
This is my Master Thesis, submitted for the Master of Science in Informatics at
the Department of Informatics, University of Oslo. The thesis has been a
project at the department of Telecom and Informatics at SINTEF, Oslo.

I would like to thank my supervisors Arne-Jørgen Berre and Hjørdis Ho� for
always giving me support, encouragement and deadlines. I would also like to
thank my fellow students Kai Fredriksen and Berge Stillingen for always being

ready to participate in discussion.
And to Christel, thank you for letting me work when I needed, and always

giving me love, encouragement and patience

1

2

Abstract

Creating software systems by composing already existing reusable software is
a vision which has been driving the development of software technologies and
paradigms for a long time. By combining visual modelling and service oriented
architecture, this thesis proposes a visual language for composition of heteroge-
neous service, called AuSCL (Another uni�ed Service Composition Language).
The thesis presents requirements for service composition in general, and addi-
tional requirements introduced by the use of heterogeneous service technologies.
Existing visual languages such as UML2 and BPMN has been investigated and
evaluated in three case studies. This has lead to a list of potential improvements
for UML2 and BPMN which have been used in the design of AuSCL.
AuSCL is a UML2 pro�le, introducing a set of stereotypes to enhance UML2
functionality and a domain speci�c structure of model views for modelling a het-
erogeneous service composition from a set of viewpoints. This structure consists
of a set of model views and are introduced to narrow the extensive modelling
possibilities provided by UML2. The model views are divided into abstract and
concrete views, and does also separate between internal and external aspects.
AuSCL extends UML2 to support dynamic service selection (service discovery
and and runtime selection) for late binding and a consistent way of combinig
activities and interactions to model communication.
AuSCL is evaluated against the identi�ed requirements and by implementation
of the same case studies used in the evaluation of UML2 and BPMN. The eval-
uation shows that AuSCL is better suited than UML2 and BPMN for visual
modelling of heterogeneous service composition for the identi�ed requirements
and case studies.

1

Contents

1 Introduction 10

1.1 Motivation . 11
1.2 Scope of thesis . 13
1.3 Research Challenges . 13
1.4 Method . 13
1.5 AuSCL . 14
1.6 Structure of thesis . 16

2 Background 17

2.1 Explanation of Central Concepts 17
2.1.1 Service Oriented Architecture 17
2.1.2 Model Driven Architecture 23

2.2 Overview of selected visual languages 25
2.2.1 Uni�ed Modelling Language 2.0 26
2.2.2 UML 1.4 Pro�le for Development for Component Based

Enterprise . 26
2.2.3 Ace-GIS . 26
2.2.4 Business Process Modelling Notation 26
2.2.5 JOpera . 27
2.2.6 Business Processes De�nition Metamodel Notation 27

2.3 Related Work . 27
2.3.1 Languages . 27
2.3.2 Semantic Services . 31
2.3.3 Quality of Service . 32
2.3.4 Model Driven Architecture 32
2.3.5 Other . 32

3 Requirements 34

3.1 External Service Composition Requirements 34
3.1.1 Service Description . 34
3.1.2 Partner De�nition . 35
3.1.3 Instance Access Management 35

3.2 Internal Service Composition Requirements 36
3.2.1 Expressiveness . 36
3.2.2 Data Manipulation . 36

2

3.2.3 Communication . 37
3.2.4 Conversational Services . 37
3.2.5 Dynamic Service Selection 38

3.3 Other Requirements . 38
3.3.1 Modularity . 38
3.3.2 Consistency . 38

3.4 Heterogeneous Services . 39
3.4.1 Web Service Composition Requirements 39
3.4.2 Grid Service Composition Requirements 39
3.4.3 P2P Network Composition Requirements 40

3.5 Summary of requirements . 41

4 Case descriptions 43

4.1 Case A - Request For Proposal 43
4.2 Case B - Generic Disk Drive . 44
4.3 Case C - Distributed O�ce Backup 45
4.4 Relationship between requirements and cases. 47

5 Evaluation of Existing Solutions 49

5.1 UML2 - Service Composition . 50
5.1.1 External Requirements . 50
5.1.2 Internal Requirements . 52
5.1.3 Other Requirements . 54
5.1.4 Heterogeneous Service Requirements 55

5.2 BPMN . 56
5.2.1 External Requirements . 57
5.2.2 Internal Requirements . 58
5.2.3 Other Requirements . 60
5.2.4 Heterogeneous Services Requirements 60

5.3 Summary of UML2 and BPMN Evaluation 61

6 Another uni�ed Service Composition Language 64

6.1 Motivation for AuSCL . 65
6.2 AuSCL Conceptual Metamodel 65
6.3 UML2 Pro�le . 67
6.4 Model Views Structure . 69
6.5 Abstract View . 70

6.5.1 Interfaces Model View . 70
6.5.2 Messages Model View . 72
6.5.3 Roles Model View . 75
6.5.4 Collaboration Model View 76
6.5.5 Process Model View . 79

6.6 Concrete View . 83
6.6.1 Datatypes Model View . 83
6.6.2 Servicebindings Model View 84
6.6.3 Adapters Model View . 86

3

6.7 Main Contributions . 87

7 Evaluation of AuSCL 91

7.1 Comparative analysis of AuSCL 91
7.1.1 External Requirements . 91
7.1.2 Internal Requirements . 92
7.1.3 Other Requirements . 94
7.1.4 Heterogeneous Services Requirements 94

7.2 Research Challenges . 95
7.3 Summary of Evaluation . 97

8 Conclusions and Future Work 99

8.1 Conclusions . 99
8.2 Future Work . 102

A Presentation of Service Composition Languages 108

A.1 Presentation of existing visual service composition languages . . . 108
A.1.1 UML2 . 108
A.1.2 UML 1.4 Pro�le for Development for Component Based

Enterprise (EDOC) . 112
A.1.3 BPMN . 116
A.1.4 JOpera . 119
A.1.5 BPDM notation . 122
A.1.6 Proprietary Commercial Solutions 123

B Expressiveness - Workpatterns 125

B.1 Table of standards support . 125
B.1.1 5 basic Workpatterns . 126

C Case A - Request For Proposal 129

C.1 Case Description . 129
C.2 UML2 Service Composition . 131
C.3 BPMN . 135
C.4 AuSCL . 137

C.4.1 Abstract Model Views . 137
C.4.2 Concrete Model Views . 145

D Case B - Generic Disk Drive 147

D.1 Case Description . 147
D.2 UML2 Service Composition . 149
D.3 AuSCL . 152

D.3.1 Abstract Model Views . 152
D.3.2 Concrete Model Views . 157

4

E Case C - Distributed O�ce Backup 158

E.1 Case Description . 158
E.2 UML2 Service Composition . 160
E.3 AuSCL . 164

E.3.1 Abstract Model Views . 164
E.3.2 Concrete Model Views . 172

5

List of Tables

3.1 Summary of all requirements . 41
3.2 Summary of all requirements presented in this chapter (continued) 42

4.1 Table of relation between requirements and case studies 48

5.1 Table of requirements . 49
5.2 Summary of evaluation of UML2 and BPMN 62

6.1 Summary of evaluation of UML2 extensions. 89
6.2 A summary of how AuSCL corrects weaknesses found in UML2. 90

7.1 Summary of evaluation of AuSCL 98

8.1 Summary of evaluation of AuSCL compared to UML2 and BPMN 100

6

List of Figures

1.1 Sodium architecture. 11

2.1 Service interaction . 18
2.2 P2P Network . 20
2.3 Grid network . 21
2.4 Service Composition . 22
2.5 DA Process . 23
2.6 Model to Model transformation in MDA.. 25
2.7 Business Process De�nition Metamodel 33

4.1 UML2 Use case description of the RFP case. 43
4.2 UML2 Use case description of the Generic disk drive case. 45
4.3 UML2 Use case description of the Distributed O�ce Backup. . . . 46

5.1 UML2 Interfaces . 50
5.2 UML2 Provided and Required Interfaces 51
5.3 UML2 Interaction Diagram . 52
5.4 UML2 Data�ow with constraint 53
5.5 UML2 Actions for invoking services and receiving messages 53
5.6 UML2 Protocol for accessing a P2P network service. 55
5.7 UML2 Process for accessing a WS-Resource 56
5.8 UML2 Protocol for accessing a WS-Resource. 57
5.9 UML2 Interface with both operations and attributes 58
5.10 BPMN Message Flow . 59
5.11 BPMN Data Object . 60
5.12 BPMN Message Event . 61

6.1 AuSCL Metamodel. 66
6.2 AuSCL UML2 Pro�le De�nition 67
6.3 AuSCL Model Structure . 69
6.4 AuSCL Metamodel . 70
6.5 AuSCL Interface Model . 72
6.6 AuSCL Message Model . 73
6.7 AuSCL Message Model . 74
6.8 AuSCL Role Model . 76
6.9 AuSCL Collaboration . 78
6.10 AuSCL Service Interaction. 78

7

6.11 AuSCL Process . 82
6.12 AuSCL Datatypes . 84
6.13 AuSCL ServiceBinding . 86
6.14 AuSCL Adapter . 88

8.1 AuSCL uses several model views to model a service composition. . 101

A.1 UML2 Component Diagram . 109
A.2 UML2 Class Diagram . 110
A.3 UML2 Sequence diagram . 111
A.4 UML2 Activity diagram . 113
A.5 UML4EDOC Structure Diagram 114
A.6 UML4EDOC Choreography Diagram 115
A.7 UML4EDOC Entity Diagram . 116
A.8 UML4EDOC Business Process Diagram 117
A.9 BPMN External BehaviourDiagram 118
A.10 BPMN Internal Behaviour Diagram 119
A.11 JOpera Data Flow . 120
A.12 JOpera Control Flow . 121
A.13 BPDM Collaborations . 122
A.14 BPDM Collaboration Protocol . 123
A.15 BPDM Process . 124

B.1 Sequence workpattern . 126
B.2 Parallel Split workpattern . 127
B.3 Synchronization workpattern . 127
B.4 Exclusive Choice workpattern . 128
B.5 Simple Merge workpattern . 128

C.1 UML2 Use case description of the RFP case. 129
C.2 UML2 Interfaces and Classes. 131
C.3 UML2 Component Dependencies. 132
C.4 UML2 External Protocol. 133
C.5 UML2 Internal Process. 134
C.6 Business Process Modelling Notation External Model. 135
C.7 Business Process Modelling Notation Internal Model. 136
C.8 AuSCL Interfaces. 137
C.9 AuSCL Messages. 138
C.10 AuSCL Role De�nitions. 139
C.11 AuSCL Collaborations. 140
C.12 AuSCL Sequence Diagram StartService Service Interaction 141
C.13 AuSCL Sequence Diagram Get Proposals Service Interaction. . . . 141
C.14 AuSCL Sequence Diagram Evaluate Proposals Service Interaction 142
C.15 AuSCL Sequence Diagram. Send Results Service Interaction. . . . 142
C.16 AuSCL Sequence Diagram Return Winner Details Service Inter-

action . 143

8

C.17 AuSCL Process Diagram. 144
C.18 AuSCL Service Binding Diagram. 145
C.19 AuSCL Datatypes Class Diagram. 145
C.20 AuSCL Process Adapter. 146

D.1 UML2 Use case description of the Generic disk drive case. 147
D.2 WSRF Interfaces using UML2 class diagrams. 149
D.3 WSRF Component Dependecies. 149
D.4 WSRF Protocol. A UML2 sequence diagram 150
D.5 WSRF Process. 151
D.6 AuSCL DiskDrive resource Interface. 152
D.7 AuSCL DiskDrive Role Speci�cation. 152
D.8 AuSCL DiskDrive Service Interaction 153
D.9 AuSCL DiskDrive Service Interaction 154
D.10 AuSCL DiskDrive Service Interaction 154
D.11 AuSCL DiskDrive Service Interaction 155
D.12 AuSCL DiskDrive Internal Process. 156
D.13 AuSCL DiskDrive Service Binding. 157

E.1 UML2 Use case description of the Distributed O�ce Backup. . . . 158
E.2 Interfaces and classes that are used in the distributed o�ce backup

case. 160
E.3 This diagrams models the components that are used in the dis-

tributed o�ce backup case. 161
E.4 This sequence diagrams shows the protocol of the complete backup

process. 162
E.5 UML2 activity diagrams showing the internal behaviour of the

service composition. 163
E.6 AuSCL P2PO�ce Backup Interfaces. 164
E.7 AuSCL P2PO�ce Backup Messages. 165
E.8 AuSCL P2PO�ce Backup Roles. 165
E.9 AuSCL P2PO�ce Backup Service interaction. 166
E.10 AuSCL P2PO�ce Backup Service interaction. 167
E.11 AuSCL P2PO�ce Backup Service interaction. 167
E.12 AuSCL P2PO�ce Backup Service interaction. 168
E.13 AuSCL P2PO�ce Backup Service interaction. 169
E.14 AuSCL P2PO�ce Backup Service interaction. 170
E.15 AuSCL P2PO�ce Backup Internal Process. 171
E.16 AuSCL P2PO�ce Backup ServiceBinding. 172
E.17 AuSCL P2PO�ce Backup DataTypes. 173

9

Chapter 1

Introduction

Programming by reusing already created software has been a vision in the soft-
ware community for a long time: in 1968 M.D. McIlroy said at the NATO con-
ference [1]:

We say ... Not, "What mechanism shall we use?" but "What mech-
anism shall we build?" I claim we have done enough of this to start
taking such things o� the shelf.

McIlroy discussed routines used when creating compilers in this quote, but the
principle of building software by composition of existing parts of software taken
"o� the shelf" is still highly relevant. In 1992 Megaprogramming [2] was intro-
duced as a process and a programming language (CHAIMS) for programming by
de�ning high-level composition of coarse grained megamodules that capture the
functionality of services provided by large organizations.
Programming by composition has been one of the driving forces for many pro-
gramming paradigms and methods, such as object orientation, component ori-
entation and service orientation.
Creating reusable pieces of software that can be wired together to create new ap-
plications is the target. This is di�cult to achieve due to the complex nature of
software systems. Service oriented architectures tries to solve this by de�ning the
services to be process oriented, loosely coupled and speci�ed by a functional de-
scription, thus reducing the complexity of the dependencies between the services.

SODIUM SODIUM (Service-Oriented Development In a Uni�ed fraMework)
[3] is a current research project funded by the European Commission which aims
to support the standards-based uni�ed composition of heterogeneous p2p, grid
and web services. The work described in this thesis was performed as a part of
the Sodium project.
Figure 1.1 shows the architecture of the SODIUM composition suite application.
The SODIUM platform is a complete platform for visual composition, service
discovery, transforming and executing a service composition of heterogeneous
services. The composition suite consists of three main parts, the visual modelling

10

Figure 1.1: Sodium architecture.

language (VSCL), the execution environment (USCL) and a query mechanism
for discovering services (USQL).

1.1 Motivation

Programming by composition can potentially reduce the development time and
cost of software systems. Programming by composition requires coarse grained,
loosely coupled parts (objects, components or services) to reduce the complexity
of connecting the parts to other parts when creating the new application. Fine
grained parts creates dependencies between the parts of a composition making
it harder to change or swap the parts at a later stage.
From a developers perspective, visual languages are more suitable for specifying
compositional systems than lexical languages, while lexical languages are more
suitable for executing the composition. Two new technological innovations create
a suitable environment for visual composition of software systems:

� Service Oriented Architectures (SOA)[4], focusing on loosely coupled func-
tional units of software. The service are accessed and described only
through its interface as all other implementation details of the service is
irrelevant to the the service consumer.

� Model Driven Architectures (MDA) [5] specifying the system visually in
a formal modelling language, focusing on creating platform independent
models of the system.

11

Service Oriented Architecture Services are coarse grained functional units
of software, implementing a contractually de�ned interface. The services are
stateless, they have no pre-requisites in terms of behaviour for the client. The
client does not have to perform any operation before consuming the service. New
value-added composite services can be created by composing a set of already ex-
isting services.
Technologies such as the Web Service stack of standards, SOAP[6], WSDL[7],
UDDI[8], BPEL[9], makes it possible to create platform-independent services,
using the Internet as the communication channel, and XML to enhance interop-
erability between programming languages.

Heterogeneous Services Several technologies are being created for imple-
menting services, running on di�erent platforms such as P2P network and grids.
These new technologies are di�erent from the Web Service technologies in some
aspects, either in the technologies they used for service consumption, or in the
paradigm they have for designing services. These di�erences in technology and
paradigms create challenges in the composition process, which are not relevant
if all service are based on Web Services.

Model Driven Architecture Model Driven Architecture is a framework for
using models to develop software systems. By using a formal modelling language
and creating models at di�erent abstraction levels with transformation technol-
ogy to automatically create a model based on the higher level model, executable
software systems can be created on the bases of models. The MDA approach
creates platform independent models, describing the system without binding it
to a speci�c platform, creating portable and interoperable system de�nitions.
Programming by composition is an excellent candidate for a model driven ap-
proach, visually representing the parts of the composition in a uni�ed platform
independent model, making it possible to create compositions of parts without
considering the platform speci�c details, as there is a uni�ed visual model of the
part being used.

Existing Visual Modelling Languages for Service Composition Several
visual modelling languages exists today. Some, like UML2[10] is very open, and
can be used to model most kind of software systems but does not have any
speci�c features available for heterogeneous service composition. Others, like
BPMN[11], is domain speci�c, and is tailored for a speci�c purpose, executable
business processes in the case of BPMN, but lacks the support for heterogeneous
services. A visual language that is specialized for the requirements related to
composition of heterogeneous services, and has the necessary tool support is not
available today. Another interesting candidate, the BPDM notation [12] is not
supported by any available tool, while UML4EDOC [13] is only implemented in
UML1.X and not in UML2.

12

Business Process Management Orchestrating services to create new com-
posite services that are high-level and coarse grained, makes it possible to have
services which represents business-objectives. These services can be combined
with a business process de�nition to create automated business processes. This
high level representation of the software system, can be easily mapped to business
level models, and reduce the di�erentiation between the business and the soft-
ware system. The system will be naturally hierarchical as the business processes
will consist of composite services, which again consists of simpler services. At
the top level the business processes in the separated companies will be communi-
cating by exchanging messages. This will create a process-driven service oriented
architecture, with emphasis on composition of reusable services.

1.2 Scope of thesis

This thesis will consider visual composition of heterogeneous service. Semantic
description of services, and the use of semantic information in composing will
not be considered in this thesis. Quality of Service aspects of service selection
and management is not in the scope of this thesis.
In this thesis the heterogeneous service technologies used are Web Services, grid
based services and P2P-network based services.

1.3 Research Challenges

The research challenges investigated and evaluated in this thesis are:

� There are actual requirements for visual composition of heterogeneous ser-
vices, that are not supported by existing solutions.

� No visual service composition language available today is suitable for mod-
elling composition of heterogeneous services.

� A new language called AuSCL will be suitable for modelling heterogeneous
service composition.

1.4 Method

This section presents the methods used to investigate and answer the research
questions. Several approaches have been used, both experimental work and a
study of the current state of the art.

Identi�cation of visual heterogeneous service composition requirements

By studying existing languages and implementing cases using these languages,
requirements for visual composition of heterogeneous services were identi�ed.
Other technologies related to service composition and heterogeneous services

13

has also been investigated. This has identi�ed requirements that are speci�c to
the service implementation technologies.

Case based evaluation of existing solutions The study of existing lan-
guages identi�ed two languages which was studied further in a case based eval-
uation, UML2 and BPMN. Using a case based evaluation gave a more practical
viewpoint, and made it easier to �nd advantages and shortcomings in relation
to real world problems. By using a case with a heterogeneous set of service im-
plementation technologies it was possible to understand if this introduces some
requirements that are not present in a homogeneous environment using only Web
Services. A description of the cases used can be found in chapter 4, while the
case implementations can be found in appendices C, D and E.

Development of a speci�cation for Another Uni�ed Service Compo-

sition Language Using the state of the art study, the speci�ed requirements
and the practical experience of implementing cases with the most promising
existing solutions as a base for a proposed solutions to address the identi�ed
shortcomings.

Case based evaluation of AUSCL To evaluate the proposed solution and
compare it with the existing solutions it is important to use the same case studies
as in the evaluation of the existing solutions. This also highlighted the enhanced
capabilities of the new proposed solution. A description of the cases used can be
found in chapter 4, while the case implementations can be found in appendices
C, D and E.

1.5 AuSCL

14

In chapter 6 the UML2 pro�le "Another uni�ed Service Composition Lan-
guage" is presented. This language extends UML2 to enhance it's capabilities
in modelling heterogeneous service compositions. AuSCL uses a set of model
views, and a method to structure these views. The structure focuses on separa-
tion of abstract and concrete information, and a separation of concerns, where
each model-view is used to model a speci�c aspect of the model.
The abstract parts of the model consists of these model-views:

� Interfaces Model View - De�nition of the interfaces used in the service
composition.

� Messages Model View - The messages passed between the actors in the
service composition.

� Roles Model View- A collection of interfaces, both provided and required,
de�nes a role.

� Collaboration Model View - De�nition of behavior between partners.

� Process Model View - The orchestration of services that de�ne the behavior
of the service composition.

The concrete parts of the model binds the abstract parts of the service composi-
tion the concrete services. This is either done directly or dynamically, performing
a query to a service broker. The model-views in the concrete parts of the model
are.

� ServiceBindings Model View - Binding of abstract roles to concrete services.

� Datatypes Model View - De�nition of data in the messages.

� Adapters Model View - A possible model-view to increase the decoupling
between partners, by adding an adapter between the process and a concrete
service.

Main contributions The main contributions of the AuSCL proposal are:

� A domain speci�c structure for a set of model views to represent a hetero-
geneous service composition model. These structure has a clear separation
of concern, with a separation between concrete and abstract model views,
and between internal and external aspects of the model. The structure also
increases modularity of the model. The structure narrows doen the options
given in UML2 and helps the modeller in creating a service composition
model.

� A set of stereotypes to enhance UML2's capabilities in modelling heteroge-
neous service composition. These stereotypes introduces dynamic service
selection for late binding and increases the ability to model consistently the
communication with an external partner, by combing sequence and activity
diagrams, at di�erent abstraction levels.

15

1.6 Structure of thesis

This thesis is contains the following chapters.

� Introduction - This chapter contains the motivation for the work performed,
the research challenges and method used for evaluating these hypotheses.

� Background - This chapter includes a explanation of the central concepts
in the domain, as well as a overview of selected visual languages and other
related work.

� Requirements - Here the requirements for a visual language for composition
of heterogeneous services are presented.

� Case Descriptions - All cases used in this thesis are described here, as well
as mapped to the relevant requirements.

� Evaluation of Existing Solutions - This chapter presents an evaluation of
UML2 and BPMN based on the discovered requirements and the case im-
plementations that have been done.

� Another uni�ed Service Composition Language - A presentation of the
proposed UML2 pro�le for composition of heterogeneous services.

� Evaluation of AuSCL - This chapter contains an evaluation of AuSCL and
a comparison of AuSCL with UML2 and BPMN. There is also a discussion
of the research challenges.

� Conclusions and Future Work - Conclusions of the work presented in this
thesis.

� Appendix A. Background - This appendix presents more details of some of
the languages and technologies presented in chapter 2.

� Appendix B. Expressiveness Workpatterns - A presentation of workpat-
terns, some related work. The 5 basic workpatterns are detailed.

� Appendix C. Case A. Request for Proposal - This appendix contains a
description of the case, and all implementation models.

� Appendix D. Case B. Generic Disk Drive- This appendix contains a de-
scription of the case, and all implementation models.

� Appendix E. Case C. Distributed O�ce Backup - This appendix contains
a description of the case, and all implementation models.

