
LP based heuristics for the multiple knapsack problem

with assignment restrictions

Geir Dahl and Nj̊al Foldnes

Centre of Mathematics for Applications and Department of Informatics,

University of Oslo,

P.O.Box 1053 Blindern, 0316 Oslo, Norway

Email: geird, njaalf@ifi.uio.no

Corresp. author: G. Dahl.

1

Abstract

Starting with a problem in wireless telecommunication, we are led to study the

multiple knapsack problem with assignment restrictions. This problem is NP-hard.

We consider special cases and their computational complexity. We present both ran-

domized and deterministic LP based algorithms, and show both theoretically and com-

putationally their usefulness for large-scale problems.

Keywords: Multiple knapsack problem, randomized rounding, traffic routing.

2

Introduction

This paper addresses the Multiple Knapsack Problem with Assignment Restrictions

(MKARP). In MKARP we are given a set N = {1, . . . , n} of items, and a set M =

{1, . . . ,m} of knapsacks. With every item i ∈ N there are associated a weight wi > 0

and a profit pi > 0, and every knapsack j ∈M has a capacity cj > 0. In addition there

are assignment restrictions, given by sets Ai ⊆ M for i ∈ N . These sets specify to

which knapsacks an item is assignable. In other words, Ai is the set of knapsacks that

can hold item i. For each knapsack j we let Bj ⊆ N denote the set of items that are

assignable to j. This defines a bipartite graph G with color classes M and N and with

the neighbours of j ∈ M given by Ai. Throughout the paper we assume that wi ≤ cj

whenever item i is assignable to knapsack j.

The presence of assignment restrictions is a generalization of the well known mul-

tiple knapsack (MK) problem. MKARP is itself a special case of the generalized as-

signment problem (for more on this problem and the MK problem, see Martello and

Toth (1990) [6]). The situation where wi = pi for all items i, was first studied as an

independent problem by Dawande et al. (2000) [2]. Furthermore, this problem without

assignment restrictions is called the Multiple Subset Sum Problem (Caprara, Kellerer

and Pferschy (2000) [7]).

Clearly, since MKARP contains MK as a special case, it is NP-hard in the strong

sense. In fact, even with the special case where pi = wi for all i ∈ N the problem

is NP-hard, as shown in Dawande et al. (2000) [2]. In this paper we first study the

computational complexity of various subclasses of MKARP. Since in general MKARP

is hard to solve, and the application we have in mind requires fast methods, we then

suggest and investigate fast approximation algorithms. Both theoretical and practical

3

Figure 1: Three users, three antennae.

analysis are given for three linear programming (LP) based approximation algorithms

for MKARP.

This study was motivated by the following traffic routing problem in wireless

telecommunications. We are given a set of mobile phone users located at different

positions in a geographical area. This area is covered by a set of antennae (base sta-

tions), each with a certain coverage area. The coverage area of two antennae may

overlap, so at each position in the area there may be one, two or more antennae that

cover that position (See Fig. , where the three users U1, U2 and U3 are located in a

region covered by three networks (antenna) N1, N2 and N3.) Now each mobile user

wants a connection, and she may connect to any one of the antennae that cover her

location. Associated with each mobile phone user there is a communication demand,

and associated with each antenna there is a capacity, i.e., the maximum communication

flow it can handle. The goal is to decide for each user whether a connection can be given

to her, and, if this is the case, to which antenna she can connect. This must be done so

that the total communication flow (given by some reasonable objective function) in the

whole region is maximized. MKARP is a natural model for this situation, where we

4

interpete the antennae as knapsacks, and mobile phone users as items. The assignment

restrictions can be visualized by the underlying bipartite graph G = (M ∪N,E), where

E = {{i, j} : i ∈ N, j ∈M, j ∈ Ai}, see Fig. .

Now a feasible assignment of items to knapsacks is one which respects the capacity

constraint for each knapsack and the assignment restriction for each item. In the paper

by Dawande et al. (2000) [2] the objective is to maximize the total assigned weight,

i.e., the special situation wi = pi for all items i. A more general objective is to have

a profit pi for assigning item i (to any knapsack), and the goal is to find a feasible

assignment that maximizes the total profit.

Dawande et al. (2000) [2] state that, when wi = pi for all items i, MKARP is still

NP-hard, and then go on to study approximation algorithms for MKARP. A fast exact

method for large multiple knapsack problems, where the ratio m/n is small (typically

0.01), is given in Pisinger (1999) [5]. Ferreira, Martin and Weismantel (1996) [4]

present a cutting plane method and heuristics for a slightly more general problem than

MKARP, together with some interesting real-life applications.

