
UNIVERSITY OF OSLO

Department of Informatics

Multicast traffic

management and

performance in

Ethernet/Layer 2

Networks

Øystein Taskjelle

May 3, 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30826672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The present thesis seeks to develop a better understanding of the Multiple MAC Registration

Protocol (MMRP) and multicast in Ethernet. A theoretical study about mapping from IP

version 4 multicast to Ethernet multicast, and bridge technology is presented in the first part.

The main emphasis is the implementation of MMRP in the J-SIM simulation environment. Some

performance aspects of MMRP are simulated. The results shows that the protocol timers may

be altered to optimized MMRP’s mechanisms for a given scenario.

II

Preface

This thesis is the final task of the fulfillment of my Masters degree at the Department of Infor-

matics at University of Oslo and the University Graduate Center at Kjeller (UNiK).

I would like to tank my supervisors Fredrik Davik at Nera Networks and Knut Øvsthus at

Bergen University College. They have helped me throughout the work, and given constructive

criticism.

My family and friends, thank you for being supportive through the whole process of this

Master’s program. Espen and Thomas have made the days at school a lot of fun! Thank you

guys for (all) the coffee breaks!

Øystein Taskjelle

III

IV

Contents

Preface . III

1 Introduction 1

1.1 The problem statement . 2

1.2 Work method . 3

1.2.1 Approaches . 3

1.2.2 What approach to choose? . 4

1.2.3 Tools . 4

1.2.4 Simulation practice . 5

1.3 The scope of the thesis . 6

1.4 Outline . 7

2 Technology background 9

2.1 Introduction . 9

2.1.1 Layered network protocol design . 9

2.1.2 Routing methods . 10

2.1.3 Network topologies . 12

2.2 Ethernet switching . 12

2.2.1 Rapid spanning tree . 14

2.2.2 Virtual LAN . 14

2.3 Mapping from IP multicast traffic to Ethernet . 14

2.4 Current solution . 18

3 J-SIM 21

3.1 Introduction . 21

3.2 The autonomous component architecture . 22

3.2.1 Composite components and server ports 23

3.3 Java implementation of the ACA . 24

3.3.1 The runtime . 24

3.3.2 Exporting information at runtime . 25

V

CONTENTS

3.3.3 Base classes . 26

3.4 TCL and Java together in one system . 27

3.4.1 How components and ports are identified 27

3.4.2 The runtime virtual system . 28

3.5 Considerations . 29

4 Multiple MAC Registration Protocol 31

4.1 Group management in Layer 2 . 32

4.1.1 MRP architecture . 34

4.2 Type of MRP-implementation . 38

5 Implementation 41

5.1 Introduction . 41

5.1.1 Tools used . 42

5.2 Making the model . 43

5.2.1 Model of conceptualization . 43

5.2.2 Data collection . 46

5.3 Model translation . 49

5.3.1 The base bridge functionality classes . 50

5.3.2 RSTP class . 52

5.3.3 The MMRP implementation . 53

6 Testing 63

6.1 Test one – RSTP . 63

6.1.1 The test set up . 63

6.1.2 The expected result . 64

6.1.3 The result . 65

6.2 Test two – MAC relay entity . 65

6.2.1 The test set up . 65

6.2.2 The expected result . 66

6.2.3 The result . 68

6.3 Test three – basic test of MMRP . 69

6.3.1 The test set up . 69

6.3.2 The expected result . 70

6.3.3 The result . 75

6.4 Test four – advanced test of MMRP . 76

6.4.1 The test set up . 76

6.4.2 The expected result . 77

6.4.3 The result . 78

VI

CONTENTS

7 Experiments and results 81

7.1 MMRP timer experiment . 81

7.1.1 The test set up . 82

7.1.2 The expected result . 83

7.2 Results . 85

7.2.1 Part one . 85

7.2.2 Part two . 89

8 Discussion 91

8.1 MMRP performance parameters . 91

8.1.1 Scalability of a single Participant . 91

8.1.2 Convergence time . 92

8.1.3 MMRP bandwidth demand . 93

8.2 Bandwidth savings of mapping from layer 3 to layer 2 multicast 93

8.3 Mapping of addresses from IP multicast to MAC multicast 93

9 Conclusion 95

9.1 Future work . 95

A TCL methods 101

B Experiment TCL script 109

C Network designer screenshot 113

D Javadoc for the MMRP component 115

VII

CONTENTS

VIII

List of Figures

1.1 Flow chart of a simulation study . 6

2.1 Network addressing schemes . 11

2.2 Default group addressing behavior in LAN . 17

2.3 Overview of a cellular network infrastructure . 18

2.4 Data traffic generated by different cellular devices 19

3.1 A J-SIM component illustration . 22

3.2 Component communication . 23

3.3 Component connection schemes . 24

3.4 Component capsulation . 25

3.5 J-SIM default packages . 26

3.6 The Module component . 27

3.7 J-SIM component example . 28

4.1 Bridge structure overview . 32

4.2 Attribute value propagation of MMRP . 33

4.3 MRP architecture with a two-port Bridge . 37

5.1 Probability of surfing across the day . 48

5.2 EthernetMAC component illustration . 50

5.3 A Node component overview . 51

5.4 MACRelay component illustration . 52

5.5 MMRP classes overview . 53

5.6 The MMRP class and heritage . 54

5.7 Transmit event in MMRP . 57

6.1 Simulation one component composition and topology 64

6.2 Expected logical topology in simulation test number one 65

6.3 Component composition in simulation test number two 66

IX

LIST OF FIGURES

6.4 Flow charts and topology of simulation test number two 67

6.5 Activit diagram of MAC Relay Entity forwarding 68

6.6 Component composition of simulation test number three 69

6.7 Flow charts and topology of simulation test number three 72

6.8 Test four topology . 77

7.1 Topology of simulation experiment . 82

7.2 LeaveAllTimer event illustration . 84

7.3 Simulation plots part one . 87

7.4 Simulation plots part two . 88

C.1 Screenshot of the Network designer GUI . 113

X

List of Tables

2.1 The OSI reference model . 11

2.2 IP version 4 packet header . 13

2.3 IP version 6 packet header . 13

2.4 MAC Frame format . 13

3.1 RUV commands table . 29

4.1 MRPDU frame format . 38

4.2 The Applicant state machine state table for MMRP 40

4.3 The Simple-applicant state machine state table for MMRP 40

6.1 Overview of time delays in simulation test number three 74

6.2 Expected states of state machines in simulation test number three 75

6.3 Stable states of the applicant and registrar . 78

XI

LIST OF TABLES

XII

Chapter 1

Introduction

A cellular network includes different technologies from its wireless access network to the high

speed core network. The part between the core network and the cellular base stations is called

the backhaul. The aggregation network is the part of the backhaul, located in between the core

and the part in the backhaul where multiple base stations are connected.

The access network has been the bottleneck, for bit rate, in 2G networks. The transition to

3G, 3.5G and 4G cellular networks gives the end user an increased bit rate in the access network,

and the bottleneck is moved to the backhaul. Faster, in terms of bit rate, access networks push

new services to the marked. Multimedia services increases the bandwidth need. Currently, users

watch YouTube, surf on the internet, send e-mails and make calls with VOIP using their cellular

network device. The first LTE network was made publicly available in December 2010. It was

TeliaSonera that opened it in Norway and Sweden. A LTE network will most likely created

an increased bit rate demand. In addition, due to the higher access network capacity, “mobile

broadband” has gained popularity in Norway. The term “mobile broadband” means to use the

cellular network to gain access to the Internet. The data volume sent and received by mobile

broadband increased to 6.5 million gigabytes a year in 2009 for Norway. This is more than double

of 2008 [14].

3G introduced packet switching in the backhaul, initial with ATM. ATM normally used

bundles of E1s/T1s. However, the trend goes toward IP/MPLS/Ethernet1 architecture, which

may replace ATM. In addition, the LTE does not include ATM as a part of the standard, as the

3G network does. Bit rate gets cheaper for the operator with IP/Ethernet in the backhaul [33, 12],

but with new services like TV, it will also be necessary to optimize the bandwidth usage in the

backhaul. Aggregation networks based on radio relay systems is one of the reasons for the need

of optimization. The frequencies in wireless technologies is a limited resource, and in addition

physical properties of radio waves limit the capacity of wireless links. Multimedia-services with

1IEEE 802.3 standard.

1

CHAPTER 1. INTRODUCTION

one traffic-source and multiple receivers may use:

N ×B[bps] = T [bps]

Where N = users in the network, B = service bit rate demand [bps], and T = total-bit-rate

usage in the network [bps]. IP Multicast is a solution to this problem. It will save resources by

using logical routing of flows where there are multiple receivers.

The trend is that the access networks evolve toward IP and the backhaul toward Ethernet

[31]. It may go parallel traffic of IP Multicast in the Ethernet, if Ethernet is not implemented

with IP Multicast support. This removes the gain in terms of lesser load on the network by using

IP Multicast. The challenge is to have a mapping between Ethernet and IP Multicast packets,

that avoids parallel streams. There are two main approaches to this.

• The first is that the IP-layer must translate the logic so that Ethernet transmits the packets

correct without changes in the protocol. Because Ethernet is below IP in the network

architecture, Ethernet is invisible to IP. This makes it hard because the IP-layer does not

know the topology and functionality of Ethernet.

• The other approach is that Ethernet adds functionality to understand the incoming IP

Multicast packets and find the IP Multicast members on the network. With this, Ethernet

is able to determine where to send and not to send the IP Multicast packets. This approach

is the logical choice because Ethernet are able to snoop the IP IGMP messages, but not

the other way around.

Multicast routing and group membership handling is the two main parts of IP Multicast.

Group membership of the end users is handled by the Internet Group Management Protocol

(IGMP) [5] in IPv4 or Multicast Listener Discovery[8] in IPv6. When a layer 2 device like

Ethernet-bridges listen to the IP-packet to fetch IGMP-messages, it is called IGMP-snooping.

With multiple Ethernet-devices in the aggregation network, the group membership must be

shared with all devices in order to make the logical sending of IP Multicast packets through

the Ethernet. IEEE Std 802.1ak [24] defines the Multiple Registration Protocol (MRP) and the

Multiple MAC Registration Protocol (MMRP), which may be used for this purpose.

This introduction will further look at the problem statement, then work method and what

tools that are used in the work. Finally it gives a short presentation of the thesis’s outline.

1.1 The problem statement

The overall objective is to evaluate Multiple MAC Registration Protocol (MMRP) as a multicast

solution in an Ethernet context. The convergence time of registrations and deregistrations are

the most important parameters studied in this thesis. The following list presents the problems

investigated in this thesis:

2

1.2. WORK METHOD

1. The problem of dynamic mapping from layer 3 (IP) multicast to layer 2 (Ethernet) multicast

functions.

2. To evaluate potential bandwidth savings by mapping from layer 3 to layer 2 multicast.

3. Evaluate different aspects of MMRP theoretically and by simulation.

The first and seconds problem are solved theoretically. The third problem is evaluated the-

oretically, and followed by a simulation that tests the hypotheses. A implementation of current

protocol(s) is required to complete the goals.

1.2 Work method

This section provides an overview of method and tools used to test (i.e. analyze and discuss) a

set of working hyphoteses. After a brief overview of the different methods, and a conclusion on

which methods to use — the tool(s) are introduced. I have used [30] as a source of information

describing the working methods.

1.2.1 Approaches

The work method chosen should support a scalable and easy configurable test setup. Reasons

backing this up are:

1. There are several scenarios of interest regarding network topology,

2. a topology may contain many devices, and

3. the time to complete the thesis is limited.

This part consider three approaches followed by a part that explains the choice taken.

Analytical methods In some situations a mathematical approach is relatively straight for-

ward, and gives a good result when it is based on pre-developed algorithms and formulas, and

known problems. But creating new algorithms and formulas requires a high level of knowledge

both in mathematics and the content of the system itself.

Simulation Simulation software is widely distributed on the Internet with a multitude of

frameworks, languages and environments available. Some are more popular and better developed

than others.

Relatively detailed and realistic simulation models can be used — the challenge is to include

all that is relevant for the evaluation but nothing more. The results from a simulation may have

stochastic uncertainty, and it may be complex to analyze.

3

CHAPTER 1. INTRODUCTION

Measurement-based testing in real networks In order to create a scenario with real de-

vices, a lot of equipment is required to realize a satisfactory starting point. The equipment

needed is end users (like laptops or Ethernet/IP test instruments emulating end users), a num-

ber of layer 2/Ethernet switches, or some kind of a combination of these. With a given set

of available hardware, there are a number of experiments. Furthermore, there may be several

topologies applicable for each experiment. At any given time, a node is only a part of one topol-

ogy, and switching to another topology requires reconfiguration. In addition, measurement-based

testing may be error-prone. This is due to comprehensive and complex configuration of devices

used to testing.

If the devices does not support the desired protocols, they need to be developed and imple-

mented in the device, which depends an open OS or platform on the device . The cost in time

exceeds the scope of this thesis.

There must be a way of collecting the data that are to be analyzed. This is necessary at every

device in the network. It should be implemented in such a way that the collection is automated.

1.2.2 What approach to choose?

Real life tests require preparation of devices in order to generate results. Although the measure-

ment based method is considered unfeasible as the main method for this thesis, it still presents

an alternative that will be considered for limited parts. One example could be getting to know

the packet-structure and -content through a transmission by sniffing of packets.

A full mathematical approach is to complex to solve for me. However, it might be useful for

minor calculations. The obvious method is simulation, which is something I am familiar with

and will produce the results needed to test my working hypotheses. An additional argument is

to get a better knowledge of network simulation.

1.2.3 Tools

Nera Networks have knowledge of the J-SIM discrete event simulation environment. The choice

of J-SIM is due to Nera Networks existing implementations in this environment. This gives a

base for the creation of desired scenarios for the study. In addition, Nera Networks expands their

tool base in J-SIM by including the implementation that is a product of this study. The J-SIM

environment will be addressed in chapter 3 J-SIM.

NetworkDesigner is a little self developed Java program with a graphical user interface. The

interface makes it easy to draw network topology designs for simulation. In addition, it has some

primitive features to export the topology to the pstricks format for the report, and it is able to

parse output from the simulator to draw the network topology and certain states of the nodes.

A screenshot is shown in appendix C Network designer screenshot.

4

1.2. WORK METHOD

1.2.4 Simulation practice

In reference [30] a simulation study approach is presented which is summed up in figure 1.1. Each

of the steps are not isolated, but connected as shown in the figure. One goes iteratively through

the model, from development to validation and verification, throughout the process. The next

paragraphs explains each of the steps in the model, as seen in figure 1.1. In later chapters of the

thesis, these steps will be used to explain the work done.

Problem formulation and objectives This is the first step of the simulation study, and it

starts off by defining the problem. A clear understanding of the problem is the starting

point for further work. Based on this, the objectives of the study are prepared. In addition,

a work plan that shows how to reach the objectives should be planned.

Model of conceptualization Model of conceptualization is also known as making an abstrac-

tion of the real system. In an abstraction process, one makes a simplified version of the

real system. To simplify means that the abstracted model only includes the functionality

that is important for the study. Note that in some cases, the abstracted model may be

a complete copy of the real life system, which means that it is not simplified in terms of

functionality.

Data collection In order to test realistic scenarios, one need to collect information regarding

the systems behaviour from real life. This information is for example parameters like buffer

size on network nodes or traffic pattern. More on how this data is collected in chapter 5.

Model translation The implementation is based on the abstraction model in J-SIM. As men-

tioned earlier, the work process goes iteratively through the phases mentioned in the start

of this section, and it is natural to do the implementation step by step as the abstraction

model is created. The step-by-step process of implementation ease the debugging since the

code is tested piece by piece, and not all at once.

Testing When the model is implemented, it is time to verify that it works as intended, and

validate that it imitates a real world execution. Going back to model conceptualization

may be necessary if the verification or the validation reveals incorrect implementation.

Experiments A set of experiments testing the hypethesis(es) will form the bases for analysis.

The simulation experiments may be time consuming due to both runtime of the simulation

and repeatidly running simulations to get the output needed.

Post-processing When the simulator has produced some output, the output must be parsed

and analyzed to produce statistics, graphs and save parameter values of interest. Due

to large amount of data produced, it may be desirable with a tool that can parse the

output. Taken the result of the output in consideration, it might be necessary to run new

5

CHAPTER 1. INTRODUCTION

experiments with different configurations. The last part is to present the results of the

analysis in the thesis.

Problem formu-

lation Objectives
Analytic Simulation

Data Collection

Discrete events

Stochastic models

Queueing models

Model concep-

tualization

Model transla-

tion (simulator)

Testing

Experiments

(production runs)

Post processing

Input modelling

Experiment setup

Output analysis

e.g. J-SIM

validation

validation

verificationverification

Figure 1.1: Flow chart of a simulation study [30].

Chapter 5 Implementation addresses study specifics for this thesis. The subparts of the

section describes the points in the list above, e.g. 5.2 addresses the modeling specifics of this

thesis’s problem.

1.3 The scope of the thesis

The implementation is confined to Ethernet protocols, and no IP protocols are included. Con-

sequently, discussion about IP protocols limits to a theoretical grounds. A real life testbed was

not made, due to the time available to finish the thesis.

6

1.4. OUTLINE

1.4 Outline

The thesis is divided in eight chapters, i.e. seven chapters after the introduction. Chapter 2

Technology background describes Ethernet and IP protocols that has relevance to the current

problems. Next, chapter 3 J-SIM introduces the J-SIM simulation environment. Understanding

the architecture and mechanisms of the simulation environment is a necessary base before im-

plementing the Ethernet protocols. Next follows chapter 4 Multiple MAC Registration Protocol.

This chapter introduces the MMRP protocol, before its described in more detail in the following

chapters. The next chapter, 5 Implementation describes the implementation process from ab-

straction to implementation in the J-SIM environment. It is naturally followed by the chapter 6

Testing that verifies that implementation works as expected. Chapter 7 Experiments and results

describes the simulation experiments, while chapter 8 Discussion does a discussion around the

results from the simulation and the theory. Finally, chapter 9 Conclusion concludes this thesis.

7

CHAPTER 1. INTRODUCTION

8

Chapter 2

Technology background

2.1 Introduction

This chapter first introduces the OSI reference model, an abstract layered network communication

model. The model is often used to describe what type of functionality a network protocol has,

and what protocols it can communicate with. As the model is referred to in this thesis, and the

model gives an overview of network protocol architecture, it is relevant to give an introduction.

The next part of this section describes different types of routing in a network. One of the routing

types is multicast – the type of routing that are used in Multiple MAC Registration Protocol

(MMRP), the main subjective of this thesis. Finally network topologies are categorized and

presented.

2.1.1 Layered network protocol design

The OSI reference is used to explain where in the network architecture a protocol belongs. This

part gives a short introduction to the model. For further history and information read [27].

The computer networks gained success and popularity in the mid 1970’s. The ARPANET

that was developed in the USA lead the way of interconnecting networks. Packet switching had

a commercial potential and a need for an international standard was important. That way it

was possible to expand the networks reaching more people and services.

In 1978, the International Organization for Standardization (ISO) Technical Committee 97

on Information Processing, recognizing the need for a standard of interconnection between net-

works. A subcommittee, SC16, was created. The name of the subcommittee was “Open System

Interconnection” or OSI. The term “open” means that by using this model one would be able to

connect to other systems following the same model. The development of the model went through

discussion and refinements and published as ISO standard 7498 in the Spring of 1983.

The model is based on a layered architecture to break up the network functionality in smaller

9

CHAPTER 2. TECHNOLOGY BACKGROUND

pieces. The top layers of OSI gives a description at a high level of abstraction which imposes

few constraints and the further down in the layers, the more network details is defined. Seven

layers are defined for OSI as seen in table 2.1. The implementation of a communication system

may be based on layers where the end-host uses all the layers while the intermediate nodes in

the network has support for bottom two or three layers to support the switching and routing of

packets as needed.

Switches and bridges have generally support for Layer 1 (Physical) and Layer 2 (Data-link)

functionality. Routers add more functionality with Layer 3 (Network) in addition to Layer 1

and 2. IP Multicast is a Layer 3 matter — technology mainly found in routers. The protocols

referred to in this report are present in the Layers mentioned above, two and three. Layer 4 and

higher will not be discussed.

The OSI model is only a reference model, and current networks are not implemented as the

model, even though it is layered it uses the TCP/IP model as seen in table 2.1. As we can see

in the comparison between the models. Layer 2 is divided in two pieces in Ethernet, LLC and

MAC. Though, this layer might look different, e.g in optical networks.

Layer 3 – the network layer, handles relaying and forwarding of data packets through a

network while it may maintain quality of service parameters. The Network Layer is at the same

level as the IP-layer in the TCP/IP-model. Layer 2 – Data link layer, provides a reliable

transmit of data across a physical network link. IEEE has splitted the Layer in three parts.

The top-part called Logical Link Control (LLC), the middle part Bridging, and the bottom

part Medium Access Control (MAC). LLC is concerned with the transmission of a LLC PDU

(data) between two stations without the necessity of a intermediate switching node. Bridging

may connect several LANs and it serves filtering functionality and creation of logical topologies.

MAC controls the sending of the data between two stations. It is responsible of avoiding collision

on the physical medium, grant access to send and physical addressing of devices.

2.1.2 Routing methods

Routing in computer networks is about choosing a path to through the network towards one or

more receivers. In packet switching networks, routing schemes differ how they deliver packets to

receiver(s). This sections presents the three schemes unicast, broadcast and multicast.

Unicast sends one data stream to a receiver, i.e. one transmitter (A) sends a single stream

(S) to an user (B). If one more user (C) wants to receive the same stream, S, from A, then A

must sends a duplicate stream of S towards C. For each station that wants stream S, node A

needs to send a duplicate of stream S. In broadcasting, node A sends stream S to all stations in

the network, but only one stream is transmitted from A, and intermediate devices in the network

forwards stream S on all interfaces except from the one which stream S entered. The problem

with this solution is that it consumes a lot of bandwidth and all stations in the network receives

10

2.1. INTRODUCTION

OSI TCP/IP Application

7 Application

Application6 Presentation

5 Session

Transport (host-to-host)
4 Transport

3 Network
Internet protocol IGMP

Network access
2 Data link

802.1 LLC

802.1 Bridging

802.3 MAC

1 Physical Physical 802.3 PHY

Table 2.1: The OSI reference model compared to TCP/IP and IEEE [10, 9].

the stream, even those who may not want to receive it. E.g. station C can not choose to receive

or not receive. See figure 2.1.

Unicast Multicast Broadcast

Sender Router Reciever Not a reciever

Figure 2.1: Different routing methods. Scenario: there are several receivers of a stream, for example

a television channel, and some users who do not wish to receive the stream. The arrows illustrates

how many duplicates of the streams that is sent with the different addressing methods, and where the

streams are sent in the network. As we can see, in this scenario, multicast is the most efficient regarding

bandwidth utilization.

Both unicast and broadcast is not good solutions to transmit a bandwidth demanding stream

towards several users. From Steve Deering’s work in the 1980’s came IP multicast. The prin-

ciple of multicast is that no matter how many users that are receiving the stream, only one

stream is transmitted from the sender. Intermediate nodes in the network keep track of which

interfaces that has a receiving user, and forwards only on these interfaces. As seen in fig. 2.1, it

11

CHAPTER 2. TECHNOLOGY BACKGROUND

serves a controlled distribution of the stream (improvement from broadcast) and saves bandwidth

(improvement from both unicast and broadcast).

2.1.3 Network topologies

Network topologies can be categorized as the list below. Topologies may be composed by one

more of these patterns.

Point-to-point Two end-users are connected directly. Due to full-duplex support there will not

be collisions.

Bus Several users can be connected to a shared medium. Users are for example end-stations

like a laptop, a printer or a server.

Star Several users are connected to a switch or hub, and by placing the switch in the middle of

a topology-map it looks like a star. Hubs are not used much anymore due to its inefficient

nature.

Hierarchy Several star-topologies gives a hierarchical built network.

Mesh In a full mesh, all nodes are connected directly to each other.

2.2 Ethernet switching

A short presentation of the origin follows. The standard IEEE Std 802.3 [2] has more information

on the subject. Xerox developed the first Ethernet and it had a bit rate of 2.94 Mb/s. This

work was the basis of the first IEEE Std 802.3 published in 1985, with an improved bit rate of

10 Mb/s. Since 1985, many projects has added or improved features of 802.3. Today Ethernet

supports up to 10 Gb/s at full duplex, and the 100 Gb/s is imminent.

Ethernet defines a protocol for the physical- and the data link layer, and it is a wired LAN

and WAN technology. Each station has a physical address, also called MAC-address. This is

used to identify the device in the other end of the medium. MAC wraps up the LLC PDU, and

sends the data over the link. The packet format of MAC is shown in table 2.4.

IEEE Std 802.1Q [23, 11] defines MAC bridging. A bridge has three main components relevant

to this thesis. The first is the part that creates a logical topology based on the physical, and

is described in the following section 2.2.1 Rapid spanning tree. Next, a bridge has mechanisms

to forward data logically. This is done by the MAC relay entity component described in section

5.2.1 Other bridge functionality. The last component is the Multiple MAC registration protocol

(MMPR), which is described further in section 4 Multiple MAC Registration Protocol.

12

2.2. ETHERNET SWITCHING

0 3 4 7 8 15 16 18 19 24 31

Version IHL ToS Total length

Identification Flags Fragment offset

Time to Live Protocol Header checksum

Source address

Destination address

Options Padding

Table 2.2: IP version 4 packet Header [6]

0 3 4 11 12 15 16 23 24 31

Version Traffic class Flow label

Payload length Next header Hop limit

Source address (128 bit)

.

.

.

Destination address (128 bit)

.

.

.

Table 2.3: IP version 6 packet header [7]

7 octets Preamble

1 octet SFD

6 octets Destination address

6 octets Source address

2 octets Length/Type

4-1500 octets

{

Mac Client Data

Pad

4 octets Frame check sequence

Extension

Table 2.4: MAC Frame format [2]

13

CHAPTER 2. TECHNOLOGY BACKGROUND

2.2.1 Rapid spanning tree

A logical topology in Ethernet is traditionally created on the basis of a spanning tree protocol

(STP). Standard [22] introduced rapid STP (RSTP) and forms the basis for Multiple STP

(MSTP) defined in standard [23]. In switched networks without VLANs, RSTP should be used.

MSTP present more opportunities in forms of traffic engineering in bridged networks, but this

is not relevant in this thesis context.

RSTP makes a logical topology on top of the physical topology. The logical topology has no

loops, consequently there is only one logical path between to nodes. Every tree must have only

one root bridge. The root bridge is, as the name suggests, the root of the logical tree. The root

bridge is the bridge with the lowest bridge ID. The ID is calculated based on several parameters,

but in this thesis, only the difference of bridge MAC address is the base for the root bridge

calculation.

The logical path between a root bridge and one of the other is always the best considering a

certain path cost. The cost of a path is the sum of all costs for each link in the path. The cost

of a link is by default a number representing the data rate capacity of the link.

Each active port in a RSTP topology has a state and a role. The state could be either

“discarding” or “forwarding”. The ports in forwarding state are able to forward data, while

those in discarding state do not transmit or process data exept RSTP signaling data.

The role of the port should be either “root”, “alternate” or “designated”. All the ports of

the root bridge are designated ports. The other bridges must have a root port, which is the port

that leads to the path with lowest cost to the root. If the bridge has an alternate physical way

to the root bridge, the port may be set to alternate to avoid loops. The other ports that are

connected to other devices are set to a designated role. A port role named “backup” also exists,

but it is not relevant for this thesis.

2.2.2 Virtual LAN

In a Virtual LAN, or VLAN, end stations are connected virtually together as if they were on

the same physical domain, independent of their physical location. Each VLAN forms its own

logical topology, and a Bridge [23] filter traffic based on destination and VLAN. VLAN is used

to segment users from each even though they may be connected to the same physical Bridge.

2.3 Mapping from IP multicast traffic to Ethernet

This section introduces the internet protocol (IP), followed by a introduction to IP multicast.

