
UNIVERSITY OF OSLO
Department of Informatics

Construction of
Information
Repositories for
Managing Standards
Compliance
Evidence

Master thesis

Torbjørn Skyberg
Knutsen

April 29, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30826697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Acknowledgements
Thanks to the University of Oslo and Simula Research Laboratory. A special

thanks to Rajwinder Kaur Panesar-Walawege, Shaukat Ali and Mehrdad

Sabetzadeh.

3

Abstract
Safety-critical systems are often subject to certification in order to assure the

public that they will not cause harm to either people or the environment during

their use. Such certification is usually based on some industry specific

standards; in the embedded systems domain, the most common standard for

functional safety in the IEC61508 standard. Evidence from the attempted use

of the standard has shown that using IEC 61508 has been met by difficulties

in understanding the standards’ scope, purpose and content, as well as and

the need for an infrastructure for using the standard.

Panesar-Walawege et al. [1] provide in the form of a conceptual model a

detailed description of the information that needs to be preserved during the

development of safety-related software, based on information found in the

IEC 61508 standard. This work tackles some of the issues concerning the

understanding of the scope and content of the standard, and understanding

how to use it. This thesis describes a concretization of this conceptual model,

in the form of an information repository built on a relational database. The

information repository is generated from the conceptual model, through the

use of model driven technologies and model transformations. The work

described in this thesis provides developers of safety-related software the

possibility of storing the evidence information required for compliance with the

IEC 61508 standard, in order to aid the certification of their software systems.

It is the beginnings of the infrastructure required to use the IEC61508

standard effectively.

4

5

Table of Contents

1. Introduction ... 7

2. Background ... 9

3. Program description .. 11

3.1 Information Repository... 13

3.1.1 Persistence Layer ... 15

3.1.2 Logic Layer ... 17

3.1.3 View Layer .. 19

3.2 Model Transformations .. 23

3.2.1 RDBMS Meta-Model ... 23

3.2.2 Model-To-Model Transformation ... 29

3.2.3 Model-To-Text Transformations .. 35

3.3 User Roles ... 39

4. Discussion ... 41

4.1 Design Choices ... 41

4.1.1 Creation of a Repository from Scratch .. 41

4.1.2 Use of Model-Driven Technologies ... 42

4.1.3 Use of an Intermediate Model ... 43

4.1.4 UML to Relational Database Transformation Rules 44

4.1.5 Tool Selection ... 46

4.1.6 Constraints on the Database ... 47

4.1.7 Using a Web-based User Interface ... 47

4.2 Lessons Learned ... 49

4.2.1 Software Development - More Than Programming 49

4.2.2 Learning about the Tools .. 49

4.2.3 Tool Problems ... 50

4.2.4 Loading Input UML Models with Kermeta 50

4.2.5 Setting up the Required Libraries .. 51

6

5. Implementation .. 53

5.1 UML ... 55

5.2 Eclipse ... 55

5.3 Kermeta ... 56

5.4 MOFScript ... 57

5.5 Java ... 57

5.6 Apache Maven ... 58

5.7 Apache Derby .. 58

5.8 Hibernate ... 59

5.9 Spring .. 60

5.10 Apache Struts .. 60

5.11 Apache Tomcat ... 61

5.12 JavaScript .. 62

5.13 SiteMesh .. 62

5.14 JavaServer Pages (JSP) ... 63

6. Conclusion .. 65

Appendix A .. 67

A.1 Learning Materials ... 67

A.1.1 Kermeta .. 67

A.1.2 Hibernate .. 68

A.1.3 Struts .. 68

A.2 Example of use ... 69

A.2.1 Model Transformations ... 69

A.2.2 Information Repository .. 87

List of Figures .. 99

References .. 101

7

1. Introduction
The motivation for the work described in this thesis is to enable the

development of information repositories for managing safety evidence for

safety critical systems. The thesis draws on earlier work by Panesar-

Walawege et al [1], where a model-based solution is provided for

characterizing the safety evidence information required by IEC 61508 [2] - a

widely used standard for functional safety of

electrical/electronic/programmable electronic systems. Specifically, we

develop a tool infrastructure to transform an evidence information model into

a database schema, a user interface to populate the schema, and an

automated check of the consistency between the evidence information model

and the user-input data of the repository. The tool utilizes various model-

driven technologies as we are going to explain throughout the thesis.

The creation of a repository for storing information that demonstrates

compliance with the IEC 61508 standard reflects a direct industrial need, as

the largely textual form of the standard makes it hard for developers of safety

critical software to know exactly what information to record.

The repository is created in a generic manner such that if the underlying

model were to be modified, then the repository can be automatically

regenerated. Hence the method we provide can be used not only in the

specific case that we discuss in this thesis but also as a general-purpose tool

for automating the creation of repositories based on UML [3] class diagram

descriptions of data models.

The remainder of this thesis is structured as follows: We describe some of the

background on IEC61508 and the use of relational databases in information

repositories in Chapter 2. Chapter 3 contains a description of program code

resulting from the work described in this thesis, both the model

8

transformations and the information repository itself. In Chapter 4, design

choices and lessons learned during the development are discussed, and

Chapter 5 contains brief descriptions of the tools and technologies used

during the development. We conclude the thesis in Chapter 6. Guidelines on

how to use the model transformations and the information repository, as well

as an overview of the written materials used during the course of this project,

are provided in the appendix.

9

2. Background
IEC 61508 is an international standard published by the International

Electrotechnical Commission (IEC) [4], titled "Functional Safety of

Electrical/Electronic/Programmable Electronic Safety-related Systems". The

standard is concerned with improving the development of safety-related

systems, whose failure might lead to harm to people, equipment and/or the

environment. The standard is generic, and can either be used directly, or as a

basis for the creation of domain-specific standards in industries that require a

level of safety equivalent to that described in the standard. IEC 61508 is

concerned with functional safety; its goal is to ensure that safety-related

systems operate correctly in response to their inputs.

The standard adopts an overall safety lifecycle, in order to systematically deal

with the necessary activities for achieving the required level of safety. During

this lifecycle, the standard imposes a number of verification, management

and assessment activities. The software for a system must be implemented in

a way that fulfills the safety requirements allocated to it. In order to be able to

show that this has been done, it is important to maintain traceability between

the safety requirements, the decisions taken during the design of the

software, and the actual implementation of the code. This complex task

needs to be performed as the system is being developed, rather than once

the development is finished. [1]

In his article “Installing IEC 61508 and Supporting Its Users - Nine

Necessities” [5], Felix Redmill proposes nine necessities for the successful

use of the IEC 61508 standard. Evidence from the attempted use of the

standard has shown that using IEC 61508 has been met by difficulties, and

even “attempts to read and understand the standard seem to have had a low

success rate.” Among the necessities noted by Redmill are understanding the

10

standards scope, purpose and content, knowing how to apply the standard,

as well as providing an infrastructure for using the standard.

Panesar-Walawege et al. [1] provide in the form of a conceptual model a

detailed description of the information that needs to be preserved during the

development of safety-related software, based on information found in the

IEC 61508 standard. This work tackles some of the issues raised by Redmill,

both when it comes to understanding the scope and content of the standard,

and understanding how to use it. The work described in this thesis provides a

concrete way of gathering the information described in the conceptual model,

and can be thought of as a step towards the infrastructure requirement

proposed by Redmill.

A common way of organizing and storing data is through the use of a

database. A database consists of a collection of data, and is intended to

organize, store, and retrieve large amounts of data in a simple manner. There

are a few types of databases, of which the relational databases are the most

widely used. In a relational database, data is stored in relations, which can be

viewed as tables, where each row corresponds to an entity, and each column

to an attribute of the entity. For an information repository, using a relational

database is advantageous because it is a mature and widely used

technology, and has the ability to handle large amounts of data.

11

3. Program description
The work done in this thesis project can be divided into two main parts; (1)

the creation of a set of model transformations that generate artifacts of an

information repository, based on a UML class diagram, and (2) the creation of

the information repository itself, consisting of a relational database and a

web-based user interface that allows the user to manipulate the data in the

relational database. Some of the artifacts of the information repository are

generic (usable for any input class diagram), while others are the end

products of the model transformation. The word “repository” is from hereon

used to denote the software system consisting of the relational database and

user interface used to manipulate the database.

The model transformations consist of a model-to-model transformation,

(written in Kermeta [6]) that takes as input a UML class diagram, and

produces as output an intermediate model corresponding to a meta-model

that describes the structure of a database schema, as well as several model-

to-text transformations (implemented in MOFScript [7]), that generates a

number of text files containing code to be used as part of the repository,

based on the intermediate model.

The repository is based on a relational database, and also includes a web-

based user interface, allowing the user to perform basic create, read, update,

and delete (CRUD) operations on the database. The repository is

implemented in Java [8], and utilizes a number of technologies, most

importantly Hibernate [9] and Struts [10]. Hibernate is an Object-Relational

Mapping (ORM), which is used to map relational database tables with

classes, in order to mimic an object-oriented database system. Having an

object-relational layer in the form of an ORM is necessary because we use an

object-oriented approach, both for the specification of data content (through

12

UML class diagrams), and for the implementation of the information

repository.

An ORM allows a direct integration of a relational database in an object-

oriented system, by allowing the entries in the database to be treated as

objects. The mismatch of how data is represented in an object-oriented

system versus a relational database normally leads to a significant increase

in development cost, as well as repetitive and tedious coding work in order to

integrate the two types of systems. Using an ORM reduces the significance of

this mismatch, by allowing the integration of an object-oriented system and a

relational database to be achieved with significantly reduced development

time, and fewer lines of code. Hibernate provides a buffer between the two

ways of representing data, and allows the more elegant use of object-

orientation while at the same time keeping the relational database schema

normalized and guaranteeing data integrity [11].

Struts is used as a mapping between objects and the user interface, as it

allows objects and their attributes to be viewed and manipulated through a

web-based user interface in a simple manner.

A description of the technologies used can be found in Chapter 5.

13

3.1 Information Repository
The information repository consists of artifacts divided into two main

categories; (1) generic artifacts, which are independent of the structure of the

database schema, and (2) generated artifacts, which are based on an input

UML class diagram, containing code for initiating and manipulating the

concrete database tables defined through the model transformations. The

information repository is implemented using a three-tiered architecture. Figure

1 shows the architecture of the repository, as well as the main artifacts,

separated into generic and generated artifacts.

14

Figure 1: The architecture of the information repository.