16

Chapter 2

Background

This chapter presents some of the main concepts that are important for the work
presented in this thesis. Topics in service oriented architectures as well as model
driven architectures will be presented. Further on is a short presentation of
visual modelling languages and their capabilities for service composition. This
is followed by a presentation of other current work that is related to the work
presented in this thesis. More details of the visual modelling languages can be
found in appendix A.

2.1 Explanation of Central Concepts

2.1.1 Service Oriented Architecture

In a service oriented architecture the building block for creating applications
are services. Functionality in systems and applications are made available as
loosely coupled services, which are autonomous and coarse grained. Services has
a clear separation of implementation and description, which makes it possible
to implement services in a range of technologies, as the important aspect is the
technology used for communication with the service. The term heterogeneous
service relates to this and services with di�erent service invocation paradigms or
technologies.

2.1.1.1 Actors

[4] de�ne three actors in a serviceinteraction; the service consumer, the service
provider and the service broker, as can be seen in �gure 2.1. A collaboration
starts with the service provider publishing its service description, or service con-
tract to the service broker. Then the service consumer sends a query to the
service broker, and gets a response containing one or more service descriptions.
These descriptions are used by the service consumer to bind to the concrete
service instance and consume the service.

17

Figure 2.1: Service interaction

2.1.1.2 Service

De�nition In the work described in this thesis a service is a functional unit
that implements a contractually de�ned interface. A service should be coarse
grained, document based and autonomous, thus representing the functionality of
an application rather than a �ne grained piece of business logic.

Description [4] states that service is not concretely de�ned, but states that
from a coarse-grained point of view a service is an activity that is realized by
an application, machine or human. In the context of application development,
a service is a reusable building block that o�ers a particular functionality. [4]
also state that a service o�ers functionality that is contractually de�ned in a
service description, which contains a combination of syntactic, semantic and
behavioral information. [14] has a similar view, and de�nes a service to be the
externally observable behavior of an application. [15] talks about a service as a
functional unit, and that it often corresponds with business functionality. It also
mentions some key requirements for services in a service oriented architecture;
high autonomy, coarse granularity and process awareness. A service can be
stateless, where the service consumer only needs to invoke the service, and receive
a response, conversational, where several message exchanges take place, and there
is some protocol de�ning the order of the message exchanges, or stateful where
the service consumer control the life cycle of a service, creating and destroying
instances. The interaction pattern of a service can be seen in �gure 2.1.

2.1.1.3 Heterogeneous Services

Several technologies and paradigms exists for a Service Oriented Architecture.
Web Services are a set of standards for describing and invoking services using

18

XML. P2P services focus on the network architecture of the service implementa-
tion which is more dynamic in nature. Grid services uses stateful resources on a
grid, which have operations for life cycle management and accessing properties.

Web Services Web Services are services that are described using WSDL [7],
and uses the Internet as the network infrastructure. Normally SOAP [6] is used
for implementation of the messages.

Technologies Web Services are a set of standards, that can be use to im-
plement the discovery (UDDI [8]), description (WSDL) and invocation (SOAP)
of services. Several other standards exists that extend the functionality of web
services, adding support for security[16] and transactions[17], but the main prop-
erties for a service to be a web service is the usage of the WSDL and SOAP
standards, as well as internet communication using HTTP. A Web Service is
normally stateless, in that there is no need to do anything prior to invoking a
Web Service, but some services are conversational, where a sequence of service
invocations are necessary.

Peer-to-Peer Networks

De�nition A peer-to-peer network is a network where there is no central
place of control. Additionally the network use direct communication between
peers, and peers both request and provide resources to other peers, and have the
ability to handle peers going o�ine without losing network functionality.
A p2p network service is a service that gives access to the functionality of
a peer-to-peer network application, this functionality can be implemented by a
single peer, or a combination of peers. This service can access the peer-to-peer
network functionality by becoming a peer in the network, acting as a gateway to
the p2p network.
A peer is a member of a p2p network, and can communicate with all other peers
in the network.

Description [18] de�nes a network architecture to be peer-to-peer if the
participants share a part of their own hardware resources, and that these re-
sources are necessary to provide the service of the network. Also any participant
can be both a resource provider and a resource requester. The de�nition distin-
guishes between two types of a peer-to-peer network architecture; pure, where
any terminal entity of the network can be removed without any loss of service-
functionality, and hybrid, where a central entity is needed to provide the service.
[19] focuses more on communication in its de�nition, stating that peer-to-peer
computing is the sharing of computer resources and services through direct com-
munication of systems.
Figure 2.2 shows an architectural model of a p2p-network. The network consist
of several peers that each provide some services in the network. These services

19

Figure 2.2: P2P network. The yellow circles represents peers, while the black
rectangles represents a service interface.

can be invoked by any other peer on the network, but the often a search must
be performed �rst to �nd the peer that provides the service. It is also possible
for the network itself to provide some service, in the diagram depicted with the
outer circle, as an p2p-network application, such as a �le-search, which makes it
possible to search the complete network for a �le. A p2p network is suited for
dynamic and unstable network environments, where the peers in the network are
not always connected to the network. A p2p network keeps multiple copies of
the resources distributed in the network. The most used technology for imple-
menting p2p networks is the java based JXTA[20] technology. Applications such
as Edutella[21] and Gnutella[22] is implemented using a P2P architecture.

Grid Services

De�nition A gridmeans a set of interconnected distributed, possibly state-
ful, resources running on heterogeneous platforms. A grid application is an
application that runs on a grid platform, implemented using WSRF [23]. A grid

service is a service that is implemented on a grid, as a single resource, or an
application using a set of resources. A grid application can be implemented by

20

Figure 2.3: Grid network. The yellow rectangles represent resources on the grid.

composing a set of grid services.

Description A grid tries to solve the problem of coordinated resource shar-
ing and problem solving [24]. It is more tightly coupled and hardware-focused
than a service oriented architecture.This also makes it more suitable for high
performance applications [24]. [24] de�nes a grid as an agglomeration of diverse
resources in dynamic virtual organizations, while [25] states that the essence of
the grid is in e�cient and optimal utilization of a wide range of heterogeneous,
loosely coupled resources. [25] also say that grids tie together resources to form
a single virtual computer. [26] states that a computational grid consists of a
set of resources, such as computers, networks, on-line instruments, data servers
or sensors that are tied together by a set of common services which allow the
users of the resources to view the collection as a seamless computing/information
environment. These de�nitions have some di�erences, but they all agree on the
notion of a grid containing interconnected distributed stateful resources.
The main technology for implementing applications on grids has been OGSI [27],
created by the Globus organization. [27] de�ned some interfaces, grid services,
that any resource on the grid had to implement. These interfaces gave access
to such functionality as life cycle management and renewable references. The
concepts of this standard has been refactored into Web Service Resource Frame-
work, WSRF [23], as a response [28] to criticism from the web service community.
[23] is coherent with the current web service stack of standards, such as WSDL.
This standard focuses heavily on the grid as a platform for stateful resources, as
opposed to services which either are stateless, or has some state associated with

21

Figure 2.4: Service Composition

it de�ned as a conversation pattern of messages. One can build homogeneous
applications on top of grids. Such applications can be created using a grid�ow-
language [29], [30], [31] or extending BPEL [32].
Figure 2.3 shows an architectural model of a grid. The resources are intercon-
nected by the grid. These resources can be accesses individually, and used in a
service composition, or an application can be created that use these resources,
this application can then provide a service.

2.1.1.4 Service Composition

De�nition A service composition is a service implemented by combining
the functionality of other services as a network of interacting services. A service
composition de�nes the behaviour of a composite service.

Description [15]de�nes a service composition as a network of interacting
services, while [4] says that service composition represents usage of a set of ser-
vices to accomplish a particular task. [4] also mentions the fact there is a strong
tendency to use executable business processes to implement service compositions.
[33] distinguishes between orchestration and choreography of services, where the
former describes how services interact on a message level, and the process is
always controlled by one of the partners, while the latter is more collaborative
and each party describes their part in the process. A service composition is a
specialized form of service orchestration where the orchestration has a external
interface that is programmatically invokable.
Figure 2.1 shows the actors in a service composition. The service composition
provides a service to the service consumer. The service composition combines
the functionality of other services to create a composite service.

22

Figure 2.5: The major steps in the MDA process.

2.1.2 Model Driven Architecture

Model Driven Architecture [5] is an initiative from the Object Management
Group to create a framework for software development that focuses on mod-
elling the system, by using models with enough formalism to be understood by
computers. In MDA models are created in three core abstraction layers [34]:

� Computational Independent Model (CIM) - A model that is independent
of the structure of the system.

� Platform Independent Model (PIM) - A model of the system that is inde-
pendent of any implementation technology.

� Platform Speci�c Model (PSM) - A model that is tailored to specify the
system in constructs that are available in a speci�c implementation tech-
nology.

� Code - The executable code

To go from one abstraction layer to the next, transformations must be de�ned,
for instance so that a platform independent model can be used as input, and the
output is a platform speci�c model. Each supported execution platform must
have its own transformation.These transformations are de�ned in a transforma-
tion de�nition language, such as QVT [35], and executed by a transformation
tool, such as UMT [36]. Figure 2.5 from [34], illustrates this. The fact that a
PIM can be transformed to a number of di�erent PSM's dependent on the avail-
able transformations, makes it easier to change the implementation platform,
making the development process much more portable with respect to implemen-
tation platforms.
The key bene�ts of using the MDA approach according to [34] are:

� Productivity. By using MDA the developer focuses more on creating the
PIM thus focusing more on the domain speci�c problems, and less on the
technical problems. This does of course assume that a transformation
de�nition exists to transform the PIM to an executable PSM.

� Portability. The separation between PIM and PSM models aids the porta-
bility of the system. Everything that can be speci�ed at the platform
independent level is portable to any other platform, as long as there are
available transformations to the relevant platform from the PIM model.

23

� Interoperability. If a PIM model has transformation de�nitions to two
di�erent platforms, is is also possible to create transformations between the
two platforms. This relation between the models which are tailored for its
speci�c platform, makes it possible to transform concepts, such as interfaces
or messages, from one platform to another increasing the interoperability
between the platforms.

� Maintenance and Documentation. Using a PIM model to specify the sys-
tem, also creates an system documentation at an higher abstraction layer
than the code. With transformation tools that are able to keep PIM and
PSM models consistent throughout the development process the documen-
tation will always be accurate.

Transformations The transformation is the process of generating a target
model from a source model. There is work in progress for standardizing trans-
formation technology for MDA, called Query, View, Transformation [35].This will
be used for de�ning transformations as well as querying a model and creating
views. [34] has identi�ed several requirements for a transformation in MDA:

� Tunability. This gives the user of the transformation some control. The
tunability can be in form of parameters or conditions in the transformation.

� Traceability. If PIM model, or a transformation is not complete, the user
must complete the PSMmodel. Traceability means that the transformation
tool should be able to trace any changes in the PSM that a�ects the PIM
model, and update the PIM model accordingly.

� Incremental Consistency. If a user details the PSM model, after the trans-
formation, and performs a new transformation from PIM to PSM, because
changes has occurred in the PIM model, the extra detailing done in the
PSM must not be overwritten by the transformation.

� Bidirectionality. Transformation should work both ways. According to [34]
this is the least important of the listed requirements for a transformation.

Transformation between languages can be de�ned by mapping the metamodels
of the languages to each other. Figure 2.6 illustrates the how model to model
transformation can be used to enhance the interoperability and portability of
systems. The PIM model has transformations to two di�erent PSM models, but
there are also transformations from one PSM model to another. Concepts in one
PSM model can be transformed to similar concepts in the other.

Metamodelling MDA needs well de�ned languages, which are languages that
are suitable for automated interpretation by a computer [34]. One way to de�ne
such languages is by creating a metamodel for the language. Speci�cally visual
languages are hard to de�ne without using metamodels. This leads to a recur-
sive problem, because to de�ne a metamodel, one needs a language suitable for

24

Figure 2.6: Model to Model transformation in MDA..

this, and this language is also de�ned by its metamodel. [34] presents the four
modelling layers that OMG proposes to use for de�ning modelling languages.

� M0. This layer contains the running system, or the "real" instance.

� M1. This layer is where the model of the system is. An UML model would
be in this layer. Objects in M0 are instances of elements in layer M1.

� M2. This layer is contains the model of the model. The metamodel of
UML would be in this layer. Elements is M1 are instances of elements in
this layer.

� M3. To stop the recursion OMG has de�ned M3 to be to top level in the
hierarchy. The M3 layer is used to reason about the concepts used to de�ne
metamodels in level M2. OMG has a standard M3 language MOF (Meta
Object Facility) [37].

2.2 Overview of selected visual languages

Service composition is normally implemented as a specialized form of a exe-
cutable business processes. This state of the art study will therefor focus on
visual languages which can be used to model business processes, but there will
be speci�c focus on these languages' ability to support service composition and
heterogeneous service technologies. This section will give an introductory pre-
sentation of the languages and a more detailed study can be found in appendix
A.

25

2.2.1 Uni�ed Modelling Language 2.0

UML2 [10] is a visual modelling language which contains several model views,
both for structural and behavioural aspects. It is standardized by the OMG,
and has standards for a lexical representation in XMI and metamodelling in
MOF. UML2 is quite open and can be used to model almost any kind of system
at several di�erent abstraction layers. UML2 can be extended by using UML2
pro�les. A pro�le specializes the constructs in UML2 to add additional meaning
to them. UML2 supports modelling of business processes in activity diagrams.
There is strong support for metamodelling and lexical representation of models,
using MOF[37] and XMI[38]. Several tools exists for creating UML2 models.
Section A.1.1 contains a more detailed overview of UML2.

2.2.2 UML 1.4 Pro�le for Development for Component
Based Enterprise

UML4EDOC [13] is an UML pro�le using UML 1.4 as the base. It uses several
of the model views in UML to model component based enterprise system. The
pro�le also has a separate view for modelling business processes. Both structural
and behavioural model views are used to model a complete model of a component
based system.
Section A.1.2 contains a more detailed overview of UML4EDOC.

2.2.3 Ace-GIS

[39] presents a UML1.4 pro�le for Web Service composition. This pro�le focuses
on the internal aspect of the service composition with activity diagram as the
model-view. The pro�le enhances activity diagrams with several stereotypes and
tagged values. The activities use the �WebServiceCall� stereotypes to indicate
an activity which is a service invocation. Such an activity uses tagged values to
show the rest of the details that are needed to invoke the service, such as address
information. A data�ow can also be stereotyped to indicate a transformation. A
separate model view is used to model WSDL documents, based on class diagrams

2.2.4 Business Process Modelling Notation

BPMN [11] is a visual notation which is specially designed for modelling busi-
ness processes. It is standardized by BPMI.org. The notation focuses on the
behavioural aspects and does not have a separate view for structural models,
it does however have support for di�erentiating between internal and external
aspects of the behaviour. It has support for Web Services, but does not support
other service-technologies. The BPDM [40] metamodel speci�cation working
draft from OMG contains a mapping to BPMN. There is no standardized meta-
model or lexical representation for BPMN at the present. There are several tools
available for creating BPMN models.
Section A.1.3 contains a more detailed overview of BPMN.

26

2.2.5 JOpera

JOpera [41] is developed by Eldgennossische Technische Hochschule in Zurich,
and the visual composition language is a part of the Jopera service composition
suite. It focuses in internal behaviour, and does have speci�c support for several
service technologies such as support for Web Services and OGSI[27] based grid
services . The visual notation is tightly integrated with the composition suite
and the execution language. There is no standardized metamodel or lexical
representation for this language. Section A.1.4 contains a more detailed overview
of JOpera.

2.2.6 Business Processes De�nition Metamodel Notation

As a part of the speci�cation of the Business Process De�nition Metamodel [40]
a visual notation for business processes is used in the examples. The visual
notation is further documented in a separate paper [12]. This notation builds on
concepts de�ned in the BPDMetamodel. It contains several specialized views for
both internal and external aspects of a business process and for behavioural and
structural aspects. It is not based on any standardized modelling language and
is not supported by any modelling tool or lexical representation. Section A.1.5
contains more detailed overview of this notation.

2.3 Related Work

Other concepts and technologies are important for a service composition. This
section will focus on service implementation and description technologies and
some more conceptual standards such as a metamodel for business processes and
a theoretical approach to communicating processes.

2.3.1 Languages

Simple Object Access Protocol SOAP [6] is an language for invoking ser-
vices. It is XML based and is used as the transport protocol for web service
invocation. A SOAP message has both a header and a body. The header con-
tains information of the operations to invoke, and other information such as
address-sinformation [42], which can de�ne where to send response messages.
The body of a SOAP message contains the payload, and are sent to the service
as parameters. There are also mechanics for handling exceptional behaviour,
using SOAP-faults which are sent as a response to the service invocation when
an error has occurred. Attachments are also possible, which makes it possible to
send binary data together with the XML-based SOAP messages.

Web Service Description Language WSDL [7] is an XML based language
for describing services. There is a clear separation of abstract and concrete
elements. The abstract service description has de�nes operation signatures with

27

input and output messages, and port-types which are collection of operations.
These porttypes can be bound to concrete service implmentations in the service
element. This binds the messages to datatypes de�ned in an xml-schema and
to a protocol for transport over the network, normally SOAP[6], and the port-
types to endpoint addresses. A WSDL description of a service should hold all
information that is necessary for invocation of that service.

Business Process Execution Language BPEL [9] is a lexical executable
language for business processes. It can be used both for both abstract and
concrete process de�nitions. BPEL uses Web Services as the service invocation
technology, and does not support any other such technologies. BPEL support
both behavioural and structural modelling with constructs such as PartnerLinks
available to de�ne partner requirements.

External View Externally the interface of a BPEL process is described
using WSDL, with several operations for one process. Other aspects that are
externally visible are PartnerLinkTypes. This is a de�nition of a pair of roles
that collaborate in a message exchange. The de�nition of these roles gives a set
of requirements, given as WSDL-porttypes, for any system that want to consume
the service, by implementing the speci�c role.

Internal View Internally a BPEL business process consists of a graph of
message related activities. The activities can be invoking a service, receiving
a message, or replying to an invocation. Control �ow can be speci�ed using
linked activities or �ow constructs such as sequence and while-loops. There
is no traditional data�ow in BPEL, however the processes have variables that
are available to all activities. These variables are datatypes described using xml-
schema, and there are separate constructs in BPEL to manipulate these variables,
using the XPath[43]. The internal part of the BPEL-process are connected with
the external parts by using the partnerlinks. The invocations of a service is done
by using the partnerlinks, these partnerlinks can be bound to concrete services
at deployment-time which increases the decoupling of the application.

Web Service Management Layer WSML [44] uses an aspect oriented ap-
proach to introduce a separate layer between the client application and the set
of web services. This layer introduces features such as dynamic selection and
integration of services, client side management, and support for rules for select-
ing services. The WSML framework contains modules for selection, monitoring,
tra�c optimization, security, transaction management and billing.

Web Service Resource Framework WSRF [45] is a framework for creating
applications that can execute on grids. WSRF focuses on adding service ori-
ented capabilities to stateful resources. It accomplishes this by de�ning a service

28

interface for a resource and applying a pattern for handling life cycle manage-
ment, such as creating and destroying instances of the resource. WSRF is a
refactoring of the concepts in the OGSI [27] framework, to make the concepts
more compatible with existing web service standards. WSRF consists of a a set
of speci�cations: Basefault [46], Resourcegroup [47], Resource Properties [48],
Resource life cycle management [49] and Web Service noti�cation [50]. The two
most relevant to this thesis is brie�y presented

Web Service Resource Properties [48] speci�es the the de�nition of
properties in a WS-Resource. These properties represent a view of a resource's
state. A standard for messages that should be used to query or update these
properties are also speci�ed. The speci�cation uses the example of a hard disk,
that has several properties such as numberofblocks and storagecapability. These
are represented as properties, while the WS-Resource also has operation such
as start and stop. The properties are de�ned in the WSDL document in the
PortType.

Web Service Resource Lifetime The Web Service Resource Lifetime
speci�cation [49] speci�es a set of message interchanges that can create or de-
stroy a WS-Resource and what WS-properties that should be used to de�ne
information that should represent the life-cycle information of a resource.

Open Grid Services Infrastructure OGSI [27] de�nes a Grid Service to
be a Web Services that conforms to a set of conventions. OGSI uses stateful
web services as the building block for creating applications running on grids.
An extension of WSDL [7] is proposed, that introduced inheritance of interfaces.
This extension is called GWSDL[27]. This was criticized for not being compatible
with the WSDL standard. OGSI also introduces service properties, which are
stateful properties that describe a service, as well as mechanism for creating
instances of services and managing and accessing these instances.

JXTA The JXTA Project [20] was started by SUN, and is a set of open gen-
eralized protocols for for connections and communication between peers on a
network. JXTA provides a set of platform independent basic services for the
implementation of a P2P service. The speci�cation describes several separate
protocols. A JXTA network consists of several peers that can organize them
selves into peer-groups to provide a common set of services. A peer advertise
their services in advertisements. Communications between peers use pipes, which
are asynchronous and and unidirectional. These messages are XML documents.
In JXTA a peer network has several levels, where each peer group has some ren-
dezvous peers that connect to the rendezvous peers of other groups. This makes
the network more scalable as most peers only communicate directly with peers
in its own group, and send messages to other groups via the rendezvous peers.

29

Discovery and Advertisements There are several protocols for handling
discovery and advertisements of peers and its services. The Peer Discovery Pro-
tocol is used to discover new peers and their capabilities, such as services pipes.
New peers can be discovered by using multicasting, or by using the rendezvous
peers. Status information of a peers is discovered by using the Peer Information
Protocol.

Communication The Pipe Binding Protocol is used for creating communi-
cation channels between peers. A pipe is a connection between to pipe endpoints.
To �nd a communication routes between peers that are not directly connected,
the Endpoint Routing Protocol can be used. The �nal protocol is the Rendezvous
protocol which makes it possible for a peer to subscribe and unsubscribe to a
propagation service. This protocol is also used by the other protocols to send
messages.The messages can be of both java-objects and xml-documents.

Edutella Edutella[21] is a metadata structure for p2p applications. Edutella
uses the JXTA[20] framework for implementing a metadata structure to use for
queries in a p2p network. Edutellas vision is to enable interoperability between
heterogeneous JXTA-based p2p networks.
The edutella framework consists of several services:

� Query Service. This is a standard way of representing queries and retrievals
of metadata.

� Replication Service. Provides data persistence and workload balancing.

� Mapping Service. Providing translation between di�erent metadata vocab-
ularies. This enables interoperability between peers.

� Meditation Service. Create views that join separate metadata sources.

� Annotation Service. Annotates material stored in an Edutella network.

Pi-Calculus Pi-calculus [51] is about modelling concurrent communicating
systems, as mobile, message-exchanging processes. The two main concepts of
pi-calculus are processes and channels, where the channels are the communi-
cating devices between the processes. A process has states, and action which
initiates state changes. Externally the process can expose interaction, that trig-
ger an internal action, thus making it possible to query or change the state of
a process for other processes. The interaction are used for synchronization be-
tween the di�erent processes, by communicating on the given channels. This is
an analogy to B2B processes communicating and synchronizing by passing events
and messages to each other.

30

2.3.2 Semantic Services

OWL Web Ontology Language for Services OWL-S [52] is a framework
for describing Web Services semantically. There are three main aspects of a
service description in OWL-S. The service pro�le describes the service as an
entity. The service model sees the service as a process, and decomposes the
service description. The �nal aspects, the service grounding binds the service to
a concrete description.

