
UNIVERSITY OF OSLO

Department of Informatics

Adaptive Compressed

Caching: Embracing

and extending for the

Linux 2.6 kernel

Master Thesis

Asbjørn Sannes

asbjorsa@ifi.uio.no

May 15, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30826695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Applications needs to have their working set in main memory to work
efficiently. When there is memory contention, data has to be read from
and written to slow backing store, such as disk. Compressed caching is a
way to keep more pages in main memory by compressing the oldest pages.
This reduces disk I/O because more of the needed data is available in main
memory. Applications that can gain most from compressed caching have low
entropy in their data and reuse recently data as a rule. Entropy quantifies
the information contained in a message, in our case a page, usually in bits
or bits/symbol. This gives an absolute limit on the best possible lossless
compression for a page. The opposite charactristics apply to applications
that perform worse with compressed caching than without it. They do not
reuse recently used data and have high entropy causing the compression to
have a bad ratio and the cache to have a low hit rate on the compressed
pages.

In this master thesis, we design, implement and evaluate compressed
caching for Linux (version 2.6.22). In our implementation, we modify the
PFRA (page frame reclaiming algorithm) to convert pages to compressed
pages instead of evicting them, and convert them back when they are ac-
cessed in the page cache. The compressed pages are kept in a list in the same
order as they are put in by the PFRA. We adapt the size of the compressed
cache by looking at how it is used, if we need to shrink the compressed cache,
the oldest compressed page is evicted.

For compressed caching unfriendly applications we extend an earlier ap-
proach of disabling compressed caching globally when it is not useful, with a
more fine-grained cache disabling algorithm. We do this by defining ”mem-
ory areas”, and disabling compressed caching for them based on their recent
behavior. We extend upon earlier approaches of compressed caching and
measure the impact on performance.

We define workloads and run tests to measure the performance of com-
pressed caching compared to an unmodified Linux kernel. We change the
amount of main memory available and the number of processes running si-
multaneously and observe the impact on the performance. We then evaluate
the results and find more than 40% reduction in running time for some tests.

We discuss our findings and conclude that compressed caching reduces
disk I/O when there is memory contention, and can therefore increase per-
formance of applications that can not keep their complete working set in
memory uncompressed, but have low enough entropy to keep it in main
memory in compressed form.

Contents

1 Introduction 1

1.1 Background and motivation 1

1.2 Problem description . 3

1.3 Outline . 3

2 Compressed caching 5

2.1 Caching . 5

2.2 Cache performance . 6

2.3 Virtual memory and paging 6

2.4 Anonymous memory . 8

2.5 File backed pages . 8

2.6 Static cache size . 8

2.7 Adaptive cache size . 9

2.8 Compression algorithms . 11

2.9 Cache unfriendly applications 11

2.10 Storing compressed pages . 12

2.11 Compressed swapping . 12

3 Linux kernel page handling 13

3.1 Page descriptor . 13

3.2 Page frame reclaiming . 14

3.3 File-backed pages . 14

3.4 Swap entries . 14

3.5 Swap cache . 15

3.6 Swapping in a page . 15

3.7 Swapping out a page . 16

3.8 Virtual memory areas . 16

3.9 Reverse mapping . 16

3.10 Read-ahead . 16

3.11 Radix tree . 17

3.12 Synchronization of dirty pages 18

3.13 Page tables . 20

3.14 Cleaning up after a process 20

I

3.15 Memory management . 21

4 Design 25

4.1 Level of abstraction . 25

4.2 Compressed page representation 26

4.3 Interception of compressed pages 26

4.4 Adding compressed pages . 27

4.5 Adaptive cache size . 27

4.6 Shrinking the compressed cache 28

4.7 Decompressing pages . 28

4.8 Cleaning up after a process 29

4.9 Truncating and deleting files 29

4.10 Disabling of compressed caching 30

4.10.1 Bad ratio . 30

4.10.2 Early bad ratio . 31

4.10.3 Bad compression . 32

4.10.4 Keeping statistics . 32

4.10.5 address space objects 33

4.10.6 anon vma . 33

4.11 Boarderline cases . 33

4.12 Read-ahead . 34

4.13 Compression algorithm . 34

4.14 Storing compressed pages . 34

4.15 The cell memory allocator . 35

5 Implementation 41

5.1 Compressed page descriptor 41

5.2 Intercepting compressed pages 43

5.2.1 Swap entries . 43

5.2.2 Dirty pages and tags 43

5.3 Area statistics structure . 44

5.4 Address space structure changes 44

5.5 Anonymous memory area structure changes 44

5.6 Profit and expense list . 45

5.7 Locking order . 45

5.8 Page cache wrappers . 46

5.9 Changes to the PFRA . 50

5.10 Compressed cache subsystem 50

5.11 Cell implementation . 60

6 Performance evaluation 67

6.1 Workloads . 67

6.2 Setup . 68

6.3 Boxplots . 69

6.4 Results . 71

6.5 Evaluation . 92

7 Conclusion 95

7.1 Summary of contributions . 95

7.2 Critical Assessment . 96

7.3 Future work . 97

References 98

A Early attempt 101

B Workloads 103

B.1 make -jX workloads . 103

B.2 sort workload . 103

B.3 sortcomp workload . 104

C Results 105

C.1 make -j3 test results . 105

C.1.1 cc 2.6.22 with 80MB 105

C.1.2 cc-lzf 2.6.22 with 80MB 106

C.1.3 cc-nodisable 2.6.22 with 80MB 107

C.1.4 vanilla 2.6.22 with 80MB 108

C.1.5 cc 2.6.22 with 100MB 108

C.1.6 cc-lzf 2.6.22 with 100MB 109

C.1.7 cc-nodisable 2.6.22 with 100MB 109

C.1.8 vanilla 2.6.22 with 100MB 110

C.1.9 cc 2.6.22 with 120MB 110

C.1.10 cc-lzf 2.6.22 with 120MB 111

C.1.11 cc-nodisable 2.6.22 with 120MB 111

C.1.12 vanilla 2.6.22 with 120MB 112

C.2 make -j2 test . 112

C.2.1 cc 2.6.22 with 80MB 112

C.2.2 cc-nodisable 2.6.22 with 80MB 113

C.2.3 vanilla 2.6.22 with 80MB 113

C.3 make -j1 test . 114

C.3.1 cc 2.6.22 with 80MB 114

C.3.2 cc-nodisable 2.6.22 with 80MB 114

C.3.3 vanilla 2.6.22 with 80MB 115

C.4 sort test . 115

C.4.1 cc 2.6.22 with 40MB 115

C.4.2 cc-nodisable 2.6.22 with 40MB 116

C.4.3 vanilla 2.6.22 with 40MB 116

C.4.4 cc 2.6.22 with 60MB 117

C.4.5 cc-nodisable 2.6.22 with 60MB 117
C.4.6 vanilla 2.6.22 with 60MB 117

C.5 sortcomp test . 117
C.5.1 cc 2.6.22 with 80MB 117
C.5.2 cc-nodisable 2.6.22 with 80MB 118
C.5.3 vanilla 2.6.22 with 80MB 118

D Code 119
D.1 CC subsystem . 119

D.1.1 include/linux/cc.h . 119
D.1.2 mm/cc.c . 122

D.2 Cell allocator . 151
D.2.1 include/linux/cell.h 151
D.2.2 mm/cell.c . 151

D.3 Page cache . 175
D.3.1 find get page() . 175
D.3.2 find get page cc() . 178
D.3.3 pageout cache() . 179

E CD-ROM 183
E.1 General overview . 183
E.2 Re-running the experiments 183
E.3 Getting help . 184

List of Figures

2.1 Page tables in the IA32 architecture 7

2.2 LRU list including compressed pages 10

3.1 Reverse mapping for anonymous pages[2] 17

3.2 Radix Tree . 19
3.3 Buddy algorithm . 21

3.4 Cache, slab and object interaction 23

4.1 A cell with fragments inside 36

4.2 Cell free lists . 37
4.3 Cell compaction . 38

5.1 Internal call-graph of the compressed cache. 52

6.1 Histogram of 2.6.22 vanilla make -j3 test with 80MB of memory 69

6.2 Boxplot introduction . 70
6.3 make -j3 with varying available memory 71

6.4 80MB with varying number of concurrent processes 73

6.5 make -j3, 80MB, vanilla kernel 74

6.6 make -j3, 80MB, compressed caching 74
6.7 make -j3, 80MB, compressed caching, nodisable 75

6.8 make -j3, 80MB, compressed caching, lzf 75

6.9 Boxplot comparison of make -j3 80MB test 76

6.10 make -j3, 100MB, vanilla kernel 77
6.11 make -j3, 100MB, compressed caching 77

6.12 make -j3, 100MB, compressed caching, lzf 78

6.13 make -j3, 80MB, compressed caching, nodisable 78

6.14 Boxplot comparison of make -j3 100MB test 79
6.15 make -j3, 120MB, vanilla kernel 79

6.16 make -j3, 120MB, compressed caching 80

6.17 make -j3, 120MB, compressed caching, lzf 80
6.18 make -j3, 80MB, compressed caching, nodisable 81

6.19 Boxplot comparison of make -j3 120MB test 81

6.20 make -j2, 80MB, vanilla kernel 82

6.21 make -j2, 80MB, compressed caching 83

V

6.22 Boxplot comparison of make -j2 80MB test 83
6.23 make -j1, 80MB, vanilla kernel 84
6.24 make -j1, 80MB, compressed caching 84
6.25 Boxplot comparison of make -j1 80MB test 85
6.26 sort, 40MB, vanilla kernel . 86
6.27 sort, 40MB, compressed caching 86
6.28 sort, 40MB, compressed caching, no disabling 87
6.29 Boxplot comparison of sort 40MB test 87
6.30 sort, 60MB, vanilla kernel . 88
6.31 sort, 60MB, compressed caching 88
6.32 sort, 60MB, compressed caching, no disabling 89
6.33 Boxplot comparison of sort 60MB test 89
6.34 sort and compile, 80MB, vanilla kernel 90
6.35 sort and compile, 80MB, compressed caching 90
6.36 sort and compile, 80MB, compressed caching, no disabling . . 91
6.37 Boxplot comparison of sort and compile test with 91
6.38 Following the cache size through a make -j3 test with 80MB

of memory . 92
6.39 Following the cache size through a make -j3 test with 80MB

of memory and no disabling logic. 93
6.40 Following the cache size through a sort of a 110MB large file

with 40MB of memory available 93
6.41 Following the cache size in the same scenario as in Figure

6.40, but with no disabling of compressed caching. 94

Chapter 1

Introduction

1.1 Background and motivation

Typical computers have less memory than many applications require, which
is very apparent when running multiple memory intensive applications at
the same time on a typical desktop. An example of this is that average
computers have about two gigabytes of RAM while simultaneously running
typical applications such as Mozilla Firefox, OpenOffice, Mozilla Songbird
and Eclipse. All of these applications use hundreds of megabytes, and caches
large amounts of data to have small latencies when the user requests infor-
mation.

When the memory usage of the running processes in a system is higher
than the physical amount of main memory, the operating system needs to
use secondary memory to meet the demand. This introduces a considerable
performance decrease for two reasons: (1) a single instruction could result in
the execution of multiple functions to locate the needed memory when it is
not already present; (2) secondary memory is most often a hard disk which
is many orders of magnitude slower to access than main memory. Every
access to memory located on secondary memory also means that the kernel
needs to make room for the data to be copied into main memory, and this
in turn means choosing what data to swap out. Denning et al. [3] describe
a working set to be the smallest amount of application data that have to be
in main memory for the application to work efficiently. Memory is divided
into basic units called pages, therefore the working set is made out of the
pages that contain the data needed to make the application work efficiently.
This working set is what we want to keep in main memory, or as much of as
possible when deciding what pages should be removed from main memory.

Performance of the policy that choose what pages are to be paged out
are measured by how many pages are read into main memory and how many
pages are paged out to disk. This is called page-traffic by Denning et al.[3]
and page fault rate in more recent[10] literature. The lower the page fault

1

2 CHAPTER 1. INTRODUCTION

rate is, the better the policy. Most policies are based on the principal of
temporal locality, which states that recently accessed pages are most likely
to be accessed in the near future. In other words we want to remove the page
that is least recently used (LRU) of the pages currently in main memory.

If the working set is bigger than main memory, even with a perfect LRU
algorithm, this will result in a decrease in performance of the application.
Most of this decrease is due to the time spent on retrieving a needed page
from disk. With the factor of 106 difference in speed between main mem-
ory and disk (typically a memory access takes 2-10 µs and a disk access
from 5 − 10ms) it is interesting to see if we could reduce disk I/O. From
an application’s viewpoint there is only one option when trying to reduce
the working set, and that is to store the information the application needs
and uses in a more compact way. This is not always possible, practically
because there are so many applications out there that we can not easily
change, and even if it were possible, it would result in less optimal opera-
tions when enough main memory is available for the working set. To reduce
memory usage for an application from the kernel’s viewpoint can be done in
several ways. The most common form for this is to have as little overhead
as possible, keeping only the necessary data for a process and keep those
internal data structures small and compact. Another way, and the topic of
this thesis, is to compress the data of an application in main memory. Since
this is done transparently to the application, it will still not make the com-
plete working set available uncompressed in main memory and it will not
reduce the page fault rate. In the case that the compression has succeeded
in compressing the application data to a size that fits in main memory, the
disk I/O will be reduced. The main obstacle to succeeding in compressing
application data into a workable size is the entropy of that data. Shannon
entropy is the minimum number of bits to represent a symbol in the data.
For example, if the data consist of only 0 and 1, only one bit is needed to
encode those two symbols. In other words if the randomness of the data
is low so is the entropy, this means that the compressibility of the data is
high. Since main memory is managed in units of pages, the entropy we look
at is per page. This means that even if the application has 100 completely
equal pages this will, for per-page compression, not make the entropy of the
application lower.

In most cases, caches in a system have close to zero cost associated with
them in terms of performance. The worst scenario for using those caches
is to not obtain any performance enhancements compared to not having a
cache. Compressed cache on the other hand has two costs: the resource cost
of main memory used and the CPU used for compression and decompression.

To summerize, the ideal application for compressed caching responds
well to LRU page replacement policies and has low entropy on a per page
basis.

1.2. PROBLEM DESCRIPTION 3

1.2 Problem description

Under high memory demand, applications suffer considerable performance
decrease due to swapping. Most of these decreases comes from disk I/O and
its related operations such as seek time and rotational delay, which means
that other resources such as CPU is idling doing nothing.

There is a possibility for performance increase by reducing page faults,
i.e. number of pages that need to be read from secondary memory. Applica-
tions that have an ideal behavior for compressed caching are most likely to
take advantage of this. For non-ideal applications there is a real chance for
performance decrease, and for these applications it is important to detect
them and work out a solution to avoid substantial performance decrease.
Behavior that is bad for compressed caching includes applications that work
on high entropy data, such as highly compressed data, where trying to com-
press them could actually end up taking more or the same amount of space
wasting CPU and even more main memory. Another example of bad behav-
ior is when the application reuses none or very few pages, which will result
in a very bad hit ratio for the compressed cache where CPU and memory is
wasted.

The size of the compressed cache is important, because the larger it is,
the more page faults occur due to less non-compressed main memory being
available. At the same time, the larger the compressed cache is, the less disk
I/O will occur if pages are being re-accessed.

Considering the evolution of hard disk speeds and CPU speed [6] we know
that CPU has had a much faster growth rate in terms of speed compared
with conventional hard disks. This means that as we end up swapping, more
and more CPU resources will be wasted. It is these resources we want to
take advantage of when using compressed caching.

There are several goals we wish to achieve with this thesis; first of all, we
want to implement compressed caching in an up-to-date modern operating
system, Linux in this case. While doing so, we want to improve upon ear-
lier work done by others. Previous works have often limited themselves to
testing one application at a time, while real world applications usually run
in parallel. We want to do some performance evaluation on this subject.

1.3 Outline

This master thesis is structured as follows. Chapter 2 gives an introduction
into concepts and problems with compressed caching. It looks at what a
cache is and how compressed caching differs from other caching. It also
briefly describes how virtual memory and paging works, which is a require-
ment for compressed caching. It also introduces earlier work on compressed
caching as well as some new concepts. Caches and types of memory already

4 CHAPTER 1. INTRODUCTION

present in the operating system is described.
Chapter 3 describes various subsystems in the Linux kernel. The idea

here is to highlight traits of these subsystems that impact how compressed
caching should be designed and implemented. It goes through the basics of
how pages are managed in Linux, how pages are reclaimed, the file cache
and how swapping is done. It also touches upon memory management and
related weaknesses and strengths with the current approach. The read-
ahead mechanisms are described for both anonymous and file-backed pages.
It also takes a look at the radix tree data structure in Linux, since this
is used throughout memory management. Synchronization of dirty pages
connected to specific files and whole file systems are also explained.

In Chapter 4 we describe the design of how Linux should be modified to
accommodate compressed caching. We start out with a general overview to
base the design on and set the level of abstraction the design should adhere
to. We then go into the reasoning around how a compressed page should
be represented. We also describe what constitutes a good size for the com-
pressed cache and how to calculate it. We briefly talk about in-memory
storage of the content of compressed pages before we examine how the com-
pressed cache will grow and shrink. When and where to do compression and
decompression and possible cache policies are discussed. Badly behaving
memory areas and corner cases are described, as well as a design of the cell
memory allocator and its inner workings.

Chapter 5 contains thorough explanations of the modifications and ad-
ditions needed to implement compressed caching in the Linux kernel. We
go into details on the interception of pages that are being looked up and
how the profit lists are maintained. We also describe changes necessary for
policy based decisions. The representation of a compressed page is explained
in detail. The cell memory allocators layout, functions and algorithms are
described in detail.

In Chapter 6 we go through what kind of workloads we want to test and
why we choose those. The actual setup is described and explained. Some
problems that we have met during testing are explored briefly before we go
into the actual runs and their parameters. We show, explain and evaluate
our results.

Chapter 7 presents the conclusions where we go through contributions,
critical assessment of how this thesis has transpired and suggest future work
around compressed caching.

Chapter 2

Compressed caching

In this chapter, we give an introduction into what compressed caching is
and how it works. We start with explaining what caching is and how per-
formance is measured. Next, we give a brief introduction of virtual memory
since this is one of the fundamental techniques needed to implement com-
pressed caching. We then go into the two types of pages we are interested in
storing in the compressed cache: anonymous and file backed pages. Another
important aspect of compressed caching we look at is how much memory
is used by the compressed cache. We visit those topics in the static cache
and adaptive cache size sections. We then describe some earlier results on
compression algorithms and what are important aspects of choosing an al-
gorithm for use with compressed caching. The topic of cache unfriendly
applications is visited and some previous solutions to this problem are de-
scribed. How compressed pages are stored in main memory has a significant
impact on compressed caching and two previous works on this topic are dis-
cussed. In the last section, we also present related work such as compressed
swapping.

2.1 Caching

The main purpose of caching is to mitigate the speed difference between
different types of storage. It uses the fact that recently used data is most
likely to be used again in the near future, and thus should be the data that
is kept available.

The larger the difference in speed between two storage media, the greater
the potential benefit from a cache is. This is the reason we see caches
between CPU registers and main memory and main memory and disk, in
which both cases there is an order of magnitude difference in speed.

The L1-L3 memory cache helps performance by keeping recently accessed
main memory in faster and more expensive memory. This is to level out
the impact of accessing memory instead of registers on the CPU. Another

5

6 CHAPTER 2. COMPRESSED CACHING

commonly known cache is the one located on hard disks, which keeps recently
used blocks on the disk in memory. This is typically 8 to 32 MB of RAM in
todays disks.

Both caches mentioned so far are hardware based, but there are also
caches that are created by the operating system: namely the file cache. The
file cache is an extension of the disk cache in many ways, it caches recently
used files and directories in memory so that we do not have to access a slow
disk the second time we read the same file. It can also delay writes for some
time to optimize writing to disk.

2.2 Cache performance

Depending on what our goals are we decide what constitutes a good cache.
The common goal is to reduce the cost of accessing data stored on another
storage medium. The cost could be measured by different parameters, e.g.;
if you already have two ways of accessing the Internet, one which pays per
megabyte and is really fast, and a slow one with a flat rate, the answer to
which one has the least cost is not a straight cut answer: If the cost is time,
the fast one is the obvious choice. If the cost is money, the slow one. Inside
a computer however, the performance is most often measured in time and
the caches are there exclusively to reduce the amount of time spent on data
stored on different and slower storage media.

2.3 Virtual memory and paging

In most of today’s architectures memory is divided into units called pages.
The size of a page can vary between a few fixed sizes, where the commonly
used size are just referred to as pages and the larger ones, in Linux, are
called ”huge” pages. The most common page size is 4096 bytes and is used
for multiple architectures such as the IA32. The ”huge” pages can often
have sizes of 2 or 4 MB. These pages, however, are not evicted from main
memory, and are not focused upon in this thesis.

The idea behind virtual memory is that a memory address in virtual
address space can map into any page. This also includes pages that are not
present in main memory. Since each process has its own address space, it is
protected from being modified by other processes.

A computer can not have enough physical memory to let two or more
applications use the amount of memory needed to fill the address space. This
is not needed, as most applications use less memory and the virtual pages
used do not need to have a physical page equivalent available at all times. If
there is insufficient main memory to hold all pages of the application, some
can be marked as non-present and stored in alternative storage. On the next

2.3. VIRTUAL MEMORY AND PAGING 7

virtual address

31 12 022

1023

0

page directory

12 031

present
2 111 9

accessed cache disable WT user/super read/writedirty0 0
8 7 6 5 4 3 0

available

1023

0

page table

031 12

1023

0

page

0

4095

page

0

4095

index into page directory
index into page table

base address for page

offset into page

page table base address

present
3 2 1

available
11 9 7 5 4

WT user/super read/write0
8

4k/4MB cache disableaccessed
6
0

0

0

page table

1231

%cr3

pa
ge

 d
ire

ct
or

y
ba

se
 a

dd
re

ss

Figure 2.1: Page tables in the IA32 architecture

subsequent page access the operating system will read the page back into
main memory and mark it as present.

To be able to implement virtual memory there has to be support in
both the hardware and the operating system. The memory management
unit (MMU) is responsible of translating memory accesses to their physical
pages and causing an interrupt if there is an error condition.

On most available architectures the translation is done by looking up
the virtual address in page tables to find the physical page. The page tables
can consist of multiple levels.

A virtual address lookup in the IA32 architecture is done as follows (See
Figure 2.1: First the MMU (memory management unit) have to find the
page directory (first level), the CPU has a register dedicated for this. Then
it will use the 10 most significant bits of the address to look up what page
table (second level) contains more information. Then the next 10 bits are
used to lookup, in the page table, what physical page the virtual address
refers to. Error conditions that can happen during a lookup are access
violations or pages that are not present, this error code is available when
servicing the interrupt.

Segmentation is found on several CPUs, but is not used much in Linux,
which is the focus of this thesis. Linux sets up the global descriptor table
in such a way that both kernel code (run in ring 0 on IA32) and user space

8 CHAPTER 2. COMPRESSED CACHING

code (run in ring 3 on IA32) have the same view and maps the complete
address space. If the application wants to use segmentation there is a system
call, called modify ldt(), provided to alter the local descriptor table. Most
applications uses a flat memory model that does not directly modify segment
registers.

2.4 Anonymous memory

Anonymous memory is memory that is private to the process(es) and not
related to any file, or, defined in another way: memory that would be lost if
the process was terminated. These are the most obvious pages to put into
the compressed cache, and are those pages that usually end up in the swap
area when there is memory contention. Clean anonymous pages are pages
that have already been swapped out to disk, and have not been modified
since, when such a page is evicted from memory it is just discarded as it
would not make sense to rewrite the same data to the same place in the
swap area again.

2.5 File backed pages

File backed pages are pages that belong to the file cache. They are used to
cache the content of recently used files. The pages that belong to the file
cache are perhaps not so easily connected with pages that should be put
into the compressed cache, however Castro et al.[8] discovered that there
are large benefits to be gained by compressing the file backed pages as well.
Like anonymous pages, file backed pages can also be considered clean and
unmodified. Most file backed pages are clean because we read files more
often than we write them, although this is workload dependent.

Clean file backed pages can be discarded on eviction because they are
already on disk. Compressing them will keep them longer in the file cache,
making it more likely that they will be reused.

2.6 Static cache size

When creating a cache by using main memory, the question of how large
the cache should be, is the first to be asked. The answer depends on several
trade-offs such as how much the workload running is reusing earlier accessed
pages, and how much of the working set could have been in uncompressed
main memory if the cache would have been smaller.

Two cases that demonstrate what must be known about workload be-
havior to be able to set a static cache size: if the workload running is not
reusing the pages, no cache will work efficiently, and the optimal static cache
size is 0. If the workload could be running with the complete working set in

2.7. ADAPTIVE CACHE SIZE 9

memory when none of the memory is used for the cache, then the optimal
size would again be 0.

The first approaches[4] tried with a static size and experimentally found
the optimal size, but quickly came to realize that the optimal size varied
from workload to workload. This meant that an alternative method had to
be found, namely adaptive compressed caching.

2.7 Adaptive cache size

Adjusting the size of the compressed cache by looking at how the cache is
being used is an area of great importance. Adapting the cache size for the
current workload was proposed by Douglis et al.[4]. Later a scheme to that
works was proposed and simulated by Wilson et al.[12] and then adapted
and implemented by Castro et al.[8] for Linux 2.4. The adaptive scheme
has been shown to work more optimally than any static allocation (with the
exception of specific corner-cases) for a lot of applications.

To decide if the cache should be larger or smaller, a cost analysis is done.
If the current workload would benefit from a larger cache it is enlarged, if it
does not it is reduced in size. Wilson et al. [12] online cost/benefit analysis
uses recent program behavior to predict near future behavior. They do this
by splitting up pages in memory in three categories (see Figure 2.2): (1) the
uncompressed pages available to processes, (2) the compressed pages that
could have been uncompressed in memory had it not been for the pages
used for the cache also called the expense list in later work1, and (3) the
compressed pages that would not have been in memory if there was no
compressed cache, called the profit list.

They then collect statistics on what categories have been recently ac-
cessed and perform an analysis based on this. They compare the cost of
compression and decompression of the recently accessed pages in the ex-
pense list and the potential cost of performing I/O to retrieve the recently
accessed pages in the profit list. If the cost of the expense list is larger than
the cost of the potential I/O of the profit list, then it would obviously be
a benefit to reduce the size of the cache. If the saved cost of accessing the
profit list is larger than the cost of accessing the expense list, it could be a
benefit to allow the cache to be larger. They do a ”what if” analysis and try
out different target sizes for the cache, choosing the one with the smallest
cost.

Castro et al.[8] implementation considers the order of which the com-
pressed cache expense and profit lists are accessed and have come up with
the following heuristic: if a page has been read from the profit list, allow the
cache to grow. The compressed cache will only grow when the VM tries to
evict a page from main memory. After two consecutive pages accessing the

1Castro et al.[8] coins the term expense and profit lists

10 CHAPTER 2. COMPRESSED CACHING

pages in LRU ordering

uncompressed expense

compressed cache least recently used

profit

Figure 2.2: LRU list including compressed pages

expense list, the cache is not allowed to grow. When the compressed cache
is not allowed to grow and there is not enough space in the cache to store a
newly evicted page, one or more compressed pages in the cache have to be
evicted to make room for a new one. After three consecutive accesses to the
expense list, the cache is actively reduced in size by compacting wasted space
in the storage, and if that is not sufficient by evicting the oldest compressed
pages first.

To understand what is happening we look closer at what behavior makes
the compressed cache grow and what makes the compressed cache shrink.
When the profit list is often accessed, new pages are allowed in the cache.
If the profit list is accessed often compared to the expense list, new pages
are allowed in the cache. If the expense list is accessed more, the cache is
shrunk one compressed page at a time. If there is a mixture of accesses the
size of the cache is kept constant. This means that the decisions are based
on very recent behavior and can quickly jump from a growing trend to a
shrinking trend. However, the decisions made only affect a limited number
of pages, and so a temporarily wrong decision does not affect the global
trend substantially. If we compare this to the cost analysis we are doing,
much of the same reasoning applies: when the current size adds to the cost
it is reduced and when it is beneficial it is grown.

Tuduce et al.[11], which focuses on large data sets, uses a different ap-
proach to adapting the size. Their main concern with earlier approaches is
that calculating if a page is in the profit list is a O(n) operation which will
not work well with very large memory sizes. In their approach ”zones” of
main memory is allocated or freed from their compressed cache in order to
grow or shrink it. Their zone size is 4 MB as default, and shrinking and
growing is done in such bulks. They grow and shrink the cache based on
how much free space is available within the cache, if there is more than four
”zones” worth of free space a zone is freed, if there is less than one ”zone”
worth of free space left a new zone is allocated and added to the cache.

2.8. COMPRESSION ALGORITHMS 11

2.8 Compression algorithms

To make compressed caching worthwhile, it is obvious that the cost of doing
so must be less than the gain. The cost consists of meta-data overhead to
describe compressed pages, CPU time to compress and decompress pages
and extra number of page faults. The gain consist of less time spent waiting
for data on disk. There are multiple algorithms to do compression, which
one to choose for compressed caching is a balance between multiple factors:
compression time, compression ratio and decompression time. Compression
time plus decompression time must obviously be less than read/write I/O
time, or else the use of compressed pages would be slower than just swapping
them in and out. The compression ratio must be high enough so that the
meta-data overhead of storing a compressed page and the content of the
compressed page together is smaller than the original page, so that it actually
uses less main memory.

Castro et al.[8] tested two compression algorithms: LZO and WKdm.
They came to the conclusion that compression rate is more important than
the speed of the algorithms. This is true for two reasons: (1) all the com-
pression algorithms are used compress and decompress faster than accessing
the data on disk, and (2) the hit ratio of the compressed cache is be higher,
and as a direct consequence the profit list is larger and thus getting more of
the hits.

2.9 Cache unfriendly applications

There will always be workloads that do not benefit from compressed caching,
and even get a detrimental effect on their performance. What these applica-
tions have in common is that they do not reuse the pages that are put into
the cache often enough to make up for the cost of compressing the pages.

Unlike most other caches there is a cost associated with putting pages
into a compressed cache, namely compression and main memory usage. This
means that pages that get evicted from the compressed cache without be-
ing reused only gives us a cost and no benefit. Castro et al.[8] discovered
that the most common scenario where this happens is with clean pages;
they limit the impact of such applications by detecting when too many
clean pages are evicted from the cache versus how many are put into the
cache. When such an event happens, they disable compressed caching for
clean pages. To re-enable compression of clean pages they track the clean
pages that are evicted without being stored in the compressed cache and
enables compressed caching again when they see that enough of the recently
evicted ones are restored. Castro et al.[8] performance evaluated applica-
tions that were 40.9% slower with compressed caching to 0.06% slower when
disabling compression with their heuristic.Unfortunately, in their implemen-

12 CHAPTER 2. COMPRESSED CACHING

tation this is done system-wide, which means that parallel processes that
could be benefiting from compressed caching is getting affected negatively
by this. Turning off compressed caching on a finer grained scale is therefore
one of our goals in this thesis’ implementation.

2.10 Storing compressed pages

Multiple ways of storing compressed cache has been tested in earlier works;
Castro et al.[8] with their cell structure and Tuduce et al.[11] with their
”zones”. Their main concern is fragmentation when continually storing and
freeing compressed pages of variable size.

Tuduce et al.[11] has an additional concern with systems with large
amounts of memory. The ”zones” data structure allocates large memory
areas (4 MB) called zones, each zone is divided into blocks. When a com-
pressed page is stored in the ”zones” data structure it is only stored within
one zone to make it easy to free a zone without consulting multiple zones.
The data for the compressed page is stored in multiple blocks that are linked
together. This makes sure that the most internal fragmentation that can
happen is one block per compressed page.

The cell structure is described in detail in Section 4.15 and Section 5.11
and is the data structure used for this thesis implementation of compressed
caching.

2.11 Compressed swapping

Compressed caching is not to be mistaken with compressed swapping even
tough they share some characteristics: They both compress and decompress
pages, and in some cases compressed swapping also stores them to memory.
When compressed swapping is used to store pages in memory the main
difference between it and a cache is that a compressed swapping does not
evict pages from the swap to disk, while a compressed cache continually
purges least recently used pages to disk when needed. Compressed caching
can be seen as an extension of the kernels LRU lists, while compressed
swapping can be seen as a fixed size area in memory.

Chapter 3

Linux kernel page handling

We are using Linux 2.6.22 which was the newest available kernel from
www.kernel.org when the final implementation of the master thesis was
started. In this chapter, we will look at how the Linux kernel handles pages,
especially how swapping and caching is performed. In the next chapter,
we alter these methods and structures to enable us to perform compressed
caching.

We start out describing the basic structure of how pages are represented
in the Linux kernel. We then present, on a high level, how pages are re-
claimed in Linux. We then talk about what pages are part of the page
cache, such as file-backed pages and anonymous pages. Next, swap and the
swap cache is discussed and how it used to swap pages in and out of main
memory. Virtual memory areas is then explained followed by how pages
points back to them with reverse mapping. We then visit the topic of read-
ahead of pages and how this is used to limit disk seeks. Next, the radix-tree
data structure is discussed in detail followed by how it is used to synchronize
dirty pages to disk. We then talk about what happens when a process is
terminated and its related pages must be dereferenced. This is followed by
a large section of how memory management is done in Linux. It starts by
talking about how pages are allocated and then how smaller allocations are
done on top of allocated pages in the SLAB allocator.

3.1 Page descriptor

Each page frame is described by a page descriptor; this serves multiple
purposes, first of all it tells us which page it is, what it is used for and
it protects against simultaneous access. The number of page descriptors
to allocate is fixed and dependent on how much main memory is in the
computer.

13

14 CHAPTER 3. LINUX KERNEL PAGE HANDLING

3.2 Page frame reclaiming

The PFRA1 (Page Frame Reclaiming Algorithm) is run to free up pages
to the system when there is memory pressure. It is a global page frame
reclaiming algorithm, in other words it looks at whole state of the system
when choosing what pages. In comparison local PFRAs only look at the
pages of the current process to decide which pages to evict. Linux im-
plements a least recently used PFRA which is implemented, by looking at
non-frequently used pages and freeing them. How they are freed depends on
what they represent: for anonymous user mode pages (pages not mapped
to any file or block device) it will swap out the pages to a swap area; for
dirty pages (pages that have been altered) containing mapping of files, block
devices or inodes, it will write it back to the device. Pages that have not
been altered (not dirty) can just be discarded, because they can be read in
again. The PFRA is run from two contexts: (1) the PFRA is run regularly
from the ”kswap” kernel thread to preempt running out of memory. (2) on-
demand when trying to allocate pages when there is little or no free pages
left.

3.3 File-backed pages

To achieve good performance, part of often used files are kept in memory in
Linux. These pages can, if they have not been modified, be removed from
main memory without being written back to the device holding them. When
a page is part of a file it has an address space object and an index associated
with it, where the index is the position within the address space. All pages
that are part of the same file share the same address space object, but with
a different index. When reading from a file, the address space object of that
file’s inode is consulted; it first checks if the page is already in memory by
trying to look up a page using the index, if it is not then a new page is
allocated and the page is read from the file system. A radix tree, which
will be described in detail in a later section, is used to store and efficiently
lookup files in an address space object.

3.4 Swap entries

Linux manages available swap storage in swap areas, which are divided into
slots where pages can be stored. Each swap area is mapped onto a block
device. A swap entry consists of two parts: a swap area and the slot number
within that area. A swap entry uniquely identifies a page slot and is therefore
stored in the page table entries for pages which are not present in memory.

1This term is coined by UTLK[2] and describes the complete system involved in freeing
of pages in Linux.

3.5. SWAP CACHE 15

This information can then be used to retrieve the correct page during a
fault.

The same way a page can be pointed to by several PTEs (page table
entries), a swap entry can also be pointed to by several PTEs. This makes
it necessary to keep track of the number of references to the entry. This
is provided by swap duplicate() and swap free(): swap duplicate() increases
the reference count for the swap entry. swap free() decreases the reference
count for the swap entry, and if it is the last reference it also frees the swap
entry. Any page which is part of the swap cache also keeps a reference to the
swap entry. The reason for this is to avoid situations where a swap entry is
reused before it is removed from the swap cache.

3.5 Swap cache

To avoid race conditions where a page is retrieved multiple times from swap
in parallel, Linux implements a cache which lets other processes see if a
swap entry is already in main memory, or is being read back into memory.
To make this work all processes have to check the cache and grab a lock
on the page before swapping it in or out. If the page is not in the cache,
which could be the case when swapping in a page, a new page is allocated
and put into the cache before doing the actual read, so that other processes
can find the page. The cache is an address space object and the storage,
manipulation and lookup of swap entries are implemented as a radix tree in
the swap cache. All pages in main memory that have a non-present swap
entry in any page table is part of the swap cache. More about the radix-tree
data structure can be found in later sections.

3.6 Swapping in a page

After a page fault the kernel identifies a page as a swapped out page by
looking at the PTE of the faulting address. The PTE will contain a swap
area identifier and a page slot number within that swap area. The kernel
will then invoke do swap page() which tries to look up the page in the swap
cache (by using the swap area and slot number) and if necessary read the
page back from swap. If a page was in the cache it is marked as active
and a reference is taken for it. It then updates the PTE before returning
to user space. It is worth noting that when a swap cache hit is detected
(another process is swapping in the page) it is considered a MINOR fault,
while having to swap in the page itself is considered a MAJOR fault.

16 CHAPTER 3. LINUX KERNEL PAGE HANDLING

3.7 Swapping out a page

The page frame reclaiming algorithm chooses which pages to be reclaimed
and calls the swapping subsystem to swap them out. The swap subsystem
first adds the page to the swap cache to keep other processes from swapping
it in from an uncompleted write. It then updates all PTEs mapping the
page with the identifier of where the page can be found (swap area and slot
number). It finally writes the page out to the swap area, removes the page
from the swap cache and frees the page.

3.8 Virtual memory areas

VMAs (Virtual memory areas) are non-overlapping linear memory regions in
a process. The vm area structure is used to describe what a region contains,
the attributes and access permissions for the page frames and the extent
of the region. For VMAs containing anonymous memory the behavior of
the region is also described, for example it may be known that it will be
accessed in a sequential or random pattern or that it is allowed to expand.
For VMAs mapping in files or part of files, each VMA describes what file
object is used, the offset into it and the start address and end address of the
region. This information is available during page faults, which is needed to
satisfy the request.

3.9 Reverse mapping

An anonymous page can be part of several virtual memory areas if a memory
area is shared by multiple processes or if the same memory area is mapped
into the same processes at several locations. When removing such pages
from the page cache all the references to a page must be found and altered.
To do this, Linux uses reverse mapping: since VMAs can come and go, there
is a separate structure called anon vma which keeps a list of VMAs that can
share pages. Each shared anonymous page will point to this structure so
that only the VMAs in the list need to be checked to see if they contain
present references in their page tables. The Figure 3.1 shows the relation
between pages, virtual memory areas and the anon vma structure.

3.10 Read-ahead

Linux supports read-ahead for both files and pages stored in swap. The
idea is to utilize sequential reads from hard disks, which is known to be
more efficient than multiple single I/O requests. To do this Linux guesses
which pages are going to be read in next. This is implemented by appending

3.11. RADIX TREE 17

vm_area_structvm_area_struct

descriptor

page

mm_struct

pgd

page tables mm_struct

pgd

page tables

page
shared

page
shared

anon_vma

anon_vma_node

anon_vma anon_vma

vm_mm vm_mm

index

vm_start

Figure 3.1: Reverse mapping for anonymous pages[2]

adjacent pages to the original request so that they can be read from disk at
the same time, saving precious seek time.

