
Using Routing Information to Optimize Synchronization of
Replicated Event Notification Mediators in Sparse MANETs

Thomas Plagemann, Katrine S. Skjelsvik, Matija Pužar,
Ovidiu Drugan, Vera Goebel, Ellen Munthe-Kaas

Department of Informatics, University of Oslo, Norway
{plageman, katrins, matija, ovidiu, goebel, ellenmk}@ifi.uio.no

ABSTRACT
Mobile Ad-Hoc Networks maintain information about reachable
nodes in the routing table. In many application scenarios, human
groups play an important role. This is visible at the network level
as independent network partitions which are for some time stable
before their members change through merging or partitioning. We
use the information from stable routing tables to optimize the
synchronization of Mediators in our Distributed Event Notifica-
tion System. In a stable partition each node has the same informa-
tion, thus a single Mediator can efficiently coordinate the syn-
chronization, while all other Mediators just receive updates. We
show in our experiments that just a few seconds are needed until
routing tables stabilize and all nodes have a common view of the
partition. We present a heuristic which each individual node uses
to determine the proper time to synchronize. Furthermore, we
show how exceptions, like disappearing coordinating Mediators
and unexpected messages, can be efficiently handled.

Keywords
Synchronization, Sparse MANETs, cross-layer optimizations,
Overlays in MANETs, publish-subscribe

1. INTRODUCTION
In order to efficiently handle crises and emergencies, emergency
and rescue (ER) teams benefit from well working communication
infrastructures for command, control and coordination. However,
first responders are typically confronted with an environment in
which no communication infrastructure is available, either be-
cause it was not existing before, or the earlier existing ones have
been destroyed. Therefore, wireless Mobile Ad-Hoc Networks
(MANETs) formed by devices carried by ER personnel are often
the only means to establish a communication infrastructure. How-
ever, the mobility of the ER personnel combined with the size of
the emergency area (which is typically multiple times larger than
the coverage of individual IEEE 802.11 radios) and obstacles in
the area reflecting radio waves, leads to the situation that there is
often not one single MANET connecting all ER personnel. In-
stead, multiple partitions might exist and change over time
through merging and partitioning. Typically, these partitions
correspond to groups of ER personnel that have a common task to
fulfill. Due to the dynamics of ER operations, groups might need
to change their locations, tasks might change and group member-
ships might change, which is reflected at the network level
through changes in the partitions. Evidence for such group mobili-
ty is not only given by our study of ER operations, but also con-
firmed for example by recent studies of social mobility [2] and
community detection [6] in opportunistic networks.

For application domains with mobile groups that have for a cer-
tain time stable membership, we have developed a highly availa-

ble Distributed Event Notification Service (DENS) [10]. DENS is
based on two design principles: First, we use Mediators to repli-
cate data about subscriptions, because replication enables graceful
degradation in case of network partitions. Second, we use Media-
tors to convey subscriptions and notifications from source to
destination. If there is connectivity to the destination the Mediator
uses the OLSR MANET routing protocol [4] and IP to transport
the packets to the destination. However, if a destination node is
turned off or in a different partition, OLSR and any other MANET
routing protocol fails. Therefore, the Mediators form an overlay
over the MANET to perform delay tolerant transport through so-
called “store-carry-forward” operations [12]. The replication of
undelivered subscriptions and notifications increases the probabil-
ity that one of the Mediators at a later point in time joins a parti-
tion with a formerly unreachable destination.

