
Universitetet i Oslo

Institutt for informatikk

A Compositional
Proof System for

Dynamic Object
Systems

Johan Dovland,
Einar B. Johnsen,

and Olaf Owe

Research Report 351
(Revised version)

February 2007
Revised March 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30826772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




A Compositional Proof System for

Dynamic Object Systems

Johan Dovland, Einar Broch Johnsen, and Olaf Owe

Department of Informatics, University of Oslo
PO Box 1080 Blindern, NO-0316 Oslo, Norway

{johand,einarj,olaf}@ifi.uio.no

Abstract. Current object-oriented approaches to distributed programs may be criticized in several respects.
First, method calls are generally synchronous, which leads to much waiting in distributed and unstable net-
works. Second, the common model of thread concurrency makes reasoning about program behavior very
challenging. Object-oriented models based on concurrent objects communicating by asynchronous method
calls, have been proposed to combine object orientation and distribution in a more satisfactory way. In this
report, a high-level language and proof system are developed for such a model, emphasizing simplicity
and modularity. In particular, the proof system is used to derive external specifications of observable beha-
vior for objects, encapsulating their state. A simple and compositional proof system is paramount to allow
verification of real programs. The proposed proof rules are derived from the Hoare rules of a standard se-
quential language by a semantic encoding preserving soundness and relative completeness. Thus, the report
demonstrates that these models not only address the first criticism above, but also the second.

1 Introduction

In order to facilitate reasoning about interacting components in nonterminating and distributed sys-
tems, the specification of component behavior should focus on the potential observable interactions
between a component and its environment, rather than on internal and low-level implementation de-
tails such as the component’s internal state variables. However for verification purposes it then be-
comes necessary to bridge the gap between the internal code of a component and its observable beha-
vior. In this report, we develop a proof system which allows a specification of observable behavior to
be derived from the internal code of components in the setting of distributed concurrent objects.

Object orientation is the leading framework for concurrent and distributed systems and is recom-
mended by the RM-ODP [17], but object interaction happens through method calls and changes to
shared state variables, which are usually synchronous operations. These interaction mechanisms, de-
rived from the setting of sequential systems, are well suited for tightly coupled systems. They are
less suitable in a distributed setting with loosely coupled or externally coordinated components. Here
synchronous communication gives rise to undesired and uncontrolled waiting, and possibly deadlock.
Furthermore these interaction mechanisms severely complicate reasoning. With the remote method

invocation (RMI) model, control is transferred with the call. There is a master-slave relationship
between the caller and the callee. Concurrency is achieved through multithreading. The interference
problem related to shared variables reemerges when threads operate concurrently in the same object,
which happens with, e.g., nonserialized methods in Java. Reasoning about programs in this setting is
a highly complex matter [1, 9]: Safety is by convention rather than by language design [6]. Verific-
ation considerations therefore suggest that all methods should be serialized as done in, e.g., Hybrid.
However, when restricting to serialized methods, the calling object must wait for the return of a call,
blocking for any other activity in the object. In a distributed setting this limitation is severe; delays
and instabilities may cause much unnecessary waiting. A serialized nonterminating method will even
block other method invocations, which makes it difficult to combine active and passive behavior in the



same object. Also, separating execution threads from objects breaks the modularity and encapsulation
of object orientation, leading to a very low-level style of programming.

In order to better capture the setting of interacting distributed components we work with the con-
currency and communication model of the Creol language [20], based on concurrent objects, asyn-

chronous method calls, and so-called processor release points. There is no access to the internal state
variables of other objects. A concurrent object has its own execution thread. Processor release points
influence the implicit internal control flow in objects. This reduces the time spent waiting for replies
to method calls in a distributed environment and allows objects to dynamically change between active
and reactive behavior (client and server).

This report presents a simple programming language and reasoning framework based on Creol’s
concurrency and communication model, and considers the problem of formal reasoning about dy-
namic systems of concurrent objects communicating by asynchronous method calls. A partial cor-
rectness proof system is derived from that of a standard sequential language by means of a semantic
encoding. This suggests that reasoning is much simpler than for languages with thread concurrency.
The approach of this report is modular, as invariants expressing observable behavior may be estab-
lished independently for each class and composed at need, resulting in behavioral specifications of
dynamic systems in an open environment.

Report overview. Section 2 introduces and informally explains the language. Section 3 describes
class invariants for observable behavior, Section 4 the language semantics, and Section 5 the derived
proof rules. Section 6 gives an example, Section 7 discusses related work, and Section 8 concludes.

2 The Programming Language

We introduce a programming language based on the communication and concurrency aspects of
Creol [20], which are now briefly explained. Concurrent objects are potentially active, encapsulat-
ing execution threads. Objects have explicit identifiers: communication is between named objects and
object identifiers may be exchanged between objects. All object interaction is by means of method
calls. We refer to method activations on an object as the object’s processes. At most one process in an
object may be active at a time; the other processes are suspended. Processor release points influence
the internal control flow in an object. These release points are declared as guarded commands [13],
but adapted to the following semantics: When a guard evaluates to false during process execution, the
continuation of the process is suspended on the process queue, followed by a release of the processor.
After a processor release, an enabled and suspended processes is selected for execution.

A class declaration consists of a list of class parameters cp, class attributes W, and method declar-
ations, as described in Fig. 1. Objects are dynamically created instances of classes. The state of an
object is constructed from the parameters and attributes of its class. There is read-only access to the
class parameters, including the implicit parameter this, used for self reference. The state of an object
is encapsulated and can only be externally accessed via the object’s methods. In particular, remote
access to attributes is not allowed. For simplicity, all methods are assumed to be available to the envir-
onment, except the special methods init and run. The init method is used for object initialization and
is invoked immediately after the object is created. After initialization, the run method, if provided,
is invoked. The remaining methods reflect passive, or reactive, object behavior, whereas run initiates
active behavior. Programs are assumed to be type-safe.

Methods are implemented by imperative statements, using the syntax of Fig. 2. A processor release
point is written await g, for a guard g. A Boolean guard is enabled when the Boolean expression
evaluates to true. Execution of an asynchronous method call await x.m(E; V) invokes the method m

in x with the input values E. The continuation of the calling process is then suspended and becomes

4



Class ::= class C [(Param)]? Vdecl? Mdecl∗

Param ::= [v : T ]+,
Vdecl ::= var [v : T [= e]?]+,
Mdecl ::= op m ([in Param]? [out Param]?) == [Vdecl; ]? [s]+;

Fig. 1. A syntax outline for classes, excluding expressions e and statements s, where C denotes a class name and m a method
name. The notation [M]+

d
denotes one or more repetitions of M with d as delimiter, ∗ indicates zero or more repetitions, and

? indicates an optional part.

enabled when the completion message arrives. Consequently, other processes may be evaluated while
waiting for the reply. Return values are assigned to the list V when the continuation gets processor
control. Execution of the statement await wait explicitly releases the processor, similar to the method
yield in Java. The syntax x.m(E; V) is adopted for synchronous method calls (RPC), blocking the
processor while waiting for the reply. The syntax this.m(E; V) is used for local calls. Synchronous
local calls are loaded directly into the active code.