For swapped out pages this means unrelated pages can be swapped in,
which is why it is limited to pages that do not introduce any seeking. When
a swap entry is requested to be swapped in, other nearby pages are added
to the request by increasing the slot number of the original swap entry to
create a new one. This new swap entry is then checked to see if it is valid.
If it is and no corresponding page is in memory the entry is added to the
original request. New swap entries are generated until an invalid entry is
generated or the generated entry is already available in the swap cache.

For file-backed pages the read-ahead scheme is a bit more extensive;
pages read ahead can include pages that will need a seek depending on how
large the read-ahead window for that particular file is. The size of the read-
ahead window is decided by inspecting earlier behavior of that file descriptor,
if the file is used randomly the read-ahead can be disabled completely.

3.11 Radix tree

A radix tree is a commonly used search tree in Linux. Given an index,
the radix tree can return a pointer. Or given a tag it can return groups of
pointers belonging to that tag. Each node in a tree contains an array of
64 pointers, called slots, and a bitmap of length 64 for each possible tag.
In other words each node has 64 pointers coupled with bits describing if
each pointer belongs to a tag or not. The height of the tree is dependent
on the largest value of an existent index and 2height∗base gives the largest

18 CHAPTER 3. LINUX KERNEL PAGE HANDLING

possible index the tree can accommodate without making it taller. The
base is the number of bits used as an offset into the slots and also decides
how many slots per node there is. The base is 6 as default for the Linux
implementation.

To do a lookup in the tree we take the 6 least significant bits of the index
and use these as the offset into the array of the root node and follow that
pointer to the next level of nodes. We then look at the next 6 bits and use
that to find the next node and so on. To terminate the look up, we check if
the least significant bit of the pointer is set, if it is, it is a direct pointer and
instead of looking at the next node, the pointer itself is returned with that
bit reset. This gives us the limitation of only being able to store pointers
with the last bit set to 0, in other words aligned to a two byte boundary.

If we follow Figure 3.2 trying to lookup a single pointer we start out with
an index of 32 bits and a tree with height 3. The height of the tree tells
us that the largest index in the tree is at-least smaller than 218 or else the
tree would need to be higher. It uses the bits 0-5 to lookup the slots of the
root node. It finds a pointer that is not a direct pointer and follows that to
the next node. It then uses the bits 6-11 as the offset into this new nodes
slots. It again finds that is an indirect pointer and follows it to the next
node, which has height 1, uses the bits 12-18 and finds the corresponding
slot containing a direct pointer. Finally it resets the direct pointer bit and
the result is returned.

We can also follow a lookup for dirty pages with Figure 3.2: we look
through the dirty tag bitmap and find that the first entry in the bitmap is
set. Since it is not a direct pointer we follow the pointer to the next node.
We look at the new dirty tag bitmap, finding the third entry set. Again the
pointer is followed to the last node where one slot is found with the dirty
tag set. If we are doing a range lookup, called a gang lookup, one would
continue looking through the bitmap for more slots with the dirty bit set
(none in Figure 3.2 on the facing page). Then go up to the previous node
and continue looking there and so on until enough slots have been found, or
the root node dirty tag bitmap has been fully examined.

3.12 Synchronization of dirty pages

To improve system performance dirty pages are generally not written di-
rectly to disk. This is to take advantage of other modifications to the same,
or closely related pages happening within a short time-frame. This results in
there being a considerable amount of dirty pages spread across files and file
systems on the system. For file-backed pages that are dirty it is important
to have a mechanism that finds them and synchronizes them to disk. The
reason for this is to keep data from being too out of sync on disk compared
to in memory. There are two instances where this happens: the explicit

3.12. SYNCHRONIZATION OF DIRTY PAGES 19

012 618243130

..

..

Root Node

..

..

Node

Pointers: ..

..

Node

..

..

Node

..

..

Node

Height: 3

Height: 1 Height: 1

Height: 2

Index

bit

Height: 2

Dirty

Pointers

Dirty

DirtyDirty

PointersPointers

Pointers

Dirty

Figure 3.2: A radix-tree with height 3 and tag support.

20 CHAPTER 3. LINUX KERNEL PAGE HANDLING

synchronization where an application asks the kernel to make sure the data
so far has been written to disk, and the implicit synchronizing which hap-
pens regularly to avoid loosing too much work on hardware failure or power
outages.

For file specific explicit synchronizing where only one file is asked to be
synchronized, the address space object of that file is consulted and the tag
feature of the radix tree (see Section 3.11) is used to easily find every dirty
page.

To synchronize the complete system, every super-block must be con-
sulted and all of their dirty inodes must be inspected. If it is an implicit
synchronization, how long since the inode was dirtied is checked and very
young dirty nodes are skipped. For each inode that is going to be synchro-
nized, the tag feature of the radix tree is used to efficiently to find those
pages. Implicit synchronizing happens at a configurable interval, and is typ-
ically set to a few seconds. The default limit of how old a dirty page can be
before it is forced to be synchronized is 30 seconds.

3.13 Page tables

Linux provides a unified view of page tables by dividing it up into four levels:
page global directory, page upper directory, page middle directory and page
tables. They all contain pointers to the level below; the PGD (page global
directory) contains pointers to the PUD (page upper directory), and PUD
to the PMD (page middle directory) which finally points to the page table.
For each level of directory a number of bits used per level is set, this is the
number of bits used as an index into the corresponding directories. For 32 bit
IA32 architecture, which only has a two level page table, the number of bits
for PUD and PMD are set to 0. This effectively disables the PUD and PMD
and the compiler will in most cases efficiently compile the corresponding
code away completely.

3.14 Cleaning up after a process

When a process terminates, all resources referenced by it must be deref-
erenced and sometimes freed. Virtual memory areas and their pages and
swap entries are dereferenced. This is done by going through every virtual
memory area and all of their pages by exhaustively following page upper
directory through page middle directory and finally the page tables looking
for both present and non-present pages.

When non-present pages are found that have a swap entry, the reference
of that swap entry must be freed. This is done in free swap and cache()
where it is checked if the swap entry is the last reference and if the page it
represents is in the swap cache. If it is the last entry, it is made available

3.15. MEMORY MANAGEMENT 21

First allocation

Legend

Second allocation

Third allocation

16

32 32 32 32 32 32 32 32

64

32

161616
8

8

4

8

8

(a) (b) (c) (d) (e) (f) (g) (i)(h)

8

8 8

88 8

8

4 4
4

8

8

8
16

4
4

8

Figure 3.3: Shows different stages of page allocations, [10]

for allocation. If the page is in main memory it is removed from the swap
cache and then freed.

While doing this, locks are taken for the MM (memory management)
structures and the local TLB (the look-aside buffer) lock is taken. To avoid
all the locking the virtual memory areas are freed in bulk after MM and
TLB locks are unlocked.

3.15 Memory management

Linux uses the buddy algorithm to manage physical pages of memory. The
buddy allocation algorithm works accordingly: round up the requested allo-
cation size to the next power of two, then find the smallest free piece which
is large enough for the allocation request. If that piece is not equal in size
to the rounded up allocation, divide the free piece into two. If it still is not
the same size, continue to divide until this is true. When freeing a piece
check if the neighboring piece, a buddy, is free also. If it is, merge with it
to create a free piece with twice the size.

An example of how this works, taken from Tanenbaum et al.[10] goes as
follows (See Figure 3.3): say you have 64 contiguous free pages making out
the initial free piece, and you get a request for a 6 page allocation; you first
round up that allocation to the nearest power of two, in this case we get 8.
The first and only free piece we find is 64 pages long (a). It is larger than
the allocation of 8 we need, so we divide it into two 32 pages long (b) pieces
and look at one of them. 32 is still larger than 8, so we divide it again to 16
(c), and then to 8 where we now have the size we need and allocate it (d).
When a second allocation is requested, that is rounded up to 8 pages, it is
clear that it can be provided directly (e). On a third allocation of 4 pages,
the smallest piece we find is 8 pages, so we need to divide it again resulting
in two 4 page pieces where we can use one for our allocation (g). Next we
see what happens when we free an earlier allocated piece: first the second
allocated piece is freed (h), it looks at its buddy, but sees that it is still in

22 CHAPTER 3. LINUX KERNEL PAGE HANDLING

use. Then the first allocated piece is freed, when it looks at its buddy and
sees that it is free it merges the two buddies resulting in a free 16 page piece
(i).

This scheme however results in internal fragmentation for allocations
that are not the power of two, wasting memory. To avoid this Linux makes
the unused part of an allocation, called a slab, available to the SLAB allo-
cator. For example an allocation request for 5 pages, rounded up the actual
size of the allocated piece would be 8 pages, where there would be a slab of
3 pages.

The SLAB allocator is based on the observation that some fixed size
data structures are allocated, initialized and deallocated repeatedly. In other
words when we have the same type of fixed size data structure, such actions
could be optimized in two orthogonal ways: (1) most importantly we can
keep the freed allocated area intact until an allocation is requested for the
exact same size. This lets us pack such data structures tight without any
internal fragmentation. (2) only initialize a data structure if the memory
area allocated has not been used for such a data structure before. For this
to work the data structure must alaways be in a consistent state on free.

The memory areas allocated by the SLAB allocator are called objects
and are grouped into caches as seen in Figure 3.4. Each cache descriptor
describes what kind of object is in the cache with attributes such as the size
of the objects, the needed alignment of the objects and so on. Additionally
the cache descriptor keeps track of slabs belonging to the cache and free and
allocated objects.

Each cache is private to its object type: reusing the same cache descriptor
for different types of objects of the same size is not recommended. It is
therefore important to know when to use it and when not to. For fixed non-
dynamic sized data structures that are rapidly freed and allocated it is a
good solution to make a private cache. The interface for such allocation and
deallocation is kmem cache alloc() and kmem cache free() where the cache
must be specified to return the correct type of object. Note that we do not
need to specify the size or the alignment requirements of the object, because
this is already described by the cache descriptor.

To handle requests that are rarely asked for, a set of fixed size caches
have been made available. Such requests need to be rounded up to the
nearest size available. In Linux these sizes are part of the power of two
series starting from 32 (25) and ending with 4194304 (222). This however
often results in internal fragmentation, but always less than 50%. The 50%
guarantee is a natural result of the power series; we will never round up
an allocation request to be more than twice the size since this would mean
that the request was already a power of two, and no rounding up should be
needed. The interface for such allocations are kmalloc() and kfree() without

3.15. MEMORY MANAGEMENT 23

slab

slab

slab

slab object

object

cpage

cpage

cpage

"size−2048"

"cpage_cache"

Figure 3.4: Cache, slab and object interaction. Shows two caches, the
cpage cache is a cache for the struct cpage, which is fixed size. The cpages
are allocated using kmem cache alloc(). The other cache ”size-2048” is one
of the caches used for rare non-fixed size allocations and includes objects of
sizes between 1024 and 2048 bytes long, allocated with kmalloc().

24 CHAPTER 3. LINUX KERNEL PAGE HANDLING

a reference to the cache to be used, as this is inferred by the size of the
allocation.

Chapter 4

Design

We looked at how Linux works in the previous chapter, and focus now on
how we can alter and make a design that will achieve our goals. In the
next chapter we will look at the implementation details of this design. The
intention is to use an adaptive cache size in the same way as Castro et al.
[8] with an expense and profit list. The policies for turning on and off the
compressed cache follows the same reasoning, but is extended to be more
fine-grained.

First we set a level of abstraction for how the compressed cache shall
be implemented. Since we are going to compress pages, we describe what
is needed to represent them in memory. Next step is how to intercept page
accesses and what Linux subsystems we can use for this purpose. We then go
into how pages are inserted into the compressed cache followed by how the
size of the cache size is decided and manipulated. We then describe in what
circumstances compressed pages are decompressed. In the next section, we
give an account of when we want to disable compressed caching, why and
what kind of information we need to do so. We continue with known corner
cases of the design followed by some notes on what needs to be changed
to make read-ahead still work. We briefly note that memory usage of the
compressed cache must be accounted for to accurately update the profit
list. Next, we go through problems with storing compressed pages and what
behavior is expected of them, followed by a detailed design of the cell data
structure.

4.1 Level of abstraction

To avoid detailed architecture dependent code, choosing an appropriate level
of abstraction to implement our goals is important. If we work directly with
page tables and their entries (IA32 architecture) or similar low-level architec-
tural features, we would end up implementing the same thing for each and
every architecture which supports virtual memory in Linux. Fortunately,

25

26 CHAPTER 4. DESIGN

by looking at how page handling is done, we found that by intercepting
swap-outs (for anonymous memory) and page removals (for mapped pages)
at their cache lookup, we can have a natural architectural-neutral design.
OLPC’s1 compressed cache uses this and is the inspiration for doing it this
way.

4.2 Compressed page representation

Linux already has a page descriptor for in-memory pages, which has a lot of
attributes and features that are not needed when a page is compressed. The
page descriptors are also preallocated to the number of pages present in the
system, where the number of compressed pages can vary. For these reasons,
we need to make our own lightweight page structure for compressed pages
which only include the needed information (struct cpage).

The cpage structure should have an LRU order and provide features
enabling us to do the calculations needed to evaluate the size of the com-
pressed cache. It should also tell us where and how the compressed page
data is stored.

4.3 Interception of compressed pages

We introduce the compressed cache as an extension of the swap cache and
file cache. By looking at the mechanism of how those caches are used, we
want to alter them in such a way that compressed pages can be stored in
the cache. This means that we have to alter the code paths used to access
the page caches in such a way that when we encounter a compressed page,
it is transparently uncompressed and replaced by the uncompressed page in
the page cache.

The main data structure used by the page caches is the radix tree (Sec-
tion 3.11) and the page descriptor. In our implementation of compressed
caching the compressed cache is an exclusive cache, so that there can log-
ically only exist either a compressed page or an uncompressed page in the
cache for a particular entry.

We notice two things about the data structures: (1) all the page descrip-
tors are located on at least four byte boundaries. (2) the radix tree uses the
last bit of the stored pointers internally. This means that at least the two
last bits of a page descriptor pointer will be 0 and that we can not use the
last bit. If we make sure the compressed page descriptors are also aligned
on four byte boundaries we can use the second bit to differentiate between
compressed and uncompressed pages. This makes it possible to store both

1Nitin Gupta has implemented a compressed swap area, called compressed cache spon-
sored partly by OLPC.

4.4. ADDING COMPRESSED PAGES 27

compressed and uncompressed pages mixed in the cache, and uncompress
transparently if we alter all code paths accessing the caches.

The swap cache is used to identify wheter a swap entry has the corre-
sponding page in memory or not. Usually, when a cache hit occurs a page
descriptor is returned. A modified version needs to check if it is a compressed
or uncompressed page and then decide what to do. In the straightforward
case, we want to return a page that can be used. In other words, if we
find a compressed page, we allocate a new page, decompress the compressed
page into it and return an uncompressed page. Under other circumstances,
the lookup is only done to see if a page is in the cache. When doing such
lookups, it could be a waste to decompress a compressed page that will not
be used.

Both the file cache and the swap cache uses the address space objects to
lookup if a page is already in memory. The swap cache uses one object for
all the swap areas with the swap entry as the unique identification of pages.
The file cache uses one address space object per file and the offset into the
file modulo page size as the unique page identifier. The same reasoning
altering the cache lookup functions apply to the file cache and swap cache.

4.4 Adding compressed pages

Compressed caching is an extension of the normal LRU implementation of
the Linux kernel, and tries not to affect the order of which pages are removed
from the page caches. We could fetch pages back from swap to grow the
cache, but to get a clear benefit from this we would need to track pages
not residing in memory and it could be a quite expensive waste of resources
with meta-data overhead. Instead we alter the PFRA to give us pages to
compress where it would normally remove the oldest pages from the cache.
We let the PFRA add more and more pages until the compressed cache can
not or is not allowed to grow anymore, we then start paging out the oldest
compressed pages to leave it at a constant size. If the PFRA fails to insert
pages into the compressed cache, the pages are paged out in the same way
as usual.

4.5 Adaptive cache size

We divide pages in the compressed cache into two lists. The expense list
consists of pages that would have been uncompressed in memory if there
were no compressed cache. The profit list consists of pages that would not
be in memory if there were no compressed cache.

Accessing pages in the expense list is a cost (not only because of the
name) because they would be available without any cost if there were no

28 CHAPTER 4. DESIGN

compressed cache. Now they represent two costs: compression and decom-
pression. Accesses to profit list is beneficial as long as I/O is slower than
compression and decompression combined. This is a requirement for com-
pressed caching to work.

When a page is put into the compressed cache LRU list, it should be
marked as an expense page. When the position of a page is larger than the
pages used for compressed caching, it is moved to the profit list and marked
as such. This means we have to keep track of how many compressed pages
are in the expense list when adding and removing compressed pages from it.

In an early attempt to implement adaptive cache size in this thesis, we
tried to follow Wilson et al.[12] closer, but ran into problems with how to
time the block I/O subsystem in the kernel. More on this can be read in
Appendix A.

Working from Castro et al.’s[8] adaptive compressed cache resizing we
want to implement the same scheme: a lot of accesses to the profit list should
result in a larger compressed cache, and a lot of accesses to the expense list
should result in a smaller cache. This is done by allowing the cache to
grow when there are concurrent accesses to the profit list, and shrinking
it by evicting the oldest page on each access to the expense list after two
consecutive accesses. Accesses to the lists should only be counted when the
pages are going to be used. In other words, pages accessed because they are
removed from the compressed cache should not count as an access to either
of the lists.

4.6 Shrinking the compressed cache

If the compressed cache size is larger than the size we want, we need to
discard compressed pages from our cache. We remove pages from the com-
pressed cache in LRU order, removing the oldest compressed page first. If
we need to make the compressed cache smaller to make room for a new com-
pressed page, we continue to remove the least recently used page until there
is enough room. When removing a compressed page to shrink the cache,
we note that we are removing an unused page from the cache belonging
to a specific memory area, which may be a file or some anonymous region.
Shrinking also means that the size of the expense list becomes smaller, so
we have to mark the pages earlier marked as expense ones to be profitable
ones.

4.7 Decompressing pages

There are two places where an application can cause decompression of a
page: (1) when accessing an anonymous memory area where the page is
compressed, and (2) when reading from a part of a file that has compressed

4.8. CLEANING UP AFTER A PROCESS 29

pages. If an application tries to access an anonymous page which is com-
pressed, it will cause a page fault, which in turn will try to swap in the
non-present page. The swap-in routine will consult the swap cache, which
will contain the compressed page (struct cpage) instead of a normal page.
When a compressed page is found, a new page is allocated and the com-
pressed page is decompressed into that. The swap cache is then updated to
include the real page instead of the compressed one. The compressed page
is then freed from the compressed cache.

If a compressed page is discovered when accessing a file, similar action to
that of anonymous memory happens, except that instead of a swap cache’s
address space object we are accessing the file’s address space object.

Decompression will also occur when removing dirty compressed pages
from the compressed cache LRU. This happens while shrinking the cache to
make room for newly compressed pages. Only dirty compressed pages result
in decompression since the clean pages can be freed without being written
back to disk. To avoid handling all the I/O directly in the compressed
cache subsystem, we instead mark pages that need to be written back as
ex-compressed pages and reinsert them at the end of the kernel LRU list;
This leaves the I/O to the standard PFRA functions.

4.8 Cleaning up after a process

When implementing compressed caching there are several issues we need to
consider regarding the termination of a process. The most notable is that
when we are freeing compressed pages, the process could end up sleeping.
Unfortunately, all the code paths for cleaning up after a process termina-
tion disables preemption before running the code paths touched upon by
compressed caching. To solve this, the arguments in the call path should be
changed to include a list, where compressed pages can be added. The com-
pressed pages in the list can later, when preemption is no longer disabled,
be freed.

Another issue is the fact that if we do not add a special case for the cache
lookups of non-present pages, we could end up decompressing a compressed
page that we will be removed without being used. To avoid this, we make al-
ternative cache lookup functions that just return the compressed page struct
to be freed. This should be implemented by altering free swap and cache().

4.9 Truncating and deleting files

When a file is truncated or deleted all the pages containing contents from
the file must be found and freed. This is done by using the page cache
interface function find get pages() which in turn do a range lookup against

30 CHAPTER 4. DESIGN

in the radix-tree belonging to the address space object of the file. If we con-
tinue to use find get pages() all the compressed pages will be decompressed
before being freed, which is a waste of resources. To get around this limita-
tion we introduce a new function, called find get pages cc(), that deletes all
compressed pages it finds in a range, and returns the rest.

4.10 Disabling of compressed caching

There are several cases where compressed caching does not work very well,
and where disabling the compressed cache would be beneficial. In earlier
work, such as Castro et al.[8], it was found that disabling the compressed
cache when a lot of unused pages where removed from the cache without
being used, reduced the overhead of compressed caching considerable for
some workloads.

Consider two applications running at the same time, one being a per-
fect candidate for compressed caching and the other being the worst case
application. If we only look at the output from the cache, we could end up
disabling the compressed cache for both applications. In this thesis, we try
to avoid that by dividing the memory into different areas and observe and
adapt the behavior of those independently.

We look at one anonymous memory region as one memory area and a
file as another, and accumulate statistics on recent behavior per memory
area, instead of per process or globally. This makes sense in several ways.
First of all, files are hard to account to any one process because they can
be used by several processes. In addition, if one process uses several files,
some files’ access patterns may match compressed caching perfectly while the
others have a worst-case pattern. Mixing their statistics will make it harder
to notice one behavior over the other. The same applies to anonymous
memory, where memory can be shared among several processes, or, where
one area of the application is accessed in a compressed caching friendly way
and another is not.

We try to detect areas that are not benefiting from compressed caching
because they are reusing too few pages compared to what is being put into
the compressed cache. We call this bad ratio and we will go into more detail
on that in the next section.

Another problem we could run into is uncompressible data that will only
waste CPU resources. If a memory area has high entropy we want to detect
this to stop wasting time trying to compress it. We talk more about that in
Section 4.10.3.

4.10.1 Bad ratio

Design of fine-grained clean page disabling for file pages is an extension of
global clean page disabling by Castro et al.[8]. Instead of doing it on a global

4.10. DISABLING OF COMPRESSED CACHING 31

scale for the complete system, we do it for each memory area.

We store recent history of used and unused pages that have gone through
the cache for the specific area. Used pages are those that are decompressed
and accessed, while unused are those that are not used (other than to be
written to disk) after exiting the compressed cache. When the ratio of un-
used pages is higher than a specified threshold, the compression is disabled,
and later evicted pages from that area will only be present in the compressed
cache as a marker, used to continuously reevaluate a potential ratio of used
pages. When this ratio is above a certain threshold, the compressed cache
is again enabled for that area.

An issue that could arise when compressed caching is disabled for an
area, is that the area keeps getting markers in the compressed cache at such
a high rate that it pushes out actual compressed pages. This means that we
have only reduced the problem of cache unfriendly areas. To remedy this,
we will limit how many markers for a particular memory area are allowed
to be in the compressed cache at the same time. This means that when
we are removing pages from the compressed cache, we need to account this
information into the statistics for the memory area.

Another corner case that can happen with bad hit ratio detection, is
when only one memory area is getting pages into the cache, and this area
is accessing the pages in a compressed caching unfriendly way. Consider a
process that continuously reads from a file that is larger than the compressed
cache can store and that the process starts to read from the beginning of
the file when it reaches the end of the file. First, the memory area would go
into an ”early phase” (described in the next section), and a limited number
of pages from the file will be put into the compressed cache. Since no other
processes are pushing pages through the compressed cache, those pages will
stay in the cache. After a while, the process starts reading the file from
the beginning again, finding pages in the compressed cache. Now the cache
hit ratio is good enough to put more pages into the compressed cache, and
more pages are put into the cache until they are removed from the end of
the cache. This means that the cache will compress a lot of pages that it
will not reuse. We already have a solution ready for this called the ”early
phase”, so instead of going back to the normal state of a memory area when
a good enough ratio is detected, it will go back to the ”early phase”.

4.10.2 Early bad ratio

Waiting for clean pages to be pumped through the LRU before deciding to
disable compressed caching for one area can prove fatal to performance, and
may in turn falsely detect other areas as compression cache unfriendly.

When a new area gets pages into the compressed cache for the first time,
we will have an unspecified ratio of used and unused pages. We can either
go to a default pessimistic state, where compressed caching is disabled right

32 CHAPTER 4. DESIGN

away, or a very optimistic one, where we say the ratio is good until we
have some compressed pages that have been accessed or evicted from the
compressed cache. The pessimistic version could end up always delaying the
enabling of compressed caching for small files, resulting in lost potential per-
formance gains. The optimistic version could result in a complete trashing
of the compressed cache, before it is determined that compressed caching
should be disabled. The middle way is to limit how many pages a memory
area can put into the cache before the first removal by either an access or
eviction of a compressed page. We call this the ”early bad ratio” detection
and the ”early phase”.

This could give a penalty to processes in their early stages, but will
help the overall system performance. It does not, however, protect the
compressed cache against memory areas first being accessed in a certain
way, and later another.

4.10.3 Bad compression

Bad compression for certain files with high entropy is unavoidable, but it
could result in trying to compress pages that can not be compressed enough
to be put into the compressed cache. To avoid this scenario, we could stop
compression for areas that are known to give us bad compression ratios.
This would cause memory areas that change their behavior throughout their
lifetimes to never recover from a limited period of bad compression. Instead
we do two things: (1) we do not go into bad compression state before two
consecutive pages have been tried and found uncompressible, and (2) when
compressed caching is disabled due to bad compression we skip the next
couple of pages for that area before retrying compression. If all pages are
uncompressable for an area it will skip more and more pages. This gives
a moderately conservative approach to disabling compressed caching while
the memory area still gets chances to test the compression ratio to re-enable
compressed caching. A memory area that repeatably have bad compression
will be tested less and less and will not waste CPU resources.

4.10.4 Keeping statistics

To calculate the hit ratio of the compressed cache for a certain area, we
need to monitor the accesses to the cache. If a compressed page is accessed
to be evicted from main memory, we note this as an unused page. If it is
accessed to be reused by a process, we note this as a used page. When we
have disabled compressed caching for an area, we need to note the reason
and how many markers we have put into the compressed cache. This is
to know how to handle further requests to store pages in the compressed
cache. Since this information is identical between anonymous memory and
file-backed pages, we use a common structure for this called cc areastats.

4.11. BOARDERLINE CASES 33

We add these both to the address space and anon vma structure.

Bad ratio, early bad ratio and bad compression are all mutually exclusive,
in other words, only one of them is active for any given memory area at any
time. The order of preference is bad compression disabling followed by
early warning and bad ratio disabling. For early warning and clean page
compression disabling, it is important to note that statistics such as used
and unused pages are always maintained. When the compressed cache is
disabled for an area, it may not be completely exact, but it is representable.
While in a bad compression phase, the used and unused attributes of a
memory area are used to calculate when the next attempt at compression
should occur for the mapping.

4.10.5 address space objects

We turn off compressed caching for files with consistently bad compression
rates and for files having a bad hit ratio in the compressed cache. A typical
example that would exhibit such behavior is large media files being played
or recorded. When we disable compressed caching for such areas we free up
space and CPU resources for other contents.

For file-backed pages, differentiation between applications does not really
make any sense because multiple applications can have the same file open.
What we can do is to differentiate on a file-to-file basis.

To detect those scenarios some statistics must be stored per file, which
means that we have to extend the address space structure with the cc areastats
structure.

4.10.6 anon vma

The reverse mapping provides us with means we need to find out what pro-
cesses a page is used in. Since multiple processes may share anonymous
memory, keeping track for each application would be a O(n) operation. Do-
ing similar for each anonymous area (anon vma) would not only be O(1),
but also give us finer granularity, enabling us to have a policy (turn off or
on compressed caching) per anonymous memory area.

4.11 Boarderline cases

A problem that can occur with the current design is when we measure a
lot of really bad cache performance. What would happen then is that we
would have no reason to reassess the benefit of compressed caching because
the max cache size would obviously be near zero, resulting in no pages being
compressed. To get around this, we set a minimum cache size to at least
enable us to get some data on the performance.

34 CHAPTER 4. DESIGN

Few accesses to the compressed cache can make the adaptive resizing of
the cache fail in ways that makes the cache grow or shrink unbounded. If
the compressed cache is accessed in a way that allows it to grow, and then
not accessed again for a long time, it will continue to grow until it can not
allocate more memory. A similar scenario can happen when the compressed
cache is locked at a small size and then not accessed for a while. This could
result in very few pages being part of the cache. These scenarios do not
happen very often because recently used pages are often reused again.

4.12 Read-ahead

Read-ahead for anonymous pages in Linux accesses the swap cache through
the cache functions which are used to intercept compressed pages. This
would end up in decompressing compressed pages that are not going to be
used. To avoid this, the cache should only be consulted. We achieve this
by making a distinct function that will be used when we do not want to
uncompress pages. However, the cache may contain marker pages which is
not to be counted as present in the cache, so the function must also be aware
of this and remove the marker if needed.

A similar problem exists with read-ahead for file-backed pages. Since
the lookup is optimized and uses the radix-tree interface directly, it has to
be modified to be aware of marker pages.

4.13 Compression algorithm

We copy the Lempel-Ziv-Oberhumer (LZO) implementation made available
in newer kernels into our own for compressing and decompressing pages. We
also added Lempel-Ziv-Free (LZF), which is said to be faster for compression,
to be able to compare them in a compressed caching scenario.

4.14 Storing compressed pages

How compressed pages are stored is a very important issue with compressed
caching. We have two types of data that we want to store, the fixed size of
the compressed page descriptor (cpage) and the variably sized compressed
data. There are different approaches for allocating fixed sized allocations
and variable sized allocations. For frequent fixed sized and rare variable
sized allocations, the SLAB allocator is used, which is a good match for the
compressed page descriptors. For the compressed data that can vary much in
size, using the SLAB allocator would result in severe internal fragmentation.
Internal fragmentation can cause the compression itself to be a wasted effort.
A better solution would be the Cell allocator by Castro et al.[8], which can
compact the allocations when there is internal fragmentation.

4.15. THE CELL MEMORY ALLOCATOR 35

An issue related to the storage of compressed pages is the size of the
underlying data structures. If a data structure requires more than one page,
and those pages need to be physically allocated next to each other, there
is a high probability that such free pages do not exist. The larger the
allocation needed, the less likely it is that such an allocation request can be
fulfilled. As Castro et al.[8] points out, when storing compressed pages, the
best tradeoff is two consecutive pages. This makes it possible to store three
pages compressed to two thirds of a page size.

Every time we allocate or deallocate memory for compressed caching, we
should note how many pages we are using. This is to keep the expense and
profit lists correct for adaptive caching. Part of this can be implemented
in the storage data structure, where number of pages used and number of
allocations should be counted.

4.15 The cell memory allocator

The impact of internal fragmentation is much higher for compressed caching
than other allocations for two reasons. The first one is that it directly
impacts the performance of the cache. Leaving up to half of an allocated
area unused could result in the compression practically becoming zero. The
second reason has to do with how frequently such non-fixed size allocations
happen. Where normal allocations tend to be infrequent, while compressed
caching continually allocate and deallocate memory areas for compressed
pages.

The SLAB allocator used in Linux today focuses heavily on the opti-
mization of fixed sized allocations, and reverts to a power of two scheme for
dynamic allocations. This is because the allocator only has a fixed number
of different caches, that keeps ranges based on a geometrical distribution.
This is in order to keep approximately the same amount of allocations in
each cache and keep internal fragmentation low. The most interesting avail-
able sizes to look at are the sizes smaller than and equal to the page size,
because this is what we are going to compress to. The sizes available in
Linux are 32, 64, 128, 256, 512, 1024, 2048, 4096 and 81922. This means
that if we compress a page of 4096 bytes to 600 bytes, we would need to use
an allocation of 1024 bytes, a 41.4 % internal fragmentation, and reduces the
compression ratio from 6.83 to 4.0. In another example where we compress
a page of 4096 bytes to 2100 bytes, the compression ratio would effectively
be 1, which would actually be a net loss considering the meta-data overhead
that results from representing the compressed page.

When we look closely at our usage of allocations and deallocations in
compressed caching we find that we always write once after compression

2The size of a page can be different on other architectures, on IA32 the most common
is 4096 bytes.

36 CHAPTER 4. DESIGN

free fragment

in use fragment 1

in use fragment 2

in use fragment 3

Legend

page

page boundary

cell head free fragments

physical consecutive pages

in use fragments

Figure 4.1: When used with compressed caching, each fragment would be
a compressed page. Even free space (the blank squares) are represented
by fragments. The meta-data of a cell is in the beginning of the first page
allocated for the cell.

and read once for decompression. This gives us the opportunity to use a
more strict special purpose interface compared to the general kmalloc() and
kfree() interface of the SLAB allocator.

The cell data structure in our implementation is based loosely on the
description of Castro et al.[8] cell data structure. The main problems the
cell data structure is trying to solve is the waste of space that occurs with
the buddy allocator and the fragmentation issue.

The main design goals of the cell data structure are to be space efficient
when storing, and let us move allocations around to enable us to allocate
all the space available. A third, and obvious objective, is to make it usable
for compressed caching. Since we are not going to use it for anything else,
we can allow ourselves shortcuts to make the implementation easier.

A cell consists of a specific number of contiguous pages in memory. This
is the basic unit the memory allocator can add or remove from the allocators
control. It also gives the name to the structure. A fragment is both the
meta-data, and data of an allocation or free space within a cell as shown in
Figure 4.1.

A brief explanation of how a fragment is allocated: first, a cell with
enough space is found, then a fragment is made available within it. In the
case where a cell with enough free space does not have enough contigu-
ous space because of fragmentation, a compaction will occur where all the
fragments are moved to a new cell.

To easily find a cell with enough free space for an allocation we have
multiple lists for different ranges of available free space. If we get a request
for an allocation of 200 bytes, we know exactly which list we should be

4.15. THE CELL MEMORY ALLOCATOR 37

cell
f.s. 30

range
0−64

range

range

range

range

f.s. free space

cell cell

cellcell

cell

f.s. 50 f.s. 58

64−128
cell
f.s. 76

128−192

192−256

256−320 f.s. 310

f.s. 256 f.s. 212

Figure 4.2: When allocating 150 bytes, we see that we end up in a list that
is empty, so we go to the next list where we find a cell with 256 bytes of free
space. After the allocation, the cell now only has 106 bytes of free space
available, and should be moved to the appropriate free list with the range
64-128 (this is not done in the illustration).

38 CHAPTER 4. DESIGN

fragment 1

fragment 2

fragment 3

fragment 4

fragment 5

fragment 6

cell meta−data

fragment 6

fragment 4

fragment 2

cell meta−data

fragment 1

Before After

compaction

Figure 4.3: After a cell compaction, all the free fragments have been merged
into one big fragment, and other fragments have been copied into a contigu-
ous form.

looking at, as shown in Figure 4.2. If we do not find any available cells in
the original list, we go to the next list that can contain cells with more free
space than the previous. In the case where none of the lists contains a cell
with enough free space to accommodate the requested allocation, a new cell
is allocated.

The next step in an allocation is to carve out a fragment of the cell we
have just located. We do this by going through all the fragments in the
cell. If a fragment is free and large enough for our allocation, we split the
fragment into two fragments: one for the allocation and one for the rest
of the free space. The interesting part happens if we look through all the
fragments and do not find a large enough fragment: this means that the
cell has enough free space, but not contiguous. To make use of the free
space, we have to compact the cell. After the cell has been compacted, we
try to carve out a new fragment again. This is guaranteed to work because
the free space of the cell has already told us what to expect as a minimum
of free space after compaction. The freed space can actually be larger after
compaction because we could end up with fewer free fragments, and therefore
less fragment overhead as we can see in Figure 4.3. Another reason is that
fragments can be freed while compaction occurs.

Compacting is done as follows: Walk through all the fragments in the
fragmented cell and copy the used fragments into a new cell. When this is
done, all the free space of the cell should be contained within one fragment,
ready to be allocated. Because we move not only the data of the fragment,

4.15. THE CELL MEMORY ALLOCATOR 39

but also the fragment meta-data around, we need to be able to find who is
pointing to the fragment. We solve this by having a pointer back to the user
of the fragment, and update this after we have copied the data of a fragment
from one cell to the next. This also limits us to one user as we only keep one
pointer. To avoid internal fragmentation, a compaction on a global scale
can be done, and works by taking a cell of few and small allocations and
moving the fragments to other cells with sufficient space.

For compressed caching, global compaction should be done when there
are few allocations per cell, because we expect a cell to store is minimum
two compressed pages. This is done by taking the most unused cell, and
reallocating all the fragments within it to other cells.

By limiting our allocator to what is needed for compressed caching we
make a lot of locking issues a lot easier to handle. For compressed caching
we only need to write the compressed version of a page to a memory location
once. The same goes for reading, we only restore the page once from the
allocation into a page. By doing it this way, we have effectively limited us
to only need to know where the memory is at two specific times: once while
storing and once while reading it. This means we can move an allocation
around in-between and always free after a read. This is necessary to react
to the fragmentation problem.

The public interface for the memory allocator is basic, and consists of
three functions: fragment write(), fragment readstart() and fragment readend().
The interface is meant to enforce the limitations, making it easier to use it
correctly. It is also worth noting that the reading operation should be as
short as possible, to avoid keeping cells unavailable for compaction.

Synchronization of such an allocator is a trade-off between two factors:
keeping the concurrency high and the overhead low. The first synchroniza-
tion issue we meet is when trying to locate a cell with enough free space. If
some other context tries to take the exact same cell for allocation, a lot of
failure scenarios could happen. The solution is to have a lock per list of free
cells, and remove the cell from the list before we allocate a fragment from
it. This allows us to allocate the same size at the same time. It also makes
it logically impossible to access the cell for allocation from another context.
The next problem that can occur, is when a fragment is freed from another
context. This would usually result in the cell being reinserted into a free
list. The solution is to have a cell lock, that protects the meta-data of a cell.

Fragments that are being read back or being compacted need some form
of protection, but at the same time we want to keep the overhead low. To
make this rarely needed lock as cheap as possible, we use one bit of the
pointer for the locking in a busy-wait spin-lock. The usage of the bit in the
fragment pointer means that we must always make sure that the fragment
is placed on a 2 byte boundary. This is achieved by always making sure that

40 CHAPTER 4. DESIGN

an allocation, within a cell, is a multiple of two.
The use of a busy-wait spin-lock could give us a very unfair locking

when compacting a cell. The unfairness would occur because users of the
fragments would continually take the lock on the fragments, making the
compaction (and the allocation of another user) wait for a long time. As a
direct consequence of the usage limitations mentioned earlier, this situation
will not happen because an in-use fragment will only be used once, and then
the fragment is freed, and thus unlocked. The fragment can not be part of
a new allocation, because the cell is not a part of the free lists while being
compacted, so there is no way the compaction will spin forever.

A reverse issue is when the reading of a fragment is blocked by the
compaction operation. This could occur when a cell with the fragment
would be compacted over and over again in such a way to keep the fragment
locked each time the user is trying to read it. This however is quite unlikely,
given that it would mean there are no other cells to service the allocations,
which is unlikely because the cell would get fuller and fuller and it would
get more and more unlikely that we would use that cell instead of a newly
allocated one. We have never experienced this situation.

To avoid deadlocks when locking, we need to follow a locking order. The
locking order is as follows: first the free list locks, then the cell, then the
fragment user-lock.