There exist various works related to routing in intermittent con-
nected networks, or sparse MANETs. In [14], Zhang gives an
overview of different approaches for the store-carry-forward
routing. They differ in how they select the next-hop-node, e.g.
random selection, or using some knowledge about the wherea-
bouts of nodes, or prediction of future location. Epidemic routing
is a simple scheme that just forwards packets to neighbors. Other
approaches assume some knowledge such as last known location
of the destination, and therefore only forward packets in the same
area. There exist some cross-layer approaches such as EMMA [9]
where synchronous communication is used if possible; in case of
no end-to-end connection, epidemic routing is used instead. The
message ferry approach [13] is determining the mobility, includ-
ing speed and trajectory of special nodes called ferries to make
sure that a previously unreachable destination and the ferry are
coming into communication range. This is not in general possible
in the application domains we target. Therefore, we replicate
undelivered subscriptions and notifications to all Mediators, simi-
lar to the approach in epidemic routing [12]. However, we make
use of a proactive routing protocol and do not depend on the event
that two nodes meet, to enable exchange of undelivered messages.
Instead, we can synchronize Mediators immediately after they
join a common network partition.

Synchronization of Mediators seems to be simple, but several
complicating factors have to be considered: First, each node has
its own view of “its” network partition which does not necessarily
correspond to the view of the other nodes in this partition. Second,
merging of partitions is not an atomic action, the routing daemon
in each node discovers iteratively over several time steps new
nodes. Third, nodes are mobile and there might never be a global-
ly correct definition whether partition merging has finished or not.
Finally, bandwidth is a scarce resource and synchronization
among multiple Mediators should be as efficient as possible.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30826692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We propose in this paper to leverage the existing information
about the network topology that is collected by the OLSR routing
protocol. By this each Mediator node can establish its own view
of its network partition without putting any additional load onto
the network. Furthermore, we use the fact that ER operations are
performed in groups, resulting in partitions that are stable for
some time (with respect to the nodes that form the partition),
before new mergings or partitionings occur. We show through
simulation studies that the time it takes to merge network parti-
tions and the time it takes until all nodes in the new partition have
the membership information in their routing tables is rather short.
By assuming a common view among the Mediators in each parti-
tion, we can for each partition immediately identify a coordinator
that acts on behalf of all Mediators in its partition. This in turn
enables us to minimize the number of exchanged messages in the
synchronization process.

In the remainder of this paper, we briefly describe DENS in Sec-
tion 2. In Section 3, we analyze how useful information from the
IP layer, i.e., the OLSR routing table is. In Section 4, we outline
the basic idea of the synchronization protocol and describe how
exceptions are handled, followed by some conclusions and de-
scription of future work in Section 5.

2. DENS
In publish-subscribe systems, subscribers express their interest in
events in subscriptions and publishers publish events of interest.
The subscribers and publishers are decoupled by the event notifi-
catservice. DENS is designed to support information exchange
even in the presence of network partitions. Subscription informa-
tion is therefore replicated in the network. There is a trade-off
between offering a reliable service, but at the same time not satu-
rate the network by replicating too much information. Filtering of
events is performed at the source to avoid sending notifications
about events that no subscriber has expressed interest in. DENS
itself is subscription-language independent, by using subscription
language plug-ins. How this works, is described in [11].
DENS has the following components: (1) Subscriber, (2) Publish-
er and (3) Mediator. The Subscriber and Publisher Component run
in every node, and the Mediator Component runs in some of the
nodes. The Subscriber Component receives subscriptions from
applications and other middleware services. These are then sent to
a Mediator Component, either running on the same node or anoth-
er node. In addition, the component receives notifications and
forwards these to the correct application. The Publisher Compo-
nent receives subscriptions concerning events of interest that may
occur on the node, and filters events according to the subscrip-
tions. When an event of interest occurs, it sends a notification to a
Mediator Component. The Mediator Component parses received
subscriptions to find keywords that are used to locate potential
publisher nodes by the help of another Ad-Hoc InfoWare compo-
nent, the Knowledge Manager [11]. The subscriptions are then
sent to these publisher nodes. From publisher nodes, the Mediator
receives notifications. The notifications are matched with the
subscriptions, and then delivered to interested subscribers.