Service Pro�le This pro�le can be used both as a method for describing
the services that a service provider o�ers and the services that a service requester
needs. A third party can then be used for matching queries from a requester to
�nd the appropriate services. There are three basic types of information in a
OWL-S service pro�le, the organization that provides the service, the function
that the service computes, more speci�cally the transformation is the terms of
what input and output data and any precondition and e�ects that are de�ned for
the service, and a set of features that specify the characteristics of the service.
For the last type, a classi�cation system must be used to describe the service
characteristics, such as a Quality of Service framework.

Service Model OWL-S models services as processes, using a subclass of
its ServiceModel, the ProcessModel to describe processes. The process model
can be used to describe more complex service, by using the composite process
construct in the model. The atomic process can be mapped to a single operation,
but a composite process can contain several processes, thus making it possible to
create processes that implement the conversation pattern. Several control �ow
constructs exists to model the external behaviour of the process such as split-
join, any-order, sequence, choice and iterate. This make is it possible to describe
complex behaviour of a service and its protocol.

Service Grounding This speci�es the details necessary to actually invoke
the service, such as protocol and message format, serialization, transport and ad-
dressing. This part of the OWL-S speci�cation is tightly connected with WSDL
and its binding concepts. While WSDL contain both the abstract and the con-
crete de�nition, the service grounding in OWL-S only contain the concrete infor-
mation ,with the abstract de�nitions being in the process model. What OWL-S
can describe that is outside the scope of WSDL is the OWL classes, which can
be seen as the abstract types of messages as they are de�ned in WSDL.

Web Service Modelling Ontology The WSMO[53] is a conceptual model
for the description of semantic Web Services. This ontology is the bases for
the Web Service Modelling Language [54]. WSMO makes it possible to reuse
ontologies by importing other ontologies and use them in describing a service.
WSML is the formal language for description of Web Services based on WSMO.

31

2.3.3 Quality of Service

Web Service Quality of Service WS-QoS [55] presents a framework for
enabling Quality of Service-aware Web Services. This framework uses a XML-
based language for de�ning Quality of Service-attributes, used by both the service
provider and service consumer. This attributed are added to the service descrip-
tion, and there is a broker which is aware of these attributes and can match the
requirements of a service consumer and quality of service attributes provided by
the service provider. An ontology de�nes the attributes and metrics for used and
the associations between these.

OMG UML Pro�le for Quality of Service [56] speci�es a UML-pro�le for
de�ning Quality of Service attributes using UML. The main part of this pro�le is
the QoSCategory. A category contains QoS characteristics. These characteristics
can be associated with other characteristics by using QoSDimensions.

2.3.4 Model Driven Architecture

Query View Transformation QVT [35] is work in progress being performed
by the OMG. The purpose is to de�ned a language or a set of languages to create
a view on a model, to query a model and to writing transformation de�nitions.
The latest proposal uses MOF 2.0 and the Object Constraints Language (OCL)
from OMG as its base. Declarative programming concepts are used to de�ned
relations between MOF based models, while an imperative language is used for
de�ning transformations.

UML Model Transformation Tool UMT [36] is a graphical tool for execut-
ing transformation between models in a Model Driven Architecture. UMT is an
XML based tool using XSLT [57] for de�ning transformation. UMT takes UML
models represented using XMI [38], transforms this to an internal XMI dialect
called XMI Light. This is used as the source for the transformation. XSLT can
produce any kind of text-based output, but is best suited for XML. UMT can
produce XML based output, including XMI for representing UML models and
XML based execution languages such as BPEL[9].

2.3.5 Other

Business Process De�nition Metamodel This speci�cation [40] is an ini-
tiative from OMG to create a common metamodel for all languages that want
to describe business processes, both visual modelling languages and lexical ex-
ecutable languages. The metamodel focuses on both the structural and behav-
ioural aspects of business process with concepts such tasks, roles and resources.
The current working draft of the speci�cation proposes to use a subset of the
UML metamodel and to add some stereotypes as well to introduce concepts such
as resource, role and process. As can be seen from the metamodel in �gure 2.7

32

Figure 2.7: Business Process De�nition Metamodel

it uses quite simple concepts. A process contains tasks, or subprocesses, and
each task is performed by a role. The role is an abstract de�nition and must be
realized by a concrete implementation, which can be either a software component
or organizational unit. A task can also use events for communication with other
tasks.
BPDM proposes to be the metamodel for BPEL and BPMN, and the speci�ca-
tion contains mappings from the BPDM concepts to both these languages.

33

Chapter 3

Requirements

This section will present the identi�ed requirements for a platform independent
visual language for modelling heterogeneous service composition. Firstly re-
quirements for a service composition language from an external viewpoint will
be de�ned. The next section presents the requirements for modelling service
composition from an internal viewpoint. In the second part requirements that
are speci�c for the relevant service implementation technologies (Web Services,
Grid Services, P2P network Services) will be presented.

3.1 External Service Composition Requirements

This section discusses the requirements for a service composition that is related
to what is externally visible, both structural and behavioural. This includes the
service description de�nitions as well as the how the composite service relates to
its consumer and the composed services.

3.1.1 Service Description

� The modelling language should support models describing the service com-
position from an external point of view, detailed enough to be used by a
service consumer for automatic service invocation.

The main aspects of this is the functional information, such as operation signa-
tures , with data and exception de�nitions and a protocol for a complete service
interaction. The interface description describes the static aspects of the ser-
vice, while the protocol describes the expected behaviour in terms of message
exchanges. Concrete service information such as addresses should also be given.
The importance of a service description can be seen from �gure 2.1, where the
service description document is used by all partners in a service interaction. A
conversational service such as the one described in the RFP-case, appendix C,
where several messages are exchanged during a service executions, requires a
more complex service description also including protocol, which is the the order
of the expected message exchanges.

34

3.1.2 Partner De�nition

� It should be possible to model the requirements that must be ful�lled part-
ners, both service consumers and composed services.

The partners of the service, both the service-consumers and the composite ser-
vices are important aspects, thus it is important that a a visual language makes
it possible to model the structure and behaviour that the composed service needs
from its partners to function correctly, such as interfaces they must implement
and a protocol for communication.The service composition can interact with
these partners several times during an execution of a service.
BPEL [9] introduces this concept, calling it PartnerLinkTypes which is a de�-
nition of the interfaces that each partner in an interaction must provide to be
able to execute the service composition. In the RFP case, appendix C, this is
required as the customer starting the service must be able to receive messages
from the service composition on asynchronously.

3.1.3 Instance Access Management

� It should be possible for the service consumer to control which instance of
the service that receives a message.

A service with many consumers will at any given time have several running
instances, each one handling interaction with one service consumer, running at
the same network address. If the service is a stateless request/response this is
unproblematic, as the service consumer sends a request that initiates the instance
of the service, and when the response is sent back, the instance of the service
is no longer needed, and the instance can handle another request. If, however,
the service is asynchronous and conversational, sending several messages back
and forth, the service needs a more complex set of features to handle this. This
interaction pattern can also be present between the composite service and the
composed services, thus making it necessary to handle the same set of challenges.
When several instances of a service is running simultaneously, and using the
same endpoint, there must be some mechanism for the communicating partners
to uniquely identify the instance they want to communicate with. This should
be as transparent as possible for the involved partners, either using some piece of
data as a conversation id, or using some mechanism for detailing in the endpoint
which receives the message. The modelling language should be able to model
both when such features are to be used, and how they should be implemented.
This requirement is speci�cally important in cases involving conversations such
as the RFP case, appendix C. If there are two parallel executions of this service
composition with two di�erent customers, both sending messages to the same
endpoint it must be possible to direct the message from the customer to the same
instance of the service composition that the customer started its conversation
with.

35

3.2 Internal Service Composition Requirements

This section will detail the requirements for service composition that is related
to the internal behavior and structure of the service, the expressiveness and what
kind of communication it supports.

3.2.1 Expressiveness

� The modelling language should support at least the 5 basic workpatterns
[58]: sequence, parallel split, synchronization, exclusive choice and simple
merge. These workpatterns are described in detail in appendix B.

A service composition has several similarities with work�ow [59], consuming a
service, sending or receiving a message can be considered a piece of work, and
these can be coordinated in a control-�ow. The data being used by the tasks
can be de�ned in a data �ow. Several workpatterns have been identi�ed and
described by the work�ow community, presented here [58, 60], which can be used
as a framework for specifying the required expressiveness of a service composition
language.
This work focuses on direct support for workpatterns, meaning that there is a
construct in the language for handling the workpattern. For visual languages,
such as UML and BPMN [61] shows that even though a language does not directly
support a work pattern, one can implement these patterns by combining several
constructs. See appendix B for more on this.

3.2.2 Data Manipulation

� It should be possible to send parts of a data object as a data�ow, update
parts of an object and transform simple atomic data values.

Data �ows into and out of tasks or activities. The data can be a complex
hierarchical object, and some activities or tasks may only require a subpart of
this object. In such a scenario it must be possible model manipulation of this
dataobject so that subparts can be identi�ed and extracted and used as input
to another activity or task. Collections are an example of this were an activity
uses one item in a collection at the time for execution of the activity.
Transformation of basic data values, such as strings and integers, should be
possible to model in a service compositions language. Examples of this would be
counters in loops or concatenating tow strings.
The RFP case, see appendix C, shows examples of this behaviour. The RFP
object that is sent from the customer to the service composition contains a
"category" member. This data must be extracted from the RFP object before it
is sent to the SupplierRegistry service. Another example is from the Distributed
O�ce Backup case, see appendix E, where an collection of peers are returned
from the search of the p2p network. The item in this collection is processes
individually in the next activity.

36

3.2.3 Communication

� It should be possible to model synchronous service invocations..

� It should be possible to model asynchronous message-based communica-
tion.

Communication in the context of an internal activity graph, is what types of
communication paradigms are supported by the tasks or activities. Synchronous
invocations as well as asynchronous send and receive should at least be supported,
but for some special cases, streams, signals, and multicast could be useful.

Synchronous Synchronous communication request/response, where the re-
quester blocks its processing until receiving a response, is best suited for the
basic stateless services. This maps equal to invoking an operation on the ser-
vice and the requirements the service consumer has to meet are basic, such as
supporting the same transport protocol as the service. The modelling language
should have constructs for invoking such a service, de�ning the input and output
data.
This service invocation paradigm is supported by BPEL [9] and an example
can be seen in the RFP case, appendix C, where the interaction between the
RFP-service and the SupplierRegistry is synchronous.

Asynchronous Asynchronous communication increases the independence be-
tween the partners in the service composition, creating a more decoupled archi-
tecture. Asynchronous messaging is often implemented using a callback interface,
a reference to an endpoint where the composite service can send the response
back to the service consumer. To successfully implement this, the service com-
position language must be able to dynamically set the endpoints that should be
used, from information received at runtime. Such an implementation means that
all the partners involved in the service execution must ful�ll the requirements of
the de�ned roles they implement in the conversation.
This communication paradigm is de�ned in one of the WSRF speci�cations, WS-
Noti�cation [50], which supports asynchronous messages between services using
a pattern of web services.

3.2.4 Conversational Services

� It should be possible for the service composition to interact with other
service in a conversational manner, with several message exchanges between
service instances.

A conversational service is a service that performs a set of interaction between
partners in one service execution. An activity representing an message exchange
with a partner must contain information about which partner should be used in
the interaction, as the service composition instance can have several conversations

37

with di�erent partners at the same time.
BPEL[9] uses PartnerLinks as instances of PartnerLinkTypes to indicate which
partner-instance is used in for each interaction. The RFP-case, appendix C,
has several examples of this scenario, where the service composition at the same
time has several running conversations with di�erent partners.

3.2.5 Dynamic Service Selection

� It should be possible to abstractly de�ne partner services, and bind these
dynamically to concrete service instances.

To increase the decoupling between the service composition and the composite
service implementation dynamicy can be introduced for service selection. This
could be used for adding fail-over solutions or just a part of the business logic,
where one service is chosen over another based on some dynamic quality criteria.
UDDI or similar service brokers is a possible solution to this, where instead of
de�ning a service instance, a service broker instance and a query for matching
services, as well as a policy for handling multiple results to the query, is de�ned.
To handle this the service composition language must support using query and
policy for identifying a service rather than a address based-reference to a service
in a transparent way. The distributed o�ce backup case, appendix E, has
this requirement, where the backup device being used is dynamically decided at
runtime.

3.3 Other Requirements

3.3.1 Modularity

� The modelling language should be modular to support reuse of models.

Visual models is modularized by using several diagrams, interconnected by model-
elements such as ports. By using these elements one can create an hierarchy of
models, increasing the detailing as one traverses down the hierarchy. Di�erent
aspects of the models can be modelled in di�erent types of models, such as the
structure of the data, and how the data �ows in the composed service. To make
this possible one can create modules of parts of the service de�nition, so that
this part can be used by several other services. Sometimes it is more appropriate
to extract this functionality to a separate service, which can be consumed by
others.

3.3.2 Consistency

� All model views in a model should be consistent.

When a model has utilises several model views, and a set of models is used
together to model a system, consistency is a main factor. An object in the model

38

should only have one de�nitoin to avoid ambiguity. This is particularly important
if a model is the source of a transformation, which increases the importance of
a valid and consistent model. The best way to ensure consistency is to have a
clear separation of concern in the structure of the model, with de�nition of each
model element only once.

3.4 Heterogeneous Services

3.4.1 Web Service Composition Requirements

� It should be possible to model service consumption and service description
using Web Service technologies, such as SOAP and WSDL.

Web Services are a set of standards for implementing a service oriented architec-
ture, thus the main requirements that come from basing the service composition
on web services are supporting the web service standards. SOAP [6] for mes-
sages, WSDL [7] interface and service description and also WSA [42] for endpoint
addressing. Other standards that could be supported are the WS-Transaction
[17] and WS-Security [16] as well as the service broker functionality of UDDI [8].

3.4.2 Grid Service Composition Requirements

� It should be possible to model composition of stateful resources imple-
mented on grids in the service composition.

� It should be possible to model life cycle management of a stateful resource.

� It should be possible to model accessing of the properties of a resource.

A grid consists of a set of interconnected resources. These resources can be
stateful, thus have requirements with regards to life cycle management by the
client, and have and externally visible state in the form of properties. WSRF
[45] proposes a service oriented paradigm for using and accessing resources on a
grid. WSRF proposes patterns for stateless services for life cycle management
and accessing properties.
Some ambiguity exists in the term Grid Service. This can be the service provided
by a single resource on a grid, or a service which is implemented by combing the
services of several resources. The latter case is likely to be a stateless service
providing some function as a regular stateless service, thus introducing no extra
complexity or requirements, while a single resource create the extra complexity
already mentioned.
The disk-drive case, see appendix E, has an example of consuming the service
provided by a single stateful resource on the grid. The disk-drive has properties
describing its state, as well as operations for life cycle management, start and
stop operations.

39

3.4.3 P2P Network Composition Requirements

� It should be possible to model composition of services implemented by
peers in a p2p network in the service composition.

In the case of a peer-to-peer service being the service provided by a a single peer,
in a peer-to-peer network, the service consumer must be another peer on the
network, and a search for peers providing the required service must be performed
before consuming the service.
A service implemented by a peer-to-peer network, will not have this requirement,
as all the complexity of peer-to-peer communication is hidden inside the service,
and the service can be provided to the service consumer as a regular stateless
service.

40

3.5 Summary of requirements

Tables 3.1 and 3.2 summarizes the requirements presented in this chapter.
These requirements will be used for several evaluations throughout this thesis.

Requirement Detail

External Service Description The modelling language should support
models describing the service composition
from an external point of view, detailed
enough to be used by a service consumer
for automatic service invocation

Partner De�nition It should be possible to model the require-
ments that must be ful�lled partners, both
service consumers and composed services.

Instance Access
Management

It should be possible for the service con-
sumer to control which instance of the ser-
vice that receives a message.

Internal Expressiveness The modelling language should support at
least the 5 basic workpatterns [58]: se-
quence, parallel split, synchronization, ex-
clusive choice and simple merge.

Data Manipulation It should be possible to send parts of a data
object as a data�ow, update parts of an
object and transform simple atomic data
values.

Communication It should be possible to model synchronous
service invocations

Communication It should be possible to model asynchro-
nous message-based communication.

Table 3.1: Summary of all requirements presented in this chapter. This table
continues on the next page

41

Requirement Detail

Conversational Ser-
vices

It should be possible for the service com-
position to interact with other service in a
conversational manner, with several mes-
sage exchanges between service instances.

Dynamic service se-
lection

It should be possible to abstractly de�ne
partner services, and bind these dynami-
cally to concrete service instances.

Other Re-
quirements

Modularity The modelling language should be modular
to support reuse of models.

Consistency All model views in a model should be con-
sistent.

Web Ser-
vices

Web Services Stan-
dards

It should be possible to model service
consumption and service description using
Web Service technologies, such as SOAP
and WSDL.

Grid Grid Services It should be possible to model composition
of stateful resources implemented on grids
in the service composition.

Resource life cycle It should be possible to model life cycle
management of a stateful resource.

Resource properties It should be possible to model accessing of
the properties of a resource.

P2P P2P Network Ser-
vices

It should be possible to model composition
of services implemented by peers in a p2p
network in the service composition

Table 3.2: Summary of all requirements presented in this chapter (continued)

42

Chapter 4

Case descriptions

This chapter presents the cases used in this thesis. The cases are implemented
using existing standards UML2 and BPMN, and AuSCL. The evaluation of the
modelling languages are based on the case implementations. UML2 and BPMN
are evaluated in chapter 5, while AuSCL is evaluated in chapter 7.

4.1 Case A - Request For Proposal

This is a case based on conversation between several partners. The goal of
the service is to get proposals from several suppliers based on a "Request for
Proposal" message from the customer. A use case diagram of the case can be
seen in �gure 4.1

Figure 4.1: UML2 Use case description of the RFP case.

Actors

43

� Customer - The sender of the Request For Proposal (RFP). The customer
must be able to receive messages from the RFP service as well as send
messages.

� RFPService - The service which orchestrates the consumption of the other
services. This actor orchestrates the service interactions with all other
actors.

� SupplierRegistry - A yellow-pages type service, with one service returning
all suppliers which are available in the given category.

� Supplier - A supplier that can perform the work described in the request
for proposal. This actor must receive messages from the RFPService and
also send messages back.

Behaviour First a Request For Proposal-message is sent from the customer to
the RFPService. Based on the contents of this message, the RFPService sends
a query to the SupplierRegistry to get information of all appropriate suppliers.
When the RFPService gets this list, the RFP is sent to all suppliers. The supplier
sends a proposal back to the RFPService, which collects all proposals in a list,
and sends the list to the customer. The customer sends back its decision of which
proposal is the best. The RFP service then sends this result to all suppliers that
submitted a proposal, and send information about the winning supplier to the
customer.

Issues

� Conversations - There are conversational interactions between the Cus-
tomer and the RFPService and the RFPService and the suppliers.

� Asynchronous Communication - The communication between the RFP ser-
vice and its partner is asynchronous.

� Partner-requirements. To consumer the service the Customer must provide
some services as well. These services are used for communication between
the RFP-service and the customer during the execution of the service.

� Dynamic service selection. The RFPService does not know the details of
the suppliers before it is received from the SupplierRegistry. RFPService
must handle a list of service-endpoint de�nitions and at runtime use this
information to invoke the services.

4.2 Case B - Generic Disk Drive

This case is described in one of the WSRF subspeci�cations [48] as an exam-
ple. A disk drive is the stateful resource on a grid which can be accessed as a
WS-Resource through a Web Service interface. This WSRF enabled example is

44

di�erent from a pure Web Service example as it contains life cycle management
of stateful resources, in this case by starting and stopping the diskdrive. A use
case diagram of the case can be seen in �gure 4.2

Figure 4.2: UML2 Use case description of the Generic disk drive case.

Actors

� DiskDrive - This disk drive contains some resources that describe its state.
There are also operations for starting, stopping and storing data on the
drive. The drive must be started before data can be stored on it.

� Client - This is the client that wants to store data on the disk.

Behaviour The client starts the disk, gets the properties of the disk to see
that these properties indicate the the disk is able to handle storing the relevant
�le. The the client store the data on the disk, before stopping the disk.

Issues

� Life cycle - The disk drive has a prede�ned life cycle, and must be started
by an operation before it is used for storing data.

� Properties - The resource provides properties to clients as well as opera-
tions.

4.3 Case C - Distributed O�ce Backup

This case is based on a service that backs up a �les from a distributed peer-to-peer
o�ce collaboration application to a tape-disk, with some options available for
backing up only the newest found version or all found versions of some resource.
The o�ce environment is implemented in a P2Protocol such as JXTA and have

45

services for looking up �le resources on the network, and the tape-disk is a
stateful resource on a grid, with properties describing the amount of available
space on the disk, and operations for starting, stopping and storing. This service
composition is made available as a web service, so that other applications can
use it to get back up of �les. A use case diagram of the case can be seen in �gure
4.3

Figure 4.3: UML2 Use case description of the Distributed O�ce Backup.

Actors

� Client - The client want to have backup taken of a �le-resource.

� BackupService - The backupservice receives the backup-request and �nds
the �le and stores it on a tape disk. The Backupservice must act as an
peer in the P2P network. The service is exposed as a Web Service.

� P2P O�ce Collaboration Network - This is a P2P based o�ce collaboration
application which makes it possible to have a collaborative environment
without a central �le server. Each peer in the network has the ability to
search for �le-resources on all the other peers through a search mechanism.

� Tape disk - The tape disk is a backup device available on a grid infrastruc-
ture. This disk contains properties that describe its state, with information
such as available diskspace. The tape disk must be started before proper-
ties can be retrieved or data can be stored. Which disk to use should be
decided at runtime.

Behaviour The Client sends a backup-request to the backupservice, containing
the name of the �le-resource that should be backed up. The BackupService
searches for this on the P2P network, and from this gets a list of peers with this
resource. If the backup should be of the newest version only, this is downloaded,
otherwise all found versions are downloaded. The tape disk is started and the
available space is checked against the size of the downloaded resource. If there
are enough space available on the disk, the resource is stored.

46

Issues

� P2P network service invocation. The BackupService must invoke a service
on a P2P network, searching for the peers providing this service before
invoking the service on the peer.

� Heterogeneous Services - P2P networks, stateful resources on a grid, and
Web Services are all used in this case.

4.4 Relationship between requirements and cases.

Table 4.1 provides a mapping of these requirements to the case implementa-
tions used in this thesis. All case implementation models can be found in the
appendices of this thesis.

� Case A - Request for Proposal, see appendix C for all models. This case
is implemented in UML2, BPMN and AuSCL

� Case B - Generic Disk Drive, see appendix D for all models. This case is
implemented in UML2 and AuSCL.

� Case C - Distributed O�ce Backup, see appendix E for all models. This
case is implemented in UML2 and AuSCL.

47

Requirements Case A Case B Case C

External Service Description * * *
Partner De�nition * * *
Instance Access Manage-
ment

*

Internal Expressiveness * * *
Data Manipulation *
Communication - Synchro-
nous

*

Communication - Asynchro-
nous

* * *

Conversational Services *
Dynamic Service Selection * *

Other Modularity * * *
Consistency * * *

WS Web Services * * *
Grid Access a stateful resource * *

Lifecycle management * *
Access Properties * *

P2P Consumer service on a peer *

Table 4.1: Table of relation between requirements and case studies

48

Chapter 5

Evaluation of Existing Solutions

This chapter presents the evaluation of two selected visual languages that can
be used to model service composition. UML2 and BPMN are selected based
their potential for modelling service composition and tool support. The eval-
uation will be based on the implementation of the presented cases. The cases
are selected to test the languages' ability to model composition of heterogeneous
service compositions, and will include web service, grid services and p2p-network
services together with other complex aspects such as conversations. The cases
are presented in chapter 4, while the relationship between the cases and the
requirements are shown in table 4.1. The evaluation of the languages will be
structured according to the table of requirements shown in table 5.1, and de-
tailed in chapter 3.

