
UNIVERSITY OF OSLO
Department of Informatics

Peer Selection in
Peer-to-Peer
Streaming Systems

Tore Langedal
Endestad

February 1, 2008

1

Peer Selection in Peer-to-Peer Streaming
Systems

Tore Langedal Endestad

February 1, 2008

ABSTRACT

One important task of any peer-to-peer streaming system (p2p-ss) is how to
choose which peers should connect to which peers. How well a p2p-ss perform
this task greatly influences its performance. This thesis explores how different
peer selection algorithms affect the performance of such systems.
A framework for doing the comparisons of peer selection algorithms is built on

top of the network simulator ns2, making it possible to later extend the simula-
tions with new peer selection algorithms, congestion control algorithms, wireless
networks, cross traffic and other. However, ns2 is a low-level simulator, hence lim-
iting the number of peers in the simulations, because CPU-resources are limited.
The simulations are limited to single-layered streams.
We find that a centralized selection method, which utilizes knowledge of band-

width capacities and routing in the network, greatly outperforms both simple ran-
dom selection of peers, and selection of close peers. Even though centralized selec-
tion does not scale well, and is therefore only applicable for a limited number of
peers, this shows there is much room for improvement over basic strategies.

ACKNOWLEDGMENTS

Thanks to Paul Vigmostad and Haakon Riiser at Netview Technology, for
giving me the chance to write this thesis there. Thanks to my supervisors
Haakon Riiser (again), Pål Halvorsen and Carsten Griwodz for valuable
feedback and guidance. Thanks to my dear girlfriend, Elin Horsdal, for
correcting countless misspellings, and for being who she is.

Oslo, January 2008

Tore Langedal Endestad

CONTENTS

1 Introduction 13

1.1 Problem definition and scope 15

1.2 Method . 16

1.3 Main contributions . 16

1.4 Outline . 17

2 Components and aspects 19

2.1 Peer-to-peer streaming components 19

2.2 Video-on-demand and live streams 21

2.3 Pull based and push based streaming systems 22

2.4 How to provide different rate-coded content 23

2.4.1 Different rates . 23

2.4.2 Layered coding . 24

2.4.3 Multiple description coding 24

2.5 Commercial and non-commercial systems 25

2.6 Peer discovery . 25

2.7 The users . 26

2.8 The network . 27

2.9 Congestion control . 28

2.10 Privacy concerns . 29

2.11 Summary . 29

3 Existing peer-to-peer streaming systems 31

3.1 BitTorrent Assisted Streaming System 31

3.2 CoolStreaming . 32

3.3 Peer-to-peer adaptive layered streaming system 33

3.4 PROMISE . 34

3.5 SplitStream . 34

3.6 Discussion . 35

7

8 CONTENTS

4 Other related work 37
4.1 BitTorrent . 37
4.2 The Julia content distribution network 38
4.3 Other related work . 38

5 Peer selection 41
5.1 Control at the receiver . 41

5.1.1 Random peer selection 42
5.1.2 Closeness guided peer selection 42

5.2 Centralized control . 43
5.2.1 Simulated annealing 44
5.2.2 Using simulated annealing 44

6 Simulation framework and simulation 47
6.1 Framework . 48
6.2 Standard modules . 50

6.2.1 Media player module 50
6.2.2 Buffer module . 50
6.2.3 Sender module . 51
6.2.4 Receiver module . 51
6.2.5 Discovery module . 51
6.2.6 Selection module . 52
6.2.7 Statistics module . 52

6.3 Segment piece management 52
6.3.1 Oracle with incremental strategy 54
6.3.2 Oracle with rarest-first strategy 54
6.3.3 Oracle with early-send strategy 54
6.3.4 Multiple segments . 57

6.4 Simulating the different peer selection algorithms 60
6.4.1 Random Peer Selection 60
6.4.2 Closeness Selection . 61
6.4.3 Central server and simulated annealing 61

7 Simulation results 63
7.1 Comparison of peer selection algorithms 64
7.2 Comparison of segment piece oracles 65
7.3 Discussion . 66

8 Conclusion 67

A The maximum flow problem and
the Ford-Fulkerson method 73

CONTENTS 9

B Hacking traceroute into ns-2 75

C Source code for simulated annealing method 77

10 CONTENTS

LIST OF FIGURES

1.1 Common links . 14

2.1 The components of a p2p streaming system, and their de-
pendence on each other. 20

2.2 Characteristics of typical multimedia streams [12] 26

5.1 Topological distance heuristics 43

6.1 The modules of the framework, and their typical interactions. 49
6.2 Idea behind the early-send oracle 55
6.3 Example of the early-send oracle, one segment 56
6.4 Example of the early-send oracle, multiple segment 59

7.1 Comparison of 3 peer selection algorithms. 64
7.2 Comparison of 3 segment piece oracles. 65

11

12 LIST OF FIGURES

CHAPTER 1

INTRODUCTION

Quite a few systems for Internet based streaming are in use today. The
most well-known is perhaps YouTube which allows its users to upload
their own video clips to a set of servers, which then distributes the video
clips, making them available to other users. Some systems aim to replace
the traditional television distributors by distributing the same television
channels over the Internet, for instance Zattoo. Many of these systems
seem to use a traditional client-server model, or a content distribution net-
work such as the Akamai content distribution network.
Using peers to help distribute media streams reduces the content dis-

tributor’s cost of distributing content as compared to using the traditional
client-server model, because users of the system contribute resources by
means of their normally under-utilized upload links. Several peer-to-peer
streaming systems(p2p-ss)1 for doing this exist: CoolStreaming [43] and
PPLive [4] are currently the two most popular. CoolStreaming has been
used by more than 1 million users world wide, and PPLive is in commer-
cial use.
Performance of peer-to-peer streaming systems depend upon several

of its components. One of the more important components is the peer
selection algorithm of the system. In general, connecting to a physically
close peermeans low latency, which allows quick congestion response and
congestion control. Also, local connections will take some load off the
backbones. However, if one connects to peers that are from the same lo-
cation, the connections from the peers to the server will be likely to use
links that are common to all of the peers. If one of the common links then
get congested, the peers would struggle to sustain the streaming rate. See

1Some places we use peer-to-peer assisted streaming to indicate the situation where a
server contributes a large portion of the bandwidth for streaming, some places we use
pure peer-to-peer streaming to indicate absence of a server. Peer-to-peer streaming in-
cludes both situations, and any in between.

13

14 CHAPTER 1. INTRODUCTION

Figure 1.1: Common links

figure 1.1: Assume a shorest-path routing is used. If the three peers at
the left only connect to each other and to the server, there will be very
short latency between the peers, and only one copy of the stream needs
to traverse the path (L1, L2). However, if the network conditions change,
so that the peers get lower capacity over L1 or L2; they will have to se-
lect other peers to cooperate with. Selecting new peers take some time, it
might therefore be useful for the left peers to select the lower peer even
before any problems occur, despite being farther away.

Current p2p streaming systems tend to be receiver driven, meaning
it is the responsibility of each receiver to find out which other peers it
should connect to in order to maximize the qualityof the received me-
dia. The peers of receiver driven peer-to-peer streaming systems often use
greedy heuristics for selecting the sender peers, peers are therefore often
non-cooperatively competing for bandwidth. Although such an approach
might be the most appropriate for selecting peers in a p2p streaming sys-
tem, there might be room for quite large improvements, especially if the
heuristic for selecting peers is not well-suited for the problem. Results on
traditional p2p content distribution indicate that this is the case: The Julia
content distribution network can reduce the network load by up to 33%
when compared to BitTorrent, without any additional infrastructure. See
section 4.2. This suggests that clever use of network resources can be used
to support more users or higher quality in the same network.

1.1. PROBLEM DEFINITION AND SCOPE 15

1.1 Problem definition and scope

The focus of this thesis will be to find out how to do peer selection in the
best possible way for the purpose of peer-to-peer streaming in the Internet.
The selection of which peers should send content to which peers — peer
selection — in such a system, is a big factor in the the performance of
the system. A discussion of important characteristics of other peer-to-peer
streaming systems will be given. It will be discussed how some existing
peer-to-peer streaming systems work; including how they select peers.
One thing to note is that there is at least a couple of different definitions

of what “best” means in the case of a p2p streaming system: high percent-
age of satisfied users, lowest possible network load for a given user set,
high number of users which receive good video quality, maximum us-
age of users’ upload capacities; and so on. In the case where the content
provider provides single-layered content at one rate only, highest number
of concurrent users can be a fair measure of what is good; average quality
or satisfaction can also be good measures if different rates are provided.
In any case, the network load should be kept low if possible, because this
would both allow many simultaneous users and not reduce performance
of other users of the net.

Peer selection problem For the sake of clarity: the primary target of the
thesis is to test how well different algorithms solve what we call the peer
selection problem. In a p2p-ss, there are peers and servers. Each peer
has two primary goals: minimize start up delay of the chosen stream, and
maximize audiovisual quality of the stream. The peer may also have a
secondary goal: minimize resource usage. The variables considered in the
peer selection problem are the bandwidth between each pair of nodes. A
node is either a server or a peer. The peer selection problem is an op-
timization problem: maximize the goals of the peers, only by altering the
variables above. The problem is obviously not well-defined, both since the
primary goals contradict each other, and because it is not defined whether
maximize the goals of the peers points towards an average, or towards a max-
imization of the minimum. How well an algorithm solves this problem is
subjectively evaluated.

Criteria: There are many important characteristics of a p2p-ss. The most
important to a user’s experience is probably the quality delivered, the
startup delay, and that the system actually works. This thesis will focus on
the bandwidth delivered to the peers. Delivered bandwidth is perhaps the
single most important technical characteristic of a streaming system since

16 CHAPTER 1. INTRODUCTION

higher delivered bandwidth means a user can request content coded at
higher quality. Normally, higher delivered bandwidth also means shorter
start up delay, because the buffer of the media player can be filled quicker.
Also, if bandwidth is delivered to users, this is a great indication on that
the system works. We are also concerned about how the system behaves
if a flash crowd appears.
Other characteristics which are of great importance, but not consid-

ered in this thesis is: Start up delay If the start up delay gets too long, the
users of the system would probably not be very satisfied. Server load. If
the server load does not decrease, a pure client-server solution would be
better, because of lower startup delay, trust issues etc. Tolerate cross traf-
fic. The system should not break due to changes in cross-traffic, neither
should it block the cross-traffic. Tolerate massive user failures. Large user
failures could happen in the real world because of power-outages, how-
ever probably very infrequent; but the unaffected users should still be able
to use the system.
There are still other important aspects of p2p-ss which are perhaps

even more important; such as many security concerns. Security concerns
will not be throughly discussed in this thesis. Other characteristics such as
the price for a user to use a system, and moral issues is not discussed here
at all.

1.2 Method

Wedevelop a framework for doing simulations on p2p-ss on top of the net-
work simulator ns-2 [3]. Ns-2 is a low-level discrete-event simulator. Sim-
ulations are done in Internet-like networks, obtained from the GT-ITM-
tool [2, 7]. Three different peer selection algorithms are compared in the
framework.

1.3 Main contributions

First, the thesis describes a framework for doing fair comparisons between
peer selection algorithms so alternative algorithms can be implemented
and tested under the same conditions as the algorithms that this thesis
explores. The framework is alsomodular, making it possible to change any
of peer discovery, peer selection, transport protocol, congestion control or
media player abstraction without having to alter all of the others.
Themain contribution from this thesis is a comparison among different

1.4. OUTLINE 17

peer selection algorithms. Although many peer selection algorithms have
been proposed and tested, it seems that little effort have been put into fair
comparisons between the different algorithms; this thesis aims to do so.
And last, we also explore different strategies for selecting the ordering

the pieces of a stream should be sent in.

1.4 Outline

Adescription of some important aspects of p2p streaming systems is given
in chapter 2. Chapter 3 describes some existing p2p streaming systems,
with emphasis on how they do peer selection. Chapter 4 summarizes other
relevant work. We then describe some peer selection algorithms in chapter
5. Details on the framework and the simulations are given in chapter 6.
Then results follow in chapter 7. Finally, the conclusions are in chapter 8.

18 CHAPTER 1. INTRODUCTION

CHAPTER 2

COMPONENTS AND ASPECTS

There are many different things to notice when designing a p2p-ss. We try
to summarize the most important in the following. IP multicast has not
been included in the discussion here because it is normally not deployed
or activated in networks, even though it would be a great way of distribut-
ing live streams.

2.1 Peer-to-peer streaming components

A peer-to-peer streaming system contains the following parts:

Media player: The media player is the user interface of the system. The
users watch or listen to the streams via the media player.

Post-play buffer management: This part handles how and which part of
a stream that should be stored in order to be uploaded to other peers
at a later time.

Pre-play buffer management The pre-play buffer bufferers data that is
not yet sent to the media player.

Peer discovery: Should find candidate peers.

Peer selector: Responsible to select which of the candidate peers to use as
active senders and/or receivers. Also responsible for dividing load
between the peers it selects.

Piece manager: The stream is divided into pieces, which again consists of
packets. The responsibility of the piece manager is to select which
piece to select from which of the active peers.