During suspension of the execution of a method instance, the object’s attributes may be changed by
other processes on the same object, but not the variables and parameters local to the method instance.
There is read-only access to in-parameters of methods, including the implicit parameter caller. Due
to nondeterminism in the distributed setting, overtaking of invocation and completion messages is
considered possible. Completion messages are identified by the combination of method name, callee,
and input values. If several invocations are made by a caller to the same method of an object, the caller
cannot distinguish completion messages corresponding to invocation messages with identical values
for the formal input parameters. In order to have tighter control, invocation messages may be tagged
with unique values by the run-time system, identifying completion messages, as in Creol [20].

Conventional control flow is expressed by an if construct, and assignment is expressed by X := E,
where X is a list of disjoint variables to which there is write access, and E is a list of expressions of
matching length and type of X.

Object creation is written x := new C(E), where x is a variable and E a list of values for the class
parameters of a class C. A reference to the new object is assigned to x and the init method is executed
in the new object. Synchronous remote method calls are allowed in the body of init, but no processor
release points nor local calls. Uniqueness of object identifiers is ensured by combining the identity of
the creating object with local uniqueness. Let the function parent : Obj→ Obj be such that parent(o)
is the creator of o, such that parent chains are cycle free, i.e. such that parent(o) = o⇔ o = null, and
such that the property o 6∈ anc(o) holds, where the function anc : Obj→ Set[Obj], denoting ancestors,
is defined by

anc(o) , if parent(o) = null then /0 else parent(o)∪anc(parent(o)) fi

Equality is the only executable basic operations on object identifiers.

3 Class Invariants and Observable Behavior

The execution of a distributed system can be represented by the sequence of observable communica-
tion messages between system components, a so-called communication history or trace [8,10,15]. At
any point in time this sequence abstractly captures the system state. Therefore a system may be spe-
cified in terms of the finite initial segments of these histories. A history invariant is a predicate which
holds for all finite sequences in the prefix-closure of the set of traces and consequently for all abstract

5



Syntactic categories Definitions Comments

g in Guard

s in Com

m in Mtd

V in Var∗,
E in Expr∗,
x in ObjExpr

b in Bool

C in ClassName

g ::= wait |b | x.m(E; V) |g1∧g2

s ::= skip |V := E

| x := new C(E)

| if b then S1 else S2 fi

| !x.m(E)

| x.m(E; V)

|await g

bool and call
statement

object creation
if-statement

async. call
sync. call

release point

Fig. 2. An outline of the imperative language syntax, with typical terms for each category. Capitalized terms denote lists of
the given syntactic categories. Thus, E denotes a list of expressions.

system states, expressing safety properties [2]. In order to observe and reason about object creation
by means of histories, we will let the history reveal relevant information about object creation.

Sequences are constructed by the empty sequence ε and right append _ ⊢ _. Let a,b,c : Seq[T ],
x,y : T , and s : Set[T ]. Define projection _/_ : Seq[T ]× Set[T ]→ Seq[T ] by ε/s , ε and a ⊢ x/s ,

if x∈ s then (a/s) ⊢ x else a/s fi. Let first((ε⊢ x)⊢⊣ a) = x and rest((ε⊢ x)⊢⊣ a) = a. Define the “ends-
with” function _ew_ : Seq[T ]×T → Bool by ε ew x , false and (a⊢ x) ew y , x = y, and the “begins-
with” function _bw_ : Seq[T ]×T → Bool by ε bw x , false and (a ⊢ x) bw y , y = first(a ⊢ x). Let
a is b|||c denote that a is an arbitrary interleaving of b and c, let a ⊢⊣ b concatenate a with b, let a≤ b

denote that a is a prefix of b, and let #a denote the length of a.
A call to a method of an object o′ by an object o is modeled as passing an invocation message

from o to o′, and the reply as passing a completion message from o′ to o. Similarly, object creation is
captured by a message from the parent object to the generated object. The communication history of
a (sub)system up to present time is given by a finite sequence of type Seq[Msg], where Msg consists
of messages corresponding to method invocation, method completion and object creation:

Definition 1 (Messages). Let Obj, Mtd, and Cid be the types of object, method, and class names,

respectively, and Data the type of values occurring as actual parameters to method calls, including

Obj. Define the following sets of communication messages:

– the set IMsg of invocation messages consists of tuples 〈caller,callee,mtd, in〉;
– the set CMsg of completion messages consists of tuples 〈caller,callee,mtd, in,out〉;

– the set NMsg of object creation messages consists of tuples 〈caller,callee,class, in〉; and

– the set Msg consists of all communication messages; i.e., Msg = IMsg∪CMsg∪NMsg

where caller, callee : Obj, mtd : Mtd, class : Cid, and in,out : List[Data].

Graphical representations may be introduced for invocation, completion, and creation messages, re-
spectively, letting the arrow suggest the direction of the message: caller→ callee.mtd(in), caller←
callee.mtd(in;out), and caller→callee.new class(in). Messages may be decomposed by the functions
_.caller,_.callee : Msg→ Obj, e.g., 〈o,o′,m,e〉.callee , o′. The function _.in : Msg→ List[Data] re-
turns the list of in-parameters. Completion messages may in addition be decomposed by the function
_.out, returning the list of out-parameters.

When an object calls a method, the history h is extended with a message of type IMsg. When a
reply is emitted, h is extended with a message of type CMsg. The message o→o′.new C(E) corres-
ponds to the execution of a new C statement in an object o, where E is the actual values of the class
parameters and o′ is the identity of the new object.

6



The messages potentially sent or received by an object o are defined as OUTo , {msg : IMsg∪
NMsg | msg.caller=o}∪{msg : CMsg | msg.callee=o}, and INo , {msg : IMsg∪NMsg | msg.callee=
o}∪{msg : CMsg | msg.caller=o}. The intersection of OUTo and INo, with o as both caller and callee,
corresponds to internal messages. The local history h/(INo∪OUTo), denoted h/o, contains the mes-
sages involving o and allows local reasoning about the object o. The object creation message is visible
to both the new object and its parent, respectively as input and output. It is the first message in the
history of the new object, and allows compositional reasoning about dynamically created objects.