15

At the bottom is an Apache Derby relational database, which is used to store

the data. Apache Derby is an open-source relational database, implemented

entirely in Java. It has a small footprint, only 2.6 MB, and supports embedded

mode, allowing it to be embedded in any Java-based solution. [12] On top of

this, we find the Persistence or Data layer, which contains artifacts associated

with Hibernate, used for the Object-Relational Mapping (ORM), as well as

some helper functions for accessing and manipulating entries in the

database. On top of the persistence layer, is the Business or Logic layer,

which in this case is fairly small, containing only the consistency check. The

top layer is the View or Presentation layer, which contains artifacts that

facilitate the interaction with the user. This layer contains artifacts associated

with Struts and JSP [13].

3.1.1 Persistence Layer

The persistence layer provides functionality for the communication with the

relational database.

3.1.1.1 Persistent Classes

The persistent classes are Java classes that are generated from the input

UML class diagram. Each persistent class corresponds to a table in the

database, and each attribute of the persistent class correspond to a column.

The persistent classes also hold set- and get-methods for each of the

attributes, as well as some helper methods used by the presentation layer.

3.1.1.2 Hibernate Mappings

Hibernate mappings are XML files used to map each of the persistent classes

to a table in the database. The mapping files also map each attribute of the

persistent class to a column in the table, and define associations between

16

tables. The Hibernate mappings describe the structure of the relational

database schema, and can be used by Hibernate to generate the SQL-

statements necessary for initializing the database.

3.1.1.3 Hibernate Configuration

The Hibernate configuration file (hibernate.cfg.xml) is an XML file that defines

the properties of the database connection, e.g. which database type to

connect to, what SQL dialect to use, the name of the database to connect to,

whether to connect to an already existing database or create one at program

start-up. The Hibernate configuration file also contains file paths to the

Hibernate mapping files, allowing Hibernate to read these on program start-

up (and if specified, generate database tables based on them).

3.1.1.4 HibernateUtil

HibernateUtil.java is a generic helper-class, used to abstract away parts of

the communication with the database. HibernateUtil holds a Hibernate

SessionFactory, which is used to request new sessions from Hibernate, and

provides methods that handles the sessions and transactions required by

Hibernate for database manipulation. Calls to methods in the HibernateUtil

can be made in order to achieve less complex method calls to Hibernate

functionality for the rest of the system.

3.1.1.5 Persistence Factory

The persistence factory (PersistenceFactory.java) provides methods for

retrieving one or all elements in a table, as well as for deleting an entry in a

table. The persistence factory abstracts away any Hibernate Query Language

(HQL) [14] queries from the rest of the system, allowing it to view the

database as a collection of Java objects, retrieved by simple method calls.

The persistence factory relies heavily on HibernateUtil, as all requests to the

17

database are passed through methods of HibernateUtil, to avoid the repetitive

writing of method calls needed to communicate with Hibernate.

3.1.2 Logic Layer

The Logic layer of the system is fairly small, containing only the Consistency

check.

3.1.2.1 Consistency Check

The consistency check (ConsistencyCheck.java) contains methods for

verifying that the state of the database is in accordance with the multiplicity

constraints defined in the UML class diagram that formed the basis for the

database. The consistency check is derived from the multiplicities of UML

associations. These multiplicities are not being preserved in the database

schema itself, where all associations are represented as many-to-many,

which is the least stringent constraint. This allows more freedom for the user

when adding entries in the database, but also calls for the implementation of

a consistency check, to verify that the data in the database is in accordance

with the constraints defined in the UML class diagram. The consistency check

is composed by a set of tests on the tables that are derived from UML

associations, to check that the multiplicities of the associations are upheld.

For instance, a table corresponding to an association with an upper bound of

1 on one of its connector ends should contain at most 1 reference to each

instance of the referenced persistent class. If a persistent class is referenced

more than once in a column with a maximum multiplicity of 1, it is inconsistent

with the specification in the UML class diagram. If the minimum multiplicity is

1 on a connector end, each instance of the referenced class should appear

as part of an entry in the table corresponding to the association, and an

instance that it not referenced causes an inconsistency.

18

The consistency check also checks for “dangling” entries in the tables

corresponding to UML associations, to make sure that both sides of the

association are defined. The detected inconsistencies in the database are

collected in a report, which is presented to the user once the consistency

check is finished. The consistency check is written in Java, and utilizes the

ability of the persistence factory to return all the entries of a table as a

collection of Java objects.

19

3.1.3 View Layer

The view layer contains functionality for user interaction, allowing the user to

perform CRUD (Create, Read, Update, Delete) operations on the database,

as well as running the consistency check, through a web-based user

interface.

3.1.3.1 Action Mappings

The action mappings are artifacts of Struts. The mappings are found in the

XML-file struts.xml. An action is a link between HTML and Java code, which

allows Java code to be executed by calls made from a HTML page. An action

mapping defines the name of an action, maps this to a method within a Java

action class, and optionally defines what to present upon the completion of

the execution of the method in the action class, depending on the return value

of the called Java method.

3.1.1.2 Browser Action and Form

The browser action class (Browser.java) is a simple action that retrieves a list

of strings containing the names of all the tables in the database. This list is

used in a JSP-form called Browser.jsp, which presents the table names in a

select box. When a table name is selected, a HTTP GET-request is carried

out through a JavaScript function, and the entries of the selected database

table are injected into the browser page. Similarly, if the user wants to create

a new entry in the selected database table, a click on the “New”-button of the

browser page causes a form for adding an entry in the database table to be

injected into Browser.jsp.

3.1.1.3 Forms for Showing, Adding and Editing Database Entries

There are two main types of web-forms generated from the input UML class

diagram; (1) forms for showing the entries of a table, and (2) forms for adding

20

or editing an entry in a table. Since tables differ with regards to their

attributes, different forms are needed for the different tables. The forms for

showing database entries creates a HTML table based on the entries residing

in the database tables, which are obtained through a call to a Struts action.

The collection of database entries is iterated, and presented in the form of a

HTML table, containing information from the columns of the database table.

Forms for adding/editing also differ from table to table, and provide a way for

the user to input the attribute values of the entry to be added. Upon editing an

existing entry, the entry is fetched and its attribute values are displayed in the

same form that is used for adding new entries. These forms are implemented

using JSP.

3.1.1.4 DataElementAction

DataElementAction.java is an action class used by most of the Struts actions.

It contains methods used by the user interface, both for adding entries in the

database, as well as for editing and deleting already existing elements. This

is achieved by issuing method calls to the persistence factory, storing the

return values in variables that are made available to the JSP-forms through

Struts.

3.1.1.5 BaseAction

The BaseAction (BaseAction.java) is a simple action class that acts as a

parent for the other action classes. This class holds a reference to the

persistence factory, which can be used by the action classes extending

BaseAction. BaseAction also contains some standard methods for Struts

actions. The class extends ActionSupport, allowing it, and all its subclasses,

to be treated as action classes.

21

3.1.1.6 Consistency Check Action and Forms

The consistency check action class contains a method that make a call to the

consistency check to start checking. The result of the consistency check is

stored in a collection of strings, which is made available to a form that

presents the results of the check to the user. The user interface of the

consistency check consists of two JSP-forms, one containing the means for

initiating the check, and one for displaying the results of the consistency

check.

22

Figure 2: The main program flow of the model transformations.

23

3.2 Model Transformations
This section contains a description of the model transformations used to

generate artifacts of the information repository, from a UML class diagram.

Figure 2 describes the main program flow of these model transformations.

The input to the model transformations is a UML class diagram (see Chapter

3.2.2.1 for a full description of how the input model should be formed.) This

diagram is transformed by a model-to-model transformation into a model

corresponding to the structure of a relational database. This model is in turn

used as input for several model-to-text transformations, whose output text

files compose the generated parts of the repository. We employ Kermeta for

the model-to-model transformation and MOFScript for the model-to-text

transformations.

3.2.1 RDBMS Meta-Model

The RDBMS meta-model (RDBMSMM.ecore) is the meta-model of the

intermediate model, which is generated by the model-to-model

transformation, and used as input by the model-to-text transformations. The

meta-model describes the structure of a relational database, with table and

column-elements, as well as elements representing other constructs of a

relational database, like primary keys and foreign keys. The use of the

intermediate model allows for the most complex logic of the model

transformations, the implementation of the transformation from class diagram

to the structure of a relational database, to be abstracted away from the

production of text files. The intermediate model can be used as a basis for

several model-to-text transformations, leading to the generation of more than

just the description of the database structure.

24

The RDBMS meta-model is based on a meta-model used in a Kermeta

example [15], which transformed a simple class diagram into a basic

relational database structure. This meta-model was augmented with new

elements as they were needed, when creating the model-to-model

transformation. The original meta-model from the Kermeta example contained

the basic elements of the RDBMS meta-model; RDBMSModel, Table,

Column and Fkey, as well as the association defining the primary key of a

table. We have extended this model to fit the requirements of our model

transformation, and introduced all the attributes shown in Figure 3 (except for

“name” in Table and Column, and “type” in Column), as well as the

association for defining subclasses. The structure of the meta-model can be

seen in Figure 3.

Figure 3: RDBMSMM.ecore.

25

The top-level container element of the meta-model is RDBMSModel, and this

contains the table elements that compose a database schema. The “Table”-

elements have a name, as well as a property “isDerivedFrom”, which

indicates the type of the UML element that served as the basis for table. A

table may contain a number of columns, as well as a reference to one or

more columns as primary key. A table can also contain foreign keys, which

consists of a reference to one or more columns, and a reference to a table.

The “isPartOfClass” attribute of the Fkey element is used to separate the two

sides of an association between two tables, since they will be implemented

differently. A table can contain a number of other tables, which is the way that

class inheritance is represented, by a table corresponding to a subclass being

contained within its superclass. Column elements have a name and a type,

as well as some Boolean flags which are used to indicate whether the column

contains a reference to another table and to represent multiplicities when the

columns represent connector ends in UML Associations.

An example of the relation between a UML class diagram and a RDBMS

model follows.

26

Figure 4: Parts of a UML class diagram.

This UML class diagram in Figure 4 contains four classes in a class hierarchy.

The “ControlledItem” class has an attribute “version”, and is part of three

associations; “justifies”, “concerns” and “is made about” (the classes of the

opposite ends are omitted, their names appear in brackets). “Block” is a

subclass of “ControlledItem”, and contains an attribute “type”. In addition,

“Block” is part of the associations “pertains to”, and “is allocated to”.