19

20 CHAPTER 2. COMPONENTS AND ASPECTS

Figure 2.1: The components of a p2p streaming system, and their depen-
dence on each other.

Sender and receiver modules: The sender module should do the actual
scheduling of the pieces to send. If the peer selector has decided
how the upload rate should be used, the sender module must follow
the decision.

The receiver module sends ’stream request messages’ to peers se-
lected by the peer selector, and fills the messages with a requested
rate as decided by the peer selector. The receiver module will adjust
the requested rates if it is required to do so by the congestion control
scheme selected.

Transport protocol and congestion control: Responsible for transporting
the data across the network. Also responsible for performing con-
gestion control in order to avoid collapse of the streaming session
(and in the worst case: collapse of the network).

A figure of the components of the p2p streaming system and how they
work together, is given in figure 2.1. The stream flow describes how the

2.2. VIDEO-ON-DEMAND AND LIVE STREAMS 21

packets of a stream traverses the system. Decision flow tells the depen-
dence between the components. For instance, the peer selector needs in-
formation from the peer discoverer in order to make any decision. Other
flows are possible, the ones shown in the figure are “typical”.

2.2 Video-on-demand and live streams

There are twomain stream types considered in p2p streaming; live streams
and video-on-demand (VoD). Live streams are a bit like television pro-
grams: The program progresses continually, and when users tune in they
start to watch at the current global point of progress. A video-on-demand
stream is more like watching a rented movie: The user selects when to
start the movie. Depending on the system, the user can also pause and
skip to any point in the movie. However, some features common to VCR
and DVD players are not well handled in most streaming systems, for in-
stance fast forward. A suggestion on how to support DVD-like features in
streaming systems, including fast forward, is given in [40].
There are some differences between supporting video-on-demand ser-

vices and supporting live television. In the case of video on demand; users
will tend to always start streaming from the the start of the content, and
different users will start streaming at different times. In live streams, users
will tune in to a stream in such a way that everyone is watching the same
frame at approximately the same time. This means that in VoD, the con-
tent will often be distributed in the network when a user tunes in; and
not in the case of live broadcast. However, in many cases of live streams,
it will be possible to distribute the stream in the network before allowing
users to tune in, and therefore help handle flash crowds. This can be done
if a streaming system is used for distributing a given television channel. If
a popular program series is to start at 6 pm, it can be distributed to some
selected peers at 5pm. The key to decrypt and watch the series would then
not be distributed before 6pm. This approach can of course not be used in
great extent for live sports events, because it would impose a lot of delay,
compared to other distribution methods.
The different usage patterns may also call for different distribution

strategies. In the case of live streams, all users may be downloading from
the exact same point of the stream. No caching of content for future dis-
tribution beyond some seconds or minutes would be required. Multi-
cast techniques for distributing content could be appropriate as well. In
the case of video-on-demand, probably very few users would stream at
the same point of the stream. This would require much more caching if

22 CHAPTER 2. COMPONENTS AND ASPECTS

peers should be able to participate in the distribution. Because no-one or
very few users want the same data at the same time, pure multicast tech-
niques would be unusable. Instead of considering both live streams and
VoD, there is also one third stream-type, near-video-on-demand: Instead
of supporting real video-on-demand, where a user can join at any time,
one rather periodically broadcasts the video as a live stream and let users
join any of the broadcasts. The advantage of near-video-on-demand over
video-on-demand is that network multicast could be used if deployed. It
would also reduce the caching requirements on the users’ equipment.

2.3 Pull based and push based streaming systems

Any peer-to-peer streaming system is either pull based, push based or a
combination.
In a pure pull based system, the receiver peer is responsible for sending

request packets to its senders, in detail telling each sender which parts of
the stream to send. The details are periodically updated to fit the needs
of the receiver. Pull based systems use retransmission in case of packet
loss. Many of the p2p streaming systems are pull based: one example is
CoolStreaming (section 3.2 on page 32).
In a pure push based system, the stream is often divided into several

sub-streams. For example: the stream is divided into 5 multiple descrip-
tion (see below) coded streams. A receiver requests one or more sub-
streams from a node; the node will then forward the sub-stream until
the receiver sends a stop message. An example of a push-based system
is SplitStream (section 3.5 on page 34). Since push based systems do not
allow retransmittance of lost packets, they tend to use erasure codes to
protect their data streams. An erasure code will protect the data of the
streams by adding redundant data, and sometimes also by spreading the
data over time so that a burst of packet losses is not fatal. The use of era-
sure codes does not guarantee lossless playback, but some erasure codes
allows adjustment to the amount of redundant data — and therefore also
the probability of lossless playback. Erasure codes are also known as For-
ward Error Correction, or simply FEC. There are many different erasure
codes, some of the best known are Turbo codes [5] and Raptor codes [37].
If push and pull approaches are combined, one could order the whole

stream at start-up, and request retransmittance of fragments that get lost in
transmission. In that case, the control overhead of pull-based systems are
reduced since the requests only appear when the receiver needs to ask for
lost packets, and the overhead of the use of erasure codes in push-based

2.4. HOW TO PROVIDE DIFFERENT RATE-CODED CONTENT 23

systems can be reduced or removed entirely.
The decision of making a system push or pull based, will affect which

peer selection algorithm is the best for the system. In a pull-based system
it seems reasonable to try to pair with close peers, since requests for lost
segments will then be quicker. In a push-based system, typically segments
are protected by erasure codes and rescheduling of segments is not done,
so short round trip times (RTT) are not that important.
The selection between push or pull based will also affect the require-

ment of the pre-play buffer. Pull based systems will have a pre-play buffer
to allow retransmittance of lost packets. Push based systems will also have
such a pre-play buffer, which is needed to tolerate the difference in delays
from the different senders.

2.4 How to provide different rate-coded content

Users of a peer-to-peer streaming system want to get the best possible
quality of the media they stream. Because users have different bandwidth
capacities, a way of providing different quality encodings of the same me-
dia should be considered. The different ways of providing different qual-
ity editions are the same as for non-p2p streaming, but since peers should
be able to redistribute their content later, coding efficiency is not the only
thing in question.
It is interesting to consider layered coding and multiple description

coding. Using these techniques can enable a larger selection of sending
peers for a given receiver peer, when compared to coding the original
stream into streams of different rate. This is because every peer that has
received some of the content will have at least one layer that is interest-
ing to any other peer requesting the same content. This is not the case
with coding content into multiple representations with different bit rate.
Though, actively researched, layered codecs are not used much in today’s
streaming systems.

2.4.1 Different rates

Media encoded at different rates is perhaps the most obvious way of pro-
viding streams that match each user’s downlink. For instance, one could
have a video, and encode it at 100 kbps, 500 kbps and 1500 kbps. The
users will select the rate which suits they the best. Coding content into
streams of different rates achieves high coding efficiency because single-
layered coding is more efficient than other layering techniques: Encoding

24 CHAPTER 2. COMPONENTS AND ASPECTS

at a quality measure Q will never require more bits when using single-
layer coding as compared to multiple-layered coding. Normally it will
require less bits.
However, having the same content coded differently around the net-

work can be a drawback since a peer can only cooperate with peers that
have the same representation of the content. Therefore, having multiple
representations can dramatically reduce the stream group sizes1.
Also, if network conditions change for the worse, it is not possible to

handle it without changing to a different stream. If the network condi-
tions then return to normal, the system would probably change back to
the original stream. During stream change, more control packets would
be needed, and some of the stream data might also be discarded.

2.4.2 Layered coding

Layered coding proposes a different way of providing differentiated qual-
ity streams. In layered coding, the media is encoded into different layers.
There is always one base layer, and there can be a number of enhancement
layers. The base layer will have fair quality and users with low bandwidth
will choose to stream only this layer. If a user has excess bandwidth he or
she can stream enhancement layers as well, and the enhancement layers
can then be combined with the base layer to yield better play back qual-
ity. Enhancement layers can be dropped or added as network conditions
changes. However, the layers are hierarchical, so one must have the base
layer in order to use any enhancement layers, and as well enhancement
layer K in order to use enhancement layer K + 1.
One nice feature offered by MPEG-4 FGS layered coding [32] is that it

produces one large enhancement layer that can be truncated at any point,
meaning that the full download capacity of a downloading user can be
matched exactly.

2.4.3 Multiple description coding

Multiple description coding is also based on layers, but there is no hierar-
chical system. If one receives N layers, every layer can be used, no matter
what layer number they have. However, since any layer must contain
enough information to sustain playback, this imposes coding overhead;
hence the coding efficiency of multiple description coding is not very high.

1Stream group size is the number of peers currently downloading the given stream

2.5. COMMERCIAL ANDNON-COMMERCIAL SYSTEMS 25

2.5 Commercial and non-commercial systems

In a commercial system, it would probably be inappropriate to lower the
quality if the user is not contributing enough upload bandwidth. It could
be that a low contribution is not a planned malicious activity, it could be
that multiple processes are competing for the upload capacity. If appli-
cations are competing for downlink capacity, it might become a problem
because there is no way that the system can deliver more than the free
capacity of the user’s downlink.

One of the advantages of having a commercial system is the possibility
to support economic incentives: For instance by offering lower prices to
users who contribute much of their upload bandwidth.

On the other hand, a non-commercial system can allow degradation
of quality. It should also provide strong incentives for users to contribute
their upload bandwidths, otherwise people will cheat: [22] finds that 85%
of Gnutella users contribute nothing to the network. Many ways of build-
ing such incentives has been proposed. In [10] a linear taxation system
is proposed; the idea is that how large a download rate one receives, is
decided by how much upload rate one gives. Different parameters of the
scheme can be set by the content provider, giving some flexibility. The pa-
rameters can be adjusted so that users with low upload capacity will get
a fair amount of download rate, while encouraging resourceful peers to
contribute more bandwidth.

2.6 Peer discovery

If one cannot discover other peers, it is obviously not possible to partici-
pate in a p2p system. There are several possible ways of discovering peers
in a p2p streaming system. It is possible to let a server handle the discov-
ery process (like the trackers in the BitTorrent system), and it is possible
to have a distributed discovery process. In the latter case, peers could be
discovered by the use of gossip protocols or by DHT lookup.

The advantage of a server based discovery service is that it can make
discovery quickly, but requires server capacity. When all discovery traffic
travel through the server, it can be utilized for different purposes: Peers
can be clustered in different ways, for instance nation wise or ISP-wise. It
is also easier to monitor the discovery process by administrators.

Distributed discovery services will not be as quick, but not necessarily
much worse. An example is CoolStreaming: When a new peer joins, the

26 CHAPTER 2. COMPONENTS AND ASPECTS

Data rate Sample or Sample or fra-
(approximate) frame size me frequency

Telephone speech 64 kbps 8 bits 8000/sec
CD-quality sound 1.4 Mbps 16 bits 44,000/sec
Standard TV video 120 Mbps up to 640 x 480 24/sec
(uncompressed) pixels x 16 bits
Standard TV video 1.5 Mbps variable 24/sec
(MPEG-1 compressed)
HDTV video 1000-3000 Mbps up to 1920 x 1080 24-60/sec
(uncompressed) pixels x 24 bits
HDTV video 10-30 Mbps variable 24-60/sec
(MPEG-2 compressed)

Figure 2.2: Characteristics of typical multimedia streams [12]

new peer contacts the server2. The server then selects a deputy peer at
random from all the peers it knows. The joining peer then requests candi-
date peers from the deputy peer, and the joining peer start to stream from
them. This does not stress the server much, and should be fairly quick.
However, some applications might be very sensitive to startup delay, in
those cases a distributed discovery service might not be quick enough.

2.7 The users

The users of any multimedia streaming system want to stream at the best
quality possible. If the streamed media is audio, most users would be
perfectly pleased if they receive audio coded at as little as 128kbps. If
the streamed media is video, many users will not be satisfied before they
receive DVD quality, which require about 5 Mbps3. Most likely, lots of
people will soon have an HDTV at home and they will want to have me-
dia that takes advantage of their equipment. This would require much
more bandwidth, see figure 2.2. Who knows which equipment and re-
quirements will be present in 10 years? There is no reason to believe that
the bandwidth requirements of users converge to a sensible limit. Today
the limiting factor for streaming is the downlink capacity of the users, and

2More correct: the origin peer of the stream. CoolStreaming does not use the term
server.
3This will of course greatly depend on the encoding and the format. The number is

estimated from the capacity of a DVD and how long a typical movie is: 4.7 Gb (single
side, single layer) and 2 hours.