Requirements

External Service Description
Partner De�nition
Instance Access Management

Internal Expressiveness
Data Manipulation
Communication - Synchronous
Communication - Asynchronous
Conversational Services
Dynamic Service Selection

Other Modularity
Consistency

WS Web Services
Grid Access a stateful resource

Lifecycle management
Access Properties

P2P Consumer service on a peer

Table 5.1: Table of requirements

49

5.1 UML2 - Service Composition

All three cases presented in chapter 4 have been implemented using UML2[10].
A complete set of the models, as well as case descriptions, can be found in
appendices C.2, D.2, E.2. All models are created using Rational Software
Modeller by IBM.

5.1.1 External Requirements

External requirements are requirements related to a service composition seen
from an external viewpoint, without considering the internal details of the service
composition. UML2 has several model views focusing on external models, such
as sequence diagrams and component diagrams.

Service Description UML2 uses class diagrams and interfaces to model the
functional aspects of a service. An interface consists of several operations, and
the signature of an operation de�nes the input and output data for an operation
in addition to an operation name. This is exempli�ed by �gure 5.1 which is an
interface from the Request for Proposal-case, described in section 4.1.
The datatypes used in an operation, as parameters and results values, can

Figure 5.1: UML2 Interfaces. The Supplier Interface contains two operations.
The ball notation is used to indicate that this is an interface.

be modelled using UML2 class diagrams. Operations are grouped in interfaces,
while interfaces can be grouped by ports if necessary. Using UML2 component
diagrams, one can model both the interfaces that a service provides and the inter-
faces which are required by the service. Figure 5.2 shows a set of interconnected
components being connected to other components by wiring the interfaces, us-
ing the ball/socket notation. The ball represents the provided interface, and
the socket represents the required interface. A dependency is introduced from
the required to the provided interface. An interaction diagrams can model the
protocol fro a service, speci�ed by the expected sequence of messages exchanges
between partners. A subset of the protocol of the RFP-case is shown in �g-
ure 5.3. All together these separate model views gives a complete model of the
service description.

50

Figure 5.2: UML2 Provided and Required Interfaces. The ball/socket notation is
used to show provided and required interfaces. Dependencies from the required
interface to the provided interface connects component pairs.

Partner De�nition By modelling UML2 components with provided and re-
quired interfaces, these model views represent requirements to any partner in a
collaboration. A partner that wants to consume a service, that has some required
interfaces, the partner must implement these interfaces, to handle potential mes-
sage exchanges, before it can consume the service. On an abstract role-based
level, a collaboration between partners can be described using collaboration di-
agrams, de�ning the roles for each participant, and specifying the behaviour for
the roles in the context of that collaboration as sequence diagrams. Figure 5.2
shows how this is modelled in an UML2 component diagram.

Instance Access Management An lifeline in a sequence diagram represents
an instance of a speci�cation, and further details about these instances can added
by using the execution occurrence model-element. This makes it possible to
model precisely what instances are used during a message exchange. It is not
possible, however to model what mechanisms to implement for this. Figure
5.3 shows an sequence diagram, where the execution occurrences represents the
speci�c instances of the partners used in the interaction.

51

Figure 5.3: UML2 Interaction Diagram shows three partners exchanging mes-
sages. Execution occurrences is used to indicate the instances of the partners.

5.1.2 Internal Requirements

Internal behaviour of a service composition is modelled in UML2 as a activity
graph. In an activity diagram, an action can be used to call an operation provided
by another component. This makes it possible to model an activity graph where
the actions are invocations of partner services.

Expressiveness - 5 basic workpatterns The cases used for this evaluation
do not have any complex requirements with regards to expressiveness. As de-
scribed in appendix B, UML2 supports most of the workpatterns found for a
�ow-based language [58]. The 5 basic workpatterns (sequence, parallel split, syn-
chronization, exclusive choice and simple merge), which are used in the cases are
all supported by UML2.

Data Manipulation UML2 activity diagrams do not have explicit support
for the manipulation of data objects that are passed between actions. The most
appropriate way of handling data manipulation is to create a set of actions for
that purpose. The problem is that there is no standard way of describing the
implementation of such a set of actions . One could use the UML action language,
which has actions for reading, writing, and updating data elements, but this is
cumbersome for larger manipulations, with complex logic. A second possibility
is to use the Object Constraint Language (OCL)[36]e as a lexical alternative, but
it is not well de�ned how OCL shall be used for this purpose. A third option as
presented in �gure 5.4 where a constraint is added directly to a data�ow. This
is best suited for simple data manipulation such as using only parts of a data
object as input to the the target action.

Communication An action can be used to model a service invocation, by us-
ing a CallOperationAction that invokes an operation on another component. In
�gure 5.5, from the RFP-case, the "getSupplierList" action is such an CallOper-
ationaction, invoking an operation on the SupplierRegisty component. However,

52

Figure 5.4: UML2 Data�ow with constraint

UML2 does not support a standard visual construct for modelling the connection
between the calloperationaction and the partner providing the operation.
The "ReceieveRFPFromClient" action models receiving a message. It is not pos-
sible to model in an activity diagram what operation is used for transporting this
message to the internal process in the same way as when invoking a service on
an external partner.
Using activities for modelling communication with external partners has a

Figure 5.5: UML2 Actions for invoking services and receiving messages

weakness in that it is not possible to visually model structural aspects of the
communication such as who to send the message to, what message to send and
what operation to use for sending the message. This information can be mod-

53

elled using a sequence diagram, but this would lead to overlapping model views,
showing the same behaviour making it possible to create inconsistencies.

Conversational Services When participating in conversations, both internal
and external model views should be de�ned, internal model views to show the be-
haviour representing communication with the partner, while the external model
views should present the details of what partner the communication is related
to. UML2 lacks some support for consistency between internal and external be-
haviour modelling, using activity and sequence diagrams. This makes it hard to
model conversations in a consistent manner.

Dynamic Service Selection The performer of an activity can be modelled in
two di�erent ways in UML2, either by using swimlanes, where the lane is speci�ed
by an role or as a class. An activity, or action, can be linked with an operation
on another component in the environment. These links to external partners is
de�ned at design time, and there is no construct in UML2 for using properties
to set these partners at run time. This can be modelled explicitly as a part of
the service composition logic, using a service discovery mechanism for �nding
appropriate partners, but there is no direct support in UML2 for specifying such
dynamic service selection

5.1.3 Other Requirements

Modularity Many of the model views in UML has excellent support for mod-
ularity. In activity diagrams an activity can be decomposed into another activity
to create a hierarchical structure. In interactions one can decompose lifelines to
show internal behaviour, and one can also reference other interactions to cre-
ate hierarchies. Both class and component diagrams can be decomposed and
detailed, by using composite structure diagrams, where the internal parts of a
component or class can be a component or a class. There is however a lack
of de�ned structure for models containing several model views. This must be
introduced by the modeller.

Consistency The multiple model views of UML2 makes it possible to have
de�nitions of the artifacts used in the model separated from the usage of the
constructs, such as class diagrams de�ning classes and interfaces, used by other
model views, for instance as messages in sequence diagrams. Behavioural aspects
such as the communication and sending and receiving of messages are more
problematic, as there are no direct connection between tasks modelling sending
and receiving messages and sequence diagrams modelling messages going between
partners. Figures 5.7 and 5.8 shows the activity diagram and sequence diagram
of the same behaviour. There is no direct link between the start-activity in
the activity diagram and the sending of the start-message shown in the sequence
diagram. This behaviour is de�ned twice, making it vulnerable for inconsistency.

54

5.1.4 Heterogeneous Service Requirements

This section evaluates UML2's capabilities to handle composition of services us-
ing Web Service technologies, Grid based technologies or P2P based technologies.

Web Services UML2 is a contains full support for the service invocation par-
adigms used by Web Services. The WSDL service description model is similar to
interfaces using UML2, and the grouping of interfaces can be done in UML2 by
using ports. The invocation of stateless services, is modelled in UML2 by simple
operation invocation.

P2P Network Services Invoking a service implemented on a P2P network is
not very di�erent from invoking a service in a regular client/server environment.
The decentralized and unstable nature of such a network might mean that one
should always search for a relevant peer to invoke the service on, before the
invocation. The service invocation in itself is similar to invoking a regular service.
An example of invoking a Web Service using UML2 can be seen in �gure 5.6,
where a sequence diagrams shows the message for �nding a peer, then a message
for invoking the service.

Figure 5.6: UML2 Protocol for accessing a P2P network service.

Grid Services A grid contains resources that can be stateful. Using WSRF
it is possible to access such resources with a web service. To be able to model
consumption of grid services one must be able to model the life cycle management
that is necessary to consume such services. By using activity diagrams to model

55

the tasks of sending and receiving messages it is not easy to model the life cycle
of the resource in the collaboration, as the activity diagrams only models internal
aspects of the local service. A activity diagrams showing communication with
a WS-resource can be seen in �gure 5.7 By using sequence diagrams this can

Figure 5.7: UML2 Process for accessing a WS-Resource

be achieved, as the life cycle of the partner can be modelled. In �gure 5.8 the
same collaboration as in �gure 5.7 is modelled but it is now possible to model
the life cycle of the WS-Resource, with the start message creating an instance
of the diskdrive and the stop message destroying the instance. The properties
that are available from a stateful resource can be modelled using attributes in
the interface, and class diagrams for their internal details. An example of this
can be seen in �gure 5.9.

5.2 BPMN

BPMN [11] is a visual language for de�ning Business Processes. This makes it
a suitable candidate for modelling service compositions. It does only support
Web Service as the service invocation technology, and therefore only the RFP
case has been implemented using BPMN. The complete set of models for this

56

Figure 5.8: UML2 Protocol for accessing a WS-Resource. The client creates and
destroys the resource, and the same instance of the resource is accessed at all
times.

implementation can be found in appendix C.3. All models are created using
System Architect by Popkin.

5.2.1 External Requirements

External requirements is those that concern externally visible aspects of the
service composition. In BPMNa business process is modelled inside a pool, thus
externally behaviour can be modelled to be between pools.

Service Description BPMN does not have support for external service de-
scription. It is possible to model that a message is received by a process, and
from this a service description can be derived, but the modeller does not have ex-
plicit control of the interface of a service. The external view of a BPMN process
does not specify the time dependencies, which means that it is not possible to
completely specify a protocol, it is only possible to specify the message inter-
changes, but not the time dependencies between them. A message interchange
between two pools, or partners is shown in �gure 5.10, where the "winner details"
message is sent to an external pool.

57

Figure 5.9: UML2 Interface with both operations and attributes. This interface
contains public attributes such as BlockSize and operations such as start().

Partner De�nition Partners can be de�ned in BPMN, by specifying them as
business processes in external pools. These processes can be speci�ed from an
external viewpoint, focusing entirely on the externally visible behaviour. As there
is more di�cult to specify a service interface explicitly the partner requirements
must be derived from the message interchanges between the partners in the
process de�nition.

Instance Access Management Instance management is an aspect that is
not supported by the BPMN speci�cation.

5.2.2 Internal Requirements

Inside a pool in BPMN, a graph of tasks is used to model the behaviour of the
business process.

Expressiveness - 5 basic workpatterns BPMN supports most of the iden-
ti�ed workpatterns as is shown in appendix B, and the case implementations
shows that the 5 basic workpatterns (sequence, parallel split, synchronization,
exclusive choice and simple merge) are supported. [61] models all workpatterns
found by [58] using BPMN.

Data Manipulation Data�ow inside a process is not well supported in BPMN.
This must be modelled using the data object artifact, which is associated with
one or more tasks, instead of �owing between tasks. This approach is document
based rather than based on traditional data objects. A manipulation of data ob-
ject artifact could be performed inside as a specially de�ned task, although there
are no speci�c support in the BPMN for specifying such a data manipulation

58

Figure 5.10: BPMN Message Flow. The "winner Details" message is sent to an
external partner.

expressions. Figure 5.11 shows an example from the BPMN RFP-case imple-
mentation where the "supplier list"dataobject is used by the "send rfp"-task.

Communication A communication task in BPMN is de�ned to be a Web Ser-
vice invocation. These kinds of tasks are restricted to the communication par-
adigms that are supported by the web service standards, and only support the
consumptions of stateless Web Services. No task types are de�ned for receiving
a message. Communication is also modeled in BPMN using events, speci�cally
the message event, seen in �gure 5.12. This can be used to model both send-
ing or receiving a message, and as these events can be occur both as starting,
intermediate or �nal events, they are good candidates for modelling message in-
terchanges. In �gure 5.12 an message event models the sending of an message to
another partner. This event is externally visible, but there can be more detailed
behaviour leading to the sending of this message which is hidden in the external
viewpoint.

Conversational Services Business processes are conversational in its nature,
which makes, a specialized business process language such as BPMN suitable for
modelling a conversation, at least at a high abstraction level. At a more detailed
level, some technical requirements are not as well supported. This includes the
ability to model dynamic endpoint management and instance management. In
the case model it is not possible to represent that the endpoint information,

59

Figure 5.11: BPMN Data Object. The "send RFP" tasks uses the Supplier List
data object.

such as addresses for the client, are sent in the �rst message to the RFP service
and used for sending messages back, using the an endpoint pointing to a service
hosted by the client.

Dynamic Service Selection BPMN does not support a dynamic service se-
lection. A web service invocation tasks needs the endpoint address and other
invocation information explicitly set at design time. If one wants to use a service
registry this must be modelled as a normal service invocation and added to the
service composition.

5.2.3 Other Requirements

Modularity A task in BPMN can be decomposed into a new process con-
taining a set of tasks. The inner working of this task can be connected with its
environment by using events. These events can be initial, intermediate or �nal,
and can thus be used to model a that some of the expected external behaviour
of a process, without revealing the inner details.

Consistency BPMN uses only a single model view, which in some cases helps
maintain consistency, as all parts of the model are available at all times, but on
the other hand there is a problem with the lack of separate views for de�ning
model artifacts, which means that these must be de�ned in every task using the
artifact. This overlap of de�nition makes it hard to maintain consistency, as the
same artifact is de�ned several times..

5.2.4 Heterogeneous Services Requirements

BPMN does only support Web Services as service invocation technology. That
means that as long as a service is provided as a Web Service the service invocation

60

Figure 5.12: BPMN Message Event, used to send a message to an external
partner.

can be modelled using BPMN.
The fact that new task types can be added means that tasks can be de�ned to
support any service invocation technology. There is however no way of visually
modelling di�erent service invocation paradigms. If one accesses a resource on
a grid that needs life cycle management, the stateful resource will be modelled
in the same way as a stateless service. Resources containing properties is not
possible to model in BPMN.
P2P network that requires a search for peers before invocation is better supported
as an task in BPMN can contain several message exchanges. P2P technologies
can use other service invocation technologies than Web Services which make it
impossible to use BPMN to model composition of this type of services.

5.3 Summary of UML2 and BPMN Evaluation

UML2 - Service Composition All the model views available in UML2 makes
it a very open language, with the ability to model almost any kind of system.
It does however lack the structure needed to create models for a speci�c kind of
system such as service composition. This makes it di�cult to create consistent
and modular models. The multiple model views makes UML2 very good at vi-
sually representing all aspects of the system, both structural and behavioural,
but there are some possible inconsistencies between the di�erent model views,
speci�cally in modelling the communication with external partners. This is even
more evident when the services are conversational, thus requiring instance access
management. Lastly there is no explicit support for dynamic service selection in
UML2, this must be modelled as a part of the logic of the service composition.
The strengths of UML2 is in the structural parts of the model, for describing

61

services and partner requirements, and for de�ning internal behaviour, the ex-
pressiveness of the control �ow and the capabilities to handle data.
UML2 supports composition of heterogeneous services good, by being indepen-
dent of any service invocation technologies such as Web Services or P2P based
JXTA, and making it possible to model aspects of other service paradigms such
as stateful resources on grids.

BPMN - Service Composition As BPMN uses only one model view it lacks
the possibility to model several of the aspects that can be modelled using UML2,
such as partner requirements and service descriptions. Internal behaviour and
expressiveness is well supported when using BPMN, the only exception being
the support for modelling data�ow between tasks . There is no support for
dynamic service selection. BPMN is particularly good at modelling communi-
cation with other partners, also in conversations as the modelling views has a
good separation of partners. The fact that BPMN only supports Web Service as
the service invocation technology, combined with reduced support for specialized
grid requirements makes it less suitable for heterogeneous service composition.

Evaluation Table Table 5.2 summarizes the �ndings in this evaluation.

Requirements UML2 BPMN

External Service Description + -
Partner De�nition + -
Instance Access Management / -

Internal Expressiveness (Basic Workpat-
terns)

+ +

Data Manipulation + -
Communication / +
Conversational Services / +
Dynamic Service Selection - -

Other Modularity / +
Consistency / /

WS Web Services + +
Grid Grid Resources + /

Grid Life cycle Management + -
Grid Resource Properties + -

P2P P2P Services + /

Table 5.2: Summary of evaluation of UML2 and BPMN. + is full support for
the requirements, / means some support while - means no support.

Main Result UML2 lacks a structured way of presenting the separate model
views, and there are some problems in modelling internal and external behaviour

62

using activity and sequence diagrams consistently. Heterogeneous services is
supported as UML2 is platform independent.
BPMN is well suited for modelling business processes, and has good support for
Web Service communication. The lack of external model views, makes it hard
to model a service composition. There is problems with heterogeneous service
technologies as BPMN only supports Web Services.

63

Chapter 6

Another uni�ed Service

Composition Language

As discussed in the previous chapter, neither UML2 or BPMN fully meets
the requirements for visual composition of heterogeneous service presented in
chapter 3. This chapter presents an extension to UML2 called "Another Uni�ed
Service Composition Language" (AuSCL), as a UML2 pro�le, which is domain
speci�c for modelling visual service compositions.
The concepts of the pro�le is described in this chapter with examples from case
implementations of the cases presented in chapter 4. The full case implementa-
tion models can be found in appendices C.4, D.3, E.3.
The AuSCL UML2 pro�le uses several of the behavioural and structural model
views available in UML2. Even though each model view focuses on one speci�c
aspect of the service composition, the AuSCL UML2 pro�le is designed in such a
manner that by combining the model views, a complete visual model of a service
composition is de�ned.
The model views have been divided into two groups; abstract and concrete model

64

views. To enhance the pro�le's capabilities of late binding, as much as possible is
modelled in abstract models, without binding to concrete services. These service
bindings are modelled separately in the servicebindings model view. To make it
possible to distribute models without giving away private internal information,
a separation between internal and external model views has been introduces.

6.1 Motivation for AuSCL

AuSCL is implemented as a UML2 pro�le. The pro�le enhances UML2 by adding
a structure to the set of model views and de�ning a set of stereotypes. Since
UML2 is a very open language, AuSCL narrows the possibilities the modeller
have, making it easier to create a domain speci�c structured model of the service
composition.
Modelling languages such as UML4EDOC [13] and the BPDM notation [12] uses
a set of di�erent model views to model a service composition, while BPMN [11]
and JOpera [41] uses only one or two model views to represent the complete com-
position model. By using several model views, di�erent aspects of the model is
separated from each other, making the model more easy-to-follow, maintainable
and modular.
AuSCL introduces a clear separation of abstract and concrete aspects of the
model, trying to keep as much as possible abstract, to delay binding to concrete
service implementations to a late stage of the development process.
The BPDM notation has a clear separation of external and internal model views.
AuSCL has adopted this so that internal private models can be separated from
external public models which can be published to partners in the service compo-
sition.
The service oriented principle of coarse grained services have also been taken
into consideration in the AuSCL design. A service-interaction between a service
provider and a service consumer can consist of several message exchanges. To
model the internal process of the service composition at a higher abstraction
level, AuSCL uses the service-interaction as a task in the orchestration, and
details each task with a sewuence diagram, modelling the message exchanges.

6.2 AuSCL Conceptual Metamodel

The high level conceptual metamodel of the AuSCL UML2 pro�le can be seen
in �gure 6.1. This metamodel presents the relationship between the concepts
used in AuSCL models, but intentionally leaves out details which are speci�ed
by the UML2 metamodel.

Abstract concepts The main construct in the metamodel is the Service. The
Service is the external representation of the Process, and the concrete implemen-
tation of the external partners.. A Process consists of a graph of ServiceInter-

65

Figure 6.1: AuSCL Metamodel. This metamodel shows the concepts used in
AuSCL and the relationship between them.

actions connected by control �ows, and with data �owing between ServiceInter-
actions. A Process is de�ned recursively, so that a Process can contain several
subprocesses.
A ServiceInteraction is de�ned by a Collaboration, as an ordered exchange of
Messages between a pair of Roles. The relationship between the ServiceInterac-
tion and the Role is derived from the Collaboration specifying the ServiceInter-
action. In AuSCL a Role is de�ned to be a set of provided and required Interfaces.

Concrete concepts The concrete part of the metamodel focuses on handling
concrete service instances. An abstract Role is realized by a concrete Party.
AuSCL speci�es three types of Party :

� Service - The Party can be a concrete instance of a Service, in which case
the service address information is speci�ed at design time.

� ServiceQuery - This Party-type represents the service-broker actor in the
architectural model for service oriented architectures. When using a Ser-
viceQuery the concrete Service instance will be discovered at runtime. A
ServiceQuery speci�es a service-broker instance which consists of a query
and a policy for handling multiple relevant results from the query execu-
tion.

66

� MultipleServiceHandler - A Party capable of handling several service in-
stances known at design time by adding a policy, which specify criteria
for runtime selection of a Service. The MultipleServiceHandler can also be
used in combination with the ServiceQuery to handle the resultset from
the query.

The �nal concept described in the metamodel is the Adapter. This is used for
decoupling of the abstract service descriptions given in the role-de�nitions and
the concrete service implementations.If these do not match, an Adapter can be
introduced to handle syntactical di�erences in the interfaces of the abstract def-
inition and the concrete service implementation, such as operation or parameter
names.

6.3 UML2 Pro�le

[62] de�nes an UML2-pro�le to be a set of limited additions to a base metamodel
to adapt it to a speci�c platform or domain. The purpose of creating a pro�le
is to allow limited modi�cations of the UML2 metamodels without requiring
or permitting arbitrary changes to the metamodel. AuSCL extends the UML2
functionality by adding several stereotypes as can be seen in �gure 6.2. The

Figure 6.2: AuSCL UML2 Pro�le De�nition. AuSCL extends the UML2 meta-
model with stereotypes.

stereotypes de�ned in the pro�le are:

� �Service�. A specialized Component representing a service. The service
implements a set of interfaces. It contains an address attribute, specifying
the endpoint implementing the service.

67

� �ServiceQuery�. A Component representing a query to a service broker.
The ServiceQuery contains an address to the broker, a query and a policy
for handling multiple results.

� �MultipleServiceHandler�. A Component for handling multiple service in-
stances at runtime. It contains a policy for choosing which service instance
to use.

� �ServiceInteraction�. A specialized Action, which represents a interaction
between to partners. The serviceinteraction is detailed by a standard UML2
sequence diagram showing the ordered set of message exchanges.

� �Variable�. A DataStore object in an activity diagram. The datastore
object is persistent throughout the scope of the surrounding activity, and
can be accessed several times during one execution of an process.

� �Read�. A DataFlow used to read from a variable. An expression can
be speci�ed to identify the sub-part of the variable to access in the read
operation.

� �Write�. A DataFlow used to write to a variable. It can contain an ex-
pression used to identify the sub-part of the variable to access in the write
operation.

� �Role�. A Class representing a role. The role speci�cation de�nes the
interfaces the role should provide to others, and the interfaces that the role
requires from collaborators.