The locking order incurs some difficulties. For instance, we are unable
to insert a cell back into a list without releasing the lock for the cell before
taking the lock of the list. To compensate for this, we mark a cell as man-
aged, such that freeing a fragment within such a cell will not result in the
removal (and later insertion) of that cell into the cell free-lists. The context
that marks a cell as managed is responsible to put such a page back into the
free lists.

Chapter 5

Implementation

In this chapter we describe how we need to alter the Linux kernel to im-
plement the design. More specifically, details and explanations that are not
obvious, but needed to understand the implementation. In the next chapter
we evaluate the performance of the implementation.

We start by describing what is needed to be stored in the compressed
page descriptor, and how this is tied to the implementation. We then de-
scribe what functions need to be modified to intercept page cache accesses,
in addition to how swap entries and tags are handled while doing so. We
then go into the details of the memory area statistics structure (cc areastats)
and how it is synchronized. Next, we describe how the address space struc-
ture and anon vma structure is altered to store the cc areastats structure.
After that, we define what the compressed cache LRU list is, followed by an
explanation of how the profit and expense lists are updated. In the following
section we discuss the locking order within the implementation. We then go
into detail on how functions that touch the page cache currently works and
how they must be modified to work with compressed caching. We then go
into the compressed cache subsystem. Starting with the two most important
interface functions, cc store page() and cc restore(), then continue describ-
ing, in detail, the rest of the helper functions. Following the compressed
cache subsystem the cell memory allocator implementation is described.

5.1 Compressed page descriptor

We need the cpage structure to support all the functions that we are going
to perform. Because the ordering of compressed pages are important we
need to have a list available to us.

1 struct cpage {
2 union {
3 struct {
4 void ∗ compressed ;

41

42 CHAPTER 5. IMPLEMENTATION

5 int l ength ;
6 } ;
7 struct l i s t h e a d marker queue ;
8 } ;
9 struct addre s s space ∗mapping ;

10 unsigned long index ;
11 unsigned long f l a g s ;
12 union {
13 struct l i s t h e a d l i s t ;
14 struct page ∗page ;
15 } ;
16 } ;

The double linked list list will be used when compressed pages are: in-
serted into the beginning of the compressed cache LRU list, removed as the
oldest pages from the end of the LRU list, and remove compressed pages
at the middle of the list during accesses and miscellaneous cleanups. We
consider the list, when used as the LRU order of compressed pages, to be
the compressed cache.

The flags attribute stores flags such as whether a compressed page is
dirty, is part of swap cache, or is part of the profit list or expense list. The
dirty flag and swap cache flag are both meta-data taken from the original
page when they are stored in the compressed cache, and are not altered
while storing a page.

We need to know in which file or anonymous area, a compressed page
is a part of. This is to know what is pointing to the compressed page so
that we can update such pointers when we evict pages from the compressed
cache. This information is called a mapping in the Linux kernel and is
stored in the page descriptor. Compressed caching stores this in the cpage
attribute mapping. The mapping can point to both an anon vma area or an
address space object. This is differentiated by looking at the least significant
bit. Together with the mapping attribute we store an index into that area.

We also need to keep a pointer to where the compressed content of the
page is. The cell structure must be able to update this pointer so that
compressed data can be moved around. When a page is a marker page we
do not use the compressed and length attributes, so we have a union to not
waste space for the marker queue.

Under certain circumstances, when the compressed page is not part of
the LRU, it is sometimes a need to temporarily store a pointer to a page.
To avoid making the cpage structure larger than strictly necessary we put
the pointer in a union with the list pointers. The users of the page at-
tribute is find get pages() and find get tag pages(). We define this structure
in include/linux/cc.h.

5.2. INTERCEPTING COMPRESSED PAGES 43

5.2 Intercepting compressed pages

There are several places where we could intercept file-backed and swap-
backed pages, but we try to limit us as much as possible to the general page
cache access functions.

These general accessing functions are wrappers for using radix-tree func-
tions on the page cache, and are used to check if pages are already in memory.
These functions include find get page(), find lock page(), find get pages() and
find get pages tag(). All of these have to be modified for compressed caching
to work. We use the second bit, discussed in the design, to differentiate be-
tween compressed pages and non-compressed pages in the radix-tree. All of
the functions return uncompressed pages, and is altered to allocate, decom-
press into and return them.

There are other places we also need to alter to make the compressed
cache work optimally such as in the read-ahead, file truncation and process
termination cleanup routines. We have to be careful not to break depended
upon behavior of the cache interface functions. Such behavior include what
a negative answers mean. For example, if a range of pages were looked up
with find get pages() and the lookup only found marker pages, we could end
up giving an empty answer, although we may find pages if we redo the same
lookup.

5.2.1 Swap entries

Every page in the swap cache has a reference on a swap entry. When replac-
ing an uncompressed page with a compressed page, this reference is handed
from the uncompressed page to the compressed page. This is important to
notice, so that we do not leave swap entries with the wrong reference count
when cleaning up after terminated processes. The final clean up of swap
entries is done in free swap and cache().

5.2.2 Dirty pages and tags

Tagging is a feature of the radix tree that make it easy to find contents with
a specific property. For the page cache, the only tag used is the dirty tag,
which is used to find dirty pages. When we replace an uncompressed page
with a compressed page in the page cache, it is important that in addition
to storing the dirty flag in the cpage, we need to make sure that the dirty
tag is set for the new entry in the radix tree. If we are not doing this, pages
that have been modified may not be written to disk resulting in corruption
of both files and file systems.

44 CHAPTER 5. IMPLEMENTATION

5.3 Area statistics structure

For each memory area, we keep statistics in a structure called cc areastats.
The statistics include how many pages leaves the compressed cache used,
and unused for each area. We also keep track of how many marker pages
there are in each area.

1 struct c c s t a t s {
2 unsigned char f l a g s ; /∗ s t a t e f o r area ∗/
3 unsigned char used ; /∗ page−h i t compressed

cache ∗/
4 unsigned char unused ; /∗ unused removed

compressed cache ∗/
5 unsigned char markers ; /∗ marker pages pre sen t in

c . c . ∗/
6 struct l i s t h e a d marker queue ;
7 } a t t r i b u t e ((packed)) ;

The state of the area is also stored in the area statistics structure to easily
know what phase the area is in. This makes it easy to make decisions on
what to do with new pages trying to be inserted into the compressed cache.

Most of the accesses to the area statistics structure are done while al-
tering the address space object the compressed pages are a part of. For this
reason we reuse the lock for the radix-tree in the address space structure to
also be the serialization point for the area statistics structure.

5.4 Address space structure changes

The address space structure is used to look up pages that are part of the
page cache. We alter this to include statistics on hit ratio of the compressed
pages in the cache and whether compressed caching is turned on for that
address space object. We also store how many marker pages are in that
cache, so that we can limit the number. We do this by inserting struct
cc areastats into the address space structure found in include/linux/fs.h to
hold this information.

5.5 Anonymous memory area structure changes

Anonymous pages are all part of the same address space object, and are
therefore not a suitable place to differentiate between memory areas when
it comes to ratio calculation for anonymous memory.

Anonymous virtual memory areas are pointed to indirectly by the pages
via the anon vma structure. This is good because the memory area could
have been mapped by several processes or multiple times within one process.

5.6. PROFIT AND EXPENSE LIST 45

To store the statistics we want, we extend the anon vma structure by adding
the cc areastats structure.

5.6 Profit and expense list

The order of the pages put into the compressed cache is kept as intact as
possible. This is done with a logical list which consists of two lists as part
of the implementation of compressed caching. This means that when we are
referring to the LRU lists of compressed caching we are referring the expense
and profit lists.

To implement the tracking of the expense and profit lists the following
algorithm is used. When a new compressed page is allocated and inserted
into the cache it is a part of the expense list. We also increment a counter
telling us how many pages are in the expense list. We compare how many
pages are in the expense list versus how many are used for storing the
compressed pages, if there are more pages in the expense list than we are
using for storage in the cell structure we push the oldest out of the expense
list and into the profit list.

Once a compressed page has been recognized as part of the profit list,
it will never be put back into the expense list. This is because of the very
definition of what the profit list contains; the profit list contains compressed
pages that would not have been in memory without a compressed cache. In
other words, without compressed caching, a compressed page in the profit
list would never have been able to be in memory and therefore not in the
expense list. By this realization we also address the concerns of Tuduce et
al.[11] for O(n) behavior, since we only do this once per page and never have
to reiterate over the same pages over and over to calculate whether they are
part of the expense or profit list. In fact, we do it only once per page and
this is O(1).

The algorithm is mainly implemented in cc push profit(), which is called
every time a page is inserted into the LRU of the compressed cache. When
removing a page from the LRU that happens to be in the expense list, the
counter cc expense must be decremented.

Each compressed page has a flag so that we can easily check if it is part
of the profit list or the expense list. This is implemented by the helper
functions: cpage profit(), cpage set profit() and cpage clear profit() which
tests, sets and clears the profit flag for the cpage.

5.7 Locking order

To avoid deadlocks, locks that are held simultaneously must always be taken
in the same order. If we do not do this we could end up in a situation where
two processes are waiting for each other.

46 CHAPTER 5. IMPLEMENTATION

For compressed caching, we have a lock protecting the LRU lists from
being altered from different contexts at the same time. When removing or
replacing a compressed page the lock for both the address space and the
LRU lists must be taken to assure that the compressed page structure can
not be removed from another context. This is guaranteed by the fact that
the only way to have a reference to a compressed page is through the cache
or the LRU lists.

The locking order is address space first then the LRU lists. This means
that if the LRU list lock is held, it must first be released before acquiring
the lock on the address space.

5.8 Page cache wrappers

Most of the code that touches the page cache uses a small number of func-
tions that wraps around the data structure that keeps track of pages. This
makes it possible for us to alter functions that are used everywhere and make
it work without changing a lot of code. A problem with this approach is ap-
parent however, since the interface used does not say what it is used for, we
may end up doing unnecessary work. For example, some functions such as
find get page() is used to both lookup up a page and use it and lookup up a
page and discard it. This makes it necessary for us to make additional func-
tions that can discard a compressed page directly. Other problems that we
encountered are the restrictions on what you can do within these functions,
for instance taking specific locks may result in deadlocks.

find get page() is used to see if there is a page with a certain index in
the page cache, and if there is, get a reference on that page and return it.
With no compressed caching this only requires read access to the radix-tree,
because no modification is necessary. With our compressed cache however,
a write lock is necessary when a compressed page is encountered. This is
because replacing a compressed page with an uncompressed page needs to
modify the radix-tree.

The altered version of find get page() is as follows. Take a read lock
for the radix-tree, and do lookup for a page. If the found page is not a
compressed page, we take a reference on that page, release the read lock
on the radix-tree and return the page. If it is a compressed page, release
read lock for the radix-tree and allocate a new page. The new page is
allocated without any unnecessary locks taken to avoid contention on the
radix-tree lock. The page lock is taken on the newly allocated page, so
that other accesses to the radix-tree that would find it will wait until the
decompression of the page is done before accessing the contents of the page.

The write lock for the radix-tree is taken, since it is going to be al-
tered. Since the radix-tree was left unprotected, there is a possibility of two

5.8. PAGE CACHE WRAPPERS 47

race-conditions that can occur: (1) The compressed page can have been de-
compressed by some other context, or, (2) the page can have been removed
from the radix-tree. If the page has been decompressed and replaced in
the radix-tree, a reference on the page is taken and returned. If the page
has been removed, a negative lookup is returned. In both of the cases the
previously allocated page should be freed.

The check for the two race conditions is done by redoing the lookup in the
radix-tree. If a compressed page is found, the compressed page is removed
from the LRU list of the compressed cache. An additional reference is taken
on the allocated page, which represents the reference the cache has on it, this
is done to make sure the page is not freed when the lock on the radix-tree
is released.

The compressed page pointer in the radix-tree is replaced with a pointer
to the allocated uncompressed page using radix tree replace slot(). The
write lock on the radix-tree is then released. The compressed page is then
decompressed into the allocated page by calling cc restore(). The now un-
compressed page is then set to up-to-date and is unlocked. The compressed
page is freed. The uncompressed page is inserted into the standard LRU
list of the kernel, so that it can be removed from main memory later and is
then returned.

find get pages() is used in the same way as find get page() described
earlier, except that it is used for ranges of pages instead of only one page.

The lookup in the radix-tree is done using radix tree gang lookup() which
fills an array with the pages it found. When used without compressed
caching, all that is needed to be done is to take a reference on each page
and return the number of pages found. As in find get page(), find get pages()
only needs a read lock for the radix-tree when there are no compressed pages
involved.

The idea of the altered function is as follows. If there are compressed
pages, allocate enough pages for them and take their locks, replace all of the
compressed pages with the uncompressed pages, decompress the compressed
pages into the newly allocated pages and return.

A radix tree gang lookup() lookup could give compressed pages, therefore
each entry in the result array has to be checked to see if it is a compressed
page. If it is not, a reference for the page is taken. If it is, the index is
stored in a separate array called cc pages. The read lock on the radix-tree is
then released. If there were no compressed pages in the result, the function
is done and returns. If there were found compressed pages in the result of
the lookup, the same number of pages are allocated and their locks taken.
The newly allocated pages are stored into the result, and their index into
the radix-tree is stored in the page. Next, the index into the result array is
stored back into the cc pages array.

48 CHAPTER 5. IMPLEMENTATION

The write lock for the radix-tree is then taken and the same two race
conditions that could occur in find get page() can occur here, only for more
than one page. Each index into the result is cycled looking up one and one
compressed page. If the lookup fails, the corresponding allocated page is
unlocked and freed, and a NULL is inserted into the result array. If the
lookup returns a page that is not compressed, a reference is taken on it,
and the uncompressed page is inserted into the result. The allocated page
corresponding to the found page is unlocked and freed.

If the page found is a compressed page, cc accessed cpage() is called
to update some statistics about the area, it also removes the cpage from
the compressed cache LRU list. If the compressed page found is a marker
compressed page, the corresponding allocated page is unlocked and freed,
and a NULL is inserted into the result array. The marker page itself is
removed from the radix-tree. The marker cpage is added to an local list
that is freed later, when the lock on the radix-tree is not held.

For compressed pages that are not marker pages a page cache reference is
taken on the corresponding allocated page. The compressed page is replaced
in the radix-tree by the page. A pointer to the allocated page is stored into
the compressed page so that we have a pointer to it and a pointer to the
compressed page is stored into the result array. The write lock for the
radix-tree is then released. The list of marker cpages is then freed by calling
cc free swap list().

Finally, the result array is cycled through again, compacting the result
by removing NULL entries, when a compressed page is encountered it is
decompressed into the page pointed to by the cpage. That page replaces
the compressed page in the result array. The page is set up to date and
is unlocked, and should be usable by any context accessing the cache. The
page is also inserted into the LRU list of the kernel. The compressed page
is then freed, and the number of pages in the result is returned.

find get page cc() is a replacement for find get page() when the only
reason for the lookup is to free the page. We made this special version to
avoid decompressing a page only to free it. The only place it is currently
used is in the modified free swap and cache() which frees a swap entry if it
is the last user of it.

The implementation is similar to the modified version of find get page();
First a lookup is performed with a read lock for the radix-tree, if an uncom-
pressed page is found, a reference is taken and the page is returned. If a
compressed page is found, the read lock for the radix-tree is released and a
write lock is acquired instead. Since the lock was released for the radix-tree,
the lookup has to be performed again. If it is an uncompressed page, a
reference is taken and the page is returned. If it is a compressed page, it is
deleted from the radix-tree and removed from the compressed caching LRU

5.8. PAGE CACHE WRAPPERS 49

list. The compressed page is then returned so that the caller can free the
compressed page without any locks taken.

free swap and cache() is used to free swap entries so that they can be
reused. There are two reasons to modify this function: (1) we do not want
to decompress a page only to evict it again. (2) Because of the locking the
caller could have when running free swap and cache(), we can not allow the
function to sleep.

The second reason became apparent when implementing the cell struc-
ture and ran into a locking problem: we could need to sleep to get the cell
lock. What this means is that we can not take a lock on a cell while having
a spin lock.

This led us to redesign how cleanups after a process exit occur. Instead
of trying to free a compressed page right away, which could result in the
process sleeping, we postpone it by returning it throughout the call chain,
and then keep it in a list, until the spin lock is released. This however, means
that any caller of this function must explicitly check for compressed pages
and free them. The callers of this function are zap pte(), zap pte range()
and shmem free swp().

find get page nocc() is a function introduced by us to consult the cache
without decompressing any pages. This is needed by the read-ahead code
so that it does not decompress pages that will not be used in the near
future. read swap cache async() is the only user of this function and has to
be modified to use it.

The implementation of the function is as follows. Take a read lock for the
radix-tree and do the lookup. If it is an uncompressed page, take a reference
on it and return it. If it is a compressed page and it is not a marker page,
return that there exists a compressed page. If it is a marker page, it is not
guaranteed that the page would have been accessed and should therefore be
discarded without altering the area statistics. The write lock for the radix-
tree is acquired and the lookup repeated, if it is an uncompressed page it
should take a reference and return. If it is a compressed page and not a
marker page, return that there exists a compressed page. If it is a marker
delete it from the compressed cache LRU list and return a negative lookup.

read swap cache async() is a function that implements read-ahead for
swap pages. It adds pages to the swap cache that are adjacent, on disk,
to an on-demand request. It originally does this by looking up the adja-
cent pages in cache by using find get page() and adding swap entries to the
cache until it hits a page in the cache. By altering this function to use
find get page nocc() when it does not want to decompress compressed pages

50 CHAPTER 5. IMPLEMENTATION

and find get page() when it needs an uncompressed page the unnecessary
decompression is avoided.

do page cache readahead() implements read-ahead for file cache pages.
do page cache readahead() is needed to be altered so that it also read in

pages for compressed marker pages. The function takes an address space,
starting position and a window size as parameters. First, it loops through
the indexes in the window and looks them up in the cache, if they are not
present in the cache a page is allocated and added to a list. When all the
allocations are done, all the pages are added to the I/O queue at the same
time. The modification needed to support marker pages is in the checking
part, if a compressed page is found no allocation is needed, but if a marker
page is found, a cache hit for that memory area should be recorded and a
page should be allocated. To do this a check to see if the compressed page
is a marker page is done, the read lock on the radix-tree is released and
find get page() is called.

5.9 Changes to the PFRA

pageout cache() is called by the PFRA to put pages into the compressed
cache. This is currently the only way to put pages into the compressed cache.
The implementation is straightforward, if the page should be compressed
cc store page() is called to do so. If there are allocation problems when
trying to compress the page, it is posponed and retried later. If the page
is denied entry into the compressed cache, because of recent memory area
behavior, nothing is done and the page will be removed from the page cache
shortly. When a page has been compressed it must be inserted into the page
cache. The lock for the radix-tree it is stored in is taken. We must then check
if others have taken references on the page since we took the lock on it, but
before we took radix-tree lock. If a reference has been taken the compressed
page is freed and pageout cache() returns that the page should be kept. We
then replace the page descriptor with a compressed page descriptor in the
radix-tree. We then insert the cpage into the compressed cache LRU list so
that it will be removed at a later time. The uncompressed page is marked
as a compressed page so that when it continues through the PFRA it will
not remove the cpage from the page cache. If the page was stored in the
compressed cache, the dirty bit of the page is cleared so that it is not written
to disk.

5.10 Compressed cache subsystem

The compressed cache subsystem is located in mm/cc.c and handles all of
the internal logic of compressed caching. The high level functions such as

5.10. COMPRESSED CACHE SUBSYSTEM 51

storing and restoring a page into and from the compressed cache is exported
to be used in other parts of the kernel.

cc store page()’s main purpose is compress an uncompressed page and
store it in the compressed cache.

The area statistics of the uncompressed page are examined by running
cc area state(). This can give three answers: CC ENABLED, which means
the uncompressed page should be compressed and inserted into the com-
pressed cache, CC DISABLED, which means that it should not be com-
pressed and CC MARKER, which means that the page should not be com-
pressed, but a marker page should be inserted into the compressed cache.

If cc area state() returns CC DISABLED, cc store page() immediately
returns a recognizable error code that means that the page will not be added
to the compressed cache and that it must be swapped out in the usual
manner.

To avoid having an empty compressed cache, the size of the compressed
cache is checked to see that it is at least the minimum size. If it is not the
minimum size, the growth lock on the compressed cache is reset.

A cpage is allocated from the memory cache, and meta-data about the
uncompressed page is stored into it. If the state of the area is such that a
marker should be inserted instead of a compressed page, the cpage is marked
as a marker and is then returned.

A temporary page is allocated to be used as a work area for the compres-
sion. If the allocation fails we free the cpage allocated earlier and return.
The page is then compressed into the work area and the length is stored
into the cpage. If the page was not compressed enough to put into the com-
pressed cache, a bad compression is noted and an error code is returned. If
the page was compressed a good compression is noted. Both the bad and
good compression noting is part of the bad compression detection.

A fragment is allocated to store the compressed page, this is done by
calling fragment write(). If it fails we retry after shrinking the compressed
cache with one page. We retry this until we are able to store the page into
the cell structure.

To avoid deadlocks when shrinking the cache, there is a requirement that
no locks for any address space object are held before calling cc shrink lru().
This requirement is then transfered to the caller of cc store page() which
has to avoid having acquired any address space object locks. All temporary
data is then freed before returning the cpage.

cc restore() is used to restore pages that are accessed and is a thin wrap-
per around cc restore helper(). The main objective of the cc restore() func-
tion is to implement part of the adaptive cache size heuristic. It looks at
whether the compressed page to be restored is part of the expense or the

52 CHAPTER 5. IMPLEMENTATION

cc_accessed_cpage

cc_remove_lru

cc_stats

cc_early_done

cc_area_updated

cc_store_page
cell_accounting_pages

cc_shrink_lru

cc_area_state

cpage_set_dirty

cpage_set_swapcache

cpage_set_nonexistant

cc_note_bad_compression

cc_note_good_compression

fragment_write

cc_restore_page
cc_restore

cc_add_lru cpage_nonexistant

cpage_profit

cc_free

fragment_readend

fragment_readstartcc_free_list

cc_free_swap

cpage_swapcache

cc_free_swap_list

cc_push_profit cpage_set_profit

cc_mapping

cc_pageout

cc_restore_helper

cpage_dirty

cc_remove_cpage

cc_early

cc_put_marker

cc_setup cell_setup

Figure 5.1: Internal call-graph of the compressed cache.

5.10. COMPRESSED CACHE SUBSYSTEM 53

profit list. If it is part of the profit list the size of the cache is unlocked
by resetting the cc locked counter, and is therefore allowed to grow. If the
compressed page is part of the expense list the counter is increased, if it
is the third or later expense list access, the cache is shrunk with one com-
pressed page. To make sure the cache has a minimum size, we unlock it
in the case where the cache is smaller than a specified value. It then calls
cc restore helper() to do the actual decompression and restoration of the
meta-data for the page.

cc accessed page() is used to update statistics about compressed cache
hits per area. It looks up the statistics struct of the area. Resets the early
bad ratio detection and notes a cache hit for that area. The lock for the
radix-tree in the address space object is used to serialize access to the area
statistics, and must be taken when this function is called.

cc note good compression() is used to note when a good compression
occurs. It gets a page as a parameter, takes the lock for the radix-tree in
the address space object of that page and then resets the bad compressions
status of that area. In other words, if an area has one or two earlier noted
bad compression, both of those flags are reset to normal.

cc note bad compression() is a helper function to note bad compres-
sion for an area. It checks if the BAD1 flag is set, if it is not, it is set and
the function returns. Next it checks if BAD2 flag is set, if it is not, it is
set, and the used and unused attributes of the statistics structure is set to
2 and 0 respectively. In the case where two consecutively pages have been
noted before and BAD1 and BAD2 flags are already set for the area, we
increase the unused statistic and return. When the unused attribute is no
longer smaller than the used attribute we increase the used attribute by one
and reset unused to 0. By doing this we are increasing the number of pages
we will not try to compressed before we try the next time.

1 stat ic void c c p u s h p r o f i t (void)
2 {
3 unsigned long expenses = atomic read(&cc expense) ;
4 unsigned long pages used =

c e l l a c c oun t i n g p ag e s () ;
5 unsigned long pushable ;
6 struct cpage ∗ cpage ;
7
8 i f (expenses < pages used)
9 return ;

10 pushable = expenses − pages used ;

54 CHAPTER 5. IMPLEMENTATION

11 while ((pushable−−) &&
(! l i s t emp ty (& c e l l l i s t e x p e n s e))) {

12 cpage = l i s t e n t r y (c e l l l i s t e x p e n s e . next ,
struct cpage , l i s t) ;

13 l i s t d e l (&(cpage−> l i s t)) ;
14 c p a g e s e t p r o f i t (cpage) ;
15 l i s t a d d t a i l (&(cpage−> l i s t) ,

&c e l l l i s t p r o f i t) ;
16 /∗ Marker pages does not take any space ∗/
17 i f (cpage marker (cpage)) {
18 pushable++;
19 } else {
20 atomic dec (&cc expense) ;
21 }
22 }
23 }

cc push profit() pushes pages from the expense list into the profit list.
It chooses how many pages to push by looking at how many pages are a
part of the expense list compared to how much space is used to store the
compressed pages. In other words it pushes pages that would not be in
memory without the compressed cache from the expense list into the profit
list.

The implementation is as follows. It first finds the number of pages
in the expense list and how many pages the cell structure is using. If the
number of compressed pages in the expense list is smaller than the pages
used, no pages should be pushed to the profit list and it returns without
doing anything. If the number of compressed pages in the expense list is
larger than the number of pages used by the cell structure the number of
how many pages can be pushed is calculated. Then one and one cpage is
moved from the expense list to the profit list until enough compressed pages
have been pushed or no compressed pages are left in the expense list. For
each move the expense list counter is updated and the profit flag is set on
the moved cpage. Pages that are only markers, and do not take up any space
in the cell structure is not accounted as part of the pages that were moved,
although it is still moved between the lists.

cc remove lru() is a helper function to remove pages from the com-
pressed cache LRU list. Because of the locking order the lock for the radix-
tree in the address space object must be taken before this function is run.

First it takes the lock for the compressed cache LRU lists. If the cpage
is a marker page the marker statistic for that area is decreased. If the cpage
is a part of the expense list then the number of expense pages are decreased.

5.10. COMPRESSED CACHE SUBSYSTEM 55

cc add lru() is a helper function to add pages to the compressed cache
LRU. If the cpage is a marker, the statistics of the area it belongs is updated
to present the increase of marker pages. By default, newly added cpages are
added to the expense list, and are marked as such. After adding a page to
the expense list, and increasing the cc expense counter, it is checked if any
of the pages in the expense list belongs to the profit list, this is done by
calling cc push profit().

cc mapping() is a small helper function that returns the address space
object containing the compressed page. The mapping attribute of the cpage
structure is not adequate to use directly because it could contain an anon vma
pointer instead of an address space pointer. If the cpage is part of the swap
cache the swapper space address space object should be returned, else the
address space object of the file containing the compressed page should be
returned.

cc stats() takes a cpage mapping pointer as a parameter and returns the
stats structure for that area. If that mapping pointer is a anon vma pointer,
a pointer to the stats for that anon vma is returned. If the mapping is a file
address space object, the stats for that address space object is returned. If
it is not part of an anon vma or a file address space object, a pointer to the
statistics structure of the swap cache address space object is returned.

cc pageout() moves dirty compressed pages into backing store. It does
this by decompressing compressed pages into an uncompressed page, re-
places the compressed page in the address space object with the new page,
flags it as a page that comes from the compressed cache and reintroduces
the page into the LRU list of the normal page cache. The page is flagged
as a previously compressed caching page, so that the PFRA will not try to
put the page back into the compressed cache.

When cc pageout() is called, the address space write lock must have al-
ready been taken, this is to avoid race conditions. The page is marked as
a swap cache page if the compressed page is part of the swap cache. The
lock for the page is taken to make sure that no other context can use the
uncompressed page before we are finished restoring it.

We also take a reference to the page to account for the reference for the
cache, this means we have two references to it when we insert it into the
radix-tree. If we are not doing this, the page could be accessed through the
address space object, and the last reference removed before we are finished
with the page. To keep the tags, such as the dirty tag, intact after replacing
a compressed page with an uncompressed page, the slot is updated directly
using radix tree replace slot().

56 CHAPTER 5. IMPLEMENTATION

The write lock for the radix-tree is released, so that other processes can
access the address space object while decompressing the page. We then
decompress and restore as much information into the page as possible, this
is done by calling cc restore helper(). The cpage has no more uses after this,
and is freed.

The page is flagged as up-to-date to signal that the page contents is up-
to-date and ready for use. We flag the page as a previously compressed page
to signal the PFRA that it should not be reinserted into the cache. The page
is unlocked and other processes may map the page into their address space.
It is inserted into the inactive LRU list of the standard page cache, so that
it will be removed from the cache as soon as possible. We also remove our
own reference to the uncompressed page.

cc shrink lru() shrinks the compressed cache by removing the least re-
cently used compressed page. Pages part of the compressed cache can be
a member of any address space object, for this reason no locks for any ad-
dress space object must be taken by the caller while calling cc shrink lru().

During this function the locks must be taken in the order of: inode lock
and then cc list lock. The reason for this locking order is two other locking
orders: (1) The inode lock must be taken before the lock in the address space
object. (2) The address space lock before the cc list lock. If the new locking
order is not followed a deadlock could occur. An example of this follows.
If we have three processes: process 1 has the cc list lock and is waiting
for the inode lock, process 2 has the address space lock and is waiting for
the cc list lock and process 3 has the inode lock and is waiting for the ad-
dress space lock. In other words, process 1 is waiting for process 3, process
3 is waiting for process 2 and process 2 is waiting for process 1. The solution
is to take the inode lock before the cc list lock in process 1.

After both the inode lock and cc list lock has been taken the LRU lists
are consulted to find the oldest compressed page. This is done by looking
first in the profit list, which holds the oldest pages. If the profit list is empty
the expense list is consulted.

If the compressed page belongs to a file, the address space object could
disappear, if the compressed page was deleted from other context. The only
reason that guarantees that the address space object is currently available
is that the lock on the compressed caching LRU lists has been acquired,
and that lock is necessary to remove any compressed pages from the ad-
dress space objects.

To remove a compressed page, the locks for the address space object
referencing the compressed page and the cc list lock need to be taken, in that
order. To make sure that the address space object is available after releasing
the cc list lock a reference to the inode is taken, if the address space object
is part of an inode. Since the swap cache address space object is never freed,

5.10. COMPRESSED CACHE SUBSYSTEM 57

no such measures need to be taken for compressed pages that are part of
the swap cache.

If the page is dirty it need to be written to backing store, dirty com-
pressed pages needs to written out, to do this a page is allocated so that
the compressed page can be decompressed into it so that it can be written
in uncompressed form back to disk.

cc remove cpage() is called to do the actual removal from the address space
and compressed cache LRU lists, and, if needed, paged out. After cc remove cpage()
returns, the inode reference can be removed. If the cpage representing the
compressed page was a marker, the process is repeated until the LRU lists
are empty or a real compressed page is removed from the compressed cache.

cc remove cpage() gets a pointer to an address space object, an offset
and a page as parameters. The main purpose of this function is to remove
a compressed page from the compressed cache. The requirement to call
cc remove cpage() are that the address space object is guaranteed to exist
and that no locks are taken for it.

Two race conditions can happen before this function takes the needed
locks: (1) the compressed page has been removed from another process
context, (2) the compressed page has been decompressed and there is now
an uncompressed page in the cache. For both of these cases there is basically
nothing to do, if any resources have been allocated they are freed and the
function returns.

The write lock is taken on the radix-tree, and the existence of a com-
pressed page at the offset given in the parameters is checked. It first takes
the lock on the mapping and uses the offset to look up a slot in the mapping.
If the lookup fails or if the page found is not a compressed page, the com-
pressed page must have already been removed. In that case the mapping
lock is released and the page freed before returning.

The area statistics for the compressed page are retrieved to look at what
state the area is in and to update the usage statistics. Since cc remove cpage()
is only run on pages that are being removed without being accessed, it is
counted as a page that exited the compressed cache without being used, an
unused compressed page. If the area the compressed page is a part of is in
the ”early phase”, this is considered an access that will end it. The com-
pressed page is removed from the compressed cache LRU list. Compressed
pages that are not dirty do not need to be written back to disk and can
safely be deleted from the mapping and removed from the compressed cache
LRU list and freed. For dirty compressed pages cc pageout() is called to do
the decompression and final pageout.

cc restore helper() restores a compressed page into an uncompressed
page. In other words, it does the following: it copies the meta-data from

58 CHAPTER 5. IMPLEMENTATION

the compressed page into the uncompressed page, and then decompresses
the compressed data into the uncompressed page. To do this, it copies the
mapping and private data from the cpage to the page descriptor directly.
If the compressed page is dirty, the restored uncompressed page should be
flagged as a dirty page.

To be able to decompress the page, the compressed contents of the page
must be located and locked to that location while being decompressed. This
is achieved by running fragment readstart(), which is part of the interface
for the cell data structure. It will return a pointer to where the compressed
data is, we then run the decompression algorithm with that area as the
source. When it is done we call fragment readend() to unlock and free the
compressed contents, and return.

cc free() is a helper function to free compressed pages. It will free the
allocation of the compressed data only if there is any data allocated. There
are two reasons there could be allocated compressed data pointed to by the
cpage: (1) when clean compressed pages are evicted from the compressed
cache their compressed data is not used (2) when compressed pages being
deleted, because they will not be accessed again, nothing is done with their
compressed data before freeing them.

Next it frees the cpage structure back to the memory cache, most of-
ten the SLAB cache. This means that the allocation can be reused when
allocating a cpage in the near future.

cc free list() is a helper function that is used when freeing several com-
pressed pages at once. This is used at several locations throughout the code
when collecting compressed pages that can not be freed because of locking
requirements, and the freeing is deferred until they can be satisfied.

cc free swap() frees swap entries associated with a compressed page be-
fore freeing the compressed page. This is especially important when freeing
compressed pages that are part of the swap cache and the compressed page
is not replaced with an uncompressed page in the swap cache.

cc free swap list() frees a list of compressed pages including their swap
entry references. This is useful when locking requirements prevents freeing
of compressed pages directly until later.

cc setup() is the initialization function of the compressed cache subsys-
tem. It sets up all the data structures needed by the compressed cache. It
resets the cc locked state to 0 so that the cache can grow by default. This is
used by the adaptive cache size heuristics. It sets up a memory cache called
”cc cpage” for allocation of the cpage structure such that the alignments

5.10. COMPRESSED CACHE SUBSYSTEM 59

two last bits will always be 0. It initializes the locks for the compressed
cache LRU lists and initialize the list heads. The cell structure is initialized
by calling cell setup(). Finally, the shrinker is set up, this is infrastructure
from the vanilla kernel to tell compressed caching to free up some space
preemptively, before running out of memory. It is set up so that it runs the
function cc shrinker() when such a request comes.

cc early() and cc early done() checks and resets the early phase bit
respectively. cc early done() should be called if any compressed pages that
are part of that area have been accessed or evicted from the compressed
cache.

cc put marker() returns true if there can be put more marker pages into
the cache for that area. It does this by checking how many marker pages
there are and comparing this to the maximum allowed. Because the lock for
the statistics structure is released between the run of this function and the
usage of the information it returns, there is a possibility that more than the
maximum value of marker pages could exist. This is very unlikely since the
gap is very small, and the number should not be very much higher than the
max set.

cc area state() takes a page as an argument and returns what should be
done with the page. This is the main implementation of per area bad ratio,
early and bad compression phases. First we look up the statistics of the
area the page is contained in. We take the lock of the address space object,
so that our reading of the statistics will be atomic. We check if it is in the
bad compression state, if it is we return that it is in bad compression state.
If the area is in the early phase, we check to see how many pages we have
already put into the compressed cache. If it has hit the limit, we return that
the page should not be put into the compressed cache.

If it has not hit the early phase limit, the write lock is taken for the
address space object. This means that we have to release the already taken
read lock before taking the write lock. If a race with another instance of
cc area state() occurs, while the lock is not taken, the area may not be in
an early phase anymore. To avoid that we have to recheck if it is still in
the early phase before increasing the number of pages that are part of the
compressed cache. If everything works out it returns that the page may be
put into the compressed cache.

If the area is not in the early phase, a bit in the flags for the statistics
that tells us whether the ratio of unused pages is high is checked. If it has
been set, compressed caching is disabled for that area. To be able to recover
from a disabled compressed cache, we need to have some statistics on how
well the compressed cache would have worked if we would have put the

60 CHAPTER 5. IMPLEMENTATION

pages into the compressed cache. To implement this we put marker pages
in place of real compressed pages into the cache, but we limit the number of
such pages. This is done by calling cc put marker() that checks to see if we
should insert a marker cpage. If we should, we return that a marker page
should be inserted into the cache.

cc area updated() is a function called every time the statistics of an area
are updated. This is to keep as much as possible of the logic of the state
of an area in one place. No statistics should be updated if the area is in
the bad compression state. If the hit ratio of the area is less than 20% the
compressed caching is disabled for the area. If the area already has disabled
compression, but the hit ratio has increased to 50% the compressed cache
is enabled again by resetting the statistics for the area, and restarting the
early phase. If any of the statistics is above a certain threshold we divide all
the statistics by two to make sure we are mostly affected by recent statistics.
Since the statistics structure cc areastats is made as small as possible, the
size of numbers it can store is limited. To avoid overflowing the counters of
used and unused pages we must make sure the numbers are never above the
highest number that can be stored. For the used and unused attributes, this
is achieved by dividing both by two when either of them reaches above a
certain threshold. This solves both the problem of recency and overflowing
the statistics attributes. For the markers attribute, it is already limited by
how many markers we want to have in a memory area, so it will not overflow.

5.11 Cell implementation

The cell implementation is located in mm/cell.c and include/linux/cell.h.
We first explain how the main interface functions fragment write(), frag-
ment readstart() and fragment readend() works followed by the interface
functions to query number of allocations in the cell allocation and page us-
age. We try to follow a logical order of how the functions are used when
allocating a fragment. Starting with cell get() is called to find a cell for the
allocation, next cell fragment() is called to find a fragment for the allocation
and then fragment split() to to make a new fragment from that. After a frag-
ment is found the cell is put back with cell put(). For all this to work some
data structures need to be initialized, this is done in cell setup(). During
an allocation of a fragment within a cell there may not be any large enough
fragments available, this is solved by the compaction routine cell compact().
Because of external fragmentation of the fragments there may be many cell
with few allocations, this is handled by cell global compact which relocates
the fragments in the cell with fewest allocations. We then present helper
functions that deal with the handling of cells in different cases, followed by
helper macros.

