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Abstract 
This thesis presents a case study which is based on our experience and lessons learnt from 
modelling a control system using the state-of-the-art modelling language for systems 
engineering, Systems Modelling Language (SysML). The goals of this thesis are to (1) 
capture the structure and behaviour of a control system using SysML, (2) handling the 
development of safety requirements, (3) support generation of safety cases, a structured 
collection of arguments for system safety, by creating traceability links between requirements 
and model elements, (4) assess SysML capabilities in modelling control systems and 
supporting generation of safety cases. 
 
This case study is part of the “ModelME!” project which is conducted at Simula Research 
Laboratory with industry partners. The aim of the “ModelME!” project is to devise better 
software engineering practices for Integrated Software-Dependent Systems in the Maritime & 
Energy sectors.  
 
Based on the experiences of this and other simultaneous projects in the “ModelME!” project, 
a methodology for modelling control systems to support safety certification has been 
proposed. We use this methodology to present the SysML model, developed in this case 
study. The methodology takes a systematic approach and guides us through the process of 
designing a control system, from the first steps of capturing requirements, system 
functionality and environmental assumptions through the development of structural and 
behavioural diagrams and last, but not least the modelling of safety design, developing the 
requirements to avoid ambiguity and tracing model structures to the requirements. 
 
In this thesis we create a comprehensive set of models to capture our case study from 
requirement, structure and behaviour points of view and present these models following the 
methodology mentioned above. We create traceability links between the requirements and 
design model elements/slices with the goal of assisting safety engineers in the generation of 
safety cases. Then we discuss the capabilities of SysML and our chosen tool regarding the 
creation of models for control systems and supporting safety case generation. Further we 
summarize lessons learned, potential improvements and directions for future work. 
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1 Introduction 
The use of software is increasing in all aspects of our everyday lives, e.g. in simple home 
appliances and in safety-critical systems such as control systems in cars, medical instruments, 
nuclear power plants, military equipment and air planes. In the field of safety-critical systems, 
the demand of dependable software is immense. The cost of lack of dependability is often 
huge [1], sometimes leading to injuries or, even worse, jeopardizing human lives [2].  
It is of upmost importance that the software does not compromise the safety for the system as 
a whole. To ensure that a system complies with a given safety standard, and hence will not 
cause harm to its users or its environment, the system may be subject to a certification process 
before it is deployed. For safety-critical systems, certification may be mandatory, depending 
on the system. The standards a system must comply with may be organizational or 
governmental, national or international, depending on the system and its use, e.g. for critical 
systems as in the aviation industry, there exist standards issued by the EASA1 which “ensure 
a high and uniform level of safety in civil aviation, by the adoption of common safety rules 
and measures” [3]. The certification process may be conducted by third-party organizations, 
e.g. the international certification agency, DNV2

 

. The system supplier must prepare a chain of 
evidence for the certification agency by providing a set of safety cases/arguments to assure 
the certifiers that the system meets the safety requirements as stated in the applicable 
standards. 

According to a report from 2007 [2], there is a normal misconception in the general public 
that failures in software are mostly due to code errors. They state that from the number of 
fatal accidents caused by software, only 3 percent were due to code errors, and a larger 
portion are caused by poor recording and handling of requirements, and misunderstanding the 
user’s domain. The latter may cause in an insufficient coverage of safety requirements and a 
lack of environmental assumptions, which may be disastrous when the system is deployed 
into its environment. In addition, requirements should ideally be unambiguous. However, as 
requirements most often are expressed textually, they can be ambiguous and unclear, which 
potentially can cause misunderstandings, leading to unforeseen errors in the system design.  
 
The same report [2], also states that there is “a widespread agreement that only a small 
percentage of projects deliver the required functionality, performance, and dependability 
within the original time and cost estimate” and  that creating safety cases after the system is 
created is costly and not as practical as during development. 
 

                                                 
1 European Aviation Standard Agency, http://www.skybrary.aero/index.php/EASA 
2 Det Norske Veritas, www.dnv.no. 
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To be able to overcome the cost of creating dependable systems and to ensure that the systems 
are safe, we need to develop systems with safety in mind, and strive to trace requirements to 
the relevant system design rationales and decisions made during development. This facilitates 
a foundation that supports the generation of safety cases which are vital for a certification 
process.   
 