2.8. THE NETWORK 27

it is reasonable to believe that it will stay this way, at least for a decade
or so, for the above reason. Therefore, one should try to make the best
possible use of the downlinks.
It is commonly believed that user access patterns follow Zipf-like dis-

tributions. This does not need to be entirely true for Internet media. [18]
finds that Internet media access patterns instead follows the stretched ex-

ponential distribution, which have cumulative density function 1− e−(x/x0)
c

where c and x0 are constants.
User experience is influenced by the startup delay of streaming. The

most used p2p streaming system of today, PPLive, typically has startup
delays around 20-30 seconds; sometimes delays can be as large as 2 min-
utes in less-popular channels [21].
A problem about users is that they cannot be fully trusted. A common

problem in p2p systems is that many users tend to avoid to contribute
resources to the network; they are freeloaders. An even more serious se-
curity problem is that some users can try to distribute degraded or totally
altered content; so called poison attacks. Many p2p systems are without
any protection against such malicious activities.
Another interesting point is that users will create flash crowds [39]. A

flash crowd is a sudden increase in users streaming a specific content. Dur-
ing major news events, such as Olympic games or the 9/11 event, extreme
large crowds of people are likely to visit the same web page at the same
time; if the servers are not prepared, they might go down. Flash crowds
might be overwhelming, but not necessarily. If a hypothetical Internet ra-
dio station which averages 3 listeners suddenly gets 10 listeners, this sud-
den increase in listeners will define the listeners to be a flash crowd. They
would still be a flash crowd if the event occurs periodically, perhaps once
a day at 6 pm. Even if the small radio station sends from an resourceful
server with no problems during the sudden increase in listeners, it would
still be a flash crowd.

2.8 The network

Today, the majority of Internet users use ADSL connections. ADSL users
havemuch less upstream capacity than downstream capacity. If the down-
stream capacity of all users are to be fully utilized, then additional band-
width must be provided. To some extent this can be compensated for by
making use of idle users (users that stay on line without streaming), but it
is hard to imagine that the ratio of idle users to active users will be any-
where near the upload/download rate of a typical ADSL user. This es-

28 CHAPTER 2. COMPONENTS AND ASPECTS

sentially means that if all the downlink capacities of the users are to be
saturated, one will need resourceful servers to contribute bandwidth as
well.
One should note that routing in the Internet is not necessarily symmet-

ric [31]. That is, the route a packet travels from A to B does not have to be
the same as if the packet travels in the opposite direction. If one intends to
build a streaming system which measures topology to optimize the rout-
ing, such measurements should therefore preferably be done by the send-
ing peer. This makes measurements a more complex task, because sender
peers which already serve other peers, suddenly need to generate packets
towards a new peer.
Some other very important properties of the network is its capacity, its

latency, and its loss rate. The capacity is finite, both at access links and in
the backbone. The backbone has almost always much higher capacity than
the access links of the end users. The latency is low between users that
are close, with RTTs typically of a few milliseconds, between very distant
users RTTs can be of 500ms to 1000 ms. The loss in a wired network is
mainly because packets get dropped during congestion; however packets
with bit errors occur. Paxson found the proportion of corrupted packets
to be about 0.02% [31]. The rate of corrupted packets is normally much
higher in wireless networks as compared to wired networks.
In addition, the Internet is a best-effort network without support for

quality of service. This is a very important property to note, because it
means that peers must be able to handle sudden changes in received rate.
Also, if a streaming system is to use the Internet, the system should be
TCP-friendly, competing with other streams in the Internet in a fair way.

2.9 Congestion control

Which congestion algorithm one uses in a p2p-ss will have an influence
on what kind of peer selection algorithm will be the best. Having a large
system with none or bad congestion control is potentially harmful for the
Internet [14, 15]. Since much of the Internet traffic is TCP-based, the con-
gestion control algorithm of a p2p-ss should be TCP-friendly. That is, it
should compete fairly with other traffic.
There are many ways of being TCP-friendly, the most obvious is to

simply use TCP. One can also use other additive increase multiplicative
decrease(AIMD) algorithms4, such as RAP [33]. However, in-order de-

4Multiplicate the rate by a constant less than 1 when loss occures, increase the rate by
a constant otherwise.

2.10. PRIVACY CONCERNS 29

livery and reliability of TCP if often unnecessary for streaming, and can
actually harm performance because the application has to wait while TCP
waits for a lost packet. The AIMD methods (including TCP) often fail do
deliver a steady rate to the application, which in some cases is not opti-
mal. TCP-friendly rate control(TFRC) [16,19] tries to deliver a steady rate,
while still be TCP-friendly.

2.10 Privacy concerns

In p2p streaming system the peers will only download content the user re-
quests, or at least: most of the content it downloads will be due to user re-
quest. The system obviously needs a way of informing its requesting peers
which other peers have the requested content. Lets say that the system is
used to distribute sensitive content, for instance political propaganda, re-
ligious channels or adult content.
A straight-forward exploit can be done by anybody who can join a

streaming session, and starts by requesting sensible content. The system
will then hand over addresses to peers which has the given content. If one
is able to link the address to a person, one has obtained information which
can be abused. Even if the system encrypts the content-to-address infor-
mation, the attacker can simply wait and monitor the packets received
during streaming.

2.11 Summary

There are certainlymuch to think ofwhile working on peer-to-peer stream-
ing systems. It will not be possible to simulate all the details of each of the
aspects above. Instead we will focus our attention towards single-layered
coded content, and towards the pull based systems. We believe that re-
sults for single-layered coded content to some extent could be a guide-line
for multiple-layered content. Also, we will only focus on wired networks.
Amongst the components described above, this thesis is primarily in-

terested in the peer selector. Much attention is also given to the piece man-
agement How cached content is stored and retrieved is ignored, simply
assuming that all previously received pieces of a stream can be stored and
retrieved instantly5. The only part of the media player this thesis consid-

5Although probably a fair assumption for live streams because the cached content is
small enough to fit RAM, this might not hold for video-on-demand.

30 CHAPTER 2. COMPONENTS AND ASPECTS

ers is the play out point, whichmoves at constant speedwhen the required
parts of the stream are present, or pauses otherwise.

CHAPTER 3

EXISTING PEER-TO-PEER
STREAMING SYSTEMS

We will now present a few streaming systems that make use of peer-to-
peer technology. The systems are in general pretty different. The differ-
ences come both from different goals, and from design choices. E.g. Co-
operative Networking [30] is designed to help sites handle flash crowds.
CoolStreaming is designed to be a complete, maximum scalable, peer-to-
peer media streaming system. BitTorrent-Assisted Streaming System [13]
explores the possibility of using BitTorrent to move some of the load off a
streaming server, and onto the users.
Some of the systems stipulate some properties of the stream as well.

PALS [28, 34] uses layered coding, Cooperative Networking uses multi-
ple description coded streams. CoolStreaming and BitTorrent Assisted
Streaming System use single-layered coded streams.
The deployment of PPLive [4] demonstrated that peer-to-peer live tele-

vision can be done commercially in huge networks. Most of the users of
PPLive reside in China, but it is possible for any Internet user to use the
system. Unfortunately; the inner workings of PPLive are not available to
the public. Some of the properties is given in [21].

3.1 BitTorrent Assisted Streaming System

BitTorrent Assisted Streaming System (BASS) [13] is a hybrid system for
hosting video-on-demand services. In addition to a media stream server,
BASS uses BitTorrent. See section 4.1. The idea is that the use of BitTorrent
will reduce the load on the server.
When a user starts to stream a video file, the media server will stream

at full rate to the user. At the same time, the user will start to download

31

32 CHAPTER 3. EXISTING PEER-TO-PEER STREAMING SYSTEMS

pieces of the stream from BitTorrent clients. When the streaming enters a
point where a data block already was downloaded by the use of BitTor-
rent, the streaming from the server is paused until new data is needed.
Some of the stress on the server will therefore be removed as the stream-
ing progresses, because larger parts of the file will be present later in the
streaming session.
The advantage of such a system is that it is easy to deploy. BitTorrent

is a highly established protocol, and can be used in the system with only
minor changes.
There are some disadvantages: First, if the user decides not to watch

the entire stream, the future bits downloaded by BitTorrent will be of little
use to the user. Second, the user needs to be able to cache large portions
of the media. And third, the user’s downlink needs to both support the
full bit rate from the media, and to receive from BitTorrent clients at the
same time if the system is to work. This means that a user can only stream
media with a bit rate well below the downlink capacity, and hence at a
lower quality than optimal.
One possible flaw of BASS is that its users aren’t rewarded for con-

tributing their upload bandwidths. The tit-for-tat part of BitTorrent re-
ward contributing peers, but if a user does not contribute to the BitTorrent
part of the system, he or she will still be able to stream directly from the
server in full quality. This could make users cheat, and if that happens
BASS is equal to a pure client-server system. The system is also vulner-
able to flash-crowds because most of the stream is sent from the server
during start-up phase.
Peer-to-peer connections are of course made as in BitTorrent. While the

3.2 CoolStreaming

CoolStreaming [43], also known as DONet, is a data-driven overlay net-
work for peer-to-peer streaming. There is no distinction between sender
and receiver peers; directions of data flow are changed dynamically to
what suits the system the best. For each stream in the system, there is one
originating peer. The originating peer is the peer that initially served the
stream to the network.
When a user initially wants to watch the content, it sends a request

to the originating peer of the stream. The originating peer then selects at
random one of the peers it knows to be the joining node’s deputy. The
joining peer will then contact its deputy to get a set of candidate peers,
with which the joining peer will cooperate.

3.3. PEER-TO-PEER ADAPTIVE LAYERED STREAMING SYSTEM 33

Each peer has a membership cache, which contains identifiers of nodes
that participate in the session. Peers generate heartbeats, which are trans-
ported via a gossip protocol. When a peer receives a heartbeat, it up-
dates its membership cache. Peers that are in a peer’s membership cache,
are candidates for partnership. Partners exchange buffer maps, data and
membership caches. Members, on the other hand, exchange heartbeats
only. To find better partners and to cope with partner departures, ran-
domly selected peers from the membership cache are promoted to part-
ners at regular intervals. The peer track a score for each of its partners,
which is the maximum of average received segments and of average sent
segments. If the peer has more partners than it needs, it can remove the
one with the lowest score.

Each peer keeps a buffer map, which describes which segments of the
stream the peer is in possession of. The buffer map is limited to a fixed
number of segments, set to 120 in the original prototype [42]. Each peer
also keeps buffer maps from each of its partners, which are updated reg-
ularly. The peer uses these maps to determine which segments it should
request, and from which partner. High bandwidth and available time of a
partner will also attract requests.

CoolStreaming has been deployed in the Internet and over 1 million
unique IP addresses have used the system. More than 50000 users have
used the system at the same time [42].

3.3 Peer-to-peer adaptive layered streaming system

Peer-to-peer adaptive layered streaming system [28, 34] (PALS) is con-
cerned with how streaming from multiple senders to one receiver is to
be done. PALS is not much concerned about how the peer-to-peer con-
nections are formed. However, PALS seem to be very good at doing the
actual moving of streamed data, which could be extendable to general p2p
streaming systems.

The peer selection in PALS is as following (we quote [34]):“The receiver
starts with a randomly selected peer from the list of available peers. Then
it periodically adds another random peer from the list of available peers
to the subset of active senders while monitoring variations of both overall
throughput and throughput of individual senders. If the overall through-
put increases, the new sender is kept. Otherwise, the receiver drops the
new sender and tries another random peer after a period.”

34 CHAPTER 3. EXISTING PEER-TO-PEER STREAMING SYSTEMS

3.4 PROMISE

PROMISE [20] is a peer-to-peer streaming system that uses some topology
information of the underlying network when creating connections in or-
der to increase performance. When a user joins the system, it gets a set of
10 to 20 candidate sender peers by contacting a p2p content management
system. The user then prompts all its candidates to measure both topol-
ogy and available bandwidth between the candidate and the user. When
that information is established, the user selects the best sender peers. If
the performance of a sender peer suddenly drops, the user is allowed to
switch to its standby candidates. During streaming, the receiver is pas-
sively monitoring the network, and constantly updating its topology map.
PROMISE also supports random selection and non-topology aware selec-
tion of peers; this will come with less start up delay, but also with less
performance.
In order to cope with packet loss, PROMISE divides the content into

equal-sized segments and Tornado codes (a FEC code) the segments. The
amount of protection is dynamically altered such that the coding overhead
is kept reasonably low.
PROMISE has been evaluated by simulations of 1000 peers, and by In-

ternet experiments. Three different peer selection algorithms were tested
during simulation: random selection of sender peers, selection based on
measurement of bandwidth, and a topology aware selection algorithm.
The simulations indicate that the topology aware selection algorithmman-
ages to let receivers receive at higher streaming rate than the other selec-
tion schemes evaluated with differences of 5% to 10% [20].

3.5 SplitStream

SplitStream [8] uses multiple application-level multicast trees to distribute
a stream. The stream is divided into a set of stripes, and each stripe
has its own multicast tree. SplitStream aims to create the trees so that
any peer is an interior node in exactly one tree. Consequently, no peer
looses more than one stripe if any of the peers should fail. The gener-
ation of the trees is distributed, the exact way of generating trees being
implementation-specific. If SplitStream is implemented by the use of Pas-
try [35] and Scribe [9], tree construction can take advantage of some of the
properties of Pastry. Pastry chooses routing table entries which has low
delay whenever it can. Because the trees in SplitStream are constructed by
looking at the Pastry overlay, it means that nodes that are neighbors in the

3.6. DISCUSSION 35

trees often will be physically close. The trees are extended as nodes join,
and repaired when nodes fail or leave the network.
The content distributed by SplitStream should be coded so that peers

can tolerate loss of one (or a few) stripes. This could for instance be done
by use of multiple description coding. Peer failures would then only result
in temporary degradations of quality, and only until the failed tree is re-
built. If the distributed content is single-layered, it would be necessary for
all downloading peers to receive the entire stream. This could be ensured
either by using forward error correction codes at the cost of more network
packets and CPU usage; or by allowing retransmittance of lost packets.
The main advantages of SplitStream are: its nodes are self-organizing,

which is good for scalability, and it exploits locality (to the extent done in
Pastry) which should result in relatively little load on the network.
SplitStream multicasts its content. This is suitable for live broadcasts,

but not for video-on-demand.