In this paper, motivated by the application in telecommunications given above, we

study some meaningful restrictions on the parameters and the structure of the under-

lying bipartite graph G. The result is a set of subclasses of MKARP, and we give

complexity results for each of these. Then, because of the NP-hardness of MKARP,

and the limitation on computational time in the mentioned application (telecommu-

nications), we proceed to study fast approximation methods for the general MKARP.

Our heuristics are based on a linear programming relaxation of MKARP, which provide

good structural information about optimal solutions. We take profit from this in the

design of both deterministic and randomized algorithms. Our algorithms may be seen

5

as alternatives to the 1/2-approximation algorithm presented in Dawande et al. (2000)

[2], which is also based on rounding the linear programming solution. However, it is

more complicated to implement and there is no computational results. The heuristics

we present can handle large instances where the ratio m/n is quite big, with good

computational results.

The rest of the paper is as follows. Section 1 treats special cases of MKARP and

an analysis of their complexity. Section 2 contains a characterization of the extreme

points of the MKARP polyhedron, while section 3 presents the LP based heuristics.

Performance bounds are given for the solutions obtained by these methods. Section 4

presents some computational results.

1 Special cases of MKARP

In this section we consider various special cases of MKARP. Especially interesting are

special cases that arise from reasonable assumptions with respect to the application in

wireless telecommunications. There are basically two types of restrictions we consider.

One restriction type is on the values that the parameters pi, wi might take. The other

is on the structure of the underlying bipartite graph.

The extreme restriction where m = 1, i.e., with only one knapsack, reduces to the

single knapsack problem. Assuming our goal is to assign maximal weight, we have the

optimization version of the SUBSET SUM problem, which is a well-known NP-hard

problem, see Garey and Johnson (1979) [10]. So MKARP remains NP-hard even when

m = 1. Therefore no reasonable restriction on the number of knapsacks will yield a

polynomial-time solvable subclass if general item weights and knapsack capacities are

6

allowed.

For the single knapsack problem, it is the unlimited range of weights that cause the

problem to be intractable. Moreover, it is natural in the context of telecommunications

to allow only a fixed number of possible item weights in the problem. This makes sense

since a user may request only a finite number of services (voice, fax, download data,

etc). The strongest constraint on the weights is to allow no variation at all, i.e., all

weights wi are identical. This reduces to the bipartite b-matching problem, which is

polynomial-time solvable. To be less strict, let us allow the weights to be of two types,

the large items of weight q > 1, and the small items of weight 1. Define γ to be

the maximum number of large items assigned in any feasible assignment of items. A

γ-solution is a feasible assignment where γ large items are assigned.

Lemma 1 Suppose pi = wi and that wi ∈ {1, q} for all items i ∈ N . Then there exists

an optimal solution of MKARP that is γ-solution.

Proof. Consider a feasible assignment with less than γ large items assigned. If we

neglect the smaller items, and copy each knapsack j b cjq c times, we have a bipartite

matching problem for the large items. Since the matching of the large items is not

maximum, we can find an augmenting path with one exposed leaf in N and the other

in M . This gives a new matching of the large items, with one more large item assigned.

Only one knapsack, corresponding to the leaf node j ∈M , has a change in the weight

of large items assigned to it. One more large item is assigned to j, so possibly some

of the smaller items already assigned to j must be unassigned to obey the capacity

constraint at j. But the weight sum of these small items does not exceed q. Therefore

we have a new feasible assignment with at least the same total weight assigned, and

with one more large item assigned.

7

We are now able to show that there are no (non-trivial) restrictions on the values

that the weights can take, that keep MKARP polynomially solvable. This is in contrast

to the single knapsack problem, where the weights must be exponentially growing in

order to obtain exponential running times. In fact, even for the simplest case where

wi ∈ {1, q}, and wi = pi for all items i, MKARP remains NP-hard.

Proposition 2 For every fixed q > 1, the special case of MKARP where pi = wi and

wi ∈ {1, q} for all items i ∈ N is NP-hard.

Proof. Our proof is based on transformation from the vertex cover (VC) problem.

Recall that an instance of VC is a graph G = (V,E) together with a natural number l.

The decision problem is to determine whether there exists an node subset V ′ ⊆ V such

that |V ′| ≤ l, and such that V ′ covers every edge in E. Given such an instance, we

construct the following instance of the wj ∈ {1, q} MKARP. The knapsacks correspond

to the vertices V . Each knapsack has capacity |E|. The small items (of weight 1)

correspond to E. The small item representing edge [r, s] is admissible to the two

knapsack that correspond to nodes r and s. There are k = |V |− l large items of weight

|E|. A large item is admissible to any knapsack, see Fig. 2. Note that γ = |V |− l. Now

the answer to the VC decision problem is ”yes” if and only if MKARP has a γ-solution

with all the small items assigned. Also note that from the proof of Lemma 1 it is clear

that given an optimal solution, we can construct an optimal solution with γ large items

in polynomial time. This implies that there exists a polynomial transformation of VC

to the wi ∈ {1, q} MKARP.