The IP multicast part also explains how to map IP multicast addresses to Ethernet addresses.

The section 2.4 Current solution presents current solutions in a cellular network. We see that

the end user devices uses the internet protocol. The part of the network relevant for the problem

14

2.3. MAPPING FROM IP MULTICAST TRAFFIC TO ETHERNET

usese Ethernet, and is between end user and a core network with IP. Thereof, the internet

protocol is relevant, and mapping of IP multicast traffic to Ethernet is relevant.

As shown in table 2.1, the internet protocol is above the Ethernet in reference to the OSI

model. Internet today is built around te IP protocol, meaning that each internet-participant uses

an IP-address to communicate. Data transmitted through the internet keeps the IP, but it might

encounter different layer 1 and layer 2 devices during the transmission. IP version 4 (IPv4) is the

most common protocol today, but the small address space is a critical limitation. Thus it was

developed a new protocol to deal with the limited amount ofaddresses, IP version 6 (IPv6). This

protocol enhance the functionality from IPv4 and has an address range between 0 and 2128. IPv6

was developed to replace the IPv4, without a transition stage, and is not backwards compatible

with IPv4. Most new devices has support for IPv6, but some older devices may not support this.

Backward compatibility to IP version 4 must be supported in order to ensure connection while

devices still has IPv4.

The IP layer splits data from the above layers into packets, and forwards these to the data

link layer beneath. The packet format of IP version 4 and 6 is shown respectively in table 2.2

and 2.3, page 13.

A sender with a IP multicast stream sends the data with a IP multicast address as the

destination in the IP packet. The source address is the normal IP unicast address of the sender.

The multicast address space is from 224.0.0.0 to 239.255.255.255, also known as the Class D

addresses. However, some of the addresses are reserved 1. IP multicast creates a tree of users

where the sender is at the top. Users that is not a member of a multicast-stream is not a part

of the tree, and does not receive any multicast-streams. In contrast to unicast, only one stream

is transmitted from the sender regardless of how many users are subscribed. This in contrast to

unicast transmits that transmits n streams for n users.

IP multicast is splitted in two parts — the Internet Group Management Protocol (IGMP)

and multicast routing. The latter part is developed in several directions, and there are several

protocols available IGMP is the protocol which enables hosts to join a multicast group. Current

version is IGMPv3 (version three) that is standardized as RFC 3376. The following description

is based on this standard. A multicast group is identified by the destination address in the

IP-packet. It can also be based on a combination with the source IP address, to be able to

identify different streams if two or more senders use the same multicast-group as destination.

IGMP-messages are originated from the end-user to the first multicast-supported router. Users

join the multicast-stream by sending an IGMP join-message towards the router. There is no limit

on how many multicast-streams a user can subscribe to, or how many subscribers there are to

a single multicast-stream. IGMP is designed for IPv4, while a similar protocol called Multicast

Listened Discovery (MLD) is standardized for IPv6. MLD version 2, standardized in RFC 3810,

1Internet Assigned Numbers Authority (IANA) coordinates the address-space:

http://www.iana.org/assignments/multicast-addresses/

15

http://www.iana.org/assignments/multicast-addresses/

CHAPTER 2. TECHNOLOGY BACKGROUND

is quite similar to IGMP v3.

When a user terminate a subscription, it may send a IGMP leave-message. However, the

router that received the leave-message, does not know how many subscribers are connected to

the interface, hence it sends an Group-Specific Query and starts a time-out. If no Reports are

received before the time-out, the router assumes that there no members left on the interface.

IGMP messages are encapsulated in IPv4 datagrams, with an IP protocol number of 2. IGMP

v3 supports the following five message types:

0x11 Membership query: are sent by IP multicast routers to query the multicast reception

state of neighboring interfaces.

0x22 Version 3 Membership report: are sent by an IP system (to neighbor router) to report

the current multicast reception state, or changes in the multicast reception state of their

interfaces.

0x12 Version 1 Membership report: are sent by an IP system (to neighbor router) to report

active membership to a multicast stream.

0x16 Version 2 Membership report: are sent by an IP system to report active membership

to a multicast stream.

0x17 Version 2 Leave group: are sent by an IP system to report that it wants to leave a

multicast group.

The hex-number before each message-type is the type number. Messages with other type

numbers should be ignored. Specifications of the messages can be found in [3], [4] and [5].

IGMP can be illustrated with the following. IGMP creates small branches to the leaves

(the subscribers) of the multicast-tree, while the multicast routing protocols makes the main

branches and the stem. Building the tree is the opposite of what we might think — from a leave

(a multicast receiver) toward the source. I.e. a client uses IGMP to join a multicast group.

Multicast routing is sort of the opposite of unicast routing where unicast is about where the

receiver is — multicast is about the source of the packet. Routing protocol can be defined in two

categories, shortly mentioned due to its relevance here. The first is dense mode protocols which

floods the entire network, prunes (removes) branches of the tree with no receivers. Well suited

for networks with a high density of subscribers, and not suited with scattered subscribers. The

other category is sparse mode protocols which is designed for thinly populated multicast groups

over a large region.

IP Multicast is not supported in a layer 2 network. This leads to problems. Use figure 2.2

as an example. If all five computers were to subscribe to different multicast-streams, all of the

streams using 10 Mbit/second. The switch forwards all multicast streams on all interfaces by

default, and each computer receives 40 Mbits/seconds that they do not want. A workaround

16

2.3. MAPPING FROM IP MULTICAST TRAFFIC TO ETHERNET

is developed for switches and bridges called IGMP-snooping (and MLD-snooping for IPv6). No

standard exists hence the implementations rely on the IGMP-protocol itself. The switch needs

to be layer 3 aware and read the IP-packet headers.

1

�� CC

2

�� CC

3

�� CC

4

�� CC

5

�� CC

Layer 2 switch

?

multicast stream

Figure 2.2: IP multicast on Ethernet with default group addressing behavior. The node with

number 1 to 5 illustrate end users.

A switch can determine whether a MAC-frame that has entered on an interface is multicast or

unicast based on the destination address. See the MAC-frame format in table 2.4. The 25 MSBs

of the MAC-address is equal for MAC-frames containing a multicast IP-packet 0x0100.5Exx.xxxx

[1, 3, 25]. The first octet, 01, is stated by the IEEE Std 802.3 and tells us that it is a “group-

address” [2]. The rest of the destination address in the MAC-frame is mapped from the layer

3 multicast-IP. All multicast-addresses is class D, which means that the four MSBs is 1110 and

the 28 LSBs determine a given multicast-stream. The 23 LSBs of the destination IP-address

is set as the 23 LSBs of the MAC-frame destination address. This mapping ignores the five

MSBs of the multicast-IP. For each mapped MAC address possible, there are 25 = 32 possible

IP multicast addresses – hence an end host can not be sure that the frame belongs to one of its

subscribed multicast-streams before it decapsulates the MAC-frame and reads the full destination

address in the IP-header. The switch should send a frame of a given multicast-stream only out

interfaces where a subscriber is connected. In order to implement this, the switch must know

what interfaces that has an active multicast-subscription, and this is where IGMP-snooping come

in handy.

An IGMP-snooping switch must be able to “listen” to layer 3 packets and read those who

contains IGMP-messages. When a switch reads one of these messages, it must also keep track of

the memberships and send the correct information to the users or router. For example, based on

figure 2.2, if both laptop 2 and 3 are members of the same multicast group and laptop 2 sends

a message that it wants to leave the group. Because the switch knows that laptop 3 also is a

member, it does not forward the message towards the router, but stops forwarding the multicast

packets on the interface connected to laptop 2.

The latter example is really simple, and in a bigger Ethernet topology the layer 2 devices,

like MAC bridges, may need to signal each other to keep track of the different multicast mem-

17

CHAPTER 2. TECHNOLOGY BACKGROUND

berships in an effective way. This dynamic registration and deregistration approach in Ethernet

is supported by the IEEE Std 802.1ak [24] protocol, which defines Multiple MAC Registration

Protocol (MMRP). MMRP is described in chapter 4.

2.4 Current solution

This section describes the current backhaul network technology and where the evolution is head-

ing in near future. My references are [17], [21] and [12].

Figure 2.3: Mobile network topology IP endpoints marked.

A typical topology of current mobile networks is illustrated in figure 2.3. However, the

Ethernet and IP labels at the bottom of the illustration is not typical for current networks.

ATM technology has been the dominant technology for connecting the access network to the

core network (in Europe) and served the cellular network well. GSM and UMTS networks has

limited bandwidth demands and many backhaul networks has been designed to handle voice-

centric traffic. However, the cellular networks and its terminals are changing, and this is a

ongoing development. It is anticipated that terminals with improved performance and support

for new services will become available, this will put pressures on the performance of the network.

It is quite interesting to see the change in network traffic as new terminals are introduced, as

illustrated in fig. 2.4. It is clearly seen that as the fourth generation of cellular networks are

emerging, there will be even more demand for network capacity. E1 is not scalable enough [17].

Bandwidth-problem will be solved and the total cost of ownership (TCO) will be reduced by 20-

30% replacing the existing technology with an IP/Ethernet solution [12]. As current backhaul

network is migrating towards the topology in figure 2.3, the bottleneck is moved from the access

to the backhaul network. There are two alternatives to Ethernet technology - MPLS-TE or a

connection oriented Ethernet (COE). The industry has a ongoing discussion which to use in the

backhaul. A comparison of the TCO between these two technologies over a five year period in

[13], concludes that the COE alternative is 43% less expensive than the MPLS-TE alternative.

18

2.4. CURRENT SOLUTION

This could be a winning factor for the COE alternative in the long run.

Figure 2.4: Statistics on data traffic per month generated by the average user, Nokia N95 users

and iPhone 3G users in Netcom’s cellular network [36].

19

CHAPTER 2. TECHNOLOGY BACKGROUND

20

Chapter 3

J-SIM

This chapter is divided into four parts. The first part is a introduction of J-SIM, and followed

up by a section that describes the architecture. The third part concerns implementation of the

architecture in Java, and finally a section that treats TCL and Java together to “glue together”

elements implemented and run simulations.

3.1 Introduction

There are two main approaches on how to simulate the behavior of a system. Time-driven

simulation: At a periodic fixed time-interval, the simulator engine checks the system state and

eventually makes changes (e.g. every 5 time units). Event-driven simulation: The simulator

engine checks the system at each event that occurs in the system.

A drawback with the time-driven approach is that there is no guarantee that the simulator

will register all states of the system through the lifetime of the simulation. The most used

approach is the event-drive simulation [28].Each event has a time stamp, and the events must

occur in chronological order based on the time stamp. The time between each event is skipped,

so the processing of events has no dead time1 — there is always an event that is processed. In a

system with a lot of events, the time consumed running the simulation may exceed the time used

with time-driven simulation of the same system, but the fidelity of output from the simulator

may be far better on the event-driven. The time and output fidelity only “may” be better,

because, if the time-driven simulator have a period less than the smallest time between two

events, the fidelity of output information turns out to be just as good, but then the processing

time would increase beyond what is used by the event-driven. The same is true the other way

around, where the time-driven approach has a period larger than the smallest time gap between

two events. Time-driven simulation will have a faster processing time, but worse fidelity of the

1Dead time: here, time when the simulator does no processing.

21

CHAPTER 3. J-SIM

Figure 3.1: A J-SIM component illustrated to the left with the blue circles as ports, and an

integrated circuit to the right [26].

output information (may have skipped some states in the system) [30].

J-SIM is a simulation environment developed by Hung-ying Tyan in his Ph.D. thesis project

[20]. It is a component-based architecture built upon the Autonomous Component Architecture

(ACA), also introduced in his Ph.D. thesis. ACA is implemented in Java, thereof the name

“JavaSim” which later was changed to what it is known per date as, J-SIM. This was due

to trademark conflicts with Oracle and Suns Java 2 [26]. The basic design idea of the J-SIM

architecture is to mimic integrated circuit (IC) chips. A component in J-SIM is a software

implementation of an IC. That means the ports of a J-SIM component is like the pins of an IC.

J-SIM uses an extended version of a discrete-time event-driven simulation approach, called real-

time process-driven simulation. Basically, it has the same features as event-driven simulation.

3.2 The autonomous component architecture

The difference between hardware design with ICs and software design with some object oriented

programming (OOP) language is the component (object) binding. This is the motivation for the

ACA, and Tyan describes this in [20]. The following section starts off with the background and

motivation of the ACA. The architecture itself is explained in some detail at the end.

Bindings between objects in software often becomes a problem. In order to call a method from

another object in OOP, we need to know the exact naming of the function and its parameters.

This makes the binding to “strong”, because the component that calls the functions needs to

know more than necessary. The binding is so strong that it is impossible to extract a object

because it is depended on other objects. Extracting an object for solely testing is impossible

because of the dependence of other objects in the system. One of the original ideas when OOP

was designed vanishes in the so called hyper spaghetti objects and subsystems phenomenon. This

is contrary to hardware, because the ICs are clearly separated and each IC has a given interface.

It can be tested and developed of its own, separate from the rest of the hardware in the system

before it is implemented. This makes the design modular and easier to keep the overview of

design and in debugging. Based on the issues above, Tyan proposed the autonomous component

2Oracle and Sun’s Java: http://java.sun.com/, last visited 24.02.2010.

22

http://java.sun.com/

3.2. THE AUTONOMOUS COMPONENT ARCHITECTURE

architecture, for software, that mimics IC design.

The basic entity in ACA is a component. A component may have one or several end points

called ports. Each port has an incoming and an outgoing connection. When a component is

designed and implemented, it defines how it reacts to incoming signals on a port, and what

signals that are propagated through a port. There are no relations to other components it

communicates with. The handling of signals on a port is called a contract. For example when

a signal arrives at a port, it has to check the type of signal and perform some action based on

evaluation. E.g. it sends a new message out on an other port, or register the value in a table.

The functionality of the component and its port are defined before system integration time, while

the components are bound together at the system integration time. The system are integrated

by the use of the tool command language (TCL) bridged together with Java. How this works

will be addressed in section 3.4.

Ports in a component can be organized into groups. Each group is identified by a group ID,

and each port has it own port ID. Group ID and port ID is used to identify a specific port.

Two ports can be connected in a simplex or a duplex manner. A simplex manner is illustrated

in figure 3.3a), and joins the output of port A with the input of port B together. In a duplex

manner, illustrated in 3.3b), also connects the input of port A with the output of port B together.

3.2.1 Composite components and server ports

A component may be composited by several child components, as shown in figure 3.4. The

composed component is a “parent” to its sub components. The sub components are often referred

to as “child components”. In the figure, port A of component exp a is connected to port B. When

data arrives at port A it actually arrives at port B. Port A may be viewed as, and data is going

straight through port A both ways. Port A is called a shadow port, and must be established so

the composite component has an port toward the rest of the network.

Several components may be connected to the same port of a component at system integration

time. If they depend on a return value based on what it transmitted to the port, it is necessary

Component

Port

Data flow

Figure 3.2:]

Components communicates through ports [26].

23

CHAPTER 3. J-SIM

that the right component receives the right return value. To solve this issue, ACA defines a special

type of port that is named server port. No matter how many components that are connected to

the server port and request an answer, the answers are only returned to the querying component.

ACA also specifies that the runtime3 shall handle the different execution contexts, which

makes the components autonomous. To comply each component are executed with its own Java

Thread. More about the runtime and component execution is presented in section 3.3.1.

3.3 Java implementation of the ACA

J-SIM is actually a Java implementation of the ACA. That means that it has used the principles

of ACA to prevent the OOP-issues with component-binding addressed in 3.2 page 22. In this

section, we start by describing the the J-SIM runtime in section 3.3.1 and 3.3.2, then in section

3.3.3 we proceed with an introduction of some basic J-SIM components.

3.3.1 The runtime

To handle all the incoming data in the different components, J-SIM uses a background thread

manager. This manager is known as the runtime, and is implemented to comply with the ACA

so that the components are autonomous. J-SIM uses Java Threads for execution context. Two

Java-classes are used, WorkerThread and ACARuntime. When a component is about to transmit

something on one of its ports, a WorkerThread is either created or waked up from a pool of

sleeping threads to perform the handling of the data sending. Before the handling is finished,

the thread notifies the ACARuntime. ACARuntime then uses the same thread to handle the

incoming data on the other end. This achieves “one thread per message”. WorkerThread has

wrapped the Java Thread class that includes execution context information. The ACARuntime

is a pool of all the WorkerThreads started. J-SIM has a limit of how many threads to be active

at once. When a component wants to send something, but the maximum number of threads is

reached, ACARuntime puts the request in a queue. If a thread is available, ACARuntime either

starts a new WorkerThread or wakes up a WorkerThread that is in sleep state.

J-SIM has real-time process-based simulation as an extension to the runtime. The basic idea

3Runtime is a collection of background processes. In ACA it handles all the different execution context. In

the realization of ACA, J-SIM, the runtime handles the different threads. [20]

A B

(a)

A B

(b)

Figure 3.3: Ports connected in a simplex manner in (3.3a) and duplex in (3.3b) [26].

24

3.3. JAVA IMPLEMENTATION OF THE ACA

Figure 3.4: Illustration of capsulation of components [26].

isto always keep the simulation active with at least one WorkerThread. This means if there is no

events in the system, J-SIM skips that time and starts processing the next event in the timeline.

Therefore, the way J-SIM execute scripts is with high fidelity and still optimized. The simulation

results must have the correct system time, so J-SIM keeps track of all the time skipped to calcute

the system time through the simulation process.

3.3.2 Exporting information at runtime

To get diagnosis information at runtime, ACA defines a special port called infoport. Four types

of information may be exported at this port, error message, garbage message, debug message

and trace message. The are all of the same format:

1. Time of export (double).

2. Path of component/port in subject (String)

3. Data in subject (Object)

4. Detailed description (String)

There is also a port called event port, which export event messages. These messages has an

additional parameter compared to the inforport messages, the event name (String). The list

below has a short description of the different types of messages.

• Infoport, the following information is exported:

– Error message - exported when a component can not handle incoming data.

– Garbage message - exported when a component discards data.

– Debug message - exported when the component writer would like to export debugging

data.

– Trace message - is a special debugging message and is exported for all incoming and

outgoing data.

• Event port, triggered of some event.

25

CHAPTER 3. J-SIM

3.3.3 Base classes

J-SIM comes packed with a range of components. It starts out with base classes like Component

and Port, and has built several layers of protocols on top of it. An overview of the classes is shown

in figure 3.5 at page 26. When it comes to the ACA; Component, Port and Wire are the exact

counterpart of ACA as described in 3.2. The ACARuntime, WorkerTherad and Forkmanager

classes includes the necessary mechanisms for the Java thread-handling in J-SIM, to realize the

design of autonomous components.

The Component-class is the foundation for all components like the Module-class (figure 3.6).

The Module-class is used as a foundation for my implementation due to its “timerport”. The

timerport receives events (of type ACATimer) that times out. This is needed in situation where

a statemachine has timed events and timeouts. The Module-class has also a “downport” and an

“up-port” which is indicates the dataflow down or up in a protocolstack.

It is mainly the two bottom layers of figure 14 that are relevant to my work. The exception

is the Link- and Queue-classes which includes mechanisms to handle propagation-delay and

queuing, respectively.

Figure 3.5: An overview of J-SIM packages with the basis at the bottom, and higher layers at

the top. The corresponding Java-packages are listed to the right of the figure [20].

26

3.4. TCL AND JAVA TOGETHER IN ONE SYSTEM

drcl.net.Module

.timer@bc
up@bc
down@bc
.info@bc

Figure 3.6: A simple overview of the Module-component. In addition to the ports that are

illustrated, it contains several elements inherited from the drcl.comp.Component class. White

circles are ports.

3.4 TCL and Java together in one system

Java is used to develop components, while TCL is used to connect components, access component

methods and run the simulations. The TCL-version implemented in J-SIM is from the TCL/Java-

project found at [15], which has integrated the Java-platform and TCL. Reference [15] also

includes a manual of commands which comes in handy writing the scripts. In addition to the

default TCL-commands, the J-SIM developers have added extra functionality in what they call

the runtime virtual system (RUV) [20]. RUV will be addressed in 3.4.2 after a description of the

component hierarchy in section 3.4.1.

3.4.1 How components and ports are identified

When using the terminal in J-SIM, we ?nd structure that has similarities of a UNIX-like filesystem

and command set. To differ from components and port, ACA structures the component in a

folder-subfolder way. A component is identified by the path, where parent component comes first

and concatenated with a forward slash, “/”, and then the child component. A software system

forms a component hierarchy with it self as the root. The root component has only a forward

slash, “/”, as path. Example below is based on figure 3.7. The system name is “simulationTest”

and the composed component is named “parent”. The path for “parent” is:

/simulationTest/parent/

The component named “parent” has two sub components named “childA” and “childB”. Their

paths are respectively

/simulationTest/parent/childA/

/simulationTest/parent/childB/

Ports are, as mentioned, categorized in different groups inside of a component. The default

group is null. Each port is identified by the path to its component concatenated with a “/”, the

port name, “@” and the group name. Thus, the port named “port1@group1” at the component

“childA” is identifieed by the following path:

27

CHAPTER 3. J-SIM

/simulationTest/parent/childA/

The port named “out@transmit” of the component named “parent” is identified by the following

path:

/simulationTest/parent/out@transmit

While in the terminal, use ls to list the available components in your path, cd [component_name]

to enter the component and cat for more information about the current path.

parent

childA

childB

port1@group1
portA@groupC

portA@groupD

out@transmit

System name: simulationTest

/simulationTest/parent/out@transmit

/simulationTest/parent/

/simulationTest/parent/childB/

/simulationTest/parent/childB/portA@groupC

/simulationTest/parent/childB/portA@groupD

/simulationTest/parent/childA/port1@group1

/simulationTest/parent/childA/

/simulationTest/

Figure 3.7: An example of a system with components. The system consists of a composed

component named parent and two child components named childA and childB. Each component

has one or two ports. The right part of the figure lists the path identifying each component and

port in the system. Note that component childB has two port with the same name, but they are

still unique due to different port group names.

3.4.2 The runtime virtual system

The J-SIM user interface is a terminal window. It is possible to execute TCL-files, and write

TCL/RUV commands right into the terminal. After a simulationscript is processed, the RUV

commands are useful to gather information about the state of the system. If it is desired to

continue the simulation, it is possible by calling a method of the simulator.

If the system has many components, it is awkward to use TCL / Java. The reason is that TCL

must save a TCL variable for all the components. Alternatively use methods like getParent()

and getComponent() (for the child components). To make the scripting easier, Tyan developed a

reference system which is called the runtime virtual system RUV. Based on component-hierarchy

described in 3.4.1, one can easily create a reference to a Java Object. In addition to reference

28

3.5. CONSIDERATIONS

! Converting the path to the reference of the Java-object.

cat Print the internal state (the info() method of the Java-object).

cd Change the current working directory

connect Connect to components/ports.

cp Copy the component or port.

disconnect Disconnecting components or ports.

exit Closes the terminal.

ls List the child components and ports in the current directory.

mkdir Create a component or port.

mv Move or rename a component or port.

pwd Print the current working directory.

rm Removes a component or port.

Table 3.1: Some of the RUV commands [20]. To list all commands, type man and hit enter in

the terminal.

management, RUV has commands that we know from UNIX systems. See Table 3.1 for a brief

overview. Reference handling is based, as mentioned on the component hierarchy. Assume the

following path to a port with the name “portId” in group “groupId”:

/parentComponent/childComponent/portId@groupId

To access a method such as toString(), in the Java-object and print the return value, type:

puts [[! /parentComponent/childeComponent/portId@groupId] toString]

While in the terminal, use ls to list the available components in your path, cd [component_name

] to enter the component and cat for more information about the current path. Some of the

RUV-commands are listed i table 3.1.

3.5 Considerations

Simulation is a practical tool for analyzing systems. Each element4 added in a scenario, a real life

study would require more configuring and more resources when it comes to equipment, time and

money. The cost of adding another element in a simulation tool, is just a few lines of scripting.

You are able to add only the elements you want, contrary to real life where you need include

whatever elements that the devices have. A real scenario with more then a few devices will soon

require demanding time-resources to configure parameters on every device. Additional time is

4Element: here, e.g. a protocol/standard or some functionality.

29

CHAPTER 3. J-SIM

required to tweak the performance, while in a simulation tool you only need to change some

variables in a script.

J-SIM has some drawbacks not mentioned yet the most severe is the lack of an active

community. That causes no bug-updates, no evolution of the environment and less resources

helping you out when facing an issue. An other point worth mentioning is the lack of a good GUI,

which would simplify the set-up of larger network-topologies and collect and analyze output.

30

Chapter 4

Multiple MAC Registration

Protocol

Multiple MAC registration protocol serves a dynamic registration and deregistration scheme for

individual and group MAC addresses. This chapter presents some of the architecture of MMRP.

It serves as a base for the abstraction and implementation described in the next chapters.

The frames transmitted in Ethernet uses MAC addresses as destination and source addresses

as described in [9]. The addresses may be either an individual address, or group address. An

individual address points to a unique device or port in the network, while group addresses may

have several end destinations. The MAC-group address is defined in [9], and it is identified by

the least significant bit being 1 in the address, while the least significant bit of an individual

MAC address is 0.

A Ethernet bridge mechanism for forwarding frames is based on destination MAC address.

Depending on the type of filtering service the bridge uses, there are different ways to handle

frames addressed to a group addresses. Two filtering services are listed in the standard – basic

filtering service and extended filtering service. If a bridge uses basic filtering service, it will

relay frames with a group address as destination on all ports in forwarding state, except the

port the frame entered. An exception is if it has static entries in the filtering database, telling

otherwise. On the other hand, extended filtering service will be able to make dynamical entries

in the filtering database with the group addresses. Upon reception of a frame with destination

address that is a group address, the bridge could send out on the ports where there are some

who would like to receive frames addressed to this group address. The entries are saved in the

filtering database by some signaling protocol.

IEEE Std 802.1Q [23] specifies the architecture and functional requirements of an Ethernet

VLAN bridge. In an amendment published in [24], IEEE defined two additional protocols called

Multiple Registration Protocol (MRP) and Multiple MAC Registration Protocol (MMRP). The

31

CHAPTER 4. MULTIPLE MAC REGISTRATION PROTOCOL

latter protocol is responsible for registering the group addresses in the filtering database if the

bridge supports extended a filtering service. A correction to the two protocols was published in

2008 [11]. The corrections were minor (in terms of bit) adjustments to the packet format used

by MRP. However it is important corrections that enables parsing of the PDU bit by bit. The

reason is that an octet was added to the MRP signalling frame (MRPDU). The octet identifies

the data size of the PDU payload.

4.1 Group management in Layer 2

A bridged network has a physical topology based on the wired/wireless connections between end

users and bridges. There may be more than one path between nodes in the network, which is

good for several reasons. Alternative links makes the network reliable as there are redundant

connections. In addition, alternate links enable load balancing (by using e.g. MSTP described

in [23]). However, redundant links demands more administration and costs extra money for

equipment and configuration/maintenance. A problem with loops in a layer two network is the

way bridges propagates traffic with unknown destination. Reference [23] states that if the given

destination address of a Ethernet frame [10] is not registered on any port in the filtering database,

it should be transmitted on each other than the entered port. Needless to say, that frame could

cause a duplicate storm through the network that will not end. In order to solve this problem,

bridges exchange information based on an algorithm. By this information, they create a logical

topology upon the physical. This topology is called the active topology and the protocol used to

create this topology could be STP, RSTP or MSTP ([22] and [23]). Figure 4.1 gives an overview

of the structure of a bridge.

The multiple MAC registration protocol (MMRP) introduces a way for participants in the net-

work to dynamically register and deregister attributes. Dynamically registration means that the

signaling message (e.g. a registration) from a participant is propagated throughout the network

so that each other participant receives (and registers) the given message. Without the dynamical

Relay
(Ingress, forwarding, egress)

Source address learning

MMRP
Station location

MVRP
Management controls VLAN Topology

STP, RSTP, MSTP

Management controls

(enable/disable port)

Active Topology

Physical network typology

Figure 4.1: Bridge overview [24] as described in 4.1.1.