This thesis presents a case study which is based on our experience and lessons learnt from 
modelling a control system using the state-of-the-art modelling language for systems 
engineering, Systems Modelling Language (SysML). The goals of this thesis are to (1) 
capture the structure and behaviour of a control system using SysML, (2) handling the 
development of safety requirements, (3) support generation of safety cases, a structured 
collection of arguments for system safety, by creating traceability links between requirements 
and model elements, (4) assess SysML capabilities in modelling control systems and 
supporting generation of safety cases. 
 
This case study is part of the “ModelME!” project3

 

 which is conducted at Simula Research 
Laboratory with industry partners. The aim of the “ModelME!” project is to devise better 
software engineering practices for Integrated Software-Dependent Systems in the Maritime & 
Energy sectors.  

Based on the experiences of this and other simultaneous projects in the “ModelME!” project, 
a methodology for modelling control systems to support safety certification has been 
proposed[4]. We present the SysML model, developed in this case study, using this 
methodology. The methodology takes a systematic approach and guides us through the 
process of designing a control system, from the first steps of capturing requirements, system 
functionality and environmental assumptions through the development of structural and 
behavioural diagrams and last, but not least the modelling of safety design, developing the 
requirements to avoid ambiguity and tracing model structures to the requirements. 
 
Our design is based on an object-oriented version of the Production Cell case which was 
presented in a case study[5] from 1998, which focused on using a specific testing method to 
test the system. 
 
SysML was adopted by OMG in 2006 [6] and is a subset and extension of the Unified 
Modelling Language (UML 2.0). We use SysML because it is a state-of-the-art modelling 
language for systems engineering, and of its capabilities for modelling requirements and 
relating them to elements of the designed model. We hope to show that SysML can be used to 
support generation of safety arguments/cases for certification purposes. 

                                                 
3 http://modelme.simula.no 
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1.1 Contributions 
The contributions of this thesis are: 

• We provide a detailed, comprehensive collection of SysML diagrams for a controller 
of a medium-sized reactive system. 

• Presentation of a methodology which has been proposed based on this case study and 
another simultaneous one. Each of the methodology steps are presented using 
examples from the case study diagrams. 

• We show how SysML traceability can be used for linking safety requirements to 
design diagrams. We then utilize these traceability links to identify fragments of 
design diagrams specifically relevant to each safety requirement. Such diagrams can 
be used for generation of safety cases.  

• We offer an evaluation of the SysML language and the tool, Rational Software 
Architect with the SysML Toolkit plug-in for capturing control systems with safety 
features. 

1.2 Organization of thesis 
This thesis is organized as follows: 
In Chapter 2 we give a quick overview of the new or changed diagrams and concepts of 
SysML compared with UML 2.0, which are relevant for this thesis. For further details about 
SysML, see [7] and [8].  We then describe the Production Cell system in Chapter 3. In 
Chapter 4 we present the proposed modelling methodology by giving examples from the 
SysML model we have designed. In Chapter 5, we present some of the tool problems we met 
during development. In Chapter 6, we give a short discussion of lessons learned, conclude and 
give some suggestions for further work. 
 
In Appendix A, we present all the diagrams from the case study. In Appendix B, we present a 
glossary of the structure blocks in the model. In Appendix C, we give an overview over the 
tool problems which are not described in Chapter 5. 
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2 System Modelling Language 
System Modelling Language (SysML) was adopted by OMG in 2006, and is a subset of the 
Unified Modelling Language (UML 2.0) with some additional extensions, as described in 
Figure 1. The purpose of SysML is to have a general graphical notation for systems 
engineering that can be used for specification, analysis, design and verification of complex 
systems that contain hardware, software, personnel, information [6]. 
 