� �Message� A Class, used for messaging between roles in a collaboration.
The message can contain other messages, or sub-parts de�ned as regular
classes.

� �Adapter� A Class handling syntactical inconsistencies between the inter-
nal orchestration and the external partners.

UML2 Composition Viewpoints AuSCL also introduces method for struc-
turing the model views as can be seen in �gure 6.3. AuSCL relies upon several
of the model views of UML2 and uses them extensively. Activity diagrams are
used for describing the internal behaviour of the service composition, while se-
quence diagrams are used for modelling the externally visible behaviour between
partners.
Class diagrams are used for modelling messages and they data being carried in
the messages. Class diagrams are also used to de�ne interfaces and roles. The
binding of the abstract and the concrete parts of the models are done using
component diagrams. The ports in the component diagrams represent the roles
de�ned in the roles model view.
The model viewpoints are elaborated further in the sebsequent sections.

68

6.4 Model Views Structure

Figure 6.3 shows the structure of an AuSCL model. The model has two main
parts; an abstract and a concrete. The abstract parts of the model has separate
packages for roles, interfaces, messages, collaborations and processes.

Figure 6.3: AuSCL Model Structure. AuSCL is structured in a hierarchy of
packages containing model views

� Interfaces Model View (UML2 class diagram), speci�es all interfaces used.
Concepts from the metamodel are: Interface and Message. This model
view depends on the messages model view.

� Message Model View (UML2 class diagram), speci�es the messages used.
Concepts from the metamodel are: Message. This model view depends on
the datatypes model view.

� Roles Model View (UML2 class diagram), de�nes the roles in terms of
provided and required interfaces. Concepts from the metamodel are: Role
and Interface. This view depends on the interfaces and messages model
view

� Collaboration Model View (A combination of UML2 collaboration and
UML2 sequence diagrams), de�nes behaviour between roles. Concepts from
the metamodel are: Collaboration, Role, Interface, Message and ServiceIn-
teraction. This model view depends on the roles, interfaces and messages
model views.

� Process Model View (UML2 activity diagram), de�nes the orchestration of
the services used in the service composition. Concepts from the metamodel
are: Process and ServiceInteraction. This model view depends on the
messages and collaboration model views.

The concrete part of the model consists of model views for servicebindings,
adapters and datatypes.

69

Figure 6.4: AuSCL Metamodel, abstract part. The part of the AuSCL meta-
model that contains the parts used in the abstract models

� DataTypes Model View (UML2 class diagram), de�nes the data carried in
the messages.

� ServiceBindings Model View (UML2 Class diagram), de�nes the binding
between concrete service instances and roles. These concepts from the
metamodel is used: Role, Interface, Process, Service, ServiceQuery, Mul-
tipleServiceHandler. This model view depends on the roles and interfaces
model views.

� Adapters Model View (UML2 class diagram), de�nes adapters to handle
interface inconsistencies. These concepts from the metamodel is used:
Adapter, Role and Service. This model view depends on the roles and
servicebindings model view.

6.5 Abstract View

In the abstract view, concrete service instances are not used, partners in the
service composition is described in terms of roles. The roles are de�ned with
interfaces, both interfaces that a service-implementation of a role should imple-
ment, but also interfaces that is required by the service to function correctly. In
this section the di�erent model views in the abstract models will be presented.
Figure 6.4 shows a subset of the metamodel, containing only the abstract parts.

6.5.1 Interfaces Model View

Interfaces are described in standard UML2 class diagrams, without any modi�-
cations. An interfaces consists of operations, with parameters and return values.
An interface di�ers from a class in that it does not contain an implementation of

70

the operation only the speci�cation of the signature of the operation. For execu-
tion of the operation described in an interface, a concrete service must implement
the operation. Several operations can be grouped together in one interface and
several interfaces can be grouped together to one service, which is parallel to
a WSDL document for describing Web Services, where a service can consist of
several PortTypes, which again can have multiple operations. The principle of
service oriented architectures states that services is coarse grained and document
based, and this should in�uence the design of these operations. If one wants to
explicitly model asynchronous communication, an interface list the signals that
the interface can handle, instead of listing a set of operations. Signals are asyn-
chronous messages that are sent between partners. An interface to a stateful
resource can also have attributes. The interfaces model view is dependent on the
messages model view. An example of such a model can be seen in �gure 6.5,
where the interface both have operations and attributes.

Model Elements

� Interface - A speci�cation of operations and signal receptions and at-
tributes.

� Operation Signature - A speci�cation of the parameters and return values
of an operations.

� Attribute - An externally visible property.

� Parameter - A variable that is sent to the implementation of an operation
when invoking it. Is de�ned in the messages model view.

� Return Value - A message returned to the consumer of an operation Should
be de�ned in the messages model view.

� Signal reception - The signals that a interface is prepared to handle

UML2 Extensions This model view does not extend UML2, but uses func-
tionality and features already de�ned in UML2. Signals and operations are used
to support both synchronous and asynchronous communication.

71

Figure 6.5: AuSCL Interface Model. An interface containing several attributes
and operations, from the generic disk drive case.

Example Figure 6.5 shows an interface for an GenericDiskDrive used in the
disk drive case, see appendix D. This interface describes a stateful resource, hav-
ing both operations and attributes. The attributes, NumberOfBlocks, BlockSize
and Manufacturer, can be retrieved using the getMultipleResourceProperties op-
eration. The interface also has operations for life cycle management using the
start and stop operations. An interface in UML2 is a stereotyped class, and the
ball-symbol is the normal notation for an interface.

6.5.2 Messages Model View

Messages are de�ned using class diagrams, but should be stereotyped �mes-
sage� to distinguish them from other classes that can be datatypes that are part
of messages. A message de�nition is separated from the datatype de�nition to
make it possible to use the messages when creating an abstract model, without
knowing the detailed implementation of the payload of the messages. A signal
is a stereotyped class, �signal�, but they are also stereotyped as messages. A

72

Figure 6.6: AuSCL Message Model. A class diagram de�ning the messages used
in the service composition from the distributed o�ce backup case.

standard class diagrams is the basis for this model view. A model example can
be seen in �gures 6.6 and 6.7

Model Elements

� Messages - A class that is in communication between partners.

� Message Parts - Attributes in the message that holds the payload

� Signals - A specialized form of messages, used for asynchronous communi-
cation.

UML2 Extensions This model view extends UML2 by adding the �Message�
stereotype for a class, indicating that this class is a message that is sent between
partners in the service composition. Besides this, standard UML2 class diagrams
are used with aggregation to indicate messages that consists of other messages,
and attributes for holding the pyload of the messages.

Example Figure 6.6 shows the messages model view in AuSCL. This model
view is from the Distributed O�ce Backup case, see appendix E. The messages
are stereotypes classes, using the AuSCL stereotype �Message�. Aggregation is
used to show messages that are parts of other messages. In �gure 6.6 the PeerList
message contains zero or more PeerId messages. The PeerId message contains
an attribute id, which is de�ned in the concrete DataTypes model view. Figure
6.7 shows another AuSCL messages model view. This uses signals, indicated in
the diagram by a graphical symbol, but implemented as a �Signal� stereotype in
the UML2 model. A signal can be used for asynchronous communication, with
interfaces being de�ned to support reception of a set of speci�c signal.

73

Figure 6.7: AuSCL Message Model. This AuSCL message model uses signals to
model asynchronous communication

74

6.5.3 Roles Model View

In this AuSCL a role is a set of requirements that must be ful�lled, in terms
of provided and required interfaces. A role is de�ned as a class with a �role�
stereotype, and the model view is a standard class diagram. This model view
is dependent on the interfaces model view. The roles de�ned in this model are
used in the collaboration model view and as ports in the servicebindings model
view. An example can be seen in �gure 6.8, where the "generic disk drive" role
implements an interface and the client role requires the interface.

Model Elements

� Role - A collection of requirements for a partner.

� Provided Interface - An interfaces that a partner provides to other partners.
The interface should be de�ned in the interfaces model view.

� Provided Interface - An interface that a partner requires from other part-
ners to function. The interface should be de�ned in the interfaces model
view.

UML2 Extensions This model view uses UML2 class diagrams, but extends
UML2 with the stereotype �Role�, which is used to de�ne the requirements of
a partner in a serviceinteraction.The role is de�ned in terms of the interfaces
it should provide to others and interfaces it needs others to provide. Standard
stereotyped associations, �implements� and �use� are used to relate the role to
the interfaces. The interfaces de�ned as provided and required in this model
view, can also be seen in the service binding model view, where the ports use
the ball/socket notation for this.

Example Figure 6.8 shows the de�nition of the two roles participating in the
Generic Disk Drive case, see appendix D. There is only one interface used in
this case, so the role de�nitions are relatively simple. The Client role uses the

75

GenericDiskDrive interface, thus being a required interface for this role, while
the Generic Disk Drive Role provides the GenericDiskDrive interface.

Figure 6.8: AuSCL Role Model. Provided and required interfaces de�ne the
requirements for a role.

6.5.4 Collaboration Model View

This model view models interaction between the roles to accomplish a func-
tional objective, such as processing an order or validating a credit card. Two
UML2 model views are used to model this. Collaboration diagrams are the top
level which states the roles that are a part of this collaboration. A collaboration
is a set of interactions between the partners, de�ning the sequence of messages
being sent to achieve a functional objective. These message exchanges, or in-
teractions, are implemented using the de�ned messages and interfaces. Such a
interaction between roles is modeled using the sequence diagrams model view in
UML2. An interaction between partners that achieve a speci�c functional objec-
tive could consist of several message interchanges. As the high level interactions

76

or service consumptions are detailed in separate diagrams, it is possible to re-
fer to these service consumptions before the internal details have been speci�ed.
Speci�cally they can be used in the process model view, to create an abstract
process, and details of an service interaction can be changed without a�ecting
the rest of service composition, decreasing the coupling between the partners.
Figure 6.9 shows an high level view of an collaboration, with the roles speci�ed.
The detailed interaction between the roles are shown in sequence diagrams as in
�gure 6.10 where the ServiceToSupplierRegsitry role invokes and operation on
the SupplierRegistry role.

Model Elements

� Role - A partner in a collaboration. The role de�nes the external behaviour
and structure of a partner

� Message - A message is sent between partners. A message can be either
synchronous or asynchronous.

� Collaboration - A de�nition of behaviour between partners.

� ServiceInteraction - A service consumption. An interaction is built of mes-
sage exchanges. One serviceinteraction should perform a functional objec-
tive.

� Sequence Diagram - A detailed de�nition of the message exchanges between
partners to perform a service consumption.

UML2 Collaboration and Sequence Diagrams

UML2 Collaboration Diagrams A collaboration is a description of a
collection of objects that interact to implement some behaviour within a context
[62]. A collaboration contains roles, and these roles represents a description of
objects that can participate in an execution of an collaboration [62]. An object
may participate in more than one collaboration, and also have several roles in
the same participation.

UML2 Sequence Diagrams An interaction is a set of messages within
a collaboration that are exchanges by roles across connectors [62]. A message
is a one way communication between two objects, a �ow of control with infor-
mation from the sender to the receiver. A message can be a signal (an explicit,
named, asynchronous interobject communication), or a call (the synchronous or
asynchronous invocation of an operation with a mechanism for later returning
to the sender of a synchronous call) [62]. A sequence diagram two dimensions
to model this. Time moves in the vertical direction in the diagram, while the
horizontal direction shows the roles. There is one column containing a lifeline
for each roles participating in a interaction. UML2 sequence diagrams supports

77

complex control �ow by using the combined fragments features. These can be
a link to another sequence diagram, or control-�ow constructs such as loops,b
conditional or parallel �ows.

UML2 Extensions There are no extensions to UML2 used in these models.
The high level collaborations diagrams shows the name of the collaboration and
the roles participating. The participating roles are de�ned in the role model.
The detailed interaction diagrams uses standard UML2 notation to show how
the roles interact with message-exchanges to perform some task. The lifelines
are typed according to the roles that are participants in the collaborations.

Figure 6.9: AuSCL Collaboration. A high level de�nition of a Collaboration,
showing the participants.

Figure 6.10: AuSCL Service Interaction. An AuSCL Serviceinteraction shown
as a sequence diagram

78

Example Figures 6.9 and 6.10 shows the two model views used in de�ning
the collaborations for the RFP case, see appendix C. Figure 6.9 is the high
level diagram, showing the roles participating in a collaboration, in this case the
SupplierRegistry and the ServiceToSupplierRegistry. The collaboration is also
given a name. Figure 6.10 shows the behaviour for one serviceinteraction in
the collaboration. The roles are represented as lifelines in the sequence diagram.
Figure 6.10 shows a synchronous service invocation, calling the operation get-
SupplierList, getting a supplierList message in return. The operation signature is
de�ned in the interfaces model view, and the messages being passed are de�ned
in the messages model view.

6.5.5 Process Model View

This is the internal de�nition of the execution of the service composition,
described in a UML2 activity diagram. It de�nes the �ow of service interactions,
and the data dependencies between these in an activity graph. A service interac-
tion is a stereotyped action, and is detailed by the interaction from the relevant
collaboration. The data in process is stored in variables, which are stereotyped
datastore objects. Such a variable are visible in the scope of a process, and is
destroyed when the process is �nished.
The control �ow can include other UML2 constructs such as fork/join for par-
allel behaviour and decision/merge for conditional �ow. The data�ow can be
stereotypes to �read� or �write�, where a read reads the value of a variable, and
a write writes the value of a variable. These can have expressions in them to
constrain these operations, such as reading only a part of a variable or writing
to a part of a variable. This constraints can be expressed in OCL. The data def-
inition in the process should be uni�ed, and any incompatible datatypes should
be transformed by the adapter. Thus there are no need for datatransformations
in the process directly.
A process model can be seen in �gure 6.11, where the tasks, labeled �ServiceIn-
teraction� are interactions with the other partners.

Model Elements

79

� Service-interaction - A service consumption de�ned in the collaboration.
Used in the process as an action, representing the interaction de�ned in
the collaboration model view.

� Variable - Data in a process. Can be used by several service interactions.

� Data Flow - Can be either �read� or �write�, and models accessing the
variables of a process.

� Control Flow - This de�nes the dependencies between the service interac-
tions

UML2 Activity Diagrams An activity is a graph of nodes and �ows that
shows the �ow of control (and optionally data) through the steps of a computa-
tion [62]. The nodes in an activity represents the a step in a work�ow. Flows
in the activity activates when an node is completed, and a node cannot execute
before all incoming �ows are activated. Nodes can be nested, to create an hier-
archical structure. Special nodes are de�ned to create conditional �ow as well as
parallel �ow. Data can �ow from node to node, as volatile objects, or be de�ned
as datastores, which stay active inside the scope of the activity. While a simple
dataobject only �ows from the output of a node to the input to another node,
the datastore can be accesses several times by di�erent threads of control. Ulti-
mately the leaves of an activity are actions [62]. An action is a basic prede�ned
activity, such as sending or receiving messages.

UML2 Extensions This model view uses UML2 activity diagrams and ex-
tends it by adding the �serviceinteraction� stereotype to create a specialized
form of action. This action is an abstraction of the of the interaction modelled
in the detailed collaboration diagram. Other extensions to UML2 are the �vari-
able� datastore object and the �read� and �write�data�ow stereotypes. The
�variable� is a data object that is persistent in the scope of the process, while
the �read� and �write� variables indicate data interactions between the variable
and the activity. The data�ows can also use constraints to detail what parts of
the dataobject that should be accessed. Other native UML2 concepts such as
pins and expansion nodes are used. Pins indicate data�ow coming out of or going
into an activity while expansion nodes are a construct for modelling looping over
a collection of objects. When a collection of objects is sent to an expansion node,
the behaviour de�ned inside is performed for each element in the collection.

Example Figure 6.11 models the internal behaviour of the service composition
in the RFP case, see appendix C. The control �ow of the process in this
example is quite simple, with mostly sequential behaviour. The process uses
several variables, which are accesses throughout the process, using �read� and
�write� data�ows. Examples can also be seen of specialized data�ows only using
parts of the variables. The serviceinteraction GetSupplierList reads the category
part of the RFP variable, and uses this part as its input. The �serviceinteraction�

80

activities are connected to the interactions de�ned in the collaboration model
view. The GetSupplierList activity is detailed in the model view shown in �gure
6.10. The activity is thus used to model an interaction with a partner that
includes several message exchanges. The expansion node construct in UML2 is
used to model a loop, performing an activity for each element of a collection.

81

Figure 6.11: AuSCL Process. An AuSCL process showing the internal behaviour
of a service composition. 82

6.6 Concrete View

The concrete view binds the abstract view to the service instances that are used
in the service composition. The concrete view builds on the abstract view and
must be consistent with its details.

6.6.1 Datatypes Model View

This model view is a basic class diagrams, de�ning the internal structure of
the messages de�ned in the messages model view. The separation of messages
and datatypes decreases the coupling as changes in the datatypes can occur
without a�ecting the other parts of the model. Figure 6.12 shows a model of
some datatypes that are used by the messages in the abstract model.

Model Elements

� Classes - Datatypes.

� Aggregation - A connection between datatypes that de�ne that the datatype
is a part in another datatype.

UML2 Extensions This model view is a standard UML2 class diagram. The
classes in this model view models the internal details of the messages de�ned in
the messages model view. No extensions to UML2 are needed in this view.

Example Figure 6.12 shows the datatypes model view from the RFP case,
see appendix C, and contains all the data that is used by the message de�nition
s in the abstract messages model view. The datatypes can have attributes and
operations as in the ProposalList class.

83

Figure 6.12: AuSCL Datatypes. A class diagram modelling the payload data of
the messages de�ned in the message model.

6.6.2 Servicebindings Model View

This is the main model view in the concrete part of the model. Based on UML2
component diagrams, this model view creates the binding between the roles de-
�ned in the abstract view and the concrete services that are a part of the service
composition. The binding is done by connecting one or more roles to a compo-
nent by modelling the roles as UML2 ports, and the service instances as UML2
components. The connection between interfaces as described in the roles model
view are dependencies between the provided and required interfaces on the ports.
It should be noted that the partner realizing a role can be either a concrete ser-
vice instance, a query to a service broker or what is called a multiple service
handler. A concrete service instance component contains an address to a service
description detailed enough to invoke the service. A service query contains an
address to a service broker, a query for services and a policy for handling multi-
ple results, for instance a quality of service attribute that the result set should
be sorted by. A multiple service handler is a way of dealing with a situation
where several concrete service instances are available, and known at design time.

84

Several possible methods for deciding which of these services to use is possible.
One or more quality of service parameters can be used for selecting a service,
or more dynamic aspects can be used, such as the �rst to respond to a service
invocation. A multiple service handler can also be combined with a service query.
Figure 6.13 shows a complete service binding model.

Model Elements

� Process - The service composition.

� Service - A component implementing a service that realizes one or more
roles as required by the speci�cation. A service needs an address attribute,
containing the address of the endpoint which receivers the messages sent
to the service.

� Service Query - A component acting as a placeholder for a query to a
service broker.

� Multiple Service Handler - A component that hides the details of choosing
between several knows service instances for a speci�c role realization.

� Role - De�ned in the abstract model, connected to the concrete model as
ports on components .

� Provided Interface - Interfaces provided by the component. Shows used
the ball notation.

� Required Interface. Interfaces required by the component. Modelled using
the socket notation.

UML2 Component Diagrams A UML2 component diagram consist of a set
of components and interfaces that the components provide and require other
components to provide. The components does not depend directly on other
components, but on the interfaces that the components support [62]. The use
of interfaces makes it simple to replace on component with another component
have the same external characteristics, even at the instance level. Component di-
agrams uses the ball/socket notation to model provided and required interfaces,
the balls being provided interfaces and the sockets being required interfaces.
To wire two components together, having a matching pair of interfaces, a de-
pendency is introduced from the required interface to the provided interface.
Components can have ports. Ports encapsulate interaction between the contents
of a class and its environment [62]. A port can also have provided and required
interfaces, and messages sent to a port, which is on component is sent through
to the component.

85

UML2 Extensions This model view uses UML2 component diagrams, ex-
tending UML to create dynamic service binding. Ports are connected to the
components to model the roles that the components realize. The components
are stereotyped as either �service�, �service query� or �multipleservicehandler�
to give the option of not binding directly to a service-instance but to the result
of a query, or an element of a set of services.

Example Figure 6.13 shows the servicebinding view of the RFP case, appen-
dix C. The components represent the concrete services, while the ports are the
roles that each component realize. The connection of the service are modelled
as dependencies between the provided and required interfaces. The myCustomer
service has one port, showing that the customer realizes the Customer role. The
customer role is de�ned to provide the customer interface, and require the Ser-
viceToCustomer interface. This is shown using the ball/socket notation. These
interfaces are connected with the interfaces that the RFP service component
provide through its port realizing the ServiceToCustomer role.

Figure 6.13: AuSCL Service Binding. The AuSCL servicebindings model view
binds the abstract models to concrete service instances.

6.6.3 Adapters Model View

The interface described in the roles, and the interface of the concrete service
instances realizing the roles can have di�erences, or they can start out as equal
but change through out the life cycle of the service composition. To handle
this the adapter [63] design pattern is used. This decouples the interface of
the target object and the adaptee by introducing an adapter between them to

86

handle inconsistencies in the two interfaces. The mapping code of the adapter
can be de�ned using OCL. Figure 6.14 shows an adapter, where the name of
the operation is di�erent in the concrete service and the de�ned interface in the
abstract model. The mapping code is shown in the constraint of the adapter
class.

Model Elements

� Adaptee - The concrete service instance.

� Adapter - The logic for mapping the targets interface to the adaptee's
interface.

� Target - The role de�ning the interface

UML2 Extensions This model view is an instance of an design pattern. The
pattern is implemented using standard UML2 constructs and does not extend
UML2.

Example Figure 6.14 shows the modelling of an adapter, operating between
the abstract process and the concrete service implementation to resolve any di�er-
ences in interfaces. In the case shown in the example, the name of the operation
is di�erent, being de�ned as getSupplierList() in the abstract de�nition, while
the relevant operation is called hentForhandlerList() in the concrete service. The
de�ned behaviour of the adapter is then to transform the getSupplierList() in-
vocation to a hentForhandlerList() invocation.

6.7 Main Contributions

AuSCL uses UML2 as the base for creating a visual language for service com-
position, building on some of the concepts from BPDM and UML4EDOC while
using the features already available in UML2. This section will go through the
main contributions of the AuSCL UML2 pro�le.

87

Figure 6.14: AuSCL Adapter. An adapter decouples the abstract service de�ni-
tions from the concrete service implementations

Structured multiple view model AuSCL represents the model of the service
composition through a set of model views, giving di�erent viewpoints of the
model. UML2 consist of a set of model views, of which AuSCL uses a subset,
to give a complete representation of of the service composition. Using several
di�erent model views gives a more distinct separation of concern, with each
aspect of a service composition modelled separately. Each model-construct is
de�ned only once, and is referred to by the other model views, making it easier
to create a consistent model by avoiding overlapping de�nitions. Multiple model
views also creates a more modular model, making it possible to reuse parts of
the model, for instance protocol or message de�nitions.

Separation of abstract and concrete models AuSCL contains an ex-
plicit separation of concrete and abstract models, all through to the structure
of the model and its separate views. This separation decreases the coupling
between the service composition and the details of the implementation of the
services used in the service composition, making the service composition better
suited to handle changes in the service implementations and making it easier to
change to other services.

Separation of internal and external models By modelling external, or
public, information, such as interfaces and protocols, in separate model views,
these models can be used for communication with partners in the development-
phase, without giving away private internal details of the system. Service de-
scriptions can also be given as visual models, as these models are separate from
the internal behaviour model views.