32

4.1. GROUP MANAGEMENT IN LAYER 2

R

DD

RR

R

D

R

Port of a bridge

End user

Bridge
Legend

= Path of attribute declaration

D = Declared the attribute

R = Registered the attribute

R

DD R

DD

D

DR

R

D

D R R

R

Figure 4.2: Attribute value propagation, in IEEE 802.1ak MRP, from one station [24].

registration mechanism, statical entries in needs to be added to all affected filtering databases to

create a multicast topology. Multiple MAC Registration Protocol (MMRP) attributes are either

an individual MAC address, a group MAC address or group service requirement information.

This thesis limits the use of attributes in MMRP to group MAC addresses.

A practical example of MMRP is a network with video streams destined for different MAC

group addresses. In order to avoid congestion in the network with widespread propagation of

all the video streams, each participant that wants to receive a video stream, needs to subscribe

to the stream by sending a registration through the network. See figure 4.2. The end station

marked with “D” declares the MAC group address of the desired video stream. The declaration

is propagated through the network by the help of MMRP, this is illustrated with arrows on the

figure. As can be seen, the ports where the attribute enters the bridge, gets registered, while the

outgoing port is gets declared. That feature gives the network the necessary information to send

the video stream back to the subscriber — every bridge in the network now propagates the video

stream on the ports which the attribute is registered. A more technical description is given in

the next sections.

MMRP allows participants to register or withdraw attributes with other participants in a

bridged LAN. A participant of a MMRP application is a port on a Bridge or end user supporting

a given MRP application. It is maximum one participant per application per VLAN per Port

combination on a Bridge, and one participant per application per end user. When a participant

makes a declaration of an attribute, the declaration (or withdrawal) results in a registration

with other MMRP participants. The declaration is fetched by an “Applicant State Machine”,

and triggers signaling of MRPDUs in the network towards other participants. Upon receiving

of a declaration MRPDU, a “Registrar State Machine” registers the attribute, and eventually

declares the attribute on the other participants of the Bridge. The attribute is not removed

until all participants of the connected LAN withdraw the declaration. Figure 4.2 shows how

33

CHAPTER 4. MULTIPLE MAC REGISTRATION PROTOCOL

an attribute from a single station propagates through a network. Notice that the attribute is

registered on the incoming port and declared on the outgoing port. Going the opposite way of

figure 4.2 produces a “reachability three”. If a multicast stream was present in the network,

MMRP would be a good way of managing the streams to subscribers. End users that wants to

subscribe may declare an attribute saying they are apart of the multicast group. MMRP gives

end users the opportunity of tracking those attributes that have subscribers. A content provider

(server) has information of which attributes that are declared in the network. Therefor, the

server could choose to send or not send the stream out on the network. By stop sending a data

stream when there are no subscribers, saves network resources. The latter principle is called

“source pruning”, meaning that the data is pruned at the source while there are no subscribers.

4.1.1 MRP architecture

The following section gives a more detailed description of the MMRP architecture. FIgure 4.3

illustrates the architecture.

In a layered protocol design, MMRP is situated above the logical topologies of RSTP and

VLAN-configurations as illustrated in Figure 4.1. Its responsibilities are mainly to register the

MAC addresses in the filtering database. MMRP establishes a new logical topology upon of the

VLAN-topology, for each declared MAC address. The foundation is, as mentioned, the topology

defined by the RSTP and the VLAN-configuration, as shown in figure 4.1.

MMRP has different components that will be presented in the following text. The presenta-

tion will start at the bottom of figure 4.3.

Port Every Bridge port has an instance of a Periodic State Machine. As illustrated in figure

4.3, a port may have several MMRP participants – at most one per port and VLAN combination.

Periodic State Machine Associated with each port, there is a state machine. The machine

generates timer events every second. These events triggers resending of join messages for all

applicant state machines related to the current port. This is to ensure that all registrations are

propagated through the network in case of packet loss.

Participant A single participant is composed of a variable number of sub-components. The

following state machines must be included: The LeaveAll State Machine, MRP Attribute Dec-

laration (MAD) component and a MMRP-component.

LeaveAll state machine The LeaveAll state machine ensures that there are no unwanted

permanent registrations in the network. These situations may occur when a part of the network

has ceased to operate. Every 10 seconds, the leaveall timer will expire triggering a leaveall event

in the applicant state machine.

34

4.1. GROUP MANAGEMENT IN LAYER 2

MMRP component The MMRP-component handles the MMRP specific operations. These

operations are for example the handling of different types of attributes or handle registrations

request from other protocols.

MRP Attribute Declaration (MAD) MRP Attribute Declaration (MAD) handles each

attribute at the given participant. There may be several attributes registered at a single MAD

component as illustrated in figure 4.3. Each attribute has its own Registrar State Machine, and

its own Applicant State Machine. The two state machines handles the state for each attribute

at the participant.

Registrar state machine The registrar remember declarations done by other participants.

It does not trigger sending of MRPDUs. The three states of the registrar state machine are:

• IN, the attribute is registered at this participant.

• LV, the attribute is leaving (being removed) from this participant.

• MT, the attribute is not registered on this participant (empty).

Applicant state machine Quote from the standard [24].

The job of the Applicant is twofold:

1. Ensure that this participant’s declarations is correctly registered by other participant’s

registrars.

2. Prompt other participants to re-register after one withdraws a declaration.

End quote. The last point is completed by sending MAD primitives to participants on the

same MAP context (see next paragraph about MAP), and send MRPDUs to the connected LAN.

MRP Attribute Porpagation (MAP) Signaling between MMRP participants on a bridge

is realized with MRP attribute propagation (MAP). Participants do communicate among each

other if they are on the same MAP context. A MAP context are Participants that are on the

same VLAN. The signaling is based on MAD primitives, described in the following part:

The MMRP component has the information about the attribute values, registration, and

semantics. It requests MAD to make or withdraw attributes by means of the primitives:

MAD Join.request(attribute type, attribute value, new)

MAD Leave.request(attribute type, attribute value)

The MAD handles reception of MRP messages and generates MRP messages for transmission to

35

CHAPTER 4. MULTIPLE MAC REGISTRATION PROTOCOL

other participants. It uses the two following primitives to notify the application component of a

change in the attribute registration:

MAD Join.indication(attribute type, attribute value, new)

MAD Leave.indication(attribute type, attribute value)

In all four primitives, attribute type specifies the type of the attribute declaration, attribute value

specifies the instance of the attribute, and new states if it is an explicit new declaration. The

primitives are defined by MRP, but the new parameter is not used by MMRP. There are two

possible values of attribute type in MMRP:

The Service Requirement Vector Attribute Type Primitives with this attribute type con-

tains information about Group service requirements for the participant, and the attribute value

gives either “Forward All Groups” or “Forward Unregistered Groups”. An example of us-

age for these requirements are network monitors that will listen to all traffic — this require

the “Forward All Groups”.

The MAC Vector Attribute Type The values of MAC Vector Attribute Types are MAC

addresses, and depending on type of primitive, one wants to join or leave the group identified

by the MAC address.

The architecture is illustrated in figure 4.3, and as shown the MRP Attribute Propagation

(MAP) propagates information between the per-port and VLAN participants of a Bridge. If a

port has seen a registration, MAP makes sure that the registration is propagated out all other

ports. On the contrary when all ports has withdrawn an attribute it propagates the deregistration

on the network. The figure also illustrates that the MRP protocol is located “above” the LLC

layer.

To insure interoperability between MRP participants, each MRP application must use a

MAC group address as destination address. MMRPs application address is defined in table

10-1 in reference [24] as 01-80-C2-00-00-20. Transmission and reception of MRPDUs between

participants shall use LLC procedures. In order to identify which application the PDU belongs to,

each application has its own EtherType number. The EtherType number of MMRP is according

to [24, table 10-2]: “88-F6”.

Topology change

If the underlying active topology of e.g. RSTP, MMRP, changes, MMRP must also reconfigure

its subtrees for each attribute affected by the change. MMRP has two events that are triggered

by topology change. If the active topology is based on one of the STP protocols mentioned

above, the following is valid for MMRP: A “Flush!” event is deemed to have occurred if the Port

36

4.1. GROUP MANAGEMENT IN LAYER 2

Figure 4.3: MRP architecture with a two-port Bridge. [24]

Role changes from either Root Port or Alternate Port to Designated Port. A “Re-declare!” event

happens if a Port Role changes from Designated Port to either Root Port or Alternate Port.

MRP Protocol Data Units, MRPDU

MRP Protocol Data Units (MPRDU) are messages sent between MRP participants on different

bridges. They have a special format in order to enable participants to recognize and parse the

incoming messages, and generate the outgoing messages. Each MRPDU contains an the identifier

of the MRP application that generated it. If a Bridge or end user does not support the listed

MRP application, the MRPDU shall be forwarded on all ports that are in forwarding state,

except from its arriving port.

A MRPDU can contain several MRP messages, which itself can contain one or more MRP

events. The receiving MRP participant shall read the messages in the order they were sent.

As seen in figure 4.1 that contains the major components of an MRPDU, the first data field is

ProtocolVersion. Supporting new enhancements of the application and making it possible to have

different handling of different version, this is important. MMRP version as defined by reference

[24] has hexadecimal value 0.

Upon parsing of an incomplete or corrupt MRPDU, the participant shall discard the whole

37

CHAPTER 4. MULTIPLE MAC REGISTRATION PROTOCOL

Octet #

1 2 N

MRPDU structure ProtocolVersion Message 1 . . . Message N EndMark

Octet #

1 2 3 N

Message structure AttributeType AttributeLength AttributeList

Octet #

1 N

AttributeList structure VectorAttribute 1 . . . VectorAttribute N EndMark

Octet #

1 3 M N

VectorAttribute structure VectorHeader FirstValue Vector

Octet #

1 2

VectorHeader structure LeaveAllEvent NumberOfValues (13 bits)

Table 4.1: Format of the major components of an MRPDU [11]

MRPDU and terminate the processing.

4.2 Type of MRP-implementation

There are four types of implementations of MRP:

Full participant This participant has all the state machines and the full set of states that are

listed in [24, table 10-3].

Point-to-point subset of the full participant This type of participant includes all the state

machines, similar to the full participant, but may rule out some of the states from [24, table

10-3]. This results in a applicant state table as shown in table 4.2. The bridge parameter

operPointToPointMAC decides whether to use the full participant type, or the subset. If

the parameter value is TRUE, the subset may be used, but when the value is FALSE the full

participant should be used.

Applicant-Only participant Implements only the Applicant state machine with some states

omitted, and a periodic State machine. These options are used by e.g. end-user that only

needs the possibility to subscribe to traffic from group address, but are not itself a source

of such traffic. In that case the participant do not need to know whether there are other

user subscribing to the same group address(es).

Simple-Applicant participant A subset of the Applicant-Only participant. Implements the

same as the one above, but has removed even more states from the applicant state machine.

The difference between the Applicant-Only participant and the simple participants is the

38

4.2. TYPE OF MRP-IMPLEMENTATION

same as the difference between the full participant and the point-to-point subset of the full

participant.

39

CHAPTER 4. MULTIPLE MAC REGISTRATION PROTOCOL

STATE

VO VP6 AA6 QA LA6 AO QO AP3,6 QP LO6
E
V
E
N
T

Begin! – VO VO VO VO VO VO VO VO VO

Join! VP – – – AA AP QP – – VP

Lv! – VO LA LA – – – AO QO –

rJoinIn! AO AP QA – – QO – QP – –

rIn! – – QA – – – – – – –

rJoinMt!

—— rMt!

– – – AA – – AO – AP VO

rLv! ——

rLA! ——

Re-declare!

LO – VP VP – LO LO VP VP –

periodic! – – – AA – – – – AP –

tx!
[s] sJ sJ [sJ] sL [s] [s] sJ [s] s

– AA QA – VO – – QA – VO

txLA!
[s] s sJ sJ [s] [s] [s] sJ sJ [s]

LO AA QA – LO LO LO QA QA –

txLAF! LO VP VP VP LO LO LO VP VP –

Table 4.2: The applicant state machine for the Multiple MAC Registration Protocol (MMRP).

See table 10.3 of [24]

STATE

VO VP6 AA6 QA LA6

E
V
E
N
T

Begin! – VO VO VO VO

Join! VP – – – AA

Lv! – VO LA LA –

rJoinIn! AO AP QA – –

rIn! – – QA – –

rJoinMt!

—— rMt!

– – – AA –

rLv! ——

rLA! ——

Re-declare!

VO – VP VP –

periodic! – – – AA –

tx! [s] sJ sJ [sJ] sL

Table 4.3: The simple-applicant state machine for the Multiple MAC Registration Protocol

(MMRP). This is used at the end-user implementation of MMRP.

40

Chapter 5

Implementation

This chapter presents the first phases of the simulation study process described in chapter 1

Introduction. Implementation required both Java programming and TCL scripting. Finally

the implementation ended at approximately 5300 lines of Java code, and 700 lines of TCL

code. This chapter is broken down in three parts. The first is section 5.1 that presents an

introduction to the chapter and what approach that is used for the implementation. Next,

section 5.2 Making the model presents the abstraction of the system and data defining real life

scenarios. The data defining real life scenarios are collected by contacting several ISP and content

service providers, and from an article about usage behavior patterns in an IP television network.

Finally, section 5.3 Model translation, presents the transition from the abstraction towards the

complete implementation.

5.1 Introduction

The implementation requires functionality from several protocols that must be understood and

implemented. This includes MMRP [24], RSTP [22], and bridge functionality and operations

given in [10] and [23]. It is complex to understand the connection between variables and oper-

ations that a bridge consists of. The relation between standards may not be self-evident. The

references may have several hundred pages, making study complex in itself. This has resulted

in changes of the implementation as “new discoveries” of functionality or meaning of variables

occurred from time to other.

There were several approaches of implementation considered in the beginning. They were

not only considered as a solution at its own, but also as combination of some of them:

Multiple components As described in chapter 3, J-SIM’s architecture is built upon autonomous

components. That means that each component runs at its own. By designing a system

with many components, each part of the implementation is reusable. The downside is that

41

CHAPTER 5. IMPLEMENTATION

the more components (a higher granularity of components), the more complex scripts are

needed to glue these together, and more overhead is generated when sending data between

components.

A single component A single component will avoid overhead between the components, and

a single interface toward the system. The scripting would become easier, but the reuse

ability would limit itself to the whole functionality of the component.

Several threads If a single component uses several threads, it is possible to make it receive

packets at the same time as it handles other protocol events. This implementation design

makes the composition of the functionalities complex and hard to control the concurrent

actions toward variables in the component. A risk is two methods interfere with each others

task by changing values affecting the other method’s processing.

Due to multiple protocols, the choice became to use multiple components. Several threads

for a component was avoided due to the complex handling of concurrent actions. Even though

the design was based on multiple components, MMRP as a whole was based on one component.

RSTP, which was based on a previous implementation, was also one component. The operations

in a bridge that had an interface to more than one component, was chosen to be component of

its own. The latter includes LLC, an interface component (a bridge port) and MAC relay entity.

A more complete evaluation of the implementation design will be presented in the next parts of

this sections.

5.1.1 Tools used

A most primitive tool, pen and paper, was actively used in the start trying to give an overview

of the system. The implementation as J-SIM components could be realized in a simple text

editor like Notepad in Windows or gEdit in Ubuntu, but there are also well developed Integrated

Development Environments (IDE) available on the internet — for free1. My experience is limited

to two IDEs, Eclipse 2 and Netbeans 3. While Notepad is nothing more than an user interface

where one can write the code in plain text and save it to a file, an IDE can do so much more. Some

of the features of an IDE are connecting multiple files of a software project in a context, syntax

highlighting, advanced search options, live debugging, built-in version-management clients and

syntax error detection. For more features, enter the homesites of the IDEs mentioned above.

The choice of IDE for the current task was Netbeans because of former experience with it.

Department of Informatics at the University of Oslo hosts a version-management service4

based on Subversion5. This service enables one to continuously make a backup of its implemen-

1Free is often in terms of academic or personal use. Read the terms.
2Eclipse: http://www.eclipse.org/. Last visited 03.03.2010.
3Netbeans: http://netbeans.org/. Last visited 03.03.2010.
4Webservice: https://wwws.ifi.uio.no/. Last visited 04.03.2010
5Apache Subversion: http://subversion.apache.org/ . Last visited 04.03.2010.

42

http://www.eclipse.org/
http://netbeans.org/
https://wwws.ifi.uio.no/
http://subversion.apache.org/

5.2. MAKING THE MODEL

tation with a single click in Netbeans. In addition to backup, it provides history of the changes

one have made to the code. That comes in handy if a part is deleted, saved, and later regrets

the change.

5.2 Making the model

The work flow of a simulation study was described in 1.2.4, and was based on figure 1.1 on

page 6. The first part is to figure out the problem introduced in chapter 1 Introduction. The

problem provides a base for further work and it defines what to emphasize. The abstraction

model must contain the elements from the real life model that make it possible to reach the

objectives. Elements that does not have an impact should be omitted so that the model will be

less complex. The more complex the model, the more difficult to debug, validate and analyze. If

one has a thorough understanding of the system, it is easier to make an abstraction. During the

modeling work, one can go on to testing to see if the functions implemented works as desired.

Data collection is important to prepare the simulation software to provide the necessary

information. In J-SIM, there are two points to note. The information you want to get hold of for

the analysis must be available in the Java class under certain commands and output messages.

The configuration of your network is written in the TCL scripts, so the second point is that the

simulation scripts must adapt what was found regarding scenarios and real life inputs.

Model translation is also divided in two, as mentioned in the previous paragraph. You have

to transfer the model to Java, while some of the information should be used setting up the

simulation in the TCL scripts.

One will go through the model several times with the validation and verification. In the

beginning, empty shell of implementation are executed and validated. When adding more func-

tionality, it is natural to test before too much is added. This is because it is easier to locate errors

when there is less code to troubleshoot. It is important that one in advance of testing makes

up a sense of what the outcome will be. By having an opinion on beforehand, one may avoid

accepting the result even though it is not correct. After the validation and the implementation

seems to work, the next step is to do the simulations that produces data to be analyzed.

This section is divided in two part, first a part about the abstraction called “Model of concep-

tualization”. The last part is about model translation, which means implementing the abstraction

in the current programming language for the simulation environment.

5.2.1 Model of conceptualization

The challenge is to make a good enough abstraction to include only what is needed and discard

what has no effect on the given objectives, and at the same time keeping it at a level of complexity

that makes it possible to verify the model.

43

CHAPTER 5. IMPLEMENTATION

The main components of the systems is the MMRP, the RSTP for logical topology, and some

bridge structure like filtering database. The next parts consider each of these main components:

Abstraction of MMRP

MMRP is described in chapter 4, and is based on the standard from IEEE found in references

[24, 23, 11]. The standard presents MRP first, as a base for two protocols: MMRP and MVRP.

The variable called “new” shows up in the description of MRP, both as a parameter in the MAD

attribute propagation (MAP) primitives and as events in the state machines. This variable is

not used in MMRP, which means that the Applicant state machine can be simplified from what

is shown in [24, table 10-3].

Reference [23] defines a parameter called operPointToPointMAC for each port of a bridge. If

its value is, quote, “TRUE, the service is used as if it provides connectivity to at most one other

system; if FALSE, the service is used as if it can provide connectivity to a number of systems”

[23, 6.4.3]. That means if the port is directly connected to one other port of another bridge, the

value is TRUE. If the port is connected to e.g. a hub, and it may receive messages from several

other ports and bridges, it is false. This thesis limits its systems to point-to-point links, and

give grounds for that the value of operPointToPointMAC always is TRUE. When this parameter

is TRUE, the participants applicant state machine may be a subset of the full participant as

described in section 4.2 on page 38. The simplification based on the operPointToPointMAC and

the “new” variable that is mentioned in the former paragraph, is shown in table 4.2 on page 40.

As stated in [24, p34], “This standard permits simple point-to-point subset implementations of

MRP, but these will successfully operate on shared media albeit at reduced efficiency.”, resulting

that the protocol will function correctly with hubs even though all state machines are based on

the subsets shown in the table 4.2.

End nodes may also have MMRP implemented in order to make registration, or as a server,

take advantage of source pruning. These nodes do not need the entire implementation of MMRP,

and are able to use a simplified implementation. The source pruning and simplifications is

explained in chapter 4 Multiple MAC Registration Protocol. If the operPointToPointMAC is

TRUE, it uses the simple applicant state machines for these nodes as shown in table 4.3 on page

40.

MMRP is responsible, in addition to the MAC relay entity, for updating the filtering database

of the bridge with MAC addresses and port maps. This database has a record of each known

mapping between MAC-address and port, and uses it to decide forwarding port for a frame.

MMRP will perform queries in the filtering database both to add, change and look at entries.

The two different types of attributes MMRP uses are the service requirement vector attribute

type and the MAC vector attribute type. The service requirement vector set whether an partic-

ipant wants to forward all groups or forward all unregistered groups. No support for the service

requirement vector is added in the model, because it is not relevant for the given objectives for

44

5.2. MAKING THE MODEL

this study. The MAC vector are the center piece of the model, and is included.

The MAP context described in section4.1.1, and each MAP context has its own identifier

according to the standard. This identifier was excluded from the abstraction, because replaced

by the VLAN and port identifier in the Java implementation.

Individual MAC address registration which is supported by MMRP following the standard is

not included since the interesting subject is group traffic and performance aspects as convergence

is not different for individual addresses and group addresses.

[24, Clause 12] introduces bridge administration, but implementing a specific interface with

these methods are not important in a simulation aspect due to the nature of Java and method

made public available.

The active topology

MMRP relies on an active topology — a logical topology without loops. It may be based upon

protocols like RSTP or MSTP. Nera Networks had a finished implementation of RSTP for J-SIM

at hand, which is used in this study. However, after some testing, it turns out that the RSTP

is missing edge detection and has a bug when it comes to restoration handling. The missing

edge detection means that it does not handle end-nodes (here a PC or server) without RSTP

implementation (which end nodes normally do not use), so the solution was end nodes also needs

to use RSTP component. That do no affect the objectives of this thesis and thereby the solution

was the best compromise.

RSTP is short for Rapid Spanning Tree Protocol and is an improved version of the old STP.

It is called rapid due to its fast convergence time compared to STP. Reference [32] presents

results with convergence times around 10 milliseconds, and reference [18] states convergences

times beneath 50 milliseconds. The former references do not take hardware delay into account,

and the latter reference do not include hardware or BPDU processing delays in their simulation.

Both conclude with convergence times in the order of centiseconds. The RSTP implementation

for J-SIM, uses about 15 seconds to reconfigure its topology in a link brake, between the root

bridge and a bridge, in a ring topology with ten bridges.

Other bridge functionality

Each bridge may have several ports and a port is a component so that each port may send and

receive independent of each other. A sort of packet-filter is also needed, and the choice fell on

a LLC-component which send incoming frames toward the right component above LLC based

on parameters (EtherType and destination MAC address) given in the standards [23, 24]. The

components that are to be placed above LLC in the layer stack are MMRP and RSTP.

The center piece of a bridge is the MAC relay entity which is responsible for learning, fil-

tering database and forwarding. MMRP need the filtering database, and learning may come in

45

CHAPTER 5. IMPLEMENTATION

handy when simulation large networks topologies. VLAN-support is not fully added, but is near

complete in the MMRP-implementation. It is the bridge implementation itself that lacks the

VLAN support, together with a the MAD attribute propagation method of MMRP.

5.2.2 Data collection

Collection of data to form scenarios for simulation should ideally come from the real world. That

way, the output data becomes realistic. There are several ways to get this kind of data:

Real system You may base your data from tests of real life systems, and get configuration

parameters and features of a real life systems. This gives you trust able parameters of e.g.

buffer size, when designing a simulation scenario. On the other hand, it is not within the

scope of this study to collect information about user behavior in large systems.

Contacting the industry By contacting companies, one may collect useful data of user be-

havior, and real life infrastructure topologies. This is truly relevant information, but it

may be hard to retrieve such information due to business and marked secrets.

Research articles For some topics there exists a lot of research papers on sites like ACM,

Springer and IEEE 6. Some universities has subscriptions at these libraries, and one may

as a student download articles for free. It is not always trivial finding relevant articles, but

some research fields are well documented and lots of useful data are available.

Statistical bureau Statistics Norway [34] and TNS Gallup [35] provides statistics and trends

of a wide variety of topics.

The simulation part of this thesis requires data that specifies infrastructure details: The

number of bridges between the server, end user and number of users connected to a single server

and frequency of topology change. Link capacity and data rate may also be tweaked in order to

simulate a backbone based on radio relay systems. The type of information described is available

from companies hosting networks to day, like ISPs or TelCos. The work of receiving this data was

done by contacting companies like Canal Digital, Get, BKK, Netcom and Lyse. These companies

represents a wide range of different broadcasting technologies including cable-TV, IP-TV, cellular

networks and satellite TV networks. Even though the scope of this thesis is limited to a specific

protocol on Ethernet, the companies could bring useful information about topologies and user

behaviour. The answers they came with was from little to nothing. But little is better than

nothing, and the following information was provided (without a mapping to the company giving

the information):

• Their core network consist of a fiber ring.

6ACM: http://www.acm.org/, Springer link: http://www.springerlink.com/ and IEEE:

http://ieeexplore.ieee.org. All visited last 07.03.2010

46

http://www.acm.org/
http://www.springerlink.com/
http://ieeexplore.ieee.org

5.2. MAKING THE MODEL

• From a content server to the end user it is normal with five or more nodes.

• In the areas with the greatest density of subscribers, there may be ten thousand customers

per content server.

• The bit rate of standard definition (SD) MPEG4 streams are approximately 6 Mbps and

for high definition (HD) approximately 10 Mbps.

An other sort of data of interest is user behavior (how subscribers use the services provided

by the server) and user trends. This information may be given by the ISPs, a cable-TV company,

some other content/service provider, research papers or statistical bureaus. The content-/service

providers did not participate with any information. Statistics Norway [34] has some statistics

about user pattern of television habits in [29]. The latter reference provides information about

how many people is watching television through the different hours of a day in Norway. This

could be used to calculate the amount of users simultaneously watching television at e.g. peak

hour of the day. Let us say a content server has 10 000 customers connected as stated above, the

peak time of the day is between 1900 and 2400 hours with 71 percent of the population watching

television (in 2008). That means 7100 simultaneous users watching television at those hours,

connected to a single content server.

TNS Gallup has more detailed, than Statistics Norway, information about television habits in

Norway presented in [16]. These statistics are of higher granularity than what Statistics Norway

has made public. The peak hour (the hour with most subscribers watching television) is between

2100 and 2200 hours, and counts approximately 42 percent of the total population. Consider the

latter statistics, the peak hour has about 4200 simultaneous users at the peak hour, almost 3000

fewer users compared with the example given in former paragraph.

Reference [19] has done a study of user behavior and network traffic in an IP TV network with

250 000 households over a six month period. They have measured several parameters, including

some of interest for this thesis. The analyzed data comes from a single provider with a given set

of TV channels available as a foundation for its research. The pattern of user-behavior found,

may not be realistic in networks from other countries and with another set of channels available.

The pattern of user behavior is also dynamic and changes from year to year as seen as from the

annual statistics from [29, 35]. Considering this, it is desirable all the data collection is from a

specific network, and as new as possible. However, the output data is realistic and of current

interest in the given environment. The fact that this type of statistical data is unavailable in

Norway, reference [19] is based on data from 2007 and in the measurement is done in a network

based on IP technology makes it relevant for the problem of this thesis. The following chapter

presents the data from this reference.

Channel switching 60% of channel holding time is beneath 10 seconds and approximately

70% is beneath one minute. All channel holding times less than one minute are categorized as

47

CHAPTER 5. IMPLEMENTATION

Figure 5.1: Probability of surfing across the day varies [19].

“surfing channels” — going through available channels just to find something to watch. Most

channel changes happen four seconds after the previous channel change. The possibility of

channel switching varies across the day as seen in figure 5.1. If the channel holding time is

between one minute and one hour, it is categorized as “viewing” — the subscribers follows a

program or show.