The nodes running the Mediator Component are called Mediators
for short, and decouple subscribers and publishers. The DENS
keeps track of Mediators by listening to beacons sent by these
nodes in its partition. The Mediators form a DENS overlay. The
Mediators in the overlay deliver subscriptions to publisher nodes,
and notifications to subscriber nodes. In addition, the Mediators
replicate subscriptions and possibly notifications. The reason for

storing the subscriptions in the overlay is to obtain a higher degree
of reliability in the presence of partitionings, either because of
disconnections or that a node is turned off. The task of the over-
lay is thus to enhance reliability and support delay-tolerant routing
of subscriptions and notifications in case of partitions. To sum-
marize, subscriptions are stored at the following nodes:
• At the node where the subscriber application runs, so the Sub-

scriber Component can forward a notification to the correct ap-
plication.

• At all the Mediators in the overlay.
• At the publisher node explicitly requested by the subscriber or at

all publisher nodes where the event of interest described in the
subscription may happen, to do source filtering.

Subscribers and publishers send their subscriptions and notifica-
tions to a Mediator in their own partition using end-to-end paths
set by the network routing protocol. This means that the Mediator
is an indirection. Delivering subscriptions and notifications, and
replicating subscriptions and un-delivered notifications, are done
by using the underlying routing protocol and the synchronization
protocol. The synchronization protocol is initiated when there are
new node(s) in the partition. The presence of new nodes then
provides the means for delivering un-delivered stored subscrip-
tions and notifications to the newly connected nodes, and replicat-
ing subscriptions and un-delivered notifications to newly arrived
Mediators. Because of the network partitionings, the Mediators
can have an inconsistent view of subscriptions. In the next section,
we describe how we can use information from the routing table to
detect topology changes to initiate the synchronization process
among Mediators.

3. ROUTING TABLE INFORMATION
One important key element to enable efficient design of middle-
ware protocols over Sparse MANETs is information about nodes
that can be reached through a multi-hop route at a given point in
time and the prediction of future connectivity. Parts of this infor-
mation might be gathered from external sources, like GPS satel-
lites or base stations, but we aim to design our solutions such that
they work in the worst case, i.e., when no external information is
available. The other possibility to gather this information is that
the middleware components periodically broadcast messages, like
in Hypergossiping [7], to detect partition mergings, etc. Since
bandwidth is a scarce resource, we aim to minimize the number of
broadcast messages.
In order to gather at the middleware layer information about
network partitions, mergings, and partition membership informa-
tion in a non-intrusive manner, we leverage the information that is
already available at the network layer in the routing table. In our
previous studies [5] we have observed that the routing protocol
holds updated information about the neighborhood of a node, if
the node is involved actively in communication. This claim holds
for both proactive and reactive routing protocols. However, proac-
tive routing protocols maintain topology information also if there
is no (or not sufficient) communication. The proactive routing
protocol OLSR periodically sends beacons (so-called HELLO
messages) to inform other nodes of its presence. In addition,
OLSR tries to maintain at each node a consistent view of the
whole network by exchanging topology information with the other
nodes in the network. Whenever there is a change in the topology,
the routing table is recalculated. Each entry in the routing table
contains information on the destination node, the next hop node,