“HardwareBlock”, “SoftwareBlock” and “ProgrammableElectronicSystem” are

all subclasses of “Block”. Figure 5 shows the instance of the RDBMS meta-

model that corresponds to the example UML class diagram.

27

Figure 5: Parts of an instance of RDBMSMM.ecore.

In accordance with the description of the meta-model above, the

corresponding example instance of the RDBMS meta-model, shown in Figure

5, has an “RDBMS Model”-element as its top-level container. Within this

element are “Table” elements, which in turn contain elements representing

columns and foreign keys. The nesting of tables in order to represent

inheritance is also shown, by “Table” elements being contained inside other

“Table” elements. The properties of the various elements are not shown.

The table “ControlledItem” contains a column for its attribute “version”, as well

as the mandatory columns “uuid”, “Name” and “Description”, which are

included in all tables. It also contains one column for each of the associations

it is part of, each with a corresponding foreign key. (Each UML association is

transformed into a table; the foreign keys of “ControlledItem” thus reference

28

this table, not the table corresponding to the other end of the association.)

Since “Block” is a subclass of “ControlledItem”, the “Block” table is contained

within the “ControlledItem” table. Block contains a column for its attribute

“type”, as well as two columns for the two associations that “Block” is a part

of. The “Block” table contains three foreign keys, one for each of the columns

derived from an association, and one for the attribute “type”, since this is

typed as an enumeration in the UML class diagram, and will thus reference

an entry in the table corresponding to the enumeration. The tables

corresponding to the “Block” class’ three subclasses are contained within the

“Block” table. The “Block” table does not contain the mandatory columns,

since these are inherited from the “ControlledItem” table. See Chapter 4.1.4

for a detailed description of the transformation rules.

29

3.2.2 Model-To-Model Transformation

The model-to-model transformation takes as input a UML2 class diagram,

and outputs a model corresponding to the RDBMS meta-model, described in

Chapter 3.2.1, which represents the structure of a relational database

schema, with tables, columns, foreign keys, etc. This transformation contains

logic for transforming UML class, association, associationclass and

enumeration elements into relational database tables, and is the most

complex part of the model transformations. We use Kermeta for this

transformation, as it provides a mechanism for adding methods and variables

to the elements of a meta-model, through the use of aspect weaving.

3.2.2.1 Constraints on Input Model

The meta-model for UML class diagrams contains a large amount of

elements and constructs, and including all of these in the transformation

would be way beyond the scope of this project. Also, the names of the

database tables and columns are based on names given in the input model.

Therefore, there are some constraints on the input, both when it comes to the

types of elements accepted, and the naming of these.

The UML elements accepted by the transformation are class,

associationclass, association and enumeration. Package is also accepted,

even though it is not transformed. Including other elements in the input model

might lead to this information being lost (since there are no transformation

rules for any other type), or the transformation crashing. The class elements

may contain attributes that are either of a primitive data type (string, integer,

etc.), or typed as an enumeration defined in the class diagram. Attributes

typed as another class or an associationclass are not allowed. The names of

the classes must be unique, and the name of the attributes must be unique

within a subclass tree, to avoid more than one column with the same name in

a table corresponding to a subclass. Naming elements with words that are

30

reserved in Java (e.g. List, String) is not recommended, since it requires an

explicit import each time it is used in the generated system (which is not

handled by the transformation, and thus has to be done manually). Multiple

inheritance is not allowed.

Enumerations must have a unique name. Associations must have both role

names filled, as well as a name for the association itself. This is due to the

fact that the names of the table and columns corresponding to the association

are inferred from the association and role names. The combination of role

names and association name must be unique. If there is need for more than

one association with the same name, a single-digit integer may be added in

order to achieve a successful validation of the model, this digit will be

dropped in the transformation. Containment associations are allowed, but

they will not be treated any differently than regular associations. For

associationclasses, both the constraints on classes and associations apply.

3.2.2.2 Program Flow of the Model-to-model Transformation

We explain the details of the model-to-model transformation next; the steps

involved are shown in Figure 6.

31

Figure 6: Program flow of the model-to-model transformation.

32

The transformation starts with a setup phase, which is initiated by loading the

input model into memory (1). The input model is associated with its meta-

model, which in this case is the UML2 meta-model. An instance of the

RDBMS output model is created and kept in memory until the end of the

transformation (2). Then, the elements of the input model are iterated, and

each element is placed into one of four collections depending on its type (3).

This results in four collections, containing UML elements of type association,

associationclass, class and enumeration, respectively. This is achieved

through aspect weaving, where a method “getElementsByType(allClasses,

allAssociations, allAssociationClasses, allEnumerations)” is added to each of

the four UML element types, where the parameters are the collections where

the elements are stored. When called on an element, this method will add the

element itself to the proper collection and then return.

When the elements have been categorized, each of the collections is iterated,

and its elements transformed (4-7). This is also done through aspect

weaving, by calling the added “toRDBMSModel(...)” method on each of the

elements. This method extracts the necessary information from the element

in question, and calls methods that create a table in the output model.

The order of which the types of elements are transformed is of great

importance with regards to defining associations between the tables. For

instance, a table derived from a class might have an attribute typed as an

enumeration, which requires a foreign key to the table corresponding to the

enumeration in question. If this enumeration has not been transformed into a

table prior to the transformation of the class, the foreign key in the table

derived from the class, indicating a relationship with an enumeration, will not

be able to find the table it is supposed to reference, and thus become an

incomplete foreign key. Similarly, a table corresponding to an association

need both of its connector ends transformed into tables before it can

reference them, to ensure no incomplete foreign keys.

33

To deal with this, the order of which the types of elements are transformed is

the following:

1. Enumeration (not dependent on anything)

2. Class (might be dependent on an enumeration)

3. AssociationClass (dependent on class)

4. Association (dependent on class or associationclass)

This ordering ensures that all generated foreign keys reference an existing

table, as long as all relationships between classes are expressed through

associations (not as attributes inside classes).

After all of the elements of the input model have been transformed, the class

hierarchy of the input model must be retained in the output model (8). There

are several ways of handling inheritance in a relational database, but since

the end product of the model transformations will use Hibernate mappings to

generate the underlying database schema, the transformation will handle

inheritance in a way analogous to how class hierarchies are expressed in

Hibernate mappings. In the Hibernate mapping files, class hierarchies are

defined through nested mappings, regardless of how the inheritance is to be

handled by the underlying database. Thus, in the model-to-model

transformation, class hierarchies are handled by placing the table

corresponding to a subclass within the table corresponding to its superclass.

After the class inheritance is handled, the resulting output model is written to

file (9), and the transformation is finished.

34

Figure 7: Artifacts generated by MOFScript transformations.

35

3.2.3 Model-To-Text Transformations

Once the model-to-model transformation has generated an instance of the

RDBMS meta-model based on the input UML class diagram, this generated

intermediate model can be used as a basis for several model-to-text

transformations, implemented in MOFScript. The output of these model-to-

text transformations are textual code, primarily written in Java, XML and

HTML, which form parts of the information repository that we create. Figure 7

contains an overview of the artifacts generated by the model-to-text

transformations.

For the persistence layer, Hibernate mappings and persistent classes are

generated. These files compose an ORM (Object-Relational Mapping), which

allows relational database entries to be treated as Java objects. The set of

Hibernate mappings provide a description the underlying database structure,

which can be used by Hibernate to generate the SQL-statements necessary

to initiate the underlying relational database. The mappings also link each

database table with a persistent class. The persistent classes are Java

classes that, when linked to a database through Hibernate mappings, can be

used to access entries in a database as Java objects. For the persistence

layer, a persistence factory is also generated, which provides methods for

easy access of the entries in the database, as well as methods for deleting

entries. In addition, file paths to the various mapping files are added to a

Hibernate configuration file, which is read at program start-up, and used to

set up a connection to the underlying relational database. Adding the paths to

the mapping files causes them to be read on program start-up as well, and if

specified, used to initiate the database schema.

For the view layer, Struts action mappings, action classes, and JSP files are

generated. These artifacts facilitate the viewing and manipulation of the

persistent objects through a web-based Graphical User Interface (GUI). As an

36

analogy to the ORM concept of the persistence layer, these artifacts might be

thought of as an Object-Interface Mapping (OIM), which maps each object to

a set of GUI elements.

In addition to the artifacts of the persistence and view layer, some other files

are generated. A consistency check is generated, based on the multiplicities

of the associations found in the input UML class diagram, and is used for

determining whether a database instance is consistent with the multiplicity

constraints defined in the input. Also, Spring [16] beans are generated, and

these serve two major purposes; (1) to link the view and persistence layer

together, allowing the database connection of the persistence layer to be set

up by running the web application defined by the view layer, and (2) for

dependency injection. Dependency injection is a way of handling

dependencies between objects, without having to initiate the dependencies

through creating new object instances in the Java code. Instead, object

instances, as well as dependencies between them, are defined in an XML

configuration file. At program start-up, the instances defined in the

configuration file are created, and the defined dependencies are achieved by

injection, setting the values of variables referring to other objects through set-

methods. As an example, consider a class A, that utilizes methods defined in

an interface B. Without dependency injection, the implementation of interface

B to use (call it class C) would have to be specified in the code of class A, by

creating a new instance of the class C. If the system changes, and class C is

to be replaced by another implementation of interface B, class D, then the

calls to new within class A must be modified. If the system is large, and

interface B used by numerous classes, the calls to new must be changed in

every class. With dependency injection, on the other hand, no calls to new

are needed in order to define dependencies between classes. Class A will

contain a variable holding an object typed interface B, as well as a method for

setting this variable. In the configuration file, an instance of class C is defined,

and the fact that this should be injected into any instance of class A is also

37

defined. Then, substituting class C with class D would only require changes in

one place, the configuration file, regardless of the number of classes that

have a dependency to interface B. In addition, only one instance of the class

implementing interface B is needed, the same instance can be injected into

any number of dependent classes. As an example of dependency injection in

this project, consider the persistence factory, which is used by a number of

classes. With dependency injection, the implementation of the persistence

factory can be substituted by changing one entry in the configuration file,

without having to change the implementation of these classes (as long as the

new implementation provides the same methods). Also, only a single instance

of the persistence factory is needed, the same instance might be injected into

multiple classes.