To test the performance of MMRP, it is useful to look at the hour of day with the heaviest

load on the network. As stated above, that hour is between 2100 and 2200 hours. The following

points gives a base for the simulation:

• Nusers = 4200 simultaneous users.

• About 72 percent probability of channel switching [19]. That means 43.2 out of 60 minutes

with channel switching. The remaining time is valued as “viewing time”.

• When surfing channels, mean holding time per channel is ten seconds. This gives a total

number of channel switches during the time categorized as “switching” in the peak hour

Ssurf .

Ssurf =
43.2 min · 60

10 sec

channel

= 259.2 channel changes

.

• While viewing a channel, the holding time is 10.7 minutes. This gives a total number of

channel switches during the time categorized as “viewing” in the peak hour Sview .

Sview =
(60− 43.2) min

10.7 min

channel

= 1.57 channel changes

• A total of Suser = Ssurf + Sview = 260.77 channel switches per user per hour.

• Stot = Nusers · Suser = 1095234 channel switches total per hour.

48

5.3. MODEL TRANSLATION

• Stot/3600 = 304.23 channel switches per second.

The probability of switching may seem high. Without knowing the whole truth, parts of the

reason may be:

• People finished activities around these hours. Then they sit down in front of the TV,

switching channels to see what is on.

• Programs are short, in terms of 30 minutes or less.

• The channels has frequent advertisement breaks.

Channel switching delay time The reference [19] mentions an infrastructure based IPTV

system from Telco, guarantee a switching delay less than one second. However, users will not

consider a switching delay as instantaneous until the delay decrease to the order of 100 to 200

milliseconds. The latter value will serve as a benchmark when analyzing the output data from

simulations.

Radio relay topology Radio relay systems are used as backhaul transmission technology in

cellular networks. The backhaul connects the access networks with the core network. There are

also infrastructures solely based on radio relay system, and a real life topology is given by Nera

Networks. This topology is quite complex, and may be hard to verify and analyze.

Verification topologies To verify that the implementation functions correctly, some base

topologies should be used. The first is a simple topology. The standard presents an illustration

of port roles in [24, figure 10.3].

5.3 Model translation

The functionality needed in each node to reach the desired objectives are divided in three main

parts, the MMRP class, the RSTP class and the classes regarding bridge functions. The bridge

functions are taken care of by the following classes. The EthernetMAC class for each interface

(port) of a bridge, LinkLayerControl (LLC) class and the MACRelayEntity class which includes

learning, forwarding, port states and filtering database. An illustration is shown in figure 5.3,

where connections between the components are shown.

The MMRP class includes the functionality described in chapter 4 MMRP and the abstraction

section above. The Scheduler class is special designed to control the timers and events in MMRP

and make it work in the Autonomous Component Architecture.

This section is further broken down in three parts. First, the classes implementing the basic

bridge functionality like LLC and the MAC Relay Entity. Next, a section about the RSTP. RSTP

49

CHAPTER 5. IMPLEMENTATION

was a preimplemented package, but some functionality was added. Finally, a section about the

MMRP class.

5.3.1 The base bridge functionality classes

Some basic functionality is needed in the nodes so they act like a bridge. Each interface (or port)

of a bridge is its own component, taken care of by the EthernetMAC class. Each component of

this type has a down port where all incoming data from another node arrives, and an up port

where data from the other components in the bridge arrives. The data from the network is of

the EthernetFrame class. The EthernetMAC decapsulate the EthernetFrame that arrives at the

down port and forwards it to the components above encapsulated in a UnitDataIndication

object. The data arrived at the up port are decapsulated from the UnitDataIndication and

transmitted on the network as an EthernetFrame. If the incoming data is not of valid format,

it discards the data. Both of the sending formats mentioned are described later.

EthernetMAC bcbc
down@up@

EthernetFrameUnitDataIndication

Figure 5.2: Illustration showing the data types used toward EthernetMAC throught the downport

(EthernetFrame) and up port (UnitDataIndication).

The LLC acts like a packet filter which decides which of the higher layer components to send

each incoming packet to. The standard [23] illustrates a LLC component for each port of the

bridge, but instead the implementation has one LLC component per bridge. This component has

one down port for each port of the bridge. This way the component can differentiate between

the ports of the bridge. Based on the content of the incoming data, in relays it to either RSTP or

MMRP. When data arrives at LLC from the components above, it simply looks at the destination

interface and forward the data through the right port of its component.

MACRelayEntity has several tasks to take care of. It receives data from the ports of the

bridge and must do address learning and frame forwarding. In addition it serves some ports

where MMRP can query for port states and do filtering database configurations. The functions

are based on the standard [23] and standard [24]. Some of the functions are discarded in the

abstraction process, but the relevant functions are kept.

Figure 5.4 shows the flow when the MACRelayEntity receives an UnitDataIndication. The

learning process takes note of where the data was sent from (MAC address) and if it not already

registered in the FilteringDatabase, it maps the MAC address to the incoming port. That

is, by learning, the bridge will know at which port to forward an incoming packet that has the

50

5.3. MODEL TRANSLATION

RSTP

MMRP

LLC MAC Relay Entity

EthernetMAC n

...

EthernetMAC 1

EthernetMAC 0

.portStateChangeEvent@service

.portRoleChangeEvent@service

.portStateQuery@service

.filteringDatabaseConfig@service

0@ 1@ n@

NODE

Figure 5.3: Overview of a the components and connections inside a node. A node is the abstrac-

tion of as ethernet bridge, and the ports named 0@, 1@ etc. at the bottom are the same as ports

on a bridge. Each port is connected to an EthernetMAC component which sends the data to the

next components of the node. The higher up on the illustration, the higher layer in the network

stack the components belongs to. RSTP and MACRelayEntity are not connected, even though

MACRelayEntity uses the port states of RSTP. Due to an early implementation approach, the

MACRelayEntity has the RSTP as a private data member. This breaks with the ACA principle,

and should be changed in the future.

51

CHAPTER 5. IMPLEMENTATION

previously learned MAC address as its destination address. This saves network resource, and

makes the main difference between a hub and bridge. After the learning, the bridge will try to

forward the data out the right port. If the destination MAC address is mapped to a port, it

forward it to the given port or else it transmits the data out all ports in forwarding state except

the port which it arrived at.

Port a

MACRelayEntity

Learning

FilteringDatabase

Forwarding

PortStateU
ni
tD
at
aI
nd
ic
at
io
n

Port b

U
ni
tD
at
aI
nd
ic
at
io
n

Figure 5.4: Overview of the MACRelayEntity flow when receiving an UnitDataIndication.

Other components may do changes in the filtering database through the

FilteringDatabaseConfig@service port of the MACRelayEntity component. MMRP is the one

component which makes use of this service in this implementation. The message used to com-

municate on this port is of datatype FilteringDatabaseConfig.

5.3.2 RSTP class

The implementation of RSTP was done in advance of the thesis by a former Nera Networks

employee, B̊ard Henriksen. By using that as a base, the implementation has an active topology

which was dynamically and correctly created by the RSTP implementation. The RSTP imple-

mentation is almost complete, but some minor addition had to be made so that it would play

with the other components that would populate a bridge component. The addition made is:

State change event port Added a port called .portStateChangeEvent@service where a

PortEventMessage is sent when a port changes state from forwarding to discarding. The

changes influence both Rstp and PortStateTransitionStateMachine classes.

Role change event port Added a port called .portRoleChangeEvent@service where a

PortEventMessage is sent when a port either changes from designated to alternate or

root, or changes from alternate or root to designated. The changes influence both Rstp

and RstpPerPortParameter classes.

These ports gives the support of events that MMRP needs to react to topology changes as defined

in reference [24]. The RSTP class is the only class in the RSTP implementation that is a J-SIM

component, hence it serves as the interface toward RSTP in J-SIM.

52

5.3. MODEL TRANSLATION

5.3.3 The MMRP implementation

The MMRP class extends the drcl.net.Module class and it is the only class of the MMRP imple-

mentation that is a J-SIM component. This class serves as an interface to all MMRP functions

that was deemed necessary to implement from the abstraction process described in section 5.2.

Instead of having one MMRP component for each port, the one MMRP component per bridge

handles all MMRP related actions for the bridge. The MMRP class uses several other classes

to complete its tasks. An overview of the composition is shown in figure 5.5. Extending the

drcl.net.Module class gives MMRP the access to methods and data members needed to per-

form as a component in J-SIM. It is also possible to extend the drcl.inet.Protocol class, which

itself is extended from the Module class. The Protocol class includes complete methods to link

the component with the services from CoreServiceLayer7 component, hence not relevant for

MMRP.

PeriodicStateMachine LeaveAllStateMachine

Participant

Attribute

ApplicantStateMachine

RegistrarStateMachine

MMRP

Scheduler

drcl.ethernet.mmrp

Figure 5.5: Overview of the main classes in the MMRP implementation and the flow of informa-

tion in their collaboration. The fact that some relations are one-to-many is not illustrated here.

Those relationships are shown in the figure 4.3, and are also true for the relationships on this

illustration. The MMRP and Scheduler classes are colored gray. This is because they are two

important classes when it comes to the architecture of the implementation. The MMRP class is

the only J-SIM component and the interface uses building the scripts, while the Scheduler class

handles all timers and action regarding the state machines.

7CoreServiceLayer is not mentioned here because it is not used. It is a component which contains the base of

creating an IP routing node, which is not of interest.

53

CHAPTER 5. IMPLEMENTATION

MMRP

-rstp: RSTP
-filteringDatabase: FilteringDatabase
-portStateDatabase: PortStateDatabase
-eventPortRoleChange: Port
-eventPortStateChange: Port
-filteringDatabaseConfigPort: Port

-dataArriveAtDownPort(data :java.lang.Object,
downPort :Port): void
-isSimpleApplicant(): boolean
-mmrpAttributePropagation(sourceInterface:int,
sourceVLANidentifier:int,
firstValue:EthernetAddress,
MADPrimitive:MRPconstants.MAD PRIMTIVES): void
#processOther(data :java.lang.Object,inPort :Port): void
+updateFilteringDatabase(sourceInterface:int,
sourceVLANidentifier:int,
firstValue:EthernetAddress,
MADPrimitive:MRPConstants.MAD PRIMTIVES): void
#timeout(): void

drcl.comp.Component

#process(data :Object,inPort :Port): void
+getTime(): double
+addPort(): Port
+connect(c :Component,shared :boolean): boolean
+debug(info :java.lang.Object): void
+exposePort(): Port
+info(): String

drcl.net.Module

-downPort: Port
-upPort: Port
-PortGroup DOWN: java.lang.String
-PortGroup UP: java.lang.String

+setTimeout(evt :java.lang.Object,duration :double): ACATimer
+cancelTimeout(handle :ACATimer): void

Figure 5.6: The MMRP class heritage. Some important methods and data members are shown,

but not all are included.

54

5.3. MODEL TRANSLATION

The MMRP class

A component in J-SIM has some basic ports and methods to comply with the ACA. First,

all events and messages that arrives at a J-SIM component are handled by a method called

process(Object data , drcl.comp.Port inPort). By default from the Module class it han-

dles the incoming data based on which port it arrived at. MMRP do not override the process

method itself, but the methods it calls. There are four methods that the process methods uses,

depending on which port the message arrived at. The next part will describe how each method

is implemented in MMRP.

dataArrivedAtUpPort(...) is not used by the MMRP class because it has no components com-

municating with it from a higher layer.

dataArrivedAtDownPort(...) handles the data which comes from the down@ port and ports

in the @down port group. MMRP receives data from the .llc@down port. The data should be

MRPDUs from LLC, so other types of data is discarded. When MMRP recives a MRPDU, it

notices which port it is received from and parses the data as described in the standard [24].

timeout(...) is called when data arrives at the .timer@ port of the component. Data arrives

at this port whenever a timeout event has happened. To register such an event, one need to call

the setTimeout(Object evt , double duration) or setTimeoutAt(Object evt , double time)

commands of the component. The data that arrives at the .timer@ port is the evt object. The

set timeout methods returns an ACATimer object. By keeping the object, one may cancel the

timeout by calling the cancelTimeout(ACATimer handle) method, with the ACATimer object

as input parameter. The MMRP component has the methods available for adding and removal of

timer events, and the Scheduler object uses them. All data received at the .timer@ port is sent

directly to the timeout method of the Scheduler object.

processOther(...) receives all data which do not arrive at a down port, up port or timer port.

The MMRP component has some ports which belong to the service port group, and those are

identified by the group name and port id. The following ports are private data members of MMRP:

.portStateChangeEvent@service receives events from the active topology (in this case the

RSTP component) when a port state changes from discarding or alternate to forwarding, or

the other way around. This triggers an update of the set of ports in MMRP, and depending

on the registrar state for attributes on the current port, certain message must be forwarded

either to other ports on the bridge or to the network according to the MAP definition in

[24, 10.3]. The data type of the event message is PortEventMessage.

55

CHAPTER 5. IMPLEMENTATION

.portRoleChangeEvent@service receives events from the active topology like the port men-

tioned above, but only when the port role changes from root or alternate to forwarding

or vice versa. The former mentioned role change triggers a Flush! event in the Registrar

state machine for the influenced MMRP participants. The vice versa role change triggers a

Re-declare! event on both the Registrar and Applicant state machines of the influenced

participants. It uses the same data type for sending as the port above.

.portStateQuery@service is used by MMRP attribute propagation (MAP). The MAD primi-

tives that MAP disseminates are only to the ports that are in forwarding state. By sending

a query on this service port, it gets a response with the states for all ports on the bridge.

The data type for sending is of the PortStateQuery class.

.filteringDatabaseConfig@service is used to change the filtering database of the MAC re-

lay entity. MMRP may add, change or delete entries in the database, and sends these

commands in a FilteringDatabaseConfigRequest object.

Sending messages The MMRP uses MRPDUs to signal its state to other bridges and end user

on the network and the MMRP Attribute Propagation share information between participants

on a bridge. The next paragraphs describes the two types of signaling.

MMR Protocol Data Units It is only the Applicant and LeaveAll state machines that

may trigger sending of MRPDUs. The PDUs are sent with a method called MMRP.forwardPDU(...),

which demands at least three input parameters. The first is the MRPDU object itself, which con-

tains the information to be spread across the network. The two other parameters are port

and VLAN which the PDU identifiers representing where the PDU should be forwarded. A

UnitDataIndication is sent to the LLC which forward it to the correct port (an EthernetMAC

component).

The method is called by MMRP itself when it receives a PortStateChangeEvent and have

attributes declared. The Scheduler class uses it when it receives one of the send events from

the applicant state machine.

MMRP attribute propagation (MAP) The MMRP Attribute Propagation shares in-

formations between participant on a bridge, but does not send PDUs on the network. MAP

is handled by a method with the same name: public void mmrpAttributePropagation(int

sourceInterface, int sourceVLANidentifier, EthernetAddress firstValue,

MRPconstants.MAD PRIMTIVES MADPrimitive). The parameter descriptions follow.

sourceInterface is the port which the MAD primitive is sent from.

sourceVLANidentifier is the VLAN identifier which the sending participant belongs to.

56

5.3. MODEL TRANSLATION

firstValue is in this implementation the MAC address (the attribute) which the primitive con-

cerns.

MADPrimitive is the type of primitive sent. It can be a join indication, join request, leave

indication or leave request. Basically, its either a join or leave primitive. The rule of how

to handle the primitive differs a bit from a join and leave, as described in the standard [24].

Constants The standards [24, 23] defines a number of constants. These are implemented

with public final accessibility in the interfaces EthernetConstants and MRPconstants. Some

constants worth mentioning follows:

Ethernet address constants Like the Bridge PDUs (BPDUs) of RSTP, MRPDUs has a spe-

cific destination address which identifies that it should be delivered to the MMRP partici-

pant of the port – or as this implementation handles it, to the bridge MMRP component.

Timer constans The MMRP defines a set of timers to be used with the state machines, these

are defined in the MRPconstants interface.

The attribute event types These types are used in the MRPDUs defining which event the

PDU concerns. These are stated in the same interface as the timer constants.

The Scheduler class

The Scheduler class is, as the name suggests, responsible for the scheduling of events and actions

of MMRP and its state machines. Each time a state machine does an action, it sends it to the

Scheduler object so it may or may not schedule the action (some are instantly executed).

Participant Applicant SM Scheduler MMRP component

event!

ti
m
e

register timed event setTimeout(..., ...)

event arrives
at .timer@ port

timeout(...)event(...)

transmit event forwardPDU forwardPDU

Figure 5.7: A sequence diagram showing an event registered at the applicant state machine

resulting in forwarding of a PDU. The Scheduler are the center piece which decides what to do

and communicates with the MMRP-class.

Due to the single J-SIM component architecture of the MMRP implementation, scheduling is

done by using the ACA methods of the MMRP class – setTimeout(...) and setTimeoutAt(...).

57

CHAPTER 5. IMPLEMENTATION

The MMRP component do not keep track of the time itself. It is handled by the ACATimer object

of J-SIM. When a timer expires, the ACATimer sends the event object on the .timer@ port of

the MMRP component. MMRP does nothing with the event object other than sending it to the

Scheduler object which handles all timer tasks. Both of the methods for setting a timer returns

an ACATimer object. This object is saved because it may be used to cancel the event at a later

time. When the Scheduler registers a timeout event at the MMRP component, it adds the

returning ACATimer object in a list. The leavetimer and the leavealltimer may be canceled due

to incoming messages. When this happens, the Scheduler looks up the current event in the list,

fetches the ACATimer object (here named handle) and cancels the event by calling the method

MMRP.cancelTimeout(ACATimer handle). By letting J-SIM keep track of all the timers with

its ACATimer – it complies with the discrete event driven simulator principle. As soon as nothing

happens in the simulation world time, it can skip the time until next event in the simulation. This

saves computer resources and speeds up the simulation process. The different timers handled by

the Scheduler class is described in the following part.

The leave timer The registrar state machine holds the LV state as long as the duration of the

leave timer. Default value of the timer is between 0.6 and one seconds, and the implementation

has set it to 0.6 seconds. The leave message is not sent from the current MMRP participant

before the timer expires.

The LeaveAll timer There is one LeaveAll state machine per MMRP participant. The

LeaveAllTimer goes continuously, with a period of T. The time T is calculate each round, and it

is a random value between LeaveAllT ime < T < 1.5 · LeaveAllT ime. When the timer expires,

a MRPDU with LeaveAll is sent from the current participant.

When a participant receives a LeaveAll message, its LeaveAllTimer is restarted without any

further action. This suppresses multitple LeaveAll messages from Participants connected to the

same LAN.

The Join timer The join timer controls the interval between transmit opportunities that are

applied to the Applicant and LeaveAll state machines. Default value of the timer duration is 0.2

seconds. If the operPointToPointMAC is TRUE, a transmission opportunity is given as soon

as practicable. No more than three opportunities may be given during a 1.5 ·JoinT ime interval.

The Periodic timer The periodic timer triggers a periodic! event in the applicant state

machine which results with a JoinMt or JoinIn message being sent from the applicants which are

declared. The JoinMt means that the current attribute is declared but no registered, while the

JoinIn means that the attribute is both declared and registered. This ensures that registrations

are successful without using to much bandwidth. The default PeriodicTime is one second, and

58

5.3. MODEL TRANSLATION

the timer goes in a loop as long as it is not turned off by management.

Messages

There are two kinds of messages described in the following. The first type is message defined

by the standards [23, 24]. This includes PDUs (bridge to bridge) and UnitDataIndication (in-

bridge signaling). These messages are explained first in the following paragraphs. The other

type of message is the one sent between components in the J-SIM composition, like the one

MMRP sends to RSTP to ask for PortStates. These messages are explained at last, starting

with PortStateQuery.

MRPDU The format of the PDU is described with figure 4.1. MRPDUs are used by MMRP

for signaling between bridges. The implementation uses one class for each of the subelements of

variable size shown in the figure. The main class MRPDU has constructors for creating a MRPDU

with correct format.

UnitDataIndication The unit data indication is described in the standard [23], and is a

message primitive used in the ISS (Internal Sublayer Service) in bridges. The implementation

do not follow the standard, because of a difference in the architecture building the bridge. The

standard has an architecture where each port has an application of a protocol such that in J-SIM,

all ports would have its own MMRP component. Since the implementation uses only on single

MMRP component in a bridge, it needs some more information included in the parameters of

the primitive.

type Type of UnitDataIndication. Not used with the current implementation.

dst The destination of the PDU given by an EthernetAddress object.

src The origin of the PDU given by an EthernetAddress object.

pkt The data itself, also known as payload, of the UnitDataIndication.

payloadSize The size (in bytes) of the payload.

initDestinationInterface The destination interface of the PDU inside a bridge. This was

added in addition to the parameters given by the standard. It is needed when e.g. the

MMRP component sends an UnitDataIndication to the LLC, or else the LLC do not know

at which port to forward the message.

initSourceInterfac The source interface of the PDU inside a bridge. This was also added in

addition to the parameters given by the standard. It is needed when e.g. the MACRe-

layEntity component receives a message, and the learn function must map the address to

59

CHAPTER 5. IMPLEMENTATION

correct port. Another example is when the forward EthernetAddress has no mapping, the

frame is supposed to be forwarded on all ports except the incoming port.

EthernetFrame The EthernetFrame or “MAC Frame” as it is named in the standard is de-

scribed in [10, 23]. Every messages that are sent between the bridges are encapsulated in a

EthernetFrame. For VLAN-networks, a special type of header is used which includes a VLAN

identifier and a few other bytes. These additional parameters are not implemented in the current

version.

PortStateQuery The PortStateQuery class is used between the MMRP component and the

MACRelayEntity component. It should go to the RSTP component, but this solution was used

in an early implementation and is not fixed yet. The message contains two parameters as follows.

request Shall be TRUE if the message is a request for port states, and FALSE if it is a response

to a request.

portList A list with an item for each port and state of the port. All ports of a bridge is added

to the list. The state of the port is either forwarding, learning or discarding.

PortEventMessage The PortEventMessage class is used to create objects sent by the RSTP

when one of the state or role of a port changes as described earlier in this chapter. When MMRP

receives such a message it triggers events on the applicant and registrar state machines. The

PortEventMessage has the following set of parameters:

portId The identificator representing the port number (unique on a bridge).

oldValue A number representing the old state or old role of the port.

newValue A number representing the new state or new role of the port.

FilteringDatabaseConfig MMRP is responsible of creating, changing and deleting entries

in the filtering database of a switch. In this implementation, the filtering database is placed in

the MACRelayEntity. To be able to access the filtering database, MMRP sends these Filtering-

DatabaseConfig objects to the .filteringDatabaseConfig@service port of the MACRelayEn-

tity component. A response is also given indicating a successful or unsuccessful action. The

following parametes are included in the message type:

portId The port identifier which is unique at a bridge.

identifier Identifier for the VLAN.

ok Shall be TRUE if the action was completed without any faults, FALSE otherwise.

60

5.3. MODEL TRANSLATION

EthernetAddress The address which the entry concerns.

forward Shall be FALSE if frames destined to the EthernetAddress should be filtered from this

VLAN and port combination, TRUE else.

61

CHAPTER 5. IMPLEMENTATION

62

Chapter 6

Testing

This chapter describes the testing of the implementation. This is done to verify that the com-

ponents handles as desired. The chapter is broken down in four parts, each part representing

one test. First, a test of the RSTP package to confirm that the logical topology was created cor-

rectly. Next, a test of the basic bridge functionality that emphasize the learning and forwarding.

Finally, the two last parts test the MMRP implementation.

6.1 Test one – RSTP

This part will test the RSTP implementation. The version of RSTP used is not implemented

by me. I have used a version provided by Nera Networks. The RSTP is responsible of creating

an active topology with no loops. In addition, it should restore a broken topology. Initial tests

showed that the RSTP implementation for J-SIM, uses about 15 seconds to restore the logical

topology on a link brake. This was in a ring topology with ten bridges. On the other hand,

reference [32] presents results with convergence times around 10 milliseconds, and reference [18]

states convergences times beneath 50 milliseconds. The former references do not take hardware

delay into account, and the latter reference do not include hardware or BPDU processing delays

in their simulation. Both conclude with convergence times in the order of centiseconds.

Furthermore, the port roles and states must be correct. Upon an event that should trigger

topology change, RSTP must change to a new correct spanning tree. Furthermore, the topology

change process should be completed in certain time interval.

6.1.1 The test set up

The components of the bridges are illustrated in figure 6.1a. Each bridge has two ports handled

by the EthernetMAC Java class. Each port is connected to a LLC component and a MACRe-

layEntity component. The RSTP component is connected to the top of the LLC component.

63

CHAPTER 6. TESTING

RSTP

LLC MAC Relay Entity

EthernetMAC 1EthernetMAC 0

0@ 1@

NODE

(a) The subcomponents of a bridge node.

00 01

02 03

0
0

00

1

1

1

1

(b) The physical topology of four

brigdes connected in a ring.

Figure 6.1: The two illustration represents test number one. Figure 6.1a shows the internal

structure of the four bridges in shown in the topology, figure 6.1b.

The bridges has their own unique MAC address, which the ports also use. The MAC address is

made out the number printed in the middle of each bridge in figure 6.1b. Where ♯♯ is representing

the number, the MAC address is 00:11:22:33:♯♯:00. Each part of this address separated by “:” is

of hexadecimal format.

The physical topology is illustrated in figure 6.1b. Each link between the bridges has a

propagation delay representing approximately 15 meters. There is no processing delay or sending

delay (bandwidth limit). The simulation is running for 10 seconds to be sure that the bridges

are in a stable state.

6.1.2 The expected result

RSTPmakes a logical topology on top of the physical topology as described in 2.2 Ethernet switching.

The root bridge is the bridge with the lowest bridge ID. The ID is calculated from the MAC

address, so in the test scenario it is reasonable to believe that bridge “00” becomes the root

bridge.

The cost of the links are set to the same, so the best path would be the path with the least

number of hops to the root bridge. Bridge “03” is two hops away from the root bridge from

both of its ports. The port that receives the best bridge ID from its connect bridge gets the role

“root” and state “forwarding”. The other port gets the role “alternate” and state “discarding”.

In this setup, the port 0 of bridge 03 going trough bridge 1 becomes the “root” port, while port

1 becomes the “alternate”. Furthermore, port 0 of bridge 01 and port 0 of bridge 02 should

become root and port 1 of bridge 01 and port 1 of bridge 02 should become designated. The

64

6.2. TEST TWO – MAC RELAY ENTITY

00 01

02 03

0
0

00

1

1

1

1

R = root

RR

A = alternate

D

D

D = designated

D

R
D

A

Figure 6.2: The expected logical topology with role ports. The dotted link between bridge 02

and 03 is not a part of the topology. It may be used if the physical topology changes.

expected roles are shown in figure 6.2.

The filtering database in the MACRelayEntity do learning of all incoming packets except

signaling the BPDUs sent by RSTP. Because RSTP sends packets on the entire physical topology,

learning from the packets would risk creating loops. Therefor, the filtering database should not

contain any dynamic entries after the simulation is done.

6.1.3 The result

The states of RSTP are read at the end of the simulation and the states and roles are as predicted.

This means that the RSTP implementation sets up a correct spanning tree from this physical

topology compared to what the standard states [22].

The filtering databases contains no dynamic entries, which also reflects the expected result.

The first test of basic bridge functionality is passed.

However, the restoration mechanism is not implemented correctly. The reason is that it

depends on timers on each link instead of propagating the new states through the network.

6.2 Test two – MAC relay entity

This part will test the functionality of the MAC relay entity. The MAC relay entity is responsible

for the mapping between port, VLAN and MAC address in the filtering database, and forwarding

of frames.

6.2.1 The test set up

Five bridges are connected in a star formation with bridge 00 in the center. Bridge 01, 02, 03

and 04 are only connected to the center bridge. As seen in figure 6.3, the center bridge has four

ports while the edge nodes has one port. The MMRP component is not included because it is

not of relevance for this test.