3.6 Discussion

When the number of users of a streaming system is moderate, the back-
bone should normally not be a bottleneck because the aggregated require-
ments from all users would be moderate as well. However, if millions
of television users should switch to Internet as a delivery service of high
bandwidth demanding streaming, the backbone could become a bottle-
neck. This would be especially noticeable in presence of today’s low up-
load/download bandwidth ratio of ADSL users; the server will have to
provide lots of bandwidth per user, and all of this has to be transported on
the backbone. If the upload/download bandwidth ratio was to improve,
a larger part of the streamed data could be interchanged locally and hence
not stress the backbone to the same extent.
For the above reason, it is important for a peer-to-peer streaming sys-

tem to use minimum capacity of the backbone if the system aims to be
scalable. This can be achieved in different ways, for instance by use of
geographical scattered servers, or by letting peers exchange data locally.
Most current peer-to-peer streaming systems, as well as p2p file distri-

bution systems, do not consider the underlying topology of the network
when deciding which peers should mate with each other, implicitly or
explicitly assuming that the Internet backbones have infinite bandwidth.
The one of the above systems that explicitly considers properties of the
underlying network in order to increase its performance by making clever
peer-to-peer connections is PROMISE. SplitStream builds itself upon a p2p

36 CHAPTER 3. EXISTING PEER-TO-PEER STREAMING SYSTEMS

content management system, and can implicitly exploit properties of the
network if the underlying p2p system does so.

CHAPTER 4

OTHER RELATED WORK

4.1 BitTorrent

BitTorrent [1] is a protocol for distributing files. A BitTorrent file distri-
bution consists of a BitTorrent tracker, a meta info file and peers. It also
makes use of a web server and web browsers to distribute the meta info
file. A meta info file describes the file to be downloaded: it contains the
URL a tracker server, the piece size, SHA1 sums of all pieces of the file, the
length of the file, and its name. If more than one file is distributed at once,
they are concatenated, and the meta info file carry filenames and lengths
for all of them. The tracker keeps track of how much of the file each peer
has downloaded.
In order to download a file, a peer must first obtain its meta info file.

The meta info file is normally found on a web server. The meta info file
contains the address of a tracker, and the peer will request a list of other
peers from the tracker. The tracker will reply with a list of peers, typically
randomly chosen. The peer will connect to some of the peers of the list,
and obtains information regarding which pieces each peer have.
Connections are bi-ended and are initially choked and not interested in

both ends. Transfer of data only happen when the connection is interested
in one end, and unchoked in the other end. Whether the connection end
is interested or not, mirrors if the other end has a piece of the file which
the first end does not. Choking a bit more complicated, and is done for
several reasons: the number of simultaneous uploads should be limited to
give good TCP-performance, the peer should reciprocate to peers who let
it download, and the peer should try out new connections.
The BitTorrent protocol does not specify how the tracker should select

the peer lists it sends to peers, neither how the peers should use these lists.
Typically, the tracker forms a list of 50 peers it chooses at random from

the peers which are active in the distribution of a given file, when a peer

37

38 CHAPTER 4. OTHER RELATEDWORK

joins. By default, the joining peer will initiate connections to up to 40 of
these peers. Also, other peers will discover this peer through communica-
tion with the tracker; some of these peers will initiate connections to the
joining peer as well. Whenever a the count of a peer’s connections drops
below 20, the peer requests a new list from the tracker. [26].
In [41], a comparison between BitTorrent and an optimal scheme is

done; where optimality is minimal total elapsed time. The finding is that
in very heterogeneous networks, BitTorrent is far from optimal with a dif-
ference ratio of up to 40%. In homogeneous network, this ratio is much
smaller, about 6%. However, the paper says that BitTorrent is designed to
be good at minimizing average finish times, not at minimizing the maxi-
mum finishing time.

4.2 The Julia content distribution network

The Julia content distribution network can reduce the network load of up
to 33% in comparison with BitTorrent, with a penalty of only slightly later
finishing times for the users [6]. The reason Julia can perform so well,
is because its design minimizes the maximum download time amongst
peers, while BitTorrent rather minimize average download time. Hence,
with the use of Julia, resourceful peers take longer time to download a
file than with BitTorrent; and resource-weak peers take shorter time as
compared to using BitTorrent.

4.3 Other related work

Most systems aim to do single-stream p2p streaming, silently ignoring the
fact that there will be more than one stream at a time in the Internet. [24]
proposes a priority oriented scheme for sharing bandwidth in a fair way
when multiple users streams the same layered-coded content. The base
layer gets high priority, enhancement layers get less priority. Layers then
get dropped when congestion occurs, and low priority layers get dropped
quickly, leaving room for the higher priority layers of other users.
One paper proposes a way of optimizing layer size of layered video

in order to maximize satisfaction of the receivers, when receivers form
groups of somewhat equal bandwidth [27]. Satisfaction is then modeled
as an application-aware fairness index, which is defined as the utility di-
vided by themaximal utility. Utility is a non-linear function of the received
bandwidth, and is based on earlier established work. Maximal utility is

4.3. OTHER RELATEDWORK 39

the utility that would appear if the user could use its full download capac-
ity. The result of using optimized layer sizes is an up to 10% increase of
overall satisfaction when compared to fixed layer sizes.
One problem of peer-to-peer systems is that peers often are behind fire-

walls or network address translation devices (NATs) which can reduce the
peers abilities to participate resources. However, NAT traversal can be
done on virtually any NAT service deployed [17].

40 CHAPTER 4. OTHER RELATEDWORK

CHAPTER 5

PEER SELECTION

There are two different places to put the management of the peer-to-peer
connections that seems reasonable. The first place is a central server. The
server can gather lots of information about the network since it is present
for a long time. If that information can be utilized to its full extent, great
performance could be achieved. The other place is at every receiving peer.
Most p2p-ss do at the latter.

5.1 Control at the receiver

It is not strange that many p2p streaming systems and p2p file distribu-
tion systems let the receiver make most decisions. The receiver is aware
of its needs and it stays during the entire session. The first means less
communication and faster response. The second means there is no need to
keep redundant control nodes. Control at the receiver is quick and easy.
Knowledge of the underlying network can be stored in a p2p content man-
agement system, and used by the receiver to generate good connections.
When designing a p2p streaming system, one obvious goal is that the

perceived performance of the system is as high as possible. That is, a re-
ceiver should not be allowed to downgrade the performance of another
receiver. (Unless its gain is larger than their loss.) One way of approach-
ing that requirement when using layered coding is to apply Intersession
Fairness [24], in which a client easily gives up bandwidth that is used for
high layer numbers in favor of base layers of other clients, if congestion
occur.
When describing the selection algorithms below, it seems like much of

the responsibility is placed on the server rather than on the peers. How-
ever, it should be possible to replace the server with a distributed hash
table.

41

42 CHAPTER 5. PEER SELECTION

5.1.1 Random peer selection

The server has a list of every peer that is streaming, and the peer’s progress
into the streams. A new node will request a list of candidate peers from
the server, and select peers at random from that list. The new node will
discard peers it receives little bandwidth from, and connect to new nodes
on its candidate list. When the candidate list is emptied, the new node will
request a new list from the server.

5.1.2 Closeness guided peer selection

Selecting peers that are close has some benefits over selecting peers far
away. Closer peers tend to have shorter round trip times between them,
making retransmissions and communication in general quicker. It will
also have the benefit of not moving data further than necessary, perhaps
avoiding the creation of bottlenecks.

There are many ways of defining distance in the Internet. One can
use physical distance by using an IP-to-coordinate system [25], round trip
times, and hop count. Here we will rather use an approximation to close-
ness by using the information gained by use of traceroute towards a fixed
point, the server. There seems to be three different reasonable estimates
one can use from this information, see figure 5.1. The first estimate we
call the length-from-last-common-router, and is the number of common
links from peer A to the last common router, and then to B. By consult-
ing the figure, this gives 5. The max-length-from-last-common-router is
the maximum distance from the last common router to either A or B. The
length from the common router to A is 3, which is the maximum. The
last estimate (which is the one we will use) is the common-path length;
the number of common links from server to the peers. The common-path
length of peers A and B is 2.

Is it possible to find the K peers closest effectively? Of the tree esti-
mates, at least one is computable with a complexity independent of the
number of peers, the common path length. If one store the paths towards
the media sender in a trie1, it is not difficult to find the K “closest” in time
linear in K, and linear in the maximum path length.

1A trie is a special case of a suffix tree [38].

5.2. CENTRALIZED CONTROL 43

Figure 5.1: Topological distance heuristics

5.2 Centralized control

If one puts the control of peer selection in a centralized place, there will be
advantages and disadvantages as compared to having the control at the
receiver. A great advantage is that with centralized control, one will know
who everyone is connected to. By using this information, some unfortu-
nate connections can probably be avoided.
The downside of centralized control is that it does not scale well. Since

a central unit would need to manage the peer connections of tens of thou-
sands — perhaps millions of peers — the management would need to be
incredible efficient.
It could be possible to optimize the network resources from a central

node if one has knowledge of the underlying network, and a manageable
number of peers. For a small ISP, serving its own customers, these as-
sumptions might easily hold.
The centralized control must make sure a few constraints are not vio-

lated when selecting connections. First, links should not be oversaturated.
Second, peers should receive their requested rates. And third, the central
should make sure that the overhead of control messages is not huge. In
other words: the central should try to minimize the deviation, E, from the
acceptable situation, which we define to be:

E = Cl ∑
links

al − Cb ∑
peers

bp + Ccncontrol messages (5.1)

Where al is the amount of overuse on the link l, and bp is the received
rate or satisfaction of user p. Cl, Cb, and Cc are parameters which should
be adjusted to a given scenario. The parameters should always be non-
negative numbers. For instance, if it is more important that users receive
their requested rate than it is to not overuse a link, Cl should be reduced
in favor of Cb. n is the rate of control messages.
Equation 5.1 cannot be solved by linear programming because the first

term is non-linear. This comes from the non-linearity of each of the al .

44 CHAPTER 5. PEER SELECTION

Lets denote the use of a link l, ul . When ul is below a threshold, tl, then
al = 0. When l is above the threshold, then al = ul − tl . So unless, either
all tl = 0 or Cl = 0, linear programming is not possible to use. Whether the
last term of equation 5.1 is linear or not, depends on the solution, making
things even worse.

5.2.1 Simulated annealing

Simulated annealing [23] is a general heuristic method for optimization.
The simulated annealing method got its name from its physical counter-
part: annealing. It simulates the cooling process of a physical system:
if a system of atoms is cooled slowly, it will obtain a low-energy state.
Likewise, the simulated annealing process could also find a low-energy,
or low-cost, state for a general optimization problem.
Assume that one has a system in a given state, and that one wants to

find the minimum energy state of the system. A step in the simulated
annealing process works by randomly altering the state a tiny bit, and
then accepting or rejecting the new state based on if the energy difference
between the new and old state. If the new state has lower energy, it is
accepted immediately. If the new state has higher energy, the new state is
accepted with the probability e−dT/kT, where dT is the change in energy, T
the temperature of the system, and k a constant which typically is adjusted
to the problem. If the new state got accepted, the process continues with
the new state. If not, the process continues with the old state.
The simulated annealing process starts with an initial temperature T0,

and an initial state. The temperature is gradually lowered, and at each
temperature a number of steps are performed. A high temperature accepts
many increments in energy, and a lower temperatures accepts almost only
decrements in energy.
If the temperature is lowered slowly enough, the system should obtain

a low-energy state, preferably the lowest.

5.2.2 Using simulated annealing

In order to minimize the deviation from the acceptable situation, we select
to use the simulated annealing technique. An advantage of using simu-
lated annealing, is that simulated annealing can be adapted to almost any
need.
However, there are also problems with simulated annealing: if the sim-

ulated annealing doesn’t converge quickly, it will probably be useless in
the presence of large number of peers. And to converge fairly efficient,

5.2. CENTRALIZED CONTROL 45

it needs tuning the energy functions, temperature decrement function as
well as the transforms. That is: almost everything. Even though every-
thing is tuned, the simulated annealing might get stuck at a local maxi-
mum.
This thesis will not try to reduce the control overhead, so we set Cc = 0

in equation 5.1, and get the new energy function:

Ec0 = Cl ∑
links

al − Cb ∑
peers

bp (5.2)

We will now try to minimize Ec0 by applying simulated annealing.