The program flow of the MOFScript transformations are fairly trivial, they all

involve iterating the elements of the intermediate model, creating output files,

and writing text to the output files based on the input elements. There are two

main variants, depending on how the output files are created. Some of the

model-to-text transformations outputs one file for each table (e.g. the

persistent classes), while others produce only one file, with code based on

information in all table elements (e.g. the persistence factory). The model-to-

text transformation outputting one file per table element starts by iterating the

input model, and then creates a file for each table element. The other variant

starts by creating the file, and then iterates the input model, adding text

derived from all table elements to the same file. The program flow of the two

variants is shown in Figure 8.

38

Figure 8: Program flow of the MOFScript transformations (2 main variants).

39

3.3 User Roles
The typical use of the system is initiated by an administrator or administrative

body, which runs the transformations, and sets up the database and the

webserver. Once the repository is set up, the users can view and manipulate

the data, as well as ensure that the data is consistent with the constraints

defined in the UML class diagram, through the consistency check. The users

could be developers, who registers data during the development of the

safety-related system, or certifiers, who upon the completion of the safety-

related system are allowed access to the data in the database directly, or to

generated compiled reports based on the data in the database (yet to be

implemented), in order to aid the certification of the safety-related system.

Figure 9: User roles in the transformation and the information repository.

40

41

4. Discussion

4.1 Design Choices

4.1.1 Creation of a Repository from Scratch

When starting this project, there were alternatives to creating the repository

from scratch. There exists tools that transform a UML class diagram into a

database schema in the form of SQL-statements [17], which in turn can be

used as input to a database system (e.g. Microsoft Access). The problem with

this approach is that it only allows the generation of the SQL-statements that

can be used to create a relational database. Hence the SQL statements

would have to be applied manually to create the database. The user interface

for adding and manipulating the data in the database would also need to be

created. There also exist tools that allow the generation of other artifacts

besides SQL-statements, like UMT-QVL [18], which in addition to SQL-

statements can generate a number of other artifacts, for instance Java

interfaces. The problem with using this tool is that it does not provide all of the

required transformation. The tool is a general-purpose transformation

framework, within which the actual transformation code required to transform

the UML model would still need to be written. Extending this transformation

tool would require knowledge of how the existing code of the tool works,

which introduces different challenges when creating the model

transformations. There also exists a tool for generating Hibernate mappings

based on UML class diagrams [19]. This tool was not used, for the same

reason as with UMT-QVL, as it does not provide all of the needed

transformations.

The creation of a model transformation tool allows an automated creation of

both the database and the user interface to manipulate the data in the

42

database, as well as any other artifact that depends on the structure of the

database schema. Using already existing technologies would allow less

flexibility compared to creating a repository system from scratch, which would

allow us to tailor and extend the system to our needs. In addition, adding new

functionality is easier with full control over the source code. Although existing

transformation tools could be extended to achieve the generation of the

required artifacts, the challenges associated with this were not judged to be of

such a magnitude smaller than the challenges associated with creating the

model transformations from scratch. All-in-all, the ability to tailor the system

for our specific needs made it more reasonable to create something new,

than using already existing technologies.

4.1.2 Use of Model-Driven Technologies

Through the use of model-driven technologies, we could automate the

transformation of a UML class diagram to a relational database through a

series of automated transformations, rather than creating a database

manually. The use of model-driven technologies had a number of positive

effects. First, and foremost, it led to the creation of a tool that is not limited to

just one input model, but can be used on any input model that adheres to the

constraints defined in Chapter 3.2.2.1. Secondly, it is much easier to ensure

the correctness of rules for transforming the elements of an input model, than

it is to ensure the correctness of a manual transformation of such a model,

especially if the input model is large. Also, even though quite some time has

been spent creating the transformation tool, a lot of time will be saved if there

are changes to the input model, or if a repository is to be created based on a

different input model.

43

4.1.3 Use of an Intermediate Model

We chose to use an intermediate model, even though a direct model-to-text

transformation with the UML class diagram as input would be possible. The

use of an intermediate model had a number of advantages. It allowed the

most complex logic of the transformation tool to be kept in one place, the

model-to-model transformation. This led to the model-to-text transformations

being fairly trivial, since the data structure was already defined, and all that

was necessary was to iterate over the intermediate model, and output text for

each of its elements. As the work on the repository progressed, it turned out

the intermediate model could be used for much more than just generating the

artifacts concerning the establishment of the database itself, in addition

artifacts for the user interface that allows manipulation of the database, as

well as the persistence factory and the consistency check could be generated

with basis in the intermediate model.

If no intermediate model were to be used, the logic for transforming a UML

class diagram into the structure of a relational database, and the logic for

creating and writing to a large number of text files would have to be

interwoven. This would lead to a complex model transformation, that would

be difficult to implement and extend, compared to when an intermediate

model is used.

Through the use of an intermediate model, creating new applications of the

information in the UML class diagram is simple, since all it takes is the

creation of another model-to-text transformation with the intermediate model

as input, without having to make changes to how the UML class diagram is

transformed into the intermediate model.

44

The use of an intermediate model made Kermeta the natural choice of

language when implementing the model-to-model transformation, since

Kermeta is a powerful tool for creating model-to-model transformations.

4.1.4 UML to Relational Database Transformation Rules

The rules for transforming the elements of a UML class diagram into a

relational database was extracted from the book “Database Systems: The

Complete Book”, by Garcia-Molina et.al. [20]. The book gives directions on

how to transform Entity/Relationship (E/R)-diagrams [21] into a relational

database tables. These directions were adapted to fit a UML-to-relational

database conversion. The allowed elements in the input UML class diagram

are class, associationclass, enumeration and association (as well as

package, which is not transformed in any way). All tables will have a

mandatory column UUID (Universally Unique Identifier), which is used as a

primary key, and a way to distinguish the entries in the database. In addition,

all tables have the mandatory columns “Name” and “Description”, due to the

fact that many of the elements of the input UML class diagram did not have

any attributes, and would without these mandatory columns only consist of a

UUID, which from a user perspective would not be enough. The “Name”-field

is used to distinguish entries, and further information about the entry can be

stored in the “Description” column.

The rules for transforming the different element types are as given in the

following sections.

4.1.4.1 Enumeration

Each enumeration is transformed into a table. Since enumerations don’t have

attributes, and is not part of associations, the tables corresponding to

enumerations will contain only the three mandatory columns: uuid, name and

45

description. The value of the enumeration entry can be stored in the name-

attribute.

4.1.4.2 Class

Each class is transformed into a table. Each attribute of the class is

transformed into a column in the table. The attributes can have one of two

types; either (1) that of an enumeration or (2) a primitive data type, like string

or integer. When the type of an attribute is an enumeration, a foreign key

linking the column to the table corresponding to the enumeration is added,

making the value of the column a reference to the table that corresponds to

the enumeration.

4.1.4.3 Association

Each association is transformed into a table. The connector ends of the

association are added as columns, and foreign keys tying together these

columns and the tables corresponding to the classes of the connector ends

are added. The multiplicities of the association are persisted in the output

model through the use of Boolean flags contained within the column

elements.

4.1.4.4 AssociationClass

Each associationclass is transformed into a table. Attributes of the

associationclass are added as columns, and the connector ends are

transformed into columns with foreign keys, analogous to the way the

connector ends of the association are transformed.

4.1.4.5 Inheritance

In “Database Systems: The Complete Book”, the authors describe three ways

of handling class inheritance when converting a class diagram to a relational

database schema. The possibilities are (1) one table per top level superclass,

46

with the use of null values, (2) one table per class containing all of the

attributes of its superclass in addition to the attributes of the class itself, and

(3) one table per sub-tree of the class hierarchy. But, since class inheritance

is handled by Hibernate with nested class-table mappings, inheritance is

handled the same way in the model-to-model transformation, regardless of

the way it will be handled in the finished system. The class inheritance is

handled by specifying that a table corresponding to a subclass is to be

contained within the table of its superclass (multiple inheritance is not

allowed). This may result in a tree of tables in the output model (see Figure

5), and simplifies greatly the complexity of handling the class inheritance in

the model-to-model transformation.

4.1.5 Tool Selection

The choice of using Kermeta for the model-to-model transformation was

based on the fact that it is widely used for model-based development in

scientific research, and that it has been used for this purpose by scientists at

Simula Research Laboratory. Kermeta provides a good infrastructure for

model-to-model transformations. MOFScript became the chosen technology

for model-to-text transformations, because it is a well-made and widely used

tool, and because I had some prior knowledge of the tool after using it in a

course taught at the University of Oslo.

When it became clear that the repository was to be implemented in Java,

using tools like Hibernate, Struts, Spring (which is a platform for building and

running enterprise Java applications) and Maven (which is a build manager

for Java projects) became obvious choices, since these tools are widely used

in the industry, and there exists large amounts of documentation on each of

these tools. Also, I had some experience with the tools from a course taken at

the University of Oslo.

47

The decision to use of Eclipse as a development platform throughout the

project was also quite easy to make, since it is a host to both Kermeta and

MOFScript, and also a powerful tool for developing Java projects. Apache

Derby was chosen as the host of the underlying relational database, since it

allows an embedded mode in addition to the conventional client/server mode,

allowing it to run as part of a software system. Also, Apache Derby is a well-

established database management system.

4.1.6 Constraints on the Database

We chose to keep the database as free from constraints as possible, in order

to allow the user a maximum amount of freedom when manipulating the data

in the database. Null values are accepted in every column (except for the

uuid-column, which is automatically populated by Hibernate). Conformance

with the multiplicity constraints on associations in the input UML class

diagram is not handled by constraints on the database schema, but rather

ensured through the consistency check, which in addition to checking that the

multiplicity constraints are held, checks for null values where they are not

allowed (e.g. in columns referencing an entry in another table as part of an

association).

4.1.7 Using a Web-based User Interface

The use of a web-based solution for the user interface had a number of

advantages. First, a web-based user interface requires no set-up on the user

side in order to access the repository, all that is needed is a network

connection to the webserver that hosts the repository, an internet browser, as

well as a permission to access the repository. This means that the repository

can be updated from practically any computer with an internet connection.

Also, a web-based solution makes it easy to allow multiple concurrent users

of the repository. Finally, the exchange of data is greatly simplified; all that is

48

needed is to grant the person/organization in need of the data access to the

repository.

49

4.2 Lessons Learned

4.2.1 Software Development - More Than Programming

During the course of this project, I have learned that software development

involves a lot more than just programming. A significant amount of time has

been spent setting up the various tools used, reading up on them,

understanding how they are used, and understanding their error messages. I

also learned about the importance of having a good design, and a clear

structure of the artifacts in a software system, in order to ensure flexibility and

maintainability of the system.