65

CHAPTER 6. TESTING

RSTP

LLC

MAC Relay Entity

EthernetMAC 1

EthernetMAC 0

0@ 1@

NODE

2@ 3@

EthernetMAC 2

EthernetMAC 3

(a) The structure of the central node, bridge 00.

RSTP

LLC MAC Relay Entity

EthernetMAC 0

0@

NODE

PacketSource

(b) The structure of the edge nodes, num-

ber 01, 02, 03 and 04. The “PacketSource”

generates packets to be sent on the net-

work. It is connected to the MACRe-

layEntity.

Figure 6.3: Node structure of the two different nodes in test number two.

The physical topology is illustrated in figure 6.4a. The links have a delay according to 15

meters of propagation. The bandwidth cost parameter of RSTP is equal on all ports. The bridge

MAC address are based on the number printed in the middle of the bridges in figure 6.4a, as

described in test number one (6.1).

The edge nodes, number 01, 02, 03 and 04, has a source component called “PacketSource”

as seen in figure 6.3b. The PacketSource is connected to the down port of the MACRelayEntity.

Data entering the down port of the MACRelayEntity are supposed to come from a port of the

bridge. The PacketSource manipulates this functionality by sending data with source port as

“-1”. The MACRelayEntity treats data with this source port as any other, except that it does

not call the learning method.

The test has three phases. The first is the initial actions from RSTP with setting the right

roles and states for the ports. The second phase shall send data from node 03 towards node 01.

In the last phase, node 01 sends data the other way towards node 03.

6.2.2 The expected result

The logical topology has only one outcome based on the given physical topology. This is because

the physical topology represents no loops. The center bridge has the lowest bridge ID because

66

6.2. TEST TWO – MAC RELAY ENTITY

00

01

02

03

04

0

1
2

3

0

0

0

0

D
D

D
D

R

R

R

R

(a) The topology of test number two. A center

bridge connected to four nodes. Port numbers

and port roles are shown next to the ports. The

abbreviations of port roles are the same as in

figure 6.2.

00

01

02

03

04

0

1
2

3

Data to node 01

(b) The first part of phase two. Node 03 sends

data towards node 01. First it arrives at port 2

of the center node.

00

01

02

03

04

0

1
2

3

X

X

OK

(c) The second part of the

second phase. The filtering

database has no entries with

the destination address for the

data. Therefore, the data is du-

plicated and transmitted out all

ports except the incoming port.

00

01

02

03

04

0

1
2

3

Data to node 03

(d) The first part of the last

phase. Node 01 sends data to-

wards node 03. The data enter

port 0 of the center bridge.

00

01

02

03

04

0

1
2

3

OK

(e) The last part of the last

phase. The filtering database

has a entry for the destination

address, and the data is only for-

warded out port 2 towards node

03.

Figure 6.4: Test number two. Figure 6.4a shows the physical topology and the expected port

roles given by RSTP. Figure 6.4b and 6.4c shows the traffic flow of the second phase of this test.

The last two figures, 6.4d and 6.4e, shows the traffic flow for the last phase of the test.

67

CHAPTER 6. TESTING

bData enters
on a port.

Source port state == forwarding

Port/VLAN port map found in the filtering database

Port/VLAN port map not found in the filtering database

Foward to the port/VLAN
given by the entry in the

filtering database.

Forward on all ports
that are in forwarding
state, except on the

source port.

Source port state == (learning —— forwarding)
Register/update filtering
database for the given

port/VLAN combination.

b

Figure 6.5: An activity diagram illustrating how the MAC relay entity of the bridge 00 forwards

data it receives.

of its MAC address, therefor it will become the root bridge. When the first phase is completed,

the port roles are expected to look as in figure 6.4a.

The second phase starts after ten seconds. Data shall be sent from node 03 towards node 01.

The data sent is a String saying “DUMMY PAYLOAD OF IP PACKET”. The String is encapsu-

lated in an IP packet, and furthermore encapsulated in an EthernetFrame. The “PacketSource”

component of node 03 sends a packet out on its port.

The data arrives at port 2 of bridge 00, as shown in figure 6.4b. Because this data is the first

data that is sent in the network, the filtering database is empty (except from the static entries).

As shown in figure 6.5, the data is expected to be forwarded on all ports except from the port it

arrived. This is further illustrated in figure 6.4c. In addition to the forwarding, the MAC relay

entity calls the learning method which should create an entry in the filtering database.

The third phase starts after 15 seconds. Data shall be sent from node 01 towards node 03, as

shown in figure 6.4d. It is an IP packet containing the same String as in phase two. The difference

from phase two is illustrated in figure 6.4e. The data is not forwarded on all ports, because bridge

00 finds an entry in the filtering database. The forwarding process is shown in figure 6.5. The

entry from the filtering database contains a port/VLAN mapping of the destination address.

The port map is pointing on port two. Because of this, the data is only forwarded out on port

two, and it then reaches node 03 correctly.

6.2.3 The result

The results are as expected. Phase one gave a correct logical topology. The ports of the edge

nodes was in forwarding state and the root port role. The center bridge was chosen as root, and

all its ports was in the designated role and forwarding state.

In the second phase, the data was forwarded out port 0, 1 and 3 from bridge 00 as predicted.

When data was sent the other way in phase three, it was only forwarded out port 2. At the end,

the filtering database of bridge 00 had two entries. The first was node 03’s address with port 2,

and the last was 01’s address with port 0.

68

6.3. TEST THREE – BASIC TEST OF MMRP

EthernetMAC 1

RSTP

MMRP

LLC MAC Relay Entity

EthernetMAC 2

EthernetMAC 0

.portStateChangeEvent@service

.portRoleChangeEvent@service

.portStateQuery@service

.filteringDatabaseConfig@service

0@ 1@

NODE

2@

(a) The bridge component. In test three, the bridges

have three ports. Further, the bridge has a LLC,

MMRP, RSTP and MACRelayEntity component.

All these components are described in chapter 5.3.

RSTP

MMRP

LLC MAC Relay Entity

EthernetMAC 0

.portStateChangeEvent@service

.portRoleChangeEvent@service

.portStateQuery@service

.filteringDatabaseConfig@service

0@

NODE

MulticastClientMulticastServer

(b) Illustration of an end user node. An end user

has only one port. The MulticastServer is used to

send traffic addressed to MAC group addresses. The

MulticastClient sends registration and deregistration

primitives to the MMRP component. Furthermore,

it receives traffic addressed to MAC group addresses.

Figure 6.6: Component composition of simulation test number three.

To conclude, the forwarding and learning functions of the MAC Relay Entity work as ex-

pected.

6.3 Test three – basic test of MMRP

This part will test registration and deregistration of attributes with the MMRP. The states of

the state machines in MMRP will be compared with the expected result.

6.3.1 The test set up

The physical topology is illustrated in figure 6.7a. The triangles in the figure illustrate end users,

while the squared node illustrate a bridge. The system consists of one bridge connected to three

end users. The links between the nodes have a delay according to 15 meters. The bandwidth

cost parameter of RSTP is equal on all ports. The bridge MAC address are based on the number

printed in the middle of the bridges in figure 6.7a, as described in test number one (6.1).

The composition of the end nodes is illustrated in figure 6.6b. They have one port connected

to the bridge. The “MulticastServer” component may send EthernetFrames destined to a group

MAC address on the network. This may be used to see that data addressed to group addresses

is forwarded correctly. The “MulticastClient” may send register and deregister commands to the

69

CHAPTER 6. TESTING

MMRP client.

The bridge component is illustrated in figure 6.6a. It has three ports, one for each end node.

Compared to the previous tests, the MMRP component is added. All traffic uses the same VLAN

identifier.

6.3.2 The expected result

This test consists of three parts. The first test registration of attributes from several clients. The

second part tests deregistration and the last part sends data addressed to one of the registered

group addresses to see if the data is forwarded correctly.

Part one

This part starts after 10 seconds. By that time, the RSTP should be finished with the logical

topology. No MMRP signaling is done before 10 seconds, therefor no MMRP participants are

created in the system. In fact, no other traffic than RSTP’s BPDUs has been sent, so the filtering

databases should be empty.

The standard [24] defines two primitives. One for registration and the other for deregistration

of attributes. Compared to the OSI reference model, the primitives shall be sent from a layer

above MMRP. In the J-SIM implementation, these primitives are sent by the “MulticastClient”

component. When the MMRP component receives a primitive, it should start the process of

registering or deregistering the attribute. This process is explained step-by-step in the following.

1. The registration starts at end user 01. When the MMRP component receives the regis-

tration primitive, it does the same as when it receives a MAD Join.request(. . .). Because

this is the first time the attribute is being declared, a MMRP participant is created. The

state machines are set to initial states. The applicant state machine is in the VO state, and

the registrar state machine starts in the MT (empty) state. A MAD Join.indication(. . .)

triggers a “Join!” event on the applicant state machine (from now “applicant”). The ap-

plicant asks for a transmission opportunity and changes state to VP. The transmit event

happens as soon as possible (as described in 5.3), and triggers a PDU to be sent at from the

port. The PDU shall contain the state “JoinMt”. This state means that the participant

is declaring the attribute but the attribute is not registered. After the PDU is sent, the

applicant changes state to AA and asks for another transmit opportunity. The transmit

opportunity occurs as soon as possible and then the applicant changes state to QA. The

reason why it send two message is to ensure that participants on the same LAN receives

the registration (as described in 4.1).

2. The messages sent by end user 01 is received by port 0 on number 00 bridge. The mes-

sage type is “JoinMt”, which means that the sending participant has declared but not

70

6.3. TEST THREE – BASIC TEST OF MMRP

registered the attribute. This triggers a “rJoinMt!” event in registrar and applicant

state machines. The registrar state machine performs a “Join” action, which sends a

MAD Join.indication(. . .) to the other participants on the bridge. Finally, the registrar

updates the filtering database and changes state to IN. The update of the filtering database

is done by adding an entry with the given MAC group address, saying that it should be

sent out on the current port. In this case it is port 0. The applicant’s state is VO, because

nothing has happened yet. The “rJoinMt!” event triggers nothing at when the applicant

is the VO state. When the second “JoinMt” message from end user 00 arrives, the states

is not changed on the applicant nor the registrar. Table 4.3 and the registrars state table

in [24] shows all states, events and actions as described here.

3. The MAD Join.request(. . .) that arrives at the other participants triggers a “join!” event

on the applicants. The state changes to VP and then they follow the same actions and state

changes as described in the first point from end user 01. This means that the participant

for port 01 and 02 sends two“JoinMt” messages each on the connected LAN. They are

received by, respectively, end user 02 and end user 03. The actions and state transitions

at end user 02 and end user 03 is the same as described in point 2 where bridge 00 receive

the “JoinMt” message from end user 01. Because end user 02 and 03 is not bridges, they

have only one port. This means that there is further messages sent on the network at this

point.

The stable state is shown i figure 6.7b and 6.7c. The former figure shows the states of the

applicant and registrar. The latter figure is simplified by saying that the participant has either

declared or registered the attribute. It also shows the propagation MRPDUs by arrows. The

time from end user 01 receives the registration request to the information is converged to the

rest of the net should be 2 × PropagationDelay = 1 × 10−12. This is because the model lacks

the processing and bandwidth delay. The state of the network is stable until the leaveAll timer

expires. The leaveAll! event triggers re-registration from the participants.

End user number 02 is also registering the same MAC group address as end user number 01.

End user 02 starts the registration at time 15.0 seconds. The propagation of the subscription

from end user 02 will go approximately the as with end user 01. The different is that most

of the participant in the network no are both declaring and registering MAC group addresses.

The exception shall be port 02 of bridge 00. Because end user number 03 has not declared the

attribute, the port 02 of bridge 00 only declares the attribute. The stable state after end users

to registration is shown in figure 6.7d.

Part two

This part starts after 15 seconds. A deregistration shall be sent from end user 01 and propagate

through the network. At the end, the only registered user should be end user 02. It starts

71

CHAPTER 6. TESTING

00

01 02

0

03

1
2

(a) The physical topology of test number three.

The node number 00 which is squared is a

bridge. The triangles are end users. The num-

ber around the bridge are port numbers.

00

01 02 03

QA MT VO IN VO IN

IN
VO

QA
MT

MTQA

(b) The states after the first registration in part

one of test three. Each port has states for the

applicant and the registrar state machines. QA

and VO are applicant states while MT and IN

are registrar states. Figure 6.7c shows whether

the participants have registered or declared the

attribute.

00

01 02 03

D

D

D

R

R R

(c) The same as figure 6.7b, but with simplified

annotations. Shows whether the participants

have registered or declared the attribute. It also

illustrates the way of MMRPDU propagation

by arrows. One can also get this information

from the states of the applicant and registrar

state machines as shown in figure 6.7b.

00

01 02 03

QA IN QA IN VO IN

IN
QA

QA
MT

IN QA

(d) The state after part one of test number

three. The ports with QA and IN has both reg-

istered the attribute and is declaring it. The

VO state of the applicant means that the at-

tribute is not declared, while the MT of the

registrar means that the value is not registered.

00

01 02 03

D

R

R

D

D R

(e) The state after part two of the test. The

states represent whether a participant has de-

clared or registered (or both). The arrows

shows how the leave message should propagate.

00

01 02 03

A2

A
1

(f) The expected propagation of data addressed

to A1 and A2 at the end of test number three.

If source pruning was enabled, traffic addressed

to A1 would have been truncated at end user

03.

Figure 6.7: Flow charts and topology of simulation test number three.

72

6.3. TEST THREE – BASIC TEST OF MMRP

with the MmrpClient component of end user 01 sending an deregistration primitive to the Mmrp

component. This triggers a MAD Leave.indication(. . .) that further triggers a Lv! (leave) event

at the applicant. The applicant changes state from QA to LA. Then it sends a leave message

(PDU) to the participants on the LAN. Finally, it changes state to VO. The participant is no

longer declaring the attribute.

Next, bridge 00 receives the leave message on port 0. This triggers a “rLv!” (received

leave message) event at both the applicant and registrar. The registrar starts the leave timer

and changes state from IN to LV. The applicant changes state from QA to VP and sends a

“JoinMt” message. Furthermore it changes state from VP to AA. Then the applicant sends

another “JoinMt” message and changes state to QA. The leave timer that the registrar started,

expires after leave time. The leave time is 0.6 seconds. When the timer expires it triggers a

MAD Leave.indication(. . .) primitive to be sent. The MAD attribute propagation (MAP) sends

the MAD leave primitive to another participant if the other participant is on the same bridge

and uses the same VLAN identifier as the source participant. There are two additional rules for

the MAD Leave primitive. The other participant receives the MAD Leave primitive if

• the receiving participant and the sending participant have registered the attribute, but no

other participant on the same context have a registration, or

• the only participant that has registered the attribute is the one who sends the primitive.

This is because participants that have registered the current attribute shall not loose their reg-

istration in the network. In the current test, the MAD leave primitive should not be sent to the

participant at port number 2. If this is done, end user 02 will loose its registration at end user

03. On the other hand, it should be sent to port number 1. This removes the declaration from

port number 1, and forwards a leave message towards end user 02.

The participant on port 1 should receive the MAD Leave.request(. . .), which should further

trigger the same actions explained for port 0 at end user 01 at the beginning of this part. The

participant should finally be in the VO state (not declaring the attrbiute). Figure 6.7e shows

the state at the end of this part. Additionally, it shows the propagation of the leave message

by stippled arrows. The total convergence time of the deregistration should be two times the

propagation delay and a leave time delay. This results in a convergence time of 0.600000000001

seconds.

Part three

This parts test whether traffic are sent correctly based on registration from the end users. Default

filtering behavior is to filter all unregistered groups. That means that if a group MAC address is

not registered by any end users, the data with this address will not be forwarded by the bridges.

If a group address is registered, it will be forwarded to the ports in the port map.

73

CHAPTER 6. TESTING

Abbreviation Description Value

∆prop Propagation delay 5× 10−13

∆join Join time 0.2s

∆tx Transmission opportunity delay 0 ≤ ∆tx ≤ 1.5×∆join

∆leave Leave time 0.6s

A1 First address ff:ff:11:11:11:ff

A2 Second address ff:ff:11:22:11:ff

T1 End user 03 starts sending data to the A1 25.0

T2 End user 01 starts sending data to the A2 25.1

Td End user 02 deregister the A1 26.0

Trx d Bridge 00 receives deregistration 26 + ∆prop

and leave timer starts.

Ttx j End user 02 registers the A2 26.1

Tj Register the A2 at bridge 00 26.1 + ∆prop +∆tx

Trx2 End user 02 receives traffic to A2 Tj +∆prop

Tl Leave timer expires at bridge 00 26 + ∆prop +∆leave

TendA1 End user 02 do no receive traffic to A1 no more Tl +∆prop

Table 6.1: The different times used in part three of test three.

At the start of this part, end user 02 has registered the group address “ff:ff:11:11:11:ff”. At

the time of approximately 25.1 seconds, the end user 01 and 03 will start sending data on the

network. End user 01 sends traffic with destination address “ff:ff:11:22:11:ff”, while end user 03

sends to “ff:ff:11:11:11:ff”. These are both group addresses. The body of the EthernetFrames

that are sent, is the string “DUMMY IP-packet” encapsulated in an IP-packet. Both end users

01 and 03 will send these frames every 0.1 seconds.

At approximately 26 seconds, end user 02 will deregister from the “ff:ff:11:11:11:ff” group

address (named A1). Later, at approximately 26.1 seconds, end user 02 will register the group

address “ff:ff:11:22:11:ff” (named A2). The propagation delay is named ∆prop. The bridge 00

receives the leave message for A1 at 26 seconds + ∆prop. Immediately, the leave timer of 0.6

seconds starts. Next, the bridge receives the join message for the second address, and adds this

address to the current port and VLAN mapping entry in the filtering database. The variables

are listed in table 6.1.

End user 02 should receive data addressed to A1 until the time TendA1, where TendA1 =

26 + (2×∆prop) + ∆leave[s] ≈ 26.6[s]. The time it deregistered should be Td = 26.0. The delay

between deregistration and when the traffic no longer is sent to end user 02 is about 0.6 seconds.

In this time space, the MulticastClient component of end user 02 should print an error message

74

6.3. TEST THREE – BASIC TEST OF MMRP

Node 0 1 2 3

Port 0 1 2 0 0 0

Attribute A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2

Applicant VO QA VO VO VO QA VO VO VO QA VO VO

Registrar MT MT MT IN MT MT MT IN MT MT MT IN

Table 6.2: The expected state machine states after part three of test three. “A” is short for

applicant state machine, while “R” is short for registrar state machine. A1 and A2 are taken

from table 6.1, and represents the attributes. The VLAN identifier is not mentioned, because all

traffic uses the same identifier.

.

saying that the received data is not registered any longer.

The time end user sends a registration primitive for attribute A2 is Ttx j . Further, the earliest

it may receive the data addressed to A2 is Trx2. The delay between Ttx j and Trx2 is variable

because of the transmission opportunity described in 5.3. At a minimum time, the first data

may arrive at Trx2 + (2 × ∆prop) + 0[s] ≈ 26.1[s]. At maximum time, the data may arrive at

Trx2 + (2 × ∆prop) + (1.5 × ∆join)[s] ≈ 26.3[s]. The propagation times are so small compared

to the timers that they are not included in the answer – thereof the use of ≈. End user 02 has

a maximum of 0.3 seconds (Ttx j − Trx2) from registration until it actually receives the data

stream.

End user 02 will receive data from both end user 01 (addressed to A2) and end user 03

(addressed to A1) at a certain time interval. This is due to the leave timer being larger than the

join timer (∆leave > ∆tx). Based on the calculations of the two latter paragraphs, end user 02

will receive two data streams in the time from 26.1 or 26.3 seconds to 26.6 seconds.

At the end, attribute A1 should have no subscribers in the network, but A2 should be declared

by end user 02. The expected states at the end is listed in table 6.2.

6.3.3 The result

Part one

The result was almost as expected. The difference was in the convergence time when the second

user (end user 02) sent a declaration. After two times the propagation delay, the applicant state

of port 1 on the bridge 00 were AA instead of QA. The transition from AA to QA should happen

instantly after a Join message is sent. The transmission was delayed for 0.3 seconds, thereof the

transition from AA to QA was also delayed. The reason is as described in 5.3. There can be no

more than three transmission during any period of 1.5×JoinT ime = 0.3 seconds. Because there

is no processing delay or bandwidth delay, the three last messages was sent at the same time.

75

CHAPTER 6. TESTING

The next transmission opportunity occurred at 0.3 seconds later, and the stable state, QA, is

reached.

Part two

The deregistration was completed successfully, consequently the expectations matches the result.

The states of the participants ended as illustrated in figure 6.7e. The leave message was propa-

gated as shown with the stippled arrow. The convergence time was two times the propagation

delay and leave time as expected.

Part three

The states of the participants at the end was as expected. The deregistration propagated as

described, and the time delays was satisfying. The time delay of the transmission opportunity

when end user 02 sent a declaration for attribute A2, was a minimum. End user 02 received

traffic addressed to A2 at ≈ 26.1 seconds.

DEBUG| 26.100000311001015| /test3/node02/multicastClient/| Received data addressed to

group address: ff:ff:11:22:11:ff which is correct. Data type: IP packet. Content:

DUMMY IP-packet

After the leave timer expired, the data addressed to A1 and A2 propagated as illustrated in

figure 6.7f. If source pruning had been enabled, the traffic to A1 would have been stopped at

end user 03. This would, however, not show whether the bridge would perform as expected.

6.4 Test four – advanced test of MMRP

This part will test a more advanced topology of MMRP than the basic test in 6.3. The topology is

taken from the standard [24, figure 10.2]. The objective is to get the same result as the standard

illustrates.

6.4.1 The test set up

An overview of the topology with numbers on the nodes is shown in figure 6.8. Two nodes,

number 16 and 1a, will declare an attribute. This is marked with a “D” and a double triangle in

the figure. The arrows between the nodes illustrate how the declaration propagates through the

network. The links have the same propagation delay as the previous tests. There are no loops

in the physical topology.

There are three different types of nodes. The squared nodes are bridges, and are composed

like figure 6.6a. The figure shows a component with three ports. The number of ports vary from

bridge to bridge in the current test. Further, the triangles in figure 6.8 illustrate the end users.

76

6.4. TEST FOUR – ADVANCED TEST OF MMRP

0001 03 04 05

09 0a 0b 0c 11 12 13 15

16
D

17 1a
D

1b

05 04End user Hub BridgeLegend:

Figure 6.8: Topology of test number four. The arrows between the nodes illustrate both the

logical topology, and the propagation of attribute declaration. End user 16 and 1a are marked

with a “D” and double triangle. This means that it is declaring the given attribute.

These nodes are composed as illustrated in figure 6.6b. The last node type is illustrated with

circles, and they represent hubs. The hubs are simple components that sends incoming data out

all other ports than the port the traffic entered.

6.4.2 The expected result

The final states of each participant in the network should be as illustrated in [24, figure 10.2].

The applicant and registrar stable states for are shown in table 6.3. The details of transitions

between states are described in the previous tests, and will no be repeated here.

The convergence time for the declarations are affected by the number of jumps and the

transmission opportunity mechanism. The nodes which have the largest distance to 16 in terms

of number of hops, are 1a and 1b. The number of hops is ten. The largest distance from 1a is

also ten hops towards nodes 16 and 17. The transmission opportunity mechanism says that must

not be sent more than three MRPDUs from a participant in an interval of 1.5×JoinT ime = 0.3

seconds. End user number 16 will declare the attribute at time ten seconds. At that time, no

other declarations exists. Thereof, the participants are crated at the same time as the declaration

propagates through the network, and the first messages sent are of the propagation if node 16’s

declaration. The convergence time is therefor only affected by the link propagation delay of

10 hops × 5 × 10−13 seconds = 5 × 10−12 seconds. When end user number 1a declares the

attribute, some traffic may be generated by the existing declaration due to the periodic timer or

leave all timer. Worst case scenario is that each participant has just sent three messages. For

77

CHAPTER 6. TESTING

each hop, a delay of 1.5× JoinT ime = 0.3 seconds will be added. This results in a convergence

time of 10 hops× (0.3 + 5× 10−13) seconds ≈ 3 seconds.

D R DR

Applicant state machine QA VO QA

Registrar state machine MT IN IN

Table 6.3: Stable states of the applicant and registrar.

The operPointToPointMAC parameter in a bridge should be set to FALSE when a port is

connected to more than one other port. This is described in section 5.2. In the implementation,

operPointToPointMAC is always TRUE, but the standard [24] states that the result should be the

same. The difference is that the performance is not optimized.

6.4.3 The result

Some lines from the simulation output is pasted below. These messages are called debug mes-

sages. Each message has several parts divided by a “|”. The first word of each line is “DEBUG”,

saying that it is a debug message. The second part of a line is a number, which is the time.

The first line was printed at 10 seconds. The third part is says which component printed the

message, and the last part is the debug message itself. The output below shows how the attribute

declaration from end user 16 propagated to end user 0c. As said earlier, the propagation time of

each link is 5×10−13. From the lines belows, we see that each message is printed in 2×5×10−13

seconds interval. This is because there is a hub between each bridge or end user, and thereof

two links. The reason why 2 × 5 × 10−13 seems to equal 9.98 × 10−13 instead of 1 × 10−12, is

the way Java calculates its Double data type. I.e. the offset is not due to the implementation.

The last message coming from component /test47node1a/macRelayEntity/ was printed when the

attribute declaration arrived at end user 1a. The time it arrived is as expected 5× 10−12.

1 DEBUG| 10.0| /test4/node16/mmrp/| MMRP forwarded a unitDataIndication at the downPort if

(0). Type: MRPDU (ff:ff:11:11:11:ff, event: JOIN_MT, leaveAll: false).

2 DEBUG| 10.000000000000998| /test4/node0c/mmrp/| MMRP forwarded a unitDataIndication at

the downPort if(0), state(FORWARDING). Type: MRPDU (ff:ff:11:11:11:ff, event: JOIN\

_MT, leaveAll: false)

3 DEBUG| 10.000000000001997| /test4/node00/mmrp/| MMRP forwarded a unitDataIndication at

the downPort if(0), state(FORWARDING). Type: MRPDU (ff:ff:11:11:11:ff, event: JOIN\

_MT, leaveAll: false)

4 DEBUG| 10.000000000002995| /test4/node04/mmrp/| MMRP forwarded a unitDataIndication at

the downPort if(1), state(FORWARDING). Type: MRPDU (ff:ff:11:11:11:ff, event: JOIN\

_MT, leaveAll: false)

78

6.4. TEST FOUR – ADVANCED TEST OF MMRP

5 DEBUG| 10.000000000003993| /test4/node13/mmrp/| MMRP forwarded a unitDataIndication at

the downPort if(2), state(FORWARDING). Type: MRPDU (ff:ff:11:11:11:ff, event: JOIN\

_MT, leaveAll: false)

6 DEBUG| 10.000000000004992| /test4/node1a/macRelayEntity/| RECEIVED from port 0 with

address 00:11:22:33:13:00 to address 01:80:c2:00:00:20 body type: drcl.ethernet.mmrp

.MRPDU

The next output shows the attribute declaration from end user 1c towards end user 16. The

result shows that there were no delay considering the transmission opportunity mechanism. The

propagation time was the same as above.