Hence restrictions based solely on the weight parameters will not lead to polynomial-

time solvable problems. However, we might be able to find polynomial-time solvable

instances by combining weight restrictions with restrictions on the structure of the

8

Figure 2: Proof of Proposition 2

underlying graph. For example, consider the simple problem with only one knapsack

and two types of weights. This is clearly polynomial-time solvable.

More generally, let |w| denote the number of possible weight values, and assume

that m (the number of knapsacks) and |w| are fixed, i.e., are not part of the problem

input. (In telecommunications, this assumption is not unreasonable, as the antennae

are the permanent part of the communications system.) The assignment of the items in

a weight class may be represented by a vector x = (x1, . . . , xm), where xj is the number

of items in this weight class assigned to knapsack j. The number of such vectors x is

bounded by (n + 1)m. For a given x we find an optimal assignment (in this weight

class) by considering items according to decreasing profits. Using such vectors, one

for each weight class, we get at most (n+ 1)m|w| solutions to compare. This gives the

following proposition.

Proposition 3 The special case of MKARP where m and |w| are not part of the input

is polynomial-time solvable.

Another interesting special case is the situation where the cellular phone users are

constrained to move along a road. That is, the users move along a line, and antennae are

placed at various locations along the line. Then the structure of G allows the items to be

9

Figure 3: Convex graphs, general and 2-line

ordered in such a way that for each knapsack j, Bj consists of consecutive items. More

precisely, for each j there exist integers lj ≤ rj such that Bj = {lj , lj + 1, . . . , rj}. Such

bipartite graphs are called convex (see Glover (1967) [3]). It is not clear whether, in

the two-weight situation, this problem is polynomial-time solvable. However, consider

the additional restriction that no more than two base stations can cover any location

on the road. More precisely for all j we have lj+1 ≤ rj < lj+2, and consequently the

degree of each item node is at most 2. We denote this special case by 2-line MKARP,

see Fig. 3 for an illustration.

Proposition 4 The 2-line MKARP with fixed |w| is polynomial-time solvable.

Proof. We prove this by giving a dynamic programming algorithm for the problem.

Assume w.l.o.g. that the underlying graph is connected. For simplicity we assume

that |w| = 2, i.e., wi ∈ {q1, q2} where q1 < q2 for all items i ∈ N . The general case

|w| ≥ 2 can be treated similarly. We let Ik denote the items that are assignable to

both knapsack k and k + 1. Define f(k, r, s) to be the maximum weight that can be

assigned to knapsacks 1, . . . , k, assuming that r small and s large items from Ik is

assigned to knapsack k. Furthermore, define g(k + 1, r, r ′, s, s′) to be the maximum

weight assignable to knapsack k + 1, assuming that r ′ small and s′ large items in Ik

are assigned to knapsack k, while r small and s large items in Ik+1 are assigned to

10

knapsack k + 1. Then f(k + 1, r, s) can be calculated as

f(k + 1, r, s) = maxr′,s′{f(k, r′, s′) + q1r + sq2 + g(k + 1, r, r′, s, s′)}.

Here g can calculated in polynomial time, since it is a single knapsack problem with

only two weight types involved. Finally, note that calculating maxr,sf(m, r, s) will give

the optimal solution in polynomial time.

2 Linear relaxation

In this section we study a linear relaxation of MKARP. By using binary variables xij to

denote whether item i is assigned to knapsack j, the following integer program models

MKARP :

max
∑

i∈N

∑

j∈Ai
pixij

∑

i∈Bj
wixij ≤ cj j ∈M (1)

∑

j∈Ai
xij ≤ 1 i ∈ N (2)

xij ∈ {0, 1}. (3)

Constraints (1) are the capacity constraints, while constraints (2) ensure that an item

can be assigned to at most one knapsack. The linear relaxation of MKARP is obtained

by relaxing constraint (3) to 0 ≤ xij ≤ 1. Given an instance I of MKARP, we denote

this linear program by LPI . Let x be any feasible solution to LPI , and let f denote

the subvector of x containing the fractional variables (0 < xij < 1). The fractional

graph associated with x is the subgraph of the bipartite graph induced by the edges

11

in f . Let Pr denote the polytope defined by (1), (2) and 0 ≤ xij ≤ 1. The following

theorem concerning the structure of the extreme points of Pr will be useful.

Theorem 5 Let x be an extreme point of Pr. Then the following holds:

(i) The fractional graph is a forest, say with component trees T1, . . . , Tν .