 
Figure 1 - SysML is a subset of UML 2 with an additional extensions. [6] 

The SysML diagrams consist of some of the diagrams from UML 2.0 and some additional 
diagrams (see Figure 2). The new diagrams are the Requirement Diagram, where we can 
capture/develop the requirements and relate them to other requirements or model elements, 
and the Parametric diagram, where we can capture constraints for property values. The 
Activity Diagram, Internal Block Diagram and Block Definition Diagram are modifications of 
existing diagrams in UML 2.0. We will give a quick introduction to the new and changed 
diagrams and constructs relevant to this case study below, and some details will be further 
described later in this thesis, when we go though the methodology and show examples from 
the conducted case study. 

2.1 Block Definition Diagram 
In SysML, there is a concept called block, which is “modular unit of system description” [7]. 
Blocks are used to describe structural concepts in a system and its environment, (e.g. logical 
and physical elements in the system, software, hardware, humans, documents and more). A 
block can contain structural and behavioural features, which are described as properties and 
operations. The block and its features, in addition to its relationships with other blocks are 
defined in a Block Definition Diagram (BDD). A block may contain other blocks, which are 
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called parts. This is described in the BDD using the composition relationship. In the part end 
of the relationship we may specify the role that this part has in the owning block. This role 
name is “provided to be able to distinguish part properties with the same type (Block)” [8]. In 
addition to modelling the structure of blocks, we can also use this diagram to show other 
types of blocks and entities, e.g. signals, interfaces and ValueTypes, which are described later 
in this chapter. We describe examples of a block definition diagrams in chapter 4.2.1. 
 

 
Figure 2 – The SysML diagrams and their relationship with UML diagrams. [6] 

2.2 Internal Block Diagram 
The internal structure of a composite block is described using an Internal Block Diagram 
(IBD), where the connections/interactions between the parts of a composite block and the 
usage of the parts can be defined. We can specify how the parts of a composite block are 
connected and specify their interaction points, by (1) describing the flow of items (e.g. 
physical items, data or information) using flow ports and item flows, and/or (2) describing 
provided/required services, as in UML 2.0, using interfaces. 
There may be direct connections between the parts using a connector, which will show that 
the parts are connected, but not describe how (e.g. for physical parts, this can mean that they 
are attached physically). 
To describe an interaction point used for item flows, we use Flow Ports and connect these 
using Item Flow connectors. If only one item is allowed to flow through the port, then it is an 
atomic flow port and can be typed by a block that defines the item. However, if several items 
are allowed to flow through the flow port, it can be typed by a flow specification, where the 
allowed items are specified (similar to an interface from UML 2.0). The connection between 
the flow ports is defined using item flow, which describes what actually flows through the 
ports and is typed accordingly. 
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When describing which signals a block must respond to, or which services it must provide, 
we use standard ports and interfaces. This is similar to UML 2.0. We describe examples of 
internal block diagrams in chapter 4.2.4. 

2.3 Requirement diagram 
One of the new concepts in SysML is the Requirement Block. We use it to define conditions 
or functions that we want the system to satisfy. Each requirement block contains at least an id 
property and a textual description property. The requirements are depicted visually in a 
requirement diagram (REQ). When tracing them to other model elements, using the cross-
cutting relationships described in Table 1, they can also be shown in other diagrams. We can 
capture requirements blocks by inspecting e.g. safety standards or stakeholder’s needs. After 
requirements are captured, they may be further analysed and then partitioned, derived or 
refined to make them less ambiguous and more specific. In SysML we can keep track of the 
requirement development history by relating new requirements to the old ones using the 
relationships described in Table 1 and optionally attaching a rationale, which is a stereotyped 
comment to justify any assumptions made during the requirement development. This way, the 
assumptions can be inspected by domain experts or by others to ensure that there have not 
been made erroneous assumptions that may lead to violation of safety. Examples of 
requirement diagrams are shown in chapters 4.1.2 and 4.2.3. 
 
Relationship Explanation 
Containment Used to break a requirement into simpler requirements. All the contained 

requirements should not add or remove any meaning to the original requirement. 
Derive Used to depict that a requirement is derived from another requirement. Useful for 

mapping the assumptions made about the system based on the requirements. 
 