the estimated number of hops to the destination, and the interface
used for communication.
In order to optimize the synchronization of Mediators in different
partitions that merge, we need to understand the dynamics of both
the merging process and the partitioning process and how it is
reflected in the routing tables in the individual nodes. We have
performed a number of experiments with the emulation tool NE-
MAN [8] to analyze how often the local routing table is changed
over time, whether the change frequency allows us to deduce that
a merging or partitioning has finished, and how long it takes until
all nodes in one partition have the same view of their partition.
We instrumented the code of the OLSR daemon to extract and log
all changes of membership information, which enables us to
identify how many neighbors each node's routing protocol re-
ported at any point in time. The OLSR's interval for sending
HELLO messages is set to 1 second in all experiments.
In order to verify our hypothesis that groups which move in larger
areas result in routing tables which are stable for a substantial
amount of time, we performed experiments with non-static
groups, moving according to the reference point group mobility
pattern. The nodes were moving at 2 units/s in an area of 600x600
units. Figure 1 illustrates a representative case in which two
groups of 10 nodes came in contact approximately after 11
seconds and remained in contact for approximately 77 seconds.
For each node there is one line in the graph that shows how many
partition members this node has registered. Overlapping lines
indicate a consistent view among multiple nodes. The figure
shows on each group sub-graph a single line for most of the time,
meaning that both groups have a stable view of the network.
Occasionally, due to the mobility of nodes, a few nodes on the
very border of the network have a different view.
In order to analyze the time it takes until routing tables are stable
(i.e., no changes in membership information for some time) and
all nodes in a partition have the same membership information,
we performed experiments with three different types of network
topologies. The first one is the chain topology, where nodes are
lined up only to have one or two direct neighbors, and which we
consider to be the worst case scenario where there is still full
connectivity. The second one is the mesh topology, where nodes
are randomly placed, each having more than one neighbor. The
full mesh topology is the case where each node has direct contact
with all the other nodes. Table 1 shows the results for a selected
set of experiments, mostly including two static groups with 10 to
20 nodes each. Merging and partitioning events were introduced
artificially by creating or removing contact between the two
groups at a certain number of merging points. The merging time
and partitioning time were measured on a global basis, i.e. from
the moment the first node noticed the change to the moment when
all the nodes in the partition had the same view.

Table 1: Resulting times for merging and partitioning

Topology Merging points Groups Merg. time Part. time

Chain 1 20+20 10,97s 8,73s

Mesh 1 20+20 8,47s 6,79s

Mesh 5 20+20 7,40s 7,80s

Full mesh full mesh 20+1 0,28s 2,41s

Full mesh full mesh 10+10 1,17s 1,32s

In addition to experiments with group mobility models and espe-
cially designed topologies, we have also performed experiments

with the random waypoint model as a worst case analysis. We
have simulated results for 20 nodes in areas of 500x500,
1000x1000 and 1500x1500, and 250 units radio range. As ex-
pected are routing tables in very dense networks very stable, i.e.,
membership does not change during the entire run. In the larger
areas there are also longer periods in which the individual routing
tables do not change. In the studied worst case, i.e., area size
1000x1000, this is often more than 10 seconds and even in larger
areas this stable period is often several times longer. When a
merging takes place, the routing daemons recalculate old routes
and add new routes towards the new nodes. This takes approx-
imately 5 seconds on each node. This is dependent on the location
of the node and the number of new nodes.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90

Time (seconds)

N
od

es
 in

 th
e

pa
rt
iti

on
, a

ll
no

de
s'

 v
ie

w

Figure 1: Two mobile groups merging and partitioning; each sub-

graph represents the view of one group

4. SYNCHRONIZATION PROTOCOL
The basic idea for the synchronization protocol is to synchronize
data after a merging of two or more partitions, using information
from the routing table. The protocol is initiated in a node when the
local Resource Manager (RM) detects a routing protocol change
that indicates a partition merge, but only after it assumes that the
routing table has stabilized. During the synchronization process
some of the Mediators resume specialized roles as parti-
tion_representatives. A partition_representative is responsible for
synchronizing data in its old partition. The role of being a parti-
tion_representative for an old partition is taken by the Mediator
with the highest node ID. Since we assume that each Mediator
keeps a record of all other Mediators in its partition, the parti-
tion_representative’s identity is implicitly known without any
message exchange. Among the partition_representatives one
takes the role as coordinator. The coordinator has the responsibil-
ity of coordinating the synchronization process among the parti-
tion_representatives. The coordinator is the parti-
tion_representative having the highest node ID. After the parti-
tion_representatives have synchronized data among themselves,
they send updates to the Mediators of their old partitions.
We first describe the heuristic used by the RM to determine when
the synchronization should be initiated, before we explain the
basic protocol without exception handling and what kind of condi-
tions we assume. Then we describe how exceptions are handled if
these conditions do not hold. One example is that a partition-
representative or a coordinator disappears during the process.

