer exactly
as for local transfers. However, the receiver will receive a smart pointer to data
allocated by the deserialize-function, and this data will be deallocated when the
smart pointer goes out of scope on the receiver.

One issue with using smart pointers as described, is that all data must be smart
pointers. Some data might be statically allocated on the sender, which means that
we have to copy the data into a dynamically allocated data structure before send-
ing the data. We work around this through the use of another data type from
the Boost library, namely Boost.Any [104]. Boost.Any can store any copy con-
structable data type. shared_ptr is copy constructible, so they continue to work as
previously described. However, using Boost.Any allows us to send other forms of
intelligent pointers. We can, for example, wrap a pointer to a statically allocated
array in our own copy constructible data type, which we will call StaticArray.
With local transfer, our data type is copied, and the pointer can be retrieved by
the receiver with zero overhead. With transfer via a remote connection, the se-
rialize function can serialize the array just as it would do with a shared pointer.
The remote receiver can store the deserialized received data as a smart pointer,
and StaticArray can use this data. StaticArray will have to contain both a
normal pointer and a shared pointer, and only use one of them at any given time.
However, the overhead of this is minimal.

54

Boost serialization

Boost serialization is, as mentioned in Section 4.2, able to serialize most C++ data
types, including complex data structures such as vectors, maps and class hierar-
chies. Serialization with Boost has some overhead, but its support for more or less
any data type, and its ease of use, makes it a very good method of serialization
when performance is not essential or when the data structures are so complex
that no other alternative exists. Therefore, one of the serialization techniques
supported by the serialize module is Boost serialization.

Integer arrays

Since Boost serialize has some overhead, we need more efficient methods for
transfer of the most commonly used data types by store and fetch statements in
P2G kernels. Among the current workloads targeted by P2G, a vast majority of
fetch and store data is arrays of integer data. To minimize processing overhead,
our implementation sends integer arrays without any changes to the data. As
long as the target system uses the same endianess to represent integers in mem-
ory, this works. However, between computers using different endianess, we need
to change endianess when deserializing the array. Since most computers in our
target global topology use the same endianess, this is very efficient, and we only
transfer a single additional byte with each array to indicate the edianess with
which it was sent.

4.7.2 event - The event handling module

In Sevent, an event is a unique identifier followed by its payload, which is a list of
pairs of size and data. Events do not know anything about the format of the data,
leaving that to the serialization module. This leaves us with a flexible framework
witch enables us to use the most suitable serialization technique for each pair in
the list. This structure makes it easy to send complex series of data such as a
serialized class, followed by several arrays of different types.

Listing 4.5: SerializablePerson.h - A class which is serializable using Boost serialization

55

1 #pragma once

2 #include <boost/shared_ptr.hpp>

3 #include <boost/serialization/string.hpp>

4 #include <boost/serialization/access.hpp>

5

6 / * * A s e r i a l i z a b l e p e r s o n * /
7 class Person {

8 public:

9 unsigned short age;

10 std::string name;

11 public:

12 Person() {}

13 Person(const std::string& name_,

14 unsigned short age_) :

15 name(name_), age(age_) {}

16

17 private:

18 friend class boost::serialization::access;

19 template<class Archive>

20 void serialize(Archive& ar,

21 const unsigned int version) {

22 ar & age & name;

23 }

24 };

25 typedef boost::shared_ptr<Person> Person_ptr;

Listing 4.6: Sevent event module example

1 #include <boost/shared_ptr.hpp>

2 #include <boost/make_shared.hpp>

3 #include <iostream>

4 #include <string>

5 #include "sevent/sevent.h"

6 #include "SerializablePerson.h"

7

8 using namespace sevent;

9 using namespace sevent::event;

10 typedef boost::shared_ptr<std::string> String_ptr;

11

12 int main(int argc, const char *argv[]) {

56

13 String_ptr helloIn, helloOut;

14 Person_ptr supermanIn, supermanOut;

15

16 helloIn = boost::make_shared<std::string>("Hello");

17 supermanIn = boost::make_shared<Person>("Superman", 39);

18

19 Event_ptr event = Event::make("example::MyEvent");

20 event->push_back(Buffer::make(helloIn,

21 serialize::String));

22 event->push_back(Buffer::make(supermanIn,

23 serialize::Boost<Person>()));

24

25 helloOut = event->first<String_ptr>(serialize::String);

26 supermanOut = event->at<Person_ptr>(1,

27 serialize::Boost<Person>());

28 std::cout << *helloOut << std::endl;

29 std::cout << supermanOut->name << std::endl;

30 return 0;

31 }

Events are stored in objects of the sevent::event::Event type. Listing 4.6
shows how the event API is used by the programmer. On line 19, we create a
new event, with "example::MyEvent" as identifier. Next we add a string and an
object of the Person class from Figure 4.5. Notice how the buffer class requires
a pair of data and serializer as explained in Section 4.7.1. At this point, we have
created an event which can be serialized and sent to another computer, or passed
around within the current process.

The event-object has a method, serialize_at, which takes an index as argu-
ment and returns a serialized version of the buffer at that index. It also has a
method, size, which returns the number of buffers in the event. These two func-
tions together is what our socket module requires to be able to iterate over an
event and serialize all its buffers.

Lines 25-26 show how we retrieve data from our event. The event object has a
shortcut for retrieving its first buffer, and any buffer can be retrieved using the
at-method. Just as with the push_back method, we need to supply the serializer
to enable the event object to deserialize the data before returning it if required.
In this example, deserialization is not required, since we defer serialization to the

57

socket module, and we never send our event to the socket module.

Event identifiers

Listing 4.6 shows that event identifiers are strings. Our initial implementation
used integers as identifiers. However, the first attempts at integration of the Sev-
ent library into P2G revealed that numeric identifiers are hard to maintain in a
development environment with multiple concurrent contributors, since all the
developers have to cooperate to create unique identifiers. One solution is to use
a global table of identifiers. However, this tightly couples any component to this
table. In P2G, this is not even possible, since some components, such as Olib, are
developed outside the P2G code base, and thus, choose its own event ids. On a
research project such as P2G, one will continually get contributions from multiple
sources, and we already have a well established method of distinguishing these
sources. This method is project naming. With a string as identifier, one can prefix
every event id with the name of the project, such as olib and instrumentation.

Listing 4.7: Sevent StringEventId

1 #pragma once

2 #include <stdint.h>

3 #include <string>

4 #include "EventIdBodySerialized.h"

5

6 namespace sevent {

7 namespace event {

8

9 class StringEventId

10 {

11 public:

12 typedef std::string value_type;

13 typedef const value_type& value_typeref;

14 typedef uint8_t header_type;

15 typedef uint8_t header_network_type;

16 public:

17 static StringEventId_ptr makeFromNetwork(

18 header_type header, char* body) {

19 return boost::make_shared<StringEventId>(

20 std::string(body));

58

21 }

22

23 static unsigned headerSerializedSize() {

24 return 1;

25 }

26

27 static header_type deserializeHeader(

28 header_network_type header) {

29 return header;

30 }

31

32 static uint8_t bodySerializedSize(header_type header) {

33 return header;

34 }

35

36 static bool hasBody() {

37 return true;

38 }

39

40 public:

41 StringEventId(value_typeref value) :

42 _value(value) {}

43

44 header_network_type serializeHeader() {

45 return static_cast<uint8_t>(_value.size()+1);

46 }

47

48 EventIdBodySerialized serializeBody() {

49 return EventIdBodySerialized(_value.size()+1,

50 _value.c_str());

51 }

52

53 const value_type& value() {

54 return _value;

55 }

56

57 private:

58 value_type _value;

59 };

60

61 } / / namespace e v e n t
62 } / / namespace s e v e n t

59

Using strings as identifiers have some overhead. Instead of sending a single inte-
ger, which is 4 bytes, we send a single byte containing the length of our identifier,
followed by the identifier. Currently, no events in P2G are so small that this over-
head is noticeable, however, in case this might become an issue, we chose to make
the identifier type easy to redefine. We achieve this by defining a event identifier
interface where it is possible to define identifiers consisting of a fixed size header,
followed by a body. Numeric identifiers use only the fixed size header, and the
socket module ignores its body since it is empty. String identifiers use the length
of the string as header, and the identifier as body. With this approach, it is easy
to add other types of identifiers. Listing 4.7 shows how string events are imple-
mented. We can see that it provides a method to determine its header size, which
is 1, and methods to determine if it has a body and the size of the body. Both
header and body can be serialized, which enables us to use any data type as both
header and body.

The issue of strings taking much space might be worked around using hash-
ing [65]. The idea behind string hashing is to filter the string through a hashing
algorithm which returns a numeric value which is inexpensive store and com-
pare. However, any algorithm turning a long string into a small number will
produce the same number for different strings. Even if we choose a numeric data
type capable of containing huge numbers, such as a 164 bit integer, collisions are
still possible. Furthermore, a 164 bit number would consume the same amount
of space as a string identifier of 19 characters, so we would not really gain any-
thing through such an approach. We conclude that hashing can not be used to
implement string identifiers in our framework.

Another approach is packing strings with a character set consuming less than 8
bits. We could make a character set supporting only lower case English characters
and some additional characters, such as whitespace or other suitable separators.
Since the English alphabet contains 26 numbers, we could use 5 bits for each
character. This saves some space, and could be considered in the future if the
overhead of strings as event identifiers causes performance issues.

60

Event handling

When events are sent to the socket module, they are serialized unless the receiver
is within the same process as the sender. On the receiver, events are received
by a worker thread, and forwarded to a single event handler, dubbed all-events-
handler, which runs within the worker thread. This handler is defined by the
programmer using the library. A very common use case is to have a handler for
each kind of event. We support this as a separate submodule, which can be used
within the all-events-handler. This submodule also contains a simple all-events-
handler, which does error handling suitable for debugging.

The prime reasons for choosing the all-events-handler approach instead of hard
coding a system where each event is forwarded to a specific handler, is modu-
larity and error handling. We wish to split this code into separate modules to
enable fine tuned optimization of our event handler delegation. All event han-
dlers are created by the programmer using the library. Leaving the handling
of these events to the programmer, enables the programmer to handle his own
errors without any confusing abstractions. Since worker threads run event han-
dlers, we risk starvation when all worker threads are waiting for an event to
proceed. Our modular approach makes this an issue for a module built on top
of the all-events-handler. We could solve this by spawning a new thread for each
incoming event, but that would be inefficient since we would have no way of lim-
iting the number of incoming events. Using a pool of threads would just move
the issue of starvation to the pool. By giving the programmer using the library
full control over event handling, we allow the programmer to prevent starvation
in an efficient way tailored to the flow of events in each program.

4.7.3 socket - The network communication module

Our network communication module API (Figure 4.3) is far less complex than
our first design.

Listener is the interface used to accept new connections.