5.11. CELL IMPLEMENTATION 61

fragment write() is used to allocate a fragment and copy data in to the
data part of the fragment. The first thing it does is to round up the needed
allocation size to the nearest number divisible by two. Then it uses cell get()
to find a cell with the appropriate amount of space. If it fails it may allocate a
new cell, or return an error. When it has a cell with enough free space it tries
to find a contiguous space within the cell by using cell fragment(). If this
fails, the cell is compacted with cell compact() which returns a compacted
cell, now cell fragment() is guaranteed to succeed. It then puts the cell, with
cell put(), back into the free lists.

fragment readstart() and fragment readend() is used to tell the memory
allocator to back off while reading the memory and later to say that the
fragment can be freed. fragment readstart() takes the lock on the fragment
and returns a pointer to the allocation.

fragment readend() takes the lock of the cell, and checks the state of the
cell. If it is marked as a managed cell or is a left over cell after a compaction,
clear out the fragment and update the free space of the cell and put the cell
back. In the case that the cell has no special state, it figures out which free
list it is in (if it is in a list), then because of locking order, we need to give
away the lock of the cell, take the possible list lock and then take the lock
of the cell again. Now we have to recheck that we actually took the correct
list lock, as there could have been other process contexts changing the cell.
If the incorrect list lock was taken, then it is released and the same process
is tried again. If everything went well so far, we are ready to remove the
cell from the old free list, mark the fragment as free, update the free space
of the cell and put the cell back into the free lists. If there is a consecutive
fragment to this cell that is also a free cell, the two cells are merged and
the free space accounting incremented with the size of a fragment header. If
this freeing of fragments results in there being only one allocation per cell,
run global compaction before returning.

cell accounting pages() and cell accounting fragments() returns the
number of pages used by the cell structure and number of allocated frag-
ments. This is part of the external interface, giving the ability to compressed
caching to know how much memory is used.

cell get() is used to find a cell with a minimum of free space, this is
achieved by using the free lists. The lookup is essentially an index into an ar-
ray of lists with the index calculated as space needed / CELL GRANULARITY.
If no cells with enough space are found, in this list, the index is increased
and the next list is tried until either a cell is found or we hit the largest
index possible, which means that we have no such cell. For each list we look

62 CHAPTER 5. IMPLEMENTATION

in, we take the semaphore of the list. If we find a cell, we take the lock on
the cell and remove it from the list. We also release the semaphore of the
list before we return the cell with the lock taken.

cell fragment() finds free fragments in a cell of appropriate size, and
takes a chunk of them to make up a new fragment. It does this by going
through the fragments of a cell, if it is free and large enough, split the
fragment into a new free one and return it. To avoid looking through all
the fragments in a cell, we keep track of how much space we have gone
through already, if it is impossible to find a large enough free fragment later
we return early. We also merge adjacent free fragments while going through
them to optimize later allocations.

fragment split() tries to split a fragment into two, and return the new
one. The first issue that can occur when splitting a fragment is that there
is not enough space in the already existing fragment to include both the
needed allocation size and the fragment header. If this is the case, the
original fragment is returned. If there is enough space to split it, it is split
in such a way that the new fragment is located at the end of the original
fragment. This way other allocations will find the free part of the original
fragment before the newly allocated (and not free) fragment.

cell put() puts a cell back into the free lists. There are several things that
have to be done before inserting into a list. First it needs to check if a cell
is marked as managed, if it is there is really nothing to be done for the cell
as another cell put() is running or will be running shortly, so the cell is only
unlocked. Next the function checks if there are any allocations in the cell, if
there are not, then the cell should be freed in one of the two following ways.
(1) If the cell was part of a recent compaction that did not want to wait for
a fragment to finish, it should be put back into the list of dedicated pages
for compaction with cell keep(). (2) In the more usual case, we just free the
page with cell free(). The last special case is if there are more allocations,
but the cell is still marked as a page to be put into the dedicated pages for
compaction. For that scenario, it just unlocks the cell and returns, since
there will be a cell put() when the last fragment is freed from the cell. Since
the locking order dictates that we need to take the list lock before we take
the cell lock, we must unlock the cell, take the list lock and then reacquire
the lock on the cell. This means that the cell could be altered while we do not
have the lock. If another context changes the amount of free space, it would
change what free list the cell is supposed to be in. To handle this situation,
we first do the space needed / CELL GRANULARITY calculation to find
the index of the free list then we recheck that our previous calculation is
still applicable by redoing it after we have re-acquired the lock. If it is not,

5.11. CELL IMPLEMENTATION 63

we simply unlock everything and retry.

Another race condition that could happen while the lock is not held is the
insertion of a cell into a free list. To avoid this, we mark the cell as managed
which will make other cell put() instances let us do the job. When we are
done, we remove the marking before unlocking the cell. After re-acquiring
the cell lock, we have to recheck some of our earlier assumptions, namely
that there are still allocations in the cell. If there are no more allocations
we free the cell with cell free() after unlocking the free list.

cell setup() is used to initialize the data structures needed by the memory
allocator. This includes free lists and their semaphores, it also includes
preallocation of cells to perform compaction. The reasoning for preallocation
of cells for compacting is to avoid a situation where memory contention can
stop us from allocating a fragment, that then would need to be handled
by allocation of a new cell that is guaranteed to fail as well. Avoiding
such situations means that we limit ourselves to how many compaction can
occur at the same time, but this is not a very important limitation as the
compaction in progress would compete against each other for CPU time. We
can set the number of cells dedicated to compaction to a number relative to
the number of CPUs in the system for instance.

cell lock() and cell unlock() is used to acquire and release the lock of a
cell. Since a cell consists of pages, we reuse the lock page() and unlock page()
functions already provided by the Linux kernel. We do this by locating the
first allocated page in the cell and taking the lock for that.

cell compact() moves all of the fragments in a cell into a new cell and
returns it. First it grabs one of the dedicated pages for compacting by call-
ing on cell temporary(). Next it walks through the fragments one by one
doing the following. Check if the fragment is in use, if it is not skip to the
next fragment. Try to take the lock atomically on the fragment, if this fails,
skip to the next fragment. It then determines the size of the fragment and
allocates such a fragment in the new cell, it then copies the content of the
fragment from the old fragment to the new one. It then updates the new
fragments user pointer and the users pointer to point to the new fragment
while simultaneously unlocking the fragment. It also decrements the alloca-
tion counter in the cell. It then continues on to the next fragment. When all
the fragments have been iterated over, cell compact() determines whether
any of the fragments were busy, and thus are not moved, by inspecting how
many fragment allocations are left. If there are still allocations left, mark
the cell as keepable, so that it will be inserted into the list of dedicated cells
for compacting when that fragment is later freed and returned. If there are
no allocations left, it puts the cell directly into the dedicated list by calling

64 CHAPTER 5. IMPLEMENTATION

cell keep().

cell global compact() takes the most unused cell and cycles through its
fragments. It takes the lock on the fragment and locates a cell that can
accommodate the fragment. If there is no such cell, then global compaction
will return without doing anything. If it has located a cell, a fragment is
allocated from the cell. If this is not possible, the cell is compacted and
the fragment allocation retried. Next the contents of the old fragment is
copied to the newly allocated fragment. All meta-data such as free space
and number of allocations are updated both in the most unused cell and the
cell containing the new fragment.

The reason we also keep the meta-data of the most unused cell up to
date is to avoid leaving a cell inconsistent if we have to stop the compaction
mid-way. This can happen if it is impossible to relocate a fragment. In that
case the global compact is canceled, reinserting the most unused cell back
into the free lists.

cell most unused() is a helper function for cell global compact(). It finds
one of the cells with most free space and returns this. It cycles through the
free cell lists starting at the list representing cells with most free space. It
then finds the first cell with two or less allocations, removes it from the free
list and returns that. In the case that no such cell exists for that free list
the next free list is tried. In some cases there are no available cells, and no
cell is returned.

cell allocate() allocates the contiguous pages. After the allocation, we
set all the page descriptors’ private attribute to point to the first page in
the allocation. This way we can easily find the first page in the allocation.
We also increase the number of pages allocated by the cell structure. This
number made available for users of the cell data structure, such as com-
pressed caching. It is also used to decide if a global compaction should be
done.

cell free() puts all the pages belonging to the cell back into the buddy
allocator. Atomically subtract the number of pages used by the cell structure
by the number of pages a cell uses.

cell keep() puts a cell into the list of dedicated compaction cells. The
reason we have this list is to avoid having to allocate and deallocate cells
every time we do a compaction. First the cell is reinitialized, then the lock
for the list is taken and the cell inserted. Next the list lock is unlocked and
the semaphore of the temporary cells is upped.

5.11. CELL IMPLEMENTATION 65

cell temporary() first waits for the semaphore of the temporary cells,
this way we will never access an empty list. Next we take the lock for the
list, remove the cell, and unlock the list. The release of the semaphore for
temporary cells is left to cell keep, which is called when an empty temporary
cell is tried to be put into the free lists. The cell is then returned.

CELL PAGE() helps us find the first page in the cell. It uses virt to page()
to find out what page structure belongs to the cell structure. Because the
cell structure is in the beginning of the cell, we know that this is the first
page.

CELL MANAGED(), CELL MANAGE()
and CELL UNMANAGE() is used to check, set, and clear whether a
cell is managed or not.

CELL KEEP(), CELL SET KEEP()
and CELL CLEAR KEEP() is used to check, set, and clear whether a
cell is to be kept in the dedicated list of cells for compaction on freeing of
the last fragment allocated in the cell.

FRAGMENT CELL() takes a fragments as its argument and returns a
pointer to a cell structure. It finds out what cell the fragment is a member
of by first finding out what page it is located in by using virt to page(),
it then looks at the private member of that page which makes us end up
with the first page, which is then converted back into the address by using
page address() to give us the cell structure.

FRAGMENT LENGTH() takes a fragment as its argument and gives
us the length of the data in the fragment. It calculates this by looking at
the difference between where the data starts and where the next fragments
starts. In the special case where the fragment is the last fragment in the
cell, it finds out where the end of the cell is and calculates the difference
between where the data starts and the cell ends.

66 CHAPTER 5. IMPLEMENTATION

Chapter 6

Performance evaluation

In this chapter we look at how to measure the performance of compressed
caching. We describe in detail the setup of the workloads, present the results
and evaluate them.

6.1 Workloads

We choose workloads where compressed caching can make a difference, for
better or worse. Since compressed caching is a method to reduce I/O, the
minimum requirement is that the workload make extensive use of the page
cache. This means that a CPU intensive workload with light memory usage
would not be an interesting test-case, because the performance would not be
affected by compressed caching. This is important when choosing parame-
ters for a particular workload. The most important parameter is how much
memory is available. If we choose a too high amount, compressed caching
will not have an effect, if we choose a too low amount, the application will
not run.

A Linux kernel build is a workload that has a fair amount of I/O and
CPU usage.This has been used by Castro et al.[8] for testing compressed
caching and is in the class of workloads that is known to benefit from com-
pressed caching. The reason it benefits from compressed caching is that it
reuses data quite often. First consider the compiler, which is run for each
source file. The same application text together with the same libraries is
mapped in each time it is run. Next, consider the data that it works on:
headers and source files. Headers are often reused in many source files and
will often be reused with the next source file. The entropy of the header
and source files are very low and can have a very good compression ratio 1.
This means that headers that will be reused stay longer in the compressed

1Linux 2.6.22.19 stored as a compressed source archive takes 44MB, uncompressed it
takes 294MB.

67

68 CHAPTER 6. PERFORMANCE EVALUATION

cache, and longer in the profit list. This makes the build of the kernel a
good candidate for compressed caching.

The number of parallel compilations can be set for the kernel compilation
workload, we call these ”make -j1”, ”make -j2” and ”make -j3” tests, taken
from the command used to start the compilation processes. As can be seen
in Appendix B.1, the workload includes uncompressing the source from an
archive and then compiling it. We vary the amount of memory available
at boot time by giving the ”mem” parameter to the kernel. We run this
test with four different kernels: compressed caching, an unmodified kernel,
compressed caching using LZF as the compression algorithm and one where
the compressed caching is never disabled denoted ”cc”, ”vanilla”, ”cc-lzf”
and ”cc-nodisable” respectively (see Table 6.1).

Another workload we use is GNU Utils’ sort. The purpose of this test is
to expose a workload which can be heavily penalized by compressed caching.
GNU sort accesses its working set in least recently used order, which is the
opposite of what the Linux memory management has as its prerequisite to
work well. In other words, when the working set is larger than available main
memory, the workload is accessing pages that have recently been evicted
from main memory. This is the worst case scenario of LRU page frame
reclaiming. For the unmodified kernel the worst-case means reading more
from disk, while for kernels with compressed caching it means compressing
and decompressing pages in addition to reading more from disk. However,
the worst-case happens sooner on unmodified kernels, because less of the
working set can be stored in main memory than with compressed caching.
The script, found in Appendix B.2, used to perform the sort workload runs
the sort command five times in a row marking the first one, to know where
the test started. The result is the sum of all five runs. We run this test
with three different kernels: compressed caching, an unmodified kernel and
compressed caching with disabling logic disabled called ”cc”, ”vanilla” and
”cc-nodisable” respectively in Table 6.1.

We also run a test which is a mixture of a ”make -j1” and a sort test.
”make -j1” is ran, and after 120 seconds the sort test is started in parallel.
We run this test, called ”sortcomp” in Table 6.1, with the same kernels as
in the sort test.

6.2 Setup

To have high confidence in the test results, we run each test multiple times,
and make sure that each test is run under the same conditions. To achieve
as equal conditions as possible, the workloads are run alone without any
unnecessary processes running in parallel, and the environment is reset as
much as possible between each run. To reset the environment, we format the
volume containing the touched data and reboot. To implement this scheme,

6.3. BOXPLOTS 69

Runtime in seconds

N
um

be
r

of
 r

un
s

in
 r

an
ge

1000 1500 2000 2500 3000

0
5

10
15

20
25

Figure 6.1: Histogram of 2.6.22 vanilla make -j3 test with 80MB of memory

we have made our own run-level which runs one test after a successful boot,
records the result and resets the environment and then reboots again. Using
a re-configuration feature of the boot loader we change what kernel and what
test to run each time we boot the system.

6.3 Boxplots

When running the tests we observed great variance in the test results for
all the kernels we tested with. A histogram of the results from running the
”make -j3” workload on an unmodified Linux kernel can be seen in Figure
6.1 and the summary can be found in Table 6.1. The great variance, as
seen in the histogram, can make it hard to compare the effect of changes
when altering the kernel. The reason for the great variance in the results is
probably2 due to timing, where a slight change in the order of the processes
could result in a very different order in which pages are being evicted from
the page cache. To make it easier to compare the results we decided to

2Since it is hard to test this to figure out what really went wrong, and that it is outside
the scope of this thesis, we do not discuss this further. A discussion[9] took place on the
Linux kernel mailing list.

70 CHAPTER 6. PERFORMANCE EVALUATION

present them as boxplots[7] in addition to scatter plots. If we follow Figure
6.2: the main box shows the interquartile range (IQR) or in other words
the middle fifty percent of the data set. The bold line going horizontally
through this box is the median of the data set. The stippled lines represent
the range between the maximum and minimum. The range used for this
thesis is limited to 1.5 of the IQR to show extreme values outside of the
range. The outliers are the samples that are outside the limited range. If

sa
m

pl
e

va
lu

es

median IQRrange

outlier

Figure 6.2: Boxplot introduction

we study a data set of the numbers 0 to 100, the IQR would be from 25
to 75, a 50 interval, this means that the stippled lines could extend from
25 − (50 ∗ 1.5) = −50 to 75 + (50 ∗ 1.5). In other words: if we removed the
numbers 0 and 100 from the data set and added −51 and 150, −51 would

6.4. RESULTS 71

80 000 kB 100 000 kB 120 000 kB

2.6.22 cc nodisable
2.6.22 cc
2.6.22 vanilla
2.6.22 cc lzf

Main memory

S
ec

on
ds

 (
m

ed
ia

n)

0
50

0
10

00
15

00

Figure 6.3: make -j3 with varying available memory

be an outlier and 150 would be part of the range.

6.4 Results

We have put a summary of all the results in Table 6.1 with one row for each
workload-memory-kernel combination we have tested. Each row includes the
name of the workload, how much memory was available, what kernel was
used, the median, the mean and the standard deviation within the results
and how many times it was run.

We have run the ”make -j3” workload with different amounts of memory,
as can be seen in Figure 6.3 the performance increase is larger the less main
memory is available.

We have run three different workloads, ”make -j3”, ”make -j2” and ”make
-j1” with 80MB amount of main memory available. These workloads do the
same work with the difference being how much is done in parallel. The more
processes that run at the same time, the more memory is used. As we can see
from Figure 6.4 the highest performance increase provided by compressed
caching is found when the highest number of processes are run. Even if
compressed caching is performing better than the unmodified kernel with
the same amount of memory, it is not performing better than an unmodified
kernel with enough memory to avoid evicting pages all together. This is
expected and shows that compressed caching is not a replacement for not

72 CHAPTER 6. PERFORMANCE EVALUATION

test memory kernel median mean s.d. runs

make -j3 80000kB cc-nodisable 802.30s 830.14s 109.34s 141
80000kB cc 1040.21s 1064.30s 140.97s 73
80000kB cc-lzf 1353.38s 1387.53s 235.09s 100
80000kB vanilla 1882.82s 1909.59s 355.22s 100
100000kB cc-nodisable 441.30s 447.99s 27.66s 117
100000kB cc 467.41s 482.79s 47.26s 100
100000kB cc-lzf 511.99s 530.70s 56.13s 100
100000kB vanilla 513.77s 560.36s 116.34s 100
120000kB cc-nodisable 359.67s 363.79s 20.36s 117
120000kB cc 361.46s 367.88s 23.95s 100
120000kB cc-lzf 378.49s 380.57s 27.52s 100
120000kB vanilla 381.33s 385.00s 28.85s 100

make -j2 80000kB cc 641.14s 650.36s 61.84s 100
80000kB cc-nodisable 587.40s 605.34s 61.91s 89
80000kB vanilla 844.90s 871.69s 97.32s 100

make -j1 80000kB cc 424.24s 428.04s 19.69s 100
80000kB cc-nodisable 407.30s 416.32s 21.72s 89
80000kB vanilla 474.42s 474.45s 5.26s 100

sort 40000kB cc 261.82s 261.80s 4.90s 91
40000kB vanilla 249.72s 250.32s 3.57s 100
40000kB cc-nodisable 278.22s 278.34s 7.82s 100
60000kB cc 235.23s 235.41s 2.72s 34
60000kB vanilla 235.99s 237.00s 3.35s 52
60000kB cc-nodisable 284.70s 284.55s 10.14s 43
80000kB cc 240.94s 241.17s 2.92s 195
80000kB vanilla 244.39s 244.88s 3.36s 55
80000kB cc-nodisable 279.69s 282.09s 10.14s 55

sortcomp 80000kB cc 594.00s 597.42s 23.50s 100
80000kB vanilla 639.00s 639.22s 4.64s 100
80000kB cc-nodisable 583.50s 588.89s 23.08s 100

Table 6.1: All the results from the test runs.

6.4. RESULTS 73

3 2 1

2.6.22 cc nodisable
2.6.22 cc
2.6.22 vanilla

Number of concurrent processes

S
ec

on
ds

 (
m

ed
ia

n)

0
50

0
10

00
15

00

Figure 6.4: 80MB with varying number of concurrent processes

having enough main memory, but is a measure to postpone trashing and
heavy disk I/O.

In the scatter plots for the ”make -j3” with 80MB of main memory tests
we see that the unmodified ”vanilla” Linux kernel get results that vary from
1220 seconds to over 2930 seconds (see Figure 6.5). For the compressed
caching Linux kernel the results vary from about 820 seconds to just below
1500 seconds (see Figure 6.6) and with a similar kernel with no disabling
logic we see the results vary from about 685 seconds to about 1292 seconds
(see Figure 6.7). If we change the compression algorithm from LZO to LZF
we see the results varying from about 970 seconds to about 2230 seconds
(see Figure 6.8).

When we compare the result of running the different kernels in Figure
6.9, we see clearly that the IQR of the compressed caching results is much
denser than that of the unmodified kernel. This is probably due to the ran-
domness disk I/O may introduce, which could accumulate into the worst or
the best results. The unmodified kernel does more disk I/O than the two
other kernels. The difference in performance between LZO and LZF is due to
LZF not achieving the same compression rates as that of LZO. Compressed
caching without the disabling logic is 20% faster than compressed caching
with disabling of compressed cache, this is probably due to the heuristic
disabling compressed caching for an area being too aggressive for this work-
load. Comparing the median of ”vanilla” kernel with the other modified

74 CHAPTER 6. PERFORMANCE EVALUATION

0 20 40 60 80 100

10
00

15
00

20
00

25
00

30
00

make −j3 test with 80000kB of memory for 2.6.22

run

se
co

nd
s

Figure 6.5: Vanilla Linux 2.6.22.17 running make -j3 test with 80MB of
available memory.

0 10 20 30 40 50 60 70

10
00

15
00

20
00

25
00

30
00

make −j3 test with 80000kB of memory for cc−2.6.22

run

se
co

nd
s

Figure 6.6: Linux 2.6.22.17 with compressed caching running make -j3 test
with 80MB of available memory.

6.4. RESULTS 75

0 20 40 60 80 100 120 140

10
00

15
00

20
00

25
00

30
00

make −j3 test with 80000kB of memory for cc−nodisable−2.6.22

run

se
co

nd
s

Figure 6.7: Linux 2.6.22.17 with compressed caching, no c.c. disabling,
running make -j3 test with 80MB of available memory.

0 20 40 60 80 100

10
00

15
00

20
00

25
00

30
00

make −j3 test with 80000kB of memory for cc−lzf−2.6.22

run

se
co

nd
s

Figure 6.8: Linux 2.6.22.17 with compressed caching, using LZF compression
algorithm, running make -j3 test with 80MB of available memory.

76 CHAPTER 6. PERFORMANCE EVALUATION

cc−2.6.22
73 runs

cc−lzf−2.6.22
100 runs

cc−nodisable−2.6.22
141 runs

2.6.22
100 runs

10
00

15
00

20
00

25
00

30
00

make −j3 test with 80000kB of memory

Kernel version

R
un

tim
e

in
 s

ec
on

ds

Figure 6.9: Boxplot comparison of make -j3 80MB test

kernels, there is a performance increase of 57% with ”cc-nodisable”, 44%
with ”cc” and 28% with ”cc-lzf”. This means that there is a potential of
13% performance increase in tweaking or altering the disabling logic for the
compressed cache.

We can see the same pattern for results of the ”make -j3” test with
100MB of available memory (as seen in Figures 6.10, 6.11 and 6.12) as
we saw with 80MB (see Figures 6.5, 6.6 and 6.8 and 6.7). Compressed
caching has a more narrow range than both the vanilla kernel and the altered
compressed caching with LZF compression algorithm. Compressed caching
without the disabling logic is again performing better than the other kernels.
The reduction in running time compared to the ”vanilla” kernel is 14% for
”cc-nodisable”, 9% for ”cc” and 0.3% for ”cc-lzf”. When more memory
is available, the effect of compressed caching is less. This is because the
number of potentially saved disk accesses is smaller.

For the ”make -j3” test with 120MB, (see Figure 6.19) the results overlap
a lot more, and the effect of compressed caching is even less than with 110MB
main memory.

If we compare Figure 6.9, Figure 6.14 and Figure 6.19 we can see that
the trend between the different kernels are the same, but that the effect of
compressed caching is less the more main memory is available.

The performance increase for this test, which has more main memorpy,
is less than the previous. The increase in performance compared to the

6.4. RESULTS 77

0 20 40 60 80 100

40
0

50
0

60
0

70
0

80
0

90
0

make −j3 test with 100000kB of memory for 2.6.22

run

se
co

nd
s

Figure 6.10: Vanilla Linux 2.6.22.17 running make -j3 test with 100MB of
available memory.

0 20 40 60 80 100

40
0

50
0

60
0

70
0

80
0

90
0

make −j3 test with 100000kB of memory for cc−2.6.22

run

se
co

nd
s

Figure 6.11: Linux 2.6.22.17 with compressed caching running make -j3 test
with 100MB of available memory.

78 CHAPTER 6. PERFORMANCE EVALUATION

0 20 40 60 80 100

40
0

50
0

60
0

70
0

80
0

90
0

make −j3 test with 100000kB of memory for cc−lzf−2.6.22

run

se
co

nd
s

Figure 6.12: Linux 2.6.22.17 with compressed caching, using LZF compres-
sion algorithm, running make -j3 test with 100MB of available memory.

0 20 40 60 80 100 120

40
0

50
0

60
0

70
0

80
0

90
0

make −j3 test with 100000kB of memory for cc−nodisable−2.6.22

run

se
co

nd
s

Figure 6.13: Linux 2.6.22.17 with compressed caching, no c.c. disabling,
running make -j3 test with 100MB of available memory.

6.4. RESULTS 79

cc−2.6.22
100 runs

cc−lzf−2.6.22
100 runs

cc−nodisable−2.6.22
117 runs

2.6.22
100 runs

40
0

50
0

60
0

70
0

80
0

90
0

make −j3 test with 100000kB of memory

Kernel version

R
un

tim
e

in
 s

ec
on

ds

Figure 6.14: Boxplot comparison of make -j3 100MB test

0 20 40 60 80 100

34
0

36
0

38
0

40
0

42
0

44
0

46
0

make −j3 test with 120000kB of memory for 2.6.22

run

se
co

nd
s

Figure 6.15: Vanilla Linux 2.6.22.17 running make -j3 test with 120MB of
available memory.

80 CHAPTER 6. PERFORMANCE EVALUATION

0 20 40 60 80 100

34
0

36
0

38
0

40
0

42
0

44
0

46
0

make −j3 test with 120000kB of memory for cc−2.6.22

run

se
co

nd
s

Figure 6.16: Linux 2.6.22.17 with compressed caching running make -j3 test
with 120MB of available memory.

0 20 40 60 80 100

34
0

36
0

38
0

40
0

42
0

44
0

46
0

make −j3 test with 120000kB of memory for cc−lzf−2.6.22

run

se
co

nd
s

Figure 6.17: Linux 2.6.22.17 with compressed caching, using LZF compres-
sion algorithm, running make -j3 test with 120MB of available memory.

6.4. RESULTS 81

0 20 40 60 80 100 120

34
0

36
0

38
0

40
0

42
0

44
0

46
0

make −j3 test with 120000kB of memory for cc−nodisable−2.6.22

run

se
co

nd
s

Figure 6.18: Linux 2.6.22.17 with compressed caching, no c.c. disabling,
running make -j3 test with 120MB of available memory.

cc−2.6.22
100 runs

cc−lzf−2.6.22
100 runs

cc−nodisable−2.6.22
117 runs

2.6.22
100 runs

34
0

36
0

38
0

40
0

42
0

44
0

46
0

make −j3 test with 120000kB of memory

Kernel version

R
un

tim
e

in
 s

ec
on

ds

Figure 6.19: Boxplot comparison of make -j3 120MB test

82 CHAPTER 6. PERFORMANCE EVALUATION

0 20 40 60 80 100

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

make −j2 test with 80000kB of memory for 2.6.22

run

se
co

nd
s

Figure 6.20: Vanilla Linux 2.6.22.17 running make -j2 test with 80MB of
available memory.

”vanilla” kernel is 5% for ”cc-nodisable”, 5% for ”cc” and 0.7% for ”cc-lzf”.

Studying the scatter plots from the ”make -j2” test with 80MB of avail-
able main memory in Figures 6.20, 6.21 and 6.22, we find that the com-
pressed caching kernel has less variance in the results than the vanilla kernel
and that the median is significantly lower. Reduction in median running
time compared to ”vanilla” kernel is 30% for ”cc-nodisable” and 24% for
”cc”.

Studying the result of the ”make -j1” test with 80MB of main memory in
Figures 6.20, 6.21 and 6.22, we find that the compressed caching kernel has a
larger variance in the results than the ”vanilla” kernel and that the median
is significantly lower. The reason for this is not obvious, but a plausible
explanation is that the order of accesses to the compressed cache between
the routinely run PFRA and application can make the process have variance
in how much disk I/O is needed. Consider that case where the workload is
about to access the oldest compressed page, if the PFRA shrinks the cache
first the process ends up needing to do disk I/O. This in turn changes the
timing between the application and the PFRA, which adds to the variance.
The variance is smaller than for both ”make -j2” and ”make -j3” tests with
the same kernels and amount of main memory. Compared to the ”vanilla”
kernel the reduction in run time is 14% for ”cc-nodisable” and 11% for ”cc”.

Comparing the results from ”make -j1”, ”make -j2” and ”make -j3 (see

6.4. RESULTS 83

0 20 40 60 80 100

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

make −j2 test with 80000kB of memory for cc−2.6.22

run

se
co

nd
s

Figure 6.21: Linux 2.6.22.17 with compressed caching running make -j2 test
with 80MB of available memory.

cc−2.6.22
100 runs

2.6.22
100 runs

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

make −j2 test with 80000kB of memory

Kernel version

R
un

tim
e

in
 s

ec
on

ds

Figure 6.22: Boxplot comparison of make -j2 80MB test

84 CHAPTER 6. PERFORMANCE EVALUATION

0 20 40 60 80 100

40
0

42
0

44
0

46
0

48
0

make −j1 test with 80000kB of memory for 2.6.22

run

se
co

nd
s

Figure 6.23: Vanilla Linux 2.6.22.17 running make -j1 test with 80MB of
available memory.

0 20 40 60 80 100

40
0

42
0

44
0

46
0

48
0

make −j1 test with 80000kB of memory for cc−2.6.22

run

se
co

nd
s

Figure 6.24: Linux 2.6.22.17 with compressed caching running make -j1 test
with 80MB of available memory.

6.4. RESULTS 85

cc−2.6.22
100 runs

2.6.22
100 runs

40
0

42
0

44
0

46
0

48
0

make −j1 test with 80000kB of memory

Kernel version

R
un

tim
e

in
 s

ec
on

ds

Figure 6.25: Boxplot comparison of make -j1 80MB test

Figures 6.25, 6.22 and 6.9) with 80MB of main memory available, we see
that the relative effect of compressed caching is less when less processes are
running. We also see an increase in running time between the workloads:
for the ”vanilla” kernel that ”make -j2” is 78% slower than ”make -j1”, and
”make -j3” is 123% slower than ”make -j2”. In comparison the same values
for ”cc-nodisable” are 44% and 37% and for ”cc” they are 51% and 62%.

The sort workload is meant to be a worst-case of compressed caching, and
as expected the vanilla kernel has, as can be seen in Figure 6.26 and Figure
6.27, a lower median and lower variance in the results than compressed
caching. Compared to the ”vanilla” kernel the ”cc-nodisable” kernel is 11.4%
slower and ”cc” is 6.57% slower.

As we can see, the compressed caching kernel with disabling of the com-
pressed cache has better performance than without any disabling logic, this
is what we aimed for. When more main memory is available for the sort
workload the difference between compressed caching and the unmodified
kernel becomes less. An exception to this is for the kernel with no disabling
logic where the time to run the workload becomes larger when increasing
the available main memory from 40MB to 60MB. It is hard to explain this,
an educated guess is that the size of the cache is sized more optimal when
the expense list is larger compared to the profit list. We did not have time
to look into this at any detail.

86 CHAPTER 6. PERFORMANCE EVALUATION

0 20 40 60 80 100

24
0

25
0

26
0

27
0

28
0

29
0

30
0

sort test with 40000kB of memory for 2.6.22

run

se
co

nd
s

Figure 6.26: Vanilla Linux 2.6.22.17 running sort test with 40MB of available
memory.

0 20 40 60 80

24
0

25
0

26
0

27
0

28
0

29
0

30
0

sort test with 40000kB of memory for cc−2.6.22

run

se
co

nd
s

Figure 6.27: Linux 2.6.22.17 with compressed caching running sort test with
40MB of available memory.

6.4. RESULTS 87

0 20 40 60 80 100

24
0

25
0

26
0

27
0

28
0

29
0

30
0

sort test with 40000kB of memory for cc−nodisable−2.6.22

run

se
co

nd
s

Figure 6.28: Linux 2.6.22.17 with compressed caching, without disabling
cache, running sort test with 40MB of available memory.

cc−2.6.22
91 runs

cc−nodisable−2.6.22
100 runs

2.6.22
100 runs

24
0

25
0

26
0

27
0

28
0

29
0

30
0

sort test with 40000kB of memory

Kernel version

R
un

tim
e

in
 s

ec
on

ds

Figure 6.29: Boxplot comparison of sort 40MB test

88 CHAPTER 6. PERFORMANCE EVALUATION

0 10 20 30 40 50

24
0

26
0

28
0

30
0

32
0

sort test with 60000kB of memory for 2.6.22

run

se
co

nd
s

Figure 6.30: Vanilla Linux 2.6.22.17 running sort test with 60MB of available
memory.

0 5 10 15 20 25 30 35

24
0

26
0

28
0

30
0

32
0

sort test with 60000kB of memory for cc−2.6.22

run

se
co

nd
s

Figure 6.31: Linux 2.6.22.17 with compressed caching running sort test with
60MB of available memory.

6.4. RESULTS 89

0 10 20 30 40

24
0

26
0

28
0

30
0

32
0

sort test with 60000kB of memory for cc−nodisable−2.6.22

run

se
co

nd
s

Figure 6.32: Linux 2.6.22.17 with compressed caching, without disabling
cache, running sort test with 60MB of available memory.

cc−2.6.22
34 runs

cc−nodisable−2.6.22
43 runs

2.6.22
52 runs

24
0

26
0

28
0

30
0

32
0

sort test with 60000kB of memory

Kernel version

R
un

tim
e

in
 s

ec
on

ds

Figure 6.33: Boxplot comparison of sort 60MB test

90 CHAPTER 6. PERFORMANCE EVALUATION

0 20 40 60 80 100

56
0

58
0

60
0

62
0

64
0

66
0

make −j1 and sort simultanously with 80000kB of memory for 2.6.22

run

se
co

nd
s

Figure 6.34: Vanilla Linux 2.6.22.17 running sort test with 80MB of available
memory.

0 20 40 60 80 100

56
0

58
0

60
0

62
0

64
0

66
0

make −j1 and sort simultanously with 80000kB of memory for cc−2.6.22

run

se
co

nd
s

Figure 6.35: Linux 2.6.22.17 with compressed caching running sort test with
80MB of available memory.

6.4. RESULTS 91

0 20 40 60 80 100

56
0

58
0

60
0

62
0

64
0

66
0

make −j1 and sort simultanously with 80000kB of memory for cc−nodisable−2.6.22

run

se
co

nd
s

Figure 6.36: Linux 2.6.22.17 with compressed caching, without disabling
cache, running sort test with 80MB of available memory.

cc−2.6.22
100 runs

cc−nodisable−2.6.22
100 runs

2.6.22
100 runs

56
0

58
0

60
0

62
0

64
0

66
0

make −j1 and sort simultanously with 80000kB of memory

Kernel version

R
un

tim
e

in
 s

ec
on

ds

Figure 6.37: Boxplot comparison of sort and compile test with

92 CHAPTER 6. PERFORMANCE EVALUATION

0 200 400 600 800

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

cache size running make −j3 with 80000kB of main memory

seconds into run

ki
lo

by
te

s
of

 m
em

or
y

Figure 6.38: Following the cache size through a make -j3 test with 80MB of
memory

6.5 Evaluation

Looking at Figures 6.38, 6.39, 6.40 and 6.41 which track how much memory
is stored in the compressed cache and how much main memory is used to
store them, we can see a few things. Most importantly, the compressed
cache never uses more main memory than it stores, which is by design. The
global compaction explained in Section 4.15 makes sure that we do not have
fewer than one compressed page in each cell. We also see that under the
run of the test we find spikes where a lot of data is compressed with a high
ratio.

Looking at Figure 6.40 and 6.41, which are both running the sort work-
load with 40MB of available memory, we would expect to see five spikes
since in the sort workload, sort is run five times in a row. For ”nodisable”
(see Figure 6.41 we see three large spikes and two smaller ones, all about
60 seconds. The 60 second interval is caused by the sort processes using
about 60 seconds and writing the result to file. The reason the second and
fourth is smaller is probably a result of the access pattern: if the last access
to the cache was in the profit list we get a spike, if the last access to the
cache was in the expense list we do not get such a spike. If we look at the
”cc” (see Figure 6.40) cache size through a sort it has no spikes, this is the
behavior we want, because the cache is never reused so most memory areas

6.5. EVALUATION 93

0 200 400 600 800

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

cache size running make −j3 with 80000kB of main memory (nodisable)

seconds into run

ki
lo

by
te

s
of

 m
em

or
y

Figure 6.39: Following the cache size through a make -j3 test with 80MB of
memory and no disabling logic.

0 50 100 150 200 250

0
20

00
0

40
00

0
60

00
0

80
00

0

cache size running sort with 40000kB of main memory

seconds into run

ki
lo

by
te

s
of

 m
em

or
y

Figure 6.40: Following the cache size through a sort of a 110MB large file
with 40MB of memory available

94 CHAPTER 6. PERFORMANCE EVALUATION

0 50 100 150 200 250

0
20

00
0

40
00

0
60

00
0

80
00

0

cache size running sort with 40000kB of main memory (nodisable)

seconds into run

ki
lo

by
te

s
of

 m
em

or
y

Figure 6.41: Following the cache size in the same scenario as in Figure 6.40,
but with no disabling of compressed caching.

are disabled.
The file being sorted is a file consisting of the ascii string representation

of a number between 0 and 32767 and it has a size of 109MB. This gives a low
entropy, because only the symbols from 0 to 9 and newline are used. This
is reflected in Figure 6.41 where we can see more pages in the compressed
cache than can be stored uncompressed in main memory.

One of the drawbacks of compressed caching is that the worst-case is
slower than the worst-case of an unmodified kernel, this is because of the use-
less compression and memory usage under such circumstances. The worst-
case can always be made to occur by continually changing how a memory
area is behaving to avoid detection. It is, however, less likely to occur the
more detection logic is put in, because it would take less time to detect such
changes.

We see from the results that never turning off compressed caching is
advantagous in all the test except the sort test. As we can see when com-
paring the cache size (see Figure 6.38 and 6.39) the compressed caching with
cache disabling logic has a much smaller cache size than the kernel without
the disabling logic. This happens because the disabling logic is disabling
too aggressively, adjusting the parameters to be less aggressive can make it
better, but then it could also make the sort test slower.

Chapter 7

Conclusion

This thesis presents the design, implementation and evaluation of com-
pressed caching in Linux. We describe scenarios that earlier implementations
have not discussed and propose solutions to those. Based on these solutions
we design and implement compressed caching for Linux. We then test and
evaluate these solutions.

7.1 Summary of contributions

The VM of the Linux kernel is a large and complex system which is in
constant flux. This makes it hard to find relevant documentation that is up
to date. It is also a large task in itself to get a good overview of how the
VM works and interacts with other subsystems.

The design and implementation went through several phases: We started
with an architecture specific implementation altering the page tables and
page fault handling. We took some bits from the swap entry identifier to
mark it as a compressed page and used this to look it up in a radix tree only
for the purpose of compressed caching. This has three major drawbacks: (1)
it only works for anonymous pages, (2) supports only one architecture and
(3) limits us to store pages into a cache, but not be able to evict compressed
pages to replace them with newer ones on demand.

In the next iteration, we changed the design to be architecture indepen-
dent as much as possible and made the compressed cache have its own LRU
list, so that we could evict the oldest page if we needed to. We still do
allocate storage for the compressed pages with kmalloc(). From this point,
storing a file cached page into the cache is a very natural extension, because
the data structure for the page cache is shared between both file backed
pages and swap backed pages.

The next step is to implement the cell allocator. It became clear that we
need to change the locking of the compressed cache to avoid invalid locking.
To accomplish this, we separate out freeing of compressed pages in its own

95

96 CHAPTER 7. CONCLUSION

step, so that we can free compressed pages later.

We started by implementing an adaptive resizing heuristics on the cache,
trying to use more of the concepts developed by Kaplan et al. [12] directly,
but it turned out to be far more difficult and time consuming than we
originally hoped for, and we abandoned it. Instead, we implemented the
simple and working algorithm of Castro et al.[8], which is an approximation
to the same theory.

Next, we focus on the inclusion and handling of marker pages. We
implemented this in such a way that we can use it for disabling of compressed
caching later. We build on top of the marker pages to implement disabling
of the compressed caching for memory areas when their use of the cache is
low.

Some of these steps could have been skipped, if we had a deeper under-
standing of the VM. Unfortunately, gaining such information would have
probably taken just as much time.