4.1 Synchronization Initialization
The heuristic to determine when to initiate the synchronization
uses two timestamps and three threshold values:

• Timestamp tstart records the time a new node is registered in the
routing table after a stable period.

• Timestamp tlast records the time the last change of membership
information in the routing table was detected.

• Threshold value Ts is an estimate whether the routing table is
stable, i.e., there are no membership changes during the period
[tlast, tlast + Ts].

• Threshold value TGV estimates the time it takes for all nodes in a
partition to have the same membership information after the last
membership change in the local table was detected.

• Threshold value TE is used to assure that the heuristic is able to
start the synchronization process from time to time even if there
is never a stable routing table.

The heuristic is started when a new node is registered in the
routing table. Both tstart and tlast are assigned the current time. Each
time a change of the membership information occurs, tlast is up-
dated with the current time. Normally, the synchronization
process is started if the routing table is stable and all nodes have
the same membership information. If the exception occurs that the
routing table changes continuously for a too long time, the syn-
chronization is enforced even if the routing tables are not stable.
The pseudo code of the heuristic is given below.
 tstart, tlast := tcurrent;
 repeat {
 if (membership_change) {tlast:=tcurrent;}
 until (tlast + max(TS,TGV) < tcurrent || tstart + TE < tlast) }
 Start_Synch;

Based on our experiments, we are currently using 5 seconds for TS
and TGV. TE has to be adapted to the application requirements to
balance between resource consumption and availability.

4.2 Basic Protocol
For each node the protocol has three phases: the Mediator Discov-
ery phase, where Mediators from merging partitions are discov-
ered and one Mediator from each old partition takes the role of
being its partition_representative; the Global Synchronization
phase where the coordinator is selected and the parti-
tion_representatives exchange information; and the Local Update
phase where the partition_representatives send updates to the
Mediators in their old partition. The events triggering the different
phases are shown in Figure 2.

Figure 2: Mediator and partition_representative states

The Basic Protocol runs without exception handling under these
assumptions:

• each node knows about every other node in the new (merged)
partition,

• each Mediator knows about every other Mediator in its old
partition,

• all Mediators in an old partition are synchronized, and

• during the synchronization process no new nodes arrive, no
nodes disappear, and no new subscriptions or notifications are
sent.

In the following we describe the phases, roles, and messages.

4.2.1 Mediator Discovery
A Mediator enters this phase when it receives a START_SYNCH
message from its local RM. The Mediator starts a timer. Each
Mediator examines its set of known Mediators and decides
whether it is a partition_representative. The Mediators that take
the role of a partition_representative, broadcast a
REP_BROADCAST message. This message says that the sender
takes the role of a partition_representative, and includes a list of
the Mediators it represents. When a Mediator receives a
REP_BROADCAST from its own partition_representative it
enters the Local Update phase and cancels the timer. The parti-
tion_representative listens for REP_BROADCASTs from the
other partitions and waits until there is a timeout. It then enters the
Global Synchronization phase.

Figure 3: Mediator Discovery (messages)

4.2.2 Global Synchronization
All Mediators that enter this phase are partition_representatives,
in addition one of them takes the role of being a coordinator.
Again, this role is taken by the Mediator having the highest node
ID. The messages that are used in this phase are: SYNCH_C,
SYNCH_REP, and SYNCH_TOTAL. A timer is started when the
Mediators enter this phase to ensure that the protocol finishes.