4.2.2 Learning about the Tools

In this project, the amount of experience I had with the different tools varied,

some I had some experience with through courses taught at the University of

Oslo, while others, most notably Kermeta, I had no experience with. This led

to a period of learning about the tools before effectively using them, both

when it came to the tools that I had experience with, and those that I did not.

For most of the tools, there were a lot of online documentation and tutorials,

minimizing the time spent on learning to set up and use the tool. Others, on

the contrary, had very little available documentation. Kermeta, used in the

early stages of the project, did not have much available documentation, only

a reference guide and a couple of examples. This led to a quite time-

consuming process of trial and error, in order to learn how to use Kermeta

effectively. (See appendix A.1 for an overview of the teaching materials used

during the course of this project.)

50

4.2.3 Tool Problems

In addition to the time spent learning how to use the tools, there were some

problems with the tools themselves.

4.2.3.1 Kermeta

At the time of writing the Kermeta transformation, not all of the functionality

for elements in the UML specification was implemented. For instance, getting

the other end of an association when inspecting one end was supposed to be

easy, but required a workaround since the method for doing this was not yet

implemented in Kermeta.

4.2.3.2 Hibernate

There were some problems with the functionality of Hibernate, with regards to

cascade options when deleting. When mapping the relationships between

tables as a unidirectional association, it was only possible to cascade in this

same direction, which was the opposite of what was wanted behavior. This

led to a quite large work-around, resulting in all the associations being bi-

directional in order to achieve a cascading delete.

4.2.4 Loading Input UML Models with Kermeta

Getting Kermeta to load a UML model created on another platform (in this

case Rational Software Architect) turned out to be quite tricky. Upon defining

which input model and meta-model to use, the transformation just crashed,

giving an error message without much detail as to what was the problem.

After a lot of trial and error, it turned out that the UML profiles of the software

that created the class diagram had to be included, in the same folder as the

class diagram itself. This information was not part of the Kermeta

documentation, which led to quite some time spent figuring it out.

51

4.2.5 Setting up the Required Libraries

When starting the project, I did not have a full understanding of how to

include third party libraries in the project classpath, making them available to

the compiled system. After some trial and error I managed to include the third

party libraries, by adding them to the classpath of the Eclipse project, as well

as adding their jar-files in a the proper folder, so that the compiled program

could access them.

52

53

5. Implementation
The implementation of the work described in this thesis can be divided into

two parts; (1) a transformation from a UML class diagram to a database

management system, and (2) the database management system itself. The

total number of lines of code for (1) is approximately 2000 (800 for Kermeta

transformation, 1200 for MOFScript transformations). The total number of

lines of code for (2) depends on the size of the input model, with the

conceptual model based on IEC 61508, which was used as a basis when

developing, the total number of lines of code exceeded 10,000, most of it

generated.

Our implementation builds on a number of existing technologies. An overview

of how these technologies are used in our work is provided in Figure 10.

54

Figure 10: Overview of the technologies used and the context of their use.

In Figure 10, the colored squares represent the technologies used in the

project. The context of the technologies used is represented through where

the technology is contained in Figure 10. The outer rounded square

represents the project as a whole, and contains Eclipse, which was used

throughout the project. Kermeta and MOFScript were used for the model-to-

model and model-to-text transformation, respectively. Within the information

repository, some technologies fall under a specific layer, and others are used

across the system as whole.

55

For the thesis to be self-contained we provide a short description of each of

the technologies used below.

5.1 UML
The Unified Modeling Language (UML) [3] is a specification published by

OMG (Object Management Group). It provides a standardized way of creating

a variety of models, ranging from structure, behavior and architecture models,

to business process and data structure models. UML utilizes graphical

notation techniques, in order to facilitate the creation of visual models of

object-oriented software systems. The UML standard has matured

considerably since first released, and UML 2.0 was released in 2005. The

latest revision of UML was version 2.3, released in May 2010. The UML

standard (version 2.2) defines 14 types of diagrams, divided into two main

categories; behavioral and structural diagrams.

In this project, UML Class diagrams, which are one of the structural diagram

types, form the basis of the input to the model transformations resulting in a

database management system.

5.2 Eclipse
Eclipse [22] is “an open source community, whose projects are focused on

building an open development platform comprised of extensible frameworks,

tools and runtimes for building, deploying and managing software across the

lifecycle.” [23] Eclipse is hosted by the Eclipse Foundation, which is a non-

profit member supported cooperation. The Eclipse project offers a variety of

products free of charge, which are variations of the Eclipse integrated

development platform (IDE), including Eclipse IDE for Java and C/C++

developers, as well as Eclipse Modeling Tools [24]. The Eclipse IDE also

56

offers a high level of user modification through plugins, and is used as a basis

for other software development platforms, like IBMs Rational tools, as well as

a platform for development in programming languages like Kermeta and

MOFScript.

The Eclipse IDE was the main development platform for the work described in

this thesis. In addition to the Eclipse’s built-in functionality for Java

programming, plugins for Kermeta, MOFScript and Maven were used.

5.3 Kermeta
Kermeta [6] is an object-oriented DSL (Domain Specific Language) optimized

for meta-model engineering. The Kermeta workbench runs on top of Eclipse,

and is available both as a Kermeta+Eclipse bundle, and a plugin to Eclipse

[25]. Kermeta can be used for specifying abstract syntax, static and dynamic

semantics with connection to the concrete syntax, as well as model

transformation, aspect weaving, and model and meta-model prototyping and

simulation. Kermeta is an open source project, initiated within the Triskell [26]

team of IRISA [27], and the programming language borrows concepts from

languages such as OCL, MOF and QVT, as well as BasicMTL, a model

transformation language created by the Triskell team. [28]

In my project Kermeta’s model-to-model transformation features was used to

transform an input UML class diagram to a model corresponding to the

structure of a relational database. In particular, Kermeta’s aspect weaving

functionality was used in order to achieve this.

57

5.4 MOFScript
MOFScript [7] is a subproject of Eclipse, and a programming language for

model-to-text transformations. MOFScript is distributed as an Eclipse plugin

[29]. MOFScript supports model-to-text transformations from MOF-based

models, including UML or any kind of domain model, as well as control

mechanisms like loops and conditional statements, string manipulation and

production of output files [30].

In this project, MOFScript was used to generate code-containing text files,

based on the intermediate model output from the model-to-model Kermeta

transformation, through several model-to-text transformations.

5.5 Java
Java [31] is an object-oriented programming language, originally created by

Sun Microsystems. Java derives most of its syntax from C and C++, and is

one of the most popular programming languages today, used by over 6.5

million developers, in every major industry segment [32]. Among the primary

goals in the creation of Java we find that the language should be “simple,

object-oriented and familiar”, “robust and secure”, as well as having “"an

architecture-neutral and portable environment" [33].

Java was used as the programming language for creating the information

repository, along with Java-specific tools.

58

5.6 Apache Maven
Apache Maven [34] is an open-source build manager, used for managing

software projects, as well as build automation. Maven can be used in the

whole lifecycle of software development, and is useful for compiling,

packaging and installing, as well as running tests on, a large number of code

files, through simple commands. Maven also provides a convenient way of

handling dependencies to Java libraries and plug-ins, through the use of

repositories. There are several public Maven repositories, and the user can

make requests for libraries through adding them as dependencies in their

Maven configuration file (called pom.xml). If the dependency cannot be

resolved in the user’s local repository, it is downloaded from one of the public

Maven repositories upon use. This simplifies the handling of dependencies to

third party libraries significantly.

Maven was used for building the system when implementing the back-end of

the system. It was also used to handle the dependencies to third party

libraries and plug-ins. When starting the work on the front-end, the system

was built by starting the web server through Eclipse, though this could have

been done from through Maven as well.

5.7 Apache Derby
Apache Derby “is an open source relational database implemented entirely in

Java and available under the Apache License, Version 2.0” [12]. Derby

provides both the familiar client-server mode, and an embedded mode, which

allows a Derby database to be embedded into a Java program, starting the

database once the Java program is started.

59

Apache Derby was used as the host of the underlying relational database of

the information repository.

5.8 Hibernate
Hibernate is a “collection of related projects enabling developers to utilize

POJO-style domain models in their applications in ways extending well

beyond Object/Relational Mapping.” [9] The primary feature of Hibernate is as

an Object-Relational Mapping (ORM), which can map Java objects with

database tables. This allows entries in a relational database to be treated as

Java objects, creating a layer of abstraction on top of the relational database.

Hibernate also provides data query and retrieval functionality, through the

Hibernate Query Language (HQL), which is similar to SQL. Queries are

executed through calls to Java methods of the Hibernate library, and

Hibernate then generates the SQL-queries to the database, and converts the

results to a set of objects.

The main artifacts of Hibernate are a configuration file, which defines the

settings to use when connecting to a relational database (e.g. database

type/brand, SQL dialect, username and password), a set of persistent

classes, which are plain Java classes with set- and get-methods for each

attribute, and a set of mappings, which maps each of the persistent Java

classes to a relational database table. The mappings can be represented

through Hibernate annotations on the persistent classes themselves, or as

separate mapping files, in which paths to the mapping files are added to the

Hibernate configuration file, in order to be read at program start-up.

In this project, Hibernates ORM functionality was used to access, create, edit

and delete elements of the relational database through the use of Java

methods and objects. Hibernate was also used to initialize the database itself,

through the definition of the Hibernate mapping files.

60

5.9 Spring
The Spring [16] framework is an open source development framework for

Java projects. Spring consists of a package of core functionality, as well as a

number of extensions, amongst others for building web applications. Spring

provides an “Inversion of control”-container, which is used for managing Java

objects, through the use of Java beans. This feature also provides

dependency injection capabilities, which can be used for instantiating an

object, and injecting this instance into other objects through the use of set-

and get-methods for the attributes in a class. This eliminates the need for

calls to “new” in the Java code, and allows changing parts of the system,

without having to change the Java code of other parts. Spring also provides a

number of other capabilities, like aspect orientation and transaction

management.

Spring was necessary in this project, in order to connect the persistence layer

(Hibernate) with the view layer (Struts), to initiate the persistence layer upon

the running the web application on a web server. Dependency injection was

also used to inject (singleton) instances of PersistenceFactory.java and

HibernateUtil.java into other objects.