Transforms

The most natural transforms would be the following:

• Add new connection (from, to, content, size)

• Split connection (original_from, additional_from, to, factor)

• Swap connection (original_from, new_from, to) - same as split con-
nection with factor 1

• Scale connection (from, to, factor(0 to 1)) - factor 0 removes totally,
only apply when this doesn’t affect other receivers

• Recursive scale connection - scales receivers as well

• Adjust connection (from, to, delta_rate) - alters by delta_rate

Each of the transforms work over a number of links, and the execution
time depends on the length of the connections. However, it should be
somewhat beneficially to utilize locality, hence most connections should
have few hops. The length of the connections can be affected easily by
more often trying to establish few-hop connections (non-uniform selection
of peers).
We only use one transformation, namely adjust connection. Also, we

make sure that no peer ever receives more rate than it requested. Also, we
needed to make sure that a peer cannot send a negative amount of rate,
nor receive a negative amount.
As a cooling scheme, we starts with temperature T = 1.0, then mul-

tiplies the temperature with 0.97 to get the next temperature, we try 450
temperatures. Between each change of temperature we perform 3p steps,
where p is the number of peers. We set k to equal the average stream rate

46 CHAPTER 5. PEER SELECTION

of the peers. Both Cl and Cb are 1 in our simulation. The parameters have
been set like this after some trial and error, and seem to work fairly well.
The implementation can bef found in appendix C

CHAPTER 6

SIMULATION FRAMEWORK AND
SIMULATION

Through the use of simulations we hope to figure what makes a good peer
selection algorithm for use in a p2p streaming system.
The simulations are built on top of network simulator ns-2 [3]. Most

p2p simulators are built to simulate huge amounts of peers, and therefore
(more often than not) does not consider the underlying network because
of performance issues. This thesis goes in the opposite direction, by sim-
ulating atop of a detailed packet-level network simulator, the simulations
could not support huge amounts of peers. During such a low-level ap-
proach, details that could have been missed by higher level approaches
might show up. Discovery of such details could then be inserted into a
high level approach to simulate the performance of a system when huge
numbers of peers are involved. The reason for choosing ns-2 that it is the
closest to a standard network simulator today; therebymaking it easier for
other persons to utilize or expand the framework.

According to [29] there are currently no p2p simulator good enough to
become a standard p2p simulator; like ns-2 has become for other areas
of network research. Typical short-comings of the simulators are poor
or non-existing documentation, no support for underlying network, dif-
ficulty of gather statistics, and low scalability. However, most papers on
p2p systems which use simulations, either use a custom simulator or an
unspecified one. Ns-2 has been used to simulate streaming in p2p systems
in at least two papers: [34] and [36].

47

48 CHAPTER 6. SIMULATION FRAMEWORK AND SIMULATION

Different peer selection algorithms will be implemented to complete
the simulation. The different peer selection algorithms will then be evalu-
ated based on the results from the simulation. Average peer contribution,
startup delay of streams and jitter will be examined. A subjective measure
of usability for VoD service and live television of the different selection
algorithms will be given as well.

6.1 Framework

All simulations are based on our simulation framework. The framework
is designed to be simple, intuitive and to match the division into parts as
given in figure 2.1 on page 20. Note that the pre-buffer and the post-play
management here fusion into a buffer module, and that the congestion
control is performed in sender and receiver modules.
The framework modularizes a p2p-ss into the following modules: me-

dia player module, peer discovery module, peer selection module, sender
module, receiver module, buffer module, segment piece manager. Trans-
port protocols and congestion control is intended to be done by the sender
and receiver modules. The framework also has a statistics module to sim-
plify how collection and reporting of performance is done. The media
player module reports details on startup delay and jitter (pauses in play-
back because the buffer is empty).
The framework includes some simple variants of all the modules.
Normally, interactions between modules are as drawn in figure 6.1 on

the facing page. Before sending a data packet, the sender module will
contact the piece manager (and in some cases) the buffer module to see if
it actually has data to send. The peer discovery module will create packets
to initialize the discovery process, and also read replies. It will notify then
notify the peer selection module about the newly discovered peers. The
peer selection module will then run its peer selection algorithm, and notify
the receiver module. The sendermodule can also be notified (although not
shown in the figure).
When a packet is received, most of the modules will read data from the

packet.
The simulation considers distribution of data streams. The streams are

partitioned into segments of equal size, each segment is in turn parti-
tioned into a number of segment pieces. The size of a segment piece is
equal to the net size of a network packet, which we assume to be limited
by the Ethernet frame size of 1500 bytes. In the perspective of the media
player, the segment is the fundamental type; play out of a segment cannot

6.1. FRAMEWORK 49

Figure 6.1: The modules of the framework, and their typical interactions.

start before the segment is completely downloaded.
A sender peer is a peer that is currently sending parts of a stream to a

receiver peer. Any peer is capable of both acting as a sender peer and as
a receiver peer. A peer is not allowed, however, to send data to itself. A
node is either a peer or a server, used when suitable. The phrase sender
node is used to denote a sender peer or a server.
During the simulations, the default data packet size is 1500 byte from

which 40 byte are reserved for IP, UDP, and RTP headers. A maximum
transmission unit of 1500 byte might not be supported in some real net-
works, but is typically the maximum size possible, because of limitations
of Ethernet. Using a larger packet size would mean fragmentation, and
lower performance. It is reasonable to use IP, UDP and RTP headers in a
streaming system. In some cases it would probably be possible to swap
the RTP header for a custom header in order to save a few byte.
The framework consists of different modules, and each module can

be retrofitted individually. It is also possible to provide different module
implementations for peers and servers. The modules are: media player

50 CHAPTER 6. SIMULATION FRAMEWORK AND SIMULATION

module, buffer module, receiver module, sender module, peer-selection
module, peer discovery module, segment piece manager, and statistics
module.

When looking at different peer selection algorithms, it is natural to
make multiple implementations of the peer-selection module and the peer
discovery module. Then the different implementations of the two mod-
ules can be simulated and compared without altering other modules of
the system.

If one is interested in how a system behaves with different transport
protocols or congestion control algorithms, then it is natural to implement
different sender and receiver modules.

The segment piece manager is somewhat special. It is the only module
not residing in every peer or server. Instead there is one segment piece
manager per stream, and the sendermodule contacts the manager in order
to figure out from which segment it should send content, if at all.

6.2 Standard modules

The framework also has a few basic modules. We now describe basic im-
plementations of all modules, except for the segment piece managerwhich
is explained in section 6.3. The standard modules are intended to be as
simple as possible, not to have great performance.

6.2.1 Media player module

The standard media player module is very simple. It starts playing the
stream when the amount of buffered content is above the “low buffer
limit” of the active stream. When the player finishes playing of a segment,
it moves on to the next. Should the next segment be missing, the player
will pause until buffered content is again above minimum threshold.

Every event, such as pauses, restarts or changes of streams; are logged.

6.2.2 Buffer module

The standard buffer module is simple as well. It stores every piece it gets,
and when it observes that a new segment is completed, it notifies the me-
dia player module.

6.2. STANDARDMODULES 51

6.2.3 Sender module

The sender module is not very complicated either. It receives “stream re-
quest messages” from other peers, and serves pieces of streams to its re-
ceiver peers. The request message includes information on which stream
the requesting peer needs, and at which rate the requester wishes to re-
ceive from this sender. The requesters are put into a list.

The sender module has a timer which expires with intervals which cor-
respond to the maximum upload rate of the sender. At each of the timer
ticks, the sender searches for a peer to serve. The first peer it finds which it
can send a piece to (never send faster than the peer requested, and ask the
segment piece manager if there is a piece to send) is served. The sender
uses a round-robin scheduler, making sure its rate is distributed approxi-
mately fairly amongst receivers.

The standard sender module sends each piece using an UDP agent,
and performs no congestion control. Note that the rate can be adjusted by
the receiver, thus making it possible to perform congestion control without
using a different sender module.

6.2.4 Receiver module

The standard receiver module is simple. It receives notifications from the
peer selection module on which peers to request information from, and
also at which rate content should ideally be received from each of the
sender peers. When the sender receives a notification from the peer se-
lection module, it will send request messages to each of the sender peers
the peer selection module selected, containing the rate decided by the peer
selection module.

As one can see, no congestion control is performed in the standard
receiver module.

6.2.5 Discovery module

The standard discovery module performs discovery by having peers re-
quest candidate senders from a server.

The discovery module is therefore divided into two pieces. The first
piece is the server version, and the other is the peer version. When a user
changes stream, the p2p streaming system needs to get a new set of sender
peers, since it is not likely that all peers change to the same stream simul-
taneously. When the change occurs, the peer sends a ’candidate request’

52 CHAPTER 6. SIMULATION FRAMEWORK AND SIMULATION

message to the server1.
The server will reply by sending a message containing peers, selected

at random from all peers which download the actual stream.
When the peer receives a peer list, it notifies the selection module if it

received new peers.

6.2.6 Selection module

The standard selection module select the first K peers it receives from the
discovery module. K is a number describing how many senders a peer is
allowed to request content from at a given time. It distributes its required
bit rate evenly between the K selected peers.
The selection module also request estimates from the receiver module

on howmuch rate is received from each of the selected peers. If the cumu-
lative rate do not match the need of this peer, the worst performing peer
is replaced with a new peer. Then the difference is requested directly from
the server.

6.2.7 Statistics module

Every second, the statistics module writes statistics on play progress of the
media player, buffer progress, rate received from peers, rate received from
servers, which stream is active, etc.

6.3 Segment piece management

In this simulation framework, peers do not know which pieces they are
in possession of. A peer only knows how many pieces of each segment
it has. When a sending node wants to send a piece to a receiver peer, it
contacts what we call an oracle, and asks the oracle if it can send a piece
to this receiver peer. The oracle will then determine if the node can send
a piece. The sender node is not told which piece was selected, only the
oracle is allowed to know.
The oracles allows each receiver peers to download multiple segments

simultaneous, but will always select to send a piece of the lowerest num-
bered segment, if possible. That is, if the oracle’s rules indicate that the
sender can send both a piece from segment 1, and from segment 2; the the

1How the peer gets to know the address of the server, is not a part of the system. A
way of obtaining information about streams or the server address, is to use a web site.
There are of course a lot of other possibilities as well.

6.3. SEGMENT PIECE MANAGEMENT 53

first piece will be selected. This is done because segments close to the play
out point is more critical than later segments.
By taking this approach, a peer does not need to decide at send time

which piece is to be sent. Instead, an oracle chooses which piece to send,
and only the oracle knows which piece was sent. Such an oracle can have
different properties, some of the more important are:

Validity The oracle should not allow a peer to send a piece it does not
have. In the real world, a peer obviously cannot send data it does
not have. Violating the validity property could make data appear
out of nowhere. We require data to first appear at the server. Since
the peer only know how many pieces it has, not which, it must be
the responsibility of the oracle to ensure validity.

Duplicate pieces avoidance It is a waste of bandwidth to send a piece to
a peer which already have the piece. Also, if the oracle allows dupli-
cate pieces in transit to a peer, it must make sure that the duplicate
pieces only count as one piece towards the peers’ piece counters.

Bidirectionality If two peers have at least one piece the other misses from
some segment, the oracle should allow both peers to send the miss-
ing pieces.

Response strategy The sender nodes will request permission to send a
piece from the oracle to a given receiver the oracle can have different
response strategies: a greedy oracle will grant a permit if it can see
a piece which is possible to send. More sophisticated oracles could
for instance use statistical analysis as well. All oracles described here
will use the greedy response strategy.

Under the assumption that the oracle is valid, a peer knows a segment
is complete when it has received the correct number of pieces of the seg-
ment. It is naturally impossible to do segment piece management with
oracles in the real world, but possible in simulation. The advantage of
doing segment piece management like this, is a possibility to experiment
with different ideal strategies for selecting the pieces. E.g. in order to fig-
ure out if it is beneficial to arrange the pieces such that a peer can send any
piece as early as possible, we implement an oracle which arranges pieces
such that a send-request is granted by the oracle if there was any order-
ing of the sent pieces which would allow the sending. If the peers should
make the decisions at send time, it would be very difficult to guarantee
such an ordering. Exploring such ideal strategies should give directions
on how to design real-world segment piece management.

54 CHAPTER 6. SIMULATION FRAMEWORK AND SIMULATION

6.3.1 Oracle with incremental strategy

A simple oracle would do it decision like this: Peer A is allowed to send a
piece from segment S to peer B, if peer A has more pieces of the segment
than do peer B. Also, the difference must be larger than the number of
pieces in transit to peer B.
It is easy to see that this is a valid oracle. Also, duplicate pieces are

avoided. However, this oracle is not bidirectional, because only the peer
with the highest number of pieces are allowed to send.