(ii) Each Ti contains at most one leaf node in N .

(iii) Let i ∈ {1, . . . , ν}. Then all except at most one of the inequalities in (1) and

(2) corresponding to the vertices of Ti hold with equality. Moreover, if Ti has a

leaf in N , then the corresponding inequality in (2) is strict.

Proof. Let T be a component of the fractional graph. Suppose that T contains two leaf

nodes, say, for simplicity, 1 and l in N . Furthermore we may assume that the path in T

between 1 and l (which alternates between vertices in N and M) is defined by the node

sequence 1, j1, 2, j2 . . . , l−1, jl−1, l. Let p be the perturbation vector with subvector cor-

responding to this path given by p = (+ε,−w1
w2
ε,+w1

w2
ε,−w1

w3
ε,+w1

w2
ε, . . . ,+ w1

wl−1
ε,−w1

wl
ε),

and with zeros for the other arcs. By choosing ε > 0 small enough the vectors v1 = x+p

and v2 = x − p are feasible. In fact, as nodes 1 and l are leaves, the corresponding

inequalities in (2) are strict. Moreover, x = 1
2v1 + 1

2v2, which contradicts the fact that

x is an extreme point. This proves (ii).

To prove (i), suppose the fractional graph contains a cycle. Then by a similar

argument, one can find a perturbation of only the variables on the cycle such that

x becomes a convex combination of two other points in Pr. This implies that the

fractional graph is cycle-free, i.e., it is a tree.

Finally, to prove (iii), note that Ti contains |V (T)|−1 edge variables, all fractional,

and since these variables are uniquely determined (vertex property) at least |V (T)|− 1

12

inequalities from (1) and (2) (for vertices in Ti) must be active. Moreover, if Ti has a leaf

k, then just one variable xkj (j ∈M) is positive and fractional, so
∑

j∈Ak xkj < 1.

The MKARP heuristics introduced in the next section extract information from an

optimal vertex x of Pr. One interesting aspect of x in this respect is the number of

variables that are fractional. We call an item or knapsack fractional if the corresponding

node is the endpoint of some fractional variable in x.

Corollary 6 Let x be an optimal vertex solution of LPI . Then the number of fractional

items is bounded above by the number of fractional knapsacks.

Proof. Let T be any tree in the fractional graph, and suppose T has r nodes in M and

s nodes in N . The number of edges in T is r+ s−1. Let θ be the number of leaf nodes

in T ∩N . From Theorem 5 it follows that θ ≤ 1. Since T is a bipartite graph, the sum

of the degrees of the nodes in T ∩N is equal to the number of edges. Let di denote the

degree of node i in T . It follows that r + s− 1 =
∑

i∈T∩N di = θ +
∑

i∈T∩N :di≥2 di ≥

θ + 2(s− θ) from which it follows that r ≥ s.

The next corollary will also be used in the following.

Corollary 7 Let x be an optimal vertex solution of LPI . Then there exists at least

one variable whose value equals 1.

Proof. If the fractional graph is empty, then x equals 1 in some variable, since we

assume that wi ≤ cj for any pair i, j with j ∈ Ai. So consider a nontrivial tree T in

the fractional graph. T contains at least two leaf nodes. By Theorem 5, for at least

one of these leaves the corresponding inequality must hold with equality. This leaf

must correspond to a knapsack, say j ∈ M . Since j is a leaf, and the corresponding

inequality holds with equality, it follows that some item is assigned integrally to j.

13

3 LP based heuristics

In this section we present three LP based heuristics for MKARP, together with some

theoretical bounds on the quality of the solution values obtained. The computational

results for these heuristics are presented in the next section.

The heuristics we present are closely related, in fact they are all iterative rounding

schemes. In each iteration the heuristics use information extracted from an optimal

vertex solution x of LPI for some MKARP instance I. We say that an instance I is

trivial if Ai = ∅ for all items i ∈ N .

The following is a Generic scheme for our heuristics.

1. Initialize: Set I to be the input instance and set F = ∅.

2. Find an optimal vertex solution x to LPI .

3. Based on x, assign some of the items. Let A encode this assignment. Update

F ← F ∪A.

4. Update I :

• For each item i and knapsack j such that [i, j] ∈ A:

– Remove item i from I

– Set cj = cj − wi

• For each item i in I, if i ∈ Bj and wi > cj , set Bj = Bj\{i} and Ai = Ai\{j}.