5.10 Apache Struts
Apache Struts [35] is an open source framework for creating Java web

applications. Struts is designed to facilitate the use of the Model-View-

Controller (MVC) architecture. Struts provide a simple way of integrating web-

based user interfaces with Java applications, both by facilitating the

invocation of Java methods through a web-based user interface, and by

providing mechanisms for presenting and manipulating Java objects through

a web-based user interface. In order to achieve this integrations, Struts

utilizes the concept of actions, which consists of three parts; (1) the actions

61

class, which is a Java class that implements the ActionSupport interface

(which defines the class as an action class), (2) JavaServer Pages (JSP)

files, which are files that can contain both Java and HTML code, and (3)

action mappings, that defines actions, which are used to call Java methods

from a web-based user interface. The action mappings define a name for the

action, as well as an action class and a method to be called when the action

is called. The action mapping can also define a number of JSP-pages to

redirect to once the method has been run, where which page to redirect to

depends on the return value of the Java method called. Once the user

initiates the calling of an action defined in the action mapping, the method of

the action class defined in the mapping is called, and upon its return the user

is redirect to the appropriate web-page. Struts also provides a tag-library,

which allows the viewing and manipulation of Java objects in a simple

manner, in order to facilitate the creation of interactive form-based

applications with server pages.

Struts was used to provide user interfaces access to persistent objects and

their attributes, in order to present and manipulate the objects residing in the

database. Struts actions were also used to provide parts of the navigation on

the user interface.

5.11 Apache Tomcat
Apache Tomcat is an open source servlet container, which implements the

specifications for Java Servlet and JavaServer Pages. Tomcat provides a

HTTP web server environment for running Java code, and is used to power

“numerous large-scale, mission-critical web applications across a diverse

range of industries and organizations.” [36]

In this project, Apache Tomcat was used to publish the information repository

on a (local) web server, which could be accessed from a web browser.

62

5.12 JavaScript
JavaScript [37] is an object-oriented scripting language, used primarily in web

pages, in order to provide enhanced user interfaces and dynamic websites.

JavaScript is dynamic, weakly typed, and is considered a functional

programming language. JavaScript is a client-side language, meaning that

the code is executed in the user’s web-browser, as opposed to on a server.

In this project JavaScript was used in parts of the view layer, mainly for

posting a HTTP request and including the result in an existing web page.

5.13 SiteMesh
SiteMesh is “a web-page layout and decoration framework and web-

application integration framework to aid in creating large sites consisting of

many pages for which a consistent look/feel, navigation and layout scheme is

required.” [38] SiteMesh allows the definition of decorators, which can be

used to add elements to web-pages when the requests are filtered through

SiteMesh. SiteMesh can also be used to include an entire HTML-document

as a panel within another web-page. SiteMesh is based on the “Decorator”

design pattern [39].

The main artifacts of SiteMesh are a decorator, which is a JSP-file that

contains the definition of the graphical elements that are to be present in

every page using the decorator. This decorator is applied through a filter in

the web application, sending all requests through SiteMesh. Which decorator

to use for a particular web-page, if any, is defined through a SiteMesh

configuration file.

SiteMesh was used to include the menu in the various web-pages of the

information repository.

63

5.14 JavaServer Pages (JSP)
JavaServer Pages (JSP) [40] is a Java technology that helps Java developers

create dynamic web-pages. JSP is the Java-based counterpart of ASP and

PHP. JSP allows a mixture of Java and HTML and the JSP-file is compiled by

a JSP-compiler into a Java servlet, where any Java code can be executed,

and any HTML code is printed to a file read by the web browser. JSP also

allow extensions of HTML through the use of tag libraries.

In this project, JSP was the format of the web-forms composing the user

interface. The possibility of integrating Java code with HTML code was not

used, but the ability of using extension through tag libraries was used in order

to utilize features of Struts, namely the Struts tags for presenting objects and

their attributes.

64

65

6. Conclusion
The work described in this thesis enables the creation of an information

repository for storing safety-related information, where the structure of the

information to be stored is described as a conceptual model and represented

as a UML class diagram. The work meets a direct industrial need, as it

provides a concrete solution for the storage and manipulation of data

regarding the lifecycle of the creation of safety-related software systems, in

accordance with the IEC 61508 standard. While our work has been primarily

driven by IEC 61508, the tool infrastructure developed is generic and can be

applied to any standard whose evidence information requirements have been

captured using a UML class diagram.

The work done in this project provides the basic functionality of an information

repository, which can be extended in future work. Possible extension of the

information repository might include adding logic for checking that the data in

the repository is consistent with constraints other than the ones defined

through the multiplicities of the associations in the input UML class diagram

(which are already ensure through the consistency check), as well as

functionality for generating reports based on the data in the repository.

Improvements of the design and usability of the user interface might also be a

topic of future work. Adding new functionality to the repository is made easy

by the fact that the information repository is implemented from scratch as a

Java project, using essential technologies that simplifies the development of

the repository and its functionality. In addition, new functionality can be

generated through model-to-text transformation, which greatly reduces the

time spent creating functionality dependent of the data structure defined in

the UML class diagram.

66

67

Appendix A

A.1 Learning Materials
During the course of this project there was a returning need to learn about the

various technologies used. The amount of written material varied from

technology to technology, some had numerous tutorials available online,

while others had just a reference manual.

A.1.1 Kermeta

The written material regarding Kermeta consisted for the most part of the

Kermeta reference manual [41]. I also used the Kermeta online forums [42] to

ask for help regarding issues that were not described in the reference

manual. Since Kermeta is mostly used for scientific work, there was not much

written material available.

A.1.1.1 Using Kermeta’s Aspect-oriented Features

When first starting the project I had no experience with Kermeta, and I

struggled a bit to get started. The Kermeta documentation was also limited,

and there were no good tutorials for programming in Kermeta. I visited the

online forums of Kermeta, asking for pointers on where to start. There, I got a

reply from Didier Votisjek, one of the creators of Kermeta, leading me on to

Kermeta’s aspect-weaving functionality, which allows the creation of new

operations within the elements of the input model.

68

A.1.2 Hibernate

In order to learn how to set up Hibernate I mostly used the Hibernate

reference documentation [43]. I also did some web searches in order to work

out minor problems, and when this was not sufficient I asked for help at the

Hibernate community forum [44].

A.1.3 Struts

When learning about Struts I used two online tutorials, mainly [45], but also

[46] as a reference. I also used parts of the official Struts tutorials [47].

69

A.2 Example of use
This section contains an example of the use of the tools described in this

thesis, both the model transformations, and the information repository. This

example is slightly simplified, and is intended to give the reader a concrete

understanding of how the tools work, through showing the most important

facets of the tools.

The transformation tool and the information repository are distributed as an

archive file, containing two other archives, “UML2RDB-Transformation.zip”,

and “InformationRepository.zip”. The first of these contains the model

transformations, and the other contains a folder skeleton of the information

repository, containing the libraries required by the repository, as well as an

Eclipse project configuration file.

Figure A.1: The archive file containing the source code.

A.2.1 Model Transformations

To run the model transformations, one needs Eclipse installed, with plugins

for Kermeta and MOFScript. The plugins can be installed through Eclipse’s

download manager.

70

Start by importing the “UML2RDB-Transformation.zip”-file into the Eclipse

workspace, by selecting “File”, then “Import”, and then “Import existing

projects from Workspace”.

Figure A.2: Import existing project into workspace.

71

Figure A.3: Import UML2RDB-Transformation.zip into the Eclipse workspace.

This will import the project used for the model transformations. The outline of

this project is shown in Figure A.4.

72

Figure A.4: Outline of the Eclipse project containing model transformations.

The project has three main folders, (1) “metamodel”, containing the meta-

model of the intermediate model, (2) “model”, which is where the input and

output models are stored, and (3) “src”, which contains the model

transformations, implemented in Kermeta and MOFScript.

The imported project does not contain any input model; the next step will be

importing this into the workspace. This is done by right-clicking the “model”

folder, and selecting “Import”, then “File system” or “Archive file”, depending

on how the model is stored.

73

Figure A.5: Import input models into workspace.

In this example, the conceptual model based on the IEC 61508 standard will

be used as input. Any UML class diagram conforming to the constraints

defined in Chapter 3.2.2.1 can be used. It is important to import the applied

profiles used when creating the input model, along with the model itself.

Next, the name of the input model must be specified in the Kermeta

transformation. This is done by adding the name of the input model in the

loadInputModel() operation of transformation.kmt.

74

Figure A.6: Specify the input model to load in transformation.kmt.

When the input model has been imported into the workspace, and its name

specified in the model transformation, the transformation can be run. This is

done by right-clicking transformation.kmt, and selecting “Run As”, then “Run

as Kermeta Application”.

Figure A.7: Running the Kermeta transformation.

The transformation will then start transforming the elements of the input

model, outputting text to the console as it runs.

75

Figure A.8: Example of text output from the Kermeta transformation.

Once the transformation is completed, the output is stored in the file “out.xmi”,

in the “model” folder of the project. An example of the contents of “out.xmi” is

shown in Figure A.9.

Figure A.9: Example of the contents of “out.xmi”.

76

This model is in turn used as the input for the model-to-text MOFScript

transformations.

In the “src”-folder of the project, there are several MOFScript model-to-text

transformations, each producing different artifacts used in the information

repository. The model-to-text transformations can all be executed by running

one transformation, “RDBMSModelToText.m2t”, which initiates the execution

of the other model-to-text transformations by method calls. To execute this

transformation, open it in the Eclipse editor. Upon opening a MOFScript file, a

toolbar for compiling and running MOFScript transformations appear above

the editor. The toolbar is shown in Figure A.10.

Figure A.10: The MOFScript toolbar.

Before running the model-to-text transformations, some setup work is

required:

1. Unzip the “InformationRepository.zip” archive file to a chosen folder.

2. Open “RDBMSModelToText.m2t” in the Eclipse editor.

3. Change the value of the variable “baseFolder” to the folder chosen in step 1.

4. Set the package name of the information repository in the variable “package”.

5. Set the variable “packageFolder” to be the same as the package name, only with “/”

as separators, instead of “.”.

An example of steps 2-5 is shown in Figure A.11.

77

Figure A.11: Setting up the model-to-text transformations.

These variables are used to define the package of the output Java-files, as

well as the file paths for the output files. In this case, the base folder where

the code for the repository will be stored is defined as “C:/work/”. The base

package name is “no.simula.modelme.safetyinformation”, with a

corresponding folder structure defined in the “packageFolder” variable.