7.2 Critical Assessment

This section describes what we would have done differently, if we had the
insights we have today when we started the thesis. Since our master thesis
is limited in scope and time it opens more questions than it answers.

One of the experiments we wanted to do, but did not have time for, is a
comparison of global disabling of compressed caching and our disabling per
memory area. To do this we must design and implement global compressed
caching. This would have been very interesting considering the results Cas-
tro et al.[8] achieved implementing it.

Most of the time spent on this master thesis was spent on the first fully
working design and implementation, and unfortunately there was not enough
time to do enough testing and using that feedback into enhancing the results
further. There are several reasons for this, the most pronounced one is the
time it takes to get reliable and comparable results. The reason it takes
so much time is the high variation in the results, which means that we can
not see a trend with only a few runs and thus have to repeat runs until we
have a high enough confidence in the results. This limited us to use only
a handful of workloads. If we had more time testing other interesting real
life workloads, such as web or mail servers, we certainly would have done
so. Tweaking of parameters such as when to enable and disable compressed
caching, how many marker pages should be allowed in the compressed cache
and how much history should be kept is something that we want to look
more into.

To better handle the time constraint, a splitting of this master thesis
into two or more parts would have allowed for more focus on the issues.
A good split would have been the storage of compressed pages and the

7.3. FUTURE WORK 97

implementation of compressed caching. The reason we think that this is
important is that we did not have any time to do any tests on how design
decisions for the cell allocator, such as look up of free cells and compacting
strategies, affects performance and fragmentation. The cell allocator was
designed and implemented without any iterative feedback from any test
results. Some of the things we did not have time for are mentioned were in
the future work section.

7.3 Future work

There are several issues and possible optimizations to be explored for com-
pressed caching. To implement, test and evaluate extensions using this thesis
design and implementation as a base, can be achieved with considerable less
effort than implementing compressed caching from scratch. Here are some
extensions that we believe are worth looking into:

• Testing more compression algorithms and perhaps adapt special com-
pression algorithms when specific data is detected to achieve better
compression. We only try two compression algorithms in this master
thesis and we only use one at a time for the complete system.

• Changing the memory allocator: the interface used is clearly defined
and changing the allocator should be straight forward. There are prob-
ably enhancements that could be done to the cell allocator such as
locating free cells and global compacting.

• The algorithm to adapt the size of the cache can easily be changed
and evaluated. We tried to alter the block layer to measure how long
a request is in the I/O queue before being sent to the actual device.
This was meant to be a way to measure how busy the I/O device is,
but it would be a too large change to the block layer subsystem, so we
decided to go with another approach.

• Evaluate compressed caching for small devices that uses swapping or
file systems over the network, where sending page traffic over the air
is expensive considering power usage. In this thesis, we only run tests
on commercial-off-the-shelf desktop hardware, which is not limited by
battery capacity. This is briefly discussed by Briglia et al.[1].

• Try to compress several pages at a time, this could reduce entropy
considerably and increase the compression ratio. This is done per page
in our implementation, but it is doable by changing a few functions.
A suggestion on how to do this is to wait until a number of pages has
been added to the compressed cache before compressing them.

98 CHAPTER 7. CONCLUSION

• Storing compressed pages without decompressing them can achieve
better performance by not decompressing pages unnecessarily. This
includes changes to the swap subsystem, which is why we did not
do this. This means adding information for each swap slot if it is
compressed or not. If multiple compression algorithms are to be used,
which one used in a particular slot must also be stored.

• Evaluating hit ratio disabling of cache in a non-compressed caching
setting. Thrashing the file cache is something that occurs not only in
the compressed cache scenario when accessing large files, but also in the
vanilla Linux kernel. Throwing these out midway through the cache
could potentially increase performance. This would be an extension
of recent behavior, where the heuristic for removing pages also looks
at the pattern and not only the order of accesses to the pages. An
idea here would be to evict pages at different intervals through the
cache, in other words, let it be less and less likely that a page stays in
the cache if similar pages have not ”proven” themselves to be useful
before. This will let applications that had a very good cache hit ratio
earlier, but are currently idling, be kept longer in memory.

• Look at the possibility to reuse the compressed cache subsystem to
also be a dynamic swapping area when no swapping area is available.
Our implementation requires a swap area to store anonymous pages
in the compressed cache, since it shares the page cache structure with
swapping to identify pages. A suggestion on how to implement this
would be to have a separate data structure when no swap space is
available. Issues that would need to be resolved would be how pages
are migrated when a real swap device is added and if file backed pages
and anonymous pages should be separated in the LRU list. A motiva-
tion to look at this aspect of compressed caching is to avoid wearing
down media that can be worn out when it is written to repeatedly.

Most of the points above have not been implemented because of the lack
of time, and to limit the scope of this thesis.

References

[1] Leonid Moiseichuk Anderson Briglia, Allan Bezerra and Nitin Gupta.
Evaluating effects of cache memory compression on embedded systems.
In Proceedings of the Linux Symposium, pages 53–65, Ottawa, Ontario,
Canada, 2007.

[2] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel.
O’Reilly, 3. edition, 2005.

[3] Peter J. Denning. The working set model for program behavior. In
SOSP ’67: Proceedings of the first ACM symposium on Operating Sys-
tem Principles, pages 15.1–15.12, New York, NY, USA, 1967. ACM
Press.

[4] Fred Douglis. The compression cache: Using on-line compression to
extend physical memory. In Proceedings of the Winter 1993 USENIX
Conference, pages 519–529, 1993.

[5] M. Tim Jones. Anatomy of the linux slab allocator. IBM developer-
Works website, 2007. http://www.ibm.com/developerworks/linux/

library/l-linux-slab-allocator/.

[6] Seagate Global Product Marketing. Economies of capacity and speed:
Choosing the most cost-effective disc drive size and rpm to meet it re-
quirements. Technical report, 2004. http://www.seagate.com/docs/

pdf/whitepaper/economies capacity spd tp.pdf.

[7] David S. Moore and George P. Mccabe. Introduction to the Practice of
Statistics. Freeman and Company, New York, 4. edition, 2003.

[8] Alair Pereira do Lago Rodrigo S. de Castro and Dilma Da Silva. Adap-
tive compressed caching: Design and implementation. Symposium on
Computer Architecture and High Performance Computing, 15:10–18,
2003.

[9] Asbjorn Sannes. Lkml discussion: Unpredictable performance. Website,
2008. http://lkml.org/lkml/2008/1/25/326.

99

100 REFERENCES

[10] Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall,
2001.

[11] Irina C. Tuduce and Thomas Gross. Adaptive main memory com-
pression. In Proceedings of The 2005 USENIX Annual Technical
Conference, pages 237–250, 2005. http://www.usenix.org/events/

usenix05/tech/general/tuduce.html.

[12] Paul R. Wilson, Scott F. Kaplan, and Yannis Smaragdakis. The case
for compressed caching in virtual memory systems. In Proceedings of
The 1999 USENIX Annual Technical Conference, pages 101–116, 1999.

Appendix A

Early attempt

In an early attempt at adaptive size in this thesis we tried to follow Wilson et
al. closer, but ran into problems with how to time the block I/O subsystem
in the kernel.

We divide the pages up into the same lists as the current design with a
expense and a profit list.

To decide if the cache should increase or decrease in size we do the
following considerations: Let Ae, Ap, Tc, and Tio be the number of accesses
to the expense list, the number of accesses to the profit list, the time to do a
compress and decompress a page, and the time to retrieve a page from disk
respectively. As long as equation A.1

Ae ∗ Tc ≤ Ap ∗ (Tio − Tc) (A.1)

holds maintaining compressed caching benefits the system and it would
probably benefit even more from a larger one. If it doesn’t hold, we are
better off with a smaller compressed cache.

To keep track of Ae and Ap we need to take a note every time a page
is retrieved from the compressed cache, of course it would not be wise to
keep such information forever. The reason is twofold; If we get big enough
numbers for Ae and Ap, recent information is not going to count much,
although recent behavior often is expected behavior in the future. The
second reason is that earlier hits for the two lists may have been in the
other before the change in the size of the cache and so would force the list
to become bigger or smaller than what we consider optimal. We could get
around this in various ways, one could be to use a history of N number of
pages to calculate the averages over, or we could reset it every Nth page.

Doing the measurement on Tio and Tc can be done once, perhaps on the
initialization of the compressed cache system, however doing the measure-
ment more often would give us the advantage of getting feedback from the
system. Say we have some very I/O intensive load that would slow down
swapping out even more, then the time of an I/O would be higher and the

101

102 APPENDIX A. EARLY ATTEMPT

hits on the profit list should have a higher weight. The same can be said
when the CPU is highly loaded and compression/decompression times would
take more time, the weight for the expense list should be lower. The main
problem doing this is that the timing will most likely vary little: For mea-
suring compressing and decompressing it is unlikely that we will preempt
very often because this operation takes less time than that of the timer in-
terrupt used to change processes. Where an I/O starts and where it ends
can vary the timing results quite a lot; if we go to close to where the I/O
is submitted, we will get very consistent results with little to no variation.
If we do it to far away from what we are really trying to do we get a lot of
noise that has nothing to do with how much I/O saturation we have.

The time unit used in A.1 is not important, as long as it is the same
for both Tc and Tio. This means that we can choose the time unit used for
measurement without affecting the result. Therefore I will use the cheapest
timing source available in Linux: jiffies. A question is how a measurement
should affect the use of Tc and Tio. If we say they should be equal to the
latest measurement we have done it would be vulnerable to extreme single
values. We could of course do an average over N last measurements to avoid
that.

Unfortunately, we were unable, without excessive changes, to change
the Linux block layer to give us the information we wanted. Instead we
implemented the same approach as Castro et. al.

Appendix B

Workloads

These are the scripts used for the different workloads. The important data
to be recorded for each run is outputted to STDERR and is recorded to a
file.

B.1 make -jX workloads

#!/bin/sh

rm -rf linux-2.6.22.12

echo "Starting test"

cat /proc/vmstat 1>&2

iostat 1>&2

#sh /usr/src/tests/monitorsize.sh 1>&2 &

time (

tar -jxf ../linux-2.6.22.12.tar.bz2

cp ../config-2.6.22 linux-2.6.22.12

cd linux-2.6.22.12

yes n | make oldconfig > /dev/null

make -j${1} > /dev/null)

cat /proc/vmstat 1>&2

iostat 1>&2

echo "Test done"

B.2 sort workload

echo "Boot" 1>&2

#sh /usr/src/tests/monitorsize.sh 1>&2 &

time sort -n /root/randomfil.txt > /dev/null

time sort -n /root/randomfil.txt > /dev/null

time sort -n /root/randomfil.txt > /dev/null

time sort -n /root/randomfil.txt > /dev/null

103

104 APPENDIX B. WORKLOADS

time sort -n /root/randomfil.txt > /dev/null

B.3 sortcomp workload

#!/bin/sh

date +"combined start: %s" 1>&2

sh /usr/src/tests/run-jXtest.sh 1 1>&2

sleep 120

time sort -n /root/randomfil.txt > /dev/null &

wait

date +"combined stop: %s" 1>&2

sh /usr/src/tests/clean-jXtest.sh 1

Appendix C

Results

These are raw data results.

C.1 make -j3 test results

C.1.1 cc 2.6.22 with 80MB

Runtime in
seconds

1117.732, 972.049, 1294.29, 1253.213, 1032.466, 861.539,
942.275, 1117.636, 1018.522, 956.121, 1229.795, 1090.947,
1350.263, 884.048, 924.832, 925.96, 1114.342, 1001.56,
959.861, 1003.227, 962.085, 1197.297, 1106.528, 847.441,
1139.562, 1108.179, 850.704, 1460.159, 1026.339, 1063.167,
1172.692, 841.671, 1063.561, 1242.8, 1025.701, 958.159,
981.917, 1130.239, 1077.741, 1305.246, 1278.187, 1097.082,
943.9, 1084.011, 1035.87, 999.731, 947.874, 1005.162,
1223.975, 1040.206, 1011.96, 1267.271, 991.939, 1045.596,
1280.566, 1127.809, 1287.736, 948.949, 1328.062, 1205.893,
1001.782, 832.077, 820.999, 1033.079, 1108.804, 965.443,
845.707, 1118.511, 1003.46, 1083.646, 882.723, 1064.495,
1169.237

105

106 APPENDIX C. RESULTS

C.1.2 cc-lzf 2.6.22 with 80MB

Runtime in
seconds

1180.322, 1736.956, 2105.391, 1499.364, 1733.325, 1215.125,
1404.389, 1274.694, 1464.517, 1537.931, 1150.38, 1148.969,
1346.485, 1186.645, 2061.916, 1337.123, 1453.029, 1583.624,
1177.802, 1201.908, 1206.682, 1207.64, 1329.938, 1347.647,
1577.903, 1533.789, 1476.121, 1256.183, 1590.186, 1577.489,
1377.541, 1486.634, 1391.366, 984.188, 1106.59, 1360.35,
1107.402, 1369.779, 1506.909, 1285.443, 1669.684, 1249.615,
1089.605, 1540.856, 1365.763, 1424.544, 1621.554, 1302.923,
2146.733, 1620.182, 1108.652, 1213.981, 1768.513, 1090.478,
1116.784, 1135.112, 1341.864, 1499.139, 1241.407, 1490.542,
1207.109, 1299.709, 1514.115, 1478.629, 1328.316, 1051.783,
1606.562, 1267.185, 1236.7, 1440.077, 1287.358, 1494.703,
1542.549, 1229.965, 1230.98, 1331.924, 1211.538, 1304.91,
1340.526, 1016.717, 2226.81, 1361.359, 1268.626, 1656.361,
1457.464, 967.337, 1333.555, 1166.345, 1148.293, 1451.486,
1359.117, 1212.726, 1265.741, 1685.338, 1557.94, 1435.26,
1403.01, 1497.328, 1400.906, 1558.561

C.1. MAKE -J3 TEST RESULTS 107

C.1.3 cc-nodisable 2.6.22 with 80MB

Runtime in
seconds

767.413, 770.603, 737.053, 706.648, 697.546, 712.428,
917.342, 906.133, 805.302, 798.997, 789.894, 728.588,
858.061, 744.891, 743.429, 754.391, 952.222, 797.629,
883.623, 823.436, 894.177, 1047.604, 979.372, 914.061,
1058.001, 804.417, 739.939, 780.909, 767.727, 859.909,
802.298, 686.072, 1292.027, 773.898, 999.817, 949.354,
815.109, 769.139, 926.965, 780.401, 849.487, 784.248,
832.423, 758.433, 712.055, 842.698, 796.539, 759.067,
928.794, 864.138, 965.647, 725.832, 817.7, 760.892, 978.05,
772.348, 823.855, 716.652, 762.965, 892.513, 857.34, 794.053,
770.914, 868.107, 861.963, 774.316, 717.54, 885.817, 768.588,
739.391, 737.644, 727.639, 722.85, 778.865, 1200.068,
922.361, 1105.826, 849.012, 753.309, 975.434, 962.007,
939.189, 827.064, 766.853, 820.765, 726.799, 803.898,
855.642, 863.641, 684.234, 732.65, 726.365, 721.946, 785.862,
815.927, 698.306, 1190.974, 818.96, 970.412, 811.909,
925.865, 749.163, 711.862, 769.399, 781.721, 706.678,
724.368, 748.084, 815.395, 718.827, 852.946, 739.892, 826.63,
746.582, 945.075, 768.729, 939.574, 782.546, 1136.092,
774.987, 724.496, 824.383, 1033.621, 979.917, 738.998,
782.725, 804.352, 884.716, 841.383, 795.516, 820.265,
931.755, 1036.95, 790.644, 832.503, 749.471, 748.937,
840.223, 890.15, 823.663, 795.737

108 APPENDIX C. RESULTS

C.1.4 vanilla 2.6.22 with 80MB

Runtime in
seconds

2057.068, 2401.157, 1607.54, 2374.293, 1417.935, 2493.354,
2939.55, 2177.822, 2074.28, 1506.185, 1612.583, 1452.569,
2381.53, 1880.831, 1917.417, 2392.15, 1541.52, 1895.535,
1962.123, 2060.51, 1411.052, 2323.326, 2563.958, 1681.11,
2234.74, 1932.092, 2245.636, 2103.943, 1708.545, 1992.592,
1543.542, 1805.8, 1866.657, 1814.16, 1398.314, 2005.467,
1792.397, 1560.972, 1326.4, 2113.661, 1388.814, 1789.443,
1884.818, 1998.691, 1456.303, 1984.174, 1544.805, 1894.735,
2058.468, 1384.899, 2120.802, 1643.117, 1652.56, 1220.304,
2169.277, 2304.873, 2119.618, 1787.734, 1499.515, 2632.369,
1574.41, 2152.844, 1797.407, 1842.16, 1453.856, 2006.133,
1926.16, 1907.079, 2542.602, 1828.013, 1850.879, 1626.826,
1822.989, 2021.493, 2307.664, 1917.423, 1727.825, 1834.717,
1920.11, 2000.354, 2057.894, 1878.583, 2038.39, 1332.434,
1786.891, 1991.614, 1921.322, 1609.108, 1830.641, 1481.273,
2583.429, 1497.95, 1680.828, 1734.412, 2363.936, 2718.597,
2898.658, 1855.494, 1742.922, 1788.406

C.1.5 cc 2.6.22 with 100MB

Runtime in
seconds

454.186, 519.486, 482.078, 493.211, 472.337, 459.4, 522.854,
445.754, 464.097, 439.563, 466.772, 548.185, 490.515,
456.859, 444.307, 487.15, 447.278, 478.464, 467.238, 537.024,
449.544, 488.677, 436.854, 455.733, 502.039, 464.444,
555.646, 487.702, 446.892, 475.075, 469.829, 478.167,
632.005, 649.579, 459.351, 482.908, 458.031, 509.58, 484.029,
436.614, 446.277, 487.699, 447.641, 470.033, 461.37, 467.992,
455.799, 459.95, 579.89, 451.484, 455.951, 476.907, 455.223,
459.155, 466.559, 441.596, 444.127, 459.463, 477.888,
502.547, 446.436, 602.514, 463.794, 445.953, 439.381,
458.982, 445.465, 565.531, 438.5, 631.898, 439.048, 467.582,
479.385, 469.981, 445.997, 506.156, 445.837, 587.166,
472.386, 453.25, 454.871, 470.065, 504.206, 485.217, 447.047,
455.024, 457.281, 484.286, 442.561, 448.071, 556.936,
487.295, 495.782, 477.483, 594.709, 466.453, 616.36, 499.813,
456.81, 506.66

C.1. MAKE -J3 TEST RESULTS 109

C.1.6 cc-lzf 2.6.22 with 100MB

Runtime in
seconds

730.124, 510.317, 482.914, 514.248, 531.921, 488.76, 496.664,
511.932, 514.976, 695.585, 492.922, 537.221, 670.979, 469.92,
490.705, 473.749, 520.456, 508.835, 533.465, 480.359,
516.466, 507.206, 489.498, 492.597, 534.107, 503.466,
637.058, 511.072, 537.26, 495.914, 518.261, 503.414, 606.7,
486.894, 620.542, 479.264, 540.623, 488.893, 515.669,
622.994, 535.42, 572.844, 498.629, 509.839, 519.073, 503.746,
525.308, 470.56, 591.162, 494.93, 506.632, 473.05, 539.382,
512.747, 511.988, 482.763, 506.128, 509.101, 471.834, 483.66,
473.148, 564.234, 554.93, 565.577, 568.409, 616.022, 499.873,
518.811, 527.317, 505.824, 636.239, 494.525, 507.899,
528.894, 523.047, 565.18, 663.239, 525.424, 564.101, 488.114,
500.371, 526.487, 470.57, 566.699, 518.58, 502.639, 700.803,
508.386, 489.896, 511.988, 521.975, 592.07, 506.53, 470.026,
575.286, 501.43, 481.59, 593.656, 478.394, 679.047

C.1.7 cc-nodisable 2.6.22 with 100MB

Runtime in
seconds

419.539, 494.159, 456.809, 435.528, 445.718, 441.299,
430.694, 449.245, 429.258, 459.912, 455.52, 435.885, 457.49,
442.823, 435.33, 483.295, 456.529, 448.425, 433.201, 433.365,
418.109, 440.536, 425.225, 544.753, 438.532, 429.461,
430.279, 505.996, 417.452, 455.318, 428.432, 418.179,
432.172, 498.034, 431.591, 425.003, 440.741, 465.851,
434.148, 425.763, 459.182, 434.525, 443.869, 422.808,
432.034, 454.015, 443.113, 565.173, 433.983, 437.536,
450.816, 441.901, 437.371, 474.606, 439.3, 429.933, 430.234,
467.762, 427.298, 441.582, 441.932, 445.513, 422.689,
436.002, 435.744, 446.031, 431.726, 442.533, 427.503,
427.572, 462.298, 454.653, 435.749, 445.904, 431.494,
449.894, 445.979, 428.185, 423.639, 429.166, 455.225,
413.346, 431.901, 429.627, 456.36, 429.077, 425.111, 427.301,
437.864, 476.647, 542.042, 451.197, 436.79, 471.559, 444.971,
453.939, 450.065, 442.674, 420.7, 432.553, 482.955, 432.684,
430.557, 467.656, 481.063, 428.971, 447.249, 451.556,
458.323, 432.833, 470.24, 472.04, 516.022, 467.61, 443.996,
454.583, 566.116

110 APPENDIX C. RESULTS

C.1.8 vanilla 2.6.22 with 100MB

Runtime in
seconds

514.53, 482.273, 536.66, 576.528, 522.771, 599.84, 529.719,
508.3, 450.411, 790.877, 485.969, 513.015, 458.573, 522.382,
564.072, 720.725, 502.919, 527.202, 472.041, 762.031,
480.245, 525.138, 688.275, 791.502, 456.667, 725.63, 758.978,
552.806, 472.93, 458.342, 468.459, 593.049, 596.899, 460.202,
485.239, 476.023, 518.883, 502.397, 741.604, 883.835,
496.942, 494.108, 745.978, 461.144, 739.26, 574.879, 500.07,
534.799, 792.462, 486.105, 488.369, 457.846, 470.497,
728.644, 478.498, 481.267, 630.142, 459.121, 794.639,
486.61, 536.615, 769.668, 550.488, 497.704, 440.021, 464.032,
462.247, 479.317, 459.798, 481.847, 451.441, 470.505,
470.495, 530.781, 543.469, 517.546, 652.357, 457.525,
528.843, 848.182, 485.98, 461.373, 468.411, 544.605, 618.016,
872.148, 574.773, 471.837, 760.826, 550.438, 489.132,
609.306, 589.246, 726.156, 501.921, 459.943, 511.743,
778.041, 503.142, 466.814

C.1.9 cc 2.6.22 with 120MB

Runtime in
seconds

360.303, 379.34, 373.746, 364.484, 353.9, 358.469, 378.791,
369.983, 340.23, 343.61, 343.609, 379.085, 420.623, 349.631,
348.896, 350.1, 438.006, 435.977, 446.577, 336.94, 342.423,
389.678, 349.372, 380.763, 367.801, 411.829, 406.801, 391.07,
366.011, 346.086, 357.79, 344.828, 375.608, 368.112, 356.168,
390.226, 359.154, 354.339, 380.364, 395.563, 407.778,
390.742, 347.92, 361.591, 377.837, 353.147, 351.424, 347.465,
343.144, 352.687, 349.652, 403.565, 385.501, 354.354,
337.72, 354.744, 382.205, 361.479, 385.249, 352.021, 349.195,
366.768, 358.006, 350.779, 350.815, 347.013, 344.91, 374.189,
379.919, 352.579, 389.24, 365.881, 353.818, 353.899, 410.288,
390.616, 369.216, 376.926, 394.57, 342.639, 342.35, 348.172,
352.018, 339.804, 368.928, 342.096, 339.645, 357.914,
361.447, 345.2, 390.241, 345.772, 362.801, 427.69, 356.212,
389.161, 370.969, 365.659, 374.046, 380.355

C.1. MAKE -J3 TEST RESULTS 111

C.1.10 cc-lzf 2.6.22 with 120MB

Runtime in
seconds

372.297, 351.306, 358.512, 365.003, 369.49, 427.844, 403.057,
369.15, 395.772, 376.999, 354.978, 354.951, 357.614, 354.277,
420.748, 380.636, 381.326, 396.512, 389.765, 376.563,
385.512, 436.478, 374.748, 389.712, 346.894, 379.263,
356.261, 340.872, 352.138, 344.666, 428.91, 365.189, 357.275,
352.088, 356.578, 381.623, 350.159, 387.06, 401.885, 348.576,
402.831, 394.593, 418.072, 425.225, 429.796, 389.295,
419.524, 419.814, 370.93, 404.524, 456.16, 379.461, 415.334,
343.688, 376.442, 375.45, 405.176, 442.902, 349.274, 425.973,
377.715, 379.557, 374.27, 391.971, 405.029, 386.785, 346.75,
375.87, 344.366, 368.324, 342.33, 360.332, 355.518, 339.684,
414.64, 393.07, 363.486, 351.317, 382.45, 408.967, 362.584,
409.161, 391.263, 410.85, 370.314, 387.097, 400.06, 346.653,
385.993, 353.81, 351.65, 426.289, 382.753, 342.991, 342.273,
382.08, 390.12, 368.881, 409.475, 342.905

C.1.11 cc-nodisable 2.6.22 with 120MB

Runtime in
seconds

340.639, 350.625, 398.479, 368.671, 374.13, 376.529, 367.515,
349.908, 398.294, 345.825, 348.322, 390.548, 342.114,
350.106, 341.361, 343.392, 345.272, 354.958, 349.118,
358.733, 372.216, 371.006, 409.62, 339.476, 401.148, 376.347,
336.021, 346.134, 381.151, 403.179, 366.573, 423.063,
359.292, 416.319, 343.998, 379.725, 346.839, 388.167,
364.649, 348.258, 389.223, 345.626, 356.007, 366.421,
354.186, 361.403, 344.21, 344.494, 371.323, 369.309, 365.085,
388.935, 348.843, 378.284, 368.754, 375.453, 381.242,
360.407, 395.533, 393.369, 378.634, 359.454, 361.86, 363.47,
351.853, 381.321, 340.974, 396.871, 338.045, 352.704,
360.326, 357.837, 394.326, 355.304, 392.111, 338.836,
350.497, 372.254, 349.139, 352.627, 364.14, 357.454, 365.28,
342.123, 357.919, 352.539, 343.425, 359.379, 363.432, 362.92,
361.317, 436.225, 339.46, 370.146, 348.786, 336.788, 367.053,
343.05, 391.348, 343.239, 345.04, 346.312, 346.704, 345.016,
367.937, 345.649, 375.7, 342.308, 398.375, 359.665, 364.418,
350.992, 358.958, 371.258, 343.61, 373.336, 347.427

112 APPENDIX C. RESULTS

C.1.12 vanilla 2.6.22 with 120MB

Runtime in
seconds

460.205, 367.17, 456.901, 356.778, 358.264, 412.309, 427.327,
393.603, 437.216, 397.591, 390.051, 421.413, 432.206,
350.976, 419.292, 425.727, 381.909, 365.093, 433.409,
362.515, 388.834, 390.992, 355.127, 434.511, 352.316,
369.499, 436.566, 439.165, 376.414, 336.427, 390.289, 368.8,
391.671, 340.766, 431.76, 379.509, 351.575, 380.949, 358.756,
389.689, 365.237, 387.972, 424.927, 373.626, 344.791,
356.301, 375.136, 382.982, 361.106, 444.427, 379.577,
358.199, 373.456, 381.712, 367.645, 391.354, 359.958,
371.479, 386.362, 385.364, 379.546, 406.369, 348.745,
371.842, 384.84, 442.051, 388.721, 385.661, 367.989, 389.192,
390.965, 346.169, 369.435, 429.58, 400.649, 386.992, 377.242,
362.292, 408.503, 411.451, 399.181, 350.231, 361.227,
370.704, 347.522, 362.989, 385.602, 370.077, 353.094,
357.922, 357.126, 400.889, 355.109, 408.916, 357.938,
358.662, 391.197, 404.665, 357.073, 416.391

C.2 make -j2 test

C.2.1 cc 2.6.22 with 80MB

Runtime in
seconds

600.469, 649.943, 601.703, 646.641, 702.469, 549.355,
512.826, 611.367, 679.261, 584.884, 641.288, 718.668,
670.024, 680.469, 657.613, 629.263, 753.666, 563.069,
606.955, 729.853, 677.18, 742.811, 703.33, 766.428, 610.737,
646.551, 654.568, 636.988, 653.165, 634.662, 767.286,
637.313, 628.089, 721.937, 574.967, 710.256, 667.832,
634.807, 604.066, 697.928, 640.476, 600.835, 664.499,
860.24, 618.746, 651.127, 670.098, 680.452, 637.237, 500.152,
627.102, 738.175, 647.697, 582.207, 636.603, 790.917,
745.787, 610.755, 644.794, 638.039, 692.816, 764.618,
682.456, 657.737, 631.796, 647.176, 616.699, 595.166,
614.146, 623.29, 640.985, 573.875, 781.665, 664.643, 566.452,
618.792, 685.004, 624.41, 611.091, 575.548, 674.117, 614.953,
667.959, 640.584, 649.427, 590.162, 592.387, 676.23, 628.399,
595.49, 689.852, 612.228, 531.487, 695.841, 617.388, 631.481,
795.981, 694.009, 645.074, 577.624

C.2. MAKE -J2 TEST 113

C.2.2 cc-nodisable 2.6.22 with 80MB

Runtime in
seconds

587.404, 576.395, 480.962, 558.643, 583.817, 577.896, 590.26,
695.027, 638.675, 586.145, 604.683, 587.993, 575.353,
564.899, 504.448, 567.283, 769.442, 572.027, 560.939,
575.721, 587.807, 740.545, 587.112, 612.56, 563.244, 578.023,
588.617, 562.564, 623.243, 582.727, 679.98, 610.037, 558.785,
558.39, 577.708, 570.518, 638.08, 567.022, 670.99, 586.138,
758.416, 625.612, 637.06, 629.329, 650.183, 588.333, 566.374,
620.948, 593.462, 574.139, 605.436, 563.057, 628.199,
627.388, 565.442, 661.42, 566.354, 567.191, 603.368, 690.087,
581.392, 506.442, 600.82, 566.617, 799.162, 556.96, 570.519,
593.607, 604.687, 611.827, 569.759, 596.874, 762.488,
558.82, 753.768, 706.856, 612.512, 597.695, 587.081, 582.566,
553.811, 576.013, 581.291, 589.92, 565.699, 557.253, 822.139,
588.29, 596.554

C.2.3 vanilla 2.6.22 with 80MB

Runtime in
seconds

875.284, 885.112, 821.795, 806.501, 1026.533, 941.497,
613.443, 1004.99, 816.209, 898.795, 811.99, 823.597, 823.01,
808.163, 825.7, 1000.027, 904.819, 780.185, 815.25, 835.436,
816.357, 849.888, 794.445, 886.376, 826.87, 807.484, 852.915,
826.893, 804.038, 929.558, 976.273, 779.736, 1121.077,
977.765, 1173.086, 916.173, 948.486, 645.981, 947.12,
728.424, 906.245, 891.207, 774.619, 811.111, 945.768,
841.203, 824.886, 830.475, 799.099, 833.459, 1159.131,
825.53, 937.154, 825.878, 835.678, 791.138, 901.174, 777.323,
786.953, 937.504, 797.299, 818.367, 1212.144, 776.422,
853.022, 899.547, 967.492, 842.13, 846.97, 1000.473, 820.069,
940.184, 834.74, 984.72, 907.736, 841.26, 821.997, 822.01,
896.759, 900.46, 818.126, 824.288, 879.595, 928.638, 960.178,
856.556, 806.226, 842.821, 820.786, 924.269, 901.354,
894.199, 917.927, 904.99, 904.495, 898.5, 829.308, 856.094,
1039.617, 613.96

114 APPENDIX C. RESULTS

C.3 make -j1 test

C.3.1 cc 2.6.22 with 80MB

Runtime in
seconds

444.418, 469.259, 417.434, 422.505, 450.329, 430.643,
461.239, 408.513, 431.5, 456.871, 416.414, 443.404, 408.676,
406.566, 415.836, 399.536, 422.172, 405.577, 415.528,
448.061, 468.667, 425.602, 413.411, 416.615, 438.645,
407.869, 451.493, 455.809, 407.608, 465.546, 464.477,
423.659, 417.547, 405.054, 429.373, 413.751, 409.558,
442.139, 458.1, 467.739, 461.786, 430.13, 448.212, 428.795,
426.547, 422.502, 436.296, 444.029, 402.862, 439.706,
456.043, 453.715, 413.571, 440.269, 398.043, 416.163,
464.823, 423.342, 396.273, 452.45, 445.578, 417.906, 443.181,
432.397, 438.23, 424.613, 439.583, 446.242, 443.364, 418.032,
412.261, 444.037, 428.083, 432.716, 418.634, 403.96, 452.859,
422.94, 424.109, 431.163, 410.763, 405.27, 445.23, 404.878,
406.291, 412.372, 398.771, 424.375, 433.407, 400.855,
415.72, 417.793, 428.602, 393.239, 407.891, 416.956, 419.517,
398.035, 422.789, 408.665

C.3.2 cc-nodisable 2.6.22 with 80MB

Runtime in
seconds

395.102, 440.658, 405.899, 406.172, 423.558, 430.19, 411.718,
450.072, 401.62, 399.838, 403.734, 412.894, 393.478, 405.721,
400.521, 395.025, 404.872, 402.962, 404.452, 410.284,
393.037, 434.184, 450.299, 419.397, 390.495, 431.039,
396.094, 402.471, 418.649, 399.305, 450.768, 420.353,
404.365, 466.252, 397.923, 389.603, 404.305, 396.482,
401.546, 413.205, 454.034, 421.584, 394.41, 440.415, 470.71,
426.216, 444.942, 406.578, 390.203, 396.561, 437.648,
395.459, 390.533, 407.302, 461.877, 405.158, 398.473,
422.525, 400.763, 418.783, 415.796, 432.977, 466.039,
402.943, 444.374, 418.476, 431.703, 410.765, 401.438,
393.379, 387.872, 405.266, 450.84, 429.835, 390.389, 395.216,
411.218, 461.8, 432.934, 444.42, 385.886, 406.309, 449.571,
405.389, 421.993, 409.734, 404.055, 442.308, 437.111

C.4. SORT TEST 115

C.3.3 vanilla 2.6.22 with 80MB

Runtime in
seconds

473.711, 477.985, 470.686, 477.192, 478.122, 473.099,
488.793, 472.85, 471.847, 465.526, 487.375, 476.854, 465.247,
474.287, 468.524, 473.707, 466.314, 473.818, 474.766,
474.563, 477.57, 471.979, 478.038, 469.293, 466.334, 467.338,
478.625, 474.086, 480.146, 473.284, 479.281, 479.011,
472.998, 474.098, 465.978, 482.719, 473.739, 476.225,
479.454, 471.262, 477.536, 478.294, 473.031, 475.284,
468.621, 469.969, 470.516, 476.35, 472.77, 468.941, 462.593,
475.224, 468.051, 476.705, 472.289, 476.518, 476.732,
470.825, 482.98, 481.518, 473.846, 473.617, 473.154, 478.034,
475.461, 469.233, 469.514, 463.574, 472.221, 465.443,
472.384, 475.879, 480.728, 469.375, 476.112, 473.496,
479.146, 481.672, 482.096, 479.458, 471.691, 477.046,
464.938, 476.922, 490.208, 478.077, 468.853, 478.078,
483.005, 467.15, 477.421, 476.362, 475.942, 470.479, 478.18,
475.649, 471.957, 474.926, 477.618, 475.014

C.4 sort test

C.4.1 cc 2.6.22 with 40MB

Runtime in
seconds

254.761, 263.475, 259.794, 264.298, 274.086, 259.037,
262.008, 256.101, 254.768, 265.233, 263.61, 267.898, 265.807,
267.712, 260.679, 264.548, 263.155, 262.335, 261.09, 261.819,
245.35, 262.172, 261.774, 265.839, 255.746, 264.956, 267.31,
265.888, 263.038, 263.915, 256.647, 264.608, 263.315,
274.696, 262.854, 260.468, 261.514, 251.125, 260.851,
259.384, 259.821, 257.92, 268.011, 262.037, 261.312, 260.106,
260.285, 260.303, 268.612, 254.951, 261.51, 272.848, 264.811,
257.757, 262.522, 264.68, 253.685, 261.023, 265.668, 256.088,
259.516, 261.662, 260.355, 259.249, 261.316, 266.441,
271.168, 260.26, 263.605, 265.434, 256.802, 255.324, 266.991,
265.614, 264.697, 258.805, 262.6, 263.493, 259.531, 263.242,
266.447, 262.619, 252.628, 259.413, 257.892, 268.857,
260.291, 265.268, 256.467, 252.796, 257.166

116 APPENDIX C. RESULTS

C.4.2 cc-nodisable 2.6.22 with 40MB

Runtime in
seconds

274.527, 278.076, 281.087, 271.942, 281.162, 273.819, 276.1,
286.295, 268.434, 281.675, 276.47, 275.544, 278.253, 266.266,
274.884, 274.877, 281.521, 294.4, 272.868, 277.007, 271.588,
284.715, 264.987, 288.274, 281.198, 278.853, 277.837,
283.201, 288.251, 262.82, 280.239, 292.728, 277.346, 275.529,
280.791, 278.842, 278.722, 273.389, 276.998, 270.832, 271.2,
268.921, 271.135, 279, 278.304, 297.647, 307.162, 278.859,
270.002, 281.683, 284.325, 272.823, 288.897, 284.185,
280.245, 281.659, 271.262, 278.253, 270.34, 275.892, 275.863,
281.951, 271.324, 277.952, 286.544, 274.406, 284.254,
271.155, 288.381, 266.421, 274.641, 274.167, 270.438,
274.058, 275.115, 284.517, 270.66, 264.598, 285.095, 283.806,
284.248, 290.263, 268.359, 261.231, 281.454, 280.257,
285.538, 287.668, 279.233, 287.92, 273.979, 278.196, 288.975,
278.62, 286.047, 269.511, 264.852, 272.452, 288.066, 287.599

C.4.3 vanilla 2.6.22 with 40MB

Runtime in
seconds

249.431, 244.787, 249.558, 250.257, 256.659, 259.963,
256.291, 250.555, 249.045, 246.204, 248.126, 252.06, 253.244,
251.833, 252.167, 249.143, 248.955, 244.981, 254.858,
256.697, 253.509, 248.873, 255.877, 248.297, 248.485,
249.876, 247.873, 252.985, 248.477, 249.373, 247.012,
253.561, 251.071, 252.632, 249.752, 250.439, 247.976,
251.752, 252.555, 249.851, 247.969, 250.166, 254.138,
245.569, 257.925, 254.485, 248.014, 247.842, 251.118,
245.21, 258.546, 256.307, 247.726, 250.945, 247.164, 247.974,
254.75, 250.879, 248.403, 251.329, 247.681, 250.687, 248.623,
240.792, 254.531, 253.021, 248.879, 243.401, 250.513, 255.53,
247.303, 248.06, 243.215, 250.477, 249.398, 248.732, 244.866,
250.654, 249, 255.3, 251.239, 248.725, 254.702, 245.836,
253.386, 244.737, 249.334, 249.465, 248.292, 254.639,
249.493, 250.853, 251.794, 256.098, 245.127, 247.698,
247.835, 249.021, 249.691, 251.462