1 DEBUG| 15.0| /test4/node1a/mmrp/| MMRP forwarded a unitDataIndication at the downPort if

(0). Type: MRPDU (ff:ff:11:11:11:ff, event: JOIN_MT, leaveAll: false)

2 DEBUG| 15.000000000000998| /test4/node13/mmrp/| MMRP forwarded a unitDataIndication at

the downPort if(0), state(FORWARDING). Type: MRPDU (ff:ff:11:11:11:ff, event: JOIN\

_IN, leaveAll: false)

3 DEBUG| 15.000000000001997| /test4/node04/mmrp/| MMRP forwarded a unitDataIndication at

the downPort if(0), state(FORWARDING). Type: MRPDU (ff:ff:11:11:11:ff, event: JOIN\

_IN, leaveAll: false)

4 DEBUG| 15.000000000002995| /test4/node00/mmrp/| MMRP forwarded a unitDataIndication at

the downPort if(1), state(FORWARDING). Type: MRPDU (ff:ff:11:11:11:ff, event: JOIN\

_IN, leaveAll: false)

5 DEBUG| 15.000000000003993| /test4/node0c/mmrp/| MMRP forwarded a unitDataIndication at

the downPort if(1), state(FORWARDING). Type: MRPDU (ff:ff:11:11:11:ff, event: JOIN\

_IN, leaveAll: false)

6 DEBUG| 15.000000000004992| /test4/node16/macRelayEntity/| RECEIVED from port 0 with

address 00:11:22:33:0c:00 to address 01:80:c2:00:00:20 body type: drcl.ethernet.mmrp

.MRPDU

At the end, all state machine was in the correct states. This concludes a functioning imple-

mentation of MMRP and its cooperative components.

79

CHAPTER 6. TESTING

80

Chapter 7

Experiments and results

This chapter uses the simulation environment and the MMRP/Bridge implementation to test

some performance parameters of MMRP. The first section described the experiment and the

expected result, while the last section looks at the results of the simulations.

7.1 MMRP timer experiment

As described in chapter 6 Testing, the convergence time of a MMRP attribute registration is the

propagation, processing and bandwidth delays. However, when the participant for the current

attribute has sent more than three messages in the last 1.5 × JoinT ime = 0.3 seconds, a delay

is added before sending the next PDU as described in chapter 5 Implementation.

The more attributes registered at a participant, the more PDUs are sent. Thereof, a higher

risk of delayed PDUs. When the operPointToPointMAC parameter of a bridge port is set to

TRUE, a PDU is sent on request with only one attribute per PDU. This is described further in

chapter 5 Implementation. The current implementation has operPointToPointMAC set to TRUE,

thereof only one attribute per MRPDU.

Besides the registration and deregistration propagations, there are two timers that triggers

propagation periodically. The LeaveAll Timer which ensures that deregistrations are fully prop-

agated, so that no registrations are kept alive without reason. The second timer is the Periodic

timer which ensures that registrations are kept alive in case of packet loss.

The LeaveAll timer has a random length between 10 and 15 seconds. When it expires,

a “sLA” action is triggered. The sLA action sends a MRPDU with the LeaveAll-field set to

TRUE. With only one attribute per PDU, the number of PDUs sent when the LeaveAll timer

expires are the same as the number of attributes at the participant. Furthermore, the sLA event

triggers a “rLA!” event at the applicant and registrar state machines for all the attributes of the

participant. The rLA! event starts the leave timer of 0.6 seconds on the registrar state machines.

81

CHAPTER 7. EXPERIMENTS AND RESULTS

0001 02

03

04

05

Xth

N

Figure 7.1: Topology of the experiment. Triangles illustrate clients, while the square nodes

illustrate bridges. On the left side, bridge 01 is connected to N − 2 clients. On the right side,

bridge 00 is connected to one client.

The participant on the other side of the LAN will return a MRPDU with its current state. If the

MRPDU is delayed from the participant due to the many attributes, this will cause an unwanted

deregistration because the leavetime expires.

In addition to the PDUs generated by the LeaveAll event, the periodic timer expires every

one second. If the applicant is in either the QA or the QP state, the periodic timer expiration

triggers a single sending. The PDU contains the applicants current state.

This experiment will look at the timers in MMRP and how it affects the capacity of a

participant. It is done by simulation. The capacity here is in terms of the number of attributes

per participant.

7.1.1 The test set up

The topology is illustrated in figure 7.1. The left part of the figure shows N−2 clients connected

to bridge number 01. N − 2 is because the N is the total number of nodes in the network, an

the first client connected to bridge 01 has number 03. On the right side, one client (number

02) is connected to bridge number 0. Client 02 will act as a content server sending multicast

data traffic, simulation real time content. Each data stream has the same constant bit rate. All

links has the same propagation delay, which is according to a 15 meter link. The bridges are

composed as illustrated in figure 6.6a on page 69, expect from the number of interfaces. Bridge

01 has N − 2+ 1 ports, and bridge 00 has two ports. The clients are composed as figure 6.6b on

page 69. There are no processing delay, no bandwidth delay or queue on the interfaces.

The experiment executes several simulations. The parameters that is changed to see the effect

on the timers are:

Number of clients. The clients connected to bridge 01 declares an attribute different from the

other clients connected to the bridge. The number of clients connected to bridge 01 is

82

7.1. MMRP TIMER EXPERIMENT

varied through the simulations.

LeaveTimer The standard [24] gives a default value of the LeaveTimer between 0.6 and 1.0

seconds. This value is adjusted to see what effect it has.

JoinTimer Based on the JoinTimer, MMRP decides how many MRPDUs may be sent per

second. The default value is 0.2 seconds.

7.1.2 The expected result

The expirement is broken down in two parts. The first part of the experiment will use default

values of the timers, but change the number of clients. The second part will alter the timer

values, and change the number of attributes declared in the network.

Similarities of all the experiments are as follows. All the (N − 2) clients of bridge 01 will

declare different attributes. In other words, there are (N − 2) different attribute declarations in

the network. As explained above, when the “leavealltimer!” expires, the registrar changes state

from “IN” to “LV” for all registered attributes at the participant. The registrar stays in the LV

state for LeaveT ime seconds before the attribute is deregistered. All attributes declared from

the other side of the LAN have LeaveT ime seconds to reregister at the participant by sending a

JointMt or JoinIn message. The LeaveAll Timer is a random value between 10 and 15 seconds.

The Periodic Timer triggers events that generates one PDU for each attribute with applicant

state equal to QA or QP. The period of the Periodic timer is as mentioned, one second.

Part one – default timer values

Simulations executed in this part will have a JoinTimer with the default value 0.2 seconds, and

the LeaveTimer is by default 0.6 seconds. The expected behavior is illustrated in figure 7.2.

The figure shows an example where the clients already have registered their attributes. The

first event illustrated in the figure is that the leavealltimer expires on bridge 00 that is linked to

bridge 01. This triggers a “sLA” action which again starts the leave timer of all the attributes

of the participant.

As seen in figure 7.2, it is expected that six MPRDUs is received by the participant at bridge

00 before the leave timer expires. Traffic addressed to those attributes that arrives after the

leavetimer expires will no longer be forwarded on the port. In the illustration, this is the clients

that subscribe to attribute number 4 and higher with a leave timer of 0.6 seconds. We can see

from the illustration that with a leave timer of 1.0 seconds, two more attributes are reregistered.

In addition to what is illustrated in figure 7.2, the periodic timer expires every second for

each port. This triggers sending of one PDU per applicant that is in the QA or QP state. With

a maximum of 10 MRPDUs per second, a maximum of 10 applicants per participant will send

their state on every periodic timer expiration.

83

CHAPTER 7. EXPERIMENTS AND RESULTS

time (sec)

le
av
ea
ll
ti
m
er
!

0
.5

0
.1 0
.2

0
.3 0
.4

0
.6

0
.7

0
.8

1
.1

A
tt
r.

6

1
.0

le
av
et
im

er
!

le
av
et
im

er
!

A
tt
r.

3

A
tt
r.

1

A
tt
r.

1

A
tt
r.

2

A
tt
r.

2

A
tt
r.

3

A
tt
r.

4

A
tt
r.

4

A
tt
r.

5

B
ri
d
g
e
0

B
ri
d
g
e
1

A
tt
r.

6

0
.9

A
tt
r.

5

Figure 7.2: A leaveall timer expires. The leave timer is by default between 0.6 to 1.0 seconds. If

the leave timer is 0.6 seconds, bridge 1 manages to send seven MRPDUs (four attributes), while

with a leave timer of 1.0 seconds it sends 11 MRPDUs (six attributes). When the leavetimer is

0.6 seconds, the seventh MRPDU may not be received before the leave timer expires. The same

is valid regarding the 11th MRPDU if the leavetimer is 1.0 seconds.

Four simulations will be executed. The difference is the number of attributes declared in the

network. The first scenario has four clients, each declaring different attributes. The three other

scenarios have five, six and seven clients where each client declares different attributes. The

MulticastServer component in client 02 sends traffic towards all the registered attributes. The

MulticastClient at the client side is connected to a TrafficMonitor component, which is further

connected to a Plotter component. This way, the incoming data rate is registered an plotted.

The scenario with four different attributes declared in the network will handle the LeaveAll-

Timer as illustrated in figure 7.2. The worst case scenario is if the participant has just sent

three messages when the leaveall timer expires. Consequently, only two attributes manages to

reregister bedore the registrars have transitioned to MT. A break in the traffic between 0.1 and

0.3 seconds for the clients which registered the attributes is expected in this case.

The second scenario has five attributes, the third has six and finally the fourth has seven

attributes declared in the network. It is expected that all these scenarios will suffer from a faulty

MT state in registrars during the leaveall timer expirations. This means that some attributes are

deregistered on bridge 00. This will show on the data rate plot from the clients. Those attributes

that are deregistered will reregister as soon as the MRPDU from bridge 01 arrives at bridge 00.

Part two – altered timer values

In this part, the value of the LeaveTimer and the value of the JoinTimer is altered. By this it is

expected to achieve better scalability in terms of more attribute declarations per participant. A

84

7.2. RESULTS

TrafficMonitor component is connected to the LLC/mmrp@up port of bridge 00. This will show

the data rate of incoming MRPDUs on the bridge. Three different configurations are used. The

expected results for each of them are as follows.

JoinTime = 0.2s, LeaveTime = 1.0s, number of attributes = 7. This configurations dif-

fers from the last scenario of part one by an increased LeaveTime. Note that it is still a

default value as the standard states a value between 0.6 and 1.0 seconds. By increasing the

LeaveTime, we see by figure 7.2 that six attributes may be reregistered before the timer

expires. Consequently, one client looses its data stream. As seen in figure 7.2, attribute

number 7 will be reregistered at 1.2 seconds after the LeaveAllTimer expired.

JoinTime = 0.1s, LeaveTime = 1.0s, number of attributes = 10. The number of

attributes declared in the network is increased to ten, and the JoinTime is decreased to

0.1 seconds. By reducing the JoinTime by 50%, the expected MRPDUs per second rate

will double. This means that each participant may send 20 MRPDUs per second. Conse-

quently, 20 MRPDUs may arrive before the LeaveTime expires. All attributes should be

reregistered, and there should not occur a break of any of the data streams.

JoinTime = 0.1s, LeaveTime = 1.0s, number of attributes = 11. The JoinTime is still

0.1 seconds giving the 20 MRPDUs per second rate. The difference is that the number of

attributes declared in the network is increased to 11. Eleven attributes produces 22 MR-

PDUs, which in turn requires 1.1 seconds to send with the given JoinTime. Consequently,

one out of the 11 reregistrations should arrive after the LeaveTime expires.

When the JoinTime is reduced, more MRPDUs may be sent per second. This should lead to

a higher bandwidth demand by MMRP.

7.2 Results

This section is broken down in two parts, representing the parts described in the last section.

First, the results of simulation with default timer values, next the results of the simulations with

altered timer values.

Note that the results is based on this specific implementation. The implementation may be

error-prone due to wrong interpretation of the protocol. If this is the case, the reflections around

the result may differ from the protocols intentions.

7.2.1 Part one

The figure 7.3 on page 87. show the results. The plots show the data rate of the received traffic

at the clients. Where the curves drop, the clients looses its data stream due to the behavior

85

CHAPTER 7. EXPERIMENTS AND RESULTS

described in the expected results. The reason for the drops is the expiration of the LeaveAll

timer.

Figure 7.3a shows the results with four attributes declared in the network. The result is

as expected with no long breaks in the data streams. Figure 7.3b, on the other hand, shows

that for each time the LeaveAll timer expires, one attribute is deregeistered. Consequently, the

data stream for the given attribute is not forwarded from bridge 00, and it is shows by a drop

in the received data rate in the plot. Further, both figure 7.3c and 7.3e indicates the same

behavior. With six attributes declared in the network, two attributes are deregistered when the

LeaveAll timer expires. Again, with seven attributes declared in the network, three attributes

are deregistered. A detail of the received data stream is shown in figure 7.3d and 7.3f. The detail

shows that each stream is regeregistered with approximately 0.2 seconds between, which is the

time used to send two MRPDUs, i.e. one attribute. This matches the expectations shown in

figure 7.2.

The simulation output confirms the results from the plots. A part of the output is shown

below. Each single output message is on a new line. A message is further broken down in different

parts divided by a “|” character. The following describes the first line of the output below.

GARBAGE The type of output message.

45.09000000000199 The current time in the simulation execution context.

/test/node00/mmrp/ The component that prints the message.

drcl.ethernet.mmrp.Scheduler@16c1857 The Java object of message origin.

LeaveAllStateMachine port 0, vlan 1. Event = RLA The message itself. Here, the LeaveAll-

StateMachine has passed the message on a RLA event. Port and vlan is also printed.

1 GARBAGE| 45.09000000000199| /test/node00/mmrp/| drcl.ethernet.mmrp.Scheduler@16c1857|

LeaveAllStateMachine port 0, vlan 1. Event = RLA

2 GARBAGE| 45.09000000000199| /test/node00/mmrp/| drcl.ethernet.mmrp.Scheduler@16c1857|

LeaveAllStateMachine port 0, vlan 1. Action = START_LEAVEALLTIMER

3 GARBAGE| 45.09000000000199| /test/node00/mmrp/| drcl.ethernet.mmrp.Scheduler@16c1857|

Registrar. Port 0, vlan 1, attribute: ff:ff:11:03:11:ff. currentState=IN, EVENT: RLA

4 GARBAGE| 45.09000000000199| /test/node00/mmrp/| drcl.ethernet.mmrp.Scheduler@16c1857|

Registrar. Port 0, vlan 1, attribute: ff:ff:11:03:11:ff. switched to state: LV,

EVENT: RLA

The output above shows the attribute “ff:ff:11:03:11:ff” transitions to registrar state LV due

to a reception of a LeaveAll message. This further causes the leavetimer to start. The same

results are found for every attribute declared in the network.

86

7.2. RESULTS

/test/.tm3/bytecount@
/test/.tm4/bytecount@
/test/.tm5/bytecount@
/test/.tm6/bytecount@

1.6

1.8

2.0

2.2

2.4

2.6

2.8
x10

4

15 20 25 30 35 40 45 50

Throughput

- Time -

(a) A scenario with four attributes declared in the

network.

/test/.tm3/bytecount@
/test/.tm4/bytecount@
/test/.tm5/bytecount@
/test/.tm6/bytecount@
/test/.tm7/bytecount@

0.5
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
x10

5

15 20 25 30 35 40 45 50

Throughput

- Time -

(b) A scenario with five attributes declared in the

network.

/test/.tm3/bytecount@
/test/.tm4/bytecount@
/test/.tm5/bytecount@
/test/.tm6/bytecount@
/test/.tm7/bytecount@
/test/.tm8/bytecount@

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x10
5

15 20 25 30 35 40 45 50

Throughput

- Time -

(c) A scenario with six attributes declared in the

network.

/test/.tm3/bytecount@
/test/.tm4/bytecount@
/test/.tm5/bytecount@
/test/.tm6/bytecount@
/test/.tm7/bytecount@
/test/.tm8/bytecount@

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x10
5

32.0 32.2 32.4 32.6 32.8 33.0 33.2 33.4

Throughput

- Time -

(d) A detail of figure 7.3c between the time 32 and

33.5 seconds.

/test/.tm3/bytecount@
/test/.tm4/bytecount@
/test/.tm5/bytecount@
/test/.tm6/bytecount@
/test/.tm7/bytecount@
/test/.tm8/bytecount@
/test/.tm9/bytecount@

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x10
5

15 20 25 30 35 40 45 50

Throughput

- Time -

(e) A scenario with seven attributes declared in the

network.

/test/.tm3/bytecount@
/test/.tm4/bytecount@
/test/.tm5/bytecount@
/test/.tm6/bytecount@
/test/.tm7/bytecount@
/test/.tm8/bytecount@
/test/.tm9/bytecount@

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x10
5

45.6 45.8 46.0 46.2 46.4 46.6 46.8 47.0

Throughput

- Time -

(f) A detail of figure 7.3e between the time 45.5 and

47 seconds.

Figure 7.3: Plots from different scenarios. All scenarios have a JoinTimer of 0.2 seconds, and a

LeaveTimer of 0.6 seconds. The difference between the plots is the number of attributes declared

in the network. Figure 7.1 illustrates the topology of the scenarios. The plots shows the data

rate of the received data stream (not MRPDUs) at the clients. Each client declares a single

attribute, different from the other clients. Figure 7.3a and 7.3b have respectively four and five

attributes declared in the network. Figure 7.3c shows the result of the whole simulation with six

attributes, while 7.3d shows a detail of the plot between 32 and 33.5 seconds. Figure 7.3e and

7.3f does the same, where the detail is of the time 45.5 and 47 seconds.

87

CHAPTER 7. EXPERIMENTS AND RESULTS

/test/.tm3/bytecount@
/test/.tm4/bytecount@
/test/.tm5/bytecount@
/test/.tm6/bytecount@
/test/.tm7/bytecount@
/test/.tm8/bytecount@
/test/.tm9/bytecount@

0.7

0.8

0.9

1.0

1.1

1.2

1.3

x10
5

15 20 25 30 35 40 45

Throughput

- Time -

(a) JoinTime = 0.2 s, LeaveTime = 1.0s, number of

attributes = 7. Data rate of the received stream at

the clients.

/test/.tmA/bytecount@

1

2

3

4

5
x10

3

15 20 25 30 35 40 45

Throughput

- Time -

(b) JoinTime = 0.2 s, LeaveTime = 1.0s, number of

attributes = 7. Data rate of received MRPDUs at

bridge 00.

/test/.tm3/bytecount@
/test/.tm4/bytecount@
/test/.tm5/bytecount@
/test/.tm6/bytecount@
/test/.tm7/bytecount@
/test/.tm8/bytecount@
/test/.tm9/bytecount@

/test/.tm10/bytecount@
/test/.tm11/bytecount@
/test/.tm12/bytecount@

0.8

0.9

1.0

1.1

1.2

1.3

x10
5

15 20 25 30 35 40 45

Throughput

- Time -

(c) JoinTime = 0.1 s, LeaveTime = 1.0s, number of

attributes = 10 Data rate of the received stream at

the clients..

/test/.tmA/bytecount@

0

1

2

3

4

5

x10
3

15 20 25 30 35 40 45

Throughput

- Time -

(d) JoinTime = 0.1 s, LeaveTime = 1.0s, number of

attributes = 10. Data rate of received MRPDUs at

bridge 00.

/test/.tm3/bytecount@
/test/.tm4/bytecount@
/test/.tm5/bytecount@
/test/.tm6/bytecount@
/test/.tm7/bytecount@
/test/.tm8/bytecount@
/test/.tm9/bytecount@

/test/.tm10/bytecount@
/test/.tm11/bytecount@
/test/.tm12/bytecount@
/test/.tm13/bytecount@

0.8

0.9

1.0

1.1

1.2

1.3

x10
5

15 20 25 30 35 40 45

Throughput

- Time -

(e) JoinTime = 0.1 s, LeaveTime = 1.0s, number of

attributes = 11. Data rate of the received stream at

the clients.

/test/.tmA/bytecount@

0

1

2

3

4

5

x10
3

15 20 25 30 35 40 45

Throughput

- Time -

(f) JoinTime = 0.1 s, LeaveTime = 1.0s, number of

attributes = 11. Data rate of received MRPDUs at

bridge 00.

Figure 7.4: Plots from different simulation scenarios. The two plots that are on each line come

from the same simulation. The on to the left shows the data rate of the received data stream at

each client. The legend gives the path to the traffic monitor component. The right plot shows

the data rate of the received stream of MRPDUs at the MMRP component at bridge 00. The

difference between the scenarios is the number of clients, and the timer values. The topology of

the scenarios is illustrated in 7.1.

88

7.2. RESULTS

1 GARBAGE| 45.690000000001994| /test/node00/mmrp/| drcl.ethernet.mmrp.Scheduler@16c1857|

Registrar. Port 0, vlan 1, attribute: ff:ff:11:03:11:ff. currentState=LV, EVENT:

LEAVETIMER

2 GARBAGE| 45.690000000001994| /test/node00/mmrp/| drcl.ethernet.mmrp.Scheduler@16c1857|

Registrar. Port 0, vlan 1, attribute: ff:ff:11:03:11:ff. switched to state: MT,

EVENT: LEAVETIMER

At 0.6 seconds (= LeaveTime) later, the registrar for the current attribute is triggered by

the leavetimer! event. Consequently, the registrar transitions to the MT (empty) state. At this

point, the bridge will not forward data to this address out the port.

GARBAGE| 45.850000000000975| /test/node00/mmrp/| drcl.ethernet.mmrp.Scheduler@1e0f790|

Registrar. Port 0, vlan 1, attribute: ff:ff:11:03:11:ff. switched to state: IN,

EVENT: RJOINMT

Next, at approximately 0.15 seconds later. The attribute is once again registered at the

participant. From this point on, the traffic towards the current attribute is forwarded to the

client. The output described above represents the findings of the incoming data rate on the

client as shown in figure 7.3.

7.2.2 Part two

The plots from the simulation is shown in figure 7.4 on page 88. A total of three simulations

were executed as described in the experiment section. In addition to the plots of received data

rate at the clients, a plot of the received data rate at the MMRP component is presented for each

simulation. The higher data rate at the MMRP components means more MRPDUs received. All

three simulations clearly shows that the periodic timer expires with a peak of the MRPDU data

rate each second. Further, when the LeaveAll timer expires, the plot shows a distinct increase in

the amount of received MRPDUs. The results for this part is broken down to each simulation,

i.e. three parts, presented in the following list.

JoinTime = 0.2s, LeaveTime = 1.0s, number of attributes = 7. The expectations was

that one attribute should be deregistered when the LeaveAllTimer expires. Figure 7.4a

confirms this.

JoinTime = 0.1s, LeaveTime = 1.0s, number of attributes = 10. Both the expected out-

come of the attribute reregistration and the increased data rate of MRPDUs are confirmed

respectively by figure 7.4c and 7.4d.

JoinTime = 0.1s, LeaveTime = 1.0s, number of attributes = 11. This simulation also

confirms the expected results. Figure 7.4e shows the received throughput by the clients.

89

CHAPTER 7. EXPERIMENTS AND RESULTS

One attribute is deregistered when the LeaveTime expires. Figure 7.4f shows the rate of

MRPDUs received at bride 00, which also follows the pattern explained in the expectations.

90

Chapter 8

Discussion

This chapter will discuss the results from the simulations, and discuss topics relevant to the

problem. The first part looks at performance parameters of MMRP. The second part describes

the problems around mapping IP multicast addresses to MAC multicast addresses.

8.1 MMRP performance parameters

This section looks at the performance parameters of MMRP. The section is divided in three,

beginning with the scalability issues due to the timer mechanisms. Next, the convergence time

of the attribute declaration is discussed and finally the MMRP bandwidth demand.

8.1.1 Scalability of a single Participant

Scalability here is in terms of the number of attributes a single participant can handle. As seen in

the simulation results from chapter 7 Experiments and results, the timers constraints how many

attributes a participant can handle. With a LeaveTimer of 0.6 seconds and a JoinTime of 0.2

seconds, a maximum of seven attributes is reregistered before the LeaveTimer expires, after a

LeaveAllTimer expired. An applicant needs to send its current state two times upon a LeaveAll

event. This is to ensure that the message is received on the other side of the LAN during situations

with packet loss. Because the current implementation sends these two MRPDUs successively, only

four attributes are reregistered. Due to the fact that one message is sufficient for a reregistration,

the MMRP participant should delay the second message. Consequently, all applicants sends one

message before any of the applicants have sent two. Given the scenario with LeaveTimer of 0.6

seconds and a JoinTime of 0.2 seconds, seven attributes will be reregistered before the LeaveTimer

expires. This opposed to the four reregistrations with the current implementation.

To optimize the performance, one may alter the timer values. The results when increasing

the LeaveTime to 1.0 seconds, was that six attributes reregistered before the timeout. And by

91

CHAPTER 8. DISCUSSION

decreasing the JoinTime to 0.1 seconds, ten attributes was reregistered. The effects of increasing

the LeaveTimer is first the obvious that more attributes may reregister. Next, it may also affect

the bandwidth usage in a network. If a client frequently changes stream with registrations and

deregistrations, several streams are forwarded to the client within the time of LeaveT ime after

the deregistration. On the other hand, the data streams of the different attributes may not

require much bandwidth each, and therefore this may not become a problem.

The standard [24] states that one may alter the timer value, and still the MMRP will act

correctly. Therefore, the timers may be changed in order to utilize for a certain scenario.

With five attributes in the network, one attribute was deregistered, and consequently traffic

not forwarded, for 0.15 seconds before it was reregistered. For each successive attribute that fails

to deregister before the LeaveTimer, it takes 0.2 seconds more before the attribute reregsiters.

This is shown in figure 7.3f. For some applications, a break 0.15 seconds may accepted.

The periodic timer is by default 1.0 seconds. If the JoinTime is 0.2 seconds, each participant

will only manage to send ten MRPDUs between each time the timer expires. However, it only

request to send the current state if the applicant is the declaring the attribute and have sent

or received two messages since the last Leave or LeaveAll message. Those applicants that are

already triggered by the periodic timer will go over in another state. Consequently, only ten

applicants will ask for transmission opportunity at each periodic event, and no congestion of

periodic messages occurs. In addition, it do not lead to any problem regarding the LeaveAll

event. This is because the messages from the periodic event sends the current state of the

attributes applicant and registrar. If the participant is declaring, the Leave timeout will be

canceled.

8.1.2 Convergence time

The convergence time of an attribute propagation depends on the number of nodes in the network

and the number of attributes on the same VLAN. Given that a participant is declaring five

attributes. If the periodic timer expires just before a declaration of a new attribute arrives, the

declaration is delayed a time based on the JoinTime and number of attributes already declared

in the network. This may happen through out the network, increasing the convergence time. On

the other hand, it may propagate through the network without a delay.

If the attribute is already registered by another client on the same bridge, the attribute

propagation do not need to forwarded longer than the first bridge. The MMRP component of

the bridge will register the attribute at the incoming port. Therefore the convergence is complete

in the time it takes to send the MRPDU to the bridge and process it on the bridge.

92

8.2. BANDWIDTH SAVINGS OF MAPPING FROM LAYER 3 TO LAYER 2 MULTICAST

8.1.3 MMRP bandwidth demand

Given the MAC frame format in table 2.4 and the MRPDU format in figure 4.1, one MRPDU

encapsulated in an EthernetFrame is 72 bytes. This is due to the minimum payload of a MAC

Frame is 46 bytes. With the default timer value set, a maximum bandwidth usage of 46×10 = 460

bytes per second is used. Pure MRPDU rate is 112 bits × 10 = 140 bytes per second. With a

JoinTime of 0.1, the MRPDU rate is 280 bytes per second. Relative to the links capacity in

Ethernet, this is small data rate.

8.2 Bandwidth savings of mapping from layer 3 to layer 2

multicast

A IP multicast packet is mapped to a group MAC address. The default fowarding of MAC frames

with a group MAC address is on all ports except the incoming port. With several end stations

on a LAN subscribing to different multicast streams, each end stations receives all the different

streams that are subscribed to. If the Ethernet Bridges knows where to send the Ethernet

group addresses, this will be avoided. In addition, with the use of Multiple MAC Registration

Protocol, an end station that sends content on the network may use the principle of source

pruning discribed in chapter 4 Multiple MAC Registration Protocol.

8.3 Mapping of addresses from IP multicast to MAC mul-

ticast

As described in chapter 2 Technology background, there are more Multicast addresses available

in the IP version 4 address range than the MAC address range. If the network manager also

controls the content distributed on the network, one may avoid using two IP version 4 multicast

addresses that maps to the same MAC multicast address. However, if the network manager do

not control the content, it might be desirable to add a function which controls the mapping and

avoids equal mapping.