Functions are used to extract information from the history. In particular, we define pending :
Seq[Msg]× IMsg→ Bool and oid : Msg→ Set[Obj] as follows:

pending(h,o→o′.m(E)) , #(h/o→o′.m(E)) > #(h/o←o′.m(E;_))

oid(ε) , {null} oid(o→o′.m(E)) , {o,o′}∪oid(E)

oid(h ⊢ msg) , oid(h)∪oid(msg) oid(o←o′.m(E; E′)) , {o,o′}∪oid(E,E′)

oid(o→o′.new C(E)) , {o,o′}∪oid(E)

where msg : Msg, and oid(E) returns the set of object identities occurring in the list E. Similarly, the
function ob : Seq[Msg]→ Set[Obj×Cid×List[Data]] returns the set of created objects in a history:
ob(h ⊢ o→o′.new C(E)) , ob(h)∪{o′ : C(E)}, and ob(h ⊢msg) , ob(h) for all other messages msg.
Thus, for a local history h/o, the projection ob(h/o) returns o and all objects created by o.

Well-formed histories. In the asynchronous setting, object may send messages at any time. Type
checking ensures that only available methods are invoked for objects of given types. The run-time
system ensures that generated object will have unique identifiers. Assuming type correctness, well-
formed histories satisfy a well-formedness predicate, as a completion message may only occur after
the corresponding invocation message in the history:

Definition 2 (Well-formedness). Let h : Seq[Msg], E,E′ : List[Data], o,o′ : Obj, and m : Mtd. The

well-formedness predicate wf : Seq[Msg]→ Bool is inductively defined:

wf (ε) , true

wf (h ⊢o→o′.m(E)) , wf (h)∧o 6= null∧o′ 6= null

wf (h ⊢o←o′.m(E; E′)) , wf (h)∧pending(h,o→o′.m(E))

wf (h ⊢o→o′.new C(E)) , wf (h)∧parent(o′) = o∧o′ /∈ oid(h)

This definition ensures the local uniqueness of created identifiers, while null may create objects.
Whenever an object identifier o′ occurs in an output message in h/o, o′ must either be a child of o, or
occur in a previous input message to o. This leads to a notion of closure for histories.

Definition 3 (Closed histories). Let h : Seq[Msg] and o : Obj. Define

closed(h ⊢ x,o) , oid((h ⊢ x)/OUTo)⊆ oid(h/INo)∪ (ob((h ⊢ x)/o)/Obj),

where _/Obj : Set[Obj×Cid×List[Data]]→ Set[Obj] returns the identifiers of the created objects.

The following lemma holds for well-formed histories.

Lemma 1. A history h is well-formed if the local projection h/o is well-formed and closed for each

object o ∈ oid(h).

Proof. By induction over h, assuming wf (h/o) and closed(h,o) for each o ∈ oid(h).

7



3.1 Compositional Reasoning about Concurrent Objects in Dynamic Systems

In interactive and nonterminating systems, it is difficult to specify and reason compositionally about
object behavior in terms of pre- and postconditions. Instead, pre- and postconditions to method declar-
ations are used to establish a so-called class invariant. The class invariant must hold after initialization
in all the instances of the class, be maintained by all methods, and hold at all processor release points.
The class invariant serves as a contract between the different processes of the object instance: A
method implements its part of the contract by ensuring that the invariant holds upon termination, and
whenever the method suspends itself, assuming that the invariant holds after suspensions and at the
beginning of a method. In order to facilitate compositional and component-based reasoning about
programs, the class invariant is used to establish a relationship between the internal state and the ob-

servable behavior of class instances. The internal state reflects the values of class attributes, whereas
the observable behavior is expressed as a set of potential communication histories [18].

A user-provided invariant I(W,h) for a class C ranges over the class variables W of C and the local
history sequence h. It may also refer to the class parameters cp and this, which are constant (read-only)
variables. The class invariant IC(W,h) is obtained by strengthening I(W,h) with the well-formedness
property and knowledge about the initial object creation message on the local history:

IC(W,h) , I(W,h)∧wf (h)∧h bw (parent(this)→ this.new C(cp)) (1)

By organizing the state space in terms of only locally accessible variables, including a local history
variable recording local communication messages, we obtain a compositional reasoning system. Let
PX

E denote the substitution of every free occurrence of X in P by E. By hiding the internal state variables
of an object o of class C, an external invariant Io:C(E) defining its observable behavior may be obtained:

Io:C(E)(h) , ∃W | (IC(W,h))
this,cp
o,E (2)

The substitutions replace the free occurrences of this with o and instantiates the class parameters with
the actual ones, and the existential quantifier hides the local state variables.

In order to assert that objects compose, it suffices to compare the local histories. For this purpose,
we adapt a composition method introduced by Soundarajan [25, 26]. Local histories must agree on
common messages when composed, expressed by projections from the common global history.

Consider a system with an initial object o created by an initial invocation message of the form
null→o.new C(...), such that all other objects are dynamically generated by o or generated objects.
The global invariant of such a system of dynamically created objects may be constructed from the
local invariants of the involved objects: The global invariant I∗ of a system with global history H is

I∗(H) ,
^

(o:C(E))∈ob(H)

Io:C(E)(H/o) (3)

The quantification ranges over all objects in the composition, which is a finite number at any execution
point. Note that the global invariant is obtained directly from the external invariants of the composed
objects, without any restrictions on the local reasoning. This ensures compositional reasoning. Notice
also that we consider dynamic systems where the number and identities of the composed objects are
nondeterministic. Lemma 3 below shows that I∗(H) ensures well-formedness of the global history H .

4 Semantics: An Encoding into a Sequential Language

The semantics is expressed as an encoding into a sequential language without shared variables, but
with nondeterministic assignment [14]. Nondeterministic history extensions capture arbitrary activity

8



of environment objects. Thus, the semantics describes a single object of a given class placed in an
arbitrary environment. The semantics of a dynamically created system with several concurrent objects
is given by the composition rule above. The compatibility requirement, which is implicit in the com-
position rule, reduces the amount of nondeterminism of the objects seen in isolation. This semantics
suffices for partial correctness reasoning, but it is not suited as an operational semantics.

In order to simplify the semantics, we assume that an object may not control its environment. This
means that, for all objects o of class C and hin ∈ Seq[INo], the class invariant IC(W,h) of C satisfies
the following asynchronous input property:

∀h′,hin | (wf (h′)∧h′ is h|||hin∧ IC(W,h))⇒ IC(W,h′)

In the asynchronous setting, an object may independently decide to send a message and, due to over-
taking, messages may arrive in a different order than sent. The invariant of an object should therefore
restrict messages seen by the object, but allow the existence of additional input not processed yet; If
the invariant holds for h, it should also hold for h merged with hin. Therefore, we find the asynchronous
input property natural for asynchronous systems. Note that invariants on h/OUTthis are guaranteed to
respect the asynchronous input property. Since completion messages give explicit information about
the corresponding invocation messages, such invariants are often sufficient.