5. If I is trivial, STOP and output F , else go to Step 2.

Hence, in each iteration we consider an instance I of MKARP. In the first iteration

we let I be the original problem. Let A denote the feasible assignment thus obtained

(A ⊂ N ×M). Now we ”clean up” I in the following way: First we remove from I the

14

items that were assigned in A. Then, for the knapsacks that received these items, the

capacities are reduced by subtracting the total weight of assigned items. Finally, due

to this capacity reduction, an item that previously were assignable to some knapsack

may not be assignable that knapsack any more. This happens when the item weight is

greater than the capacity of the knapsack, and the corresponding assignment variables

are removed from I. Note that the resulting I is still an instance of MKARP. If I is

trivial, we stop, otherwise a new iteration is started.

The following three heuristics, denoted by DET, RAN and COMBI, are distin-

guished in the way x is used to assign items to knapsacks (Step 3).

The first heuristic is denoted by DET. In this method, only the variables in x that

are 1 are considered. More precisely, in DET Step 3 gives the following assignments:

ADET = {[i, j] : xij = 1}.

Clearly, ADET is a feasible assignment. Let v(LPI) denote the optimal value of LPI .

The following proposition provides a lower bound on the solution value DET (I) =

∑{wi : [i, j] ∈ ADET} after one iteration of DET.

Theorem 8 Define p̂ to be the total profit of the m most profitable items in N . Let I

be an instance of MKARP. Then after the first iteration of DET, the following holds:

DET (I) > v(LPI)− p̂

Proof. By Corollary 6, there are at most m fractional items relative to x. Therefore,

by rounding down these fractional values, one looses no more than m items compared

to the fractional solution x, whose total profit is at most p̂.

Remark that this result gives a bound on the integrality gap between v(LPI) and

v(IP). In section 4 we shall see that typically this gap is small for large instances. This

15

can be seen by noting that if m
n is small, that is, if there are many items compared

with the number of knapsacks, Theorem 8 implies that the solution value obtained by

DET tends to be very good, even after the first iteration.

The second heuristic we present is a randomized algorithm denoted by RAN. It is

based on randomized rounding (for a survey, see Srinivasan (1999) [8]). In RAN, the ini-

tialization (Step 1) also involves the following ordering of the items. The profit/weight-

ratio is non-increasing, and if pi/wi = pj/wj for two items i and j, then i < j if wi > wj .

RAN follows the generic scheme, where in Step 3 the assignments ARAN are cho-

sen by interpreting the fractional values xij as probabilities. To be more precise

some notation is needed. The probability of an event A is denoted by P (A). We

introduce the independent discrete random variables K1,K2, . . . ,Kn each with sam-

ple space {0, 1, . . . ,m} and with probability distributions given by, for each i ≤ n,

P (Ki = j) = xij (j = 1, 2, . . . ,m) and P (Ki = 0) = 1 −∑m
j=1 xij . The interpretation

here is that we assign item i to knapsack Ki and this is done with probability xij .

Ki = 0 means that i is not assigned to any knapsack. With this notation we obtain a

preliminary assignment ÂRAN:

ÂRAN = {[i,Ki] : i ∈ N and Ki > 0}.

However, this assignment may not be feasible. Consider a knapsack j. Then the total

weight assigned to j by ÂRAN is given by the random variable

W j =

n∑

i=1

W j
i

where W j
i is the random variable W j

i := wi · I(Ki = j); here I(Ki = j) denotes the

indicator function which is 1 in the event that Ki = j and otherwise it is 0. We define

µj = E(W j) and σ2
j = V ar(W j). Note that ÂRAN is feasible if and only if W j ≤ cj

16

for all j ∈ M . If W j > cj for knapsack j, we order the set Ij = {i ∈ N : Ki = j} of

items assigned to j in non-increasing profit/weight order. Let b(j) be the break item of

Ij, i.e., the first item in the sequence Ij such that
∑

i∈Ij :i≤b(j)wi > cj . Then, in order

to get a feasible assignment, we define

ARAN = {[i,Ki] ∈ ÂRAN : i < b(Ki)}.

In short, ARAN is obtained by applying a simple greedy algorithm for each knapsack

j such that W j > cj.

It is of interest to understand the properties of the RAN heuristic on a theoretical

basis. We therefore give a simplified probabilistic analysis of RAN which seems to

explain some of the empirical results that we present in section 4. We restrict the

attention to the case when pi = wi for all i. Moreover, as our analysis investigates the

relation between RAN and the optimal linear relaxation value v(LPI) =
∑

j µj, we

may assume that µj = cj for all j, since this maximizes the gap between v(LPI) and

the value obtained by RAN .