88

Adapters are used to separated the internal data model from data models used
by external partners. This simpli�es the the internal behaviour of the process,
and increases the decoupling of the internal and external aspects of the service
composition.
Internal and external behaviour is modelled consistently by using activity dia-
grams and sequence diagrams at di�erent abstraction levels.

UML2 Extensions AuSCL extends UML2 in several areas, both by adding
stereotypes and by introducing a structure for the created models. Table 6.1
summarizes these extensions, while table 6.2 details how AuSCL solves the
weaknesses in UML2 as described in chapter 5.

UML2Model view AuSCL Extension

Class Diagrams Added stereotyped classes to de�ne mes-
sages and roles.

Activity Diagrams Added stereotyped action representing a
ServiceInteraction, making it possible to
consistently integrate activity diagrams
and sequence diagrams. Added stereotype
for variable in process. By using adapters,
a uni�ed data model is used internally in
the process.

Component Dia-
grams

Added stereotyped component for Service,
Servicequery and MultipleServiceHandler.

Sequence Diagrams Models interaction with other partners, re-
ferred to by activity diagrams.

Table 6.1: Summary of evaluation of UML2 extensions.

Structure Introducing a structure for the model views helps the modeller
in the modelling process as well making it a more suitable for developing trans-
formations in a Model Driven Architecture. UML2 is a very open modelling
language, and has no de�ned structure for created models. The structure in
AuSCL helps separating the abstract models from the concrete ones, and makes
it easier to navigate in the complete model.

Stereotypes AuSCL introduces several stereotypes to extend UML2's ca-
pabilities in modelling service compositions. In UML2's structural model views,
stereotypes are introduced to create specialized classes for messages and roles, as
well as stereotypes for components representing services or servicequeries. In the
behavioural model views, the stereotypes are introduced in the activity diagram.
A specialized form of action, called serviceinteraction, represents consuming a
coarse grained service, which can consist of several message exchanges. These

89

Requirements UML2 Solution in AuSCL

Communication / Adds a method for combining Activity di-
agrams and sequence diagrams consistently,
through the �ServiceInteraction�

Conversational Ser-
vices

/ The �ServiceInteraction� construct, comb-
ing activity diagrams and sequence diagrams,
makes it possible to visually represent conver-
sation partners from an internal viewpoint.

Dynamic Service Se-
lection

- Adds extensions in UML2 component dia-
grams to de�ne a service in terms of queries
to a service broker, using the �ServiceQuery�
construct, or runtime selection using the
�MultipleServiceHandler� construct.

Modularity / Adds a structure to the model views, and a
speci�c set of model views to use in a ser-
vice composition model. Introduces a clear
separation of abstract and concrete models,
keeping as much as possible abstract.

Consistency / Adds a consistent way of combining activ-
ity diagrams and sequence diagrams for mod-
elling communication with an external part-
ner, by using the �ServiceInteraction�.

Table 6.2: A summary of how AuSCL corrects weaknesses found in UML2.

message exchanges are modelled using sequence diagrams. Data�ow in activity
diagrams are also extended, by using the variable stereotype for datastore ob-
jects, and read and write data�ows, which are constrainable so that they can
access parts of an dataobject.

90

Chapter 7

Evaluation of AuSCL

In this chapter AuSCL will be evaluated and analyzed comparatively with the
existing solutions UML2 and BPMN. There will also be a evaluation of the
research challenges presented in section 1.3.

7.1 Comparative analysis of AuSCL

AuSCL is a UML2 pro�le and will thus have several aspects where it is similar
to UML2. It is, however, aspect where the di�erences are more signi�cant, and
these will be highlighted here. The evaluation uses the identi�ed requirement as
a framework, presented in table 3.1.

7.1.1 External Requirements

Service Description AuSCL uses many of the same elements as UML2 when
describing a service. Interfaces and classes in class diagrams are the main con-
structs. AuSCL uses ports in a more speci�c way, as roles, and a way of grouping
interfaces, which give more clarity to a service description that contains several
interfaces grouped together. Another aspect that is not too well supported in
UML2 is support for describing the protocol in conversational services. AuSCL
tries to solve this by de�ning collaborations between the interacting roles, which
makes it possible to see for a partner the expected sequence of messages that will
be exchanged.
BPMN is speci�cally weak in service description, as it does not have any way of
describing the interface of a service in a clear manner and relies on interpretation
of the behavioural model.

Partner De�nition UML2 relies purely on provided and required interfaces
on components when describing the requirements for a partner. AuSCL uses
roles as a separate construct to describe this. The roles have both provided and
required interfaces, and they are a part of the collaborations. With respect to
binding a concrete service instance to a role the roles are used as ports which are

91

connected to the components representing the concrete services. The introduc-
tion of adapters help to loosen the coupling between the partners. Again BPMN
is not very strong in this area, as it does not have any model construct that
support interfaces or structural modelling.

Instance Access Management There are no speci�c improvements from
UML2 to AuSCL in this area. Instance access management is speci�cally impor-
tant when dealing with stateful resources such as WS-resources. UML2 sequence
diagrams gives the opportunity to model the state of the external partner, such
as the creation and destruction of external partners can be modelled.
The other aspect of instance access management, the ability to uniquely specify
which instance of a service to consume, is in some degree modelled in sequence
diagrams. The sequence diagrams models the instance of the external partner,
and one can model the that one two messages should be sent to the same instance
of a service. This is only possible to model if messages occur in the same dia-
gram, and is as such not a complete solution for de�ning this speci�c behaviour.
Neither UML2 or AuSCL have any support for de�ning the exact technology
used for instance management, but this is probably something that should be
transparent in the visual model and handled by the execution environment. The
lack of support in UML2 and AuSCL for a complete model of instance access
management is down to this, as there are several possibilities for de�ning which
instance of a service to use, but these are speci�c to the platform, such as WS-
Addressing [42] for web services, or correlation sets for BPEL [9] based services.
Possibly speci�c model views could have been added to AuSCL to model these
speci�c technologies for instance access management.
BPMN does not support any modelling of state or instance control.

7.1.2 Internal Requirements

Expressiveness - 5 basic workpatterns UML2 and AuSCL are similar in
this area, and the the expressiveness of UML2 as investigated in [58] also holds
for AuSCL. [61] also states that BPMN has similar capabilities with respect to
expressiveness as UML2. See appendix B for more details. The cases used in
this thesis does not contain complex requirements with regards to expressiveness,
but all 5 basic workpatterns that occur in the cases are supported by AuSCL,
UML2 and BPMN.

Data Manipulation Transformation of dataobjects between tasks in the ac-
tivity graph does not have a standardized method or construct in UML2. One
can use a separate task to perform this, or by adding constraints to either the
sending or receiving tasks, or the speci�c object-�ow. In AuSCL this kind of data
transformation is hidden from the internal process, and performed as a part of
the serviceinteraction, by using adapters. The data objects, as de�ned in the
process variables, are uniform throughout the process. This makes the internal
process clearer as it focuses on just control- and data-�ow, and keeps a uni�ed

92

data speci�cation in the process.
Data manipulation, in the form of getting parts of an existing dataobject does
is again not supported in any standard way in UML2. In AuSCL this is done
by expressions on the data�ow. These expressions de�ne paths to parts of the
variables, which are extracted and used in the serviceinteractions.

Communication One of the main weaknesses when modelling service compo-
sition in UML2 is the fact that activity diagrams are not suited for modelling
message interchanges between partners. To model the sending a message to a
partner, by invoking an operation, one needs to use a action to indicate that an
operation has been called. To receive the response message, one needs to use
another action. The partner, with which the message exchange is performed, is
not visually represented in the model, but is identi�ed with textual annotations
in the model. An action can thus only represent the sending or receiving of a sin-
gle message. Sequence diagrams is the best way of modelling the interchanges of
messages, but there is no standard way of connecting the communication actions
in the activity diagram with the message sending in the sequence diagrams.
In AuSCL the message interchanges are represented in collaborations, with the
details being modelled in sequence diagrams. These interactions, which can con-
tain several message interchanges are used as a serviceinteraction. This means
that in the internal process, an action can represent a service consumption, not
just an operation involving sending or receiving a single message. This makes the
internal process more coarse grained, and more suited to the principle of service
oriented architecture, with loosely coupled, document-based and coarse grained
services.
BPMN has the capabilities of having a solution similar to the approach used in
AuSCL, with tasks that can contain several message events. An event repre-
sent a service interaction, consisting of several message exchanges modelled with
events.

Conversational Services Conversations require a combination of internal and
external models cooperating in an consistent manner to clearly model the com-
munication with the external partners and the internal behaviour. AuSCL does
this by using sequence diagrams to details the activity diagrams, this remov-
ing the problem of sequence diagrams and activity diagrams overlapping, and
modelling the same behaviour. This combination makes AuSCL well suited for
modelling conversations.
One weakness in AuSCL with respect to conversational service is the ability to
handle callback interfaces. If a client consuming a service at runtime speci�es
an endpoint address to which replies should be sent, this can not presently be
de�ned in AuSCL. This could be solved by adding a �eld in the �service� compo-
nent named callback, containing a boolean true/false value. If true, the address
of this service is set at runtime according to the information given by the client
at invocation.
BPMN combines the external and internal model views in one model to model

93

conversations. The internal service orchestration communicates with partners
in a manner that makes BPMN well suited for modelling conversational service
interactions.

Dynamic Service Selection AuSCL has a clear separation between the con-
crete and the abstract parts of the model. The binding between the abstract and
the concrete part can be static, with concrete service instances being speci�ed, or
more dynamic by using the service query construct. The service query construct
makes it possible to bind to concrete service implementations at runtime. The
multiple service handler construct introduces dynamic service selection without
using a service broker, but by using a set of service instances known at run time.
UML2 contains the possibility of separating the concrete and the abstract mod-
els, but this is up to the modeller. AuSCL makes the modeller do this by de�ning
what each model view should contain.
The ServiceQuery construct would be more robust if a mechanism was added to
handle the situation of the query returning no results. A form of exception or
other fault handling mechanism could be used to gracefully handle this, making
it possible for the service composition to deal with the situation.
BPMN does not contain any support for dynamic service selection.

7.1.3 Other Requirements

Modularity AuSCL has a clear separation of what each model view should
represent, and no model view should be overlapping with any other model view.
This increases the modularity, as a model view that has a clear separation from
the rest of the model, can be easier replaced than a model that has several
complex dependencies with other model views. The structure introduced by
AuSCL also aids the modularity of the model. UML2 does contain some built in
support for a modular design, such as in activity diagram where an hierarchy of
activities are possible and in sequence diagram. Structural model views also have
good support for modularity. UML2 does, however lack the built in structure of
the model views, which is supported by AuSCL.
BPMN does only have one model view, but this view can be given an hierarchical
structure which makes it possible to have some degree of modularity.

Consistency AuSCL uses a set of model views, where each model view repre-
sents an aspect of the model The structure of the model views is there to avoid
overlapping models, which makes it better for containing a consistent model.
Each model artifact has only one de�nition, and this is referred to by the other
model views.

7.1.4 Heterogeneous Services Requirements

Web Services The Web Service stack of standards uses a simple operation
based paradigm for description and invocation. The interfaces used to described

94

services in WSDL documents are similar to interfaces in AuSCL, and the in-
vocation of such an operation is modelled using operation invocation in UML2
sequence diagrams. Thus, AuSCL fully supports the Web Service paradigm.

Grid Services The two main requirements presented related to grid services
were life cycle management and interfaces with properties as well as operations.

Life Cycle Management Grid service needs special focus on life cycle
management, and even though the resource presents a stateless service based in-
terface to do this, it is helpful if the modelling language makes it possible to show
the state of the partner. UML2 supports this partly by using sequence diagrams,
where the creation and destruction of partner instances can be modelled., and
also modelling that the same instance that were created by one message should
be used later. AuSCL uses these abilities, making it possible to model the con-
sumptions of stateful resources and the services they provide.
BPMN does not contain functionality for life cycle management.

Resource Properties A stateful resource on a grid will present some prop-
erties in its interface as well as operations. Both UML2 and AuSCL support this
fully, as interfaces can contain both operations and properties. The type of the
properties are de�ned in class diagrams.
BPMN does not support stateful resources with properties.

P2PServices P2P network service invocation is similar to normal service in-
vocation. There might be more message exchanges involved as there are more
emphasis on searching for the peer that perform the service. In this respect,
AuSCL is helpful as it makes it easy to model a serviceinteraction to contains
several message interchanges. UML2 does not support this in the same way.
BPMN does support this to some degree, as it is possible for a task to contain
several message exchanges.

7.2 Research Challenges

In chapter 1 a set of challenges were presented. These challenges will be evalu-
ated and discussed here.

There are actual requirements for visual composition of heterogeneous

services, that are not supported by existing solutions. Several require-
ments for visual service composition have been identi�ed and were presented
in chapter 3. These requirements have in this report been structured into ex-
ternal and internal requirements. The external requirements focuses on service
description, and how the service relates to its partners, both clients invoking
the service, and services that are part of the service composition. Internally the
requirements are more diverse, some focuses on expressiveness, while others are

95

related to communicating with the partners.
With respect to heterogeneous services, in this thesis restricted to P2P network
and grid based services, there seems to be very little that di�erentiates these
service technologies from Web Services at the level of abstraction being used
in visual modelling. Grids consists of resources, either stateful or not, and the
WSRF [23] speci�cation hides the complexity of dealing with stateful resources
behind a standard Web Service based stateless interface, with operations for
managing the life cycle of the resource. In the cases where the resources actually
are stateless, they are similar to regular Web Services. Even though a stateful
resource is hidden behind a set of stateless operations it can be helpful if the
visual language can be used to model the state of the resource, to aid the user
of the language.
P2P network services are even more similar to Web Service than grid based ser-
vices, even though they are not as tied to Web Service xml-based protocols for
messaging and discovery. The invocation paradigm of a P2P network service is
more or less the same as in a Web Service invocation with one exception. Due
to the dynamic structure of a P2P network, a search is performed to �nd peers
providing the required service prior to invocation.
The evaluation of BPMN and UML2 in chapter 5 shows that both UML2 and
BPMN fails to meet all the requirementd presetned in chapter 3.

No visual service composition language available today is suitable for

modelling composition of heterogeneous services. Several visual mod-
elling languages were investigated and are presented in appendix A. The two
languages perceived to be the most suitable were selected for a more thorough
study, using a case based evaluation (chapter 5). This evaluation of UML2 and
BPMN showed that neither meets all the stated requirements for modelling a
visual composition of heterogeneous services.

UML2 Pure UML is a very open language, with a broad range of model
views and extensive expressive powers. This makes it possible to model service
compositions i UML2, but there are some weaknesses that can cause problems.
The internal process, modelled in activity diagrams, are not suitable for mod-
elling communication with partners. An action is used for modelling an atomic
operation such as sending or receiving an message, and such an action must
be decorated with textual information to give su�cient details, including what
message to send and what operation to use. The level of detail in the activity
diagrams becomes high and complex, as it must model each atomic communi-
cation operation separately, even though a service consumption could involve
several such operations.
Aspects such as dynamic service selection is not directly supported, and there
are no distinct separation of abstract and concrete models.

BPMN BPMN is a visual notation for modelling business processes, and
lacks some of the aspects that are important for service composition, such as

96

interface description, and dynamic service selection. It is also targeted at the
business user, and lacks some of the low level details which is necessary to create
a complete model. The notation only supports the web service standards for
service invocation, which makes it suitable for web services and grids, but might
make it impossible to invoke P2P network services.

A new language called AuSCL will be suitable for modelling hetero-

geneous service composition. AuSCL's suitability for heterogeneous service
composition has been shown in the evaluation in this chapter. AuSCL enhances
UML2's capabilities in some areas such as dynamic service selection, commu-
nication and model structure and a better separation of abstract and concrete
models. It also makes it easier to work with services as coarse grained functional
units, by making it possible to have a service interaction in the internal process
consist of several messages.
UML2 contains multiple model views, and AuSCl makes a selection of these cre-
ating a structured way of presenting these model views to give a clear modularity
where each aspect of the service composition is modelled only once. Adding roles
as a constructs enhances the capabilities to describe what is required of a partner
in a service composition.

7.3 Summary of Evaluation

The evaluation of AuSCL is summarized in table 7.1. AuSCL introduces a struc-
tured way of modelling a service composition, using a set of model views. The
structured approach helps in keeping the model consistent and modular. The
multiple model views show the service composition model from several separate
viewpoints, and the structure aids consistency as it avoids the creation of over-
lapping model views. AuSCL extends the functionality of UML2 in several areas,
adding stereotypes to handle dynamic service selection, and combining activity
and sequence diagram in a consistent manner to handle conversations and specify
communication from both an internal and external viewpoint. Stereotypes are
also used to extend UML2's capabilities in de�ning requirements for a partner in
a service composition. No extension has been proposed to add to UML2's ability
to model instance access management. UML2 already had good support for het-
erogeneous services, thus there have been no additions by AuSCL in this area.
Other speci�c aspects that can be �xed is better support for callback interfaces
and a more robust ServiceQuery construct.

97

Requirements AuSCL

External Service Description +
Partner De�nition +
Instance Access Management /

Internal Expressiveness (Basic Workpat-
terns)

+

Data Manipulation +
Communication +
Conversational Services +
Dynamic Service Selection +

Other Modularity +
Consistency +

WS Web Services +
Grid Grid Resources +

Grid Life cycle Management +
Grid Resource Properties +

P2P P2P Services +

Table 7.1: Summary of evaluation of AuSCL. + is full support for the require-
ments, / means some support while - means no support.

98

Chapter 8

Conclusions and Future Work

This thesis has proposed a domain speci�c UML2 pro�le called "Another uni�ed
Service Composition Language" (AuSCL). This thesis has also presented a set
of requirements for visual composition of heterogeneous services, based on a set
of case-implementations, investigated service composition languages and related
technologies. These requirements and case studies has been the base for an
evaluation of UML2[10], BPMN[11] and the proposed AuSCL UML2 pro�le.

8.1 Conclusions

Programming by composition can reduce the time and cost of developing software
systems, by reusing already existing software systems to create new value-added
functionality. A combination of Service Oriented Architecture [4] (SOA) and
Model Driven Architecture [5] (MDA) can be used to de�ne a visual language
for creting models of composition of services, which can be transformed to an
executable composite service.
AuSCL is such a language, implemented as a UML2 pro�le to enhance the func-
tionality of UML2 and create a domain speci�c structure of multiple model views
for a service composition model. AuSCL extends UML2 with constructs for dy-
namic service selection, to support late binding, and a consistent way of com-
bining activity diagrams and sequence diagrams to model communication with
external partners from both external and internal viewpoints, by using the two
diagrams at di�erent abstraction levels. AuSCL is structured to separate ab-
stract and concrete model views, and di�erentiates internal and external model
views.
AuSCL uses ideas from UML4EDOC [13] and the BPDM notation [12] to cre-
ate a a domain speci�c UML2 pro�le for composition of heterogeneous services.
A UML2 has the advanteges from UML2 of good support for metamodelling
through the Meta Object Facility [37] (MOF) and a standardized lexical repre-
sentation in XML Metadata Interchange [38] (XMI) helping the potential inte-
gration of AuSCL into a complete MDA platform.

99

Evaluation A set of requirements has been identi�ed for a visual language for
composition of heterogeneous services. These requirements are shown in table
8.1. The requirements are structured to separate requirements for general ser-
vice composition from requirements related to the set of heterogeneous services
considered in this thesis, Web Service, grid services and P2P-network services.
The general service composition requirements are either related to external or
internal aspects of the service composition as shown in the table. The presented

Requirements AuSCL UML2 BPMN

External Service Description + + -
Partner De�nition + + -
Instance Access Management / / -

Internal Expressiveness + + +
Data Manipulation + + -
Communication + / +
Conversational Services + / +
Dynamic Service Selection + - -

Other Modularity + / +
Consistency + / /

WS Web Services + + +
Grid Grid Resources + + /

Grid Life cycle Management + + -
Grid Resource Properties + + -

P2P P2P Services + + /

Table 8.1: Summary of evaluation of AuSCL compared to UML2 and BPMN.
+ is full support for the requirements, / means some support while - means no
support.

requirements in table 8.1 are the base for the evaluation of UML2, BPMN and
AuSCL, with case implementations (appendices C, D, E) to support the eval-
uation. The evaluation results, summarized in table 8.1 shows that aspects of
BPMN and UML2 can be improved to enhance the support for visual composi-
tion of heterogeneous services.
The evaluation of BPMN showed that with only one model view and no struc-
tural model views, and the lack of ability to visually de�ne message and inter-
faces, BPMN does not meet the requirements for a visual service composition
language. In relation to heterogeneous services, BPMN is bound the Web Ser-
vices as the invocation technology, and does not support modelling of the life
cycle or stateful properties of a grid service. BPMN is strong when modelling
communication between partners and has a consistent link between internal and
external behaviour.
UML2 has a set of model views available, making it a very open language. With
several model views di�erent aspects of the model can be modelled separately,
but the no built in structure exists for a speci�c domain such as composition

100

of heterogeneous services. UML2 meets the requirements for heterogeneous ser-
vices, with the ability to model life cycle management and resource properties for
grids, and being platform independent in relation to the invocation technology
being used. UML2 does not have a well de�ned link between the internal and ex-
ternal de�nition of the behaviour, speci�cally in terms of communication between
partners. This is modelled both using activity diagrams and sequence diagrams,
and the combination of these to diagrams can create two speci�cations of the
same behaviour. Other aspects of UML2 which can be improved is to introduce
dynamic service selection, for late binding to concrete service implementations.
The evaluation of AuSCL shows that AuSCL improves upon the weaknesses

Figure 8.1: AuSCL uses several model views to model a service composition.

discovered in UML2. Dynamic Service selection is added by a set of stereotypes,
making it possible to de�ne a service by its address, by a query to a service
broker or by a handler selecting between a de�ned set of services. Communica-
tion between partners are modelled with a combination of activity and sequence
diagrams, but the serviceinteraction stereotype is introduced in the activity to
have a coarse grained activity which is detailed by a sequence diagram specifying
the message exchanges.
The structure introduced in AuSCL separates between abstract and concrete
models, and introduces a clear separation of concern, with each model view
modelling a speci�c aspect of the service, and each construct in the model being
de�ned only once. Partners are described in terms of roles in the abstract model
views, and bound to concrete service implementations by the concrete models.
Internal and external information is separated, making it possible to share the
external models with partners without giving away implementation details.
The structure helps the developer as decisions has already been made about what
model views to use for modelling a service composition, thus narrowing down the
options available in UML2. Modularity is also increased by using the structure

101

as a prede�ned set of model view makes it possible to reuse a speci�c model view
in other service composition models.

8.2 Future Work

Several aspects of AuSCL can be the base for future work.

� The pro�le can be implemented in a tool, creating a visual representation
for the stereotypes de�ned by AuSCL.

� Implementations to �x the identi�ed weaknesses; callback-interface support
in the servicebindings model view and service query robustness should be
added.

� AuSCL can add support for semantic description of service, making it
possible to create goal-driven automatic composition.

� AuSCL can support some visual pro�le for Quality of Service, using it for
QoS based dynamic service selection.

� Transformation de�nitions from AuSCL to a executable service composi-
tion language such as BPEL or JOpera can be de�ned.