Figure 4: Global Synchronization (messages)

The coordinator sends SYNCH_C containing a summary of its
subscriptions to the other partition_representatives. The other
partition_representatives compare the summary with their own
content and reply with the message SYNCH_REP containing data
the coordinator is lacking, in addition to a summary of its own
data. When the coordinator has received replies from all the
partition_representatives, it sends SYNCH_TOTAL updates to
the partition_representatives, i.e., its own subscriptions in addi-
tion to subscriptions received from the other parti-
tion_representatives. The coordinator cancels its timer, resumes
status as an ordinary partition_representative and enters the Local
Update phase. When the partition_representatives receive the

SYNCH_TOTAL
SYNCH_TOTAL

SYNCH_REP

SYNCH_C

SYNCH_REP

Coordinator Rep Rep

SYNCH_C

REP_BROADCAST

REP_BROADCAST

Rep Rep Med Med

Sent
updates Timer

START_SYNCH

G_Synch
finished

Idle M_Disc

G_Synch L_Update

Idle
LOCAL_

UPDATE REP_BROADCAST

L_Update

M_Disc START_SYNCH

SYNCH_TOTAL message from the coordinator, they cancel the
timer and enter the Local Update phase.

4.2.3 Local Update
In the last step of the protocol, the partition_representatives send
LOCAL_UPDATE messages to the Mediators in their old parti-
tion. This includes information about subscriptions, but also about
new Mediators. Each ordinary Mediator in this phase starts a
timer to make sure that it will complete the phase, then it awaits
the arrival of a LOCAL_UPDATE message from its parti-
tion_representative. When the LOCAL_UPDATE message ar-
rives, the timer is cancelled and the Mediator resumes ordinary
activity.

Figure 5: Local Update (messages)

4.3 Exception Handling
We now discuss how exceptions are handled in the different
phases. Examples of exceptions are that the Mediators do not have
the same view of the partition membership, in particular, the other
Mediators in their partition, that Mediators may appear or disap-
pear during the synchronization process, and that Mediators in the
old partition may not be fully synchronized when the synchroniza-
tion protocol starts. It is important to notice that we cannot assume
at any stage that the nodes have the exact same view of where
they are in the synchronization process, and what the members of
a partition are. The protocol therefore needs to be robust enough
to manage these situations. In the following, we discuss the differ-
ent phases of the protocol from one Mediator’s point of view. The
notable exceptions are shown in the Tables 2-5. The handling of
the exceptions is dependent on the phase and the role of the Me-
diator.

Table 2: Exception Handling when idle
Role Exception Handling
M REP_BROADCAST Start synchronization

Table 3: Exception Handling in Mediator Discovery phase

Role Exception Handling
M + R START_SYNCH Stack request

LOCAL_UPDATE Receive data

R timeout without any
received
REP_BROADCAST

Proceed to L_Update

M REP_BROADCAST from
an unexpected R in its old
partition

Reconsider the identity of
R for its old partition

timeout, no received
REP_BROADCASTs from
nodes in its old partition

Reconsider role to R

Table 4: Exception Handling in the Global Synch phase

Role Exception Handling
C+ R START_SYNCH Stack request

REP_BROADCAST Stack request

LOCAL_UPDATE Receive data

C timeout without having
received any
SYNCH_REPs

Proceed to L_Update

timeout but has only
received some of the
expected SYNCH_REPs

Proceed with reduced set
of recipient Rs

R timeout without having
received SYNCH_C

Reconsider role to C

timeout without having
received SYNCH_TOTAL

Proceed to L_Update

SYNCH_C from wrong C Respond with
SYNCH_REP but
continue to wait for
SYNCH_C from true C