Connector is the interface used to create new connections to a listener. Estab-

61

sevent::socket!

listen()!

Listener!

Creates listening sockets and registers accept-

handlers with the Service. Worker threads do

something implementation specific on new connections

resulting in a new Session.!

sendEvent(...)!

receiveEvents()!

getLocalEndpointAddress()!

getRemoteEndpointAddress()!

setAllEventsHandler(...)!

setDisconnectHandler(...)!

Read input and send it to the correct

eventlistener. More or less all of the socket

code is here (read/write). A successful read

is forwarded to the allEventsHandler.!

Session!

AsioListener!

AsioSession!

0..*!

connect(addr): Session!

Connector!

Establishes new sessions with

listeners.!

AsioConnector!

add(Session)!

remove(Session)!

setAllEventsHandler(...)!

setDisconnectHandler(...)!

Sessions are added to this registry by Listener

and Connector, and should be removed by the

disconnectHandler.!

SessionRegistry!

1..1!

1..1!

run()!

stop()!

Service!

Socket event handler. Reacts to events such as

new connections, received data and peer

disconnect. Also able to do a graceful shutdown

of all connections.!

AsioService!

Simplifies use of the framework!

sessionRegistry(): SessionRegistry!

service(): Service!

connect(addr): Session!

listen(addr)!

setWorkerThreads(numThreads, workerThreadHandler,

allEventsHandler)!

joinAllWorkerThreads()!

Facade!

AsioFacade!

1..1!

Figure 4.3: UML diagram of the socket layer in Sevent.

lished connections are stored in SessionRegistry.

SessionRegistry contains all active sessions. A Session-object can receive and

62

send events. Worker threads react to incoming events and new connec-
tions, and forward them to the receivedEvents-method in Session or to a
Listener.

Facade binds the socket layer of the library into an easy to use API. The facade
uses a Service object to start and stop event handling.

The module is an interface, and we provide a TCP-based implementation using
Boost Asio. However, adding an implementation using a more sophisticated ap-
plication layer protocol, as we discussed in Section 4.3, would only require an
additional implementation of Listener, Connector and Session.

4.7.4 Example

Listing 4.8 and Listing 4.9 shows how Sevent work in practice. In this example,
the client sends 4 events.

"example::Msg" contains a single string.

"example::Person" contains a person object.

"example::Array" contains an array of 32 bit unsigned integers.

"example::Die" is an event without any data.

To keep the example simple, each event has a single data buffer. Events with
multiple data buffers were explained in Section 4.7.2.

When we send these events using the sendEvent method of the facade object,
the facade checks if the given session was created within the facade, detects that
it is not so, serializes the event and sends it to the server. If we were to register
the event handlers in the server with the facade used by the client, and use a
session with this facade, sendEvent would transfer the events directly to the
event handlers without serialization.

Listing 4.8: Sevent example client

1 #include <boost/lexical_cast.hpp>

2 #include "sevent/sevent.h"

3 #include "SerializablePerson.h"

63

4

5 using namespace sevent;

6 using namespace sevent::socket;

7 using namespace sevent::event;

8 using namespace sevent::datastruct;

9

10 int main(int argc, const char *argv[]) {

11 if(argc != 2) {

12 std::cout << "Usage: " << argv[0]

13 << " <server-addr>" << std::endl;

14 return 1;

15 }

16 std::string serverAddr(argv[1]);

17

18 Facade_ptr facade = Facade::make();

19 Session_ptr session = facade->connect(Address::make(serverAddr))

;

20

21 / / Event d a t a
22 typedef boost::shared_ptr<std::string> String_ptr;

23 String_ptr hello = boost::make_shared<std::string>(

24 "Hello");

25 Person_ptr superman = boost::make_shared<Person>(

26 "Superman", 39);

27 boost::shared_array<uint32_t> array = boost::shared_array<

uint32_t>(new uint32_t[3]);

28 array[0] = 10;

29 array[1] = 20;

30 array[2] = 30;

31 Uint32SharedArray_ptr arrayContainer = boost::make_shared<

Uint32SharedArray>(array, 3);

32

33 / / The e v e n t s
34 Event_ptr helloEvent = Event::make("example::Msg",

35 Buffer::make(hello,

36 serialize::String));

37 Event_ptr supermanEvent = Event::make("example::Person",

38 Buffer::make(superman,

39 serialize::Boost<Person>()));

40 Event_ptr arrayEvent = Event::make("example::Array",

41 Buffer::make(arrayContainer,

42 serialize::Uint32SharedArray));

64

43

44 / / Send t h e e v e n t s
45 facade->sendEvent(session, helloEvent);

46 facade->sendEvent(session, supermanEvent);

47 facade->sendEvent(session, arrayEvent);

48 facade->sendEvent(Address::make(serverAddr), helloEvent);

49 facade->sendEvent(session, Event::make("example::Die"));

50 return 0;

51 }

Listing 4.9: Sevent example server

1 #include <iostream>

2 #include <boost/bind.hpp>

3 #include <boost/lexical_cast.hpp>

4 #include "sevent/sevent.h"

5 #include "SerializablePerson.h"

6

7 using namespace sevent;

8 using namespace sevent::socket;

9 using namespace sevent::event;

10 using namespace sevent::datastruct;

11

12 void helloHandler(Facade_ptr facade,

13 Session_ptr session,

14 Event_ptr event) {

15 typedef boost::shared_ptr<std::string> String_ptr;

16 String_ptr data = event->first<String_ptr>(

17 serialize::String);

18 std::cout << "EventId=" << event->eventid()

19 << " Data=" << *data << std::endl;

20 }

21

22 void personHandler(Facade_ptr facade,

23 Session_ptr session,

24 Event_ptr event) {

25 Person_ptr p = event->first<Person_ptr>(

26 serialize::Boost<Person>());

27 std::cout << "Person-event received! "

28 << p->name << ":" << p->age << std::endl;

29 }

30

65

31 void uint32ArrayHandler(Facade_ptr facade,

32 Session_ptr session,

33 Event_ptr event) {

34 Uint32SharedArray_ptr arrayContainer = event->first<

Uint32SharedArray_ptr>(serialize::Uint32SharedArray);

35 boost::shared_array<uint32_t> array = arrayContainer->array();

36 std::cout << "Shared array-event received! " << std::endl;

37 for(int i = 0; i < arrayContainer->size(); i++) {

38 std::cout << "sharedArray[" << i << "] = "

39 << array[i] << std::endl;

40 }

41 }

42

43 void dieHandler(Facade_ptr facade,

44 Session_ptr session,

45 Event_ptr event) {

46 std::cout << "*** DIE-event received ***" << std::endl;

47 facade->service()->stop();

48 }

49

50 int main(int argc, const char *argv[]) {

51 if(argc != 2) {

52 std::cout << "Usage: " << argv[0]

53 << " <address>" << std::endl;

54 return 1;

55 }

56 std::string address(argv[1]);

57

58 Facade_ptr facade = Facade::make();

59

60 / / Setup t h e e v e n t h a n d l e r s
61 HandlerMap_ptr eventHandlerMap = HandlerMap::make();

62 eventHandlerMap->addEventHandler("example::Msg",

63 helloHandler);

64 eventHandlerMap->addEventHandler("example::Person",

65 personHandler);

66 eventHandlerMap->addEventHandler("example::Array",

67 uint32ArrayHandler);

68 eventHandlerMap->addEventHandler("example::Die",

69 dieHandler);

70

71 / / S t a r t 5 worker t h r e a d s ,

66

72 / / and use t h e h a n d l e r a b o v e f o r incoming e v e n t s .
73 facade->setWorkerThreads(5,

74 boost::bind(simpleAllEventsHandler,

75 eventHandlerMap,

76 _1, _2, _3));

77

78 / / C r e a t e a l i s t e n i n g s o c k e t .
79 facade->listen(Address::make(address));

80

81 / / Wait f o r a l l work t o f i n i s h . In t h i s example t h i s w i l l
82 / / happen when t h e d i e H a n d l e r c a l l s
83 / / f a c a d e −>s e r v i c e ()−>s t o p () .
84 facade->joinAllWorkerThreads();

85

86 return 0;

87 }

The server contains event handlers for each event, helloHandler, person-
Handler, uint32ArrayHandler and dieHandler. These handlers are reg-
istered with the facade in the main-method, and triggered when the events are
received. Each of the handlers, except for dieHandler, prints the received data
to standard output. The handlers could use their facade and session argu-
ments to send events back to the client, but this would require event handlers
on the client, which we excluded from the examples to keep them simple. Han-
dlers on the client would work exactly like they do on the server, and they would
be registered in exactly the same way. The dieHandler tells the service to
stop handling events, which makes the joinAllWorkerThreads-method of the
facade-object called at the end of the main function return, effectively stopping
the server.

4.7.5 Automatic tests

Listing 4.10: Automatic tests with Sevent

1 #define BOOST_TEST_DYN_LINK

2 #define BOOST_TEST_MODULE TestExample

3 #include <boost/test/unit_test.hpp>

4 #include "sevent/sevent.h"

67

5

6 using namespace sevent;

7 using sevent::event::Event;

8

9 unsigned counter = 0;

10 void allEventsHandler(socket::Facade_ptr facade,

11 socket::Session_ptr session,

12 event::Event_ptr event) {

13 counter ++;

14 if(counter == 2) {

15 facade->service()->stop();

16 }

17 }

18

19 BOOST_AUTO_TEST_CASE(SimpleTestExample) {

20 socket::Address_ptr listenAddr = socket::Address::make(

21 "127.0.0.1", 9091);

22 socket::Facade_ptr facade = socket::Facade::make();

23 facade->setWorkerThreads(1, allEventsHandler);

24 facade->listen(listenAddr);

25 socket::Session_ptr session = facade->connect(listenAddr);

26

27 facade->sendEvent(session, Event::make("ping"));

28 facade->sendEvent(session, Event::make("ping"));

29

30 facade->joinAllWorkerThreads();

31 BOOST_REQUIRE_EQUAL(counter, 2);

32 }

As explained in Section 4.6.3, the ability to write automatic tests embedding
Sevent is an important property of the library when it is to be integrated into
multiple layers of the P2G code base. Listing 4.10 is a minimal example of a
unit test written for the Boost test library [105]. We define a custom all-events-
handler, which counts how many incoming events it receives, and stops the ser-
vice from handling more events when this counter reaches two. In the body of
BOOST_AUTO_TEST_CASE(SimpleTestExample) starting on line 19, we set up a
facade, create a connection to this facade, send two events, and wait for them to
be handled by the event handler. When the event handler stops the service from
handling more events, we assert that counter equals 2. This is about as simple as

68

such a test can be, however it is a demonstration of the viability of writing auto-
matic tests using Sevent. Further proof of the usability of Sevent in automatic tests
can be found in the test/socket/ directory in the Sevent source code, which contains
tests for the entire socket module.