6.3.2 Oracle with rarest-first strategy

We concluded that the incremental strategy for an oracle suffered because
of lack of bidirectionality; not allowing two peers to cooperatively down-
load a segment.
The oracle keeps track of which pieces each peer have, and which

pieces that are in transit to each peer. Now, peer Awants to send a piece of
segment S to peer B. The oracle examines the pieces of peer A and peer B.
If A actually has a piece that B do not have, the oracle will further examine
all peers that recently has sent a piece to peer B. The piece which is least
common among these other peers, and not already in transit to B, is then
sent to B. Although selecting the least common piece is not guaranteed to
give an optimal use of bandwidth, it seems like a good idea.
Again, this is obviously a valid oracle, and the oracle also avoids all

duplicates. The oracle also allows two peers which is downloading the
same segment to cooperatively download the segment. In fact, this oracle
looks a bit like the segment piece management of CoolStreaming [43].

6.3.3 Oracle with early-send strategy

We shall now describe an oracle that is bidirectional, has duplicate piece
avoidance, but is not completely valid. Given how many pieces each peer
has received from each segment, and a request to send from a given peer
to another; this oracle aims at ordering the pieces such that the request can
be permitted. Note that this is not the same as maximizing the probability
to accept requests. It is possible that the choice to accept the given request
actually will lower the probability of acceptance of later requests.
Consider figure 6.2 on the next page. The server S has sent 3 different

pieces to peer A. A again has sent 2 different pieces to peer B, and 2 differ-
ent pieces to C. Is B in possession of a piece which C does not have? This
is not possible to decide. If A had to decide which piece to send at send

6.3. SEGMENT PIECE MANAGEMENT 55

Figure 6.2: Idea behind the early-send oracle

time, it might end up sending pieces 1 and 2 to both B and C. A better
choice would be to send for instance 1 and 2 to B, and 2 and 3 to C. Then
B can send a piece to C (and C to B as well). By just counting how many
different pieces each peer has, instead of explicitly naming the pieces the
peers posses, and assuming that the oracle always make a clever choice,
we should be able to select the latter scenario, hence B can send to C. Un-
fortunately, this conclusion is not correct. In the case peer A had sent the
4 pieces before it received its third piece, the only possible scenario is that
B and C have the same two pieces, and B cannot send to C! If, and only
if, the conclusion had been correct, the oracle would be valid. The impli-
cation of using a not valid oracle in the simulations, is that the oracle will
allow more pieces to be sent than a valid oracle would (if they otherwise
are identical), hence the oracle which is not valid should make the p2p-ss
have a greater performance in terms of delivered bandwidth. It can be
seen from the simulation results in chapter 7, that the invalid early-send
oracle has less performance than the rarest-first oracle. A valid early-send
oracle would have even less performance! Therefore we do not bother
adding much more complexity in order to make a valid early-send oracle;
we simply conclude that the rarest-first strategy is better than the early-
send strategy.

In order to efficiently decide if peer B can send a piece to C, we let us
inspire by the Ford-Fulkerson method of solving the maximum flow prob-
lem (see appendix A). There will be one capacity graph which is common
to all peers, like figure 6.2 and 6.3(a) on the next page, and the capacities
on an edge from u to v is the number of pieces received at v from u. There
is also a flow graph and a residual graph for each of the peers. In short,
peer B can send a piece to C if there is an augmenting path from any server
to B in the residual graph of C.

Example: Lets focus on segment 1 of a stream. Server S has sent 2 pieces
to peer B. Peer B has sent two pieces to peer C, and one piece to peer

56 CHAPTER 6. SIMULATION FRAMEWORK AND SIMULATION

(a) Initial capacities (b) Capacities after the piece is re-
ceived by peer D

(c) The flow, as seen by peer D, after
adding augmenting path S→ B→ C

(d) The flow, as seen by peer D, after
the piece is received by peer D

(e) The residuals, as seen by peer
D, after adding augmenting path
S→ B→ C

(f) The residuals, as seen by peer D,
after the piece is received by peer D

Figure 6.3: Snapshots of the maximum flow approach to manage seg-
ment pieces. Note that each of the peers will have its own
flow graph, while the capacity graph is shared between peers.
The residual graphs are calculated by “subtracting” the flow
graphs from the capacity graph, and then adding to the op-
posite edges.

6.3. SEGMENT PIECE MANAGEMENT 57

A. Peer D has not received any pieces. We need to know whether peer
C can send a piece to peer D. The scenario described above is treated as
the maximum flow problem with capacities on the edges as described in
figure 6.3(a) on the facing page. However, since we only need to send one
piece, we are not interested in finding the maximum flow, it is enough to
find an augmenting path. The augmenting path need to start at the server,
and end at the potential sender, peer C. As we see, there is only one option:
The path S→ B→ C. The augmenting path tells us that peer C has at least
one piece that peer D does not have. Therefore peer C can send a piece to
D.
When peer C sends a piece to peer D, this is registered by adding the

augmented path, from S to C, to the flow-graph owned by peer D. See
figure 6.3(c) on the preceding page. It is also registered that one piece is in
transit towards peer D. The latter is done so that other sender peers do not
send pieces towards peer D, which already are in transit. When the piece
is received by peer D, the capacity from C to D is increased by one. See
figure 6.3(b) on the facing page. As we can see, the oracle will allow peer
C to send exactly one more piece to D if peer C requests it.

Discussion: Does this Ford-Fulkerson-inspired methodwith finding aug-
menting paths actually success in deciding whether peer B can send a
piece to C or not? Under the false conclusion given above, it actually does.
If we translate the question into Ford-Fulkerson terms, it becomes: Can
the flow to C be increased by one if we increase the capacity from B to C
by one, and limit the capacity from any other peer to C to what is already
sent? It is not difficult to see that this is equal to finding an augmenting
path from any given server to B.

6.3.4 Multiple segments

The example of the last section looked at a simplified version, where all
peers downloads the same segment. Normally, all peers do not download
the same segment at the same time. Also, a peer does not want to wait
for the whole of segment 1 to finish before starting to download segment
2. Imagine what happens if a far-away sender peer sends the last piece of
segment 1: should the peer wait to start on segment 2 until the last piece
arrives?
In our management we let each peer download up to K (= 2 in the im-

plementation) segments simultaneously. The K segments cannot be sepa-
rated: K is 2, a peer is for instance allowed to download segment 2 and 3

58 CHAPTER 6. SIMULATION FRAMEWORK AND SIMULATION

simultaneously, but not 2 and 4. The management will always try to fill
the lowered numbered segment first. A nice observation is that the capac-
ities (the number of different segments sent from a sender peer) towards a
peer are implicitly given both when the peer has downloaded a segment
completely, and when the peer has not started the segment. Therefore, it
is only necessary to consider the K segments which the peer is currently
downloading. Different peers will also have different progress, adding
even more complexity.

Example See figure 6.4(a): Peers B, C and D are downloading segments 0
and 1 (numbers above the peers). Peer B has received 2 pieces of segment 0
and 1 piece of segment 1 from the server. The first number on an edge cor-
respond to howmany pieces the receiver has received the lowest segment,
and the second number corresponds to the highest segment number. Peer
C has received 2 pieces of segment 0 from B. Peer A, which is download-
ing segments 1 and 2, has received one piece of segment 1 from peer B. It
is also implicitly given that peer A has finished downloading segment 0.
Peer D has not received anything.
Now, peer C wants to know if it can send anything to peer D. It tries

segment 0 first, since it is the lowered-numbered segment of D need. D
then probes for an augmenting path in the residual graph of D. Since D
has yet to receive anything, the residual graph is equal to the capacity
graph. Peer C can find two paths. The two paths are S → B → C and
A → C. It does not matter which is chosen. Note that peer A acts as a
server because it has the whole segment 0.
Next, peer B receives another piece of segment 0 from the server. As-

sume there are 4 pieces per segment. Now peer B has a complete lower
segment, so it changes its active downloading segments to be 1 and 2. See
figure 6.4(d).

6.3. SEGMENT PIECE MANAGEMENT 59

(a) Initial capacities. (b) Capacities after peer D has re-
ceived a piece from peer C.

(c) Capacities after peer D has re-
ceived two pieces from peer C.

(d) Capacities after peer B has re-
ceived a piece from server S.

(e) Flow after D has received a piece
from C

(f) Flow after D has received two
pieces from C

(g) Residual graph after D has re-
ceived a piece from C

(h) Residual graph after D has re-
ceived two pieces from C

Figure 6.4: When multiple segments are downloaded simultaneous, the
complexity rises.

60 CHAPTER 6. SIMULATION FRAMEWORK AND SIMULATION

6.4 Simulating the different peer selection algorithms

We now describe in more detail how the different peer selection algo-
rithms are simulated.

6.4.1 Random Peer Selection

When a peer starts to stream, or changes to another stream, the peer will
ask the server for candidates to download from. The server replies by
sending a list of randomly selected candidates to the peer. The list consist
only of peers which the server knows has some of the stream in question.
The peer will request updates to the list at constant intervals as well.

When the peer gets the list, its selection module will select the first can-
didate peers on the list, and request downloads from them. The selected
candidate peers will be called active senders from now on. The maximum
number of active senders can be changed at simulation start, and is 5 in
the simulations done later.

A downloading peer will at intervals calculate its need, which is how
large a rate the peer should receive in order to feed its media player con-
tinuously. When the buffer level of the peer gets below a lower threshold,
the need is adjusted to be 1.2 times the rate of the streamed media. If the
buffer level for some reason should get larger than a upper threshold, the
need is reduced to 0.9 times the rate of the media. If neither of the thresh-
olds are broken, the need is simply the rate of the stream.

In order to reduce congestion, a receiver associates a limit to all its
sender peers. The receiver does not request rate at above the limit. If a
receiver receives less bitrate from a sender than it requested, it assumes
this is because of congestion and sets the limit to the received rate. Every 2
seconds, the following is performed: First, limits are updated as described
above. Then ehe request rate of all peers are first set to the lesser of: the
limits of the peer, the last requested rate of a peer plus an increase. If now
the sum of the request rates is more than the need of the peer, all request
rates are multiplied with the ratio of the need over the sum. These request
rates are then sent to the sender peers. If the received rate was less than
the need, the worst (lowest receive rate) sender peer is swaped for a new
peer, and blacklisted. Blacklisting is done so the peer does not immedi-
ately reselects the thrown-away peer. The server is treated just like the
peers.

6.4. SIMULATINGTHEDIFFERENTPEER SELECTIONALGORITHMS61

6.4.2 Closeness Selection

When a peer want to start to stream, it first performs a traceroute towards
the server. If the stream already has performed an earlier traceroute to the
server, the traceroute process is skipped. When the traceroute process is
finished, the peer requests candidates from the server by sending a packet
containing the stream identificator of the stream it wants and the list of
routers between it self and the server. When the server receives the packet,
it elects as candidates the “closest” peers to the new peer. Closeness is
determined by how many routers the new peer have in common with the
candidate; many routers means they are close. The candidates are put into
a list, with the closest candidate first.
When the peer gets the list, its selection module will select the first can-

didate peers on the list, and request downloads from them. Since the “clos-
est” peer is in the first entry, the peer will select its closest peers first. The
maximum number of active senders can be changed at simulation start,
and is 5 in the simulations.
Need calculation is identical to the need calculation when using ran-

dom peer selection(see over). If the received rate is less than the need, the
difference is requested from the server. If the difference is greater than a
threshold, the peer will swap its worst sender with a new peer, and black-
list the worst sender. The server is never blacklisted, since it is used to
request the difference.

6.4.3 Central server and simulated annealing

When a peer wants to start a streaming session, it tells the server. (In the
current implementation, there are no packets sent, the peer calls a function
in the server — hence startup delays are shorter than they should be. This
will be corrected). The server then tries to optimize bandwidth usage over
the whole network in order to, hopefully, serve the need of every peer
in the network. The server will notify the sender module of all peers to
whom and how much to send. The sender modules then do their best.
The details of the algorithm can be found in section 5.2.

62 CHAPTER 6. SIMULATION FRAMEWORK AND SIMULATION

CHAPTER 7

SIMULATION RESULTS

The test runs included here were performed on sample network topolo-
gies from the GT-ITM tool [7], obtained from [2]. There are 100 routers, dis-
tributed between stub domains and transit domains. Bandwidths between
transit domain routers are 15Mbps. Bandwidths between stub routers,
and between stub routers and transit domain routers is uniformly selected
from 6Mbps to 9Mbps. 100 user nodes are connected to randomly selected
stub routers. The user nodes are divided into three groups. Group 1 have
uplink bandwidth 1.3 - 2.0 Mbps. Group 2 have 1.8 - 3.0 Mbps. Group 3
has 0.3 - 0.7 Mbps. The users’ download links also varies, but are always
sufficient for downloading at least 1.5 Mbps. The server is connected to
a random stub router, and its bandwidth is 6Mbps. The bandwidths are
selected to challenge the peer selection algorithms, not to be an accurate
model of the Internet.
All runs are performed on 8 different networks: 4 different sample

graphs from the GT-ITM tool, and each sample graph are assigned ran-
dom bandwidths twice.
Between time 0 and time 3.5 minutes, one new peer requests stream 1

each 2.1 seconds. At time 3.5 minutes, all peers have requested stream 1.
At 4minutes 40 seconds, all peers switch to stream 2. The first 4minutes 40
seconds tests the capability of the system to handle VoD-like workloads.
Although it is unlikely for the users to arrive with constant time difference,
this will show how the system performs if the stream is is distributed. All
users which tune in to stream 1, starts playback from segment 0 (this is
a VoD session). When all users suddenly change to the next stream, the
users are a flash crowd. So the latter part will tell how the system performs
under such events. The rate of the streamed media is 1.5Mbps in all cases.
The peer selection algorithms tested here, are the ones described in

section 6.4.