C.5. SORTCOMP TEST 117

C.4.4 cc 2.6.22 with 60MB

Runtime in
seconds

236.114, 235.179, 233.206, 239.474, 231.848, 230.667,
238.356, 236.689, 231.539, 234.448, 234.985, 233.706,
238.172, 238.797, 238.492, 233.465, 234.055, 235.064,
235.733, 234.89, 230.766, 229.312, 233.867, 237.222, 236.655,
234.325, 240.914, 238.949, 237.793, 235.94, 236.57, 235.276,
234.079, 237.369

C.4.5 cc-nodisable 2.6.22 with 60MB

Runtime in
seconds

289.705, 274.057, 302.167, 281.102, 269.211, 302.983,
285.579, 294.884, 288.346, 291.436, 288.625, 290.832,
287.807, 272.27, 281.216, 284.255, 316.756, 275.006, 277.419,
289.249, 286.053, 270.265, 273.843, 278.492, 295.504,
286.771, 283.126, 275.978, 291.39, 277.016, 289.59, 280.876,
280.001, 284.767, 270.635, 292.79, 284.696, 288.836, 266.37,
274.298, 278.862, 299.155, 283.493

C.4.6 vanilla 2.6.22 with 60MB

Runtime in
seconds

237.462, 236.34, 241.022, 236.261, 236.113, 240.036, 245.036,
240.448, 243.333, 233.923, 234.284, 234.259, 241.263,
233.738, 234.501, 234.597, 235.123, 240.665, 237.906,
234.547, 238.579, 239.974, 233.915, 234.39, 235.329, 239.208,
242.053, 241.401, 233.886, 239.888, 235.316, 237.762, 234.27,
236.039, 245.017, 232.374, 233.098, 231.576, 239.25, 242.644,
235.428, 235.949, 237.362, 233.392, 234.05, 233.874, 239.247,
235.585, 233.699, 238.284, 235.878, 234.228

C.5 sortcomp test

C.5.1 cc 2.6.22 with 80MB

Runtime in
seconds

597, 618, 571, 571, 642, 573, 563, 659, 601, 584, 568, 568,
595, 558, 659, 580, 567, 579, 637, 586, 620, 581, 593, 590,
609, 613, 607, 570, 573, 587, 595, 577, 568, 631, 606, 594,
639, 584, 575, 604, 592, 578, 607, 583, 642, 623, 592, 602,
581, 578, 620, 582, 636, 624, 615, 579, 576, 579, 595, 595,
569, 573, 586, 579, 586, 604, 603, 590, 565, 629, 622, 598,
627, 594, 618, 580, 575, 612, 621, 575, 615, 578, 611, 594,
662, 562, 615, 594, 613, 631, 621, 609, 626, 603, 598, 587,
595, 594, 576, 581

118 APPENDIX C. RESULTS

C.5.2 cc-nodisable 2.6.22 with 80MB

Runtime in
seconds

612, 605, 613, 625, 592, 602, 581, 577, 637, 569, 560, 593,
581, 581, 570, 585, 577, 565, 575, 573, 636, 577, 585, 589,
610, 585, 561, 578, 568, 562, 588, 567, 586, 640, 574, 574,
577, 586, 567, 569, 567, 569, 651, 566, 580, 584, 575, 558,
594, 568, 601, 579, 586, 568, 583, 562, 581, 607, 604, 565,
586, 612, 579, 630, 566, 560, 634, 598, 593, 565, 619, 590,
574, 631, 633, 576, 579, 585, 585, 566, 584, 608, 612, 594,
609, 575, 655, 596, 601, 570, 587, 576, 572, 616, 572, 596,
651, 564, 615, 575

C.5.3 vanilla 2.6.22 with 80MB

Runtime in
seconds

640, 633, 636, 631, 643, 643, 641, 643, 631, 637, 639, 639,
638, 634, 644, 634, 644, 635, 638, 639, 636, 643, 643, 643,
641, 638, 647, 638, 635, 638, 635, 640, 642, 643, 646, 644,
650, 639, 635, 637, 640, 646, 636, 642, 644, 641, 646, 631,
639, 636, 645, 636, 642, 644, 640, 635, 638, 633, 645, 643,
635, 641, 632, 633, 643, 641, 634, 633, 641, 650, 640, 637,
631, 650, 640, 636, 638, 638, 641, 637, 653, 637, 645, 643,
640, 640, 634, 637, 632, 642, 636, 641, 637, 634, 635, 638,
641, 633, 641, 635

Appendix D

Code

D.1 CC subsystem

D.1.1 include/linux/cc.h

1
2 #ifndef LINUX CC H
3 #define LINUX CC H
4
5 #include <l i nux / l i s t . h>

6 #include <l i nux / b i top s . h>
7
8 #define CC COMPRESSED PAGE BIT 1
9 #define CC COMPRESSED PAGE ALIGN 4

10
11 #define PageCompressed (addr) (((unsigned long) addr &

2) == 2)
12 #define ClearPageCompress (addr)

c l e a r b i t (CC COMPRESSED PAGE BIT, addr)
13 #define MaskPageCompressed (addr) ((struct cpage

∗) ((unsigned long) addr & ˜2))
14 #define CPagePage (cpage) (struct page ∗) ((void ∗) \
15 ((unsigned long) cpage | (1 <<

CC COMPRESSED PAGE BIT)))
16
17 struct cpage {
18 union {
19 struct {
20 void ∗ compressed ;
21 int l ength ;
22 } ;

119

120 APPENDIX D. CODE

23 struct l i s t h e a d marker queue ;
24 } ;
25 struct addre s s space ∗mapping ;
26 unsigned long index ;
27 unsigned long f l a g s ;
28 union {
29 struct l i s t h e a d l i s t ;
30 struct page ∗page ;
31 } ;
32 } ;
33
34 struct c c s t a t s {
35 unsigned char f l a g s ; /∗ s t a t e f o r area ∗/
36 unsigned char used ; /∗ page−h i t compressed

cache ∗/
37 unsigned char unused ; /∗ unused removed

compressed cache ∗/
38 unsigned char markers ; /∗ marker pages pre sen t in

c . c . ∗/
39 struct l i s t h e a d marker queue ;
40 } a t t r i b u t e ((packed)) ;
41
42 /∗ cpage f l a g s ∗/
43 enum {
44 CC FLAG DIRTY = 0 ,
45 CC FLAG PROFIT,
46 CC FLAG MARKER,
47 CC FLAG SWAPCACHE
48 } ;
49
50 #define cpage d i r t y (cpage) t e s t b i t (CC FLAG DIRTY,

&cpage−>f l a g s)
51 #define cp ag e s e t d i r t y (cpage) s e t b i t (CC FLAG DIRTY,

&cpage−>f l a g s)
52 #define cp ag e c l e a r d i r t y (cpage)

c l e a r b i t (CC FLAG DIRTY, &cpage−>f l a g s)
53
54 #define cp ag e p r o f i t (cpage) t e s t b i t (CC FLAG PROFIT,

&cpage−>f l a g s)
55 #define c p a g e s e t p r o f i t (cpage)

s e t b i t (CC FLAG PROFIT, &cpage−>f l a g s)
56 #define c p a g e c l e a r p r o f i t (cpage)

c l e a r b i t (CC FLAG PROFIT, &cpage−>f l a g s)
57

D.1. CC SUBSYSTEM 121

58 #define cpage marker (cpage) t e s t b i t (CC FLAG MARKER,
&cpage−>f l a g s)

59 #define cpage set marker (cpage) \
60 s e t b i t (CC FLAG MARKER, &cpage−>f l a g s)
61 #define cpage c l ea r marker (cpage) \
62 c l e a r b i t (CC FLAG MARKER, &cpage−>f l a g s)
63
64 #define cpage swapcache (cpage)

t e s t b i t (CC FLAG SWAPCACHE, &cpage−>f l a g s)
65 #define cpage set swapcache (cpage)

s e t b i t (CC FLAG SWAPCACHE, &cpage−>f l a g s)
66 #define cpage c l ea r swapcache (cpage) \
67 c l e a r b i t (CC FLAG SWAPCACHE, &cpage−>f l a g s)
68
69 /∗ f i l emap . c ∗/
70 extern struct page ∗ f i n d g e t p ag e c c (struct

addre s s space ∗mapping ,
71 unsigned long index) ;
72 extern struct page ∗ f i n d ge t page noc c (struct

addre s s space ∗mapping ,
73 unsigned long index) ;
74 extern unsigned f i n d g e t p ag e s c c (struct addre s s space

∗mapping , p g o f f t s ta r t ,
75 unsigned int nr pages , struct page ∗∗ pages) ;
76
77 /∗ swap f i l e . c ∗/
78 struct swap in f o s t r u c t ;
79 extern int swap en t r y f r e e (struct swap in f o s t r u c t ∗p ,

unsigned long o f f s e t) ;
80
81 /∗ cc . c ∗/
82 extern void c c a c c e s s ed cpage (struct cpage ∗ cpage) ;
83 extern struct page ∗ cc ge t page f r om cache (void) ;
84 extern struct cpage ∗ c c s t o r e page (struct page ∗page) ;
85 extern struct page ∗ c c r e s t o r e p ag e (struct cpage

∗ cpage) ;
86 extern struct cpage ∗ c c add l r u (struct cpage ∗ cpage) ;
87 extern void cc r emove l ru (struct cpage ∗ cpage) ;
88 extern int c c r e s t o r e (struct cpage ∗ cpage , struct page

∗page) ;
89 extern void c c f r e e (struct cpage ∗ cpage) ;
90 extern void c c f r e e l i s t (struct l i s t h e a d

∗ c p a g e f r e e l i s t) ;
91 extern void c c f r e e swap (struct cpage ∗ cpage) ;

122 APPENDIX D. CODE

92 extern void c c f r e e s w a p l i s t (struct l i s t h e a d
∗ c p a g e f r e e l i s t) ;

93 extern void cc s e tup (void) ;
94 extern unsigned long c c s t a r t t im i n g (void) ;
95 extern void c c s t op t im ing (unsigned long

s t a r t j i f f i e s) ;
96
97 #endif /∗ LINUX CC H ∗/

D.1.2 mm/cc.c

1
2
3 #include <l i nux /mm. h>
4 #include <l i nux /mm inline . h>
5 #include <l i nux /rmap . h>
6 #include <l i nux / cc . h>
7
8 #include <l i nux / s lab . h>
9 #include <l i nux / l i s t . h>

10
11 #include <l i nux /swap . h>
12 #include <l i nux /writeback . h>
13
14 #include <l i nux /pagemap . h>
15 #include ” l z f . h”
16 #include ” l z o / l z o . h”
17 #include <l i nux / c e l l . h>
18
19 #include <l i nux / j i f f i e s . h>
20 #include <l i nux / f s . h>
21
22 /∗ I n t e rna l sw i t c he s :
23 ∗ CC STORE CELL turns on s t o r i n g in the c e l l

da t a s t ru c t u r e !
24 ∗ CC LZO makes us compress and decompress wi th LZO

in s t e ad o f LZF
25 ∗ CC NODISABLE t e l l s us never to d i s a b l e compressed

caching f o r any area ∗/
26 #define CC STORE CELL
27 #define CC LZO
28 #define CC NODISABLE
29

D.1. CC SUBSYSTEM 123

30 #define CC CACHE MIN 100
31 #define CC CACHE HISTORY 100
32 #define CC MAX MARKERS 32
33 #define CC MAX EARLY WARNING 20
34 #define CC MAX BAD COMPRESSION SKIP 100
35
36 enum d i s ab l ed r ea s on { UNUSED, EARLY WARNING DONE,

BAD1, BAD2 } ;
37 enum mapping state { CC ENABLED, CC DISABLED,

CC MARKER} ;
38
39 stat ic struct kmem cache ∗ cc cpage ;
40 stat ic struct l i s t h e a d c e l l l i s t e x p e n s e ,

c e l l l i s t p r o f i t ;
41 stat ic s p i n l o c k t c c l i s t l o c k ;
42
43 #ifdef CC LZO
44 stat ic struct semaphore cc l zo s em ;
45 stat ic void ∗ cc lzo workmem ;
46 stat ic void ∗ cc lzo tempcomp ;
47 #endif
48
49 /∗ CC Sta te v a r i a b l e s ∗/
50 stat ic atomic t cc expense ;
51 stat ic unsigned int c c l o ck ed ; /∗ 1+ − yes , 0 − no ∗/
52 /∗ s t a t i c s t r u c t s h r i n k e r ∗ c c s h r i n k e r d a t a ; ∗/
53
54 /∗ Prototypes ∗/
55 stat ic int cc remove cpage (struct addre s s space

∗mapping , p g o f f t o f f s e t ,
56 struct page ∗page , struct page ∗∗ f r e ed page) ;
57 stat ic int c c s h r i n k l r u (struct page ∗∗ f r e ed page) ;
58 /∗ s t a t i c i n t c c s h r i n k e r (i n t nr to scan , g f p t

g fp mask) ; ∗/
59 stat ic int c c r e s t o r e h e l p e r (struct cpage ∗cpage ,

struct page ∗page) ;
60 stat ic struct addre s s space ∗ cc mapping (struct cpage

∗ cpage) ;
61 stat ic i n l i n e struct c c s t a t s ∗ c c s t a t s (struct

addre s s space ∗mapping) ;
62 stat ic enum mapping state c c a r e a s t a t e (struct page

∗page) ;
63 stat ic void cc area updated (struct c c s t a t s ∗ s t a t) ;
64 stat ic int cc put marker (struct c c s t a t s ∗ s t a t s) ;

124 APPENDIX D. CODE

65 stat ic int c c e a r l y (struct c c s t a t s ∗ s t a t s) ;
66 stat ic void c c ea r l y don e (struct c c s t a t s ∗ s t a t s) ;
67 stat ic void cc note bad compres s i on (struct page

∗page) ;
68 stat ic void cc note good compres s i on (struct page

∗page) ;
69
70
71 /∗ Last t r y b e f o r e the system runs out o f memory ∗/
72 struct page ∗ cc ge t page f r om cache ()
73 {
74 return NULL;
75 /∗ s t r u c t page ∗page = NULL;
76 unsigned i n t max = 32;
77 whi l e (max > 0 && ! page && c c s h r i n k l r u (&page))

−−max ;
78 pr i n t k (KERN EMERG ”%s : Returning 0x%l x wi th

max=%u\n” , FUNCTION ,
79 (unsigned long) page , max) ;
80 re turn page ; ∗/
81 }
82
83 /∗ This func t i on pushes pages t ha t would not be in

memory
84 ∗ without CC in t o the p r o f i t l i s t , must be c a l l e d

wi th the l i s t l o c k s taken . ∗/
85 stat ic void c c p u s h p r o f i t (void)
86 {
87 unsigned long expenses = atomic read(&cc expense) ;
88 unsigned long pages used =

c e l l a c c oun t i n g p ag e s () ;
89 unsigned long pushable ;
90 struct cpage ∗ cpage ;
91
92 i f (expenses < pages used)
93 return ;
94 pushable = expenses − pages used ;
95 while ((pushable−−) &&

(! l i s t emp ty (& c e l l l i s t e x p e n s e))) {
96 cpage = l i s t e n t r y (c e l l l i s t e x p e n s e . next ,

struct cpage , l i s t) ;
97 l i s t d e l (&(cpage−> l i s t)) ;
98 c p a g e s e t p r o f i t (cpage) ;

D.1. CC SUBSYSTEM 125

99 l i s t a d d t a i l (&(cpage−> l i s t) ,
&c e l l l i s t p r o f i t) ;

100 /∗ Marker pages does not take any space ∗/
101 i f (cpage marker (cpage)) {
102 pushable++;
103 } else {
104 atomic dec (&cc expense) ;
105 }
106 }
107 }
108
109
110 /∗ both wr i t e l o c k on mapping and l ru l i s t s must be

taken ∗/
111 void c c r emove l r u (struct cpage ∗ cpage)
112 {
113 struct c c s t a t s ∗ s t a t s = c c s t a t s (cpage−>mapping) ;
114 i f (cpage marker (cpage)) {
115 l i s t d e l ((&cpage−>marker queue)) ;
116 s ta t s−>markers−−;
117 } else i f (! c p a g e p r o f i t (cpage))
118 atomic dec (&cc expense) ;
119 l i s t d e l ((&cpage−> l i s t)) ;
120 }
121
122 /∗ wr i t e l o c k on mapping must be taken ∗/
123 void cc r emove l ru (struct cpage ∗ cpage)
124 {
125 unsigned long f l a g s ;
126 s p i n l o c k i r q s a v e (& c c l i s t l o c k , f l a g s) ;
127 c c r emove l r u (cpage) ;
128 s p i n u n l o c k i r q r e s t o r e (& c c l i s t l o c k , f l a g s) ;
129 }
130
131 /∗ wr i t e l o c k on mapping must be taken ∗/
132 struct cpage ∗ c c add l r u (struct cpage ∗ cpage)
133 {
134 struct cpage ∗oldmarker = NULL;
135 struct c c s t a t s ∗ s t a t s = c c s t a t s (cpage−>mapping) ;
136 unsigned long f l a g s ;
137 s p i n l o c k i r q s a v e (& c c l i s t l o c k , f l a g s) ;
138 l i s t a d d t a i l (&(cpage−> l i s t) , &c e l l l i s t e x p e n s e) ;
139 i f (cpage marker (cpage)) {
140 /∗ remove o l d e s t marker ∗/

126 APPENDIX D. CODE

141 i f (! cc put marker (s t a t s)) {
142 struct addre s s space ∗mapping ;
143 oldmarker =

l i s t e n t r y (s ta t s−>marker queue . next ,
144 struct cpage , marker queue) ;
145 BUG ON(oldmarker == cpage) ;
146 c c r emove l r u (oldmarker) ;
147 mapping = cc mapping (oldmarker) ;
148 r a d i x t r e e d e l e t e (&mapping−>page tree ,
149 oldmarker−>index) ;
150 mapping−>nrpages−−;
151 }
152 s tat s−>markers++;
153 l i s t a d d t a i l (&(cpage−>marker queue) ,

&s tat s−>marker queue) ;
154 } else {
155 atomic in c (&cc expense) ;
156 c c p u s h p r o f i t () ;
157 }
158 s p i n u n l o c k i r q r e s t o r e (& c c l i s t l o c k , f l a g s) ;
159 return oldmarker ;
160 }
161
162 /∗ For our use , t h i s shou ld on ly be ran on th i n g t ha t
163 ∗ have an ac tua l addre s s space o b j e c t l i k e a f i l e or

swapper space . ∗/
164 stat ic struct addre s s space ∗ cc mapping (struct cpage

∗ cpage)
165 {
166 i f (cpage swapcache (cpage)) {
167 return &swapper space ;
168 }
169 /∗ Last b i t i s se t , meaning t ha t i t i s an

anonymous page
170 ∗ shou ld not happen . ∗/
171 BUG ON((unsigned long) cpage−>mapping &

PAGE MAPPING ANON) ;
172 return (struct addre s s space ∗) cpage−>mapping ;
173 }
174
175 /∗ We have three t h i n g s t ha t can happen :
176 ∗ 1 . Page i s part o f PageSwapCache and i s an anonmous

page

D.1. CC SUBSYSTEM 127

177 ∗ 2 . Page i s part o f a f i l e and pages [A[Awapcache
(tmpfs)

178 ∗ 3 . Page i s part o f a f i l e
179 ∗ 4 . hm, swap cache and no anon vma . . −> proce s s

anonymous memory?
180 ∗/
181
182 stat ic i n l i n e struct c c s t a t s ∗ c c s t a t s (struct

addre s s space ∗mapping)
183 {
184 struct anon vma ∗anon vma ;
185
186 i f (((unsigned long)mapping & PAGE MAPPING ANON)

!= 0) {
187 anon vma = (struct anon vma ∗)
188 ((unsigned long)mapping &

˜PAGE MAPPING ANON) ;
189 return &anon vma−>c c s t a t s ;
190 }
191 i f (mapping != NULL) {
192 return &mapping−>c c s t a t s ;
193 }
194 /∗ Pages not part o f an inode and not anonymous ,

bu t part o f
195 ∗ Swap Cache : TODO: How they occur i s unknown . . .
196 ∗ BUG ON(! PageSwapCache (page)) ; ∗/
197 return &swapper space . c c s t a t s ;
198 }
199
200 /∗ mapping wr i t e l o c k must a l r eady be taken and

checked f o r cons i s t ency
201 ∗ must not be part o f the c c l i s t anymore
202 ∗ t h i s f unc t i on i s on ly c a l l e d on cpages t ha t are

d i r t y (no need to
203 ∗ wr i t e c lean ones) .
204 ∗ l o c k f o r page must have been taken
205 ∗/
206 stat ic void cc pageout (struct cpage ∗cpage , struct

addre s s space ∗mapping ,
207 void ∗∗ s l o t , struct page ∗page , unsigned long

f l a g s ,
208 struct page ∗∗ f r e ed page)
209 {
210 struct zone ∗ zone ;

128 APPENDIX D. CODE

211 unsigned long l f l a g s ;
212
213 BUG ON(page == NULL) ;
214 #i f d e f CC DEBUG
215 pr in tk (KERNEMERG ”%s : index=0x%lx , mapping=0x%lx ,

%s \n” , FUNCTION ,
216 cpage−>index , (unsigned

long) page mapping (page) ,
217 &swapper space == mapping?”swap” : ” f i l e ”) ;
218 #end i f
219
220 page cache get (page) ; /∗ swap cache r e f e r enc e ∗/
221
222 i f (&swapper space == mapping) {
223 SetPageSwapCache (page) ;
224 }
225
226 BUG ON(TestSetPageLocked (page)) ;
227 /∗ Replace page in cache ∗/
228 r a d i x t r e e r e p l a c e s l o t (s l o t , page) ;
229 w r i t e u n l o c k i r q r e s t o r e (&mapping−>t r e e l o ck ,

f l a g s) ;
230 #i f d e f CC DEBUG
231 pr in tk (KERNEMERG ”%s : put page in to mapping

cache : 0x%lx , ”
232 ” f l a g s=0x%lx , p r i v a t e=0x%lx \n” , FUNCTION ,
233 (unsigned long) page , page−>f l a g s ,

page p r ivate (page)) ;
234 #end i f
235
236 c c r e s t o r e h e l p e r (cpage , page) ;
237 i f (f r eed page != NULL) {
238 f r agment r ead s tar t ((struct fragment

∗∗)&cpage−>compressed) ;
239 ∗ f r e ed page = fragment readend (
240 (struct fragment ∗∗)&cpage−>compressed ,

1) ;
241 }
242
243 c c f r e e (cpage) ; /∗ done wi th cpage , no more uses !

∗/
244
245 /∗ Only t h i n g we need to do i s to add the page to
246 ∗ the i n a c t i v e l i s t o f the l r u . ∗/

D.1. CC SUBSYSTEM 129

247
248 zone = page zone (page) ;
249
250 /∗ This shou ld r e a l l y be s e t when the page has

been wr i t t en out ,
251 ∗ I wonder why t h i s i s not done as in pageout () ,

probab l y because
252 ∗ i t i s a l r eady s e t . . ? ∗/
253 SetPageUptodate (page) ;
254 SetPageCC (page) ;
255 unlock page (page) ;
256
257 /∗ l ru cache add was recommended by pe terz , bu t
258 ∗ did not work out f o r me . . need to look i n t o

t h i s .
259 ∗ l ru cache add (page) ;
260 ∗ put page (page) ; ∗/
261
262 s p i n l o c k i r q s a v e (&zone−>l r u l o ck , l f l a g s) ;
263 SetPageLRU (page) ;
264 a d d p a g e t o i n a c t i v e l i s t (zone , page) ;
265 s p i n u n l o c k i r q r e s t o r e (&zone−>l r u l o ck , l f l a g s) ;
266 put page (page) ; /∗ our re ference , s t i l l par t o f

page cache ∗/
267 }
268
269 /∗ When there i s memory pressure , t h i s f unc t i on i s

c a l l e d to l im i t the s i z e
270 ∗ o f the compressed cache
271
272 ∗ This i s t emporar i l y dropped because i t s h r i n k s the

compressed cache too much !
273 s t a t i c i n t c c s h r i n k e r (i n t nr to scan , g f p t g fp mask)
274 {
275 unsigned i n t thrown cpages = 0;
276 i f (nr to scan == 0)
277 re turn c e l l a c c oun t i n g f r a gmen t s () ;
278 whi l e (nr to scan−− && c c s h r i n k l r u (NULL))
279 thrown cpages++;
280 re turn thrown cpages ;
281 }
282 ∗/
283

130 APPENDIX D. CODE

284 /∗ Drop enough c lean pages out o f compressed cache to
f r e e a d i r t y one ∗/

285 stat ic int c c s h r i n k c l e an (void)
286 {
287 unsigned long f l a g s ;
288 struct l i s t h e a d ∗pos ;
289 struct addre s s space ∗mapping [1 6] ;
290 p g o f f t o f f s e t [1 6] ;
291 int count = 0 ;
292 int max = 15 ;
293 int i ;
294 return 0 ;
295 s p i n l o c k i r q s a v e (& c c l i s t l o c k , f l a g s) ;
296 l i s t f o r e a c h (pos , &c e l l l i s t p r o f i t) {
297 struct cpage ∗ cpage = l i s t e n t r y (pos , struct

cpage , l i s t) ;
298 i f (cp age d i r t y (cpage))
299 continue ;
300 mapping [count] = cc mapping (cpage) ;
301 o f f s e t [count] = cpage−>index ;
302 count++;
303 i f (! (max−−))
304 break ;
305 }
306 i f (max) {
307 l i s t f o r e a c h (pos , &c e l l l i s t p r o f i t) {
308 struct cpage ∗ cpage = l i s t e n t r y (pos ,
309 struct cpage , l i s t) ;
310 i f (cp age d i r t y (cpage))
311 continue ;
312 mapping [count] = cc mapping (cpage) ;
313 o f f s e t [count] = cpage−>index ;
314 count++;
315 i f (! (max−−))
316 break ;
317 }
318 }
319 s p i n u n l o c k i r q r e s t o r e (& c c l i s t l o c k , f l a g s) ;
320 /∗ Actual removing o f c lean pages ∗/
321 for (i = 0 ; i < count ; i++) {
322 cc remove cpage (mapping [i] , o f f s e t [i] , NULL,

NULL) ;
323 }
324 return 1 ;

D.1. CC SUBSYSTEM 131

325 }
326
327 /∗ no l o c k s f o r any/ the mapping must be taken by the

c a l l e r ∗/
328 stat ic int c c s h r i n k l r u (struct page ∗∗ f r e ed page)
329 {
330 struct addre s s space ∗mapping ;
331 unsigned long o f f s e t , f l a g s ;
332 struct cpage ∗ cpage ;
333 struct page ∗page ;
334 struct inode ∗ inode ;
335 int r e tva l , marker ;
336
337 again :
338 page = NULL;
339 marker = 0 ;
340 /∗ f i nd o l d e s t cpage (head o f the l i s t) , s t o r e

information ,
341 ∗ about the mapping and o f f s e t ∗/
342 s p i n l o c k (& inod e l o ck) ;
343 s p i n l o c k i r q s a v e (& c c l i s t l o c k , f l a g s) ;
344 i f (! l i s t emp ty (& c e l l l i s t p r o f i t)) {
345 cpage = l i s t e n t r y (c e l l l i s t p r o f i t . next ,

struct cpage , l i s t) ;
346 } else i f (! l i s t emp ty (& c e l l l i s t e x p e n s e)) {
347 cpage = l i s t e n t r y (c e l l l i s t e x p e n s e . next ,

struct cpage , l i s t) ;
348 } else {
349 #i f d e f CC DEBUG
350 pr in tk (KERNEMERG ”%s : Shr ink empty cache ?\n” ,

FUNCTION) ;
351 dump stack () ;
352 #end i f
353 s p i n u n l o c k i r q r e s t o r e (& c c l i s t l o c k , f l a g s) ;
354 sp in un lock (& inod e l o ck) ;
355 return 0 ;
356 }
357
358 mapping = cc mapping (cpage) ;
359 o f f s e t = cpage−>index ;
360 inode = con t a i n e r o f (mapping , struct inode ,

i d a ta) ;
361

132 APPENDIX D. CODE

362 /∗ We don ’ t want the inode /mapping to di sappear
u n t i l we say so ∗/

363 i f (mapping != &swapper space)
364 i g e t (inode) ;
365
366 /∗ w i l l we need to a l l o c a t e a page ? ∗/
367 i f (cp age d i r t y (cpage))
368 page = (void ∗) 1 ; /∗ hackish , bu t works ∗/
369 else
370 page = NULL;
371
372 i f (cpage marker (cpage))
373 marker = 1 ;
374
375 s p i n u n l o c k i r q r e s t o r e (& c c l i s t l o c k , f l a g s) ;
376 sp in un lock (& inod e l o ck) ;
377
378 /∗ <− At t h i s po in t the cpage cou ld di sappear from

under us . ∗/
379
380 /∗ Al l o c a t i n g a page ou t s i d e any l o c k s . ∗/
381 i f (page) {
382 page = a l l o c p ag e (GFP KERNEL| GFP NOWARN) ;
383 i f (page == NULL) {
384 #i f d e f CC DEBUG
385 pr in tk (KERNEMERG ”%s : Shr ink ing f a i l e d ,

t ry l a t e r ?\n” ,
386 FUNCTION) ;
387 #end i f
388 c c l o ck ed++;
389 return 0 ;
390 }
391 BUG ON(page == NULL) ;
392 }
393
394 r e t v a l = cc remove cpage (mapping , o f f s e t , page ,

f r e ed page) ;
395 i f (mapping != &swapper space)
396 iput (inode) ;
397 /∗ re try , we shou ld remove an ac tua l cpage ∗/
398 i f (marker)
399 goto again ;
400 return r e t v a l ;
401 }

D.1. CC SUBSYSTEM 133

402
403 /∗ Helper func t i on t ha t removes a cpage g iven the

mapping and the o f f s e t and
404 ∗ i f needed ; a page to be used to wr i t e to

b ac k i n g s t o r e . The page shou ld be
405 ∗ f r e e d i f not needed . ∗/
406 stat ic int cc remove cpage (struct addre s s space

∗mapping , p g o f f t o f f s e t ,
407 struct page ∗page , struct page ∗∗ f r e ed page)
408 {
409 unsigned long f l a g s ;
410 void ∗∗ s l o t ;
411 struct cpage ∗ cpage = NULL;
412 struct c c s t a t s ∗ a r e a s t a t s ;
413
414 w r i t e l o c k i r q s a v e (&mapping−>t r e e l o ck , f l a g s) ;
415 s l o t = r a d i x t r e e l o o k u p s l o t (&mapping−>page tree ,

o f f s e t) ;
416 i f (s l o t == NULL | |

! PageCompressed (r a d i x t r e e d e r e f s l o t (s l o t))) {
417 /∗ The page has a l ready removed , we do nothing

∗/
418 #i f d e f CC DEBUG
419 pr in tk (KERNEMERG ”%s : cpage removed from

somewhere e l s e ! ”
420 ” (probably cache h i t) 0x%lx /0x%lx \n” ,

FUNCTION ,
421 (unsigned long)mapping , (unsigned

long) o f f e s t) ;
422 #end i f
423 w r i t e u n l o c k i r q r e s t o r e (&mapping−>t r e e l o ck ,

f l a g s) ;
424 i f (page != NULL) {
425 ClearPageLocked (page) ;
426 put page (page) ;
427 }
428 return 1 ;
429 }
430
431 cpage =

MaskPageCompressed (r a d i x t r e e d e r e f s l o t (s l o t)) ;
432 a r e a s t a t s = c c s t a t s (cpage−>mapping) ;
433
434 /∗ Early warning phase i s over ∗/

134 APPENDIX D. CODE

435 i f (u n l i k e l y (c c e a r l y (a r e a s t a t s) &&
! cpage marker (cpage))) {

436 c c ea r l y don e (a r e a s t a t s) ;
437 }
438
439 /∗ pages removed wi th cc remove cpage () are

counted as an unused page
440 ∗ excep t when in ea r l y s t a t e t ha t i s . . ∗/
441 i f (l i k e l y (! (a r eas ta t s −>f l a g s & (1 << BAD2)) &&

! c c e a r l y (a r e a s t a t s))) {
442 ar eas ta t s −>unused++;
443 cc area updated (a r e a s t a t s) ;
444 }
445 /∗ removed from cc l ru l i s t ∗/
446 cc r emove l ru (cpage) ;
447 /∗ Clean pages can be thrown out wi thout bee ing

wr i t t e n back ∗/
448 i f (! cp age d i r t y (cpage)) {
449 /∗ do more or l e s s the same as

de l e t e f r om swap cache ()
450 ∗ or remove from page cache () ∗/
451 r a d i x t r e e d e l e t e (&mapping−>page tree ,

o f f s e t) ;
452 mapping−>nrpages−−;
453 w r i t e u n l o c k i r q r e s t o r e (&mapping−>t r e e l o ck ,

f l a g s) ;
454 i f (f r eed page != NULL &&

! cpage marker (cpage)) {
455 f r agment r ead s tar t (
456 (struct fragment

∗∗)&cpage−>compressed) ;
457 ∗ f r e ed page = fragment readend (
458 (struct fragment

∗∗)&cpage−>compressed , 1) ;
459 }
460 c c f r e e swap (cpage) ;
461 return 1 ;
462 }
463 /∗ Page t ha t were thought to be c lean , are now

d i r t y and we don ’ t
464 ∗ have a page to uncompress i t i n t o ∗/
465 i f (u n l i k e l y (page == NULL)) {
466 pr in tk (KERNEMERG ”Oops , page has become

d i r t y !\n”) ;

D.1. CC SUBSYSTEM 135

467 dump stack () ;
468 BUG() ;
469 return 0 ;
470 }
471 /∗ d i r t y page : shou ld be wr i t t e n back ∗/
472 cc pageout (cpage , mapping , s l o t , page , f l a g s ,

f r e ed page) ;
473 return 1 ;
474 }
475
476 /∗
477 ∗ no l o c k s f o r the mapping must be taken by the

c a l l e r
478 ∗ re turn NULL i f i t runs out o f memory ,
479 ∗ re tu rns 1 on bad compression
480 ∗ re tu rns po in te r (l a r g e r than (void ∗) 1) to a cpage

on succe s s
481 ∗/
482 struct cpage ∗ c c s t o r e page (struct page ∗page)
483 {
484 struct cpage ∗ cpage ;
485 void ∗ compressed data ;
486 #i f d e f CC LZO
487 s i z e t d s t l e n ;
488 int r e t v a l ;
489 #else
490 struct page ∗tmppage ;
491 unsigned char ∗htab [(1 << HLOG)] ;
492 #end i f
493 int counter ;
494 enum mapping state mapping state = CC ENABLED;
495
496 #i f n d e f CC NODISABLE
497 /∗ compressed cache d i s a b l i n g on ly f o r c lean pages

∗/
498 i f (! PageDirty (page))
499 mapping state = c c a r e a s t a t e (page) ;
500 #end i f
501
502 /∗ compressed cache i s d i s a b l e d ∗/
503 i f (mapping state == CC DISABLED)
504 return (void ∗) 1 ;
505
506 counter = c e l l a c c oun t i n g p ag e s () ;

136 APPENDIX D. CODE

507 i f (CC CACHE MIN >= counter)
508 c c l o ck ed = 0 ;
509
510 #i f d e f CC DEBUG
511 pr in tk (KERNEMERG ”%s : page=0x%lx , count=%i ,

p r i v a t e=0x%lx , ”
512 ” index=0x%lx , f l a g s=0x%lx , mapping=0x%lx ,

mapcount=0x%x\n” ,
513 FUNCTION , (unsigned long) page ,

page mapcount (page) ,
514 page p r ivate (page) , page index (page) ,

page−>f l a g s ,
515 (unsigned long) page−>mapping ,

page mapcount (page)) ;
516 #end i f
517 cpage = (struct cpage ∗) kmem cache al loc (cc cpage ,
518 GFP KERNEL | GFP NOWARN) ; /∗ r e a l l y

GFP KERNEL? ∗/
519
520 i f (cpage == NULL) {
521 #i f d e f CC DEBUG
522 pr in tk (KERNEMERG ”%s could not a l l o c a t e a

s t r u c t cpage .\n”
523 , FUNCTION) ;
524 #end i f
525 return NULL;
526 }
527
528 /∗ s t o r i n g metadata about the page ∗/
529 cpage−>compressed = NULL;
530 cpage−>f l a g s = 0 ;
531 i f (PageDirty (page))
532 cp ag e s e t d i r t y (cpage) ;
533 i f (PageSwapCache (page)) {
534 cpage−>index = page p r ivate (page) ;
535 cpage set swapcache (cpage) ;
536 } else {
537 cpage−>index = page−>index ;
538 }
539 cpage−>mapping = page−>mapping ;
540 cpage−> l i s t . next = NULL;
541 cpage−> l i s t . prev = NULL;
542
543 /∗ Only i n s e r t marker ∗/

D.1. CC SUBSYSTEM 137

544 i f (mapping state == CC MARKER) {
545 #i f d e f CC DEBUG
546 pr in tk (KERNEMERG ”Putting in marker in s t ead

f o r 0x%lx (% i) \n” ,
547 (unsigned long) cc mapping (cpage) ,
548 cc mapping (cpage)−>c c s t a t s . markers) ;
549 #end i f
550 cpage set marker (cpage) ;
551 cpage−>marker queue . next = NULL;
552 cpage−>marker queue . prev = NULL;
553 return cpage ;
554 }
555
556 /∗ Temporary s torage to compress to ∗/
557 #i f d e f CC LZO
558 down(&cc l zo s em) ;
559 compressed data = cc lzo tempcomp ;
560 #else
561 tmppage = a l l o c p ag e (GFP KERNEL | GFP NOWARN) ;
562 compressed data = page address (tmppage) ;
563 i f (tmppage == NULL) {
564 kmem cache free (cc cpage , cpage) ;
565 #i f d e f CC DEBUG
566 pr in tk (KERNEMERG ”%s : tmppage a l l o c a t i o n

f a i l u r e \n” ,
567 FUNCTION) ;
568 #end i f
569 return NULL;
570 }
571 #end i f
572
573 /∗ Compression ∗/
574 #i f d e f CC LZO
575 r e t v a l = lzo1x 1 compres s (
576 page address (page) , PAGE SIZE ,
577 cc lzo tempcomp , &ds t l en , cc lzo workmem) ;
578 i f (r e t v a l != LZO E OK) {
579 pr in tk (KERNEMERG ”Error whi le compress ing ? %i

\n” , r e t v a l) ;
580 }
581 cpage−>l ength = d s t l e n ;
582 #else
583 cpage−>l ength = l z f c ompr e s s (page address (page) ,

PAGE SIZE ,

138 APPENDIX D. CODE

584 compressed data , PAGE SIZE−200 , htab) ;
585 #end i f
586
587 /∗ Bad compression r a t i o ∗/
588 i f (cpage−>l ength <= 1 | | cpage−>l ength >

PAGE SIZE−200) {
589 #i f d e f CC DEBUG
590 pr in tk (KERNEMERG ”%s : page=0x%lx bad

compress ion 0x%lx \n” ,
591 FUNCTION , (long unsigned) page ,

page p r ivate (page)) ;
592 #end i f
593 #i f d e f CC LZO
594 up(&cc l zo s em) ;
595 #else
596 put page (tmppage) ;
597 #end i f
598 kmem cache free (cc cpage , cpage) ;
599 cc note bad compres s i on (page) ;
600 return (void ∗) 1 ;
601 }
602 cc note good compres s i on (page) ;
603
604 #i f d e f CC DEBUG
605 pr in tk (KERNEMERG ”%s : ALLOCATING PAGE,

nr swap pages=%l i , ”
606 ” compressedlength=%i \n” , FUNCTION ,

nr swap pages ,
607 cpage−>l ength) ;
608 #end i f
609
610 #i f d e f CC STORE CELL
611 i f (! f ragment wr i te (cpage−>length , c c l o ck ed ==