4.8 Summary

Through several iterations of design and testing of Sevent, we have made a library
that can be used for all network communication in P2G. Our primary experience
from this research is that simple and minimal external APIs in each module in a
subsystem, makes it easy to integrate a subsystem into a larger system, such as
P2G.

Furthermore, automatically testing as much of the code as possible revealed er-
rors at an early stage. Detecting most errors early made it very easy to integrate
the various submodules, since most errors related to such integration was due to
bugs in the way the submodules integrated instead of bugs in each submodules.
Tracking down these bugs was relatively easy, since a quick look at our automatic
tests for each submodule eliminated most of the possible sources for each bug.

Another important experience is the importance of good naming and terminol-
ogy when integrating with modules developed by multiple developers. Misun-
derstandings are far less frequent if the terminology is solid, and descriptive and
unambiguous names are used.

Our next challenge is to integrate Sevent with Olib. This should ease the inte-
gration of network distribution into Olib. Successful integration with Olib would
be a good indication of the usefulness of Sevent. Furthermore, the integration of
these two libraries can serve as a test of the quality of the external APIs in both
libraries, especially Sevent, since its API should work without further changes.

69

70

Chapter 5

Network distribution of Obese
libraries

In Chapter 3, we introduced the ideas behind Olib, and how to implement it on
a single heterogeneous computer. The Sevent library discussed in Chapter 4 is
designed to meet our requirements for local and network communication. In this
chapter, we demonstrate the improvements the Sevent library brings to our initial
Olib implementation, and the changes required for a distributed version of Olib.

5.1 Olib on a single heterogeneous computer

Our initial implementation of single computer Obese libraries (Section 3.7) worked
satisfactory, except for error prone and complex socket communication between
the client application and the scheduler. Using Sevent, we can reduce commu-
nication complexity considerably. We can make all requests and responses into
events.

When integrating Sevent with Olib, we defined all requests and responses as
classes and serialized objects of these classes with Boost serialization. Since we
used classes, it was easy to add and remove information to our events. Min-
imizing the amount of work required to change requests and responses saved
much time during our research and during the migration to a distributed ver-
sion. Serializing classes is not very efficient. However, these classes are simple,

71

so the overhead of serialization should be minimal. Furthermore, our focus is not
scheduling, so we have not spent any time optimizing scheduler communication.

5.2 Olib distributed in a network of heterogeneous

computers

Adapting the single computer Olib implementation for network distribution did
not require many changes. The complexities of network communication is han-
dled transparently by Sevent. The scheduler in our single computer implemen-
tation is a stand-alone process using sockets to communicate with the client ap-
plications. This means that the single computer implementation of Olib partly
supports distribution. The scheduler and client application can be on different
computers in the network.

What we are missing is information from the scheduler about where to load the
shared libraries. In the single computer implementation, the scheduling response
contains the location of the shared library that executes the kernel instance on the
selected processing unit. The scheduling response does not contain any information
about what computer to load the shared library on, since it is to be loaded by the
client application process running on the same computer. If we add the network
address of the computer where the P2G kernel instance is to be executed to the
scheduling response, the client application can send a run request containing the
location of the shared library to the computer at the given address. Computers
eligible to receive run requests need to have a run handler that can load shared
libraries. Computer executing a run handler is called a slave. We call them slaves
since they have to do as they are told by the scheduler.

Figure 5.1 show how requests and responses flow between request and response
handlers in the distributed Olib implementation, and Handler-listing 2 describes
each handler in detail. Comparing these listings to the corresponding single com-
puter implementation (Figure 3.1 and Handler-listing 1), we can see that the dif-
ference is minimal. The major difference is that we move the task of loading
shared libraries from the client application into the slaves. The changes shifts the

72

Slave!

Scheduler!

Client!application!

want to call a function
in an obese library!

Send "schedule
request"!

Hardware
available?!

call function!

The server does not
respond until a device

is ready!

Send a "run request" to
the host containing the

selected hardware !

Receive the
"run request"!

Load shared library!

Send "schedule
response"!

Receive "schedule
response"!

Receive
"schedule
request"!

no!

yes!

Send
"unschedule

request"!

Receive
"unschedule

request"!

Figure 5.1: Flow of requests and responses in the distributed Olib implemen-
tation. Arrows with double lines represent network communication, while the
other arrows represent internal communication within the same process.

code required by the P2G runtime from the client into the slave. We assume the
P2G runtime will be a superset of our slaves, therefore we continue calling them
slaves.

5.3 Issues with our design

The design outlined in the previous section works, however, it has a minor issue
that can be solved by adding a bit of extra complexity. When a client application
sends a run request, it does not get any response. This is because all communi-
cation in Sevent is asynchronous. Therefore the client can not know when the
shared library has been loaded and the function has started executing, which
means that the client can not initiate communications with the executing func-

73

Schedule request handler receives scheduling requests containing the file-system path to an appli-

cation directory and the name of a function that every shared library within the application

directory must provide. The scheduler responds with the file-system path, the name of a

shared library located within the application directory, and the name of the function. The

name of the shared library is selected by the scheduler from a list of shared library names

and slave addresses in a round-robin manner. We assume that a scheduler integrated

into P2G would use a more dynamic method of choosing this name using instrumentation

data.

Schedule response handler receives responses to scheduling requests containing the ad-
dress of the selected slave, and sends run requests to the run handler on this
slave.

Run handler receives run requests containing the file-system path to the applica-
tion directory, the name of a shared library within the application directory,
and the name of a function within the shared library. The run handler loads
the shared library and invokes the function in a separate thread. When the

execution of the function completes, the scheduler is notified using an unscheduling request.
Unscheduling request handler receives unscheduling requests containing the address of the

slave, the file-system path to an application directory, and the name of a shared library

within the application directory. This is enough information for the scheduler to know that

the processing unit is used by one less kernel instance.

Handler-listing 2: Handlers in distributed Olib. Changes from Handler-listing 1
are highlighted with larger font and green color.

tion. This means that any input data to the function has to be part of the run
request, and there is no simple way of communicating data back to the client. The
Sevent library makes two way event passing trivial, and supporting such commu-
nication makes the Olib library more flexible. For example, it makes it possible to
send data, such as statistics, back to the client, while forwarding results to another
slave.

In our design, there is much unneeded communication overhead. First of all, ob-
jects serialized with Boost using the stable plain text serialization format recom-
mended for endian-safe data transfer consume more communication bandwidth
than an optimized binary protocol and even more than a custom built plain text
protocol. If this becomes an issue, Sevent makes it relatively easy to replace our se-

74

rialization method with a more space-optimized binary protocol such as Google
protocol buffers or the less stable endian-safe binary protocol in Boost serializa-
tion.

The second form of communication overhead is with the protocol itself. To keep
our handlers as independent as possible, we opted for a protocol where each han-
dler receives all the data they need to independently complete their task. This
means that the schedule request handler responds with all its input data in addi-
tion to the name of a shared library. The client only needs to get the name of
the shared library back from the scheduler, since it already knows what it sent to
the scheduler. However, since communication is asynchronous, such a solution
requires the client application to maintain a registry of sent events waiting for
response. Not only does this increase the complexity of the client application, it
also binds the schedule response handler, and the module within the client respon-
sible for sending requests more tightly, making testing of each component a more
complex task. We have chosen to keep the client as simple as possible for our im-
plementation, however optimizing communication should be considered in the
future if profiling shows that it is a bottleneck.

5.4 Implementation details

Every request and response handler in Olib is implemented as Sevent event han-
dlers. We have four classes that simplifies setting up and using these handlers for
specific purposes. Each of these classes, shown in Figure 5.2 inherit basic func-
tionality from OlibBase.

OlibBase contains a Sevent socket facade, and a Sevent event handler map.

OlibMaster adds the scheduling handlers to the event handler map. It is called
master instead of scheduler, since it is a natural place to add handlers for other
centralized P2G modules, such as an instrumentation handler.

OlibClient has the ability to connect to an OlibMaster, send scheduling re-
quests and receive the response from the scheduler.

75

Contains the run request

handler!

!

OlibSlave!

!

Connect to a OlibMaster and

schedule SPBs !

!

OlibClient!

!

Adds the scheduler handlers

to the facade!

!

OlibMaster!

!

Contains a sevent socket

facade where we can add

event handlers!

<<abstract>>!

OlibBase!

Can act as both slave and

master at the same time.

Mainly for automatic tests!

!

OlibMasterAndSlave!

!

Figure 5.2: The class hierarchy of the Olib facades that makes it easy to create
custom masters, slaves and clients.

OlibSlave extends OlibClientwith the ability to handle run requests and load
Obese libraries. It extends OlibClient because slaves can act as clients to other
slaves, thus enabling us to forward data through any number of slaves without
communicating back to the client.

OlibMasterAndSlave is a subclass of both OlibMaster and OlibSlave, which
makes it possible to run scheduler, slave and client in the same process. This sim-
plifies automatic testing of P2G applications.

Each of these classes make it possible to create schedulers, client applications and
slaves with very few lines of code. This is very important for client applications,
since every bit of added complexity with their common setup will increase the
complexity of any client application. Slaves and schedulers are supposed to be
implemented once and used anywhere. However with a clean and minimal API
such as the one we get with our selected structure, automatic tests are easy to set

76

up, a feature we will explore further in Section 5.6.

5.4.1 Master

Listing 5.1: Source code for a Olib master

1 #include <boost/bind.hpp>

2 #include "olib/olib.h"

3 #include "olib/scheduler/Queue.h"

4

5 using sevent::socket::Address;

6 using olib::scheduler::Queue;

7 using olib::OlibMaster;

8 using olib::OlibMaster_ptr;

9

10 int main(int argc, const char *argv[]) {

11 Queue sched;

12 sched.add(Address("127.0.0.1", 3000), "x86");

13

14 OlibMaster_ptr master = OlibMaster::make(50,

15 boost::bind(&Queue::schedule, &sched, _1, _2),

16 boost::bind(&Queue::unSchedule, &sched, _1));

17 master->listen(Address::make("0.0.0.0", 9090));

18 master->socketFacade()->joinAllWorkerThreads();

19 return 0;

20 }

Our master uses a round-robin scheduler where we define a list of pairs of net-
work addresses and shared library names that will be loaded in the given order.
We name all shared libraries in our tests with appropriate names, such as cuda,
opencl or cpu. Thus our scheduling list becomes a list of addresses and target pro-
cessing unit. Each scheduling request removes an item from the list, and we add it
back again upon receiving the corresponding unscheduling request.

Listing 5.1 is a complete scheduler application with a static schedule. The Queue
object names sched defines our scheduler. We add a single address and shared
library name to the scheduler, and bind the scheduler to a OlibMaster object. The
Olib master listens on port 9090 on all interfaces, and waits for all worker threads

77

to finish. We have not added any means of stopping the worker threads, so this
application will continue handling scheduling requests until it is killed.