The Encoding. Consider a simple sequential language which consists of the standard syntax

skip |V := E | s; S | if b then S1 else S2 fi

This language has a well-established semantics and proof system. In particular, Apt shows that this
proof system is sound and relative complete [3,4]. Let the language SEQ additionally include a state-
ment for nondeterministic assignment, assigning to Y some value X satisfying a predicate P:

Y := some X | P(X)

For partial correctness, we assume that the statement does not terminate if no such X can be found.
A process with release points and asynchronous method calls is interpreted as a SEQ program

without shared variables and release points, by the mapping 〈〈 〉〉. Expressions and types are mapped
by the identity function. At the class level, the list of class attributes is augmented with this : Obj

and H : Seq[Msg], representing self reference and the history, respectively. The implicit parameter
caller : Obj is added to each method. As before, there is read-only access to in-parameters and class
parameters, including the additional variables.

The semantics of a method is defined from the local perspective of processes. A SEQ processes
executes on a state W∪{H } extended with local variables. The local effect of executing an invocation
or a release statement is that W and H may be updated due to the execution of other processes. In
the encoding, these updates are captured by nondeterministic assignments to H and W. When the
process executes an invocation statement, the history is extended by an output message: H := H ⊢
this→ x.m(E). When a process is suspended waiting for a reply, a nondeterministic extension of H

captures execution by the environment and by other processes in the same object. The termination of
a local process extends H with a completion message: H := H ⊢ caller← this.m(E; V). For partial
correctness reasoning, we may assume that processes are not suspended infinitely long. Consequently,
nondeterministic assignment captures the possible interleaving of processes in an abstract manner.

When reasoning about a method m in a class C we may assume that it has been invoked, which is
reflected in the local history by a pending invocation message. Thus, the method invariant Im associ-
ated with op m(in X out Y) == var Wm := E;bodym, strengthens the class invariant:

Im(W,h) , IC(W,h)∧pending(h,caller→ this.m(X))

9



〈〈op m(in X out Y) == var Wm := E; bodym 〉〉 ,

op m(in X, caller out Y) == var Wm := E;〈〈bodym 〉〉; H := H ⊢ caller← this.m(X; Y)

〈〈op init == bodyinit 〉〉 , op init == 〈〈bodyinit 〉〉

〈〈s; S 〉〉 , 〈〈s〉〉;〈〈S 〉〉

〈〈skip〉〉 , skip

〈〈X := E 〉〉 , X := E

〈〈 if b then S1 else S2 fi〉〉 , if b then 〈〈S1 〉〉 else 〈〈S2 〉〉 fi

〈〈x := new C(E)〉〉 , x′ := some x′ |parent(x′) = this∧ x′ /∈ oid(H ); H := H ⊢ this→x′.new C(E); x := x′

〈〈 !x.m(E)〉〉 , H := H ⊢ this→x.m(E)

〈〈x.m(E; V)〉〉 , H := H ⊢ this→x.m(E); V′ := some V′ | true;
H := H ⊢ this←x.m(E; V′); V := V′, where x 6= this

〈〈 this.m(E; V)〉〉 , H := H ⊢ this→ this.m(E);
(W,h′, V′) := some (W′,h′, V′) | h′ ew this← this.m(E; V′) ∧

(Im′(W,H )⇒ Im′(W′,H ⊢⊣ h′))∧ (∀Z | S⇒ R
W,H
W′,H ⊢⊣h′

);H := H ⊢⊣ h′; V := V′

〈〈await wait 〉〉 , (W,h′) := some (W′,h′) | (Im′(W,H )⇒ Im′(W′,H ⊢⊣ h′)); H := H ⊢⊣ h′

〈〈await b〉〉 , if b then skip

else (W,h′) := some (W′,h′) | (Im′(W,H )⇒ Im′(W′,H ⊢⊣ h′))∧bW
W′ ; H := H ⊢⊣ h′ fi

〈〈await x.m(E; V)〉〉 , H := H ⊢ this→x.m(E);
(W,h′, V′) := some (W′,h′, V′) | (Im′(W,H )⇒ Im′(W′,H ⊢⊣ h′))∧ this←x.m(E; V′) ∈ h′;
H := H ⊢⊣ h′; V := V′

Fig. 3. The encoding of method declarations in SEQ, where m′ denotes the enclosing method of the different statements.

where X are the formal in-parameters. A completion message is appended to the history upon method
termination, establishing IC. The interpretation of methods is defined in Fig. 3.

In the encoding of object creation, nondeterministic assignments are used to construct unique
identifiers. The parent relationship is captured by updating the history with a creation message, which
also ensures that the values of the class parameters are visible on the local history of the new object.

Synchronous invocations x.m(E; V) of a method in the environment block internal activity in the
caller. Except for the invocation message, there is no output from this. The execution of the invoked
method is modeled by a nondeterministic assignment to the out-parameters V. Since V might overlap
with the values of E,W, and x, a list of fresh pseudo-variables V′ captures the execution of the remote
method. The completion message is appended to the history and the reply values assigned to V.

The statement this.m(E; V) invokes the local method m in a synchronous manner. The caller may
rely on the invariant to be preserved by the call, in addition to a possible pre/post specification S/R

of the method. In Fig.3, Z denotes FV [S,R]\{W,cp,H }, where FV [P] denotes the set of free vari-
ables in a predicate (list) P. By adaptation, execution of an invocation of m is then modeled by a
nondeterministic assignment to W and H such that if the precondition and/or the invariant holds im-
mediately before the assignment, the postcondition and/or the invariant holds for the extended history
and the new values of W. Since the invocation is synchronous, the extended history must end with
the completion message of the call. For local calls, the encoding does not rely on properties about the
invoked method such as the absence of processor release points or its call structure.

Release points are encoded using the same technique; the execution of other processes is modeled
by a nondeterministic assignment to W and H such that the invariant holds for the new values. The
implications Im′(W,H )⇒ Im′(W′,H ⊢⊣ h′) in Fig. 3 capture this assumption on other processes. The
invariant is assumed to hold after a suspension provided that it holds at processor release. In the
encoding of await b there are two cases for b; if b holds the statement is reduced to skip, otherwise
the process is suspended. When the process continues after a suspension, b must hold for the current

10



(1) H = 〈parent(this)→ this.new C(cp)〉 ⇒ wlp(bodyinit , wf (H )⇒ IC)

(2) Im⇒ wlp(var Wm := E;bodym;H := H ⊢ caller← this.m(X; Y), wf (H )⇒ IC)

(3) S∧pending(H , this→ this.m(X))⇒
wlp(var Wm := E;bodym;H := H ⊢ this← this.m(X; Y), wf (H )⇒ R)

Fig. 4. Verification conditions for Creol methods. Condition 1 is for init methods, ensuring that the invariant holds upon
termination. All remaining methods must preserve the invariant as described by Condition 2. The third condition is for each
method m with a precondition S and a postcondition R, providing additional knowledge for for local synchronous calls.

values of W. The encoding of await x.m(E; V) resembles that of synchronous invocation and consists
of several parts. The initiation message is appended to the history before the processor is released.
After the suspension, the actual parameter list is assigned the values found in the completion message.
There is no explicit transfer of control between caller and callee, which means that the history need
not end with the completion message corresponding to the method activation. The message is only
known to exist somewhere on the history extension. A release point with a conjunction of guards may
be separated into a sequence of release point with simple guards by the equations

await wait∧wait = await wait

await x.m(E; V)∧g = await x.m(E; V);await g

together with associativity and commutativity of conjunction. We conclude this section with two lem-
mas.