63

64 CHAPTER 7. SIMULATION RESULTS

Figure 7.1: Comparison of 3 peer selection algorithms.

7.1 Comparison of peer selection algorithms

We see in figure 7.1, the three peer selection algorithms differ quite a bit in
performance. The centralized simulated annealing approach outperforms
the two other algorithms, achieving more than twice the throughput dur-
ing when streaming stream 1. During stream 2, the simulated annealing
approach is still the best, with 50% more throughput than the second best.
The clear drop in delivered bandwidth at time 4 minutes 40 seconds is due
to stream change.

This clearly indicates that proper use of information of the underlying
network indeed can increase the streaming rate significantly. Our simu-
lated annealing approach cheats by directly (instantly) notifying peers of
its decisions, instead of sending notifications through the network. This
is done because we think it is possible to tweak the simulated annealing
approach to send few notifications, without getting much worse through-
puts. Since our heuristics do not minimize notifications, we chose to send
no packets instead of a lot.

A surprising finding is that random selection of peers seems to perform
better than closeness guided selection, especially during the flash crowd.

7.2. COMPARISON OF SEGMENT PIECE ORACLES 65

Figure 7.2: Comparison of 3 segment piece oracles.

7.2 Comparison of segment piece oracles

Not surprisingly, there is some impact on the received rate from the choice
of segment piecemanagement. In figure 7.2, we have plotted the rate peers
receive when using different segment piece oracles. We see that the high-
est throughput is associated with the rarest-first oracle. This happen even
though the early-send oracle is not completely valid, and therefore some-
times ’spawns’ segment pieces. The incremental oracle achieves the worst
performance, this is of course because it does not allow peers which down-
loads the same segment to cooperate. The clear drop in delivered band-
width at time 4 minutes 40 seconds is (as in last section) due to stream
change.

During stream 1, the oracles performance of the oracles are quite sim-
ilar. During stream 2, there is more difference. During the first stream,
the peers tend to have different progresses: the first peer to start have
progress greater than the second, and so on. A sender peer will often have
completed the whole segment, which the receiver requests. Therefore, the
impact of segment piece management is little. During the second stream,
peers tend to have the same progress, so the segment piece management

66 CHAPTER 7. SIMULATION RESULTS

is much more important.
However, the throughput seems to be more steady when using the in-

cremental oracle, and less steady when using the rarest-first oracle.

7.3 Discussion

Given the topology here, the centralized simulated annealing easily out-
perform by far both random peer selection and closeness selection. We
see that rarest-first piece management achieves the highest throughput
amongst the piece manager oracles tested here.
The results here further indicates that peer selection algorithms have

greater impact on the performance of a p2p streaming system than seg-
ment piece management does.

CHAPTER 8

CONCLUSION

Although the connectiveness amongst peers in a peer-to-peer streaming
system is only a small part of the system, it is perhaps the single factor
that affects the performance the most. Most systems do not explicitly uti-
lize knowledge of the underlying network when they make connections,
which does not yield optimal performance.
This thesis compared three different peer selection algorithms: Ran-

dom peer selection, selection of close peers, and a centralized peer se-
lection algoritm. We found that the choice of peer selection algorithms
greatly affects the performance of a p2p-ss: Our centralized peer selection
algorithm, which uses knowledge of the underlying network, greatly out-
performed the other algorithms in the simulated network. Doing the peer
selection decision in a sentral node, does not scale well, and are therefore
only usable when a limited number of peers are active.
In addition, we compared three different piece manager oracles. We

found that the choice of oracle also affect the performance, but not to the
same extent as the choice of peer selection algorithm. The best of the three
tested oracles, was the rarest-first oracle. This indicates that a piece man-
ager should try to send the rarest pieces first.

Future work It would be interesting to see how random peer selection
and selection of close peers perform when using different congestion con-
trol algorithms. We expect that better performance would be achieved.
It would also be very interesting to be able to simulate with much

greater numbers of peers, and for a longer time, to use multiple-layered
streams, to incorporate control overhead into the centralized algorithm,
and to have realistic cross-traffic.

67

68 CHAPTER 8. CONCLUSION

BIBLIOGRAPHY

[1] BitTorrent protocol. http://www.bittorrent.org/protocol.
html, last visited January 26, 2008.

[2] Gt-itm site. http://www.cc.gatech.edu/projects/gtitm/,
last visited January 20, 2008.

[3] The network simulator ns-2. http://www.isi.edu/nsnam/ns,
last visited February 1, 2008.

[4] PPLive. http://www.pplive.com, last visited February 1, 2008.

[5] Claude Berrou, Alain Glavieux, and Punya Thitimajshima. Near
shannon limit error-correcting coding and decoding: Turbo-codes (1).
In IEEE International Conference on Communications (ICC 93), volume 2,
pages 1064–1070, may 1993.

[6] Danny Bickson and Dahlia Malkhi. The Julia content distribution
network. In WORLDS’05 Second Workshop on Real, Large Distributed
Systems, 2005.

[7] Kenneth L. Calvert, Matthew B. Doar, and EllenW. Zegura. Modeling
Internet topology. IEEE CommunicationsMagazine, 35(6):160–163, June
1997.

[8] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh
Nandi, Antony Rowstron, and Atul Singh. Splitstream: High-
bandwidth multicast in cooperative environments. In ACM Sympo-
sium on Operating Systems Prinsiples (SOSP), October 2003.

[9] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony
I. T. Rowstron. Scribe: A large-scale and decentralized application-
level multicast infrastructure. IEEE Journal on Selected Areas in Com-
munications, 20(8):1489–1499, oct 2002.

69

70 BIBLIOGRAPHY

[10] Yang-Hua Chu, John Chuang, and Hui Zhang. A case for taxation in
peer-to-peer streaming broadcast. In ACM SIGCOMM’04, 2004.

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. The MIT Press, 2nd edition,
2001.

[12] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed
Systems: Concepts and Design. Addison Wesley, 4th edition, 2005.

[13] Chris Dana, Danjue Li, David Harrison, and Chen-Nee Chuah. BASS:
BitTorrent assisted streaming system for video-on-demand. In IEEE
7th workshop on multimedia signal processing, 2005.

[14] Sally Floyd. RFC2914 - congestion control principles. (Best Current
Practice), September 2000.

[15] Sally Floyd and Kevin Fall. Promoting the use of end-to-end con-
gestion control in the Internet. IEEE/ACM Transactions on Networking,
7(4):458–472, August 1999.

[16] Sally Floyd, Mark Handley, Jitendra Padhye, and Joerg Widmer.
Equation-based congestion control for unicast applications. In ACM
SIGCOMM 2000, August 2000.

[17] Saikat Guha and Paul Francis. Characterization and measurement of
TCP traversal through NATs and firewalls. In Internet Measurement
Conference (IMC’05), pages 199–211, 2005.

[18] Lei Guo, Enhua Tan, Songqing Chen, Zhen Xiao, and Xiaodong
Zhang. Does Internet media traffic really follow Zipf-like distribu-
tion? In ACM SIGMETRICS’07, June 2007.

[19] M. Handley, S. Floyd, J. Padhye, and J. Widmer. RFC3448 - TCP
friendly rate control (TFRC): Protocol specification. January 2003.

[20] Mohamed Hefeeda, Ahsan Habib, Boyan Botev, Dongyan Xu, and
Bharat Bhargava. PROMISE: Peer-to-peer media streaming using
CollectCast. In ACMMM’03, 2003.

[21] Xiaojun Hei, Chao Liang, Jian Liang, Yong Liu, and Keith W. Ross.
Insights into PPLive: A measurement study of a large-scale p2p IPTV
system. In IPTV Worksop, International World Wide Web Conference,
May 2006.

BIBLIOGRAPHY 71

[22] Daniel Hughes, Geoff Coulson, and James Walkerdine. Free riding
on Gnutella revisited: The bell tolls? IEEE Distributed Systems Online,
6(6), June 2005.

[23] S. Kirkpatrick, jr C. D. Gelatt, and M. P. Vecch. Optimization by sim-
ulated annealing. Science, 220(4598):671–680, may 1983.

[24] Wei Kuang Lai and Chieh Ying Pan. Achieving inter-session fairness
for layered video multicast. IEEE Transactions on Broadcasting, 48(3),
September 2002.

[25] Jonathan Ledlie, Paul Gardner, and Margo Seltzer. Network coordi-
nates in the wild. InUSENIX Second Symposium on Networked Systems
Design & Implementation, April 2007.

[26] Arnaud Legout, Guillaume Urvoy-Keller, and Pietro Michiardi. Un-
derstanding BitTorrent: An experimental perspective. Technical re-
port, I.N.R.I.A., November 2005.

[27] Jiangchuan Liu, Kin-Man Cheung, Bo Li, and Ya-Qin Zhang. On the
optimal rate allocation for layered video multicast. In Tenth Interna-
tional Conference on Computer Communications and Networks, 2001.

[28] Nazanin Magharei and Reza Rejaie. Adaptive receiver-driven
streaming from multiple senders. Multimedia Systems, 11(6):550–567,
June 2006.

[29] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and
D. Chalmers. The state of peer-to-peer simulators and simulations.
ACM SIGCOMM Computer Communication Review, 37(2), apr 2007.

[30] Venkata N. Padmanabhan, Helen J. Wang, Philip A. Chou, and Kun-
wadee Sripanidkulchai. Distributing streaming media content using
cooperative networking. Technical report, Microsoft Research, apr
2002.

[31] Vern Paxson. End-to-end Internet packet dynamics. IEEE/ACM Trans-
actions on Networking, 7(3), June 1999.

[32] Fernando Pereira and Touradj Ebrahimi, editors. The MPEG-4 Book.
Prentice Hall PTR, Upper Saddle River, New Jersey, 2002.

[33] Reza Rejaie, Mark Handley, and Deborah Estrin. RAP: An end-to-end
rate-based congestion control mechanism for realtime streams in the
Internet. In IEEE INFOCOM’99, March 1999.

72 BIBLIOGRAPHY

[34] Reza Rejaie and Antonio Ortega. Pals: Peer-to-peer adaptive layered
streaming. In International Workshop on Network and Operationg Sys-
tems Support for Digital Audio and Video, June 2003.

[35] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems. In
IFIP/ACM Symposium on Principles of Distributed Computing (PODC
2002), nov 2001.

[36] Eric Setton, Jeonghun Noh, and Bernd Girod. Rate-disortion opti-
mized video peer-to-peer multicast streaming. In ACM workshop on
Advances in peer-to-peer multimedia streaming (P2PMMS’05), nov 2005.

[37] Amin Shokrollahi. Raptor codes. IEEE Transactions on Information
Theory, 52(6):2551–2567, June 2006.

[38] Steven S. Skiena. The AlgorithmDesignManual. Springer-Verlag, 1998.

[39] Kunwadee Sripanidkulchai, Bruce Maggs, and Hui Zhang. An anal-
ysis of live streaming workloads on the Internet. In 2004 Internet Mea-
surement Conference (IMC’04), October 2004.

[40] Nevena Vratonjic, Priya Gupta, Nikola Knezevic, Dejan Kostic, and
Antony Rowstron. Enabling DVD-like features in p2p video-on-
demand systems. In ACM SIGCOMM 2007 Workshop on Peer-to-Peer
Streaming and IP-TV, August 2007.

[41] Gang Wu and Tzi-Cher Chiue. How efficient is BitTorrent? In 13th
Annual Multimedia Computing and Networking (MMCN’06), January
2006.

[42] Xinyan Zhang, Jiangchuan Liu, and Bo Li. On large scale peer-to-
peer video streaming: experiments and empirical studies. In IEEE
7th Workshop on Multimedia Signal Processing, pages 1–4, 2005.

[43] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak-Shing Peter Yum.
Coolstreaming/DONet: A data-driven overlay network for peer-to-
peer live media streaming. In IEEE INFOCOM’05, 2005.

APPENDIX A

THE MAXIMUM FLOW PROBLEM
AND

THE FORD-FULKERSON METHOD

The ideal segment piecemanager is inspired by the Ford-Fulkerson method,
which solves the unweighted maximum flow problem by finding aug-
menting paths. See for instance [11] for information on both the method
and the problem.

The unweighted maximum flow problem Let G(V, E) be a graph con-
sisting of vertices and directed edges, and let each edge e have a real num-
ber that is its capacity, c(e). Select one vertex S to be the source, and one
vertex T to be the sink. Now, the maximum flow is any weighting of the
edges of the graph that satisfy the two constraints:

1. For any edge e, the weight of e, w(e), is larger or equal to zero and
less than or equal to its capacity.

2. For any vertex v except the sink and the source, the sum of theweight
of the edges leaving v exactly equals the sum of the weight of the
edges entering v.