Table 5: Exception Handling in the Local Update phase

Role Exception Handling
M +R START_SYNCH Stack request

REP_BROADCAST Stack request

M timeout, has not received
LOCAL_UPDATE

Proceed

A Mediator enters the Mediator Discovery phase either when it
receives a START_SYNCH or a REP_BROADCAST message. It
then starts a timer. If a Mediator receives a new START_SYNCH
message during this phase, it will just stack the request, and enter
the Mediator Discovery phase again after it has finished its current
synchronization process. If it receives a LOCAL_UPDATE mes-
sage out of order, it receives data that can be handled locally
immediately. It may be the case that the Mediators in the old
partition do not have exactly the same view of the partition mem-
bership, so a Mediator can receive a REP_BROADCAST from a
node that it is aware of but did not consider to be the parti-
tion_representative. In this case the Mediator reports to the new
partition_representative. If the timer fires for a node that is as-
sumed not to be a partition_representative, it will reconsider
which Mediator should be partition_representative. If it is the
next Mediator having the highest ID it sends a
REP_BROADCAST, if not it will start a new timer. If the timer
fires for the partition_representative, it sees if it has received any
REP_BROADCAST messages, if not, it goes directly to Local
Update phase.
In the Global Synchronization phase only partition_representa-
tives participate, and one of them takes the role of being a coordi-
nator. In this phase both START_SYNCH messages and
REP_BROADCAST messages are stacked and handled when the
process is finished. LOCAL_UPDATE messages are just received
and not handled in any specific way. If the coordinator disap-
pears, the remaining partition_representatives will at timeout
reconsider their roles and the one with the next highest id be-
comes the new coordinator. If all partition_representatives but
the coordinator disappear, the coordinator will at timeout enter
the Local Update phase. It may happen that none, two or more
elect themselves as a coordinator. If none starts as a coordinator,
then there will be a timeout where the partition_representatives
reconsider their role. If there is a SYNCH_C from a non-assumed
coordinator, the partition_representatives will respond to it but
await a SYNCH_C from its true C before proceeding to the Local
Update phase.

LOCAL_UPDATE

Rep Med Med

LOCAL_UPDATE

Rep

As in the previous phase, both START_SYNCH messages and
REP_BROADCAST messages received during the Local Update
phase are stacked and handled when the process is finished. If a
Mediator receives a timeout, then this indicates that something
went wrong, i.e., the partition_representative is gone.
If subscriptions or notifications are received by a parti-
tion_representative at any phase, it will send it as LO-
CAL_UPDATE messages. If a Mediator is not a parti-
tion_representative or a coordinator, it will replicate it to the
other Mediators.

5. CONCLUSIONS
One fundamental decision for the design of DENS is to use the
proactive MANET routing protocol OLSR at the IP layer and to
establish an overlay of Mediators that (1) increase availability of
DENS through replication, and (2) perform delay tolerant trans-
port of destinations in different partitions. Besides the advantage
that a standardized routing protocol can be used to forward mes-
sages to the destinations if there is a route, we use the routing
table information to optimize the Mediator synchronization in the
overlay. OLSR maintains continuously in each node membership
and topology information about their partition. Changes in the
membership indicate a partition merging or partitioning. If the set
of member nodes in a partition is for some time unchanged, all
nodes in the partition have the same view. Through simulations,
we have demonstrated that this assumption is correct and we have
quantified for different scenarios how long it takes until partitions
are stable and all nodes have the same membership information.
By observing the routing table, we can identify partition mergings
and estimate when the merging has finished without exchanging
any additional messages. The fact that all nodes have the same
membership information enables us to optimize the synchroniza-
tion of Mediators, because for each partition a single Mediator can
act on behalf of the others. Since all nodes in a partition are
known, the “election” of a representative is based on the node ID
and no messages need to be exchanged to achieve an agreement
among the Mediators. Additionally, all non-representative Media-
tors act as hot-standby in case the representative disappears unex-
pectedly.
Different optimizations can be done to improve the efficiency of
the protocol. These include to prevent Mediators from synchroniz-
ing with each other too often based on very frequent changes in
the topology; represent the subscriptions in the summaries sent in
the Global Synchronization phase in a compact way; and to use
information from the Mediator’s local Resource Manager about
disappeared nodes. To prevent Mediators from synchronizing with
the same Mediators, the Mediators can remember when and with
which Mediators they have synchronized. Bloom filters [1] can be
used to summarize data. If the Resource Manager reports about
disappeared nodes, it may be the case that some of the timers can
be cancelled and the Mediators can resume the protocol quicker.
If e.g. a Mediator is waiting for a REP_BROADCAST from its
assumed partition_representative, and the Resource Manager
reports that this node is gone, it can resume the protocol as if the
timer has fired.
However, even without optimizations, the number of messages
exchanged increases only linear with the number of Mediators in
the absence of exceptions. We argue that even in the worst case,
our synchronization protocol does not perform worse than Epi-
demic Routing in terms of bandwidth consumption and delivery

delay since we are not depending on the fact that two nodes meet,
and we synchronize in most cases more than two nodes. To verify
this claim, we are currently implementing the synchronization
protocol and compare its performance with Epidemic Routing.