5.4.2 Slave

Listing 5.2: Source code for a Olib slave

1 #include <boost/lexical_cast.hpp>

2 #include <boost/shared_ptr.hpp>

3 #include <boost/make_shared.hpp>

4 #include "olib/olib.h"

5

6 using sevent::socket::Address;

7 using olib::OlibSlave;

8 using olib::OlibSlave_ptr;

9

10 int main(int argc, const char *argv[]) {

11 if(argc != 3) {

12 std::cout << "Usage: " << argv[0]

13 << " <slave-addr> <master-addr>" << std::endl;

14 return 1;

15 }

16 std::string slaveAddr(argv[1]);

17 std::string masterAddr(argv[2]);

18

19 OlibSlave_ptr slave = OlibSlave::make(30);

20 slave->listen(Address::make(slaveAddr));

21 slave->connectToMaster(

22 Address::make(masterAddr));

23 slave->socketFacade()->joinAllWorkerThreads();

24 return 0;

25 }

Listing 5.2 shows how our slave is implemented. The application takes its own
and the masters address as input. The last five lines before the main-method
returns is everything required for a fully functional Olib slave. It is initialized
with 30 worker threads, starts listening on the given address and port, creates a
connection to the master, and waits for all worker threads to finish. Just as with
the scheduler, slaves never quit unless we kill them.

Since we have implemented a fully static scheduler, we have to add all slaves in

78

our network to the scheduler manually, and recompile the scheduler. We can set
the number of concurrent instances of the same shared library allowed to run on
a slave by adding exactly that many pairs of the same address and shared library
name to the scheduler. For example, making three copies of line 12 in Listing 5.1
would permit four instances of a shared library named x86 to run concurrently
on the slave listening on 127.0.0.1:3000.

Recompiling the scheduler for scheduling changes makes it time consuming to
try out different schedules. Therefore, we have overloaded the constructor of
olib::scheduler::Queue with a method taking a single string as input. This
string specifies one or more pairs of slave addresses and shared library names,
which makes it easy to update our master with an argument containing the sched-
ule, thus making it possible to specify the schedule at runtime.

Loading shared libraries

The example in Listing 5.2 only shows a very high level API for creating slaves.
Behind this high level API, the slave contains a run handler. As previously ex-
plained, the run handler receives run requests. Each run request makes the run han-
dler load a shared library and invokes the requested function within the shared
library.

The function is invoked with a single argument, a Context-object. The Context-
object has information about the shared library, such as its location and name, a
method for registering handlers for incoming events from clients, and a method
for unscheduling the shared library.

We implement two-way communication as explained in Section 5.3. However, we
do not implement data passing along with the run request. We chose this solution
because it simplifies our implementation, however it does lead to some delays
in communication as the sender must wait for a response before sending any
data. A more optimal solution would be to support both forms of data transfer.
The Context provides the notifyInvoker-method to notify the client that the
function is ready to handle incoming data. This can not be done automatically
since the shared library must manually add its event handlers for incoming data
before it is safe to send data.

A normal method of processing multimedia workloads is a pipeline. Data is

79

passed through several algorithms, each algorithm processing input data and
outputting data which is forwarded to the next algorithm in the pipeline. We
support this through the scheduleFunction-method of the Context that re-
sults in a schedule request. The method takes the input required by the schedule
request handler, and a callback that is invoked when the scheduled function no-
tifies that it is ready to receive data. With this method, we can schedule a P2G
kernel instance from a client application, and the kernel instance can schedule
other kernel instances, thus pipelining data through an unlimited number of ker-
nel instances.

5.4.3 Client

A client application works much like the slave. It needs to listen on a port if it
is to be able to receive events from slaves. Just as the slave, it needs to create a
connection to the master, however unlike the slave, it does not have to run until
killed.

A slave gets a context from the run handler, which it uses to set up event handlers
and schedule kernel instances. Clients also use contexts, however they have to
create them manually. The contexts used by a client is almost like the context
given as parameter to the function within the shared libraries, but since it is not
within a P2G application, it does not contain the location and name of the cur-
rent shared library. Using contexts on both clients and slaves provides the pro-
grammer with a unified interface for all scheduling and communication using
our library.

5.5 A complete example

We have shown how the master and slave application are implemented, however
we have only explained the inner workings of clients and slaves, and not how
applications are implemented. In this section we demonstrate how to implement
a distributed P2G application which takes two equal sized arrays as input, and
produces an array containing the sum of the two input arrays. Our example was
chosen for its simplicity, and not to demonstrate every single feature of Olib. This

80

is the low-level code we assume the P2G kernel language compiler will be able to
produce for every target architecture.

5.5.1 The client application

We split our client applications over two files. This is mainly to enable us to use
the client handlers in automatic tests. The client starts in Listing 5.3 by creating
the input arrays. Next, it does what every client needs to do. It starts listening
for incoming events and connects to the master. On lines 27-34, the client creates
a context, adds an event handler listening for the result of the calculation, and
schedules the sumArrays-olib-function with the onInitSlaveConnection-
function, which is registered to be called when the olib-function signals that it is
ready to receive input data. On line 37, the client blocks until the onArraySumResult-
function signals that the result has been received, and the next lines print the
results to standard output.

Listing 5.3: Client application calculating the sum of two arrays

1 #include <boost/lexical_cast.hpp>

2 #include <boost/shared_array.hpp>

3 #include <boost/bind.hpp>

4 #include "olib/olib.h"

5 #include "sumArraysClientHandlers.h"

6

7 using sevent::socket::Address;

8 using sevent::socket::Address_ptr;

9 using namespace olib;

10

11 int main(int argc, const char *argv[])

12 {

13 unsigned arraySize = 10;

14 boost::shared_array<uint32_t> result;

15

16 / / C r e a t e t h e i n p u t a r r a y s
17 boost::shared_array<uint32_t> arrayA = boost::shared_array<

uint32_t>(new uint32_t[arraySize]);

18 boost::shared_array<uint32_t> arrayB = boost::shared_array<

uint32_t>(new uint32_t[arraySize]);

19 for(int i = 0; i < arraySize; i++) {

81

20 arrayA[i] = i;

21 arrayB[i] = i+1;

22 }

23

24 OlibClient_ptr client = OlibClient::make(5);

25 client->listen(Address::make("127.0.0.1", 8000));

26 client->connectToMaster(Address::make("127.0.0.1", 9090));

27 protocol::Context_ptr context = client->createContext();

28 context->addEventHandler("example::ArraySumResult",

29 boost::bind(onArraySumResult, client, &result,

30 _1, _2, _3));

31 context->scheduleFunction(

32 "sumArrays/sumArrays.olib", "sumArrays",

33 boost::bind(onInitSlaveConnection, _1,

34 arrayA, arrayB, arraySize));

35 client->socketFacade()->joinAllWorkerThreads();

36

37 std::cout << "Array sum result received" << std::endl;

38 for(int i = 0; i < arraySize; i++) {

39 std::cout << "result[" << i << "] = "

40 << result[i] << std::endl;

41 }

42

43 return 0;

44 }

Listing 5.4: Implementation of sumArraysClientHandlers.h

1 #include "sumArraysClientHandlers.h"

2

3 using namespace sevent;

4 using namespace olib;

5 using namespace olib::protocol;

6 using namespace sevent::event;

7 using sevent::datastruct::Uint32SharedArray;

8 using sevent::datastruct::Uint32SharedArray_ptr;

9

10 void onInitSlaveConnection(

11 SlaveSession_ptr slaveSession,

12 boost::shared_array<uint32_t> arrayA,

13 boost::shared_array<uint32_t> arrayB,

14 unsigned arraySize) {

82

15 std::cout << "Slave for ’sumArrays()’ found. "

16 << "Sending arrays." << std::endl;

17 Uint32SharedArray_ptr arrContainerA = boost::make_shared<

Uint32SharedArray>(arrayA, arraySize);

18 Uint32SharedArray_ptr arrContainerB = boost::make_shared<

Uint32SharedArray>(arrayB, arraySize);

19

20 Event_ptr arrayEvent = Event::make("example::ArrayData");

21 arrayEvent->push_back(Buffer::make(

22 arrContainerA, serialize::Uint32SharedArray));

23 arrayEvent->push_back(Buffer::make(

24 arrContainerB, serialize::Uint32SharedArray));

25 slaveSession->sendEvent(arrayEvent);

26 }

27

28 void onArraySumResult(OlibClient_ptr olibClient,

29 boost::shared_array<uint32_t> *result,

30 Context_ptr context,

31 SlaveSession_ptr session,

32 Event_ptr event) {

33 Uint32SharedArray_ptr arrContainer = event->first<

Uint32SharedArray_ptr>(serialize::Uint32SharedArray);

34 *result = arrContainer->array();

35 olibClient->socketFacade()->service()->stop();

36 }

5.5.2 Shared communication code for any architecture

Listing 5.5 show the superclass for all our implementations for summing the two
input arrays. Since we make this code manually, this is a natural abstraction
to provide reuse of code, however a P2G compiler might solve this differently.
The SumArrays-class contains code to deserialize input arrays, and code to send
the result of summing the two arrays back to the client when the result is ready.
The constructor takes the event containing the two input arrays as parameter.
SumArrays stores the two input arrays internally as arrayA and arrayB, and
it allocates a result-array of appropriate size for storing the result of summing
the two input arrays.

83

Listing 5.5: SumArrays.h - Shared communication code for all sum arrays implementations

1 #pragma once

2 #include "olib/olib.h"

3

4 using namespace olib::protocol;

5 using namespace sevent;

6 using namespace sevent::event;

7 using sevent::datastruct::Uint32SharedArray;

8 using sevent::datastruct::Uint32SharedArray_ptr;

9

10 / * * Shared c o d e t o p a r s e t h e e v e n t f l o w f o r a l l
11 * sum a r r a y s i m p l e m e n t a t i o n s . * /
12 class SumArrays {

13 public:

14 SumArrays(Event_ptr event) {

15 Uint32SharedArray_ptr arrContainerA = event->at<

Uint32SharedArray_ptr>(0, serialize::

Uint32SharedArray);

16 Uint32SharedArray_ptr arrContainerB = event->at<

Uint32SharedArray_ptr>(1, serialize::

Uint32SharedArray);

17 arrayA = arrContainerA->array();

18 arrayB = arrContainerB->array();

19 arraySize = arrContainerA->size();

20 result = boost::shared_array<uint32_t>(

21 new uint32_t[arraySize]);

22 }

23

24 void sumAndSendResult(Context_ptr context,

25 SlaveSession_ptr session) {

26 sumTwoArrays();

27

28 Uint32SharedArray_ptr resultContainer;

29 resultContainer = boost::make_shared<Uint32SharedArray>(

result, arraySize);

30 Buffer_ptr resultBuf = Buffer::make(

31 resultContainer,

32 serialize::Uint32SharedArray);

33 Event_ptr resultEvent = Event::make(

34 "example::ArraySumResult", resultBuf);

35 session->sendEvent(resultEvent);

36 context->unScheduleFunction();

84

37 }

38 protected:

39 / * * S u b c l a s s e s sum arrayA and arrayB , and
40 * s t o r e t h e r e s u l t s in r e s u l t . * /
41 virtual void sumTwoArrays() = 0;

42 protected:

43 boost::shared_array<uint32_t> result;

44 boost::shared_array<uint32_t> arrayA;

45 boost::shared_array<uint32_t> arrayB;

46 unsigned arraySize;

47 };

5.5.3 A standard C++ implementation for summing two arrays

Listing 5.6 shows the code for a shared library for normal CPUs programmable
using C++. The sumArrays-function is the function that is loaded by the run
handler as explained in Section 5.4.2. This function adds the onArrayData as
handler for incoming arrays of data, and calls the notifyInvoker method as
explained in Section 5.4.2. The onArrayData-method creates a object of the
CpuSumArrays class, which is a subclass of SumArrays. The actual code for
summing two arrays is in the sumTwoArrays-function.