The unweighted maximum flow problem is to find such a maximum flow
given a graph G

73

74APPENDIXA. THEMAXIMUMFLOWPROBLEMANDTHEFORD-FULKERSONMETHOD

The Ford-Fulkerson method In addition to the capacities c, and the final
weights w; the algorithm uses the flow f as temporal variable that is equal
towwhen the algorithm halts, and a residual flow graph r to make it easier
to find the augmenting paths.
The initialization step is to initialize the residual graph to be the same

as the capacities, that is the original graph. Then for all pairs of vertices u
and v: if the residual graph have an edge between vertices u and v, then
an opposite edge is created if not already existing, with capacity 0.
The second step is to find an augmenting path. An augmenting path

is any path from the source to the sink in the residual graph. If such a
path is not found, then a maximum flow has been found. Otherwise, the
augmenting graph is added1 to the flow graph f and subtracted2 from the
residual graph. Then the second step is run again.
The running time of the Ford-Fulkerson method dependupon the path-

finding algorithms it uses. If the path-finding algorithms always finds a
shortest path in the residual graph, the complexity is independent of the
capacities of the graph.

1For each edge e in the augmenting path: If the opposite edge of the graph have a
flow greater than zero, the flow of the opposite edge is reduced, otherwise the flow of the
corresponding edge is increased.
2For each edge e in the augmenting path: If the corresponding edge of the graph have

a capacity greater than zero, the capacity of the corresponding edge is reduced, otherwise
the capacity of the opposite edge is increased.

APPENDIX B

HACKING TRACEROUTE INTO NS-2

Unfortunately, ns-2 does not reply with an ICMP packet when a packet
timed out in the simulated network, nor does it have support for it. Since
some of the simulations done rely on traceroute, wewere required to make
support for it by ourselvs.

common/ip.h We inserted the following fields into the ip-header: is_tracing,
is_reply and addr_of_router. Normally, is_tracing is set to false.
When an agent wants to initiate a traceroute, it sets the is_tracing
field to true and the ttl field to an appropriate value. WE also added the
time_sent and trace_uid in order to make life easier afterwards.

common/ttl.cc The part of ns-2 that is handling timeout of ip-packets
is inside the common/ttl.cc file. We changed it so that if the packet’s
is_tracingfield is true, the TTLCheckerwill not drop the packet, but in-
stead unset is_tracing, set is_reply, set ttl to 255, and change source
and destination addresses of the packet. If is_tracing is not set it will
drop the packet when timed out.
In order to find the address of the node/router asossiated with the far

end of the link, wemade the field destination-id in TTLChecer. When
a packet times out, it inserts the value of that field into the addr_of_router
field of the packet.

tcl/lib/ns-link.tcl In order to correctly set the destination-id field of
TTLChecker, we added a line in SimpleLink instproc init. The
line must go below the creation of ttl_. The added line was $ttl_
destination-id [$dst id], which sets the destination-id field of TTLChecker
to the id of the destination node of the link.

75

76 APPENDIX B. HACKING TRACEROUTE INTO NS-2

APPENDIX C

SOURCE CODE FOR SIMULATED
ANNEALING METHOD

Header file

#ifndef CENTRALCORE_H
#define CENTRALCORE_H
#include <vector>
#include <map>
#include <fstream>
#include <cmath>
#include <limits>
#include <set>
#include "assert2.h"

#include "app.h" //to get access to tcl

using namespace std;

struct FromTo{
int f,t;

bool operator<(const FromTo & rhs) const{
if (f == rhs.f) return t < rhs.t;
return f < rhs.f;

}

FromTo(int f, int t) : f(f), t(t) {}
};

class CentralCore{

map<FromTo, int> to_linkno; //translate [from][to] into a link number
int stream_c;

77

78APPENDIXC. SOURCECODE FOR SIMULATEDANNEALINGMETHOD

int server_c;
int peer_c;
int router_c;
int node_c; //= peer_c + server_c
int link_c;

double * capacity; //capacity[linkno] between devices on the net
double * latency;
double * used; //[linkno]
int * streamID; // -1:’any stream’, 0:’no stream’, positive numbers: stream
double ** progress; //progress[stream][node]
double progress_delta;
double ** send_rate; //[from_peer][to_peer]
double * demand; //demand of download rate to each node
double * offer; //currently offered download rate
vector<int> ** paths; //path[sender][receiver], enumerates links

vector< pair<int,int> > peer_pairs; //enumerates possible peer selections

double k; //boltzmann constant. Selected to equal rate of streams
double energy;
double T; //temperature
double Co; //cost of overuse of the capacity of a link
double Cu; //cost of too low rate down to a peer

void apply_change(int from, int to, double delta_rate);
double get_dEnergy(int from, int to, double delta_rate);
void remove_path(int from, int to);
void enumerate_peer_pairs();
pair<int,int> select_peer_pair();
double select_delta_rate();
bool step();
void read_topology_file();
void update(double T0, int maxN); //called on time step, and on peer’s stream changes

public:
void update();
void set_progress(int stream, int node, double progr){progress[stream][node] = progr;}
double * get_send_rates(int sender){return send_rate[sender];}
int get_node_c() {return node_c;}
void register_path(int sender, int receiver, vector<int> path);
void alter_demand(int receiver, int new_stream, double new_rate);
CentralCore();
~CentralCore();

};

#endif

79

Body

#include "central-core.h"

void CentralCore::update(double T0, int maxN){
enumerate_peer_pairs();
T = T0;
int change_c;
int steps_per_round = 3*node_c;
for (int N = 0; N < maxN; N++){
change_c = 0;
for (int i = 0; i < steps_per_round; i++)

if (step())
change_c++;

T *= 0.97;
if (energy <= 0.0)

break;
}
//printf("Energy after annealing: %f\n", energy / k);

}

void CentralCore::update(){
update(1.0, 450);

}

void CentralCore::alter_demand(int from, int sID, double rate){
if (rate != demand[from]){
double e_now = Cu * max(0.0, demand[from] - offer[from]);
double e_after = Cu * max(0.0, rate - offer[from]);
energy += (e_after - e_now);

}
streamID[from] = sID;
demand[from] = rate;
update();

}

//remove the reserved bandwidth between from and to
void CentralCore::remove_path(int from, int to){

double delta_rate = -send_rate[from][to];
if (abs(delta_rate) < 0.00001) return;
double dEnergy = get_dEnergy(from, to, delta_rate);
apply_change(from, to, delta_rate);
energy += dEnergy;

}

//make a list of all valid <sender,receiver> pairs, invalid peer pairs

80APPENDIXC. SOURCECODE FOR SIMULATEDANNEALINGMETHOD

//will have their reserved bandwidth removed
void CentralCore::enumerate_peer_pairs(){
peer_pairs.clear();
for (int s = 0; s < node_c; s++){

for (int r = 0; r < node_c; r++){
int str = streamID[r]; //id of request stream
if (
(s == r) || //need diffent recver and sender
(str == -1) || //server should not be receiver
(str == 0) || //inactive receiver
(streamID[s] == 0) || //inactive sender
((streamID[s] != -1) && (progress[str][s] + progress_delta <

progress[str][r])) //progress is less at sender
){

remove_path(s,r);
}

else{
peer_pairs.push_back(pair<int,int>(s,r));

}
}

}
}

//select a (sender,receiver) pair such that receivers have same streamID’s,
//and such that sender.progress + progress_delta > receiver.progress
pair<int,int> CentralCore::select_peer_pair(){
int idx = rand() % peer_pairs.size();
return peer_pairs[idx];

}

//randomly select rate to be between (-k, k). This is equal to
//(-mediarate, mediarate)
double CentralCore::select_delta_rate(){
return 2.0*rand()/(float)RAND_MAX * k - k;

}

double CentralCore::get_dEnergy(int from, int to, double delta_rate){
vector<int> & path = paths[from][to];
double dEnergy = 0;
//sum energy change due to less/more overuse of links
for (unsigned int i = 0; i < path.size(); i++){

int linkno = path[i];
double e_now = max(0.0, Co * (used[linkno] - capacity[linkno]));
double e_after = max(0.0, Co * (used[linkno] + delta_rate -

capacity[linkno]));
dEnergy += (e_after - e_now);

}
//add energy change due to low receive rate
{

81

double e_now = max(0.0, Cu * (demand[to] - offer[to]));
double e_after = max(0.0, Cu * (demand[to] - (offer[to]+delta_rate)));
dEnergy += (e_after - e_now);

}
return dEnergy;

}

void CentralCore::apply_change(int from, int to, double delta_rate){
vector<int> & path = paths[from][to];
offer[to] += delta_rate;
send_rate[from][to] += delta_rate;
for (unsigned int i = 0; i < path.size(); i++){
int linkno = path[i];
used[linkno] += delta_rate;

}
}

bool CentralCore::step(){
pair<int,int> peer_pair;
int from;
int to;
double delta_rate = 0.0;

//loop until a non-zero delta rate is found,
//try up to a maximum number of times (to avoid looping forever)
for (int j = 0; abs(delta_rate)<0.001 && j < 100; j++){

peer_pair = select_peer_pair();
from = peer_pair.first;
to = peer_pair.second;

//select a delta rate and make sure offered rate stay in
//interval [0, demand]
delta_rate = select_delta_rate();
delta_rate = min(delta_rate, demand[to] - offer[to]);
delta_rate = max(delta_rate, -offer[to]);
//noone can send a negative amount
delta_rate = max(delta_rate, -send_rate[from][to]);

}

double dEnergy = get_dEnergy(from, to, delta_rate);

bool change = false;
// if dEnergy <= 0, then accept
// else accept with probability exp(dEnergy/(kT))
if ((dEnergy <= 0) || (exp(-dEnergy/(k*T)) > rand()/(float)RAND_MAX)){
apply_change(from, to, delta_rate);
change = true;

82APPENDIXC. SOURCECODE FOR SIMULATEDANNEALINGMETHOD

energy += dEnergy; //needed only for statistical analysis
}
return change;

}

CentralCore::CentralCore(){
//constants which should be tuned
stream_c = 5;
k = 187500.0; //rate of 1500kbps - in bytes
progress_delta = 1;
Co = 1.0;
Cu = 1.0;

read_topology_file(); //this also initialize some structures

//init the other strucures, now we know how large they should be
used = new double[link_c];
paths = new vector<int>*[link_c];
for (int i = 0; i < link_c; i++){

used[i] = 0.0;
paths[i] = new vector<int>[link_c];

}
send_rate = new double* [node_c];
demand = new double[node_c];
offer = new double[node_c];
streamID = new int[node_c];
progress = new double* [stream_c+1];
for (int i = 0; i < stream_c+1; i++){

progress[i] = new double[node_c];
for (int j = 0; j < node_c; j++)

progress[i][j] = 0.0;
}
for (int j = 0; j < node_c; j++)

progress[0][j] = numeric_limits<double>::max();
for (int i = 0; i < node_c; i++){

send_rate[i] = new double[node_c];
for (int j = 0; j < node_c; j++)

send_rate[i][j] = 0.0;
demand[i] = 0.0;
offer[i] = 0.0;
streamID[i] = 0; //meaning ’no stream’

}
energy = 0.0;

for (int i = 0; i < server_c; i++){
streamID[i] = -1; //meaning ’any stream’

}
}

83

CentralCore::~CentralCore(){
delete [] capacity;
delete [] latency;
delete [] used;
for (int i = 0; i < link_c; i++)
delete [] paths[i];

delete [] paths;
for (int i = 0; i < node_c; i++)
delete [] send_rate[i];

delete [] send_rate;
}

void CentralCore::register_path(int sender, int receiver, vector<int> path){
//the path received is in opposite order:
vector<int> line_path; //path with linenumbers instead
assert(path[0] == receiver);
assert(path[path.size()-1] == sender);
for (unsigned int i = 1; i < path.size(); i++){
int from = path[i];
int to = path[i-1];
line_path.push_back(to_linkno[FromTo(from,to)]);

}

//more than one zero means to_linkno is incomplete
int zerocount = 0;
for (unsigned int i = 0; i < line_path.size(); i++){
if (line_path[i] == 0) zerocount++;
assert2(line_path[i] >=0);
assert2(line_path[i] < link_c);

}
assert2(zerocount < 2);

paths[sender][receiver] = line_path;
}

void CentralCore::read_topology_file(){
Tcl& tcl = Tcl::instance();
tcl.evalc("set opt(edge-file)");
ifstream efile(tcl.result());
assert2(efile.good());
tcl.evalc("set opt(vertex-file)");
ifstream vfile(tcl.result());
assert2(vfile.good());
vfile >> server_c >> peer_c >> router_c;
node_c = peer_c + server_c;
vfile.close();
efile >> link_c;
capacity = new double[link_c];

84APPENDIXC. SOURCECODE FOR SIMULATEDANNEALINGMETHOD

latency = new double[link_c];
for (int i = 0; i < link_c; i++){

int from, to;
double bw, lat;
efile >> from >> to >> bw >> lat;
to_linkno[FromTo(from,to)] = i;
bw *= (1000.0/8.0); //transform from kbps into Bps
capacity[i] = bw;
latency[i] = lat;

}
efile.close();

}