Cross-cutting relationships: 
Trace Used to describe a general-purpose relationship, often used to relate a requirement 

to external documents. 
Satisfy Used to link a model element to a requirement to show that it satisfies the 

requirement. 
Verify Used to link a test case to a requirement to prove that a model element satisfies it. 
Refine Used to depict that a model element is refined from a requirement. Useful to map 

assumptions made to reduce ambiguity in a requirement. 
Table 1 - Requirement relationships/dependencies. 
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2.4 Activity Diagram 
In an activity diagram we are able to show the sequential and concurrent execution of 
actions, as in UML 2.0 [7]. An activity is composed of actions and describes behaviour of the 
system by specifying a given sequence to those actions [6]. By associating a special type of 
action, a CallBehaviourAction, to an activity, we are able to call an activity from within 
another. This allows for activities to be composed of each other and supports reuse. The 
composition of activities can be shown in a block definition diagram [7] as in Figure 20. 
An activity can have input/output parameters, and these may flow through the activity using 
object flows.  To impose a constraint on the sequence of the actions within the activity [8], we 
use control flows. 
Inputs and outputs of actions are called tokens. An action may not start before there are 
tokens (object/control tokens) at each of the required inputs and it may not terminate before 
there are tokens on each of the activity’s required outputs. However, if an owning activity is 
terminated, its contained actions/activities are terminated too. 
An optional feature is allocating activities/actions to blocks. This allows us to specify which 
part will execute it. To do this, we can use the AllocateActivityPartition which resembles 
swim lanes in UML 2.0 or use the allocate relationship. 
 
SysML also introduces the concept ‘continuous’ to describe the special case where the time 
between receiving tokens is zero (e.g. for information, power etc.) [8]. This means that an 
activity can start to execute and input tokens may still be consumed and tokens may become 
available at the outputs during execution of the activity. The flow of objects through the 
activity may in SysML also be physical objects. We show examples of activity diagrams in 
chapters 4.2.5 and 4.2.7. 

2.5 Parametric Diagram 
Constraint blocks are another of the new concepts that SysML introduces. By using the 
constraint blocks we are able to constrain properties of blocks in the system. We define 
constraints by creating constraint blocks and show the composition relationship with blocks 
and other constraint blocks in a block definition diagram as shown in Figure 24. Constraints 
may be composite, which allows us to reuse common equations in several constraint blocks. 
After defining the constraint block, we can define the parameters needed by the constraint 
block to be able to solve the equation that the constraint is based on. The equation can be 
specified in any constraint language that is suitable for the domain of the system[8]. 
 
The parametric diagram can be created either for blocks that have a constraint property (has 
a composition relation with a constraint block) or for composite constraint blocks. Here we 
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can bind the parameters of the constraint block to the properties of the owning block (or 
constraint block) by using binding connectors, which shows an equality relationship between 
the ends of the association, i.e. they will have the same value. We show an example of a 
parametric diagram in chapter 4.2.6. 

2.6 ValueType 
Even though SysML ValueType is not a particular diagram, it is a part of SysML, and is 
relevant to this case study, so we will briefly explain what it is and its use. 
SysML ValueType is based on UML DataType and is defined in a block definition diagram. 
ValueTypes allow us to define our own specific values types which can be used to type e.g. 
properties or parameters within a model.  
For instance, during development, we may want a specific type to describe the extension of a 
robot arm. It may move between a maximum and a minimum extension point, which can be 
described with a real number between 0 and 1. To be specific and to separate it from other 
real numbers, we create a value type Extension and base it on the Real data type and can also 
add specific operations for the value type. The value type can be used to type any property or 
parameter in the model. Value types may be scalar values, enumerations or complex 
structures (i.e. a structure with value properties, e.g. Size, with the properties width and 
length.)[8]. In this case study we only use the first two, as shown in Figure 3. We can base the 
value types on types from already defined model libraries, e.g. the SI Unit library, or create 
own libraries and import them into the packages where we wish to use them. 