Once this is done, the model-to-text transformations can be run. This is done

by clicking the middle (play) button of the MOFScript toolbar. Then choose

the input file to be used in the transformation, in this case “out.xmi”, which is

the output of the model-to-model transformation.

78

Figure A.12: Select input file for model-to-text transformations.

The model-to-text transformation produces a number of text files, into

subfolders of the folder defined as the base folder. This folder will contain the

Eclipse project with the code of the information repository. In order to import

this project into Eclipse, we must first specify the name of the project. This is

done by editing the “.project”-file found in the root of the base folder (from

“InformationRepository.zip”). We change the value of the name-tag to specify

the name of the project. (The name that is given will form part of the URL

when publishing the repository on a web-server.)

79

Figure A.13: Give the Eclipse project a name.

Now the project is ready to be imported into Eclipse. This is done by selecting

“File”, then “Import”, then “Import existing projects into workspace” (see

Figure A.2).

Then, specify the root directory of the project, and import it into the

workspace.

.

80

Figure A.14: Specify the root directory of the project.

Now, the project is imported into Eclipse, ready to be published on a web-

server.

81

Figure A.15: Outline of the Eclipse project containing the repository code.

In order to publish the repository as a website, a server is needed. In this

project, Apache Tomcat was used. To create a new server, open the

“Servers” view of Eclipse, shown in Figure A.16.

82

Figure A.16: Open the servers view.

In the Servers view, right-click and select “New”, then “Server”.

Figure A.17: Create a new server.

83

Select “Tomcat v6.0 Server”, and then “Next”.

Figure A.18: Select a server.

Then, add the project to the list of configured resources, as shown in Figure

A.19, and click Finish.

84

Figure A.19: Add the project to the list of configured resources.

Now, the server is shown in the “Servers” view. Right click the server and

select “Start”.

85

Figure A.20: Start the server.

The server will now publish the application, making it locally available through

a web-browser. If all goes well, the status of the server will change from

“Stopped”, to “Started, Synchronized”, as shown in Figure A.21.

Figure A.21: The server has started, and published the application.

86

87

A.2.2 Information Repository

Once the model transformations have been executed, and the information

repository system assembled and published on a web-server, the user can

start adding and manipulating data in the repository, through the use of a

web-based user interface. In order to access this user interface, the user

must open a web browser, and input an URL in the address bar. The URL is

of the form “http://{server address}:{port}/{name of project}”, where server

address is the IP-address or URL to the server, port is the port defined in the

Tomcat servlet container, and name of project is the name of the Eclipse

project holding the repository.

Figure A.22: Example of URL to access the repository

Upon loading the URL, the web-page shown in Figure A.23 is shown.

Figure A.23: The user interface of the database browser.

88

At the top of the page, there are two links, one for browsing the database

(which is what is already showing), and one for running the consistency

check. Below these links is a headline, telling the user what page is showing.

Below this, the user interface is divided vertically, where the left side contains

a list of the tables in the database, and the right side is where the entries in

the selected table will be shown.

The rest of this section contains an example of use of the information

repository.

If the user wants to browse the entries of a table, this can be done by clicking

the table name in the list on the left.

Figure A.24: Entries of the “AgentType” table.

89

Here, the table “AgentType” is selected. When this is done, the entries of the

table will be shown on the right. Since there are no entries in the table yet,

only the names of the columns in the table are shown.

To add an element to the selected table, the user can press the “New”-button.

Upon doing this, the entries of the table are replaced with a form for adding a

new entry, shown in Figure A.25.

Figure A.25: Form for adding an entry in the “AgentType” table.

Here, the user may input values for the columns in the new entry, and either

submit to add a new entry, or cancel to go back to browsing. If the entry is

added to the table, it is shown when selecting the table in the list, as shown in

Figure A.26.

90

Figure A.26: The added entry in the “AgentType” table.

Since “AgentType” corresponds to an enumeration, entries in this table can

be used as values for columns of other tables, in this case the “Agent” table.

Figure A.27: View of the (empty) “Agent” table.

91

The “Agent” table does not contain any elements yet, so only its attributes is

showing. In addition to the mandatory attributes, two other attributes are

shown; Type and Type name. These both represent the same column, which

contains a reference to an entry in the “AgentType” table. The “Type” field will

contain the uuid of the “AgentType” entry referenced in the “Agent” entry, and

the “Type name” field will contain the name of this “AgentType” entry. When

adding a new entry to the “Agent” table, a form similar to that of “AgentType”

is shown, with the addition of a drop-down select box for selecting an entry in

the “AgentType” table. This is shown in Figure A.28.

Figure A.28: Adding of a new entry in the “Agent” table.

In Figure A.28, the name and description of a new entry in the Agent table are

input from the user. Additionally, an “AgentType” is selected in the “Type”

field of the “Agent”. In this case, the type of the agent is “Software developer”,

as added earlier. Once the entry is submitted, it can be seen when browsing

the “Agent” table. This is shown in Figure A.29.

92

Figure A.29: “Agent” table with one entry.

The added entry contains the name and description specified when adding,

and also both the uuid and name of referenced “AgentType” entry is shown.

Next, we might want to associate our new agent with an entry in another

table. This is done by adding an entry in one of the tables corresponding to

an association. “Agent” is part of multiple associations, for instance

“Agentpossessescompetence”. In order to add an entry to this table, it is first

selected in the list of tables. Then, the creation of a new entry is initiated by a

click on the “New”-button, and the form for adding an entry is shown.

93

Figure A.30: Adding an entry in a table corresponding to an association.

We can then give the association a name, and select our agent “John” as one

side of the association. When trying to select an entry for the other side of the

association, which is referencing an entry in the “Competence” table, a

problem occurs: There are no entries in the “Competence” table. Still, it is

possible to save the entry, without a value in the column referencing an entry

in the “Competence” table. The added entry is shown in Figure A.31.

94

Figure A.31: An (incomplete) entry in a table corresponding to an association.

If we now choose to run a consistency check over the data in the repository,

by clicking the “Consistency check”-link, the page shown in Figure A.32 is

displayed.

Figure A.32: Page for initiating the consistency check.

Here, we can initiate the consistency check by clicking the “Start”-button.

When we click the “Start”-button, a confirmation dialogue pops up, shown in

Figure A.33.

95

Figure A.33: Confirmation dialogue for running the consistency check.

Depending on the size of the database, the consistency check might take

several minutes. In this case, with only two entries in the database, it is

executed fast, and a report is presented. The resulting report is shown in

Figure A.34.

Figure A.34: Consistency check report.

The report from the consistency check tell us that there was an inconsistency

in the database, more specifically a null-value in the connector end

“competence”, in an entry of the table “Agentpossessescompetence”, with

uuid 98304. This is considered an inconsistency, since it is meaningless to

have an association with only one of its connector ends defined. The

consistency check also checks that the multiplicity constraints of the UML

class diagram used as the basis for the data structure of the repository are

upheld. This means that if a connector end has an upper bound of 1, then

each element of the connector end should be referenced in at most one entry

in the table representing the association. If the lower bound is 1, then each

entry of the referenced table must be referenced in at least one entry in the

table representing the association.

96

To fix the inconsistency uncovered by the consistency check, we have two

options: (1) delete the entry causing the inconsistency, and (2) make the

entry consistent by adding a reference to an entry in the “Competence” table.

An entry can be deleted by clicking the “Delete”-link to the right of the entry

when browsing the table (see Figure A.31).

In this example we chose the second approach, and in order to make the

data consistent, we need to create an entry in the “Competence” table. The

adding of this entry is shown in Figure A.35.

Figure A.35: The adding of an entry in the “Competence” table.

Once we have a “Competence” entry to reference, we can go back to the

“Agentpossessescompetence” table and edit our entry to make it reference

the new entry in the “Competence” table. This is done by clicking the table

name to show the entries, and then selecting the “Edit” link to the right of the

entry in question. Once this is done, the form used for adding new entries is

shown, populated with the information stored in the entry. This is shown in

Figure A.36.

97

Figure A.36: Editing an entry in the “Agentpossessescompetence” table.

Here we can select our newly added entry in the “Competence” table, and

then save the entry by clicking submit. Once this is done, the changes are

reflected when browsing the table.

Figure A.37: The updated entry in the “Agentpossessescompetence” table.

If we now re-run the consistency check, we get the report shown in Figure

A.38, saying that no inconsistencies were found in the database.

98

Figure A.38: Report after the re-run of the consistency check.

This concludes the example of use of the tools developed during the work

described in this thesis.

99

List of Figures

Figure 1: The architecture of the information repository.

Figure 2: The main program flow of the model transformations.

Figure 3: RDBMSMM.ecore.

Figure 4: Parts of a UML class diagram.

Figure 5: Parts of an instance of RDBMSMM.ecore.

Figure 6: Program flow of the model-to-model transformation.

Figure 7: Artifacts generated by MOFScript transformations.

Figure 8: Program flow of the MOFScript transformations (2 main variants).

Figure 9: User roles in the transformation and the information repository.

Figure 10: Overview of the technologies used and the context of their use.

Figure A.1: The archive file containing the source code.

Figure A.2: Import existing project into workspace.

Figure A.3: Import UML2RDB-Transformation.zip into the Eclipse workspace.

Figure A.4: Outline of the Eclipse project containing model transformations.

Figure A.5: Import input models into workspace.

Figure A.6: Specify the input model to load in transformation.kmt.

Figure A.7: Running the Kermeta transformation.

Figure A.8: Example of text output from the Kermeta transformation.

Figure A.9: Example of the contents of “out.xmi”.

Figure A.10: The MOFScript toolbar.

Figure A.11: Setting up the model-to-text transformations.

Figure A.12: Select input file for model-to-text transformations.

Figure A.13: Give the Eclipse project a name.

Figure A.14: Specify the root directory of the project.

Figure A.15: Outline of the Eclipse project containing the repository code.

Figure A.16: Open the servers view.

Figure A.17: Create a new server.

100

Figure A.18: Select a server.

Figure A.19: Add the project to the list of configured resources.

Figure A.20: Start the server.

Figure A.21: The server has started, and published the application.

Figure A.22: Example of URL to access the repository

Figure A.23: The user interface of the database browser.

Figure A.24: Entries of the “AgentType” table.

Figure A.25: Form for adding an entry in the “AgentType” table.

Figure A.26: The added entry in the “AgentType” table.

Figure A.27: View of the (empty) “Agent” table.

Figure A.28: Adding of a new entry in the “Agent” table.

Figure A.29: “Agent” table with one entry.

Figure A.30: Adding an entry in a table corresponding to an association.