0?1 :0 ,
612 (struct fragment ∗∗)&cpage−>compressed ,

compressed data)
613) {
614 #i f d e f CC DEBUG
615 pr in tk (KERNEMERG ”%s : temporary fragment ”
616 ” a l l o c a t i o n f a i l u r e !\n” , FUNCTION) ;
617 #end i f
618 i f (c c l o ck ed) {
619 counter = c e l l a c c oun t i n g p ag e s () ;
620

D.1. CC SUBSYSTEM 139

621 do {
622 i f (f ragment wr i te (cpage−>length ,
623 c c l o ck ed == 0?1 :0 ,
624 (struct fragment

∗∗)&cpage−>compressed ,
625 compressed data))
626 break ;
627
628 i f (! c c s h r i n k l r u (NULL))
629 break ;
630
631 i f (counter <

c e l l a c c oun t i n g p ag e s ()) {
632 f ragment wr i te (cpage−>length , 1 ,
633 (struct fragment

∗∗)&cpage−>compressed ,
634 compressed data) ;
635 break ;
636 }
637 } while (1) ;
638 }
639 i f (cpage−>compressed == NULL) {
640 #i f d e f CC LZO
641 up(&cc l zo s em) ;
642 #else
643 put page (tmppage) ;
644 #end i f
645 kmem cache free (cc cpage , cpage) ;
646 return NULL;
647 }
648 }
649 #else
650 cpage−>compressed = kmalloc (cpage−>length ,

GFP KERNEL) ;
651
652 BUG ON(cpage−>compressed == NULL) ;
653 i f (IS ERR(cpage−>compressed)) {
654 /∗ Clean up t h i s part and use ERR s t u f f ,
655 ∗ t h i s i s a l e a k by the way ∗/
656 BUG() ;
657 return (void ∗) 1 ;
658 }
659 memcpy(cpage−>compressed , page address (tmppage) ,

cpage−>l ength) ;

140 APPENDIX D. CODE

660 #end i f
661
662 #i f d e f CC LZO
663 up(&cc l zo s em) ;
664 #else
665 put page (tmppage) ;
666 #end i f
667
668 /∗ We need the mapping l o c k to i n s e r t a page i n t o
669 ∗ the l i s t so t h i s i s done l a t e r . ∗/
670 return cpage ;
671 }
672
673 /∗ Used to r e s t o r e pages t ha t are accessed , a l s o

a l l o c a t e s a page ∗/
674 struct page ∗ c c r e s t o r e p ag e (struct cpage ∗ cpage)
675 {
676 struct page ∗page ;
677
678 page = a l l o c p ag e (GFP KERNEL) ;
679 i f (page == NULL) {
680 pr in tk (KERNEMERG ”%s could not a l l o c a t e a

page .\n” ,
681 FUNCTION) ;
682 BUG() ;
683 return NULL;
684 }
685
686 c c r e s t o r e (cpage , page) ;
687 return page ;
688 }
689
690 /∗ Used to r e s t o r e pages t ha t are accessed ∗/
691 int c c r e s t o r e (struct cpage ∗cpage , struct page ∗page)
692 {
693 /∗ Adaptive Cache S i ze Heu r i s t i c ∗/
694 i f (c p a g e p r o f i t (cpage)) {
695 #i f d e f CC DEBUG
696 pr in tk (KERNEMERG ”Unlocked at %i \n” ,

c e l l a c c oun t i n g p ag e s ()) ;
697 #end i f
698 c c l o ck ed = 0 ;
699 } else {
700 int c a ch e s i z e = c e l l a c c oun t i n g p ag e s () ;

D.1. CC SUBSYSTEM 141

701 i f (c a ch e s i z e <= CC CACHE MIN) {
702 #i f d e f CC DEBUG
703 pr in tk (KERNEMERG ”Forced unlock at %i \n” ,

c a ch e s i z e) ;
704 #end i f
705 c c l o ck ed = 0 ;
706 return c c r e s t o r e h e l p e r (cpage , page) ;
707 }
708 c c l o ck ed++;
709 i f (c c l o ck ed >= 3) {
710 #i f d e f CC DEBUG
711 pr in tk (KERNEMERG ” Shr ink ing at %i \n” ,

c a ch e s i z e) ;
712 #end i f
713 c c s h r i n k l r u (NULL) ;
714 }
715 }
716 return c c r e s t o r e h e l p e r (cpage , page) ;
717 }
718
719
720 /∗ This func t i on i s run on every acce s s to a cpage ,
721 ∗ removing i t from the LRU and doing some account ing
722 ∗ shou ld on ly be ran wi th mapping l o c k he ld ! ∗/
723 void c c a c c e s s ed cpage (struct cpage ∗ cpage)
724 {
725 struct c c s t a t s ∗ a r e a s t a t s =

c c s t a t s (cpage−>mapping) ;
726 cc r emove l ru (cpage) ;
727
728 /∗ Early warning phase i s over , on ly f o r r e a l

compressed pages ! ∗/
729 i f (u n l i k e l y (c c e a r l y (a r e a s t a t s) &&

! cpage marker (cpage))) {
730 c c ea r l y don e (a r e a s t a t s) ;
731 }
732 /∗ Only run when in (e a r l y) bad r a t i o phases ∗/
733 i f (l i k e l y (! (a r eas ta t s −>f l a g s & (1 << BAD2))
734 && ! cpage d i r t y (cpage) &&

! c c e a r l y (a r e a s t a t s))) {
735 ar eas ta t s −>used++;
736 cc area updated (a r e a s t a t s) ;
737 }
738 }

142 APPENDIX D. CODE

739
740 stat ic int c c r e s t o r e h e l p e r (struct cpage ∗cpage ,

struct page ∗page)
741 {
742 int r e t v a l = 0 ;
743 void ∗ bu f f e r ;
744 #i f d e f CC LZO
745 s i z e t d s t l e n ;
746 #end i f
747
748 BUG ON(page == NULL) ;
749
750 /∗ Sta te o f page ∗/
751 page−>mapping = cpage−>mapping ;
752 i n c z on e p ag e s t a t e (page , NR FILE PAGES) ;
753 i f (cpage swapcache (cpage)) {
754 s e t p a g e p r i v a t e (page , cpage−>index) ;
755 SetPageSwapCache (page) ;
756 } else {
757 page−>index = cpage−>index ;
758 }
759 i f (cp age d i r t y (cpage))
760 SetPageDirty (page) ;
761 #i f d e f CC DEBUG
762 i f (cpage−>compressed == NULL) {
763 pr in tk (KERNEMERG ”%s : cpage=0x%lx ,

index=0x%lx , l ength=%i , ”
764 ” r e t v a l=%i ,\n” , FUNCTION , (unsigned

long) cpage ,
765 cpage−>index , cpage−>length , r e t v a l) ;
766 }
767 #end i f
768 BUG ON(cpage−>compressed == NULL) ;
769
770 #i f d e f CC STORE CELL
771 bu f f e r = f ragment r ead s tar t ((struct fragment

∗∗)&cpage−>compressed) ;
772 #else
773 bu f f e r = cpage−>compressed ;
774 #end i f
775 #i f d e f CC DEBUG
776 pr in tk (KERNEMERG ”%s : Going to decompress . .

fragment=0x%lx , ”
777 ” 0x%lx /0x%lx \n” , FUNCTION ,

D.1. CC SUBSYSTEM 143

778 (unsigned long) cpage−>compressed , (unsigned
long) page−>mapping ,

779 (unsigned long) cpage−>index) ;
780 #end i f
781
782 /∗ Decompressing ∗/
783 #i f d e f CC LZO
784 d s t l e n = PAGE SIZE ;
785 r e t v a l = l zo1x d ecompr e s s s a f e (bu f f e r ,

cpage−>length ,
786 page address (page) , &d s t l e n) ;
787 i f (u n l i k e l y (r e t v a l != LZO E OK)) {
788 pr in tk (KERNEMERG ”Corruption? LZO returned

code : %i \n” , r e t v a l) ;
789 p r in tk (KERNEMERG ” length : %i \n” ,

cpage−>l ength) ;
790 BUG() ;
791 }
792 r e t v a l = d s t l e n ;
793 #else
794 r e t v a l = lz f d ecompres s (bu f f e r , cpage−>length ,

page address (page) ,
795 PAGE SIZE) ;
796 #end i f
797
798 #i f d e f CC STORE CELL
799 fragment readend ((struct fragment

∗∗)&cpage−>compressed , 0) ;
800 BUG ON(cpage−>compressed != NULL) ;
801 #end i f
802
803 /∗ f o r f i l emapped pages , i s t h i s always uptodate ?
804 ∗ make sure we don ’ t s e t t h i s u n t i l a f t e r we have
805 ∗ have r e s t o r e d the page .
806 ∗ SetPageUptodate (page) ; ∗/
807
808 #i f d e f CC DEBUG
809 i f (u n l i k e l y (r e t v a l != PAGE SIZE)) {
810 pr in tk (KERNEMERG ”%s : The world has

o f f i c i a l l y ”
811 ”come to an end r e t v a l=%i (cor rupted page)\n” ,
812 FUNCTION , r e t v a l) ;
813 }
814 #end i f

144 APPENDIX D. CODE

815 BUG ON(r e t v a l != PAGE SIZE) ;
816
817 return r e t v a l ;
818 }
819
820 /∗ Frees a l l data a s s o s i c a t e d wi th a cpage ∗/
821 void c c f r e e (struct cpage ∗ cpage)
822 {
823 #i f d e f CC STORE CELL
824 i f (cpage−>compressed != NULL &&

! cpage marker (cpage)) {
825 f r agment r ead s tar t ((struct fragment

∗∗)&cpage−>compressed) ;
826 fragment readend ((struct fragment

∗∗)&cpage−>compressed , 0) ;
827 BUG ON(cpage−>compressed != NULL) ;
828 }
829 #else
830 k f r e e (cpage−>compressed) ;
831 cpage−>compressed = NULL;
832 #end i f
833 kmem cache free (cc cpage , cpage) ;
834 }
835
836
837 /∗ c c f r e e () on a l l cpages in l i s t , shou ld be a l l owed

to s l e e p ! ∗/
838 void c c f r e e l i s t (struct l i s t h e a d ∗ c p a g e f r e e l i s t)
839 {
840 struct l i s t h e a d ∗pos , ∗n = NULL;
841
842 l i s t f o r e a c h s a f e (pos , n , c p a g e f r e e l i s t) {
843 struct cpage ∗ cpage = l i s t e n t r y (pos , struct

cpage , l i s t) ;
844 c c f r e e (cpage) ;
845 }
846 }
847
848 /∗ Frees a l l data a s s o s i c a t e d wi th a cpage , and i f i t

i s a page in the
849 ∗ swap cache , f r e e the swap entry . Remove swap entry ,

l o c k order says
850 ∗ we must do t h i s wi thout mapping l o c k ! ∗/
851 void c c f r e e swap (struct cpage ∗ cpage)

D.1. CC SUBSYSTEM 145

852 {
853 swp entry t entry = { . va l = cpage−>index } ;
854 i f (cpage swapcache (cpage)) {
855 swap f r ee (entry) ;
856 }
857 c c f r e e (cpage) ;
858 }
859
860 /∗ c c f r e e swap () on a l l cpages in l i s t , shou ld be

a l l owed to s l e e p ! ∗/
861 void c c f r e e s w a p l i s t (struct l i s t h e a d

∗ c p a g e f r e e l i s t)
862 {
863 struct l i s t h e a d ∗pos , ∗n = NULL;
864
865 l i s t f o r e a c h s a f e (pos , n , c p a g e f r e e l i s t) {
866 struct cpage ∗ cpage = l i s t e n t r y (pos , struct

cpage , l i s t) ;
867 c c f r e e swap (cpage) ;
868 }
869 }
870
871 void i n i t c c s e tup (void)
872 {
873 /∗ i n v a r i an t on al ignment o f s t r u c t page ,
874 ∗ un f o r t una t l y on ly v a l i d f o r x86 , important to

note however
875 ∗ BUG ON(((unsigned long)mem map %

CC COMPRESSED PAGE ALIGN)
876 ∗ | | (s i z e o f (mem map) %

CC COMPRESSED PAGE ALIGN)) ;
877 ∗/
878 c c l o ck ed = 0 ;
879 cc cpage = kmem cache create (” cc cpage ” , s izeof (

struct cpage) ,
880 CC COMPRESSED PAGE ALIGN, SLAB PANIC, NULL,

NULL) ;
881 s p i n l o c k i n i t (& c c l i s t l o c k) ;
882 INIT LIST HEAD(& c e l l l i s t e x p e n s e) ;
883 INIT LIST HEAD(& c e l l l i s t p r o f i t) ;
884 INIT LIST HEAD(&swapper space . c c s t a t s . marker queue) ;
885 #i f d e f CC STORE CELL
886 c e l l s e t u p (5) ;
887 #end i f

146 APPENDIX D. CODE

888 #i f d e f CC LZO
889 sema in i t (&cc lzo sem , 1) ;
890 cc lzo workmem = kmalloc (LZO1X MEM COMPRESS,

GFP KERNEL) ;
891 cc lzo tempcomp = kmalloc (LZO1X MEM COMPRESS,

GFP KERNEL) ;
892 #end i f
893 /∗ c c s h r i n k e r d a t a = s e t s h r i n k e r (1 ,

c c s h r i n k e r) ; ∗/
894 }
895
896 /∗ Disab l ing o f compressed caching ∗/
897 stat ic int c c e a r l y (struct c c s t a t s ∗ s t a t s)
898 {
899 i f (s ta t s−>f l a g s & (1 << EARLY WARNING DONE)) {
900 return 0 ;
901 }
902 return 1 ;
903 }
904
905 /∗ Early warning phase i s over ∗/
906 stat ic void c c ea r l y don e (struct c c s t a t s ∗ s t a t s)
907 {
908 #i f d e f CC DEBUG
909 pr in tk (KERNEMERG ”%s : s t a t s 0x%lx done with ea r l y

warning !\n” ,
910 f u n c , (unsigned long) s t a t s) ;
911 #end i f
912 s ta t s−>f l a g s |= (1 << EARLY WARNING DONE) ;
913 s tat s−>used = 0 ;
914 /∗ Bad area de te c t ed , would have t rashed the cache

∗/
915 i f (s ta t s−>unused > 200 | | s ta t s−>unused >

c e l l a c c oun t i n g p ag e s ()) {
916 s tat s−>unused = max(CC MAX EARLY WARNING,

CC MAX MARKERS) + 10 ;
917 }
918 cc area updated (s t a t s) ;
919 }
920
921 /∗ Should we put in a marker i n s t e ad ? ∗/
922 stat ic int cc put marker (struct c c s t a t s ∗ s t a t s)
923 {
924 i f (s ta t s−>markers <= CC MAX MARKERS)

D.1. CC SUBSYSTEM 147

925 return 1 ;
926 return 0 ;
927 }
928
929 /∗ Checks i f the mapping i s in a s t a t e where

compression i s d i s a b l e d ,
930 ∗ re tu rns :
931 ∗ CC ENABLED − Go ahead and put page i n t o mapping
932 ∗ CC DISABLED − Do not put anyth ing i n t o the mapping
933 ∗ CCMARKER − Can put a marker i n t o the mapping
934 ∗/
935 stat ic enum mapping state c c a r e a s t a t e (struct page

∗page)
936 {
937 int d i s ab l ed = 0 , r e t v a l = CC ENABLED;
938 struct addre s s space ∗mapping =

page mapping (page) ;
939 struct c c s t a t s ∗ s t a t s = c c s t a t s (page−>mapping) ;
940
941 BUG ON(mapping == NULL) ;
942 r e a d l o c k i r q (&mapping−>t r e e l o c k) ;
943
944 /∗ Are we in a bad compression s t a t e ? ∗/
945 i f (s ta t s−>f l a g s & (1 << BAD2)) {
946 i f (s ta t s−>used == stat s−>unused)
947 goto done ;
948 r ead un l o ck i r q (&mapping−>t r e e l o c k) ;
949 w r i t e l o c k i r q (&mapping−>t r e e l o c k) ;
950 i f (s ta t s−>f l a g s & (1 << BAD2))
951 s tat s−>used++;
952 w r i t e u n l o c k i r q (&mapping−>t r e e l o c k) ;
953 r e t v a l = CC DISABLED;
954 return r e t v a l ;
955 }
956
957 /∗ l e t s an unproven mapping to put up to

CC MAX EARLY WARNING
958 ∗ i n t o compressed cache ∗/
959 i f (c c e a r l y (s t a t s)) {
960 r ead un l o ck i r q (&mapping−>t r e e l o c k) ;
961 w r i t e l o c k i r q (&mapping−>t r e e l o c k) ;
962 /∗ changed whi l e un locked? ∗/
963 i f (! c c e a r l y (s t a t s)) {
964 w r i t e u n l o c k i r q (&mapping−>t r e e l o c k) ;

148 APPENDIX D. CODE

965 return r e t v a l ;
966 }
967 /∗ Note how many we have in the cache and
968 ∗ how many we have sk ipped ∗/
969 i f (s ta t s−>used >= CC MAX EARLY WARNING) {
970 r e t v a l = CC DISABLED;
971 i f (s ta t s−>unused < 230)
972 s tat s−>unused++; /∗ sk i pped ∗/
973 } else {
974 s tat s−>used++;
975 }
976 w r i t e u n l o c k i r q (&mapping−>t r e e l o c k) ;
977 return r e t v a l ;
978 }
979 d i s ab l ed = stat s−>f l a g s & (1 << UNUSED) ;
980 i f (d i s ab l ed) {
981 r e t v a l = CC MARKER;
982 }
983 done :
984 r ead un l o ck i r q (&mapping−>t r e e l o c k) ;
985 return r e t v a l ;
986 }
987
988 /∗ Updates the s t a t s o f bad compression ,
989 ∗ i f two consecu t i v e pages has bad compression
990 ∗ then the next two pages w i l l not be compressed .
991 ∗ next i t w i l l s k i p 3 , then 4 and so on u n t i l a good
992 ∗ compression r a t i o i s repor t ed ∗/
993 stat ic void cc note bad compres s i on (struct page ∗page)
994 {
995 struct addre s s space ∗mapping =

page mapping (page) ;
996 struct c c s t a t s ∗ s t a t s = c c s t a t s (page−>mapping) ;
997
998 w r i t e l o c k i r q (&mapping−>t r e e l o c k) ;
999 i f (! (s ta t s−>f l a g s & (1 << BAD1))) {

1000 s tat s−>f l a g s |= (1 << BAD1) ;
1001 goto done ;
1002 }
1003 i f (! (s ta t s−>f l a g s & (1 << BAD2))) {
1004 s tat s−>f l a g s |= (1 << BAD2) ;
1005 s tat s−>used = 2 ;
1006 s tat s−>unused = 0 ;
1007 goto done ;

D.1. CC SUBSYSTEM 149

1008 }
1009 i f (s ta t s−>unused < s ta t s−>used) {
1010 s tat s−>unused++;
1011 goto done ;
1012 }
1013 i f (s ta t s−>used < CC MAX BAD COMPRESSION SKIP)
1014 s tat s−>used++;
1015 s tat s−>unused = 0 ;
1016 done :
1017 w r i t e u n l o c k i r q (&mapping−>t r e e l o c k) ;
1018 }
1019
1020 stat ic void cc note good compres s i on (struct page

∗page)
1021 {
1022 struct addre s s space ∗mapping =

page mapping (page) ;
1023 struct c c s t a t s ∗ s t a t s = c c s t a t s (page−>mapping) ;
1024 w r i t e l o c k i r q (&mapping−>t r e e l o c k) ;
1025 /∗ Put back i n t o ea r l y phase ∗/
1026 i f (s ta t s−>f l a g s & (1 << BAD2)) {
1027 s tat s−>f l a g s &= ˜((1 << BAD1) & (1 << BAD2)
1028 & (1 << EARLY WARNING DONE)) ;
1029 }
1030 w r i t e u n l o c k i r q (&mapping−>t r e e l o c k) ;
1031 }
1032
1033 /∗ Adjus ts h i s t o r y to recen t h i s tory ,
1034 ∗ wr i t e l o c k f o r the mapping must be taken ! ∗/
1035 stat ic void cc area updated (struct c c s t a t s ∗ s t a t s)
1036 {
1037 int d i s a b l e d r a t i o = s tat s−>f l a g s & (1 << UNUSED) ;
1038
1039 /∗ cc unused and cc used are meaning less when
1040 ∗ bad compression i s enab led ∗/
1041 i f (s ta t s−>f l a g s & (1 << BAD2))
1042 return ;
1043
1044 i f (c c e a r l y (s t a t s)) {
1045 BUG() ;
1046 return ;
1047 }
1048

150 APPENDIX D. CODE

1049 /∗ We d i s a b l e compressed caching i f 80% of the
pages are unused ∗/

1050 i f (! d i s a b l e d r a t i o && stat s−>unused >

s ta t s−>used ∗4) {
1051 #i f d e f CC DEBUG
1052 pr in tk (KERNEMERG ”Bad r a t i o mapping=0x%lx ,

used=%u , ”
1053 ”unused=%u , markers=%u\n” , (unsigned

long)mapping ,
1054 s tat s−>used , s ta t s−>unused ,
1055 s tat s−>markers) ;
1056 #end i f
1057 s tat s−>f l a g s |= (1 << UNUSED) ;
1058 /∗ Reenable compressed caching i f 50% of the pages

would be reused ∗/
1059 } else i f (d i s a b l e d r a t i o && (s tat s−>used >=

stat s−>unused)) {
1060 #i f d e f CC DEBUG
1061 pr in tk (KERNEMERG ”Good r a t i o mapping=0x%lx ,

used=%u , ”
1062 ”unused=%u , markers=%u\n” , (unsigned

long)mapping ,
1063 s tat s−>used , s ta t s−>unused ,
1064 s tat s−>markers) ;
1065 #end i f
1066 s tat s−>f l a g s &= ˜(1 << UNUSED) ;
1067 /∗ we are s k e p t i c a l about t h i s area , so we

r e s t a r t
1068 ∗ the e a r l y phase f o r i t ∗/
1069 s tat s−>f l a g s &= ˜(1 << EARLY WARNING DONE) ;
1070 s tat s−>used = 0 ;
1071 s tat s−>unused = 0 ;
1072 }
1073
1074 /∗ Only recen t h i s t o r y ∗/
1075 i f (s ta t s−>used+stat s−>unused > CC CACHE HISTORY)

{
1076 s tat s−>used /= 2 ;
1077 s tat s−>unused /= 2 ;
1078 }
1079 }
1080
1081 /∗ EOF ∗/

D.2. CELL ALLOCATOR 151

D.2 Cell allocator

D.2.1 include/linux/cell.h

1
2 /∗ Pub l i c s t r u c t u r e s ∗/
3
4 struct fragment ;
5
6 /∗ i n t e r f a c e ∗/
7 void c e l l s e t u p (unsigned int compac t c e l l s) ;
8 int c e l l a c c oun t i n g p ag e s (void) ;
9 int c e l l a c coun t i n g f r agmen t s (void) ;

10 int f ragment wr i te (unsigned int s i z e , unsigned int
grow ,

11 struct fragment ∗∗ user , void ∗data) ;
12 void ∗ f r agment r ead s tar t (struct fragment ∗∗ user) ;
13 struct page ∗ f ragment readend (struct fragment ∗∗ user ,

int returnpage) ;

D.2.2 mm/cell.c

1
2 /∗
3 ∗ This data s t r u c t u r e i s l o o s l y based on the

d e s c r i p t i o n by Castro e t . a l i t in
4 ∗ t h e i r compressed caching paper .
5 ∗
6 ∗ Lock order ing i s as f o l l ow s :
7 − 1 . f r e e c e l l s [i] , 2 . c e l l s
8 ∗ I n va r i an t s :
9 ∗ There w i l l never be a user t ha t po i n t s to a page

t ha t i s not a c e l l .
10 ∗ The c e l l s t r u c t u r e shou ld always be in a con s i s t an t

s t a t e when not l ocked .
11 ∗
12 ∗ Debugging can be turned on by de f i n i n g CELL DEBUG
13 ∗/
14
15 #include <l i nux / l i s t . h>

16 #include <asm/page . h>
17 #include <asm/semaphore . h>
18 #include <l i nux /mutex . h>

152 APPENDIX D. CODE

19 #include <l i nux /pagemap . h>
20 #include <l i nux /mm. h>
21 #include <l i nux / sched . h>
22
23 /∗ I n t e r f a c e ∗/
24 #include <l i nux / c e l l . h>
25
26 /∗ Implementat ion ∗/
27
28
29
30 struct fragment {
31 struct fragment ∗next ;
32 struct fragment ∗∗ user ;
33 char data [0] ;
34 } ;
35
36 /∗ We need a doub ly l i n k e d l i s t because we need to

remove s t u f f from the
37 ∗ middle o f the l i s t a t t imes ∗/
38 struct c e l l {
39
40 struct l i s t h e a d l i s t ;
41 unsigned short f r e e s p a c e ;
42 unsigned short a l l o c a t i o n s ;
43 unsigned long f l a g s ;
44 struct fragment fragment [0] ;
45 } ;
46
47 struct c e l l a c c oun t i n g {
48 atomic t pages ;
49 atomic t c e l l s ;
50 atomic t fragments ;
51 } ;
52
53 stat ic struct c e l l a c c oun t i n g account ing ;
54
55 #define FRAGMENT LOCKBIT 0
56
57 /∗ Ce l l f l a g s ∗/
58 #define CELL FLAG MANAGED 0
59 #define CELL FLAG KEEP 1
60 #define CELLMANAGED(c e l l) t e s t b i t (CELL FLAG MANAGED,

&c e l l −>f l a g s)

D.2. CELL ALLOCATOR 153

61 #define CELL MANAGE(c e l l) s e t b i t (CELL FLAG MANAGED,
&c e l l −>f l a g s)

62 #define CELL UNMANAGE(c e l l)
c l e a r b i t (CELL FLAG MANAGED, &c e l l −>f l a g s)

63 #define CELL KEEP(c e l l) t e s t b i t (CELL FLAG KEEP,
&c e l l −>f l a g s)

64 #define CELL SET KEEP(c e l l) s e t b i t (CELL FLAG KEEP,
&c e l l −>f l a g s)

65 #define CELL CLEAR KEEP(c e l l)
c l e a r b i t (CELL FLAG KEEP, &c e l l −>f l a g s)

66
67
68 #define CELL ORDER 1
69 #define CELL LENGTH 2
70 #define CELL GRANULARITY 256
71 #define CELL CATEGORIES

(PAGE SIZE∗CELL LENGTH/CELL GRANULARITY)
72 #define CELL MASK (PAGE SIZE−1)
73 #define CELL PAGE(c e l l) (struct page

∗) page p r ivate (v i r t t o p ag e (c e l l))
74 #define FRAGMENT CELL(fragment) (struct c e l l

∗) page address (CELL PAGE(fragment))
75 /∗ FRAGMENTLENGTH g i v e s the l en g t h o f the data part

o f the fragment . ∗/
76 #define FRAGMENTLENGTH(fragment) (fragment−>next ==

NULL?\
77 ((unsigned long)FRAGMENT CELL(fragment)+\
78 (PAGE SIZE∗CELL LENGTH)−(unsigned

long) fragment−>data) :\
79 ((unsigned long) fragment−>next − (unsigned

long) fragment−>data))
80 stat ic struct l i s t h e a d f r e e c e l l s [CELL CATEGORIES] ;
81 stat ic struct mutex

f r e e c e l l s l i s t l o c k [CELL CATEGORIES] ;
82
83 #define f r e e c e l l s l o c k (i)

mutex lock (& f r e e c e l l s l i s t l o c k [i])
84 #define f r e e c e l l s u n l o c k (i)

mutex unlock(& f r e e c e l l s l i s t l o c k [i])
85
86 /∗ For debugg ing l o c k i n g :
87 #de f i n e f r e e c e l l s l o c k (i) \
88 pr i n t k (KERN EMERG ”%s : %i wa i t ing f o r %i \n” ,\
89 FUNCTION , LINE , i) ;\

154 APPENDIX D. CODE

90 down(& f r e e c e l l s l i s t l o c k [i]) ;\
91 pr i n t k (KERN EMERG ”%s : Locked f r e e c e l l s l i s t [% i]

%i \n” ,\
92 FUNCTION , i , LINE)
93 #de f i n e f r e e c e l l s u n l o c k (i) \
94 up(& f r e e c e l l s l i s t l o c k [i]) ; \
95 pr i n t k (KERN EMERG ”%s : Unlocked

f r e e c e l l s l i s t [% i] %i \n” ,\
96 FUNCTION , i , LINE)
97 ∗/
98
99 /∗ We need some l o c k i n g : ∗/

100 stat ic i n l i n e void b i t s p i n l o c k (int bitnum , unsigned
long ∗addr)

101 {
102 while (t e s t a n d s e t b i t (bitnum , addr)) {
103 y i e l d () ;
104 }
105 }
106
107 stat ic i n l i n e int b i t s p i n t r y l o c k (int bitnum ,

unsigned long ∗addr)
108 {
109 i f (t e s t a n d s e t b i t (bitnum , addr)) {
110 return 0 ;
111 }
112 return 1 ;
113 }
114
115 stat ic struct semaphore temporary ce l l s semaphore ;
116 stat ic struct semaphore t empo r a r y c e l l s l o c k ;
117 stat ic struct l i s t h e a d t empor a r y c e l l s ;
118
119 /∗ Prototypes ∗/
120 stat ic struct c e l l ∗ ce l l t emporary (void) ;
121 stat ic void c e l l g l ob a l c ompac t (void) ;
122
123 stat ic i n l i n e void f r agmen t i n i t (struct fragment

∗ fragment)
124 {
125 fragment−>next = NULL;
126 fragment−>user = NULL;
127 }
128

D.2. CELL ALLOCATOR 155

129 stat ic i n l i n e void c e l l i n i t (struct c e l l ∗ c e l l)
130 {
131 f r agmen t i n i t (c e l l −>fragment) ;
132 /∗ c e l l −>f r e e s pac e = CELL LENGTH∗PAGE SIZE
133 − s i z e o f (s t r u c t c e l l) − s i z e o f (s t r u c t

fragment) ; ∗/
134 c e l l −>f r e e s p a c e =

FRAGMENTLENGTH(c e l l −>fragment) ;
135 c e l l −>a l l o c a t i o n s = 0 ;
136 CELL UNMANAGE(c e l l) ;
137 CELL CLEAR KEEP(c e l l) ;
138 }
139
140 stat ic void c e l l l o c k (struct c e l l ∗ c e l l)
141 {
142 struct page ∗page ;
143 page = CELL PAGE(c e l l) ;
144 lock page (page) ;
145 }
146
147 stat ic i n l i n e void c e l l u n l o c k (struct c e l l ∗ c e l l)
148 {
149 struct page ∗page ;
150 page = CELL PAGE(c e l l) ;
151 unlock page (page) ;
152 }
153
154 stat ic void c e l l d ebug (struct c e l l ∗ c e l l)
155 {
156 struct fragment ∗ fragment ;
157 unsigned int f r e e space , usedspace ;
158
159 pr in tk (KERNEMERG ”%s : Debugging c e l l =0x%lx ,

f r e e s p a c e=%u\n” ,
160 FUNCTION , (unsigned long) c e l l ,

c e l l −>f r e e s p a c e) ;
161 fragment = c e l l −>fragment ;
162 f r e e sp ac e = 0 ;
163 usedspace = 0 ;
164 do {
165 unsigned int f ragment length =

FRAGMENTLENGTH(fragment) ;
166 p r in tk (KERNEMERG ”%s : fragment=0x%lx ,

l ength=%u , user=0x%lx , ”

156 APPENDIX D. CODE

167 ” next=0x%lx \n” , FUNCTION , (unsigned
long) fragment ,

168 f ragment length , (unsigned
long) fragment−>user ,

169 (unsigned long) fragment−>next) ;
170 i f (fragment−>user != NULL) {
171 usedspace += FRAGMENTLENGTH(fragment)
172 + s izeof (fragment) ;
173 } else {
174 f r e e sp ac e += FRAGMENTLENGTH(fragment) ;
175 usedspace += s izeof (fragment) ;
176 }
177 } while ((fragment = fragment−>next)) ;
178 p r in tk (KERNEMERG ”%s : End s t a t i s t i c s : c e l l=0x%lx ,

c a l cu l a t ed : ”
179 ” f r e e sp ac e=%u , usedspace=%u , managed=%s ,

keep=%s \n” ,
180 FUNCTION , (unsigned long) c e l l , f r e e space ,

usedspace ,
181 CELLMANAGED(c e l l) ?” true ” : ” f a l s e ” ,
182 CELL KEEP(c e l l) ?” true ” : ” f a l s e ”) ;
183 }
184
185
186 void c e l l d e b u g a l l (void)
187 {
188 struct c e l l ∗ c e l l ;
189 unsigned int i = 0 ;
190 struct l i s t h e a d ∗pos ;
191
192 pr in tk (KERNEMERG ”%s :

−−−\n” ,
193 FUNCTION) ;
194 for (; i < CELL CATEGORIES; i++) {
195 f r e e c e l l s l o c k (i) ;
196 i f (l i s t emp ty (& f r e e c e l l s [i])) {
197 f r e e c e l l s u n l o c k (i) ;
198 continue ;
199 }
200 /∗ Find a c e l l wi th enough space (i f

p o s s i b l e) ∗/
201 c e l l = NULL;
202 l i s t f o r e a c h (pos , &f r e e c e l l s [i]) {
203 struct c e l l ∗ c e l l p o s =

D.2. CELL ALLOCATOR 157

204 l i s t e n t r y (pos , struct c e l l , l i s t) ;
205 p r in tk (KERNEMERG ”−−> Looking at

c e l l p o s −>f r e e s p ac e ”
206 ”=%u , c e l l=0x%lx , a l l o c a t i o n s=%u\n” ,
207 c e l l p o s −>f r e e s p ac e ,
208 (unsigned long)CELL PAGE(c e l l p o s) ,
209 c e l l p o s −>a l l o c a t i o n s) ;
210 c e l l d ebug (c e l l p o s) ;
211 }
212 f r e e c e l l s u n l o c k (i) ;
213 }
214 i = 0 ;
215 p r in tk (KERNEMERG ”−− l ook ing at temporary c e l l s

−−\n”) ;
216 l i s t f o r e a c h (pos , &t empor a r y c e l l s) {
217 struct c e l l ∗ c e l l p o s = l i s t e n t r y (pos , struct

c e l l , l i s t) ;
218 i++;
219 pr in tk (KERNEMERG ”−tmp %i−> Looking at

c e l l p o s −>f r e e s p ac e=%u , ”
220 ” c e l l=0x%lx , a l l o c a t i o n s=%u\n” , i ,
221 c e l l p o s −>f r e e s p ac e ,
222 (unsigned long)CELL PAGE(c e l l p o s) ,
223 c e l l p o s −>a l l o c a t i o n s) ;
224 c e l l d ebug (c e l l p o s) ;
225 }
226 }
227
228 stat ic struct c e l l ∗ c e l l a l l o c a t e (void)
229 {
230 struct page ∗page ;
231 struct c e l l ∗ c e l l ;
232 int i ;
233
234 page = a l l o c p ag e s (GFP KERNEL | GFP NOWARN,

CELL ORDER) ;
235
236 i f (page == NULL)
237 return NULL;
238
239 s p l i t p a g e (page , CELL ORDER) ;
240 for (i = 0 ; i < (1 << CELL ORDER) ; i++)
241 s e t p ag e p r i v a t e (page+i , (unsigned long) page) ;
242

158 APPENDIX D. CODE

243 atomic add (CELL LENGTH, &account ing . pages) ;
244 atomic in c (&account ing . c e l l s) ;
245
246 c e l l = (struct c e l l ∗) page address (page) ;
247 c e l l i n i t (c e l l) ;
248
249 #i f d e f CELL DEBUG
250 pr in tk (KERNEMERG ”%s : count i t %i page=0x%lx ,

c e l l=0x%lx \n” ,
251 FUNCTION , atomic read(&account ing . c e l l s) ,
252 (unsigned long) page , (unsigned long) c e l l) ;
253 #end i f
254 return c e l l ;
255 }
256
257 /∗ Nothing shou ld be r e f e r enc i n g t h i s c e l l when

f r e e i n g i t ! ∗/
258 stat ic struct page ∗ c e l l f r e e (struct c e l l ∗ c e l l , int

returnpage)
259 {
260 int i = 0 ;
261 struct page ∗page = CELL PAGE(c e l l) ;
262 i f (r eturnpage)
263 i = 1 ;
264 for (; i < (1 << CELL ORDER) ; i++)
265 put page (page+i) ;
266 atomic dec (&account ing . c e l l s) ;
267 atomic sub (CELL LENGTH, &account ing . pages) ;
268 i f (r eturnpage)
269 return page ;
270 else
271 return NULL;
272 }
273
274 /∗ Returns a c e l l wi th enough space , removed from the

f r e e l i s t ∗/
275 stat ic struct c e l l ∗ c e l l g e t (unsigned int s i z e)
276 {
277 struct c e l l ∗ c e l l ;
278 unsigned int i = s i z e /CELL GRANULARITY;
279 struct l i s t h e a d ∗pos ;
280
281 for (; i < CELL CATEGORIES; i++) {
282 f r e e c e l l s l o c k (i) ;

D.2. CELL ALLOCATOR 159

283 i f (l i s t emp ty (& f r e e c e l l s [i])) {
284 f r e e c e l l s u n l o c k (i) ;
285 continue ;
286 }
287 /∗ Find a c e l l wi th enough space (i f

p o s s i b l e) ∗/
288 c e l l = NULL;
289 l i s t f o r e a c h (pos , &f r e e c e l l s [i]) {
290 struct c e l l ∗ c e l l p o s =
291 l i s t e n t r y (pos , struct c e l l , l i s t) ;
292 #i f d e f CELL DEBUG
293 pr in tk (KERNEMERG ”Looking at

c e l l p o s −>f r e e s p ac e=%u , ”
294 ” s i z e=%u , page=0x%lx \n” ,

c e l l p o s −>f r e e s p ac e ,
295 s i z e , (unsigned long)CELL PAGE(c e l l)) ;
296 #end i f
297 i f (c e l l p o s −>f r e e s p a c e > s i z e) {
298 c e l l = c e l l p o s ;
299 #i f d e f CELL DEBUG
300 pr in tk (KERNEMERG ”%s : Found c e l l with

”
301 ” f r e e s p a c e=%u\n” , FUNCTION ,
302 c e l l −>f r e e s p a c e) ;
303 #end i f
304 break ;
305 }
306 }
307
308 i f (c e l l == NULL) {
309 #i f d e f CELL DEBUG
310 pr in tk (KERNEMERG ”%s : Going to the next

category \n” ,
311 FUNCTION) ;
312 #end i f
313 f r e e c e l l s u n l o c k (i) ;
314 continue ;
315 }
316
317 c e l l l o c k (c e l l) ;
318 #i f d e f CELL DEBUG
319 pr in tk (KERNEMERG ”%s : c e l l=0x%lx de l e t ed from

l i s t \n” ,
320 FUNCTION , (unsigned long) c e l l) ;

160 APPENDIX D. CODE

321 #end i f
322 BUG ON(c e l l −> l i s t . next == NULL &&

ce l l −> l i s t . prev == NULL) ;
323 l i s t d e l (&(c e l l −> l i s t)) ;
324 c e l l −> l i s t . next = NULL;
325 c e l l −> l i s t . prev = NULL;
326 f r e e c e l l s u n l o c k (i) ;
327 return c e l l ;
328 }
329 #i f d e f CELL DEBUG
330 pr in tk (KERNEMERG ”%s : Returned NULL\n” ,

FUNCTION) ;
331 #end i f
332 return NULL;
333 }
334
335 /∗ Takes an emptied c e l l and keeps i t f o r temporary

usage
336 ∗ Locks shou ld be taken f o r the c e l l ∗/
337 stat ic void c e l l k e e p (struct c e l l ∗ c e l l)
338 {
339 c e l l i n i t (c e l l) ;
340 down(& t empo r a r y c e l l s l o c k) ;
341 #i f d e f CELL DEBUG
342 pr in tk (KERNEMERG ”%s : Putting 0x%lx in to l i s t

t empor a r y c e l l s l i s t \n” ,
343 FUNCTION , (unsigned long) c e l l) ;
344 #end i f
345 l i s t a d d (&(c e l l −> l i s t) , &t empor a r y c e l l s) ;
346 c e l l u n l o c k (c e l l) ;
347 up(& t empo r a r y c e l l s l o c k) ;
348 up(&temporary ce l l s semaphore) ;
349 }
350
351 /∗ I n s e r t s a c e l l back i n t o the f r e e l i s t s , and

removes the l o c k s
352 ∗ Make sure t ha t f r e e i n g i n s t anc e s do not put the

c e l l back i n t o
353 ∗ the f ree− l i s t s behind our backs . ∗/
354 stat ic struct page ∗ c e l l p u t (struct c e l l ∗ c e l l , int

returnpage)
355 {
356 unsigned int i ;
357

D.2. CELL ALLOCATOR 161

358 /∗ This i s on ly s e t when a l l o c a t i n g , s k i p
359 ∗ r e i n s e r t i n g i n t o a l i s t u n t i l l a t e r . ∗/
360 i f (CELLMANAGED(c e l l)) {
361 #i f d e f CELL DEBUG
362 pr in tk (KERNEMERG ”%s : Quick end f o r . . \ n” ,

FUNCTION) ;
363 #end i f
364 c e l l u n l o c k (c e l l) ;
365 return NULL;
366 }
367
368 i f (c e l l −>a l l o c a t i o n s == 0) {
369 i f (u n l i k e l y (CELL KEEP(c e l l))) {
370 #i f d e f CELL DEBUG
371 pr in tk (KERNEMERG ”%s : Last a l l o c a t i o n o f

a compacted”
372 ” c e l l=0x%lx , keep !\n” , FUNCTION ,
373 (unsigned long) c e l l) ;
374 #end i f
375 c e l l k e e p (c e l l) ;
376 return NULL;
377 } else {
378 c e l l u n l o c k (c e l l) ;
379 return c e l l f r e e (c e l l , r eturnpage) ;
380 }
381 }
382
383 /∗ This c e l l i s wa i t ing to be re turned to the

temporary s torage ,
384 ∗ but s t i l l has a l l o c a t i o n s t ha t are a c t i v e ∗/
385 i f (u n l i k e l y (CELL KEEP(c e l l))) {
386 #i f d e f CELL DEBUG
387 pr in tk (”%s : More a l l o c a t i o n s on c e l l=0x%lx , ”
388 ” w i l l be kept l a t e r \n” , FUNCTION ,
389 (unsigned long) c e l l) ;
390 #end i f
391 c e l l u n l o c k (c e l l) ;
392 return NULL;
393 }
394
395 /∗ Protec t us from the race , we have a l ready won !
396 ∗ Whatever happens next , we are the ones to put

i t back ! ∗/
397 CELL MANAGE(c e l l) ;

162 APPENDIX D. CODE

398
399 t ryaga in :
400 i = c e l l −>f r e e s p a c e /CELL GRANULARITY;
401 c e l l u n l o c k (c e l l) ;
402 /∗ <− race covered by MANAGED ∗/
403 f r e e c e l l s l o c k (i) ;
404 c e l l l o c k (c e l l) ;
405 /∗ Last fragment was f r e e d from somewhere e l s e ∗/
406 i f (u n l i k e l y (c e l l −>a l l o c a t i o n s == 0)) {
407 f r e e c e l l s u n l o c k (i) ;
408 c e l l u n l o c k (c e l l) ;
409 return c e l l f r e e (c e l l , 0) ;
410 }
411 /∗ Maybe i t now shou ld be put i n t o another l i s t .