10 
 

 

 
Figure 3 -  bdd [Package] ValueTypes [ValueTypes and enumerations] 
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3 The Production Cell case study 
To be able to conduct a case study modelling a safety-critical system in SysML, we need a 
system description that clearly describes the safety requirements and the system properties.  
The case study [5] we chose as background for our case study contains a thorough description 
of safety requirements and the design of a production cell, whose main purpose is to forge 
metal plates. This case study is from 1998, and their goal was to use a specific testing method 
to test an object-oriented version of the production cell. It is based on the original case study 
[9], which was conducted in 1995, and evaluated the capability of a number of specification 
languages. The system described is an actual production cell in Germany, and has been the 
background for several papers since then. 

 
Figure 4 - Top view of the production cell. 

The Production Cell consists of several physical devices which are controlled by the control 
system (see Figure 4), namely: 

• a feed belt 
• an elevating rotary table 
• a rotary robot with two extendable robot arms 
• a press 
• a deposit belt 
• a crane with an extendable robot arm 

The feed belt conveys plates to the elevating rotary table, which moves the plate to a position 
for it to be picked up by one of the two extendable arms of the robot. The robot then loads the 
plate into the press, which forges the plate. The other arm of the robot then picks up the plate 
and transports it to the deposit belt which conveys the plate to the end of the belt where the 
arm of the crane picks it up and transports it into a container. Each of these devices will be 
described in more detail below. 
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3.1.1 Composition of the devices 

Each of the devices consists of sensors and actuators which communicate with the system’s 
controller. The sensors (photoelectric cells, switches and potentiometers) send input to the 
controller where they either indicate the position of the plate on a device or the 
rotary/vertical/horizontal position of the device or its parts. The actuators (motors and 
magnets) receive output from the controller, which activates them and makes them move, and 
thus the owning device is able to transport plates through the system. 
To get a good overview of the system, we will now present describe each device and show 
what parts they consists of. 

3.1.1.1 Feed belt 

 

The feed belt consists of a unidirectional motor, which makes the belt run and a 
photoelectric cell at the end of the belt which indicates when a plate has reached 
the end of the feed belt.  
The feed belt gets plates from the operator and communicates with the table. It can 
carry one plate at a time. 
 
Behaviour (simplified): After receiving a plate from the operator, the control 
system turns the motor on until the plate reaches the sensor field of the 
photoelectric cell, when it turns the motor off. The plate will reside at the end of 
the belt until the rotary table is ready to receive it. 
 

3.1.1.2 Rotary table 

 

The rotary table consists of a horizontal carrying plate, 
two bidirectional motors, which each take care of either 
the rotating or the vertical movement, two switches, which 
indicate the vertical position of the table (top/bottom) and 
a potentiometer which indicates the angle of the table. 
The table communicates with the feed belt and the robot 
indicating whether it is ready to be loaded or unloaded. It 
can carry one plate at a time. 
 

Figure 5 – Side 
view of feed belt. 

Figure 6 - Parts of rotary table. 
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Behaviour (simplified): When the table is ready to be 
loaded, the feed belt feeds the plate to the table, the table 
then moves to its unloading position and notifies the robot 
and awaits in this position until the robot is ready to pick 
up the plate and then returns to its unload position. 

3.1.1.3 Rotary robot 

 The robot consists of two orthogonal arms, a 
bidirectional motor, which takes care of the rotating 
movement and a potentiometer with indicates the angle 
of the robot. The orthogonal arms each consist of a 
bidirectional motor which extends or retracts the arm, a 
potentiometer which indicates the range of extension of 
the arm and a magnet which can be magnetized / 
demagnetized to pick/drop the plate. 
The robot communicates with the table and the press and 
receives messages from the deposit belt. It can carry up 
to two plates at a time. 
 

 

Behaviour (simplified): The robot receives messages 
from the above mentioned machines when they are ready 
to be loaded or unloaded. It acts upon these messages 
when it is in a good state for this. 
When picking up a plate, it turns on its rotating motor 
until the active arm points to the right machine at the 
same time that it turns on its extension motor to extend 
its arm to the right extension and then it activates its 
magnet to pick up the plate and retracts its arm. 
When dropping a plate to a machine, it does the same as 
above, but deactivates its magnet once the arm is 
extracted to the right position. 
 

 

3.1.1.4 Press 

Figure 7 - Side view of feed belt and table. 

Figure 8 - Parts of rotary robot. 