Lemma 2. The local histories of encoded objects are well-formed and closed.

Proof. By induction over method bodies. All statements preserve the properties.

Using Lemma 1 and Lemma 2, well-formedness of the global history can be established.

Lemma 3. For dynamic systems initiated by an initial invocation message null→ o.new C(E), the

global history is well-formed.

Proof. By Lemma 1 and 2 since the local histories are derived from a global history H by projection,
and since ob(H) includes all objects in H .

5 Class Verification

Proof rules for the language are derived from the proof system of Apt [3, 4] by the translation into
SEQ. The weakest liberal precondition for nondeterministic assignment is

wlp(Y := (some X | P(X)), Q) = ∀X | (P(X)⇒ QY
X)

assuming that X is disjoint from the free variables of Q other than {Y}. The rule maintains soundness
and relative completeness of Apt’s proof system, and the side condition may easily be satisfied by
variable renaming. The language has object pointers but no dot notation for accessing attributes, thus
pointer reasoning can be done according to standard rules [21]. Fig. 4 presents the verification con-
ditions for methods, based on the weakest liberal preconditions for the different language statements.
The invariant is assumed as a precondition to methods. As a part of the contract between processes, the
invariant must be established at method termination. Local method calls may in addition be specified
in terms of pre- and postconditions. The init method is treated separately.

11



wlp(s; S, Q) , wlp(s, wlp(S, Q))

wlp(skip, Q) , Q

wlp(V := E, Q) , QV
E

wlp(if b then S1 else S2 fi, Q) , if b then wlp(S1, Q) else wlp(S2, Q) fi

wlp(x := new C(E), Q) , ∀x′ | (parent(x′) = this∧ x′ /∈ oid(H ))⇒ Q
x,H
x′,H ⊢this→x′.new C(E)

wlp(!x.m(E), Q) , QH

H ⊢this→x.m(E)

wlp(x.m(E; V), Q) , ∀V′ | Q
V,H
V′,H ⊢⊣this↔x.m(E;V′), where x 6= this

wlp(this.m(E; V), Q) , ∀h′, W′, V′ | (h′ ew this← this.m(E; V′) ∧

(∀Z | (SH
h
⇒ R

W,H
W′,h⊢⊣h′

))∧ (Im′(W,h)⇒ Im′(W′,h ⊢⊣ h′)))⇒ Q
V,W,H
V′,W′,h⊢⊣h′

,

where h , H ⊢ this→ this.m(E)

wlp(await wait, Q) , Im′(W,H )∧∀W′,h′ | Im′(W′,H ⊢⊣ h′)⇒ Q
W,H
W′,H ⊢⊣h′

wlp(await b, Q) ,

if b then Q else Im′(W,H )∧∀W′,h′ | (Im′(W′,H ⊢⊣ h′)∧bW
W′)⇒ Q

W,H
W′,H ⊢⊣h′

fi

wlp(await x.m(E; V), Q) , Im′(W,h)∧

∀W′,h′, V′ | (Im′(W′,h ⊢⊣ h′)∧ this←x.m(E; V′) ∈ h′)⇒ Q
V,W,H
V′,W′,h⊢⊣h′

,

where h , H ⊢ this→x.m(E)

Fig. 5. Weakest liberal preconditions for the language. The syntax o↔o′.m(E; V) abbreviates o→o′.m(E) ⊢ o←o′.m(E; V).

Fig. 5 presents the weakest liberal preconditions for the different language statements, derived
from the encoding in Fig. 3 by requiring the invariant to hold when the processor is released. The
postcondition Q of the different statements may range over the local variables Wm of a method m, in ad-
dition to W, cp, and H . For boolean guards, the triples {I}await b{I∧b} and {P∧b}await b{P∧b}
follow directly, where P need not imply the invariant. Thus, await true is identical to skip. By back-
ward construction, a sound and relative complete reasoning system is obtained for method invocations,
processor release points, and object creation. For release points, the proposed semantics depends on
the given invariant, which means that the invariant must be a sufficiently strong precondition to ensure
the invariant at the next suspension point (assuming well-formedness).

Theorem 1. The proof system (Fig. 5) for the concurrent object language is sound and relative com-

plete with respect to the semantic encoding (Fig. 3).

Proof. Weakest liberal preconditions are derived via the encoding from the weakest liberal precon-
ditions for SEQ. Soundness and relative completeness then follow from the soundness and relative
completeness of the proof system for SEQ, as shown in [12, 22].

We conclude this section with some examples illustrating different aspects of the reasoning sys-
tem. The first one illustrates the use of pre/post specifications in combination with history based
invariants. The second example shows how non-compatible histories possibly leading to deadlock can
be ruled out by composition. The last example illustrates how message delay and method overtaking
are captured by the reasoning system.

Example. This example illustrates how pre/post specifications of methods can be used in combination
with the class invariant when we reason about local synchronous calls. The example also illustrates
how inductive functions over the history can be used to establish a connection between the inner state
of an object and the observable communication. Consider the following class providing two fetch-
and-add methods inc and inc2 which increment a counter by 1 and 2, respectively.

12



class Inc

var val : Nat = 0
op inc(out res : Nat) == res := val; val := val+ 1
op inc2 (out res : Nat) == var tmp : Nat = 0; this.inc(;res); this.inc(; tmp)

end

The declaration of init is omitted for brevity. The method inc increases val by one and returns the
initial value of val. The method inc2 also returns the initial value of val, but increases the value of val

by two. The value is increased by two local calls to inc. We can define an invariant for this class in
terms of the two functions V : Obj×Seq[Msg]→ Nat and Out : Obj×Nat×Seq[Msg]→ Bool defined
inductively over the history:

V (x,ε) , 0
V (x,h ⊢ ←x.inc(;v)) , V (x,h)+ 1
V (x,h ⊢msg) , V (x,h)

Out(x,w,ε) , true

Out(x,w,h ⊢ ←x.inc(;v)) , Out(x,w,h)∧ v = w−1
Out(x,w,h ⊢ ←x.inc2(;v)) , Out(x,w,h)∧ v = w−2
Out(x,w,h ⊢ msg) , Out(x,w,h)

Here,←x.m(; E) matches all completion messages of the specified method. An occurrence of msg in
an inductive function definition matches all messages not matching any of the other cases. An invariant
can then be defined over val and H by:

I(val,H ) , val = V (this,H )∧Out(this,val,H )

The invariant only restricts H /OUTthis and satisfies therefore the asynchronous input property. For an
instance of the class, the invariant will relate the value of val to the observable object communication.
The class invariant IInc can then be defined as a strengthening of I:

IInc(val,H ) , I(val,H )∧wf (H )∧H bw(parent(this)→ this.new Inc())

An external history invariant I(h) can be defined by hiding the class attribute:

I(h) , IInc(V (this,h),h)

The external invariant of an instance o of Inc is I(h) with every occurrence of this replaced by o. Next,
we consider some internal verification details of the class invariant. The method inc is verified using
Condition 2 of Fig 4:

Iinc⇒ wlp(res := val; val := val + 1; H := H ⊢ caller← this.inc(;res), wf (H )⇒ IInc)

where Iinc is the method invariant of the inc method:

Iinc(val,H ) , IInc(val,H )∧pending(H ,caller→ this.inc)

The verification condition follows by standard reasoning about assignment. Correspondingly, an in-
variant maintenance proof for inc2 is based on the following verification condition:

Iinc2⇒ wlp(var tmp : Nat = 0; this.inc(;res); this.inc(; tmp);
H := H ⊢caller←this.inc2(;res),wf (H )⇒ IInc)

However, this verification condition is not provable without further knowledge about local invocations
of inc. The invariant does not express that val is increased by one due to a local synchronous invocation

13



of inc. The needed information can be expressed as a pre/post specification of inc by using a logical
variable v0: {val = v0} inc(out res : Nat){val = v0 +1}. Ignoring the analysis of H , this specification
can be verified by an instance of Condition 3 in Fig. 4:

val = v0⇒ wlp(res := val; val = val+ 1, val = v0 + 1)

By the weakest liberal preconditions of Fig 5, we can then assume the following implication in the
weakest liberal preconditions of the local calls: ∀v0 |val = v0⇒ val′ = v0 + 1, where val′ represents
the value of val after the call. This assumption relates the states before and after a local synchronous
call to inc, and a proof of the verification condition of inc2 can thereby be derived.

Example. Execution of a synchronous invocation statement will block until the reply arrives. Dead-
lock may then occur if a cycle of synchronous method calls arises during execution. If the object
invariants requires a certain call structure, histories leading to deadlock situations may be ruled out by
composition due to non-compatibility between the different local requirements. Consider the follow-
ing classes:

class A op m == caller.n() end

class B(o : A) op init == o.m() op n == skip end

The structure of a sequence may described by regular expressions. Let h bel a; [b8 c]∗ denote that
the sequence h is build up by a followed by zero or more repetitions of b or c, where a, b, and c are
semicolon separated lists of messages. Thus, h bel [a 8 b]∗ implies that (h ⊢⊣ a) bel [a 8 b]∗ and that
(h ⊢⊣ b) bel [a8b]∗. Define RA : Obj×Seq[Msg]→ Bool and RB : Obj×Obj×Seq[Msg]→ Bool by

RA(x,h) , h bel [∃y | x→y.n;x←y.n;y←x.m]∗

RB(x,y,h) , h bel x→y.m;x←y.m; [←x.n]∗

Using these functions, we can define invariants IA and IB for the classes A and B, respectively, by:

IA , RA(this,H \→ this)

IB , RB(this,o,H \→ this)

where h\S denotes the sequence h except messages belonging to the set S. Thus, H \→this will ignore
invocation messages to this, ensuring the asynchronous input property for the two invariants. For two
instances a : A and b : B(a), the composed invariant is:

I∗(H) , RA(a,(H/a)\→a)∧RB(b,a,(H/b)\→b)

The object b will block after invoking a.m whereas a will block after invoking b.n. This is reflected
on the possible global histories; the only prefix that is compatible with both a and b is the history
consisting of the two invocation messages. After that, the the requirements of the two invariants are
no longer compatible.

Example. In the distributed setting with asynchronous method calls, messages can be delayed, and
message overtaking is possible. The pending assumption of the method invariant reflects the loose con-
nection between the caller and the callee. When a method instance starts execution, we only assume
that there is a pending invocation message of the method on the local history. For local reasoning,
no assumptions are made about the order of this message relative relative to other messages on the

14



local history. (If an invariant restricted the order of input messages, the invariant would not satisfy
the asynchronous input property.) Therefore, local invariants are verified without assumptions on the
relative order of input messages. A caller may on the other hand impose a certain order of two emitted
invocation messages. Local histories are required to be derivable from the global history by projection,
which means that the global history will reflect the relative sending order of messages. The following
example illustrates that a particular order of two invocation messages on the global history will not
imply a particular execution order by the callee. The execution order may result in different observable
behavior of the callee, and possible behavior is reflected by the global invariant. Consider the class:

class Rec

var a,b : Nat,Nat = 0,0
op n == await (a = 0); a := 1; if b = 1 then !caller.do1 fi

op m == await (b = 0); b := 1; if a = 1 then !caller.do2 fi

end

The attributes can be interpreted as two flags, the flag a is set by n, and the flag b is set by m. When
n is executed, it checks whether the flag of m is set, and method do1 provided by the caller is called
if that flag is set. Likewise, an execution of m will lead to a callback to do2 if the flag of n is set.
The observable behavior of an instance of Rec therefore depends on the execution order of the two
methods. Execution of n before m will lead to an invocation of do2, and execution of m before n will
lead to an invocation of do1. For an instance o of the class, a possible invariant becomes:

Io:Rec(h) , #(h/←o.n) ≤ 1∧#(h/←o.m) ≤ 1 ∧
(#(h/←o.n)+ #(h/←o.m) = 2)⇒

∃o′ | h/OUTo ew [o→o′.do1;o′←o.n8o→o′.do2;o′←o.m]

where h ew [a8b] denotes that h ends with either a or b. Notice that the invariant of o does not assume
any execution order or any order of the invocation messages of m and n. Even under assumptions
about the order of input messages, the invariant of o allows both do1 and do2. This is illustrated by
the following class calling the different methods of o:

class Clr(o : Rec)
op init == !o.n; !o.m
op op1 == skip

op op2 == skip

end

For an instance o′ of Clr, we have Io′:Clr(o)(h) , h/OUTo′ bel o′→o.n;o′→o.m; [←o′.do18←o′.do2]∗.
On possible global histories, the invocation message of n must therefore occur before the invoca-
tion message of m. By composition, the only possible (terminated) global histories H satisfying both
Io:Rec(H/o) and Io′:Clr(o)(H/o′) are:

a) o′→o.n; o′→o.m; o′←o.n; o→o′.do2; o′←o.m; o←o′.do2

b) o′→o.n; o′→o.m; o′←o.m; o→o′.do1; o′←o.n; o←o′.do1

c) o′→o.n; o′←o.n; o′→o.m; o→o′.do2; o′←o.m; o←o′.do2

In addition, there are three more histories corresponding to the three above, but with the last two
messages in reverse order. Consequently, the global invariant allows both do1 and do2 as answers to
the two invocations made by o′.