Acknowledgements
This research was funded by the Norwegian Research Council in
the IKT-2010 Programme, Project No. 152929/431. It was also
supported by the CONTENT Network-of-Excellence. The authors
would like to thank the Toilers Group at the Colorado School of
Mines, USA, for allowing us to use their mobility models imple-
mentation.

6. REFERENCES
[1] Bloom, B., Space/Time Trae-offs in Hash Coding with Allowable

Errors, Communication of ACM, 13(7), July 1970

[2] Boldrini, C., Conti, M., Passarella, A., Impact of Social Mobility on
Routing Protocols for Opportunistic Networks, 1st IEEE WoWMoM
Workshop on Autonomic and Opportunistic Communications (AOC
2007), Helsinki, Finland, June 2007

[3] Camp, T., Boleng, J., Davies, V., A Survey of Mobility Models for
Ad Hoc Network Research, Wireless Communication and Mobile
Computing (WCMD), 2002

[4] Clausen, T., Jacquet, P., Optimized Link State Routing Protocol
(OLSR), RPC 2326, October 2003

[5] Drugan, O., Plagemann, T., Munthe-Kaas, E., Predicting Time
Intervals for Resource Availability in MANETs, IEEE Int. Workshop
on Ad Hoc and Ubiquitous Computing (AHUC2006), Taichung,
Taiwan, June 2006

[6] Hui, P., Yoneki, E., Chan, S., Crowcroft, J., Distributed Community
Detection in Delay Tolerant Networks, ACM SIGCOMM Workshop
(MOBIARCH), Kyoto, Japan, August 2007

[7] Khelil, A., Marrón, P.J., Becker, C., Rothermel, K., Hypergossiping:
A General Broadcast Strategy for Mobile Ad Hoc Networks, Ad hoc
Networks Journal, 2006

[8] Puzar, M., Plagemann,T., NEMAN: A Network Emulator for Mobile
Ad-Hoc Networks, 8th Int. Conf. on Telecommunications (ConTEL),
Zagreb, Croatia, June 2005

[9] Musolesi, M. Mascolo, C., Hailes, S., EMMA: Epidemic Messaging
Middleware for Ad hoc Networks Personal and Ubiquitous
Computing, Springer, vol. 10, no. 1, pp. 28-36, February
2006

[10] Skjelsvik, K.S., Goebel, V., Plagemann, T., A Highly Available
Distributed Event Notification Service for Mobile Ad-hoc Networks,
IEEE Distributed Systems Online, 2004

[11] Skjelsvik, K.S., Lekova, A., Goebel, V., Munthe.-Kaas, E., Plage-
mann, T. Sanderson, N., Supporting Multiple Subscription Languag-
es by a Single Event Notification Overlay in Sparse MANETs. ACM
MobiDE 2006 Workshop, June 2006

[12] Vahdat, A., Becker, D., Epidemic Routing for Partially Connected
Ad Hoc Networks, Technical Report CS-2000-06, Department of
Computer Science, Duke University, 2000

[13] Zhao, W., Ammar, M. Zegura, E., A Message Ferrying Approach for
Data Delivery in Sparse Mobile Ad Hoc Networks, 5th ACM Symp.
on Mobile ad hoc networking and computing (MobiHoc), 2004

[14] Zhang, Z., Routing in Intermittently Connected Mobile Ad Hoc
Networks and Delay Tolerant Networks - Overview and Challenges,
IEEE Communication Surveys and Tutorials, January 2006