Listing 5.6: Standard C++ implementation

1 #include <iostream>

2 #include <stdint.h>

3 #include "sevent/sevent.h"

4 #include "olib/olib.h"

5 #include "SumArrays.h"

6

7 class CpuSumArrays : public SumArrays {

8 public:

9 CpuSumArrays(sevent::event::Event_ptr event) :

10 SumArrays(event) {}

11 protected:

12 virtual void sumTwoArrays() {

13 for(int i = 0; i < arraySize; i++)

14 {

15 result[i] = arrayA[i] + arrayB[i];

85

16 }

17 }

18 };

19

20 void onArrayData(olib::protocol::Context_ptr context,

21 olib::protocol::SlaveSession_ptr session,

22 Event_ptr event) {

23 CpuSumArrays sumArrays(event);

24 sumArrays.sumAndSendResult(context, session);

25 }

26

27 extern "C" {

28 void sumArrays(olib::protocol::Context_ptr context) {

29 std::cout << "sumArrays called" << std::endl;

30 context->addEventHandler("example::ArrayData",

31 onArrayData);

32 context->notifyInvoker();

33 }

34 }

5.5.4 CUDA and OpenCL implementations

CUDA and OpenCL implementations are available in the examples/sumArrays/-
sumArrays.olib sub-directory in the Olib source-code (see Appendix B). The only
significant changes in these implementations from the one in Listing 5.6 is the
sumTwoArrays-method on line 12. In the OpenCL and CUDA implementations,
the arrays are copied into the processing unit, and the code used to sum the two
arrays are programmed using the respective kernel languages.

5.6 Automatic testing

Throughout this thesis we have had a fair amount of focus on automatic testing.
One of the benefits of automatic tests becomes apparent when we consider the
complexities of implementing many different implementations of the same code.
Different implementations can result in different results. The differences may

86

be due to bugs. Bugs can easily be detected by automatic tests. A more subtle
source of different results comes from the architectural differences between our
target architectures. Processing units operate with varying precision. For exam-
ple, many NVIDIA GPUs provide very fast floating point calculations [70] at the
cost of precision.

Varying results from execution on each target architecture can affect the correct-
ness of our results. Automatic tests can automate the task of verifying that each
target architecture provides results within bounds acceptable for each P2G pro-
gram.

5.7 Distributing P2G kernel instances using Olib

We assume we can compile P2G kernel definitions into shared libraries for each
processing unit in our target architecture, and organize them into a directory-based
application format as described in Chapter 3. Each P2G kernel instance can be
executed by the P2G runtime as an application using the API presented in this
chapter.

All kernel and scheduler communication is executed on the CPU. Some process-
ing units, such as a GPU, requires data to be copied from the CPU to the pro-
cessing unit before executing a P2G kernel. For very fast-running kernels, copy-
ing data may be a bottleneck. Therefore, we recommend that the P2G kernel
language compiler and scheduler work together to minimize the need to com-
municate with the CPU. One possible strategy is to generate kernels that takes
the number of sequential executions as parameter, thus allowing the processing
unit to process multiple kernel instances without relinquishing control back to
the CPU. Another possible solution is to extend Olib with the ability to commu-
nicate directly with the scheduler on some processing units, or at least to copy
scheduling information into the processing units in the background while kernel
instances execute.

In this chapter, we have presented an application as a client to a master. We have
not made any research into the implementation of a fully fledged P2G runtime.
However, we assume that the runtime will incorporate the same functionality

87

as a slave. Our slaves are standalone applications, but we do not know how
the P2G runtime will be implemented or what additional requirements it may
incorporate. Therefore, we designed Olib as a modular library that is flexible and
relatively easy to change if required.

5.8 Summary

In this chapter we have demonstrated that adding support for distribution in Olib
using Sevent is relatively easy. Furthermore, we have presented a viable solution
for distribution of P2G kernel instances.

We have shown that making programs using Olib is labour intensive, which high-
lights the need for a higher level programming language, such as the P2G kernel
language.

Integrating Sevent into Olib required very little work. Since Olib uses most of
the features supported by Sevent, and these features are based on deduction of
the requirements of the P2G project, we can conclude that Sevent is usable as the
foundation for network communication in the P2G project.

Both Sevent and Olib work as intended from the programmers perspective, but
without further proof of their viability for multimedia workloads we do not meet
all goals defined in our Problem Definition. In the next chapter, we demonstrate
that Olib works on both a single multi-core heterogeneous computer, and dis-
tributed in a network.

88

Chapter 6

Viability of multimedia workloads
with Olib

In this section we demonstrate that Olib can be used for multimedia workloads
on a single computer, and distributed to multiple computers in a network. In
Chapter 5 we discussed a very simple example which calculates the sum of two
arrays. Such an application is does not benefit much from GPU parallelization or
network distribution, since data transfer is the most expensive operation. There-
fore, we have selected a more computationally expensive workload as a proof
of concept. This is a proof of concept, not a fully fledged benchmark of our im-
plementation. A benchmark would require more workloads, and fine grained
performance measurements of Sevent and Olib. The goal of this proof of concept is
to demonstrate that our framework achieves performance-improvements when
distributed in a network, and to highlight the complexities that the P2G sched-
uler must handle to achieve good performance.

6.1 Motion JPEG

Our workload is a Motion JPEG (MJPEG) encoder. MJPEG is a video format
where each frame in the video is stored as a JPEG image. This workload is easy
to parallelize, since each frame in the video can be processed independently.

A MJPEG encoder can be divided into 4 steps:

89

1. Read a raw video frame from disk into three arrays of data which makes up
the image.

2. Perform Discrete cosine transform (DCT) [67] on each of the three arrays
from step 1.

3. Rearrange the results from step 2 into the format required by the JPEG stan-
dard.

4. Append the JPEG image to the output video.

Step 2 is the most computationally expensive step, therefore we have chosen to
optimize it as a Olib application. The other steps are computationally inexpen-
sive compared to step 2, and they are performed in parallel with step 2. There-
fore, steps 1, 2 and 4 does not affect the overall performance of encoding an entire
video. The Olib application performs DCT on a single input array for each execu-
tion. The following implementations are provided:

CPU
This implementation only requires a standard C++ compiler. We compile
this for Ubuntu Linux 64-bit X86, Apple Mac OSX 64-bit X86 and Ubuntu
Linux 64-bit PowerPC. For X86 Ubuntu and Mac OSX, we have made two
separate binaries. One is compiled with no special optimizations, making it
usable on any 64-bit X86 compatible CPU. The other is optimized for mod-
ern Intel CPUs.

NVIDIA CUDA
This implementation is not very optimized, however it runs on any NVIDIA
CUDA 1.1 compatible GPU.

OpenCL
This is a port of the CUDA implementation to OpenCL. It only works on
NVIDIA GPUs.

The source code for these implementations are in the examples/mjpeg/ directory in
the Olib source code (see Appendix A).

90

6.2 How

We use custom made Python scripts to execute our tests. We time the complete
execution time of each test program. The timer starts before spawning the pro-
cess executing the test-program, and ends when the process completes. Our test-
scripts execute each test thirty times, and we generate plots using shortest execu-
tion time. Execution time is measured as the time it takes to encode a single video
frame. Storing the shortest time may be suboptimal, since average time with stan-
dard deviations may be more accurate in a production environment. However,
we want to time our workloads under optimal conditions, and picking the best
time after many executions should provide us with timing-results from very close
to optimal conditions.

An overview of the test-computers is available in Appendix B. Our test-workload
is executed on specific processing units on each computer, distributed over all
available processing units on single computers, and distributed over a 1GB/s
network to multiple test-computers.

6.3 MJPEG on a single computer

Figures 6.1, 6.2, 6.4, 6.3 and 6.5 shows the results of running the MJPEG encoder
using different configurations on our test computers Leela, Delano, Bush, Clinton
and Cell-1. In these tests, we configured our scheduler to use a single type of
processing unit, such as CPU or GPU, at any given time. Since we have CPUs
with multiple cores, we run all our CPU tests with 1, 2, 4, 6, 8, 10 and 12 instances
in parallel. Each test is preceded by a test made without using Olib. These tests
use the same code as the Olib-tests, but they do not use Olib for communication
and parallelization.

In Figures 6.1, 6.2, 6.3 and 6.4, we can clearly see that binaries optimized for
modern Intel CPUs, labeled ModernIntel, outperform binaries compiled for porta-

91

Figure 6.1: MJPEG with our implementations for each of the available processing
units on Delano.

bility, labeled CPU. The tests labeled ModernIntel are compiled from exactly the
same source code as the tests labeled CPU. The only difference between CPU and
ModernIntel is the compile-flags used when compiling the source code into native
binaries. This demonstrates the worth of optimized binaries, and the importance
of providing a solution where it is practical to provide optimized binaries.

Figure 6.5 is primarily provided to show that Olib works on the PPE on a Playsta-
tion 3, which uses the CBE architecture. Our workload achieves very bad per-
formance on the PPE, however PPE- support is the first step towards providing
support for CBE-optimizations using Olib.

As long as the workload is parallelizable, the scheduler can distribute a work-

92

Figure 6.2: MJPEG with our implementations for each of the available processing
units on Bush.

load over an appropriate number of processing units. We can clearly see that our
workload achieves better performance when the scheduler distributes it over all
the available processing cores in the CPUs. In Figure 6.4, we can also see why
a dynamic scheduler is important. The CPU on Leela has only four cores, how-
ever it performs best, on our workload, with 12 instances in parallel. A static
scheduler could easily have made the mistake of using only four instances in
parallel on Leela. Since Leela is a laptop computer with power saving software
and hardware, one may assume that the increased performance is caused by a
gradual increase in available processing power as software or hardware detects a
long running process intensive job. However, since we execute each test multiple
times without any pauses that could allow power saving mechanisms to start,

93

Figure 6.3: MJPEG with our implementations for each of the available processing
units on Clinton.

this is highly unlikely. A much more probable reason for good multi-threading
performance is that the Intel Core i7 processor is a modern processor optimized
for multi-threading, using Intel Hyper-Threading Technology [106].