Figure 9 - Side view of robot, press and 
deposit belt. 
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The press consists of one fixed horizontal top plate and one movable horizontal 
bottom plate which together forge the metal plate when moved together. The 
bottom plate is moved with the help of a bidirectional motor, and three switches 
are used to describe its vertical position (top / middle / bottom). The press 
communicates with the robot. It can carry one plate at a time. 

 

Behaviour (simplified): When the robot has loaded a plate onto the press, the 
press starts its motor so that the movable plate moves in an upward direction 
until the top switch indicates that it is on top (by moving there, it forges the 
plate) and then it moves in the downward direction until the bottom switch 
indicates that it is in the bottom (unload) position. It will wait here until the robot 
has picked up the plate and then it will start its motor and move the movable 
plate in the upward direction. 

3.1.1.5 Deposit belt 

 

The deposit belt is nearly identical to the feed belt, the only difference is that 
the photoelectric cell indicates when the plate has passed the photoelectric 
field. 
The deposit belt communicates with the crane and sends messages to the robot. 
It can carry up to two plates at a time. 
 
Behaviour (simplified): When the crane has indicated that it has picked up the 
plate at the end of the belt, the deposit belt starts its motor, making the belt 
start running. When a plate passes the photoelectric cell, it stops the motor/belt 
and waits for the crane to pick it up and for the robot to drop a new plate at the 
beginning of the belt.  

3.1.1.6 Crane 

The crane consists of an arm, one bidirectional motor, which takes care of the horizontal 
movement of the arm and two switches which indicate the arm position (over deposit 
belt/over container). The arm is identical to the robot’s arms.  
The crane communicates with the deposit belt. It can carry one plate at a time. 
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Behaviour (simplified): The idle position of the crane arm over the deposit belt with its arm 
extended. When a plate has arrived and the crane arm is in its idle position, the magnet is 
activated, and so the plate is picked up. The arm’s extension motor retracts the arm until the 
potentiometer indicates that the correct position has been reached. At the same time the 
horizontal motor moves the arm towards the container until the switch above the container 
indicates that the arm is in the correct position. When the arm is in the right position the 
magnet will be deactivated so that the plate will be dropped into the container. The arm will 
then move back to its idle position over the deposit belt. 

3.1.2 Asynchronous communication 

An important detail, which strongly affects the design of the system, is that [5] describes that 
the communication between the devices is based on asynchronous events. Once a device is 
finished with an operation, it sends a message to one of the other devices, more specifically to 
let it know that the plate is ready to be picked up, or that it has been picked up from or 
delivered to the other device. When sending a signal, the sending block does not know 
whether the target is ready to act on the event, and the sender may immediately continue with 
its own behaviour. We model the asynchronous communication by using signals to exchange 
messages between the different devices. This is described further when we describe examples 
in the next chapter. We also assume that all signals that are sent, will arrive once and only 
once, and in reasonable time, as the handling of missing or duplicate signals is not described 
in [5]. 
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4 Modelling methodology 
Based on the experience and lessons learnt throughout this process of creating a SysML 
model for the Production Cell System in this case study, a methodology for modelling control 
systems to support safety certification has been created. In this chapter we will go through the 
steps of the methodology to present examples from our case study. The full case study can be 
found in Appendix A. 
 
Figure 10 gives an overview over the methodology, its steps and which diagrams are 
produced in each step. It has two main phases, starting with the system-level requirement 
specification phase where the environmental entities and assumptions, the system-level 
requirements, and the main functionality of the system are captured. It is followed by the 
second phase, which is about system architecture and design, interwoven with safety-related 
activities. This phase contains three concurrent groups of activities, namely designing and 
developing structure models, behavioural models, and requirement and safety design models. 
Some of the activities in these steps are dependent on diagrams developed in other activities. 
For each step, we specify the diagrams needed as input and which diagrams are produced or 
revisited. Further, we suggest a sequence of activities through the second phase, but during 
development, some of the previous steps may need to be revisited. When changes are made, it 
is important to update the succeeding diagrams that were produced in later steps, so that all 
the diagrams are consistent. 
 