Figure A.31: An (incomplete) entry in a table corresponding to an association.

Figure A.32: Page for initiating the consistency check.

Figure A.33: Confirmation dialogue for running the consistency check.

Figure A.34: Consistency check report.

Figure A.35: The adding of an entry in the “Competence” table.

Figure A.36: Editing an entry in the “Agentpossessescompetence” table.

Figure A.37: The updated entry in the “Agentpossessescompetence” table.

Figure A.38: Report after the re-run of the consistency check.

101

References
(All referenced websites were accessed 29/4/2011.)

1: Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L., and Coq, T. (2010)

Characterizing the Chain of Evidence for Software Safety Cases: A

Conceptual Model Based on the IEC 61508 Standard, in 3rd IEEE

International Conference on Software Testing, Verification, and Validation

(ICST'10), Paris, France, April 2010.

http://modelme.simula.no/assets/ICST10.pdf

2: http://www.iec.ch/functionalsafety/

3: http://www.uml.org/

4: http://www.iec.ch/index.htm

5: Redmill, F. (2000) Installing IEC 61508 and Supporting Its Users - Nine
Necessities, in the Fifth Australian Workshop on Safety Critical Systems
and Software, Melbourne, Australia, 24 November 2000

http://www.csr.ncl.ac.uk/FELIX_Web/4B.IEC 61508 Nine Necessities.pdf

6: http://kermeta.org/

7: http://www.eclipse.org/gmt/mofscript/

8: http://www.java.com/

9: http://www.hibernate.org/

10: http://struts.apache.org/

11: http://www.hibernate.org/about

12: http://db.apache.org/derby/

13: http://www.oracle.com/technetwork/java/javaee/jsp/index.html

14: http://docs.jboss.org/hibernate/core/3.3/reference/en/html/queryhql.html

15: http://www.kermeta.org/examples/ (class2RDBMS example)

16: http://www.springsource.org/

17: http://modeling-languages.com/content/uml2db-full-code-generation-sql-

scripts-databases

18: http://umt-qvt.sourceforge.net/

http://www.iec.ch/functionalsafety/
http://www.uml.org/
http://www.uml.org/
http://www.uml.org/
http://www.uml.org/
http://www.uml.org/
http://www.uml.org/
http://www.uml.org/
http://www.uml.org/
http://www.iec.ch/index.htm
http://www.csr.ncl.ac.uk/FELIX_Web/4B.IEC%2061508%20Nine%20Necessities.pdf
http://kermeta.org/
http://kermeta.org/
http://kermeta.org/
http://kermeta.org/
http://kermeta.org/
http://kermeta.org/
http://www.eclipse.org/gmt/mofscript/
http://www.eclipse.org/gmt/mofscript/
http://www.eclipse.org/gmt/mofscript/
http://www.eclipse.org/gmt/mofscript/
http://www.eclipse.org/gmt/mofscript/
http://www.eclipse.org/gmt/mofscript/
http://www.eclipse.org/gmt/mofscript/
http://www.eclipse.org/gmt/mofscript/
http://www.eclipse.org/gmt/mofscript/
http://www.eclipse.org/gmt/mofscript/
http://www.eclipse.org/gmt/mofscript/
http://www.eclipse.org/gmt/mofscript/
http://www.java.com/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://struts.apache.org/
http://struts.apache.org/
http://struts.apache.org/
http://struts.apache.org/
http://struts.apache.org/
http://struts.apache.org/
http://struts.apache.org/
http://struts.apache.org/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://db.apache.org/derby/
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://docs.jboss.org/hibernate/core/3.3/reference/en/html/queryhql.html
http://www.springsource.org/
http://www.springsource.org/
http://www.springsource.org/
http://www.springsource.org/
http://www.springsource.org/
http://www.springsource.org/
http://www.springsource.org/
http://www.springsource.org/
http://modeling-languages.com/content/uml2db-full-code-generation-sql-scripts-databases
http://modeling-languages.com/content/uml2db-full-code-generation-sql-scripts-databases
http://umt-qvt.sourceforge.net/

102

19: http://www.visual-paradigm.com/product/dbva/

20: Garcia-Molina, H., Ullman, J.D. and Widom, J. (2002) Database Systems:

The Complete Book. New Jersey: Prentice Hall (pp. 65-80)

21: Garcia-Molina, H., Ullman, J.D. and Widom, J. (2002) Database Systems:

The Complete Book. New Jersey: Prentice Hall (pp. 23-59)

22: http://www.eclipse.org/

23: http://www.eclipse.org/org/

24: http://www.eclipse.org/downloads/

25: http://kermeta.org/download/

26: http://www.irisa.fr/triskell

27: http://en.wikipedia.org/wiki/IRISA

28: http://en.wikipedia.org/wiki/Kermeta

29: http://www.eclipse.org/gmt/mofscript/download/

30: http://www.eclipse.org/gmt/mofscript/about.php

31: http://java.com/

32: http://java.com/en/about/

33: http://en.wikipedia.org/wiki/Java_(programming_language)#Principles

34: http://maven.apache.org/

35: http://struts.apache.org/

36: http://tomcat.apache.org/

37: http://en.wikipedia.org/wiki/JavaScript

38: http://www.opensymphony.com/sitemesh/

39: E. Gamma, R. Helm, R. Johnson, J. M. Vlissides: “Design Patterns:

Elements of Reusable Object-Oriented Software”, Addison-Wesley, 1995

(Chapter 4)

40: http://www.oracle.com/technetwork/java/javaee/jsp/index.html

41: http://www.kermeta.org/documents/user_doc/manual/

42: https://gforge.inria.fr/forum/?group_id=32

http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://kermeta.org/download/
http://kermeta.org/download/
http://kermeta.org/download/
http://kermeta.org/download/
http://kermeta.org/download/
http://kermeta.org/download/
http://kermeta.org/download/
http://kermeta.org/download/
http://kermeta.org/download/
http://www.irisa.fr/triskell
http://www.irisa.fr/triskell
http://www.irisa.fr/triskell
http://www.irisa.fr/triskell
http://www.irisa.fr/triskell
http://www.irisa.fr/triskell
http://www.irisa.fr/triskell
http://www.irisa.fr/triskell
http://www.irisa.fr/triskell
http://www.irisa.fr/triskell
http://en.wikipedia.org/wiki/IRISA
http://en.wikipedia.org/wiki/IRISA
http://en.wikipedia.org/wiki/IRISA
http://en.wikipedia.org/wiki/IRISA
http://en.wikipedia.org/wiki/IRISA
http://en.wikipedia.org/wiki/IRISA
http://en.wikipedia.org/wiki/IRISA
http://en.wikipedia.org/wiki/IRISA
http://en.wikipedia.org/wiki/IRISA
http://en.wikipedia.org/wiki/IRISA
http://en.wikipedia.org/wiki/IRISA
http://en.wikipedia.org/wiki/IRISA
http://en.wikipedia.org/wiki/Kermeta
http://en.wikipedia.org/wiki/Kermeta
http://en.wikipedia.org/wiki/Kermeta
http://en.wikipedia.org/wiki/Kermeta
http://en.wikipedia.org/wiki/Kermeta
http://en.wikipedia.org/wiki/Kermeta
http://en.wikipedia.org/wiki/Kermeta
http://en.wikipedia.org/wiki/Kermeta
http://en.wikipedia.org/wiki/Kermeta
http://en.wikipedia.org/wiki/Kermeta
http://en.wikipedia.org/wiki/Kermeta
http://en.wikipedia.org/wiki/Kermeta
http://www.eclipse.org/gmt/mofscript/download/
http://www.eclipse.org/gmt/mofscript/download/
http://www.eclipse.org/gmt/mofscript/download/
http://www.eclipse.org/gmt/mofscript/download/
http://www.eclipse.org/gmt/mofscript/download/
http://www.eclipse.org/gmt/mofscript/download/
http://www.eclipse.org/gmt/mofscript/download/
http://www.eclipse.org/gmt/mofscript/download/
http://www.eclipse.org/gmt/mofscript/download/
http://www.eclipse.org/gmt/mofscript/download/
http://www.eclipse.org/gmt/mofscript/download/
http://www.eclipse.org/gmt/mofscript/download/
http://www.eclipse.org/gmt/mofscript/download/
http://www.eclipse.org/gmt/mofscript/download/
http://www.eclipse.org/gmt/mofscript/about.php
http://www.eclipse.org/gmt/mofscript/about.php
http://www.eclipse.org/gmt/mofscript/about.php
http://www.eclipse.org/gmt/mofscript/about.php
http://www.eclipse.org/gmt/mofscript/about.php
http://www.eclipse.org/gmt/mofscript/about.php
http://www.eclipse.org/gmt/mofscript/about.php
http://www.eclipse.org/gmt/mofscript/about.php
http://www.eclipse.org/gmt/mofscript/about.php
http://www.eclipse.org/gmt/mofscript/about.php
http://www.eclipse.org/gmt/mofscript/about.php
http://www.eclipse.org/gmt/mofscript/about.php
http://www.eclipse.org/gmt/mofscript/about.php
http://www.eclipse.org/gmt/mofscript/about.php
http://www.eclipse.org/gmt/mofscript/about.php
http://www.eclipse.org/gmt/mofscript/about.php
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://struts.apache.org/
http://struts.apache.org/
http://struts.apache.org/
http://struts.apache.org/
http://struts.apache.org/
http://struts.apache.org/
http://struts.apache.org/
http://struts.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/JavaScript
http://www.opensymphony.com/sitemesh/
http://www.opensymphony.com/sitemesh/
http://www.opensymphony.com/sitemesh/
http://www.opensymphony.com/sitemesh/
http://www.opensymphony.com/sitemesh/
http://www.opensymphony.com/sitemesh/
http://www.opensymphony.com/sitemesh/
http://www.opensymphony.com/sitemesh/
http://www.opensymphony.com/sitemesh/
http://www.opensymphony.com/sitemesh/
http://www.opensymphony.com/sitemesh/

103

43: http://docs.jboss.org/hibernate/core/3.5/reference/en-

US/pdf/hibernate_reference.pdf

44: https://forum.hibernate.org/

45: http://www.scribd.com/doc/25244173/Java-Struts-Spring-Hibernate-

Tutorial-github-com-chrishulbert-JavaTutorial

46: http://www.vaannila.com/struts-2/struts-2-example/struts-2-crud-example-

1.html

47: http://struts.apache.org/2.2.1/docs/tutorials.html