93

CHAPTER 8. DISCUSSION

94

Chapter 9

Conclusion

This thesis has presented the work of implementing the MMRP protocol in the J-SIM environ-

ment. In addition, a theoretical study and a simulation is presented to cover more aspects of

multicast in Ethernet. This chapter presents the conclusion from the simulation, and a section

about future work related to the problem.

The abstraction of MMRP and bridge functionality was implemented, and the tests of chapter

6 and experiments of chapter 7 verified the implementation. The results were in accordance with

the expectations.

The IP version 4 multicast address range exceeds the size of MAC multicast address range.

Therefor, it is desirable to either control the IP multicast addresses used, or control the mapping

process.

Ethernet Frames that encapsulate IP multicast packets have group address in the destination

field. The frames with group address in the destination field are broadcasted as long as no

filtering service is enabled in the bridge. By enabling extended filtering services, and map the

multicast users to the Ethernet topology, it could save bandwidth resources.

The performance of the Multiple MAC Registration protocol constraints the number of at-

tributes per VLAN. However, timers may be altered to optimize for a given amount of attributes.

MMRP uses small amounts of data rate relative to the link capacity it is design for.

9.1 Future work

This thesis has focused on the implementation of MMRP and some basic bridge functionality.

Due to the time limitation of the thesis, the complete system for the problem could not be

completed. I.e. the IGMP snooping functionality is missing. Further, more scenarios should be

tested and the MMRP timers should studied to give some good arguments for optimization in

different environments. The rest of this section presents more aspects that could be study in a

95

CHAPTER 9. CONCLUSION

future work.

A study of the possibilities with MMRP in a VLAN environment should be enlightened.

Adding VLAN to the current implementation requires changes in the MMRP, MACRelay, RSTP

and EthertMAC components. This could limit the number of attributes per participant, but at

the same time increase the bandwidth demand.

The RSTP implementation has a bug regarding restoration time on link break. The MMRP

implementation supports handling of link break, but due to the RSTP bug, a MMRP restoration

test is not completed.

Based on the data collection of a IP Televison network in chapter 5 Implementation, it would

be useful to see the performance of MMRP in such an environment. There are several aspects

with both dependability and performance that could be studied.

The study of IGMP snooping together with MMRP multicast utilization in a Ethernet net-

work involves aspects like placement of the snooping node, differences between IGMP versions

and CPU demands. In addition, the same aspects could be studied in a IP version 6 and MLD

context.

96

Bibliography

[1] IANA Considerations and IETF Protocol Usage for IEEE 802 Parameters, RFC5342.

http://tools.ietf.org/html/rfc5342.

[2] IEEE Std 802.3-2008 part 3: CSMA/CD access method and physical layer.

http://ieeexplore.ieee.org/servlet/opac?punumber=4726157.

[3] Internet Group Management Protocol, version 1, RFC1112.

http://tools.ietf.org/html/rfc1112.

[4] Internet Group Management Protocol, version 2, RFC2236.

http://tools.ietf.org/html/rfc2236.

[5] Internet Group Management Protocol version 3, RFC3376.

http://tools.ietf.org/html/rfc3376.

[6] Internet Protocol, RFC791. http://tools.ietf.org/html/rfc791.

[7] Internet Protocol version 6, RFC2460. http://tools.ietf.org/html/rfc2460.

[8] Multicast Listener Discovery, version 2, RFC3810. http://tools.ietf.org/html/rfc3810, last

visited 12.12.2009.

[9] IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture.

Amendment 2: Registration of Object Identifiers. IEEE Std 802-2001 (Revision of IEEE

Std 802-1990), page 0 1, 2002.

[10] IEEE Standard for Information Technology–Telecommunications and Information Exchange

Between Systems–Local and Metropolitan Area Networks–Specific Requirements Part 3:

Carrier Sense Multiple Access With Collision Detection (CSMA/CD) Access Method and

Physical Layer Specifications - Section One. IEEE Std 802.3-2008 (Revision of IEEE Std

802.3-2005), pages c1 –597, 26 2008.

[11] IEEE Standard for Local and Metropolitan Area Networks Virtual Bridged Local Area

Networks Corrigendum 1: Corrections to the Multiple Register Protocol. IEEE Std 802.1Q-

2005/Cor1-2008 (Corrigendum to IEEE Std 802.1Q-2005), pages C1 –6, 15 2008.

97

http://tools.ietf.org/html/rfc5342
http://ieeexplore.ieee.org/servlet/opac?punumber=4726157
http://tools.ietf.org/html/rfc1112
http://tools.ietf.org/html/rfc2236
http://tools.ietf.org/html/rfc3376
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc3810

BIBLIOGRAPHY

[12] IP and Ethernet solve mobile backhaul bottlenecks. Internet, 10 2008.

http://www.ericsson.com/solutions/news/2008/q4/081029-mobile-backhaul.shtml.

[13] Connection-Oriented Ethernet vs. MPLS-TE: An Ethernet Transport Layer TCO Compar-

ison. Internet, 3 2009. http://www.nspllc.com/.

[14] Mobildata per 3. kvartal 2009, 12 2009. http://www.npt.no/ . Last visited 26.04.2010.

[15] TCL/Java. http://tcljava.sourceforge.net/docs/website/index.html, 02 2010. Last visited:

20.02.2010.

[16] TV-seing 2009. http://www.tns-gallup.no/arch/_img/9090529.pdf Last visited 07.03.2010, 2010.

[17] Andy Sutton. Considering the evolution to packet backhaul over microwave. Presentation

at conference, 9 2008.

[18] Carmichael, L.S. and Ghani, N. and Rajan, P.K. and O’Donoghue, K. and Hott, R. Char-

acterization and comparison of modern layer-2 Ethernet survivability protocols. pages 124

– 129, March 2005.

[19] Cha, Meeyoung and Rodriguez, Pablo and Crowcroft, Jon and Moon, Sue and Amatriain,

Xavier. Watching television over an IP network. In IMC ’08: Proceedings of the 8th ACM

SIGCOMM conference on Internet measurement, pages 71–84, New York, NY, USA, 2008.

ACM.

[20] Hung-ying Tyan. Design, realization and evaluation of a component-based compositional

software architecture for network simulation. PhD thesis, The Ohio State University, 2002.

[21] D. Hunt and N. Shah. IP/MPLS in the mobile radio acces network (RAN). Presentation

at conference, 2009.

[22] IEEE. 802.1DTM IEEE Standard for Local and metropolitan area networks Media Access

Control (MAC) Bridge. Electronic, http://ieeexplore.ieee.com/, 2004.

[23] IEEE. IEEE Standard for Local and metropolitan area networks Virtual Bridged Local

Area Networks. Electronic, http://ieeexplore.ieee.com/, 2005.

[24] IEEE. IEEE Standard for Local and metropolitan area networks-Virtual Bridged

Local Area Networks Amendment 7: Multiple Registration Protocol. Electronic,

http://ieeexplore.ieee.com/, 2007.

[25] Internet Assignet Numbers Authority. Ethernet numbers.

http://www.iana.org/assignments/ethernet-numbers, 03 2010. Last visited 02.05.2010.

[26] J-SIM homesite. Tutorial. http://j-sim.cs.uiuc.edu/, 09 2009. Last visited 04.09.2009.

98

http://www.ericsson.com/solutions/news/2008/q4/081029-mobile-backhaul.shtml
http://www.npt.no/
http://tcljava.sourceforge.net/docs/website/index.html
http://www.tns-gallup.no/arch/_img/9090529.pdf
http://ieeexplore.ieee.com/
http://ieeexplore.ieee.com/
http://ieeexplore.ieee.com/
http://www.iana.org/assignments/ethernet-numbers
http://j-sim.cs.uiuc.edu/

BIBLIOGRAPHY

[27] John D. Day, Hubert Zimmerman. The OSI Reference Model. Proceedings of the IEEE,

71(12):1334–1340, 12 1983.

[28] Mehta, S. and Ullah, Niamat and Kabir, Md. Humaun and Sultana, Mst. Najnin and Kwak,

Kyung Sup. A Case Study of Networks Simulation Tools for Wireless Networks. In AMS ’09:

Proceedings of the 2009 Third Asia International Conference on Modelling & Simulation,

pages 661–666, Washington, DC, USA, 2009. IEEE Computer Society.

[29] S. Norway. Mediebruk til ulike tider. In Norsk mediebarometer 2008, page 70. Statistic

Norway, Statistic Norway, 2009. http://www.ssb.no/emner/07/02/30/medie/sa106/sa_106.pdf Last

visited 07.03.2010.

[30] Peder J. Emstad and Poul E. Heegaard and Bjarne E. Helvik and Laurent Paquereau.

Dependability and performance in information and communication systems - fundamentals.

Tapir Akademisk Forlag, 2008.

[31] Rajesh Chundury. Mobile broadband backhaul: Addressing the challenge, 8 2008.

http://ericsson.com/ericsson/corpinfo/publications/review/2008_03/files/Backhaul.pdf.

[32] Sfeir, E. and Pasqualini, S. and Schwabe, T. and Iselt, A. Performance evaluation of ethernet

resilience mechanisms. pages 356 – 360, may 2005.

[33] Stanislav Milanovic. Case study for unified backhaul performance optimization. Journal of

Computers, 2(10):38–44, 12 2007.

[34] Statistics Norway. Official site. http://www.ssb.no/, 03 2010. Last visited 08.03.2010.

[35] TNS Gallup Norway. Official site. http://www.tns-gallup.no/, 03 2010. Last visited 08.03.2009.

[36] Toy Ove Nilssen. Vil mobilt bredb̊and ta over for alt?, 1 2009. Norsk UMTS forum,

http://www.umts.no/.

99

http://www.ssb.no/emner/07/02/30/medie/sa106/sa_106.pdf
http://ericsson.com/ericsson/corpinfo/publications/review/2008_03/files/Backhaul.pdf
http://www.ssb.no/
http://www.tns-gallup.no/
http://www.umts.no/

BIBLIOGRAPHY

100

Appendix A

TCL methods

This appendix shows the method library developed for easy creation of new network topologies.

There are three parameters needed to create a new topology:

Delay The delay on each link in seconds.

Name Name of the scenario.

Topology string A String representing the topology. Each node in the network is divided by

an empty space. For each node, it must be character first then the node number of each

neighbor separated by “:”. The character can be b for bridge, c for an end station and

h for a hub. An example of a four node topology with a bridge connected to three end

stations is b:1:2:3 c:0 c:0 c:0.

When the three variables are set, call create $runName $topology $delay to create the sce-

nario.

1 # ##################### #

2 # #### FUNCTIONS #### #

3 # ##################### #

4

5 proc createNode { number interfaces } {

6 set interfaces [expr $interfaces - 1];

7 set node$interfaces [mkdir drcl.comp.Component node$number];

8 cd node$number;

9 set bridgeAddress "00:11:22:33:$number:00";

10

11 mkdir [java::new drcl.ethernet.MACRelayEntity] macRelayEntity;

12 set mmrp [mkdir [java::new drcl.ethernet.mmrp.MMRP $bridgeAddress] mmrp];

13 set rstp [mkdir [java::new drcl.ethernet.rstp.Rstp [expr 0x$number]

$interfaces] rstp];

101

APPENDIX A. TCL METHODS

14 set llc [mkdir [java::new {drcl.ethernet.LLC int} $interfaces] llc];

15 for {set j 0} {$j < $interfaces} {incr j} {

16 mkdir [java::new {drcl.ethernet.EthernetMAC int} $j] if$j;

17 }

18 [! macRelayEntity] setInterfacePorts $interfaces;

19 [! macRelayEntity] setBridgeAddress $bridgeAddress;

20 [! macRelayEntity] setRstp [! rstp];

21 cd ..

22 exposePorts $number $interfaces

23 connectNodeComponents $number $interfaces

24 }

25

26 proc exposePorts { number interfaces } {

27 for {set j 0} {$j < $interfaces} {incr j} {

28 ! node$number exposePort [! node$number/if$j/down@] [java::field

[! node$number] PortGroup_DEFAULT_GROUP] $j

29 }

30

31 }

32

33 proc connectNodeComponents { number interfaces } {

34 for {set j 0} {$j < $interfaces} {incr j} {

35 connect -c node$number/if$j/.mac@up -and node$number/

macRelayEntity/$j@down

36 connect -c node$number/if$j/.llc@up -and node$number/llc/$j@down

37 }

38 connect -c node$number/rstp/down@ -and node$number/llc/.rstp@up

39 connect -c node$number/mmrp/down@ -and node$number/llc/.mmrp@up

40 connect -c node$number/mmrp/.portStateQuery@service -and node$number/

macRelayEntity/.portStateQuery@service

41 connect -c node$number/mmrp/.filteringDatabaseConfig@service -and

node$number/macRelayEntity/.filteringDatabaseConfig@service

42 connect -c node$number/mmrp/.portRoleChangeEvent@service -and node$number/

rstp/.portRoleChangeEvent@service

43 connect -c node$number/mmrp/.portStateChangeEvent@service -and node$number

/rstp/.portStateChangeEvent@service

44 }

45

46 proc createLink { number1 if1 number2 if2 delay } {

47 set hexNumber1 [format %x $number1];

48 set hexNumber2 [format %x $number2];

102

49 if [expr $number1 < 16] {

50 set number1 "0$hexNumber1";

51 } else {

52 set number1 "$hexNumber1";

53 }

54 if [expr $number2 < 16] {

55 set number2 "0$hexNumber2";

56 } else {

57 set number2 "$hexNumber2";

58 }

59 set link$number1$number2 [mkdir drcl.inet.Link link$number1$number2]

60 [! link$number1$number2] setPropDelay $delay; # 300 ms

61 [! link$number1$number2] attach [! node$number1/$if1@] [! node$number2/

$if2@]

62 }

63

64 proc createLinks { topology delay } {

65 for {set i 0} {$i < [llength $topology] } {incr i} {

66 for {set j 0} {$j < [llength [lindex $topology $i]]} {set j [expr

$j+3]} {

67 if {[expr $i < [lindex [lindex $topology $i] [expr $j+1]]]}

{

68 createLink $i [lindex [lindex $topology $i] $j] [

lindex [lindex $topology $i] [expr $j+1]] [

lindex [lindex $topology $i] [expr $j+2]] $delay

;

69 }

70 }

71 }

72 }

73

74 proc createLinksFromString { topology delay } {

75 set tmpList [split $topology " "]

76 set tmpIfCounter [list]

77 for {set i 0} {$i < [llength $topology] } {incr i} {

78 lappend tmpIfCounter 0

79 }

80 set tmpTopology [list]

81 set tmpNodeTopology [list]

82 set tmpCounter 0

83

103

APPENDIX A. TCL METHODS

84 for {set i 0} {$i < [llength $topology] } {incr i} {

85 set tmpNeighborsList [list]

86 set tmpNeighborsShortList [split [lindex $topology $i] ":"]

87 for {set j 1} {$j < [llength $tmpNeighborsShortList] } {incr j} {

88 set neighbor [lindex $tmpNeighborsShortList $j]

89 if { [expr $neighbor > $i] } {

90 lappend tmpNeighborsList [list [lindex $tmpIfCounter

$i] $neighbor [lindex $tmpIfCounter $neighbor]]

91 set tmpIfCounter [lreplace $tmpIfCounter $i $i [expr

[lindex $tmpIfCounter $i]+1]]

92 set tmpIfCounter [lreplace $tmpIfCounter $neighbor

$neighbor [expr [lindex $tmpIfCounter $neighbor

]+1]]

93 }

94 }

95 for {set j 0} {$j < [llength $tmpNeighborsList] } {incr j} {

96 set tmpNodeTopology [concat $tmpNodeTopology [lindex

$tmpNeighborsList $j]]

97 }

98 lappend tmpTopology $tmpNodeTopology

99 set tmpNodeTopology [list]

100 }

101

102 createLinks $tmpTopology $delay

103 }

104

105 proc createSender { number destination } { # Creates a packet sender, has nothing

to do with MMRP. Sends packet to a given MAC address

106 mkdir [java::new {drcl.inet.application.PacketSender String String} "00

:11:22:33:$number:00" "00:11:22:33:$destination:00"] node$number/

source

107 connect -c node$number/source/down@ -and node$number/macRelayEntity/down@

108 }

109

110 proc createMmrpClient { nodeNumber } {

111 [! node$nodeNumber/mmrp] setSimpleApplicant true; # OOOPS! Avoid calling

this when one want the registrar state machine to be included.

112

113 mkdir [java::new {drcl.inet.application.MulticastClient String} "00

:11:22:33:$nodeNumber:00"] node$nodeNumber/multicastClient;

104

114 connect -c node$nodeNumber/multicastClient/.mmrp@service -and

node$nodeNumber/mmrp/.client@service

115 connect -c node$nodeNumber/multicastClient/down@ -and node$nodeNumber/llc/

.ip@up

116

117 mkdir [java::new {drcl.inet.application.MulticastServer String String} "00

:11:22:33:$nodeNumber:00" "11:11:11:33:11:00"] node$nodeNumber/

multicastServer

118 connect -c node$nodeNumber/multicastServer/down@ -and node$nodeNumber/llc/

.ip@up

119 }

120

121 proc createMmrpServer { nodeNumber } {

122 mkdir [java::new {drcl.inet.application.MulticastServer String String} "00

:11:22:33:$nodeNumber:00" "11:11:11:33:$destination:00"]

node$nodeNumber/multicastServer

123 connect -c node$nodeNumber/multicastServer/down@ -and node$nodeNumber/if0/

up@

124 }

125

126 proc createHub { number interfaces } {

127 set interfaces [expr $interfaces - 1];

128 set node$number [mkdir drcl.comp.Component node$number];

129 cd node$number;

130 set hub [mkdir [java::new drcl.ethernet.Hub $interfaces] hub];

131 cd ..

132 for {set j 0} {$j < $interfaces} {incr j} {

133 ! node$number exposePort [! node$number/hub/$j@down] [java::field

[! node$number] PortGroup_DEFAULT_GROUP] $j

134 }

135 }

136

137 proc createScenario { topology delay } {

138 set prefixBridge "b"

139 set prefixHub "h"

140 set prefixClient "c"

141 set tmpNodes [split $topology " "]

142 for {set i 0} {$i < [llength $tmpNodes] } {incr i} {

143 set number "";

144 set hexNumber [format %x $i];

145 if [expr $i < 16] {

105

APPENDIX A. TCL METHODS

146 set number "0$hexNumber";

147 } else {

148 set number "$hexNumber";

149 }

150 set tmpNeighbors [split [lindex $tmpNodes $i] ":"]

151 if [string equal [lindex $tmpNeighbors 0] $prefixHub] {

152 createHub $number [llength $tmpNeighbors]

153 } elseif [string equal [lindex $tmpNeighbors 0] $prefixClient] {

154 createNode $number [llength $tmpNeighbors]

155 createMmrpClient $number

156 } else {

157 createNode $number [llength $tmpNeighbors]

158 }

159 }

160

161 createLinksFromString $topology $delay

162 }

163

164 proc startRSTP { nodes runName topology } {

165 set prefixBridge "b"

166 set prefixHub "h"

167 set prefixClient "c"

168 cd /$runName

169

170

171

172 set k 1;

173 set tmpNodes [split $topology " "]

174 for {set j 0} {$j < [llength $tmpNodes] } {incr j} {

175 set number "";

176 set hexNumber [format %x $j];

177 if [expr $j < 16] {

178 set number "0$hexNumber";

179 } else {

180 set number "$hexNumber";

181 }

182 set tmpNeighbors [split [lindex $tmpNodes $j] ":"]

183 if [string equal [lindex $tmpNeighbors 0] $prefixHub] {

184 # puts "\tHubs do not contain RSTP, do nothing..";

185 } else {

186 # puts "Setting BEGIN"

106

187 ! node$number/rstp setDisplayRstBpdu false;

188 ! node$number/rstp setDebugEnabled false

189 ! node$number/rstp setDebug false

190 [! node$number/rstp getPerBridgeVariables] setBEGIN true;

191 ! node$number/rstp invokeTaskScheduler;

192

193 # puts "Clearing BEGIN"

194 [! node$number/rstp getPerBridgeVariables] setBEGIN false;

195 ! node$number/rstp invokeTaskScheduler;

196

197 # puts "\tStarting Timers"

198 ! node$number/rstp startTimersWithDelay $k;

199 set k [expr $k+0.1];

200 }

201 }

202 }

203

204

205 proc create { runName topology delay } {

206 # puts "Creating a simulation topology..."

207 cd /

208 rm $runName

209 cd [mkdir drcl.comp.Component $runName]

210

211 createScenario $topology $delay

212 # puts "DONE creating the simulation topology!"

213 }

107

APPENDIX A. TCL METHODS

108

Appendix B

Experiment TCL script

This appendix shows one of the simulation experiments.

1 source "D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/script/mmrp/

functions.tcl"

2

3 set nodes 8

4 set delay 0.0000000000005

5 set runName "experiment"

6 set topology "b:1:2 b:0:3:4:5:6 c:0 c:1 c:1 c:1 c:1"

7

8 cd /

9 rm $runName

10

11 create $runName $topology $delay

12

13 # Connect plotter and traffic monitor for graphs

14 set plot [mkdir drcl.comp.tool.Plotter .plot]

15 set tm_3 [mkdir drcl.net.tool.TrafficMonitor .tm3]

16 set tm_4 [mkdir drcl.net.tool.TrafficMonitor .tm4]

17 set tm_5 [mkdir drcl.net.tool.TrafficMonitor .tm5]

18 set tm_6 [mkdir drcl.net.tool.TrafficMonitor .tm6]

19

20 connect -c $tm_3/in@ -and node03/llc/.ip@up

21 connect -c $tm_4/in@ -and node04/llc/.ip@up

22 connect -c $tm_5/in@ -and node05/llc/.ip@up

23 connect -c $tm_6/in@ -and node06/llc/.ip@up

24

25 connect -c $tm_3/bytecount@ -and $plot/0@0

109

APPENDIX B. EXPERIMENT TCL SCRIPT

26 connect -c $tm_4/bytecount@ -and $plot/0@1

27 connect -c $tm_5/bytecount@ -and $plot/0@2

28 connect -c $tm_6/bytecount@ -and $plot/0@3

29

30 connect -c $tm_3/bytecount@ -and $plot/0@4

31 connect -c $tm_4/bytecount@ -and $plot/1@4

32 connect -c $tm_5/bytecount@ -and $plot/2@4

33 connect -c $tm_6/bytecount@ -and $plot/3@4

34

35 setflag garbagedisplay false /$runName/node*

36 setflag garbagedisplay true /$runName/node00/mmrp

37

38 ! .tm? configure 0.5 0.05; # window size, update interval

39

40 # ###################

41 # # RUN SIMULATION ##

42 # ###################

43 set sim [attach_simulator .]

44 $sim stop

45

46 startRSTP $nodes $runName $topology

47 script {cat node*/rstp} -at 9.9999 -on $sim

48

49 puts "Creating registrations from each client.."

50 script {[! /test/node03/multicastClient] registerMacAddress "ff:ff:11:03:11:ff"} -at 10

.3 -on $sim

51 script {[! /test/node04/multicastClient] registerMacAddress "ff:ff:11:04:11:ff"} -at 10

.4 -on $sim

52 script {[! /test/node05/multicastClient] registerMacAddress "ff:ff:11:05:11:ff"} -at 10

.5 -on $sim

53 script {[! /test/node06/multicastClient] registerMacAddress "ff:ff:11:06:11:ff"} -at 10

.6 -on $sim

54

55 script {[! /test/node02/multicastServer] setDestinationAddress "ff:ff:11:03:11:ff"} -at

12 -on $sim

56 script {[! /test/node02/multicastServer] setSendDelay 0.005} -at 12.1 -on $sim

57 script {[! /test/node02/multicastServer] run} -at 12.2 -on $sim

58

59 script {cat node*/mmrp} -at 20 -on $sim

60

61 End user 03 sends data to the multicast group

110

62 script {[! $server03] setDestinationAddress "ff:ff:11:11:11:ff"} -at 25.00001221 -on

$sim

63 script {[! $server03] setSendDelay 0.1} -at 25.0000402 -on $sim

64 script {[! $server03] run} -at 25.10012 -on $sim

65

66 $sim resumeTo 50;

111

APPENDIX B. EXPERIMENT TCL SCRIPT

112

Appendix C

Network designer screenshot

Figure C.1: Screenshot of the Network designer GUI

113

APPENDIX C. NETWORK DESIGNER SCREENSHOT

114

Appendix D

Javadoc for the MMRP

component

The next pages includes the Javadoc for the MMRP component.

115

Overview Package Class Use Tree Deprecated Index Help J-Sim v1.3 API

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

drcl.ethernet.mmrp
Class MMRP
java.lang.Object
 drcl.DrclObj
 drcl.comp.Component
 drcl.net.Module
 drcl.ethernet.mmrp.MMRP

All Implemented Interfaces:
ObjectCloneable, ObjectDuplicable, java.io.Serializable, java.lang.Cloneable

public class MMRPextends Module

From IEEE Std 802.1ak-2007

The Applicant for each Attribute implements states that record whether it wishes to make a new
declaration, to maintain or withdraw an existing declaration, or has no declaration to make. It also records
whether it has actively made a declaration, or has been passive, taking advantage of or simply observing
the declarations of others. It counts the New, JoinIn, and JoinEmpty messages it has sent, and JoinIn
messages sent by others, to ensure that at least two such messages have been sent since it last received a
LeaveAll or Leave message, and at least one since it last received a JoinEmpty or Empty message. This
ensures that each of the other Participant’s Registrars for the Attribute have either received (assuming no
packet loss) two Join or New messages or have reported the Attribute as registered. The Applicant state
machine (Table 10-3) uses the following states:

VO Very anxious Observer. The applicant is not declaring the attribute, and has not received a JoinIn
message since the state machine was initialized, or since last receiving a Leave or LeaveAll.
VP Very anxious Passive. The applicant is declaring the attribute, but has neither sent a Join nor received
a JoinIn since the state machine was initialized, or since last receiving a LeaveAll or Leave.
VN Very anxious New. The applicant is declaring the attribute, but has not sent a message since receiving
a MAD Join request for a new declaration.
AN Anxious New. The applicant is declaring the attribute, and has sent a single New message since
receiving the MAD Join request for the new declaration.
AA Anxious Active. The applicant is declaring the attribute, and has sent a Join message, since the last
Leave or LeaveAll, but has either not received another JoinIn or In, or has received a subsequent message
specifying an Empty registrar state.
QA Quiet Active. The applicant is declaring the attribute and has sent at least one of the required Join or
New messages since the last Leave or LeaveAll, has seen or sent the other, and has received no
subsequent messages specifying an Empty registrar state.
LA Leaving Active. The applicant has sent a Join or New message since last receipt of a Leave or
LeaveAll, but has subsequently received a MAD Leave request and has not yet sent a Leave message.
AO Anxious Observer. The applicant is not declaring the attribute, but has received a JoinIn since last
receiving a Leave or LeaveAll.
QO Quiet Observer. The applicant is not declaring the attribute, but has received two JoinIns since last

file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/overview-summary.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ObjectDuplicable.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ObjectCloneable.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/DrclObj.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/allclasses-noframe.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/index.html?drcl/ethernet/mmrp/MMRP.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MRPconstants.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/LeaveAllStateMachine.State.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/help-doc.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/index-all.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/deprecated-list.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/package-tree.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/class-use/MMRP.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/package-summary.html

receiving a Leave or LeaveAll, and at least one since last receiving a message specifying an Empty
registrar state.
AP Anxious Passive. The applicant is declaring the attribute, and has not sent a Join or a New since last
receiving a Leave or a LeaveAll but has received messages as for the Anxious Observer state.
QP Quiet Passive. The applicant is declaring the attribute, and has not sent a Join or a New since last
receiving a Leave or a LeaveAll but has received messages as for the Quiet Observer state.
LO Leaving Observer. The applicant is not declaring the attribute, and has received a Leave or LeaveAll
message.