When creating a system, we have to put the environment under which the system will operate 
under consideration, as elements in the environment will influence the system design. Inputs 
to the methodology are therefore: 

• Standards: There are standards (e.g. official, governmental, or corporate) that need to 
be fulfilled to be able to be certified and be allowed to operate. 

• Domain models: The system will operate in an environment with an existing 
terminology that the system engineers need to be familiar with. 

• Requirements from stakeholder: It is important to analyse the wishes and needs of 
the stakeholder to be able to extract the requirements. These reflect what the system 
will be used for, what things will be important to take care of. (E.g. timing, 
performance). 
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The methodology includes one or more iterations of the two main phases: 
 
1) System- level requirement specification 

a) Create a system context diagram to determine the external entities that interact 
with the system. 

b) Capture system-level requirements, and specify the requirements category for each 
individual system-level requirements. 

c) Identify main system functions in terms of use cases, and relate these use cases to 
the system-level requirements. 

d) Identify the constraints that the external entities impose on the system, and include 
these constraints as system requirements. 

 
2) System architecture and design interwoven with safety-related activities 

a) Create the structural views of the system using block definition diagrams by 
identifying top-level system blocks and decomposing them into sub-blocks. 

b) Model the use-case scenarios using sequence diagrams to describe behavioural 
interactions between the top-level parts. 

c) Specify block-level requirements and trace these requirements to the system-level 
requirements. Establish traceability links between the block-level requirements 
and top-level blocks. 

d) Describe flows of physical items and/or logical data among the top-level system 
parts using internal block diagrams. 

e) Model the sequences of activities for each of the top-level parts using activity 
diagrams. 

f) Capture the constraints on physical properties of blocks using parametric 
diagrams. 

g) Decompose each activity in the top-level activity diagram into a sequence of more 
primitive actions performed by the sub-parts. 

h) Capture the behaviour of individual top-level parts with behaviour using state 
machine diagrams. 

i) Specify pre- and post conditions for the methods of top-level blocks. 
j) Formalize block-level requirements in terms of block operations, predicates 

involving block attributes, and interfaces between blocks using the Object 
Constraint Language (OCL), or activity diagrams. 

k) For each block-level requirement, identify slices of design diagrams relevant to 
that requirement and provide information to evaluate the requirement on the 
diagram slices. 
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Figure 10 - Overview of the methodology for modelling control systems to support safety certification. 
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4.1 System-level requirements specification 
To be able to make well-educated decisions in the process of analysing and designing a 
system, it is essential to know the system and the environment in which it will operate, to 
know what elements will interact with the system, and to know the restrictions and 
requirements that the system must satisfy. In this phase, assumptions about the system and the 
environment it will operate in will be modelled. To ensure safety, the models created in this 
phase can be reviewed by domain experts to make sure that there are no misunderstandings, 
as suggested in [2]. 

4.1.1 Create the system context (Step 1a) 

Input: Domain model, stakeholder’s requirements. 
Output: System context diagram (BDD) showing the system and the relevant environment. 
 
The system context diagram gives an overview over the entities in the environment/domain 
that are relevant and which directly or indirectly will interact with the system of interest. The 
context of the system is described in a block definition diagram using block constructs and 
the composition relation. As mentioned earlier, a block construct in SysML is a general 
modelling concept [8] and can describe any entity, e.g. document, human, other system, 
software, hardware, logical or physical entities. 
 

 
Figure 11 – bdd [Package] ProductionCellStructure [System Context]  

The caption in Figure 11 shows the diagram header, which has a specific structure and is 
standard in SysML [8]. The header should be placed in the top left corner of the diagram 
frame4

 
.  The structure of the header is: 

diagram type [model element type] model element name [usage] 
 

                                                 
4 The tool does not support diagram frames for all diagrams, see chapter 5.2 SysML Compliance. 
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The header contains a lot of information about the diagram. By looking at the caption of 
Figure 11, we see that this is a block definition diagram, which represents a package named 
ProductionCellStructure, and shows the system context. 
 