� AuSCL can be modi�ed to support the Business Process De�nition Meta-
model, when a standardized version of this is presented. This would auto-
matically add support for transformation to other languages also support-
ing BPDM

� Other service technologies or paradigms, such as agent-based services can
be studied to see if they create additional requirements that might create
a need for futher enhancements to AuSCL

102

Bibliography

[1] M. D. McIlroy. (1968) Mass produced software components. [Online].
Available: http://www.ericleach.com/massprod.htm

[2] G. Wiederhold, P. Wegner, and S. Ceri. (1992) Towards megaprogramming.
[Online]. Available: http://www-db.stanford.edu/CHAIMS/Doc/Papers/
92cacm/cacm-�nal.ps

[3] (2005) Sodium home page. [Online]. Available: http://www.atc.gr/sodium/
project.asp

[4] Z. Stojanovic and A. Dahanayake, Service-oriented Software System Engi-
neering Challenges And Practices. Independent Pub Group, 2005.

[5] OMG. (2005) Model driven architecture homepage. [Online]. Available:
http://www.omg.org/mda/

[6] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F. Nielsen.
(2003) Soap version 1.2 part 1: Messaging framework. [Online]. Available:
http://www.w3.org/TR/soap12-part1/

[7] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana.
(2001) Web services description language (wsdl) 1.1. [Online]. Available:
http://www.w3.org/TR/wsdl

[8] L. Clement, A. Hately, C. v. Riegen, and T. Rogers. (2005) Uddi version
3.0.2. [Online]. Available: http://uddi.org/pubs/uddi_v3.htm

[9] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, and J. Klein. (2003)
Speci�cation: Business process execution language for web services version
1.1. [Online]. Available: http://www.ibm.com/developerworks/library/
ws-bpel/

[10] OMG. (2004) Uml2 superstructure speci�cation. [Online]. Available:
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02

[11] S. A. White. (2004) Business process modeling notation (bpmn) version 1.0.
[Online]. Available: http://www.bpmn.org/Documents/BPMN%20V1-0%
20May%203%202004.pdf

103

[12] J. H. Frank, T. A. Gardner, S. K. Johnston, S. A. White, and
S. Iyengar. (2004) Business processes de�nition metamodel concepts
and overview. [Online]. Available: www.bpmn.org/Documents/BPDM/
BPDM%20Whitepaper%202004-05-03.pdf

[13] B. Wood. (2001) A uml pro�le for enterprise distributed object computing
(edoc). [Online]. Available: http://edoc.doc.ic.ac.uk/pdf/BryanWood.pdf

[14] D. Quartel, R. Dijkman, and M. v. Sinderen, �Methodological support for
service-oriented design with isdl,� in 2nd International Conference on Ser-
vice Oriented Computing, New York City, 2004.

[15] R. Dijkman and M. Dumas, �Service-oriented design: a multi-viewpoint ap-
proach,� International Journal of Cooperative Information Systems, vol. 13,
no. 4, pp. 337�368, 2004.

[16] C. Kaler. (2002) Web services security. [Online]. Available: http:
//www-106.ibm.com/developerworks/webservices/library/ws-secure/

[17] IBM. (2004) Web services transaction. [Online]. Available: http:
//www-128.ibm.com/developerworks/library/speci�cation/ws-tx/

[18] R. Schollmeier, �A de�nition of peer-to-peer networking for the classi�ca-
tion of peer-to- peer architectures and applications,� in First International
Conference on Peer-to-Peer Computing. IEEE Computer Society, 2002.

[19] M. P. Papazoglou, J. Yang, and B. J. Kramer, �Leveraging web-services and
peer-to-peer networks,� in CAiSE 2003, 2002.

[20] (2005) Jxta programmers guide. [Online]. Available: http://www.jxta.org/
docs/JxtaProgGuide_v2.3.pdf

[21] (2005) Project edutella homepage. [Online]. Available: http://edutella.jxta.
org/

[22] (2005) Gnutella homepage. [Online]. Available: http://www.gnutella.com/

[23] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin,
D. Snelling, S. Tuecke, and W. V. Hewlett-Packard). (2004) The ws-resource
framework. [Online]. Available: http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsrf

[24] I. Foster, C. Kesselman, and S. Tuecke, �The anatomy of the grid: En-
abling scalable virtual organizations,� Lecture Notes in Computer Science,
vol. 2150, 2001.

[25] M. Haynos. (2005) Perspectives on grid: Using automation e�ectively
within a grid infrastructure. [Online]. Available: http://www-106.ibm.com/
developerworks/grid/library/gr-automation/

104

[26] D. Gannon, �Programming the grid: Distributed software components, p2p
and grid web services for scienti�c applications,� in 2nd International Work-
shop on Grid Computing, Denver, 2001.

[27] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman,
T. Maquire, T. Sandholm, D. Snelling, and P. Vanderbilt. (2003) Open
grid services infrastructure (ogsi). [Online]. Available: http://www-unix.
globus.org/toolkit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf

[28] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire,
D. Snelling, and S. Tuecke. (2004) From open grid services infrastructure
to wsresource framework: Refactoring and evolution. [Online]. Available:
http://www.globus.org/wsrf/

[29] T. Fahringer, S. Pllana, and A. Villazon, �Agwl: Abstract grid work�ow
language,� Lecture Notes in Computer Science, vol. 3038, pp. 42 � 49, 2004.

[30] Y. Yang, S. Tang, W. Zhang, and L. Fang, �A work�ow language for grid
services in ogsi-based grids,� Lecture Notes in Computer Science, vol. 3251,
pp. 65 � 72, 2004.

[31] S. Krishnan, P. Wagstrom, and G. Laszewski. (2002) Gs�: A
work�ow framework for grid services. [Online]. Available: http:
//users.sdsc.edu/~sriram/publications/gs�.pdf

[32] A. Slomiski, �On using bpel extensibility to implement ogsi and wsrf grid
work�ows,� in GGF10 Grid Work Flow Workshop, 2004.

[33] C. Peltz, �Web services orchestration and choreogrphy,� Web Services Jour-
nal, vol. 03, no. 07, 2004.

[34] A. Kleppe, J. Warmer, and W. Bast, MDA Explained. Addison Wesley,
2003.

[35] (2005) Mof 2.0 query/view/transformation home page. [Online].
Available: http://www.omg.org/techprocess/meetings/schedule/MOF_2.
0_Query_View_Transf._RFP.html

[36] (2005) Umt-qvt homepage. [Online]. Available: http://umt-qvt.sourceforge.
net/

[37] OMG. (2004) Mof 2.0 core �nal adopted speci�cation. [Online]. Available:
http://www.omg.org/cgi-bin/doc?ptc/2003-10-04

[38] ��. (2002) Xml metadata interchange (xmi), v2.0. [Online]. Available:
http://www.omg.org/cgi-bin/doc?formal/2003-05-02

[39] S. D, G. R, and S. I, �Web service composition in uml,� in The 8th Interna-
tional IEEE Enterprise Distributed Object Computing Conference (EDOC),
Monterey, California, 2004.

105

[40] T. Gardner. (2004) Business process de�nition metamodel. [Online].
Available: http://www.omg.org/cgi-bin/doc?bei/04-08-03

[41] ETH-Zurich. (2005) Jopera service composition suite homepage. [Online].
Available: http://www.iks.ethz.ch/jopera

[42] D. Box, E. Christensen, F. Curbera, D. Ferguson, J. Frey, M. Hadley,
C. Kaler, D. Langworthy, F. Leymann, B. Lovering, S. Lucco,
S. Millet, N. Mukhi, M. Nottingham, D. Orchard, J. Shewchuk,
E. Sindambiwe, T. Storey, S. Weerawarana, and S. Winkler. (2004)
Web services addressing (ws-addressing). [Online]. Available: http:
//www.w3.org/Submission/ws-addressing/

[43] J. Clark and S. DeRose. (1999) Xml path language (xpath) version 1.0.
[Online]. Available: http://www.w3.org/TR/xpath

[44] B. Verheecke, M. A. CibrÃ½n, and V. Jonckers, �Aspect-oriented program-
ming for dynamic web service monitoring and selection,� in European Con-
ference on Web Services, Erfurt, 2004.

[45] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham,
I. Sedukhin, D. Snelling, S. Tuecke, and W. Vambenepe. (2004) The
ws-resource framework. [Online]. Available: http://www.globus.org/wsrf/
specs/ws-wsrf.pdf

[46] S. Tuecke, L. Liu, and S. Meder. (2004) Web services base faults 1.2.
[Online]. Available: http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=wsrf

[47] T. Maguire and D. Snelling. (2004) Web services service group 1.2.
[Online]. Available: http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=wsrf

[48] S. Graham and J. Treadwell. (2004) Web service resource properties 1.2.
[Online]. Available: http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=wsrf

[49] L. Srinivasan and T. Banks. (2004) Web services resource lifetime 1.2.
[Online]. Available: http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=wsrf

[50] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire,
D. Snelling, and S. Tuecke. (2004) Publish-subscribe noti�cation for
web services. [Online]. Available: www.ibm.com/developerworks/library/
ws-pubsub

[51] J.-J. Dubray. (2005) Automata, state, actions, and interactions. [Online].
Available: http://www.ebpml.org/pi-calculus.htm

106

[52] D. Martin. (2005) Owl-s: Semantic markup for web services 1.1. [Online].
Available: http://www.daml.org/services/owl-s/1.1/overview/

[53] (2005) Web service modeling ontolgy home page. [Online]. Available:
http://www.wsmo.org/

[54] (2005) Web service modeling language home page. [Online]. Available:
http://www.wsmo.org/wsml/index.html

[55] A. Gramm. (2005) Ws-qos - a framework for qos-aware web ser-
vices. [Online]. Available: http://www.inf.fu-berlin.de/inst/ag-tech/wsqos/
tech-reports/FUB-Tech-Report_B-04-11_Gramm.pdf

[56] (2004) Uml pro�le for modeling quality of service and fault tolerance
characteristics and mechanisms. [Online]. Available: http://www.omg.org/
docs/ptc/04-09-01.pdf

[57] (1999) Xsl transformations. [Online]. Available: http://www.w3.org/TR/
xslt

[58] W. v. d. Aalst. (2005) Work�ow patterns home page. [Online]. Available:
http://tmitwww.tm.tue.nl/research/patterns/patterns.htm

[59] W. M. P. v. d. Aalst, �Dont go with the �ow: Web services composition
standards exposed,� IEEE Intelligent System, vol. 18, no. 1, pp. 72�85,
2003.

[60] W. M. P. v. d. Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros.,
�Work�ow patterns,� Distributed and Parallel Databases, vol. 14, no. 3, pp.
5�51, 2003.

[61] S. A. White. Process modeling notations and work�ow
patterns. [Online]. Available: http://www.bpmn.org/Documents/
NotationsandWork�owPatterns.pdf

[62] J. Rumbaugh, I. Jacobson, and G. Booch, The Uni�ed Modeling Language
Reference Manual, Second Edition. Addison-Wesley, 2004.

[63] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1988.

[64] Oracle. (2005) Oracle bpel process manager homepage. [Online]. Available:
http://www.oracle.com/technology/products/ias/bpel/index.html

[65] IBM. (2004) Bpws4j homepage. [Online]. Available: http://www.
alphaworks.ibm.com/tech/bpws4j

107

Appendix A

Presentation of Service

Composition Languages

A.1 Presentation of existing visual service com-

position languages

Service composition is normally implemented as a specialized form of a executable
business processes. This state of the art study will therefor focus on visual
languages for de�ning business processes, but there will be speci�c focus on the
support for service composition and heterogeneous service technologies. The
languages will be presented from several viewpoints;

� External Aspects of the service composition

� Internal Aspects of the service composition

� Support for service composition

� Support for composition of heterogeneous services

. The languages presented are UML2, UML4EDOC (UML1.4 pro�le), BPMN,
JOpera, and the BPDM notation.

A.1.1 UML2

The Uni�ed Modeling Language [10],[62] was created 1997, and has been stan-
dardized and developed by OMG since then. Currently Uml2 is in the �nal stages
of �nalization. It has a explicit metamodel structure, MOF[37], which means that
it is easily extendable, both at a metalevel and at a more concrete level. UML
consists of several types of models, giving it an enhanced expressive power, being
able to model from several complementing perspectives. This gives the ability to
model both static and behavioural aspects of a system. In this section UML 2.0
will �rst be investigated, followed by some UML extensions, called UML pro�les.
UML has an explicitly de�ned metamodel and lexical representation, XMI [38].

108

This makes UML a well suited candidate for model transformation.
A UML pro�le is an extension of UML. Stereotypes are used to de�ne special-
izations of the existing constructs in UML to give the modeler the possibility
to model a specialized area i a more specialized way. The stereotypes can also
be used together with a graphical notation to enhance the visual capabilities of
modelling a special domain.

Externally visible structure There are several model views that can model
externally visible structure in UML, mainly Component and Class Diagrams[10].
In the context of service composition and executable business processes compo-
nent diagrams are the most interesting, with component being a more coarse
grained structure, with ore focus on interfaces, both provided and required.
Externally component diagrams focuses on the interfaces that the component
provides to other components and the interfaces it needs other components to
provide. The interfaces can contain operations and attributes. This interfaces
can be connected to the internal details of the component by the use of ports
which are connection points for a structural component and its environment.
The use of ports and required and provided interfaces can be seen in �gure A.1.
The �gure shows a set of components that via ports provide some interfaces
and require some others. These interfaces are then connected using the depen-
dency association. Stereotyping are used on the ComposedService component to
indicate that this component is a process.

Figure A.1: UML2 Component Diagram

109

Internal structure The internal structure of a component is in UML 2.0 mod-
eled using composite structure diagrams [10]. These diagrams show how the
di�erent parts of a component are composed and how they communicate. The
parts can be connected to the ports of the components to create a connection
to the external environment of the component. One can also use some parts of
a component diagram to describe some internal detail, such as operation and
attributes that are private and not externally visible.

Messages The messages that are part of a service composition or a process
choreography can be de�ned using UML class diagrams [10]. The class diagrams
takes an object oriented view to messages, giving a hierarchical structure, where
classes contain attributes that themselves can be classes. Cardinality can also
be expressed here giving the opportunity to use collections. For event and asyn-
chronous messages a standardized stereotype �Signal� is possible to use. A class
diagram is shown in �gure A.2. Some classes are set to be parts of other classes
by the use of the aggregation association.

Figure A.2: UML2 Class Diagram

Externally visible behaviour The behaviour of a composed service or ex-
ecutable business process have several aspects. If one wants to show how the
components, or services or processes, interact, only the externally visible behav-
iour is interesting, called the protocol of the interaction.
In UML 2.0 the external behaviour is described using interaction diagrams [10],
which is either sequence or communication diagrams. These diagrams shows the
possible histories of the messages being sent between the components, modelled
as timeliness. The diagrams have programmatic constructs such as conditions
ans loops called fragments. Interaction diagrams can be hierarchical using gates
and diagram references to as constructs to connects together di�erent levels in
the hierarchy. Lifelines are used to model the participants in the diagrams inter-
changing messages.

110

The strength of sequence diagrams are that they support the concept of time,
using a happened-before relation, where one can model that some event, such as
sending or receiving a message must happen before another event in the same
timeline and also that the sending of message from one component must happen
before the message is received at the destination. A sequence diagram is shown in
�gure A.3. The lifelines represents the ports modelled in �gure A.1, and there is
one example of a fragment showing two alternative behaviours. The �ow of dif-

Figure A.3: UML2 Sequence diagram

ferent interactions can be shown by using an interaction overview diagrams, using
concepts from activity diagrams to easily model parallel behaviour and decisions.
Another model view that has the same expressive power as a sequence diagram is
the communication diagrams. Third model view uses numbering of the messages
being sent between the components instead of the implicit happened-before rela-
tion of the interactions. Semantically a communication diagrams is equal to an
sequence diagram.

Internal behaviour Interaction does not show the internal behaviour of a
component, a component can only send or receive a message. If the component
wants to perform an internal operation , for instance changing the value of a
variable, the interaction is not a su�cient model view. For this one should use

111

activity diagrams. This model view shows the �ow of an process, both in terms
of control �ow, ie, what part of the system has control of the execution, and
the data�ow, how the data �ows between the di�erent parts of the system. The
graph of activities can be composed in a hierarchical fashion to create a better
structure, using the fact that an activity can contain be decomposed into a set
of activities.
At the atomic level, actions are the smallest unit of behaviour. The UML action
language has a well de�ned semantics , making it as expressive as a lexical pro-
gramming language. The are actions for sending and receiving messages, as well
as calling operations, accepting calls and changing the values of variables. The
actions contain the properties necessary to execute the de�ned behaviour. It can
also have associated data�ow to show the input and output data for the action.
Figure A.4 gives the internal behaviour of the ComposedService processcompo-
nent. This process has a set of variable, given as �datastore� objects, and a set
of actions and a control�ow. The expansion node indicates that data structured
as a collection is coming in and that the expansion node loops over each element
of the collection and performs the speci�ed behaviour on each element in the
collection.

Support for heterogeneous service composition. Even though UML2 has
no speci�c notion of a service it can be modeled using components and interfaces.
From a behavioural viewpoint consuming a service can be modeled as an action
or by sending messages in a sequence diagram. As UML is platform independent
the implementation technology of the service is not showing in a UML diagrams
but one can create a pro�le which details this by using stereotyping.

A.1.2 UML 1.4 Pro�le for Development for Component
Based Enterprise (EDOC)

UML4EDOC [13] is a UML extension that aims to simplify the development of
component based enterprise systems by providing a platform independent model.
It can be used both for business and system modelling, at di�erent levels of gran-
ularity. There are several pro�les giving di�erent model views. All pro�les have
an explicit metamodel.

Component Collaboration Architecture Pro�le This pro�le gives a com-
ponent view of the model. It has both external and internal viewpoints using
ports as the connecting element. Firstly, the structure viewpoints models the
components, with ports, and protocols gives a structural view of the external as-
pects of the components, including how the di�erent components are connected
and and how they interact. Also the interfaces of the components are de�ned
in this view. An example of this diagram type is shown in �gure A.5 where to
process components communicate using a pair of ports, and the communication
is de�ned in the protocol. . Next is the choreography viewpoint, �gure A.6,

112

Figure A.4: UML2 Activity diagram

113

Figure A.5: UML4EDOC Structure Diagram

showing the behaviour of the component from an external point of view. . There
is also a viewpoint in UML4EDOC that focuses on the internal structure of a
processcomponent, and how the internal details are connected, via the ports, to
the external environment.

Entities Pro�le The entities pro�le models the information view of the com-
ponent. The structure of the dataobjects that are used and how they are associ-
ated with each other, and the aggregation is also shown. The entity model also
introduces the notion of roles with the entity concepts. Entity roles are managers
that provide ports that can be used to manage the data objects that are a part
of the entity. Figure A.7 shows an entity diagram where an AccountManager
role is associated with the entitydata and aggregation is used to de�ne the parts
of the entitydata object

Events Pro�le The events pro�le is a pro�le for modelling event base business
process systems. With this pro�le one can show how the event are sent between
processes, and what data they interact with. The publish/subscribe pattern is
also supported by this pro�le.

Business Process Pro�le This pro�le focuses on the business process, and re-
lating this process to the components. The pro�le is based on activity diagrams.
It uses a di�erent notation but most of the same concepts. The compundtasks
can have ports, giving the possibility of de�ning the input and output data from
a compundtask. A compound task contains activities and the data�ow between

114

Figure A.6: UML4EDOC Choreography Diagram

them. Control �ow is de�ned to be a specialized form of data�ow. Also in the
business process view the notion of a role is introduced. A role is introduced
as an abstraction of an external component that are used by the activities in
the compound task. It can either be de�ned as a speci�c component or as a
search-query used to �nd a component and bind to the role at runtime. This
is used when an activity needs an component to do its work. There are three
di�erent roles de�ned, performer, artifact and responsible-party. The usage of
roles is a way of connecting an activity with its environment, ie. the components
that exists together with the process.
Figure A.8 shows a process that is de�ned using this pro�le. The processcom-
ponents has ports, which is where the data is initially sent to the component.
The activities A, B and C are similar to actions in UML2, representing a piece
of work. In UML4EDOC these actions are associated with the role, for instance
PR1, that performs the work. The data�ow is connected to the activities by
using ports.

115

Figure A.7: UML4EDOC Entity Diagram

A.1.3 BPMN

The Business Process Modeling Notation [11] is developed by the BPMI.org
organization. It is a visual language that should be readily understandable for
business users. This makes it a di�erent proposition from UML, which are much
more software oriented in its approach. To achieve this, the BPMN notation
models business processes at a high abstraction level which removes some of the
details, and makes it easier to model the business aspects of the process, without
considering the software point of view.
BPMN does only contain one model view, the business process diagram, and
states in the speci�cation that organization structure, functional breakdowns
and data and information modelling is outside of the scope of BPMN.

Externally visible behaviour A process modelled in BPMN can be mod-
elled to only focus on the external behaviour. The main units in such diagram
is a pool. The pool is a part of the pool-swimlane metaphor which is used for
creating structure in a Business Process Diagrams (BPD), with the pool being
the main a separate process, which again can be divided into (swim)lanes to cre-
ate structure inside a pool, for instance which roles or participants perform the
speci�c activities. The pools can have data�ow, modelled as messages, between
them. In these models the pools can be black boxes, giving no details about the
internal behaviour. This model view does give some information about the chore-
ography of the processes, but it does not give a complete model of the external

116

Figure A.8: UML4EDOC Business Process Diagram

behaviour. In the example shown in �gure A.9, where the pools are partners
in a process, and the dotted arrows between them are messages, one cannot tell
if there are any time dependencies between the messages going between the dif-
ferent partners, such as the "RFP" message from the customer to the composed
service and the "RFP Category" message going from the composed service to
the supplier registry. The model is therefor not su�cient to show a protocol. It
is also not possible in this view to show control logic such as loops of conditional
behaviours.

Internal Behaviour Internally the BPMN notation contain three main types
of objects, �ow objects, connecting objects, swim lanes and artifacts. The �ow
object is either an event, an activity or gateways, while the connecting objects
are sequence �ow, message �ow or association. The swim lanes can be pools or
lanes. The speci�cation states that the artifacts shall be a tool for the modeler to
show extra information. Only three types of artifacts are speci�ed, data object,
group and annotation, but the modeler can add more if needed.
BPMN uses an graph based �ow, with �ow objects such as events activities or
gateways being connected by connecting objects. The message �ow can only go
between pools, to model data �ow between activities/events in one pool on e
should use the dataobject artifact and association. An activity can also be a
process, creating a hierarchy of processes that makes it possible to create more
structure in the model.
The diagram in �gure A.10 shows the internal behaviour of one of the partners
from the example shown in �gure A.9. This gives more detail, and shows the

117

Figure A.9: BPMN External BehaviourDiagram

118

control �ow inside a component and how it processes messages. Internal data
handing is shown by using the data object artifact and associating this with
tasks. There are also conditional logic in the form of a control gateway splitting
the control �ow of the process.

Figure A.10: BPMN Internal Behaviour Diagram

Heterogeneous Service composition A task in BPMN can be de�ned to
be a service invocation. This is however specialized to Web Services, but the
speci�cation states that BPMN can be extended with other types of task-types
thus making it possible to create service-invocation tasks for other service im-
plementation technologies.

A.1.4 JOpera

Jopera is a [41] service composition suite, using a proprietary visual language,
together with a lexical execution language. Here we will focus on the visual
language. The language focuses on the internal view of the service composition,
but is tightly integrated with the lexical language and the composition suite..