Note that the (preliminary) assigned weight W j is a sum of independent random

variables (as the Ki’s are independent). If we knew the probability distribution of W j

it would be possible to calculate, for instance, the probability that the assigned weight

W j does not exceed the capacity cj. Unfortunately, the probability distribution of

W j is difficult to find (unless the weights wi are all equal; then we get the binomial

distribution). However, an exact bound for W j can be derived from Proposition 1 in

Bertsimas and Vohra (1998) [1]. This results in the following probabilistic tail estimate:

P (W j < (1− δ)µj) < exp(−
δ2µ2

j

2
∑

iw
2
i xij

),

for every δ with 0 < δ < 1. This gives an upper bound on the probability that W j

17

Table 1: Values of ρ

n 5 10 20 60 200 600 1000

δ 0.6 .57 0.52 0.40. 0.26 0.17 0.13

ρ 0.12 0.23 0.32 0.51 0.69 0.81 0.85

does not exceed a certain fraction of its expectation. Let the random variable RANj

denote the weight of the items assigned to j by ARAN. Note that RANj = W j if

W j ≤ cj , and that if W j > cj one cannot give an explicit expression for RANj, other

than RANj ≥ µj −wmax, where wmax is defined by wmax = maxiwi. Clearly, we then

have E(RANj) > min{(1−δ)µj , µj−wmax}P (Wj > (1−δ)µj). Using the tail estimate

given above, the following bound on the expectation of RANj is obtained:

E(RANj) > min{(1 − δ)µj , µj − wmax}(1− exp(−
δ2µ2

j

2
∑

i w
2
i xij

)). (4)

This makes it possible to obtain a lower bound for the fraction

ρj =
E(RANj)

µj

for j ∈ M in any instance I of MKARP. In Table 1 we have calculated the average

value of ρj for single knapsack problems with various n values. For each n we generate

weights and probabilites at random, and in each instance we choose δ such that the

right-hand side in (4) is maximized. The values for δ and ρ are average values taken

over ten instances.

The values given in Table 1 suggests that the bounds, although not very tight,

become better as n increases. It is therefore natural to suggest a different approach

for estimating E(RANj), and settle with an approximation. The idea is to focus on

the situation where m and n are large and use an asymptotic analysis of RAN which

18

we now briefly explain. From probability theory one has the following central limit

theorem (which follows directly from Lindeberg’s theorem in Billingsley (1995) [11]).

Theorem: Let Z1, Z2, . . . be a sequence of independent random variables each with

expectation zero and satisfying (i) there is a constant C such that P (|Zi| ≤ C) = 1 for

each i, and (ii) sn → ∞ as n → ∞ where s2
n =

∑n
i=1 V ar(Zi). Let Sn =

∑n
i=1 Zi.

Then Sn/sn converges in distribution to N , a standard normally distributed variable

(i.e., pointwise convergence of the cumulative probability distribution holds).

We now apply this theorem to a fixed knapsack j and the associated random vari-

ables W j
1 ,W

j
2 , . . . ,W

j
n where n is large. If the weights wi are uniformly bounded and

there is an ε > 0 such that xij ∈ [ε, 1−ε] for “most” i, then premises of the central limit

theorem hold, and we may conclude that the sum W j =
∑n

i=1 W
j
i , subtracted by µj,

and divided by its corresponding standard deviation σj, will be approximately (stan-

dard) normally distributed, which we simply denote by (W j − µj)/σj ≈ N(0, 1). This

opens up for finding an asymptotic performance guarantee as indicated in the following

theorem, where RAN(I) =
∑{wi : [i,Ki] ∈ ARAN} denotes the assigned weight after

one iteration of RAN on the instance I.

Theorem 9 Let I be an instance of MKARP for which pi = wi for all items i ∈ N . As-

sume that the central limit theorem can be applied (see above): (W j−µj)/σj ≈ N(0, 1)

for all j ∈M . Then the following is an approximate lower bound on E(RAN(I)):

(1− 1

2α
− 1√

2απ
) · v(LPI),

where α is the maximum number such that for any set of α items, and any knapsack,

these items will fit in the knapsack.

19

Proof. Consider a fixed knapsack j, and note again that without loss of generality we

may assume that µj = cj . Note that RANj is equal to W j if W j ≤ cj . Otherwise the

greedy (by profit/weight) algorithm is applied to j, and RANj ≥ (1− 1
α)cj in this case,

since knapsack j is filled to within 1
α of the total capacity after removing the necessary

items. Therefore

E(RANj) ≥
∫ µj

0
zP (dz) + (1− 1

α
)cjP (W j > µj),

where P here denotes the probability measure giving the distribution of RANj. By

standard methods using substitution of variables, the integral above can be shown to

be equal to µj/2− σj/
√

2π, and since P (W j > µj) = 0.5 we get

E(RANj) ≥ (1− 1

2α
)µj −

σj√
2π
.