Figures 6.1, 6.2, 6.3, 6.4 and 6.5 show that Olib introduces a varying amount of
overhead. The overhead varies, even with the same implementation, as we can
see when comparing NVIDIA-OpenCL on Delano and Bush. In most cases the over-
head is minimal, and we have not used profiling or other techniques to deduce
the source of the overhead introduced by Olib. However we have theorized about
several sources of overhead in the previous chapter, and we consider reduction
of overhead a possible topic for future study.

94

Figure 6.4: MJPEG with our implementations for each of the available processing
units on Leela.

Figure 6.5: MJPEG with our implementations for each of the available processing
units on Cell-1.

6.3.1 Using all available processing units

Figure 6.6 and Figure 6.7 shows the performance of our workload when we dis-
tribute it over all available processing units on Delano and Bush. The tests shows
the performance achieved when using both their modern Intel CPU and their
GPU at the same time. Both the OpenCL and CUDA implementations are shown.
Neither the GPU on Bush nor the GPU on Delano support concurrent execution.

95

Figure 6.6: MJPEG distributed over all available processing units on Delano.

Figure 6.7: MJPEG distributed over all available processing units on Bush.

Therefore, we run our tests using a single GPU, and 1, 2 and 4 concurrent jobs on
the CPU.

An interesting observation is that combining CUDA with the CPU leads to de-
graded performance compared to only using CUDA. Another interesting obser-
vation is that our OpenCL implementation is slower than our CUDA implemen-
tation, however when using CPU and OpenCL together on Bush, they achieve
performance comparable to CUDA. This indicates that CUDA consumes much
shared resources compared to OpenCL on NVIDIA GPUs. However, it may also
indicate that our port from CUDA to OpenCL introduced more differences than
we first assumed. Furthermore, these results show that performance can not
be measured solely based on the performance measurements on each individual
processing unit, since shared resources can become a bottleneck. This highlights
the importance of a system, such as P2G, that aims to adapt to performance in-
formation dynamically at runtime.

96

Figure 6.8: MJPEG distributed in a network.

Two
Bush: 4xModernIntel,1xNVIDIA-OpenCL
+ Clinton: 4xModernIntel,1xNVIDIA-OpenCL

Three.A
Bush: 4xModernIntel,1xNVIDIA-OpenCL
+ Clinton: 4xModernIntel,1xNVIDIA-OpenCL
+ Leela: 12xModernIntel

Three.B
Bush: 4xModernIntel,1xNVIDIA-OpenCL
+ Clinton: 4xModernIntel,1xNVIDIA-OpenCL
+ Delano: 1xModernIntel,1xNVIDIA-OpenCL

Four

Bush: 4xModernIntel,1xNVIDIA-OpenCL
+ Clinton: 4xModernIntel,1xNVIDIA-OpenCL
+ Delano: 1xModernIntel,1xNVIDIA-OpenCL
+ Leela: 12xModernIntel

Five

Bush: 4xModernIntel,1xNVIDIA-OpenCL
+ Clinton: 4xModernIntel,1xNVIDIA-OpenCL
+ Delano: 1xModernIntel,1xNVIDIA-OpenCL
+ Leela: 12xModernIntel
+ Cell-1: PPE

6.4 Network-distributed MJPEG

Figure 6.8 shows the results of our tests when execution is distributed over more
than one computer in a network. The figure is labeled with the number of com-
puters used for each test, and the table below the figure shows the name of each
of these computers and the processing units used.

97

We use the processing unit combinations that performs best when distributed
over all available processing units on a single computer. The only exception is
PPE on Cell-1, which is only included to demonstrate that it works. We only
use one PPE, since the PPE is orders of magnitude slower than any of the other
processing units among our test computers. Another interesting property of the
PPE is that it is a big endian processor, while the other processing units are little
endian. Notice that Clinton has the same processing units as Bush. Therefore, we
use the same processing unit combinations for Clinton as for Bush.

When executing on a single computer, all four steps explained in Section 6.1 are
performed on the same computer. In the distributed version, we read raw video
frames on one computer (Step 1), distribute the DCT calculation (Step 2) over our
test-computers, and rearrange results (Step 3) followed by append data to the
output video (Step 4) on another computer. The computers used for Step 1 (the
data sender), and Step3+4 (the data receiver) are two computers that is not any of
our test-computers.

We can clearly see that network distribution of our workload improves perfor-
mance. Our best result on a single computer is on Bush (Figure 6.7). In Figure 6.8,
we can see that using both Bush and Clinton at the same time can almost dou-
ble our performance. Adding a third and a fourth slave, continues to increases
our performance, and we can clearly see that Leela (Three.A) performs better than
Delano (Three.B). Delano is slower than Leela (compare Figure 6.6 to Figure 6.4),
which shows that we scale with the available resources. Furthermore, Leela, Bush
and Clinton use approximately 1.8 seconds encoding each video frame by them-
selves. When distributing our workload over all these computers (Figure 6.8,
Three.A), we encode each video frame in 0.6 seconds. This is a linear perfor-
mance increase.

Distributing over five computers decrease performance compared to four com-
puters. This is because of the bad performance achieved by the PPE in Cell-1 (see
Figure 6.5). The only reason why this degrades performance to such a significant
degree is because we have a static round-robin scheduler. The other comput-
ers perform as they do without Cell-1. The scheduler do not have any way of
knowing that scheduling the PPE will be a very expensive operation. Therefore,
it schedules DCT on the PPE even when it would be far more efficient for the
overall result to just ignore it. This leads to degraded overall performance when

98

a single DCT calculation continues running on the PPE for a long time after DCT
calculation on every other frame in the video has completed. Furthermore, the
PPE is so slow compared to our other processing units, that it may not be possible
to use it on some workloads, such as live video streaming and other workloads
with deadlines. These issues highlight the need for future work on a dynamic
scheduler with instrumentation data, and we believe our MJPEG workload on
our test-computers would be a good combination for testing such a scheduler.

6.5 Summary

Our test-workload show that Olib can be used to distribute multimedia work-
loads. However, it is important to note that our MJPEG workload is only a proof
of concept, and not a complete performance evaluation. Our results clearly show
several potential benefits of Olib, especially as a part of P2G with a dynamic
scheduler. These benefits include the ability to use the most efficient combina-
tion of all available processing units, the increased performance offered by na-
tive binaries optimized for specific CPUs, and potential for performance increases
through network distribution. From our tests, we conclude that Olib is a viable
solution for P2G.

99

100

Chapter 7

Conclusion

The goal of our research was to find methods enabling P2G applications to par-
allelize and distribute workloads, especially live multimedia workloads, in a net-
work of many-core homogeneous and heterogeneous computers.

Sevent was created to be the foundation for all network communication in P2G.
Integration of Sevent into P2G has started, and this process has shown that our
analysis of the requirements of P2G was sound. We have found a viable solution
(Olib) to one part of the larger challenge of integrating support for heterogeneous
architectures into P2G. Furthermore, Olib combines an application format with
support for heterogeneous architectures with Sevent to provide a viable solution
for network distribution of P2G kernel instances. Our tests show that our solu-
tion has little overhead, and we have highlighted sources we believe lead to this
overhead.

Furthermore, the Sevent library is a general purpose communication library that
may be used in other projects. It is modular enough to allow for performance
improvements and inclusion of additional features when required. The design
is minimalistic, clean and well organized, which makes it easy to maintain as a
stable foundation in any project, including P2G.

101

7.1 Future work

The most obvious continuation of our work is to integrate it into P2G. Further-
more, the following topics are worthy of further studies:

• Direct communication between kernel instances. At this point, the API
forces processing units to relinquish control back to the CPU for commu-
nication with the scheduler. If this communication overhead could be re-
moved, it would be possible to distribute jobs with very small granularity.

• Performance tests using different TCP implementations to assert if TCP-
communication performance can be improved. This research may also in-
clude development of custom application layer protocols on top of UDP.

• Solutions to the issues explained in Section 5.3.

• Research into a separate process based solution instead of a shared library
solution. This should require minimal changes to Olib. Only the modules
responsible for loading and abstracting communication should be affected.

• Support for more platforms. Both Olib and Sevent have comprehensive au-
tomatic test suites. Both libraries have been compiled and tested on Mac
OS X 10.6, Ubuntu Linux 64-bit x86 and Ubuntu Linux 64-bit PowerPC. Both
libraries should be portable to other platforms, however certain compati-
bility issues must be expected. The most obvious issue for portability is
loading of shared libraries, which we explained in Chapter 3.

• Tests using other OpenCL-implementations than NVIDIA OpenCL.

• Minimize the performance overhead introduced by Olib.

102

Appendix A

Source code

The source code for Sevent is available from http://github.com/espenak/

sevent. Sevent is released under the BSD license provided in LICENSE.txt at the
same URL.

The Olib source code can be downloaded from http://heim.ifi.uio.no/

espeak/olib.tgz.

103

http://github.com/espenak/sevent
http://github.com/espenak/sevent
http://heim.ifi.uio.no/espeak/olib.tgz
http://heim.ifi.uio.no/espeak/olib.tgz

104

Appendix B

Test-computers

We run our tests on a set of test-computers. In this Appendix, the most significant
properties of these computers are listed.

B.1 Delano

CPU: Intel(R) Core(TM)2 Duo @ 2.66GHz
Number of CPUs: 1
Number of CPU cores: 2
GPU: Nvidia GeForce GT 220
Operating system: Ubuntu 10.04 LTS 64-bit X86 (Linux 2.6.32-30-generic)

B.2 Bush and Clinton

CPU: Intel(R) Core(TM) i5 @ 2.67GHz
Number of CPUs: 1
Number of CPU cores: 4
GPU: Nvidia GeForce GTX 280
Operating system: Ubuntu 10.04 LTS 64-bit X86 (Linux 2.6.32-24-generic)

105

B.3 Cell-1

Model name: Sony Playstation 3
CPU: Cell Broadband Engine, altivec supported,

6 usable SPEs and one PPE
Operating system: Ubuntu 10.04 LTS 64-bit PowerPC

(Linux 2.6.28-6-powerpc64-smp)

B.4 Leela

Model name: Apple MacBook Pro 8,2
CPU: Intel(R) Core(TM) i7 @ 2GHz
Number of CPUs: 1
Number of CPU cores: 4
Operating system: Mac OS X 10.6.7 (Darwin 10.7.0)

106

References

[1] E. M Gordon. Cramming more components onto integrated circuits. Elec-
tronics Magazine, 4, 1965.