15



In order to ensure a specific execution order of n and m, the caller must wait for reply to the first
method before calling the other. This can be done by using a synchronous invocation statement in init :

op init == o.n; !o.m

The above invariant Io′:Clr(o)(h) can then be strengthened by (h\→o′) bw o′→o.n; o′←o.n; o′→o.m.
This requirement restricts the possible global histories, and only alternative c) allows the required
message order. The global invariant thereby expresses that do2 will be invoked.

6 Unbounded Buffer Example

Consider a class Buffer with put and get methods, a single memory cell, and a link to another buffer
object. If the buffer receives a call to put with argument e, it stores e in its cell if the buffer is empty.
Otherwise, the put call is passed on to the next buffer (which is dynamically created if nil ). With this
behavior, a buffer instance as seen from the outside appears to be unbounded: there is always room
to store an additional element. Similarly, if the buffer receives a call to get and there is an element in
its cell, this element is returned. Otherwise, the call is passed to the next buffer. With this behavior, a
buffer instance as seen from the outside implements a FIFO ordering. In order to let a Buffer object
know the total number of elements in the buffer, it contains an additional counter. The code for the
Buffer class is as follows:

class Buffer

var cell : Obj = nil, cnt : Nat = 0, next : Buffer = nil
op put(in x : Obj) == if cnt = 0 then cell := x

else (if next = nil then next := new Buffer fi); next.put(x) fi; cnt := cnt + 1
op get(out x : Obj) == await (cnt > 0); cnt := cnt−1;

if cell = nil then next.get(;x) else x := cell; cell := nil fi

end

Starting at the initial Buffer object, the variable cnt represents the number of elements stored in the
linked list. The value of cnt equals the number of completed put operations, minus the number of
completed get operations, expressed by the invariant cnt = #(H /← this.put)−#(H /← this.get). The
proof of this invariant is straightforward; cnt is only increased before a completion message of put
and decreased before a completion message of get.

Next we consider the communication order of Buffer instances. The get operation of a Buffer

object x will return elements in the same order as they where inserted by the put operation. Using
history projections we can denote this FIFO property by

Fifo(x,h) , (h/←x.get).out ≤ (h/←x.put).in

The FIFO property of this object relies on the FIFO property of the successor object next. Thus,
in order to verify the FIFO property for this, we need an assumption on next. For this purpose, we
reconstruct the buffer content of next from the history:

Buf (x,y,ε) , ε

Buf (x,y,h ⊢ x←y.put(v)) , Buf (x,y,h) ⊢ v

Buf (x,y,h ⊢ x←y.get(;v)) , rest(Buf (x,y,h))

Buf (x,y,h ⊢msg) , Buf (x,y,h) for other messages msg

We may now verify the following invariant for the Buffer class:

16



Fifo(next,H )⇒ (H /← this.put).in = ((H /← this.get).out + cell) ⊢⊣ Buf (this,next,H )

where h + x is h for x = nil otherwise h ⊢ x. The class is implemented using synchronous call state-
ments, which means that the correspondence between invocation messages to and completion mes-
sages from the next object is tight. An implementation of the methods using asynchronous calls could
break the FIFO structure of the buffer. Notice that the next object can easily be identified from the
history of a buffer object by a function Next(x,h). Focusing on this property, we express the external

invariant of an instance o of the class Buffer as follows:

Fifo(Next(o,h),h)⇒ Fifo(o,h)

For a dynamic buffer system, one may prove by induction that each buffer object o satisfies the FIFO
property Fifo(o,H) where H is the global history, using the fact that for finite H there may only be
finitely many objects, and that cyclic buffer structures are impossible due to the parent assumption.

Using the two invariants above, we can express that cnt equals the number of elements buffered in
next plus one if cell is not nil : cnt = #(Buf (this,next,H )+cell). Furthermore, the length of Buf must
be non-negative: #(Buf (this,next,H )) ≥ 0. From the latter, it follows that an invocation of next.get

always is proceeded by at least one invocation of next.put. It follows directly from the body of put
that next is different from nil whenever next.put is called.

The function Next : Obj× Seq[Msg]→ Obj is now defined, together with a function F : Obj×
Seq[Msg]→ Bool expressing that next is only instantiated once:

Next(x,ε) , nil F(x,ε) , true

Next(x,h ⊢ x→y.new Buffer) , y F(x,h ⊢ x→y.new Buffer) , Next(x,h) = nil
Next(x,h ⊢ msg) , Next(x,h) F(x,h ⊢ msg) , F(x,h)

Now we may define the invariant next = Next(this,H )∧F(this,H ), which is maintained by both
methods.

7 Related and Future Work

Related work. In this report we have adapted communication histories [8, 10, 15] to model object
communication in the distributed setting. History sequences reflecting message passing have also been
used for specification and reasoning about CSP-like languages [11, 25]. Recent work has addressed
reasoning about sequential object-oriented languages [16,23,24], covering various aspects such as in-
heritance, subtyping, and dynamic binding. However, reasoning about multithreaded object-oriented
languages is more challenging [1,7,9]. For example, the approach of [1] uses a global cooperation test
to deal with object communication. In addition, interference freedom must be proved since several
threads may execute concurrently in the same object. In [11], de Boer presents a sound and com-
plete compositional Hoare logic for collections of processes (objects) running in parallel. The objects
communicate asynchronously by message passing, but in contrast to our work they communicate
through FIFO channels, disallowing message overtaking. Object creation in [11] is described using
the sequence of objects identities already created by the considered object. In our framework, this se-
quence is captured by restricting the local history to object creation messages. Olderog and Apt [22]
consider transformation of program statements preserving semantical equivalence. This approach is
further developed in [12], which introduces a general methodology for transformation of language
constructions into subparts of the language resulting in sound and complete reasoning systems. The
approach resembles our encoding into SEQ, but it is non-compositional in contrast to our work. In

17



particular, extending the transformational approach of [12] to multithreaded systems seems to require
interference freedom tests.

In contrast to previous work on Creol reasoning [14], we here consider dynamic systems, and
present a more general framework where class semantics and reasoning are significantly simplified by
the notion of external invariants based on the observed part of the local history, by label-free primit-
ives for method based interaction, and by capturing object creation as part of the observable behavior.
Whereas labeled messages provide a unique correspondence between invocation and completion mes-
sages, which is relevant for an operational semantics, it is not oriented towards abstract specification,
as needed for compositional component-based reasoning.

Future Work. Creol has been extended with constructs for multiple inheritance [19]. It is our present
research goal to extend the approach to compositional verification presented in this report to capture
the combination of processor release points, multiple inheritance, and history-based compositionality.
The combination of nondeterministic assignment and inherited class invariants represents a challenge
for the transformational approach, but may be solved by appropriate behavioral restrictions. In order
to verify larger programs, tool support to discharge proof conditions is necessary. In the context of the
EU project Credo, an adaptation of the KeY tool [5] is investigated for this purpose.