Moreover, we may simplify by noting that

σ2
j =

∑

i∈Bj
w2
jxij(1− xij) ≤ wmaxµj ≤

c

α
µj,

which implies that σj ≤ µj/
√
α. The theorem now follows, since v(LPI) =

∑
j µj and

E(RAN(I)) =
∑

j E(RANj).

As an example, consider an instance I in which any knapsack j can hold any

set of 20 items from Bj . If the premises of Theorem 9 hold, we obtain the bound

RAN(I) ≥ 0.97 · LPI by setting α = 20. So asymptotically, RAN has a very good

expected value.

The last heuristic we consider, denoted by COMBI, is a combination of the previous

two heuristics. In COMBI, Step 3 is carried out by combining DET and RAN in the

following way. COMBI starts by performing Step 3 of DET, i.e., by first assigning

all items i for which there is knapsack j such that xij = 1. Then Step 3 of RAN is

20

carried out, by running through the unassigned items with randomized rounding, using

the fractional values of x. So COMBI is a randomized iterative method that in each

iteration first assigns the same items as DET does, and then randomly assigns the

other items. Therefore the contribution of COMBI in each iteration is at least that of

DET. We do not describe Step 3 in detail for this heuristic.

4 Computational experiments

We briefly report some computational experience with the algorithms developed in this

paper. The algorithms were implemented in C++ and run on a 1015 MHz Sun Sparc

machine. For the solution of linear and integer programs we used CPLEX version 7.5

[9].

The instances were randomly generated. Item weights are uniformly distributed in

the interval [10, R] for various values of R. We consider three types of instances, based

on the relation between the wi and the pi. In the first type, denoted by A, pi = wi for

all items i. In the second type, B, the profits pi are uniformly distributed in [10, R],

while in the third type, C, pi = wi + 10 for all i. In each problem the capacities cj are

uniformly distributed in intervals that are chosen such that the total capacity of the

knapsacks is roughly equal to half of the total weight of the items.

The following list explains the abbreviations used in the tables in this section:

21

Vars: Number of variables

Tot w: Total weight of items

Tot c: Total weight of knapsacks

Type: Type of problem

R: Range of weight and profit values

IP time: Integer program cpu time

#BB: Number of branch & bound nodes

v(IP): Optimal value of IP

v(LPI): Optimal value of LPI

iter: The number of iterations

value: The solution value (given in %)

The main conclusions drawn from our computational experiments are :

• In general, for large instances (α is large and/or n is large) it is easy to find good

approximate solutions. All heuristics we tested performed well. As the problem

size grows, MKARP practically becomes a continuous problem, and as α is very

big for these instances, each item does not contribute much individually.

• The integrality gap (the difference between v(LPI) and v(IP)) for most instances

is almost tight typically within 2-5%. This is also confirmed theoretically by

Theorem 8. It is surprising, however, that the branch and bound tree is still very

large. So even rather small instances may be difficult to solve to optimality using

CPLEX.

• The LP based heuristics are robust, and perform generally well. RAN seems to

give the best results. For some types of instances, the LP based heuristics are

substantially better than a simple greedy algorithm GR (explained below), see

Table 2.

22

The simple algorithm GR mentioned in the last point above, is the following: Con-

sider the items in non-increasing profit/weight ratio, and assign item i to the first (if

any) knapsack j ∈ Ai with sufficient rest-capacity to hold i. In Table 2 we compare

GR, DET and RAN on 13 instances. Note that they all have rather sparse underlying

graphs. We see that the LP based heuristics, especially RAN, outperform GR. COMBI

is not included in our table, as it gives values similar to RAN and DET.

Table 2: GR, DET and RAN comparison.

Problem m n #Vars GR DET RAN

sp1 4 20 33 94.8 97.4 97.4

sp2 4 20 30 82.3 88.6 91.0

sp3 4 20 32 84.5 94.4 94.4

sp4 3 10 21 78.1 100 100

sp5 3 10 18 86.2 94.8 100

mp1 100 100 311 86.6 100 100

mp2 100 100 306 90.4 94.7 94.7

mp3 200 400 963 91.7 93.3 94.0

mp4 400 400 1041 85.7 100 100

mp5 1000 1000 1737 93.1 100 100

mp6 300 500 1004 91.9 99.6 95.4

mp7 50 100 138 93.2 95.2 95.2

mp8 50 100 207 90.7 95.1 95.9

Table 3 gives a summary of 9 instances of size m = 5 and n = 50. For the

23

randomized algorithms RAN and COMBI, the reported solution value is the best after

running the algorithm five times on each instance. To solve LPI using CPLEX, note

that we used the primal simplex method (without preprocessing) as, for these problems,

this method is much faster than the dual simplex method. Some of the instances in

Table 3 could not be solved to optimality by CPLEX; this is denoted by ’-’ in the table.