119

Internal View The model in JOpera is separated into two views, one for con-
trol �ow and one for data�ow. There are no visual operators for control logic,
theirs logis is hidden in the condition on activities, called programs, adding con-
dition operators on connectors. Data�ow is shown as objects �owing between
the programs, and transformations are performed in the �ow, not as separate
activities. There are noe visual way of indicating subprocesses, these are similar
to external services. All details of an activity is represented textually, using the
composition suite, the activity is just shown with a name, and the connected
data�ow. Structure other than subprocess hierarchies are not possible. Figure

Figure A.11: JOpera Data Flow

A.11 shows the data�ow in a service composition example. The rectangles are
activities, while the rounded rectangles are data objects. The �ow objects with
large arrows indicate relationships between collections and elements of that col-
lection. Arrows with �lled arrowheads are data�ows with transformation and

120

arrows with open arrowheads are simple data�ow. Figure A.12 is a diagrams of
the control �ow of the same service composition that is shown in �gure A.11.
Again the rectangles indicate the activities and the dotted arrows indicate the
control�ow.

Figure A.12: JOpera Control Flow

Heterogeneous Service composition JOpera has support for many service
implementation technologies, both for Web- and grid- services. The programs
are services, either coarse grained or �ne grained such a programs de�ned in
Javascript.

121

A.1.5 BPDM notation

A notation for visually modelling business processes are used in the BPDM spec-
i�cation [40] and detailed in a separate white paper [12]. The speci�cation states
that this notation maintains consistency with the BPD-metamodel and its se-
mantics. The modelling notation contains two main views, the internal and the
external, showing how it is performed and how it interacts respectively. BPDM
focuses on a business process perspective and modelling them in a complete way,
using both behavioural and structural model views.

External View The external view uses di�erent model views to show di�erent
levels of detail. The collaborative view, shown i �gure A.13 models the collab-
orations that occur between partners, and de�nes the roles that the di�erent
partners must ful�ll. The central business process can either be shown as a set
of roles, or as just the process component. The protocol of the business process,

Figure A.13: BPDM Collaborations

which details the collaboration view with time information, in the sense of a
notions of what activities must happen before others, and the di�erent paths
that can be taken through execution of the process. Figure A.14 shows such an
protocol, showing the messages �owing between two roles. This diagram type
can model control logis such as parallelism and conditions.

Internal View The internal view of this notation makes intensive use of con-
cepts from UML2. Each piece of work is modelled as an task, which can be
structured, ie. a composite, and a may have one or more exit and entry points.
The tasks can have input and output, and some of these can be grouped together
into sets, showing that only a speci�ed subset of all input data must be available
for the task to execute. The task can be human, automated, and may involve
other partners. Figure A.15 shows such a process. The tasks have pins for inout
and output data, and these pins can be grouped together to form sets of data.
Activities that involve sending or receiving message have a slightly di�erent nota-
tion than a manual task. Process variables are used as well. Some other aspects

122

Figure A.14: BPDM Collaboration Protocol

with this notation, at least in this example, is the lack of �ow control constructs,
branches, forks and joins. Rather they use conditions on the �ows going in and
out of the tasks. They argue that such decisions take time in real life, and should
as s uch be modelled as tasks. The example also uses repositories for storing data
that are used by several tasks throughout the process. The repositories are used
together with conventional data�ow. The notation also calls the repositories
process variables. The modelling notation also contains a special kind of task for
looping over a set of objects. There are specialized constructs in the notation for
handling correlation information and dynamic binding of services to roles.

Heterogeneous service composition This notation focuses on business processes,
does not contain any special notation of a service, but a task can be a service
invocation, modelled as a interaction between roles passing messages to each
other. the implementation technology of the service is not shown.

A.1.6 Proprietary Commercial Solutions

Several commercial products, mainly execution engines for business processes
comes with some visual language for designing processes. These include [64] and
[65], these are engines for executing BPEL [9]. The visual languages that are

123

Figure A.15: BPDM Process

used are thus closely related to BPEL, and contains more or less a one-to-one
mapping to the BPEL xml-schema. As these models is a the same abstraction
levels as the execution language, they can be as more platform speci�c models
than the modelling languages mentioned earlier.

124

Appendix B

Expressiveness - Workpatterns

B.1 Table of standards support

This table is from [58] and lists the direct support of workpatterns for UML and
BPEL. Results from [61] have been added to show BPMN's support for these
workpatterns.
[58] states that a pattern is only supported directly if there is a feature provided
by the language which supports the construct without resorting to any of solu-
tions mentioned in the implementation part of the pattern.
[61] compares UML activity diagrams with BPMN, with respect to mentioned
workpatterns. [61] shows that even though some patterns are not directly sup-
ported, they are easily supported by combining constructs in the language.
Thus [61] comes to di�erent conclusions with respect to UML. These di�er-
ence is shown as * in the table, indicating that even though [58] says that UML
does not support this speci�c pattern, [61] shows that the pattern is supported.

125

Workpattern BPEL UML BPMN
Sequence + + +
Parallel Split + + +
Synchronization + + +
Exclusive Choice + + +
Simple Merge + + +
Multi Choice - - * +
Synchronizing Merge + - * +
Multi Merge - - * +
Discriminator - - +
Arbitrary Cycles - - * +
Implicit Termination + - * +
MI without Synchronization + - +
MI with a Priori Design
Time Knowledge

- + +

MI with a Priori Runtime
Knowledge

- + +

MI without a Priori Run-
time Knowledge

- - * +

Deferred Choice + +
Interleaved Parallel Routing +/- - * +
Milestone - - * +
Cancel Activity + + +
Cancel Case + + +

B.1.1 5 basic Workpatterns

This section presents the 5 basic workpatterns as de�ned by [61].

B.1.1.1 Sequence

An activity in a work�ow process is enabled after the completion of another
activity in the same process [58]. See �gure B.1

Figure B.1: Sequence workpattern

126

B.1.1.2 Parallel Split

A point in the work�ow process where a single thread of control splits into mul-
tiple threads of control which can be executed in parallel, thus allowing activities
to be executed simultaneously or in any order [58]. See �gure B.2

Figure B.2: Parallel Split workpattern

B.1.1.3 Synchronization

A point in the work�ow process where multiple parallel subprocesses/activities
converge into one single thread of control, thus synchronizing multiple threads.
It is an assumption of this pattern that each incoming branch of a synchronizer
is executed only once [58]. See �gure B.3

Figure B.3: Synchronization workpattern

B.1.1.4 Exclusive Choice

A point in the work�ow process where multiple parallel subprocesses/activities
converge into one single thread of control, thus synchronizing multiple threads.
It is an assumption of this pattern that each incoming branch of a synchronizer
is executed only once [58]. See �gure B.4

127

Figure B.4: Exclusive Choice workpattern

B.1.1.5 Simple Merge

A point in the work�ow process where two or more alternative branches come
together without synchronization. It is an assumption of this pattern that none
of the alternative branches is ever executed in parallel [58]. See �gure B.5

Figure B.5: Simple Merge workpattern

128

Appendix C

Case A - Request For Proposal

C.1 Case Description

This is a case based on conversation between several partners. The goal of the
service is to get proposals from several suppliers from based on a "Request for
Proposal" from the client. A use case diagram of the case can be seen in �gure
C.1

Figure C.1: UML2 Use case description of the RFP case.

Actors

� Customer - The sender of the Request for proposal. The customer must be
able to receive messages from the RFP service as well as send messages.

� RFPService - The service which orchestrates the consumption of the other
services. This actor orchestrates the service interactions with all other
actors.

129

� SupplierRegistry - A yellow-pages type service.

� Supplier - A supplier that can perform the work described in the request
for proposal. This actor must receive messages from the RFPService and
also send messages back.

Behaviour First a Request for proposal is sent from the customer to the RF-
PService. Based on the contents of this message, the RFPService sends a query
to the SupplierRegistry to get information of all appropriate suppliers. When
the RFPService gets this list, the request for proposal is sent to all suppliers.
The supplier sends a proposal back to the RFPService, which collects all pro-
posals in a list, and sends the list to the customer. The customer sends back its
decision of which proposal is the best. The RFP service then sends this result to
all suppliers that submitted a proposal, and send information about the winning
supplier to the customer.

Issues

� Conversations - There are conversational interactions between the Cus-
tomer and the RFPService and the RFPService and the suppliers.

� Asynchronous Communication - The communication between the RFP ser-
vice and its partner are asynchronous.

� Partner-requirements. The customer that wants to invoke the RFPService
must have implemented the interfaces that are necessary to receive the
de�ned messages which are a part of the expected behaviour.

� Dynamic service selection. The RFPService does not know the details of
the suppliers before it is received from the SupplierRegistry. RFPService
must handle a list of service-endpoint de�nitions and at runtime use this
information to invoke the services.

130

C.2 UML2 Service Composition

This section contains an implementation of the Request for proposal case, using
UML2. The UML2 models contains a class diagram specifying the interfaces
and classes used in the model, a component diagram used to de�ne the which
interfaces are implemented by which components, and a sequence diagram and
an activity diagram to model the behaviour
Figure C.2 is the UML2 class diagrams modelling the interfaces and classes
used in this case implementation. The interfaces show the interfaces that the
partner must implement, and the classes are the classes used in the interface for
communication.

Figure C.2: UML2 Interfaces and Classes.

131

Figure C.3 uses the interface de�ned in �gure C.2, and speci�es the compo-
nents that implements these interfaces. The components both provide interfaces
to other components and specify what interface they require from other compo-
nents. Required and provided interfaces are shown with the ball/socket notation
on the components. Dependecies are introduced to connect the required interface
of one components with an provided interface of another component.
Figure C.4 shows the interaction between the components from �gure C.3.

Figure C.3: UML2 Component Dependencies.

The sequence diagrams shows the message exchanges that er performed through-
out the execution of the service composition. The model view uses the complex
features in sequence diagrams such as loops and alternative behaviours.
Figure C.5 is the internal process of the service composition. The expansion

node is a construct for looping over collection of data. In the �rst case the sup-
plierlist is looped over, and for each element in the list, the actions inside the
expansion node is performed. Each action represent either sending or receiving
a message.

132

Figure C.4: UML2 External Protocol.

133

Figure C.5: UML2 Internal Process.134

C.3 BPMN

In this section an implementation of the RFP case in BPMN is presented. The
�rst �gure shows the high level view, with no details of the internal details
of the processes. The second model shows the internal details of the service
composition.
Figure C.6 shows the RFP case from an external viewpoint, focusing on the
message interchanges between the partners. The partners are shown as pools,
and the model does not reveal any internal details.

Figure C.6: Business Process Modelling Notation External Model.

135

Figure C.7 details the behaviour of the RFP service composition. The service
communicates with other partners by sending messages, shown as message �ows
in the diagram. The internal control �ow is also shown. Each tasks is a service
service interaction. This model reveals details of the internal behaviour of the
process.

Figure C.7: Business Process Modelling Notation Internal Model.

136

C.4 AuSCL

This section presents a implementation of the RFP case using the AuSCL UML2
pro�le. Each diagram shows its place in the larger model structure by showing
the tree structure, and a red circle indicating the diagrams place in the structure.

C.4.1 Abstract Model Views

Figure C.8 is the �rst model in the abstract section and shows all interfaces
being used in the RFP case in an UML2 class diagram. The interfaces are later
used to de�ne the roles of the partners in the interaction. The interfaces in this
case contains both operations and signal receptors. This is because the imple-
mentation should support both synchronous and asynchronous communication.
Interfaces are represented with the ball notation.

Figure C.8: AuSCL Interfaces.

137

Figure C.9 de�nes the messages that are sent between the partners. They
are UML2 signals which means that they can be used for asynchronous commu-
nication. The diagram is a UML2 class diagram.

Figure C.9: AuSCL Messages.

138

Figure C.10 de�nes the roles in the case. Roles are a combination of provided
and required interface. The Customer role provides the Customer interface and
requires the ServiceToCustomer interface from another partner.

Figure C.10: AuSCL Role De�nitions.

139

Figure C.11 gives an overview of all the collaborations in the service compo-
sition. There is one collaboration for each partner-pair, where the collaboration
details all interaction that these partners do.
Figures C.12, C.14, C.15 and C.16 speci�es the beahviour of the collabora-

Figure C.11: AuSCL Collaborations.

tions de�ned in �gure C.11. Sequence diagrams are used to model the message
exchanges. Each diagram models the realization of one functional objective.
Such as sending rfp's out to all suppliers and getting a proposal in return.

140

Figure C.12: AuSCL Sequence Diagram StartService Service Interaction. This
shows the interaction between the customer and the service , for starting the
service.

Figure C.13: AuSCL Sequence Diagram Get Proposals Service Interaction. This
is the interaction between the service and the supplier for getting the proposals.
The service sends a message to the supplier and the supplier sends a proposal
back. The communication is asynchronous as the proposal can take relatively
long time to create.

141

Figure C.14: AuSCL Sequence Diagram Evaluate Proposals Service Interaction.
Message interaction between the customer and the service.

Figure C.15: AuSCL Sequence Diagram. Send Results Service Interaction. The
interaction for sening the results back to the suppliers, after the customer have
evaluated all proposals.

142

Figure C.16: AuSCL Sequence Diagram Return Winner Details Service Interac-
tion

Figure C.17 is the internal process of the service composition. The process
uses several variables, and some complex updating and reading. The getSuppli-
erList task reads the RFP variable, but does only read the category attribute.

143

Figure C.17: AuSCL Process Diagram.
144

C.4.2 Concrete Model Views

Figure C.18 is the main model in the concrete part of AuSCL and is the binding
between the abstract de�nition and the concrete service instances. The ports
connected to the components specify the roles that the component implements.
the components are connected by creating a dependency fro the required interface
of one component and the provided interface of another component. As this
service composition is of a conversational nature, the components are connected
with several interfaces, making it possible for communications to be triggered by
both participants.
Figure C.19 de�nes datatypes used in the service composition. These de�nitions

Figure C.18: AuSCL Service Binding Diagram.

are used by the messages de�ned in the messages model view

Figure C.19: AuSCL Datatypes Class Diagram.

145

Figure C.20 shows an example of an adapter between a role de�nition and
a concrete service instance. The name of the operation is di�erent in the two
cases and an adapter gives the mapping so that a runtime environment can do
the necessary transformation.

Figure C.20: AuSCL Process Adapter.

146

Appendix D

Case B - Generic Disk Drive

D.1 Case Description

This case is described one of the subspeci�cations for the WSRF speci�cation
[48] as an example. A disk drive is the stateful resource which can be accessed as
a WS-Resource through a web service interface. This WSRF enabled example is
di�erent from a pure Web Service example as it contains lifecycle management
of stateful resources, in this case by starting and stopping the diskdrive. A use
case diagram of the case can be seen in �gure D.1

Figure D.1: UML2 Use case description of the Generic disk drive case.

Actors

� DiskDrive - This disk drive contains some resources that describe its state.
There are also operations for starting, stopping and storing data on the
drive. The drive must be started before data can be stored on it.

� Client - This is the client that wants to store data on the disk.

147

Behaviour The client starts the disk, gets the properties of the disk to see
that these properties indicate the the disk is able to handle storing the relevant
�le. The the client store the data on the disk, before stopping the disk.

Issues

� Life cycle - The disk drive has a prede�ned lifecycle, and must be started
by an operation before it is used for storing data.

148

D.2 UML2 Service Composition

This section contains the UML2 models for this case. The UML2 models con-
tains a class diagram specifying the interfaces and classes used in the model,
a component diagram used to de�ne the which interfaces are implemented by
which components, and a sequence diagram and an activity diagram to model
the behaviour.
Figure D.2 shows the interface to an generic disk drive as given in he case de-
scription. As this interface is to a stateful resource, the interface contains both
attributes and operations. The attributes are the externally visible state of the
resource. The ball notation is used for interfaces.
Figure D.3 hows the interface dependencies between the client and the disk

Figure D.2: WSRF Interfaces using UML2 class diagrams.

drive in a UML2 component diagram. The ball/socket notation is used to model
provided and required interfaces, with a dependency used to connect a required
interface to a provided interface.

Figure D.3: WSRF Component Dependecies.

149

Figure D.4 is the protocol of messages going between the client and the
diskdrive. One can se here the messages that control the lifecycle of the disk
drive with the start message creating a new instance of the diskdrive and the
stop message destroying that instance.

Figure D.4: WSRF Protocol. A UML2 sequence diagram

150

Figure D.5 is the internal process showing the �ow of the service composition,
with the �datastore� object holding a copy of the properties that was returned
from the disk drive. The actions represent sending and receiving messages with
the external partners.

Figure D.5: WSRF Process.

151

D.3 AuSCL

This section will present a complete AuSCL model as an implementation of the
case described in this chapter.

D.3.1 Abstract Model Views

The abstract model views are presented �rst.
Figure D.6 is the AuSCL interfaces model view. This interface contains both the
operations associated with the WS-Resource and its properties. The interface is
for a stateful resource.
Figure D.7 de�nes the roles, and what interfaces each roles depend upon. the

Figure D.6: AuSCL DiskDrive resource Interface.

client role requires the GenericDiskDrive interface, shown in the ball notation,
and this interface is provided by the Generic Disk Drive role. The diagram is a
UML2 class diagram.

Figure D.7: AuSCL DiskDrive Role Speci�cation.

152

Figures D.8, D.9, D.10 and D.11 are speci�es the interaction between the
client and the disk. the model views are separated into units, so that they can
be used in the internal process of the service orchestration.

Figure D.8: AuSCL DiskDrive Service Interaction. Message for starting the disk,
and creating an instance of the WS-resource.

153

Figure D.9: AuSCL DiskDrive Service Interaction. Serviceinteraction for getting
the resource properties for the disk.

Figure D.10: AuSCL DiskDrive Service Interaction. Interaction or saving data
on the disk .

154

Figure D.11: AuSCL DiskDrive Service Interaction. Stopping the disk and de-
stroying the instance.

Figure D.12 is an UML2 activity diagram. This activity diagrams models
the internal process of the service composition. The service interaction actions
are de�ned further in the sequence diagrams seen in �gures D.8, D.9, D.10 and
D.11.

155

Figure D.12: AuSCL DiskDrive Internal Process.

156

D.3.2 Concrete Model Views

Figure D.13 binds the abstract roles, shown as ports, to concrete service shown
as component. The address attribute of a service point to the implementation
of the service, or resource.

Figure D.13: AuSCL DiskDrive Service Binding.

157

Appendix E

Case C - Distributed O�ce Backup

E.1 Case Description

This case is based on a service that backs up a �les from a distributed peer-to-
peer o�ce collaboration environment to a tape-disk, with some options available
for backing up only the newest found version or all found versions of some �le.
The o�ce environment would be implemented in a P2Protocol such as JXTA and
have services for looking up �le resources on the network, and the tape-disk would
be a stateful resource on a grid, with properties stating the amount of available
space on the disk, and operations for starting, stopping and storing. This service
composition is made available as a Web Service, so that other applications can
use to to get back up of �les. A use case diagram of the case can be seen in �gure
E.1

Figure E.1: UML2 Use case description of the Distributed O�ce Backup.

Actors

� Client - The client want to have backup taken of a �le-resource.

� BackupService - The backupservice receives the backup-request and �nds
the �le and stores it on a tape disk. The Backupservice must act as an
peer in the P2P network. The service is exposed as a Web Service.

158

� P2P O�ce Collaboration Network - This is a P2P based o�ce collaboration
application which makes it possible to have a collaborative environment
without a central �le server. Each peer in the network has the ability to
search for �le-resources on all the other peers through a search mechanism.

� Tape disk - The tape disk is a backup device. This disk contains properties
that describe its state, with information such as available diskspace. The
tape disk must be started before properties can be retrieved or data can
be stored. Which disk to use should be decided at runtime.

Behaviour The Client sends a backuprequest to the backupservice, containing
the name of the �le-resource that should be backed up. The BackupService
searches for this on the P2P network, and from this gets a list of peers with this
resource. If the backup should be of the newest version only, this is downloaded,
otherwise alle versions are downloaded. The tape disk is started and the available
space is checked against the size of the downloaded resource. If there are enough
space available on the disk, the resource is stored.

Issues

� P2P network service invocation. The BackupService must invoke a service
on a P2P network.

� Heterogeneous Services - P2P networks, stateful resources on a grid, and
Web Services are all used in this case.

159

E.2 UML2 Service Composition

The UML2 models contains a class diagram specifying the interfaces and classes
used in the model, a component diagram used to de�ne the which interfaces
are implemented by which components, and a sequence diagram and an activity
diagram to model the behaviour.
Figure E.2 de�nes the interfaces and classes used in the service composition
model. The interface for the grid based resource contains both operations and
properties.

Figure E.2: Interfaces and classes that are used in the distributed o�ce backup
case.

160

Figure E.3 shows the components used in the service composition, and how
they provide the interfaces already de�ned.
Figure E.4 is a UML2 sequence diagrams showing how the partner in the

Figure E.3: This diagrams models the components that are used in the distrib-
uted o�ce backup case.

service composition interacts. The model view shows the sequence of message
interchanges which are expected.
Figure E.5 shows the internal details of the service composition, with tasks

for each operation such as sending or receiving messages in a UML2 activity
diagram.

161

Figure E.4: This sequence diagrams shows the protocol of the complete backup
process.

162

Figure E.5: UML2 activity diagrams showing the internal behaviour of the service
composition.

163

E.3 AuSCL

This section contains the complete AuSCL model implementing the Distributed
O�ce Backup case. The abstract model is presented �rst.

E.3.1 Abstract Model Views

Figure E.6 de�nes all interfaces that are used in this case implementation. A
standard UML2 class diagram is used. These interfaces will be used in the roles
model view, the collaboration model view and the service binding model view.

Figure E.6: AuSCL P2PO�ce Backup Interfaces.

164

Figure E.7 de�nes the messages used in this case implementation. The
attributes used in the messages are de�ned in the concrete models, in the data
type model view.
Figure E.8 de�nes the roles, in terms of provided and required interfaces. The

Figure E.7: AuSCL P2PO�ce Backup Messages.

interfaces are de�ned separately in �gure E.6.

Figure E.8: AuSCL P2PO�ce Backup Roles.

165

Figure E.9, E.10, E.11, E.12, E.13 and E.14 specify the behaviour between
all the partner in the service composition. These sequence diagrams are used by
the process shown in �gure E.15.

Figure E.9: AuSCL P2PO�ce Backup Service interaction. The message inter-
actions that are necessary for a client to start the backup service.

166

Figure E.10: AuSCL P2PO�ce Backup Service interaction. A message interac-
tion showing the possibility of receiving an exception if the tapedisk is full.

Figure E.11: AuSCL P2PO�ce Backup Service interaction. Shows the messages
involved in searching a p2p network for a speci�c resource.

167

Figure E.12: AuSCL P2PO�ce Backup Service interaction. Downloading a re-
source from the p2p network

168

Figure E.13: AuSCL P2PO�ce Backup Service interaction. This shows the
service interaction for starting the tape disk. A create message in sent, and then
a request is sent to the disk asking for the resourcepropoerties that the disk have

169

Figure E.14: AuSCL P2PO�ce Backup Service interaction. This shows the
process of saving a resource on the disk and then stopping the disk.

Figure E.15 is the implementation of the �ow of getting the resource from
the p2p network and then saving the resource to the tape disk. Several process
variables are used, and all tasks that involve interactions with another service are
stereotypes �ServiceInteraction�. An expansion node is used for looping through
a collection of dataelements, the peerlist.

170

Figure E.15: AuSCL P2PO�ce Backup Internal Process.

171

E.3.2 Concrete Model Views

The concrete model binds the the abstract service composition to service in-
stances. Figure E.16 is the main part of these models, and use component
diagrams to bind the roles to concrete service implementations. The tapedisk
uses the service query stereotype to indicate that service broker should be used to
�nd tapedisk. One can see the interfaces that are used, and the ports containing
the interfaces are the roles de�ned in the abstract part of the model.

Figure E.16: AuSCL P2PO�ce Backup ServiceBinding.

172

Figure E.17 is the concrete speci�cation of the body of the messages de�ned
in �gure E.7.

Figure E.17: AuSCL P2PO�ce Backup DataTypes.

173