See Also:
Serialized Form

Nested Class Summary

Nested classes/interfaces inherited from class drcl.comp.Component

Component.Locks

Field Summary

protected Port clientPort
 clientPort belonging to the service port group.

protected Port eventPortRoleChange
 eventPortRoleChange port belonging to the service port group.

protected Port eventPortStateChange
 eventPortStateChange port belonging to the service port group

protected Port filteringDatabaseConfigPort
 filteringDatabaseConfigPort belonging to the service port group

protected Port filteringDatabaseQueryPort
 filteringDatabaseQueryPort belonging to the service port group

protected Port linkBrokenPort
 linkBrokenPort belonging to the servicePortGroup.

protected
static java.lang.String PortID_CLIENT

 Port ID for the client port

protected
static java.lang.String PortID_FILTERING_DATABASE_CONFIG

 Port ID for the filteringDatabaseConfig port

protected
static java.lang.String PortID_FILTERING_DATABASE_QUERY

file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#PortID_FILTERING_DATABASE_QUERY
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#PortID_FILTERING_DATABASE_CONFIG
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#PortID_CLIENT
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#linkBrokenPort
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#filteringDatabaseQueryPort
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#filteringDatabaseConfigPort
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#eventPortStateChange
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#eventPortRoleChange
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#clientPort
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.Locks.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/serialized-form.html#drcl.ethernet.mmrp.MMRP

 Port ID for the filteringDatabaseQuery port

protected
static java.lang.String PortID_LINK_BROKEN

 Port ID for the .linkbroken port

protected
static java.lang.String PortID_PORT_STATE_CONFIG

 Port ID for the .portStateConfig port

protected
static java.lang.String PortID_PORT_STATE_QUERY

 Port ID for the .portStateQuery port

protected
static java.lang.String PortID_ROLE_CHANGE_EVENT

 Port ID for the portRoleChangeEvent port

protected
static java.lang.String PortID_STATE_CHANGE_EVENT

 Port ID for the portStateChangeEvent

protected Port portStateConfigPort
 portStateConfigPort belonging to the service port group

protected Port portStateQueryPort
 portStateQuery port belonging to the service port group

Fields inherited from class drcl.net.Module

downPort, PortGroup_DOWN, PortGroup_UP, timerPort, upPort

Fields inherited from class drcl.comp.Component

FLAG_COMPONENT_NOTIFICATION, FLAG_DEBUG_ENABLED,
FLAG_DIRECT_OUTPUT_ENABLED, FLAG_ENABLED, FLAG_ERROR_ENABLED,
FLAG_EVENT_ENABLED, FLAG_GARBAGE_DISPLAY_ENABLED,
FLAG_GARBAGE_ENABLED, FLAG_PORT_NOTIFICATION, FLAG_STARTED,
FLAG_STOPPED, FLAG_TRACE_ENABLED, FLAG_UNDEFINED_START, id, infoPort,
locks, name, parent, PortGroup_DEFAULT_GROUP, PortGroup_EVENT,
PortGroup_SERVICE, Root, Trace_DATA, Trace_SEND

Constructor Summary

MMRP(EthernetAddress bridgeEthernetAddress)
 MMRP constructor

MMRP(java.lang.String bridgeEthernetAddress)
 MMRP constructor

file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#MMRP(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/EthernetAddress.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#MMRP(drcl.ethernet.EthernetAddress)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#Trace_SEND
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#Trace_DATA
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#Root
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#PortGroup_SERVICE
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#PortGroup_EVENT
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#PortGroup_DEFAULT_GROUP
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#parent
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#name
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#locks
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#infoPort
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#id
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#FLAG_UNDEFINED_START
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#FLAG_TRACE_ENABLED
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#FLAG_STOPPED
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#FLAG_STARTED
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#FLAG_PORT_NOTIFICATION
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#FLAG_GARBAGE_ENABLED
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#FLAG_GARBAGE_DISPLAY_ENABLED
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#FLAG_EVENT_ENABLED
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#FLAG_ERROR_ENABLED
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#FLAG_ENABLED
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#FLAG_DIRECT_OUTPUT_ENABLED
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#FLAG_DEBUG_ENABLED
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#FLAG_COMPONENT_NOTIFICATION
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#upPort
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#timerPort
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#PortGroup_UP
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#PortGroup_DOWN
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#downPort
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#portStateQueryPort
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#portStateConfigPort
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#PortID_STATE_CHANGE_EVENT
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#PortID_ROLE_CHANGE_EVENT
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#PortID_PORT_STATE_QUERY
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#PortID_PORT_STATE_CONFIG
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#PortID_LINK_BROKEN

Method Summary

protected void dataArriveAtDownPort(java.lang.Object data_,
Port downPort_)
 The handler invoked when a packet arrives at a "down" port.

 void deregisterMacAddress(EthernetAddress ethernetAddress
)
 This method is called on receipt of the
DEREGISTER_MAC_ADDRESS primitive.

 void forwardPDU(MRPDU mrpdu, int sourceInterface,
int sourceVLANidentifier)
 This method is called when the MMRP-participant receives a
MAC_Join.

 void forwardPDU(MRPDU mrpdu, int sourceInterface,
int sourceVLANidentifier, boolean checkState)

 EthernetAddress getBridgeEthernetAddress()
 Get the ethernet MAC address of the bridge

 java.util.HashMap<j
ava.lang.Integer,jav
a.util.HashMap<java.
lang.Integer,Partici

pant>>

getParticipantList()
 This method returns the participantList

 java.util.HashMap<j
ava.lang.Integer,Per
iodicStateMachine>

getPeriodicStateMachineList()
 Get method for the perodicStateMachineList

 java.lang.String info()
 Returns information regarding this component.

 boolean isSimpleApplicant()
 Get the state of the applicant

 void mmrpAttributePropagation(int sourceInterface,
int sourceVLANidentifier,
EthernetAddress firstValue,
MRPconstants.MAD_PRIMTIVES MADPrimitive)
 The MMRP Attribute Propagation (MAP) function.

protected void processOther(java.lang.Object data_, Port inPort_)
 The handler invoked when a packet arrived at a port other than the "up",
"down" and timer ports.

 void registerMacAddress(EthernetAddress ethernetAddress)
 This method is called on receipt of the REGISTER_MAC_ADDRESS

file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/EthernetAddress.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#registerMacAddress(drcl.ethernet.EthernetAddress)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#processOther(java.lang.Object, drcl.comp.Port)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MRPconstants.MAD_PRIMTIVES.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/EthernetAddress.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#mmrpAttributePropagation(int, int, drcl.ethernet.EthernetAddress, drcl.ethernet.mmrp.MRPconstants.MAD_PRIMTIVES)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#isSimpleApplicant()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#info()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#getPeriodicStateMachineList()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/PeriodicStateMachine.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/PeriodicStateMachine.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#getParticipantList()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/Participant.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/Participant.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#getBridgeEthernetAddress()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/EthernetAddress.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MRPDU.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#forwardPDU(drcl.ethernet.mmrp.MRPDU, int, int, boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MRPDU.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#forwardPDU(drcl.ethernet.mmrp.MRPDU, int, int)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/EthernetAddress.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#deregisterMacAddress(drcl.ethernet.EthernetAddress)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#dataArriveAtDownPort(java.lang.Object, drcl.comp.Port)

primitive.

 void setSimpleApplicant(boolean simpleApplicant)
 Sets whether the applicant is simpleApplicant or not.

protected void timeout(java.lang.Object data_)
 The handler invoked when a timeout event occurs.

 void updateFilteringDatabase(int sourceInterface,
int sourceVLANidentifier,
EthernetAddress firstValue,
MRPconstants.MAD_PRIMTIVES MADPrimitive)
 Updating the filtering database by sending a
FilteringDatabaseConfig message out of the filteringDatabaseConfig
port.

Methods inherited from class drcl.net.Module

cancelTimeout, dataArriveAtUpPort, deliver, duplicate, process,
removeDefaultDownPort, removeDefaultUpPort, removeTimerPort,
setTimeout, setTimeoutAt

Methods inherited from class drcl.comp.Component

_resume, _start, _stop, addComponent, addComponent, addEventPort,
addEventPort, addForkPort, addPort, addPort, addPort, addPort,
addPort, addPort, addPort, addPort, addServerPort, addServerPort,
cancelFork, componentAdded, componentRemoved, connect,
containsComponent, containsComponent, containsPort, debug,
disconnectAll, disconnectAllPeers, disconnectAllPorts, drop, drop,
error, error, expose, exposeEventPorts, exposePort, exposePort,
exposePort, exposePort, exposePort, findAvailable, findAvailable,
findAvailable, finishing, fork, forkAt, getAllComponents, getAllPorts,
getAllPorts, getAllWiresInside, getAllWiresInsideOut, getAllWiresOut,
getComponent, getComponentFlag, getComponentFlag, getContract,
getContractHT, getContractHT, getDebugFlagsInBinary,
getDebugLevelNames, getForkManager, getID, getName, getParent,
getPort, getPort, getRoot, getRuntime, getTime, iduplicate,
isAncestorOf, isComponentNotificationEnabled, isContainer,
isDebugEnabled, isDebugEnabledAt, isDirectlyRelatedTo,
isDirectOutputEnabled, isEnabled, isErrorNoticeEnabled,
isEventExportEnabled, isGarbageDisplayEnabled, isGarbageEnabled,
isPortNotificationEnabled, isPortRemovable, isStarted, isStopped,
isTraceEnabled, lock, notify, notifyAll, operate, portAdded,
portRemoved, reboot, removeAll, removeAllComponents, removeAllPorts,
removeAllPorts, removeComponent, removeComponent, removePort,
removePort, removePort, reset, resume, run, sduplicate, send, sendAt,
setComponentFlag, setComponentFlag, setComponentNotificationEnabled,
setContract, setDebugEnabled, setDebugEnabled, setDebugEnabledAt,
setDebugEnabledAt, setDebugEnabledAt, setDirectOutputEnabled,
setDirectOutputEnabled, setEnabled, setErrorNoticeEnabled,

file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setErrorNoticeEnabled(boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setEnabled(boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setDirectOutputEnabled(boolean, boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setDirectOutputEnabled(boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setDebugEnabledAt(boolean, java.lang.String[])
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setDebugEnabledAt(boolean, int[])
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setDebugEnabledAt(boolean, int)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setDebugEnabled(boolean, boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setDebugEnabled(boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setContract(java.lang.Class, java.lang.String, drcl.comp.Contract)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setComponentNotificationEnabled(boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setComponentFlag(long, boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setComponentFlag(long)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#sendAt(drcl.comp.Port, java.lang.Object, double)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#send(drcl.comp.Port, java.lang.Object, double)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#sduplicate(drcl.comp.Component)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#run()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#resume()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#reset()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#removePort(java.lang.String, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#removePort(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#removePort(drcl.comp.Port)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#removeComponent(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#removeComponent(drcl.comp.Component)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#removeAllPorts(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#removeAllPorts()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#removeAllComponents()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#removeAll()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#reboot()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#portRemoved(drcl.comp.Port)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#portAdded(drcl.comp.Port)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#operate(double, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#notifyAll(java.lang.Object)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#notify(java.lang.Object)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#lock(java.lang.Object)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isTraceEnabled()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isStopped()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isStarted()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isPortRemovable(drcl.comp.Port)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isPortNotificationEnabled()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isGarbageEnabled()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isGarbageDisplayEnabled()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isEventExportEnabled()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isErrorNoticeEnabled()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isEnabled()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isDirectOutputEnabled()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isDirectlyRelatedTo(drcl.comp.Component)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isDebugEnabledAt(int)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isDebugEnabled()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isContainer()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isComponentNotificationEnabled()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#isAncestorOf(drcl.comp.Component)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#iduplicate(drcl.comp.Component)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getTime()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getRuntime()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getRoot()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getPort(java.lang.String, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getPort(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getParent()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getName()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getID()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getForkManager()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getDebugLevelNames()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getDebugFlagsInBinary()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getContractHT(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getContractHT()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getContract(drcl.comp.Port)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getComponentFlag(long)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getComponentFlag()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getComponent(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getAllWiresOut()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getAllWiresInsideOut()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getAllWiresInside()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getAllPorts(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getAllPorts()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#getAllComponents()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#forkAt(drcl.comp.Port, java.lang.Object, double)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#fork(drcl.comp.Port, java.lang.Object, double)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#finishing()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#findAvailable(java.lang.String, int)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#findAvailable(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#findAvailable()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#exposePort(drcl.comp.Port, java.lang.String, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#exposePort(drcl.comp.Port)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#exposePort(drcl.comp.Component, java.lang.String, java.lang.String, java.lang.String, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#exposePort(drcl.comp.Component, java.lang.String, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#exposePort(drcl.comp.Component, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#exposeEventPorts(drcl.comp.Component)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#expose(drcl.comp.Component)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#error(java.lang.String, java.lang.Object)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#error(java.lang.Object, java.lang.String, drcl.comp.Port, java.lang.Object)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#drop(java.lang.Object, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#drop(java.lang.Object)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#disconnectAllPorts(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#disconnectAllPeers()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#disconnectAll()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#debug(java.lang.Object)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#containsPort(drcl.comp.Port)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#containsComponent(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#containsComponent(drcl.comp.Component)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#connect(drcl.comp.Component, boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#componentRemoved(drcl.comp.Component)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#componentAdded(drcl.comp.Component)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#cancelFork(drcl.comp.ACATimer)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#addServerPort(java.lang.String, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#addServerPort(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#addPort(java.lang.String, java.lang.String, boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#addPort(java.lang.String, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#addPort(java.lang.String, boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#addPort(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#addPort(drcl.comp.Port, java.lang.String, java.lang.String, boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#addPort(drcl.comp.Port, java.lang.String, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#addPort(drcl.comp.Port, java.lang.String, boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#addPort(drcl.comp.Port, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#addForkPort(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#addEventPort(java.lang.String, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#addEventPort(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#addComponent(drcl.comp.Component, boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#addComponent(drcl.comp.Component)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#_stop()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#_start()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#_resume()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#setTimeoutAt(java.lang.Object, double)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#setTimeout(java.lang.Object, double)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#removeTimerPort()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#removeDefaultUpPort()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#removeDefaultDownPort()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#process(java.lang.Object, drcl.comp.Port)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#duplicate(java.lang.Object)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#deliver(java.lang.Object, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#dataArriveAtUpPort(java.lang.Object, drcl.comp.Port)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#cancelTimeout(drcl.comp.ACATimer)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MRPconstants.MAD_PRIMTIVES.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/EthernetAddress.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#updateFilteringDatabase(int, int, drcl.ethernet.EthernetAddress, drcl.ethernet.mmrp.MRPconstants.MAD_PRIMTIVES)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#timeout(java.lang.Object)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html#setSimpleApplicant(boolean)

setErrorNoticeEnabled, setEventExportEnabled, setEventExportEnabled,
setExecutionBoundary, setGarbageDisplayEnabled,
setGarbageDisplayEnabled, setGarbageEnabled, setGarbageEnabled, setID,
setID, setName, setPort, setPort, setPortNotificationEnabled,
setPortRemovable, setRuntime, setTraceEnabled, setTraceEnabled,
sleepFor, sleepUntil, stop, toString, unexpose, unlock,
useLocalForkManager, useLocalForkManager, wait, yield

Methods inherited from class drcl.DrclObj

clone

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

Field Detail

PortID_PORT_STATE_QUERY

protected static final java.lang.String PortID_PORT_STATE_QUERY

Port ID for the .portStateQuery port

See Also:
Constant Field Values

PortID_PORT_STATE_CONFIG

protected static final java.lang.String PortID_PORT_STATE_CONFIG

Port ID for the .portStateConfig port

See Also:
Constant Field Values

PortID_FILTERING_DATABASE_QUERY

protected static final java.lang.String PortID_FILTERING_DATABASE_QUERY

Port ID for the filteringDatabaseQuery port

See Also:
Constant Field Values

file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/constant-values.html#drcl.ethernet.mmrp.MMRP.PortID_FILTERING_DATABASE_QUERY
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/constant-values.html#drcl.ethernet.mmrp.MMRP.PortID_PORT_STATE_CONFIG
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/constant-values.html#drcl.ethernet.mmrp.MMRP.PortID_PORT_STATE_QUERY
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/DrclObj.html#clone()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/DrclObj.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#yield()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#wait(java.lang.Object)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#useLocalForkManager(boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#useLocalForkManager()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#unlock(java.lang.Object)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#unexpose(drcl.comp.Component)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#toString()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#stop()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#sleepUntil(double)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#sleepFor(double)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setTraceEnabled(boolean, boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setTraceEnabled(boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setRuntime(drcl.comp.ACARuntime)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setPortRemovable(drcl.comp.Port, boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setPortNotificationEnabled(boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setPort(drcl.comp.Port, java.lang.String, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setPort(drcl.comp.Port, java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setName(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setID(java.lang.String)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setID()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setGarbageEnabled(boolean, boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setGarbageEnabled(boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setGarbageDisplayEnabled(boolean, boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setGarbageDisplayEnabled(boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setExecutionBoundary(boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setEventExportEnabled(boolean, boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setEventExportEnabled(boolean)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#setErrorNoticeEnabled(boolean, boolean)

PortID_FILTERING_DATABASE_CONFIG

protected static final java.lang.String PortID_FILTERING_DATABASE_CONFIG

Port ID for the filteringDatabaseConfig port

See Also:
Constant Field Values

PortID_LINK_BROKEN

protected static final java.lang.String PortID_LINK_BROKEN

Port ID for the .linkbroken port

See Also:
Constant Field Values

PortID_CLIENT

protected static final java.lang.String PortID_CLIENT

Port ID for the client port

See Also:
Constant Field Values

PortID_ROLE_CHANGE_EVENT

protected static final java.lang.String PortID_ROLE_CHANGE_EVENT

Port ID for the portRoleChangeEvent port

See Also:
Constant Field Values

PortID_STATE_CHANGE_EVENT

protected static final java.lang.String PortID_STATE_CHANGE_EVENT

Port ID for the portStateChangeEvent

See Also:
Constant Field Values

file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/constant-values.html#drcl.ethernet.mmrp.MMRP.PortID_STATE_CHANGE_EVENT
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/constant-values.html#drcl.ethernet.mmrp.MMRP.PortID_ROLE_CHANGE_EVENT
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/constant-values.html#drcl.ethernet.mmrp.MMRP.PortID_CLIENT
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/constant-values.html#drcl.ethernet.mmrp.MMRP.PortID_LINK_BROKEN
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/constant-values.html#drcl.ethernet.mmrp.MMRP.PortID_FILTERING_DATABASE_CONFIG

portStateQueryPort

protected Port portStateQueryPort

portStateQuery port belonging to the service port group

portStateConfigPort

protected Port portStateConfigPort

portStateConfigPort belonging to the service port group

filteringDatabaseQueryPort

protected Port filteringDatabaseQueryPort

filteringDatabaseQueryPort belonging to the service port group

filteringDatabaseConfigPort

protected Port filteringDatabaseConfigPort

filteringDatabaseConfigPort belonging to the service port group

linkBrokenPort

protected Port linkBrokenPort

linkBrokenPort belonging to the servicePortGroup. DEPRECATED.

clientPort

protected Port clientPort

clientPort belonging to the service port group. DEPRECATED.

eventPortRoleChange

protected Port eventPortRoleChange

eventPortRoleChange port belonging to the service port group.

file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html

eventPortStateChange

protected Port eventPortStateChange

eventPortStateChange port belonging to the service port group

Constructor Detail

MMRP

public MMRP(EthernetAddressbridgeEthernetAddress)

MMRP constructor

Parameters:
bridgeEthernetAddress - Setting the bridge ethernet MAC address

MMRP

public MMRP(java.lang.StringbridgeEthernetAddress)

MMRP constructor

Parameters:
bridgeEthernetAddress - Setting the bridge ethernet MAC address

Method Detail

dataArriveAtDownPort

protected void dataArriveAtDownPort(java.lang.Objectdata_,
 PortdownPort_)

Description copied from class: Module
The handler invoked when a packet arrives at a "down" port. Subclasses should override it to
handle such an event.

Overrides:
dataArriveAtDownPort in class Module

timeout

protected void timeout(java.lang.Objectdata_)

Description copied from class: Module
The handler invoked when a timeout event occurs. Subclasses should override it to handle
such an event.

file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#timeout(java.lang.Object)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#dataArriveAtDownPort(java.lang.Object, drcl.comp.Port)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#dataArriveAtDownPort(java.lang.Object, drcl.comp.Port)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/EthernetAddress.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html

Overrides:
timeout in class Module

See Also:
Module.setTimeout(Object, double),
Module.setTimeoutAt(Object, double)

updateFilteringDatabase

public void updateFilteringDatabase(intsourceInterface,
 intsourceVLANidentifier,
 EthernetAddressfirstValue,
 MRPconstants.MAD_PRIMTIVESMADPrimitive)

Updating the filtering database by sending a FilteringDatabaseConfig message out
of the filteringDatabaseConfig port. Checking wheter the response is ok or not. Error message
if not ok.

Parameters:
sourceInterface -
sourceVLANidentifier -
firstValue -
MADPrimitive -

mmrpAttributePropagation

public void mmrpAttributePropagation(intsourceInterface,
 intsourceVLANidentifier,
 EthernetAddressfirstValue,
 MRPconstants.MAD_PRIMTIVESMADPrimitive)

The MMRP Attribute Propagation (MAP) function. Responsible for sender the MAD
primitives between participants in the same MAP context in the bridge.

Parameters:
sourceInterface -
sourceVLANidentifier -
firstValue -
MADPrimitive -

registerMacAddress

public void registerMacAddress(EthernetAddressethernetAddress)

This method is called on receipt of the REGISTER_MAC_ADDRESS primitive. Only for
hosts which wants to join a group.

Parameters:
ethernetAddress -

file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/EthernetAddress.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MRPconstants.MAD_PRIMTIVES.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/EthernetAddress.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MRPconstants.MAD_PRIMTIVES.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/EthernetAddress.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#setTimeoutAt(java.lang.Object, double)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#setTimeout(java.lang.Object, double)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#timeout(java.lang.Object)

deregisterMacAddress

public void deregisterMacAddress(EthernetAddressethernetAddress)

This method is called on receipt of the DEREGISTER_MAC_ADDRESS primitive. Only for
hosts which wants to join a group.

Parameters:
ethernetAddress -

forwardPDU

public void forwardPDU(MRPDUmrpdu,
 intsourceInterface,
 intsourceVLANidentifier)

This method is called when the MMRP-participant receives a MAC_Join. indcation or
MAC_Leave.indication.

Parameters:
mrpdu - The packet to send. Of type MRPDU
sourceInterface - The sourceInterface.
sourceVLANidentifier - The source VLAN.

forwardPDU

public void forwardPDU(MRPDUmrpdu,
 intsourceInterface,
 intsourceVLANidentifier,
 booleancheckState)

Parameters:
mrpdu - The packet to send. Of type MRPDU
sourceInterface - The sourceInterface.
sourceVLANidentifier - The source VLAN.
checkState - true if it is going to check the State in the topology (e.g. RSTP),
false if else.

info

public java.lang.String info()

Description copied from class: Component
Returns information regarding this component. Subclasses should override this method to
provide useful information at run time.

Overrides:
info in class Component

file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#info()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Component.html#info()
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MRPDU.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MRPDU.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/EthernetAddress.html

processOther

protected void processOther(java.lang.Objectdata_,
 PortinPort_)

Description copied from class: Module
The handler invoked when a packet arrived at a port other than the "up", "down" and timer
ports.

Overrides:
processOther in class Module

getParticipantList

public
java.util.HashMap<java.lang.Integer,java.util.HashMap<java.lang.Integer,Participant>>
getParticipantList()

This method returns the participantList

Returns:

getPeriodicStateMachineList

public java.util.HashMap<java.lang.Integer,PeriodicStateMachine>
getPeriodicStateMachineList()

Get method for the perodicStateMachineList

Returns:
HashMap<Integer, PeriodicStateMachine> The list.

setSimpleApplicant

public void setSimpleApplicant(booleansimpleApplicant)

Sets whether the applicant is simpleApplicant or not.

Parameters:
simpleApplicant -

isSimpleApplicant

public boolean isSimpleApplicant()

Get the state of the applicant

Returns:
true if the applicant is of simpleApplicant type, or false else.

file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/PeriodicStateMachine.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/Participant.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#processOther(java.lang.Object, drcl.comp.Port)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/net/Module.html#processOther(java.lang.Object, drcl.comp.Port)
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/comp/Port.html

getBridgeEthernetAddress

public EthernetAddress getBridgeEthernetAddress()

Get the ethernet MAC address of the bridge

Returns:
EthernetAddress of the bridge

Overview Package Class Use Tree Deprecated Index Help J-Sim v1.3 API

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Copyright © 1998-2010 Distributed Real-time Computing Lab (DRCL). All Rights Reserved. ~ To J-Sim Home ~

file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MMRP.html
http://www.j-sim.org/
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/allclasses-noframe.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/index.html?drcl/ethernet/mmrp/MMRP.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/MRPconstants.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/LeaveAllStateMachine.State.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/help-doc.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/index-all.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/deprecated-list.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/package-tree.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/class-use/MMRP.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/mmrp/package-summary.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/overview-summary.html
file:///D:/Mi mappe/Dokumenter/My Dropbox/Master thesis/jsim-1.3_NB/docs/javadoc/drcl/ethernet/EthernetAddress.html

	Preface
	Introduction
	The problem statement
	Work method
	Approaches
	What approach to choose?
	Tools
	Simulation practice

	The scope of the thesis
	Outline

	Technology background
	Introduction
	Layered network protocol design
	Routing methods
	Network topologies

	Ethernet switching
	Rapid spanning tree
	Virtual LAN

	Mapping from IP multicast traffic to Ethernet
	Current solution

	J-SIM
	Introduction
	The autonomous component architecture
	Composite components and server ports

	Java implementation of the ACA
	The runtime
	Exporting information at runtime
	Base classes

	TCL and Java together in one system
	How components and ports are identified
	The runtime virtual system

	Considerations

	Multiple MAC Registration Protocol
	Group management in Layer 2
	MRP architecture

	Type of MRP-implementation

	Implementation
	Introduction
	Tools used

	Making the model
	Model of conceptualization
	Data collection

	Model translation
	The base bridge functionality classes
	RSTP class
	The MMRP implementation

	Testing
	Test one – RSTP
	The test set up
	The expected result
	The result

	Test two – MAC relay entity
	The test set up
	The expected result
	The result

	Test three – basic test of MMRP
	The test set up
	The expected result
	The result

	Test four – advanced test of MMRP
	The test set up
	The expected result
	The result

	Experiments and results
	MMRP timer experiment
	The test set up
	The expected result

	Results
	Part one
	Part two

	Discussion
	MMRP performance parameters
	Scalability of a single Participant
	Convergence time
	MMRP bandwidth demand

	Bandwidth savings of mapping from layer 3 to layer 2 multicast
	Mapping of addresses from IP multicast to MAC multicast

	Conclusion
	Future work

	TCL methods
	Experiment TCL script
	Network designer screenshot
	Javadoc for the MMRP component
	drcl.ethernet.mmrp
Class MMRP
	PortID_PORT_STATE_QUERY
	PortID_PORT_STATE_CONFIG
	PortID_FILTERING_DATABASE_QUERY
	PortID_FILTERING_DATABASE_CONFIG
	PortID_LINK_BROKEN
	PortID_CLIENT
	PortID_ROLE_CHANGE_EVENT
	PortID_STATE_CHANGE_EVENT
	portStateQueryPort
	portStateConfigPort
	filteringDatabaseQueryPort
	filteringDatabaseConfigPort
	linkBrokenPort
	clientPort
	eventPortRoleChange
	eventPortStateChange
	MMRP
	MMRP
	dataArriveAtDownPort
	timeout
	updateFilteringDatabase
	mmrpAttributePropagation
	registerMacAddress
	deregisterMacAddress
	forwardPDU
	forwardPDU
	info
	processOther
	getParticipantList
	getPeriodicStateMachineList
	setSimpleApplicant
	isSimpleApplicant
	getBridgeEthernetAddress