As mentioned in our main conclusion this is perhaps surprising due to the excellent LP

bound and rather small problem size.

Table 3: Problems p1-p9, m = 5 and n = 50.

Problem # Vars Tot w Tot c Type R ip time #BB v(IP) v(LPI)

p1 167 743 453 A 10 0.26 231 453 453.0

p2 109 741 387 B 10 2.1 1545 540 540.6

p3 149 738 540 C 10 - - - 935.9

p4 141 2853 1768 A 100 3.6 5957 1768 1768.0

p5 94 2732 1296 B 100 0.5 211 2125 2153.6

p6 145 2713 1587 C 100 41.14 53337 1957 1959.6

p7 156 20191 15950 A 1000 - - - 15950

p8 120 27817 18269 B 1000 90 134871 24101 24142.0

p9 94 24599 12892 C 1000 - - - 13253.0

Table 4 reports the computational results of running our three heuristics and GR on

the same instances as given in Table 3 . The solution value, in column ’value’, is given

with respect to v(IP) if this is available. Otherwise the solution value is compared to

v(LPI), and this is indicated with a ’*’ attached to the problem name. We see that

GR perform at least as well as RAN on type A problems. However, for instances of

24

type B and, especially, of type C, RAN gives better solution values than GR.

Table 4: Computational results, problems p1-p9

DET RAN COMBI GR

Problem time # iter value time # iter value time # iter value value

p1 0 3 96.3 0 2 97.4 0 2 96.3 97.6

p2 0 3 95.9 0 2 96.1 0 2 96.6 93.5

p3∗ 0 2 92.7 0.01 2 94.7 0 1 92.7 92.8

p4 0 3 98.2 0 3 99.8 0 2 99.7 99.7

p5 0 2 96.0 0.01 2 96.7 0.01 2 96.7 94.7

p6 0 2 91.4 0.01 2 97.5 0 1 92.7 91.4

p7∗ 0.01 3 99.6 0.01 3 99.8 0.01 4 99.7 99.6

p8 0 3 97.1 0 2 97.1 0 2 97.1 95.9

p9∗ 0.01 2 89.5 0 1 96.7 0 1 89.9 92.3

Experiments for problems of larger size, with m = 100 and n = 1000 were also

performed. The LP based heuristics were able to solve these in under a second. Due

to the large size, as mentioned in our main conclusion, all heuristics performed very

well on these instances. In general it might be sufficient to use GR for problems of this

size, where α and n are large.

We also considered some very large instances, with m = 200 and n = 4000, and

around 250 000 variables. For such instances solving the LP can take tens of seconds,

making up the main part or the total running time. To reduce this time one might

construct faster specialized algorithms for the linear program, based on network flows

and some post-processing to ensure the extreme point property of x (see Dawande et

25

al. (2000) [2]).

Acknowledgment. The authors thank the referee for his/her useful comments

and suggestions.

26

References

[1] D. Bertsimas and R. Vohra. (1998). Rounding algorithms for covering problems

Mathematical Programming, Volume 80, issue 1, page 63.

[2] M. Dawande, J. Kalagnanam, P. Keskinocak, R. Ravi and F.S. Salman. (2000).

Approximation algorithms for the multiple knapsack problem with assignment

restrictions, Journal of Combinatorial Optimization 4, 171-186.

[3] F. Glover. (1967) Maximum matching in a convex bipartite graph, Naval research

logistics quarterly.

[4] C.E. Ferreira, A. Martin and R. Weismantel. (1996). Solving multiple knapsack

problems by cutting planes SIAM J. Optimization, Vol.6, No.3, pp. 858-877.

[5] D. Pisinger. (1999). An exact algorithm for large multiple knapsack problems

European Journal of Operational Research, 114 pp.528-541

[6] S. Martello and P. Toth. (1990). Knapsack Problems: Algorithms and Computer

Implementations. John Wiley, New York.

[7] A. Caprara, H. Kellerer and U. Pferschy. (2000). A PTAS for the Multiple Subset

Sum Problem with different knapsack capacities, Information Processing Letters

73, 111-118.

[8] A. Srinivasan. (1999). Approximation algorithms via randomized rounding: A

survey, Lectures on Approximation and Randomized Algorithms (M. Karonski and

H. J. Promel, editors), Series in Advanced Topics in Mathematics, Polish Scientific

Publishers PWN, Warszawa, pages 9-71.

[9] CPLEX Optimization, Inc.

27

[10] M.R. Garey and D.S. Johnson(1979). Computers and Intractability: A Guide to

NP-Completeness. WH Freeman.

[11] P. Billingsley. (1995). Probability and Measure. New York: Wiley.

28