The long term goal of our research is to study openness in distributed systems, taking an object-
oriented approach. While this report has focused on reasoning about communication and concurrency
aspects in the asynchronous setting, we believe the language presented here offers interesting possib-
ilities for reasoning in the presence of dynamic change. A natural way to provide some openness is
through a dynamic class construct, allowing a class to be replaced by a subclass. Thus a class may
be modified by adding attributes and methods, redefining methods, as well as extending the inherit-
ance and implements relationships. In our setting, this mechanism in itself does not violate reasoning
control, because established results still hold. Also, additional implementation claims may be stated
and proved. The work presented in this report is part of a larger effort to understand how to formalize
and verify the effect of runtime modifications to open distributed systems in a compositional way. We
believe that reasoning about suitably restricted runtime class extensions can be done by combining
compositional history-based reasoning and behavioral subtyping.

8 Conclusion

The Creol language proposes programming constructs which aim to unite object orientation and dis-
tribution in a high-level and natural way, by means of processor release points and a notion of asyn-
chronous method calls. In this report, we consider a small kernel of generalized Creol constructs, and
develop Hoare rules for local reasoning about these constructs. The reasoning rules are derived in a
transformational manner from a standard sequential language with a well-known semantics and estab-
lished reasoning system. The language constructs for asynchronous method calls and processor release
points are encoded in the sequential sublanguage extended with nondeterministic assignment. Com-
bined with local communication histories, this allows the highly nondeterministic nature of concurrent
and distributed systems to be captured in the sequential language. Based on the encoding, weakest
liberal preconditions are derived, which, given sufficiently strong class invariants, yield sound and
relative complete Hoare rules for Creol classes, expressing partial correctness. The approach allows
external specifications of observable behavior to be derived, expressing possible component interac-
tion. In contrast to related approaches, the proposed local proof system is compositional, based on a
compatibility requirement on local history variables capturing observable communication.

18



References

1. E. Ábrahám, F. S. de Boer, W. P. de Roever, and M. Steffen. An assertion-based proof system for multithreaded Java.
Theoretical Computer Science, 331(2–3):251–290, 2005.

2. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters, 21(4):181–185, Oct. 1985.
3. K. R. Apt. Ten years of Hoare’s logic: A survey — Part I. ACM Transactions on Programming Languages and Systems,

3(4):431–483, Oct. 1981.
4. K. R. Apt. Ten years of Hoare’s logic: A survey — Part II: Nondeterminism. Theoretical Computer Science, 28(1–

2):83–109, Jan. 1984.
5. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented Software. The KeY Approach, volume

4334 of Lecture Notes in Artificial Intelligence. Springer, 2007.
6. P. Brinch Hansen. Java’s insecure parallelism. ACM SIGPLAN Notices, 34(4):38–45, Apr. 1999.
7. M. Broy. Distributed concurrent object-oriented software. In O. Owe, S. Krogdahl, and T. Lyche, editors, From Object-

Orientation to Formal Methods: Essays in Memory of Ole-Johan Dahl, volume 2635 of Lecture Notes in Computer

Science, pages 83–96. Springer, 2004.
8. M. Broy and K. Stølen. Specification and Development of Interactive Systems. Monographs in Computer Science.

Springer, 2001.
9. P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based structural operational semantics of multi-threaded

Java. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java, volume 1523 of Lecture Notes in Computer

Science, pages 157–200. Springer, 1999.
10. O.-J. Dahl. Can program proving be made practical? In M. Amirchahy and D. Néel, editors, Les Fondements de la

Programmation, pages 57–114. Institut de Recherche d’Informatique et d’Automatique, Toulouse, France, Dec. 1977.
11. F. S. de Boer. A Hoare logic for dynamic networks of asynchronously communicating deterministic processes. Theor-

etical Computer Science, 274:3–41, 2002.
12. F. S. de Boer and C. Pierik. How to Cook a Complete Hoare Logic for Your Pet OO Language. In Formal Methods for

Components and Objects (FMCO’03), volume 3188 of Lecture Notes in Computer Science, pages 111–133. Springer,
2004.

13. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Communications of the ACM,
18(8):453–457, Aug. 1975.

14. J. Dovland, E. B. Johnsen, and O. Owe. Verification of concurrent objects with asynchronous method calls. In Pro-

ceedings of the IEEE International Conference on Software - Science, Technology & Engineering (SwSTE’05), pages
141–150. IEEE Computer Society Press, Feb. 2005.

15. C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer Science. Prentice Hall,
Englewood Cliffs, NJ., 1985.

16. M. Huisman and B. Jacobs. Java program verification via a Hoare logic with abrupt termination. In T. S. E. Maibaum,
editor, Fundamental Approaches to Software Engineering (FASE 2000), volume 1783 of Lecture Notes in Computer

Science, pages 284–303. Springer, 2000.
17. International Telecommunication Union. Open Distributed Processing - Reference Model parts 1–4. Technical report,

ISO/IEC, Geneva, July 1995.
18. E. B. Johnsen and O. Owe. Object-oriented specification and open distributed systems. In O. Owe, S. Krogdahl, and

T. Lyche, editors, From Object-Orientation to Formal Methods: Essays in Memory of Ole-Johan Dahl, volume 2635 of
Lecture Notes in Computer Science, pages 137–164. Springer-Verlag, 2004.

19. E. B. Johnsen and O. Owe. Inheritance in the presence of asynchronous method calls. In Proc. 38th Hawaii Interna-

tional Conference on System Sciences (HICSS’05). IEEE Computer Society Press, Jan. 2005.
20. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed concurrent objects. Software and

Systems Modeling, 6(1):35–58, Mar. 2007.
21. J. M. Morris. A general axiom of assigment. In M. Broy and G. Schmidt, editors, Theoretical Foundations of Program-

ming Methodology, pages 25–34. Reidel, 1982.
22. E.-R. Olderog and K. R. Apt. Fairness in parallel programs: The transformational approach. ACM Transactions on

Programming Languages, 10(3):420–455, July 1988.
23. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In S. D. Swierstra, editor, European Sym-

posium un Programming (ESOP ’99), volume 1576 of Lecture Notes in Computer Science, pages 162–176. Springer,
1999.

24. B. Reus, M. Wirsing, and R. Hennicker. A Hoare calculus for verifying Java realizations of OCL-constrained design
models. In H. Hussmann, editor, Fundamental Approaches to Software Engineering (FASE 2001), volume 2029 of
Lecture Notes in Computer Science, pages 300–317. Springer, 2001.

25. N. Soundararajan. Axiomatic semantics of communicating sequential processes. ACM Transactions on Programming

Languages and Systems, 6(4):647–662, Oct. 1984.
26. N. Soundararajan. A proof technique for parallel programs. Theoretical Computer Science, 31(1-2):13–29, May 1984.

19