[2] T. Chen, R. Raghavan, J. N Dale, and E. Iwata. Cell broadband engine ar-
chitecture and its first implementation—a performance view. IBM Journal of
Research and Development, 51(5):559–572, 2007.

[3] S. Ryoo, C. I Rodrigues, S. S Baghsorkhi, S. S Stone, D. B Kirk, and W. W
Hwu. Optimization principles and application performance evaluation of a
multithreaded GPU using CUDA. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, page 73–82, 2008.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W Sheaffer, and K. Skadron. A perfor-
mance study of general-purpose applications on graphics processors using
CUDA. Journal of Parallel and Distributed Computing, 68(10):1370–1380, 2008.

[5] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-
parallel programs from sequential building blocks. In Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, page
59–72, 2007.

[7] P. H Vrba, C. Griwodz, P. Beskow, and D. Johansen. The nornir run-time
system for parallel programs using kahn process networks. In 2009 Sixth IFIP
International Conference on Network and Parallel Computing, page 1–8, 2009.

[8] M. I Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task,
data, and pipeline parallelism in stream programs. In Proceedings of the 12th

107

international conference on Architectural support for programming languages and
operating systems, page 151–162, 2006.

[9] P. B Beskow, H. Espeland, H. K Stensland, P. N Olsen, S. Kristoffersen, E. A
Kristiansen, C. Griwodz, and P. Halvorsen. Distributed Real-Time process-
ing of multimedia data with the P2G framework. Eurosys, (Poster Session),
2011.

[10] Ian Foster. Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering. Addison-Wesley, 1995.

[11] Joe Armstrong. A history of Erlang. In Proc. of ACM HOTL III, pages 6:1–6:26,
2007.

[12] Paul Hudakand John Hughes, Simon Peyton Jones, and Philip Wadler. A
history of Haskell: being lazy with class. In Proc. of ACM HOTL III, pages
12:1–12:55, 2007.

[13] ITU. Z.100, 2007. Specification and Description Language (SDL).

[14] R.S.N. Arvind, R.S. Nikhil, and K. Pingali. I-structures: Data structures for
parallel computing. TOPLAS, 11(4):598–632, 1989.

[15] ISO/IEC. ISO/IEC 14496-10:2003, 2003. Information technology - Coding of
audio-visual objects - Part 10: Advanced Video Coding.

[16] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60:91–110, 2004.

[17] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploiting
coarse-grained task, data, and pipeline parallelism in stream programs. In
ASPLOS-XII: Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, pages 151–162, New
York, NY, USA, 2006. ACM.

[18] Nvidia. Nvidia cuda programming guide 3.2, August 2010.

[19] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel pro-
grammability and the Chapel language. International Journal of High Perfor-
mance Computing Applications, 23(3), 2007.

108

[20] B. Hendrickson and T.G. Kolda. Graph partitioning models for parallel com-
puting* 1. Parallel Computing, 26(12):1519–1534, 2000.

[21] F. Glover. Tabu search, Part I1. ORSA journal on Computing, 2(1):4–32, 1990.

[22] Lucas Roh, Walid A. Najjar, and A. P. Wim Böhm. Generation and quantita-
tive evaluation of dataflow clusters. In ACM FPCA: Functional Programming
Languages and Computer Architecture, New York, NY, USA, 1993. ACM.

[23] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In Proceedings of
the nineteenth ACM symposium on Operating systems principles, page 164–177,
2003.

[24] I. Habib. Virtualization with kvm. Linux Journal, 2008(166):8, 2008.

[25] F. Bellard. QEMU, a fast and portable dynamic translator. In Proceedings of
the USENIX Annual Technical Conference, FREENIX Track, page 41–46, 2005.

[26] W. Huang, J. Liu, B. Abali, and D. K Panda. A case for high performance
computing with virtual machines. In Proceedings of the 20th annual interna-
tional conference on Supercomputing, page 125–134, 2006.

[27] P. Apparao, S. Makineni, and D. Newell. Characterization of network pro-
cessing overheads in xen. 2006.

[28] L. Cherkasova and R. Gardner. Measuring CPU overhead for I/O processing
in the xen virtual machine monitor. In Proceedings of the annual conference on
USENIX Annual Technical Conference, page 24–24, 2005.

[29] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne, and J. N
Matthews. Xen and the art of repeated research. In Proceedings of the annual
conference on USENIX Annual Technical Conference, page 47–47, 2004.

[30] VMware. A performance comparison of hypervisors. http://www.

vmware.com/resources/techresources/711, April 2011.

[31] J. N Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos, G. Hamil-
ton, M. McCabe, and J. Owens. Quantifying the performance isolation prop-
erties of virtualization systems. In Proceedings of the 2007 workshop on Experi-
mental computer science, page 6–es, 2007.

109

http://www.vmware.com/resources/techresources/711
http://www.vmware.com/resources/techresources/711

[32] L. Shi, H. Chen, and J. Sun. vCUDA: GPU accelerated high performance
computing in virtual machines. 2009.

[33] E. Meijer and J. Gough. Technical overview of the common language run-
time. language, 29(7), 2002.

[34] T. Lindholm and F. Yellin. Java virtual machine specification. Addison-Wesley
Longman Publishing Co., Inc., 1999.

[35] B. Blount and S. Chatterjee. An evaluation of java for numerical computing.
Computing in Object-Oriented Parallel Environments, page 501–502, 1998.

[36] G. P. Nikishkov, Y. G Nikishkov, and V. V. Savchenko. Comparison of c and
java performance in finite element computations. Computers & structures,
81(24-25):2401–2408, 2003.

[37] T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson, and M. Wolczko.
Compiling java just in time. Micro, IEEE, 17(3):36–43, 1997.

[38] J. E Moreira, S. P Midkiff, and M. Gupta. A comparison of java, C/C++, and
fortran for numerical computing. Antennas and Propagation Magazine, IEEE,
40(5):102–105, 1998.

[39] S. Marr, M. Haupt, S. Timbermont, B. Adams, T. D’Hondt, P. Costanza,
and W. De Meuter. Virtual machine support for many-core architectures:
Decoupling abstract from concrete concurrency models. Arxiv preprint
arXiv:1002.0939, 2010.

[40] A. Noll, A. Gal, and M. Franz. CellVM: a homogeneous virtual machine
runtime system for a heterogeneous single-chip multiprocessor. In Workshop
on Cell Systems and Applications, 2008.

[41] K. Williams, A. Noll, A. Gal, and D. Gregg. Optimization strategies for a
java virtual machine interpreter on the cell broadband engine. In Proceedings
of the 5th conference on Computing frontiers, page 189–198, 2008.

[42] Y. Yan, M. Grossman, and V. Sarkar. JCUDA: a programmer-friendly in-
terface for accelerating java programs with CUDA. Euro-Par 2009 Parallel
Processing, page 887–899, 2009.

110

[43] E. Youngdale. Kernel korner: The ELF object file format by dissection. Linux
Journal, 1995(13es):15, 1995.

[44] TIS Committee. Tool interface standard (TIS) executable and linking format
(ELF) specification, May 1995.

[45] M. Pietrek. Peering inside the PE: a tour of the win32 (R) portable executable
file format. Microsoft Systems Journal-US Edition, page 15–38, 1994.

[46] B. W Kernighan, D. M Ritchie, and P. Ejeklint. The C programming language,
volume 78. Citeseer, 1988.

[47] Z. Yang and K. Duddy. CORBA: a platform for distributed object computing.
SIGOPS Operating Systems Review, 30(2):4–31, 1996.

[48] D. W Walker and J. J Dongarra. MPI: a standard message passing interface.
Supercomputer, 12:56–68, 1996.

[49] R. Love. Get on the D-BUS. Linux Journal, 2005(130):3, 2005.

[50] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F
Nielsen, S. Thatte, and D. Winer. Simple object access protocol (SOAP) 1.1.
May, 2000.

[51] B. Stroustrup. An overview of c++. In ACM Sigplan Notices, volume 21, page
7–18, 1986.

[52] J. Norton. Dynamic class loading in c++. Linux Journal, 2000(73es):38, 2000.

[53] M. A Ellis and B. Stroustrup. The annotated C++ reference manual. Pearson
Education India, 1994.

[54] Y. T Li, D. Leith, and R. N Shorten. Experimental evaluation of TCP proto-
cols for high-speed networks. IEEE/ACM Transactions on Networking (ToN),
15(5):1109–1122, 2007.

[55] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly high-speed TCP vari-
ant. ACM SIGOPS Operating Systems Review, 42(5):64–74, 2008.

[56] A. Petlund, K. Evensen, C. Griwodz, and P. Halvorsen. TCP mechanisms for
improving the user experience for time-dependent thin-stream applications.

111

In Local Computer Networks, 2008. LCN 2008. 33rd IEEE Conference on, page
176–183, 2008.

[57] M. Henning. The rise and fall of CORBA. Queue, 4(5):28–34, 2006.

[58] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1 edition, October 1994.

[59] T. Mackinnon, S. Freeman, and P. Craig. Endo-testing: unit testing with
mock objects. Extreme programming examined, page 287–301, 2001.

[60] E. Collar and R. Valerdi. Role of software readability on software develop-
ment cost. In Proceedings of the 21st Forum on COCOMO and Software Cost
Modeling, Herndon, VA, October 2006.

[61] E. H\ost and B. \Ostvold. Debugging method names. ECOOP 2009–Object-
Oriented Programming, page 294–317, 2009.

[62] F. Deissenboeck and M. Pizka. Concise and consistent naming. Software
Quality Journal, 14(3):261–282, 2006.

[63] R. C Martin. Clean code: a handbook of agile software craftsmanship. Pren-
tice Hall PTR Upper Saddle River, NJ, USA, page 448, 2008.

[64] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley Professional, February 2001.

[65] Donald E. Knuth. Art of Computer Programming, Volume 3: Sorting and Search-
ing. Addison-Wesley Professional, 513-516, 2 edition, May 1998.

[66] Nvidia. Nvidia CUDA programming guide 3.2, August 2010.

[67] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transfom. Computers,
IEEE Transactions on, 100(1):90–93, 1974.

112

References from the Internet

[68] Moore’s law: Made real by intel innovations. http://www.intel.com/

technology/mooreslaw/index.htm, April 2011.

[69] IBM. Cell broadband engine architecture, 2006.

[70] Nvidia. Nvidia CUDA programming guide 3.2, August 2010.

[71] Nvidia. CUDA zone. http://www.nvidia.com/object/cuda_home_
new.html, May 2011.

[72] Khronos. OpenCL. http://www.khronos.org/opencl/, May 2011.