∗/
412 i f (i != c e l l −>f r e e s p a c e /CELL GRANULARITY) {
413 f r e e c e l l s u n l o c k (i) ;
414 #i f d e f CELL DEBUG
415 pr in tk (KERNEMERG ”%s : Something were f r e ed

when we wern ’ t ”
416 ” look ing , take c o r r e c t l ock \n” ,

FUNCTION) ;
417 #end i f
418 goto t ryaga in ;
419 }
420 #i f d e f CELL DEBUG
421 pr in tk (KERNEMERG ”%s : Putting 0x%lx in to l i s t

%i \n” , FUNCTION ,
422 (unsigned long) c e l l , i) ;
423 #end i f
424 l i s t a d d t a i l (&(c e l l −> l i s t) , &f r e e c e l l s [i]) ;
425 CELL UNMANAGE(c e l l) ;
426 c e l l u n l o c k (c e l l) ;
427 f r e e c e l l s u n l o c k (i) ;
428 return NULL;
429 }
430
431 /∗ S p l i t s a fragment i n t o one l eng t h b i t and i f

p o s s i b l e the
432 ∗ r e s t i n t o the next fragment . ∗/
433 stat ic struct fragment ∗ f r agmen t sp l i t (struct c e l l

∗ c e l l ,
434 struct fragment ∗ fragment , unsigned int l ength)
435 {

D.2. CELL ALLOCATOR 163

436 unsigned int f ragment length ;
437 f ragment length = FRAGMENTLENGTH(fragment) ;
438 i f (l ength < f ragment length − s izeof (struct

fragment)) {
439 struct fragment ∗new fragment ;
440
441 new fragment = (struct fragment

∗)&fragment−>data [
442 f ragment length−s izeof (struct

fragment)−l ength] ;
443 f r agmen t i n i t (new fragment) ;
444
445 new fragment−>next = fragment−>next ;
446 fragment−>next = new fragment ;
447
448 c e l l −>f r e e s p a c e −=

FRAGMENTLENGTH(new fragment)
449 + s izeof (struct fragment) ;
450
451 i f ((unsigned long) fragment & 1) {
452 c e l l d ebug (c e l l) ;
453 BUG() ;
454 }
455
456 return new fragment ;
457 } else {
458 c e l l −>f r e e s p a c e −= FRAGMENTLENGTH(fragment) ;
459 return fragment ;
460 }
461 }
462
463
464 /∗ Must have been removed from othe r c a t e g o r i e s f i r s t
465 ∗ Fi r s t i t l o o k s f o r a l a r g e enough f r e e fragment ,
466 ∗ I f i t doesn ’ t f i nd one i t r e tu rns NULL. ∗/
467 stat ic struct fragment ∗ c e l l f r agmen t (struct c e l l

∗ c e l l , int l ength)
468 {
469 unsigned int tmpfree , needed length ;
470 struct fragment ∗ fragment , ∗ prev fragment ;
471
472 #i f d e f CELL DEBUG
473 pr in tk (KERNEMERG ”%s : Looking at a c e l l with

f r e e s p a c e=%u , ”

164 APPENDIX D. CODE

474 ” length=%u\n” , FUNCTION ,
c e l l −>f r e e s p ac e , l ength) ;

475 #end i f
476
477 i f (u n l i k e l y (c e l l −>f r e e s p a c e < l ength)) {
478 c e l l d ebug (c e l l) ;
479 BUG ON(c e l l −>f r e e s p a c e < l ength) ;
480 }
481
482 needed length = (s izeof (struct fragment) +

length) ;
483 tmpfree = c e l l −>f r e e s p a c e ;
484 fragment = c e l l −>fragment ;
485 prev fragment = NULL;
486 do {
487 i f (fragment−>user == NULL) {
488 unsigned int f ragment length ;
489
490 /∗ Merging two f r e e fragments ∗/
491 i f (prev fragment && prev fragment−>user

== NULL) {
492 tmpfree +=

FRAGMENTLENGTH(prev fragment)
493 + s izeof (struct fragment) ;
494 c e l l −>f r e e s p a c e += s izeof (struct

fragment) ;
495 prev fragment−>next = fragment−>next ;
496 fragment = prev fragment ;
497 }
498
499 /∗ Found l a r g e enough fragment ∗/
500 f ragment length =

FRAGMENTLENGTH(fragment) ;
501 i f (f ragment length >= length) {
502 return f r agmen t sp l i t (c e l l , fragment ,

l ength) ;
503 }
504
505 /∗ There can be no l a r g e enough f r e e

fragments
506 ∗ l e f t in t h i s c e l l ∗/
507 tmpfree −= fragment length ;
508 i f (tmpfree < l ength) {
509 #i f d e f CELL DEBUG

D.2. CELL ALLOCATOR 165

510 pr in tk (KERNEMERG ”%s : tmpfree(%u) <

l ength (%u) ”
511 ” no space l e f t ! (the c e l l i s s a id

to ”
512 ” have %u l e f t) , f r g l e n=%u\n” ,
513 FUNCTION , tmpfree , length ,
514 c e l l −>f r e e s p ac e ,

f ragment length) ;
515 #end i f
516 return NULL;
517 }
518
519 }
520 } while ((fragment = fragment−>next)) ;
521
522 /∗ shou ld be caught by the cut−o f f on not enough

space l e f t ∗/
523 BUG ON(fragment == NULL) ;
524
525 return NULL;
526 }
527
528 /∗ Update the user o f the page in a good way :P ∗/
529 stat ic i n l i n e void f ragment update user (struct

fragment ∗ oldfragment ,
530 struct fragment ∗newfragment)
531 {
532 newfragment−>user = oldfragment−>user ;
533 ∗ oldfragment−>user = newfragment ;
534 }
535
536
537 /∗ Return one o f the temporary c e l l s wi th l o c k s taken

∗/
538 stat ic struct c e l l ∗ ce l l t emporary (void)
539 {
540 struct c e l l ∗ c e l l ;
541 down(&temporary ce l l s semaphore) ;
542 down(& t empo r a r y c e l l s l o c k) ;
543 BUG ON(l i s t emp ty (& tempor a r y c e l l s)) ;
544 c e l l = (struct c e l l

∗) l i s t e n t r y (t empor a r y c e l l s . next ,
545 struct c e l l , l i s t) ;
546 c e l l l o c k (c e l l) ;

166 APPENDIX D. CODE

547 #i f d e f CELL DEBUG
548 pr in tk (KERNEMERG ”%s : c e l l =0x%lx de l e t ed from

l i s t t empor a r y c e l l s ”
549 ” l i s t \n” , FUNCTION , (unsigned long) c e l l) ;
550 #end i f
551 l i s t d e l (&(c e l l −> l i s t)) ;
552 c e l l −> l i s t . next = NULL;
553 c e l l −> l i s t . prev = NULL;
554 up(& t empo r a r y c e l l s l o c k) ;
555 return c e l l ;
556 }
557
558 /∗ Copies a l l a c t i v e fragments to new c e l l . ∗/
559 stat ic struct c e l l ∗ ce l l compact (struct c e l l ∗ o l d c e l l)
560 {
561 struct fragment ∗ fragment , ∗prev fragment ;
562 struct c e l l ∗ newce l l = ce l l t emporary () ;
563
564 #i f d e f CELL DEBUG
565 pr in tk (KERNEMERG ”%s : Compacting o l d c e l l=0x%lx ,

newce l l=0x%lx , ”
566 ” f r e e s p a c e=%u\n” , FUNCTION , (unsigned

long) o l d c e l l ,
567 (unsigned long) newcel l , newcel l−>f r e e s p a c e) ;
568 #end i f
569 fragment = o l d c e l l −>fragment ;
570 prev fragment = NULL;
571 do {
572 i f (fragment−>user != NULL) {
573 unsigned int f ragment length =
574 FRAGMENTLENGTH(fragment) ;
575 struct fragment ∗newfragment ;
576 i f (! b i t s p i n t r y l o c k (FRAGMENT LOCKBIT,
577 (unsigned long ∗) fragment−>user)) {
578 #i f d e f CELL DEBUG
579 pr in tk (KERNEMERG ”%s : Skipping ,

fragment i s ”
580 ” in use (b i t l o c k on 0x%lx , ”
581 ” content=0x%lx)\n” , FUNCTION ,
582 (unsigned long) fragment−>user ,
583 (unsigned long) ∗ fragment−>user) ;
584 #end i f
585 prev fragment = fragment ;
586 continue ;

D.2. CELL ALLOCATOR 167

587 }
588
589 newfragment = ce l l f r agmen t (newcel l ,

f ragment length) ;
590
591 i f (u n l i k e l y (newfragment == NULL)) {
592 pr in tk (KERNEMERG ”%s : FAILED

fragment ?”
593 ”OLDCELL:\n” , FUNCTION) ;
594 c e l l d ebug (o l d c e l l) ;
595 BUG() ;
596 }
597
598 memcpy(newfragment−>data , fragment−>data ,
599 f ragment length) ;
600 newcel l−>a l l o c a t i o n s ++;
601 newfragment−>user = fragment−>user ;
602 #i f d e f CELL DEBUG
603 pr in tk (KERNEMERG ”%s : ∗User (0 x%lx) s e t to

0x%lx \n” ,
604 FUNCTION , (unsigned

long) fragment−>user ,
605 (unsigned long) newfragment) ;
606 #end i f
607 /∗ This a l s o c l e a r s the b i t l o c k ∗/
608 ∗ fragment−>user = newfragment ;
609
610 fragment−>user = NULL;
611 o l d c e l l −>a l l o c a t i o n s −−;
612 /∗ keep a c e l l c on s i s t en t , not r e a l l y

needed ∗/
613 o l d c e l l −>f r e e s p a c e += fragment length ;
614 }
615
616 i f (prev fragment && prev fragment−>user ==

NULL) {
617 prev fragment−>next = fragment−>next ;
618 fragment = prev fragment ;
619 }
620
621 prev fragment = fragment ;
622 } while ((fragment = fragment−>next)) ;
623
624 i f (o l d c e l l −>a l l o c a t i o n s != 0) {

168 APPENDIX D. CODE

625 #i f d e f CELL DEBUG
626 pr in tk (KERNEMERG ”%s : Marked old c e l l 0x%lx

as f r e e a b l e by”
627 ” readend , c e l l won ’ t be f r e ed f o r %i \n” ,

FUNCTION ,
628 (unsigned long) o l d c e l l ,

o l d c e l l −>a l l o c a t i o n s) ;
629 #end i f
630 CELL SET KEEP(o l d c e l l) ;
631 c e l l u n l o c k (o l d c e l l) ;
632 } else {
633 c e l l k e e p (o l d c e l l) ;
634 }
635 return newce l l ;
636 }
637
638 int f ragment wr i te (unsigned int s i z e , unsigned int

grow ,
639 struct fragment ∗∗ user , void ∗data)
640 {
641 struct c e l l ∗ c e l l ;
642 struct fragment ∗ fragment ;
643 unsigned int l ength ;
644
645 /∗ So tha t we can use b i t 0 f o r FRAGMENT LOCK BIT

∗/
646 i f (s i z e % 2)
647 length = s i z e + 1 ;
648 else
649 length = s i z e ;
650
651 c e l l = c e l l g e t (s i z e) ;
652 #i f d e f CELL DEBUG
653 pr in tk (KERNEMERG ”%s : Found a c e l l=0x%lx \n” ,

FUNCTION ,
654 (unsigned long) c e l l) ;
655 #end i f
656
657 i f (c e l l == NULL && grow == 0)
658 return 0 ;
659
660 i f (c e l l == NULL && grow == 1) {
661 #i f d e f CELL DEBUG

D.2. CELL ALLOCATOR 169

662 pr in tk (KERNEMERG ”%s : Did not f i nd a c e l l :
c e l l=0x%lx \n” ,

663 FUNCTION , (unsigned long) c e l l) ;
664 #end i f
665 c e l l = c e l l a l l o c a t e () ;
666 i f (c e l l == NULL)
667 return 0 ;
668 c e l l l o c k (c e l l) ;
669 }
670
671 fragment = ce l l f r agmen t (c e l l , l ength) ;
672
673 i f (fragment == NULL) {
674 c e l l = ce l l compact (c e l l) ;
675 fragment = ce l l f r agmen t (c e l l , l ength) ;
676 }
677
678 i f (u n l i k e l y (fragment == NULL))
679 c e l l d ebug (c e l l) ;
680
681 BUG ON(fragment == NULL) ;
682 c e l l −>a l l o c a t i o n s ++;
683 atomic in c (&account ing . f ragments) ;
684 fragment−>user = user ;
685 ∗ fragment−>user = fragment ;
686 #i f d e f CELL DEBUG
687 pr in tk (KERNEMERG ”%s : ∗User (0x%lx) s e t to

0x%lx \n” , FUNCTION ,
688 (unsigned long) fragment−>user , (unsigned

long) fragment) ;
689 #end i f
690
691 memcpy(fragment−>data , data , s i z e) ;
692 c e l l p u t (c e l l , 0) ;
693 return 1 ;
694 }
695
696 /∗
697 ∗ Returns a po in te r to the data .
698 ∗/
699 void ∗ f r agment r ead s tar t (struct fragment ∗∗ user)
700 {
701 struct fragment ∗ fragment ;

170 APPENDIX D. CODE

702 b i t s p i n l o c k (FRAGMENT LOCKBIT, (unsigned long
∗) user) ;

703 fragment = (struct fragment ∗) ((unsigned
long) ∗ user & ˜1) ;

704 return (fragment−>data) ;
705 }
706
707 /∗
708 ∗ Frees the fragment , a f t e r a read .
709 ∗/
710 struct page ∗ f ragment readend (struct fragment ∗∗ user ,

int returnpage)
711 {
712 struct c e l l ∗ c e l l ;
713 struct fragment ∗ fragment ;
714 struct page ∗page ;
715 int i ;
716
717 fragment = (struct fragment ∗) ((unsigned

long) ∗ user & ˜1) ;
718 c e l l = FRAGMENT CELL(fragment) ;
719
720 #i f d e f CELL DEBUG
721 pr in tk (KERNEMERG ”%s : B i t l ock=0x%lx ,

c e l l=0x%lx \n” ,
722 FUNCTION , (unsigned long) user , (unsigned

long) c e l l) ;
723 #end i f
724
725 c e l l l o c k (c e l l) ;
726
727 t ryaga in :
728 i f (CELLMANAGED(c e l l) | | CELL KEEP(c e l l)) {
729 c e l l −>f r e e s p a c e += FRAGMENTLENGTH(fragment) ;
730 c e l l −>a l l o c a t i o n s −−;
731 ∗ fragment−>user = NULL;
732 fragment−>user = NULL;
733 atomic dec (&account ing . f ragments) ;
734 return c e l l p u t (c e l l , r eturnpage) ;
735 }
736
737 #i f d e f CELL DEBUG
738 pr in tk (KERNEMERG ”%s : fragment=0x%lx \n” ,

FUNCTION ,

D.2. CELL ALLOCATOR 171

739 (unsigned long) fragment) ;
740 #end i f
741
742 i = c e l l −>f r e e s p a c e /CELL GRANULARITY;
743
744 c e l l u n l o c k (c e l l) ;
745
746 /∗ <− race cou ld occur here . ∗/
747
748 f r e e c e l l s l o c k (i) ;
749 c e l l l o c k (c e l l) ;
750
751 i f (CELLMANAGED(c e l l) | | CELL KEEP(c e l l)) {
752 f r e e c e l l s u n l o c k (i) ;
753 goto t ryaga in ;
754 }
755
756 i f (i != (c e l l −>f r e e s p a c e /CELL GRANULARITY)) {
757 #i f d e f CELL DEBUG
758 pr in tk (KERNEMERG ”%s : fragment moved from

under us\n” ,
759 FUNCTION) ;
760 #end i f
761 f r e e c e l l s u n l o c k (i) ;
762 goto t ryaga in ;
763 }
764
765 #i f d e f CELL DEBUG
766 pr in tk (KERNEMERG ”%s : c e l l=0x%lx de l e t ed from

l i s t \n” ,
767 FUNCTION , (unsigned long) c e l l) ;
768 #end i f
769 l i s t d e l (&(c e l l −> l i s t)) ;
770 c e l l −> l i s t . next = NULL;
771 c e l l −> l i s t . prev = NULL;
772 f r e e c e l l s u n l o c k (i) ;
773
774 c e l l −>f r e e s p a c e += FRAGMENTLENGTH(fragment) ;
775 c e l l −>a l l o c a t i o n s −−;
776
777 /∗ Merge f r e e fragments ∗/
778 i f (fragment−>next != NULL && fragment−>next−>user

== NULL) {
779 fragment−>next = fragment−>next−>next ;

172 APPENDIX D. CODE

780 c e l l −>f r e e s p a c e += s izeof (struct fragment) ;
781 }
782
783 ∗ fragment−>user = NULL;
784 fragment−>user = NULL;
785 atomic dec (&account ing . f ragments) ;
786 page = c e l l p u t (c e l l , r eturnpage) ;
787
788 i f (atomic read(&account ing . f ragments) <

789 atomic read(&account ing . pages)) {
790 c e l l g l ob a l c ompac t () ;
791 }
792 return page ;
793 }
794
795 stat ic struct c e l l ∗ ce l l mos t unused (void)
796 {
797 struct c e l l ∗ c e l l ;
798 unsigned int i ;
799 struct l i s t h e a d ∗pos ;
800
801 for (i = CELL CATEGORIES−1; i > 0 ; i−−) {
802 f r e e c e l l s l o c k (i) ;
803
804 i f (l i s t emp ty (& f r e e c e l l s [i])) {
805 f r e e c e l l s u n l o c k (i) ;
806 continue ;
807 }
808
809 /∗ Find a c e l l wi th few a l l o c a t i o n s and l e s s

than 50% used ∗/
810 c e l l = NULL;
811 l i s t f o r e a c h (pos , &f r e e c e l l s [i]) {
812 struct c e l l ∗ c e l l p o s = l i s t e n t r y (pos ,

struct c e l l ,
813 l i s t) ;
814 i f (c e l l p o s −>a l l o c a t i o n s <= 2) {
815 c e l l = c e l l p o s ;
816 break ;
817 }
818 }
819
820 i f (c e l l == NULL) {
821 #i f d e f CELL DEBUG

D.2. CELL ALLOCATOR 173

822 pr in tk (KERNEMERG ”%s : Going to the next
category \n” ,

823 FUNCTION) ;
824 #end i f
825 f r e e c e l l s u n l o c k (i) ;
826 continue ;
827 }
828
829 c e l l l o c k (c e l l) ;
830 l i s t d e l (&(c e l l −> l i s t)) ;
831 f r e e c e l l s u n l o c k (i) ;
832 return c e l l ;
833 }
834 #i f d e f CELL DEBUG
835 pr in tk (KERNEMERG ”%s : Returned NULL\n” ,

FUNCTION) ;
836 #end i f
837 return NULL;
838 }
839
840 /∗ Globa l compaction :
841 ∗ Rea l l o c a t e s a l l f ragments wi th in a i n e f f i c i e n t l y

used c e l l ,
842 ∗ and then f r e e t ha t c e l l . ∗/
843 stat ic void c e l l g l ob a l c ompac t (void)
844 {
845 struct c e l l ∗ c e l l , ∗ unu s ed c e l l =

ce l l mos t unused () ;
846 struct fragment ∗ fragment , ∗new fragment ;
847
848 i f (unu s ed c e l l == NULL)
849 return ;
850
851 fragment = unused ce l l−>fragment ;
852 do {
853 unsigned int f ragment length =

FRAGMENTLENGTH(fragment) ;
854 i f (fragment−>user == NULL)
855 continue ;
856 i f (! b i t s p i n t r y l o c k (FRAGMENT LOCKBIT,
857 (unsigned long ∗) fragment−>user))
858 continue ;
859
860 /∗ Actual r e a l l o c a t i o n o f fragment ∗/

174 APPENDIX D. CODE

861 c e l l = c e l l g e t (f ragment length) ;
862 i f (! c e l l) {
863 ∗ fragment−>user = fragment ;
864 break ;
865 }
866
867 new fragment = ce l l f r agmen t (c e l l ,

f ragment length) ;
868 i f (new fragment == NULL) {
869 c e l l = ce l l compact (c e l l) ;
870 new fragment = ce l l f r agmen t (c e l l ,

f ragment length) ;
871 }
872
873 i f (new fragment == NULL) {
874 c e l l d ebug (c e l l) ;
875 BUG() ;
876 }
877
878 memcpy(new fragment−>data , fragment−>data ,

f ragment length) ;
879 c e l l −>a l l o c a t i o n s ++;
880 new fragment−>user = fragment−>user ;
881 ∗new fragment−>user = new fragment ; /∗ r e s e t s

the b i t ∗/
882 fragment−>user = NULL;
883 unused ce l l−>a l l o c a t i o n s −−;
884 unused ce l l−>f r e e s p a c e += fragment length ;
885 c e l l p u t (c e l l , 0) ;
886 c e l l = NULL;
887 } while ((fragment = fragment−>next)) ;
888 c e l l p u t (unused ce l l , 0) ;
889 }
890
891
892
893 /∗ How many pages are the c e l l s t r u c t u r e consuming? ∗/
894 int c e l l a c c oun t i n g p ag e s (void)
895 {
896 return atomic read(&account ing . pages) ;
897 }
898
899 /∗ How many fragments do we have ? ∗/
900 int c e l l a c coun t i n g f r agmen t s (void)

D.3. PAGE CACHE 175

901 {
902 return atomic read(&account ing . f ragments) ;
903 }
904
905 /∗ How many compacting opera t i ons shou ld we do at the

same
906 t ime at the same cpu? ∗/
907 void i n i t c e l l s e t u p (unsigned int compac t c e l l s)
908 {
909 int i ;
910
911 for (i = 0 ; i < CELL CATEGORIES; i++) {
912 mutex in i t (& f r e e c e l l s l i s t l o c k [i]) ;
913 INIT LIST HEAD(& f r e e c e l l s [i]) ;
914 }
915
916 sema in i t (&temporary ce l l s semaphore ,

c ompac t c e l l s) ;
917 s ema in i t (& tempor a r y c e l l s l o ck , 1) ;
918 INIT LIST HEAD(&tempor a r y c e l l s) ;
919
920 while (compact ce l l s −−) {
921 struct c e l l ∗ c e l l = c e l l a l l o c a t e () ;
922 BUG ON(c e l l == NULL) ;
923 #i f d e f CELL DEBUG
924 pr in tk (KERNEMERG ”%s : Putting 0x%lx in to l i s t

t empor a r y c e l l s ”
925 ” l i s t \n” , FUNCTION , (unsigned

long) c e l l) ;
926 #end i f
927 l i s t a d d t a i l (&(c e l l −> l i s t) ,

&t empor a r y c e l l s) ;
928 }
929 }
930
931 /∗ EOF ∗/

D.3 Page cache

Includes some chosen functions used to access the page cache.

D.3.1 find get page()

176 APPENDIX D. CODE

1 /∗∗
2 ∗ f i n d g e t p a g e − f i nd and ge t a page r e f e r enc e
3 ∗ @mapping : the addre s s space to search
4 ∗ @of f s e t : the page index
5 ∗
6 ∗ I s the re a pagecache s t r u c t page at the g iven

(mapping , o f f s e t) t u p l e ?
7 ∗ I f yes , increment i t s re f coun t and re turn i t ; i f

no , re turn NULL.
8 ∗/
9 struct page ∗ f i n d ge t page (struct addre s s space

∗mapping , unsigned long o f f s e t)
10 {
11 struct page ∗page , ∗newpage ;
12 void ∗∗ s l o t ;
13
14 r e a d l o c k i r q (&mapping−>t r e e l o c k) ;
15 page = rad i x t r e e l ookup (&mapping−>page tree ,

o f f s e t) ;
16 i f (! PageCompressed (page)) {
17 i f (page)
18 page cache get (page) ;
19 r ead un l o ck i r q (&mapping−>t r e e l o c k) ;
20 return page ;
21 }
22 r ead un l o ck i r q (&mapping−>t r e e l o c k) ;
23 /∗ <− This i s where we cou ld have a race

cond i t i on . .
24 ∗ Race i s made even more l i k l y by pu t t i n g an

a l l o c a t i o n o f a page here ,
25 ∗ but by doing t h i s we can even s l e e p whi l e

a l l o c a t i n g t h i s page .
26 ∗/
27 newpage = a l l o c p ag e (GFP KERNEL) ;
28 BUG ON(newpage == NULL) ;
29 lock page (newpage) ;
30
31 w r i t e l o c k i r q (&mapping−>t r e e l o c k) ;
32 s l o t = r a d i x t r e e l o o k u p s l o t (&mapping−>page tree ,

o f f s e t) ;
33
34 i f (l i k e l y (s l o t != NULL)) {
35 page = r a d i x t r e e d e r e f s l o t (s l o t) ;

D.3. PAGE CACHE 177

36 } else {
37 page = NULL;
38 }
39
40 i f (PageCompressed (page)) {
41 struct cpage ∗ cpage ;
42 cpage = MaskPageCompressed (page) ;
43
44 /∗ Could have been in cache i f the cache was

not d i s a b l e d ∗/
45 i f (cpage marker (cpage)) {
46 unlock page (newpage) ;
47 put page (newpage) ;
48 r a d i x t r e e d e l e t e (&mapping−>page tree ,

o f f s e t) ;
49 mapping−>nrpages−−;
50 c c a c c e s s ed cpage (cpage) ;
51 w r i t e u n l o c k i r q (&mapping−>t r e e l o c k) ;
52 c c f r e e swap (cpage) ;
53 return NULL;
54 }
55
56 get page (newpage) ; /∗ cache a l s o has a

r e f e r enc e to i t ∗/
57
58 /∗ r e p l a c e compressed page wi th r e a l page ∗/
59 c c ac c e s s ed cpage (cpage) ;
60 r a d i x t r e e r e p l a c e s l o t (s l o t , newpage) ;
61 w r i t e u n l o c k i r q (&mapping−>t r e e l o c k) ;
62
63 /∗ uncompressing page ∗/
64 c c r e s t o r e (cpage , newpage) ;
65 SetPageUptodate (newpage) ;
66 unlock page (newpage) ;
67 c c f r e e (cpage) ;
68
69 /∗ add to LRU to be removed in the f u t u r e ∗/
70 l ru cache add (newpage) ;
71
72 return newpage ;
73 } else {
74 unlock page (newpage) ;
75 put page (newpage) ;
76 }

178 APPENDIX D. CODE

77
78 i f (page)
79 page cache get (page) ;
80 w r i t e u n l o c k i r q (&mapping−>t r e e l o c k) ;
81 return page ;
82 }

D.3.2 find get page cc()

1 /∗∗
2 ∗ f i n d g e t p a g e c c − f i nd and ge t a page re ference ,

or on cpage remove from mapping and re turn the
cpage .

3 ∗ @mapping : the addre s s space to search
4 ∗ @of f s e t : the page index
5 ∗
6 ∗ I s the re a pagecache s t r u c t page at the g iven

(mapping , o f f s e t) t u p l e ?
7 ∗ I f yes , increment i t s re f coun t and re turn i t ; i f

no , re turn NULL.
8 ∗ Compressed pages are re turned a f t e r bee ing removed

from the mapping .
9 ∗ Al l pages found here i s part o f the swapcache .

10 ∗ Only ran from free swap and cache () .
11 ∗/
12 struct page ∗ f i n d g e t p ag e c c (struct addre s s space

∗mapping ,
13 unsigned long o f f s e t)
14 {
15 struct page ∗page ;
16 struct cpage ∗ cpage = NULL;
17
18 r e a d l o c k i r q (&mapping−>t r e e l o c k) ;
19 page = rad i x t r e e l ookup (&mapping−>page tree ,

o f f s e t) ;
20
21 i f (! PageCompressed (page)) {
22 i f (page)
23 page cache get (page) ;
24 r ead un l o ck i r q (&mapping−>t r e e l o c k) ;
25 return page ;
26 }
27

D.3. PAGE CACHE 179

28 BUG ON(mapping != &swapper space) ;
29 r ead un l o ck i r q (&mapping−>t r e e l o c k) ;
30 /∗ <− t h i s i s where we cou ld have a race cond i t i on

∗/
31 w r i t e l o c k i r q (&mapping−>t r e e l o c k) ;
32 page = rad i x t r e e l ookup (&mapping−>page tree ,

o f f s e t) ;
33
34 /∗ remove the never to be used compressed page ∗/
35 i f (PageCompressed (page)) {
36 cpage = MaskPageCompressed (page) ;
37 mapping−>nrpages−−;
38 cc r emove l ru (cpage) ;
39 r a d i x t r e e d e l e t e (&mapping−>page tree ,

o f f s e t) ;
40 } else i f (page)
41 page cache get (page) ;
42 w r i t e u n l o c k i r q (&mapping−>t r e e l o c k) ;
43 return page ;
44 }

D.3.3 pageout cache()

1 /∗ pageout cache i s c a l l e d by s h r i n k p a g e l i s t () to
s t o r e a page

2 ∗ i n t o the compressed cache , i t w i l l a l s o im p l i c i t l y
e v i c t pages

3 ∗ from the cache to make room fo r the new page . ∗/
4 stat ic pageout t pageout cache (struct page ∗page ,
5 struct addre s s space ∗mapping , struct s c an con t r o l

∗ sc)
6 {
7 pageout t r e t v a l = PAGE CLEAN;
8 unsigned long f l a g s ;
9 void ∗∗ s l o t = NULL;

10 struct cpage ∗ cpage , ∗oldmarker ;
11
12 i f (! i s p a g e c a c h e f r e e a b l e (page))
13 return PAGE KEEP;
14
15 i f (! mapping) {
16 /∗

180 APPENDIX D. CODE

17 ∗ Some data j ou rna l i n g orphaned pages can
have

18 ∗ page−>mapping == NULL whi l e be ing d i r t y
wi th c lean b u f f e r s .

19 ∗/
20 i f (PagePrivate (page)) {
21 i f (t r y t o f r e e b u f f e r s (page)) {
22 ClearPageDirty (page) ;
23 p r in tk (KERNEMERG ”%s : orphaned

page\n” ,
24 FUNCTION) ;
25 return PAGE CLEAN;
26 }
27 }
28 return PAGE KEEP;
29 }
30
31 /∗ Try to ge t r i d o f page−>pr i va t e , s ince we

cannot s t o r e t h i s in cc ∗/
32 i f (PagePrivate (page) &&

! t r y t o r e l e a s e p a g e (page , sc−>gfp mask))
33 return PAGE ACTIVATE;
34
35 BUG ON(PagePrivate (page)) ;
36 BUG ON(mapping−>a ops == NULL) ;
37
38 i f (mapping−>a ops−>wr itepage == NULL)
39 return PAGE ACTIVATE;
40
41 cpage = cc s t o r e page (page) ;
42 /∗ not enough memory , r e t r y l a t e r ∗/
43 i f (cpage == NULL) {
44 return PAGE KEEP;
45 }
46
47 /∗ cache d i s a b l e d or bad compression , w i l l be

swapped out normal ly ∗/
48 i f (cpage == (void ∗) 1) {
49 return PAGE CLEAN;
50 }
51
52 i f (r ad i x t r e e p r e l o ad (GFP ATOMIC))
53 return PAGE KEEP;
54

D.3. PAGE CACHE 181

55 w r i t e l o c k i r q s a v e (&mapping−>t r e e l o ck , f l a g s) ;
56 /∗ I f someone g e t s the page , b e f o r e we end up

here ,
57 ∗ i t i s in use i sn ’ t i t ?
58 ∗ But how can t h i s happen? I t shou ld have been

unmapped e a r l i e r ? hm,
59 ∗ yes unmapped from processes , bu t not from the

mapping i t s e l f . ∗/
60 i f (u n l i k e l y (page count (page) != 2)) {
61 w r i t e u n l o c k i r q r e s t o r e (&mapping−>t r e e l o ck ,

f l a g s) ;
62 r ad i x t r e e p r e l o ad end () ;
63 c c f r e e (cpage) ; /∗ not in cc l r u ∗/
64 r e t v a l = PAGE KEEP;
65 return r e t v a l ;
66 }
67
68 /∗ i f page has been removed/changed from cache

b e f o r e i t reached us?
69 ∗ because the l o c k i s taken b e f o r e g e t t i n g the

mapping , the page
70 ∗ can not have been removed from the cache . ∗/
71 s l o t = r a d i x t r e e l o o k u p s l o t (&mapping−>page tree ,

page index (page)) ;
72 i f (r a d i x t r e e d e r e f s l o t (s l o t) != page) {
73 BUG() ;
74 c c f r e e (cpage) ;
75 cpage = NULL;
76 r e t v a l = PAGE KEEP;
77 goto done ;
78 }
79
80 /∗ I f the page has been changed whi l e / a f t e r we

compressed i t ∗/
81 i f (0) {
82 c c f r e e (cpage) ;
83 r e t v a l = PAGE ACTIVATE;
84 goto done ;
85 }
86
87 /∗ r e p l a c i n g page wi th cpage in corresponding

cache ∗/
88 r a d i x t r e e r e p l a c e s l o t (s l o t , CPagePage (cpage)) ;
89 oldmarker = cc add l r u (cpage) ;

182 APPENDIX D. CODE

90
91 /∗ This w i l l make remove mapping () behave , d i r t y

b i t
92 ∗ i s s tored in cpage and radix−t r e e . ∗/
93 SetPageCC (page) ;
94 ClearPageDirty (page) ;
95 done :
96 w r i t e u n l o c k i r q r e s t o r e (&mapping−>t r e e l o ck ,

f l a g s) ;
97 r ad i x t r e e p r e l o ad end () ;
98 i f (oldmarker)
99 c c f r e e swap (oldmarker) ;

100 return r e t v a l ;
101 }

Appendix E

CD-ROM

E.1 General overview

The CD-ROM contains the source code, workloads and results. We keep
README files in each directory to explain the contents. The contents is
the results we already have, the source code, tests and this thesis.

E.2 Re-running the experiments

The prerequisites to rerunning the experiments are as follows:

Set up your favorite Linux distribution onto a separate partition, and
make sure it makes use of a swap area. Make sure a version of GCC (GNUs
compiler collection) able to compile Linux 2.6.22 is installed. Make a sepa-
rate volume used for testing and mount it at /usr/src/test.

Copy all the tests from the CD-ROM to a new directory called /usr/sr-
c/tests, edit clean-jXtest.sh to format your volume. Copy the randomfil.txt
to /root.

Download Linux 2.6.22 from www.kernel.org (or copy it from the CD-
ROM) and apply the compressed caching patch (cc.patch) found on the CD-
ROM or downloaded from http://code.google.com/p/cclinux/downloads/

list. Just copy in your working .config and compile the kernel.

Set up your boot-loader to boot with the patched kernel. To limit
the amount of ram use the mem kernel parameter, for our tests we used
mem=122880000, mem=102400000, mem=81920000, mem=61440000 and
mem=40960000.

Boot into the kernel you want to run a test on, preferably in single
user mode, and execute one of the following scripts: jXtest.sh (takes one
parameter), compile and sort.sh and sort.sh.

The results you want to look at is output into STDERR.

183

184 APPENDIX E. CD-ROM

E.3 Getting help

Contact Asbjorn Sannes (asbjorsa@ifi.uio.no) if you need any help to repeat
the experiments or encounter bugs. Good luck!