[73] Intel® OpenCL SDK - intel® software network. http://software.

intel.com/en-us/articles/intel-opencl-sdk/, April 2011.

[74] alphaWorks : OpenCL development kit for linux on power : Overview.
http://www.alphaworks.ibm.com/tech/opencl, May 2011.

[75] VMware. VMware workstation. http://www.vmware.com/products/
workstation/index.html, May 2011.

[76] List of JVM languages - wikipedia, the free encyclopedia. http://en.

wikipedia.org/wiki/List_of_JVM_languages, April 2011.

[77] List of CLI languages - wikipedia, the free encyclopedia. http://en.

wikipedia.org/wiki/List_of_CLI_languages, April 2011.

[78] CUDA.NET. http://www.hoopoe-cloud.com/Solutions/CUDA.

NET/Default.aspx, April 2011.

[79] OpenCL.NET. http://www.hoopoe-cloud.com/Solutions/

OpenCL.NET/Default.aspx, April 2011.

113

http://www.intel.com/technology/mooreslaw/index.htm
http://www.intel.com/technology/mooreslaw/index.htm
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/
http://software.intel.com/en-us/articles/intel-opencl-sdk/
http://software.intel.com/en-us/articles/intel-opencl-sdk/
http://www.alphaworks.ibm.com/tech/opencl
http://www.vmware.com/products/workstation/index.html
http://www.vmware.com/products/workstation/index.html
http://en.wikipedia.org/wiki/List_of_JVM_languages
http://en.wikipedia.org/wiki/List_of_JVM_languages
http://en.wikipedia.org/wiki/List_of_CLI_languages
http://en.wikipedia.org/wiki/List_of_CLI_languages
http://www.hoopoe-cloud.com/Solutions/CUDA.NET/Default.aspx
http://www.hoopoe-cloud.com/Solutions/CUDA.NET/Default.aspx
http://www.hoopoe-cloud.com/Solutions/OpenCL.NET/Default.aspx
http://www.hoopoe-cloud.com/Solutions/OpenCL.NET/Default.aspx

[80] The open toolkit library | OpenTK. http://www.opentk.com/, April
2011.

[81] Java bindings for the OpenCL API. http://jogamp.org/jocl/www/,
April 2011.

[82] Fat binary - wikipedia, the free encyclopedia. http://en.wikipedia.

org/wiki/Fat_binary, April 2011.

[83] Universal binary - wikipedia, the free encyclopedia. http://en.

wikipedia.org/wiki/Universal_Binaries, April 2011.

[84] Mach-O - wikipedia, the free encyclopedia. http://en.wikipedia.org/
wiki/Mach-O, May 2011.

[85] FatELF. http://icculus.org/fatelf/, April 2011.

[86] FatELF: i’ve been so damned tired. http://icculus.org/cgi-bin/

finger/finger.pl?user=icculus&date=2009-11-03&time=

19-08-04, April 2011.

[87] Oracle. JAR file specification. http://download.oracle.com/javase/
1.4.2/docs/guide/jar/jar.html, May 2011.

[88] Apple. Code loading programming topics: About loadable bundles. http:
//developer.apple.com/library/mac/#documentation/Cocoa/

Conceptual/LoadingCode/Concepts/AboutLoadableBundles.

html, May 2011.

[89] LoadLibrary function (Windows). http://msdn.microsoft.com/

en-us/library/ms684175(v=vs.85).aspx, April 2011.

[90] Apple. Mac OS x manual page for dlclose(3). http://developer.

apple.com/library/ios/#documentation/system/conceptual/

manpages_iphoneos/man3/dlclose.3.html, May 2011.

[91] Boost.Serialization. http://www.boost.org/doc/libs/1_46_1/

libs/serialization/doc/index.html, March 2011.

[92] Protocol buffers - google’s data interchange format. http://code.

google.com/p/protobuf/, March 2011.

114

http://www.opentk.com/
http://jogamp.org/jocl/www/
http://en.wikipedia.org/wiki/Fat_binary
http://en.wikipedia.org/wiki/Fat_binary
http://en.wikipedia.org/wiki/Universal_Binaries
http://en.wikipedia.org/wiki/Universal_Binaries
http://en.wikipedia.org/wiki/Mach-O
http://en.wikipedia.org/wiki/Mach-O
http://icculus.org/fatelf/
http://icculus.org/cgi-bin/finger/finger.pl?user=icculus&date=2009-11-03&time=19-08-04
http://icculus.org/cgi-bin/finger/finger.pl?user=icculus&date=2009-11-03&time=19-08-04
http://icculus.org/cgi-bin/finger/finger.pl?user=icculus&date=2009-11-03&time=19-08-04
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/LoadingCode/Concepts/AboutLoadableBundles.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/LoadingCode/Concepts/AboutLoadableBundles.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/LoadingCode/Concepts/AboutLoadableBundles.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/LoadingCode/Concepts/AboutLoadableBundles.html
http://msdn.microsoft.com/en-us/library/ms684175(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms684175(v=vs.85).aspx
http://developer.apple.com/library/ios/#documentation/system/conceptual/manpages_iphoneos/man3/dlclose.3.html
http://developer.apple.com/library/ios/#documentation/system/conceptual/manpages_iphoneos/man3/dlclose.3.html
http://developer.apple.com/library/ios/#documentation/system/conceptual/manpages_iphoneos/man3/dlclose.3.html
http://www.boost.org/doc/libs/1_46_1/libs/serialization/doc/index.html
http://www.boost.org/doc/libs/1_46_1/libs/serialization/doc/index.html
http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/

[93] Apache thrift. http://incubator.apache.org/thrift/, March 2011.

[94] RFC 1832 - XDR: external data representation standard. http://tools.

ietf.org/html/rfc1832, March 2011.

[95] epoll(7) - linux manual page. http://www.kernel.org/doc/

man-pages/online/pages/man4/epoll.4.html, May 2011.

[96] libevent. http://monkey.org/~provos/libevent/, April 2011.

[97] Boost.Asio - boost 1.46.0. http://www.boost.org/doc/libs/1_46_0/
doc/html/boost_asio.html, April 2011.

[98] Bjarne Stroustrup. C++0x FAQ. http://www2.research.att.com/

~bs/C++0xFAQ.html, May 2011.

[99] Boost.Thread - boost 1.46.1. http://www.boost.org/doc/libs/1_46_
1/doc/html/thread.html, April 2011.

[100] Devilry project website. http://devilry.github.com/, March 2011.

[101] Kdelibs coding style. http://techbase.kde.org/Policies/

Kdelibs_Coding_Style#Variable_declaration, March 2011.

[102] Google c++ style guide. http://google-styleguide.googlecode.

com/svn/trunk/cppguide.xml#General_Naming_Rules, March
2011.

[103] shared_ptr - boost 1.46.1. http://www.boost.org/doc/libs/1_46_

1/libs/smart_ptr/shared_ptr.htm, April 2011.

[104] Boost.Any - boost 1.46.1. http://www.boost.org/doc/libs/1_46_

1/doc/html/any.html, April 2011.

[105] Boost.Test - boost 1.46.1. http://www.boost.org/doc/libs/1_46_

1/libs/test/doc/html/index.html, April 2011.

[106] Intel. Intel core processor family. http://www.intel.com/consumer/
products/processors/core-family.htm, May 2011.

115

http://incubator.apache.org/thrift/
http://tools.ietf.org/html/rfc1832
http://tools.ietf.org/html/rfc1832
http://www.kernel.org/doc/man-pages/online/pages/man4/epoll.4.html
http://www.kernel.org/doc/man-pages/online/pages/man4/epoll.4.html
http://monkey.org/~provos/libevent/
http://www.boost.org/doc/libs/1_46_0/doc/html/boost_asio.html
http://www.boost.org/doc/libs/1_46_0/doc/html/boost_asio.html
http://www2.research.att.com/~bs/C++0xFAQ.html
http://www2.research.att.com/~bs/C++0xFAQ.html
http://www.boost.org/doc/libs/1_46_1/doc/html/thread.html
http://www.boost.org/doc/libs/1_46_1/doc/html/thread.html
http://devilry.github.com/
http://techbase.kde.org/Policies/Kdelibs_Coding_Style#Variable_declaration
http://techbase.kde.org/Policies/Kdelibs_Coding_Style#Variable_declaration
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#General_Naming_Rules
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#General_Naming_Rules
http://www.boost.org/doc/libs/1_46_1/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_46_1/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_46_1/doc/html/any.html
http://www.boost.org/doc/libs/1_46_1/doc/html/any.html
http://www.boost.org/doc/libs/1_46_1/libs/test/doc/html/index.html
http://www.boost.org/doc/libs/1_46_1/libs/test/doc/html/index.html
http://www.intel.com/consumer/products/processors/core-family.htm
http://www.intel.com/consumer/products/processors/core-family.htm

	Introduction
	Background and motivation
	Problem Definition / Statement
	Limitations
	Research contributions
	Outline

	P2G - Parallel Processing Graphs
	Architecture
	Programming model
	Dependency graphs
	Kernel language
	Runtime

	Summary

	Supporting heterogeneous architectures using Olib
	System virtual machines
	Process Virtual Machines
	Native binaries for any supported processing unit
	An application format for heterogeneous architectures
	Binding native binaries to processing units
	Native binary loading
	Separate processes
	Dynamic loading of shared libraries
	Conclusion

	Obese libraries on a single computer
	Loading shared libraries at runtime
	Live patching
	Communication with the scheduler

	Summary

	P2G network communication using Sevent
	Requirements
	Serialization
	Communication protocol
	Message passing interface
	CORBA
	D-Bus
	Remote Procedure Call

	Initial design: P2G-RPC
	Issues with P2G-RPC
	Unneeded complexity
	Error handling
	Global state with Singletons
	Graceful shutdown
	Berkeley socket API and Epoll
	Thread API
	Naming
	Summary of issues

	New design goals: Lessons learned
	Minimalistic
	Modular, clean and easily maintainable
	Testing
	Terminology

	Sevent - A socket event library
	serialize - The serialization module
	event - The event handling module
	socket - The network communication module
	Example
	Automatic tests

	Summary

	Network distribution of Obese libraries
	Olib on a single heterogeneous computer
	Olib distributed in a network of heterogeneous computers
	Issues with our design
	Implementation details
	Master
	Slave
	Client

	A complete example
	The client application
	Shared communication code for any architecture
	A standard C++ implementation for summing two arrays
	CUDA and OpenCL implementations

	Automatic testing
	Distributing P2G kernel instances using Olib
	Summary

	Viability of multimedia workloads with Olib
	Motion JPEG
	How
	MJPEG on a single computer
	Using all available processing units

	Network-distributed MJPEG
	Summary

	Conclusion
	Future work

	Source code
	Test-computers
	Delano
	Bush and Clinton
	Cell-1
	Leela

	References
	Internet-references