The above diagram shows the relevant entities in the environment of the production cell. To 
show that the focus is the ProductionCell_System, the block has been marked with the 
keywords <<system of interest>>. This system consists of both software and hardware, but 
this is not defined in our model yet. The main focus, as we will see later in this thesis, is the 
software part of the system, more specifically the controller of ProductionCell_System. 
The relevant entities in the ProductionCell_Domain, which represents the environment where 
the ProductionCell_System will operate, are the operators of the system and a container 
which will contain the metal plates that have been forged by the system. 
We also add associations between the blocks in the structure diagram, to specify how the 
elements interact with the system. An alternative is to create an internal block diagram to 
show how the parts are connected. Examples of internal block diagrams are described in 
chapter 4.2.4. 
 
Assumptions: 
The way Plate is fed to the system is not described in [5], and is out of the scope for this case 
study. 

4.1.2 Capture the system-level requirements(Step 1.b) 

Input: Stakeholders’ requirements, standards, domain model 
Output: A requirement diagram (REQ) describing the requirements that the system as a 
whole must conform to (the system-level requirements). 
 
Capturing the system’s requirements in a model and being able to keep track of their 
development are some of the new features in SysML, which we introduced in chapter 2.3. 
This assists us in keeping track of decisions/assumptions that are made about the system, by 
capturing the relationships between requirements in the model, using the associations 
described in Table 1. 



22 
 

 
Figure 12 –Detail view of req [Package] ProdCell_Requirements [System-level requirements]. 

Whole diagram in the appendix, Figure 40. 

First step is to capture the main requirements, which are the result from analysing the 
stakeholders’ needs and wishes for the system, the standards that the system has to satisfy, 
and the domain model, which all are provided as inputs to the methodology. They are 
captured in requirement blocks, which should contain an identification property and a text 
property. By additionally stereotyping the requirements, we specify what kind of requirement 
each block represents as there can be several types of requirements (see assumption below).  
In this case study, we have used the following naming convention for the identification 
property: All system-level safety requirements are numbered SX.0, where X is a natural 
number and S stands for safety. All requirements that originate from a system-level 
requirement will keep the first number in the reference, and the letter will describe the 
relationship with its original, for instance DX.1, which describes the derived requirement 
from the original SX.0. As requirements have a textual form, they may often be ambiguous. 
Further on in the development, we will strive to make the requirements more formal and 
unambiguous by partitioning, deriving and refining them, and keep the history of the 
development of the requirements to be able to trace the assumptions made. In chapter 4.2.3 
the system-level requirements will be further analysed. 
 
Assumptions: 
(1) The requirements described in [5], include safety, liveness, efficiency and flexibility 
requirements. As this thesis is about safety and certification, we focus only on the safety 
requirements, but understand that there would be more requirements than these in a fully 
described system. 

4.1.3 Identify the system-level functions (Step 1c) 

Input: Domain model, system context diagram (BDD), system-level requirements (REQ). 
Output: Use case diagram (UC) describing the system-level functions of the system, and 
use-case specifications and revisited system-level requirements (REQ). 
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The next step is to identify the main functions of the system, looking at the system as a black-
box. The functions that are identified should fulfil the goals of the user [8], as captured in the 
system-level requirements. The use case diagram in SysML is the same as in UML 2.0, 
depicting functions of the system as use cases, and users of the system as actors (e.g. humans 
or external systems). 

 
Figure 13- uc [Block] ProductionCell_System [Software main functions]5

Figure 13

. 

 shows the use case diagram for the ProductionCell_System. However, since the 
focus of this thesis is the software of the system, we will focus on the functions of the 
subsystem, Controller. The actor, operator, represents the human interacting with the system. 
The Hardware subsystem represents the set of hardware devices which interact with the 
software by providing input and receiving output from the software. The subsystem 
Controller has four use cases, namely turnOn, turnOff, produceForgedPlates and stop (i.e. 
emergency stop). These use cases can be further described and detailed textually in use case 
specifications or visually using activity diagrams or sequence diagrams. Examples of use case 
specifications for turn_on and produceForgedPlates are in the appendix, chapters A.1.4 and 
A.1.5. 
                                                 
5 The system boundary in this diagram has been added to the image outside the tool as we could not locate the 
system boundary in the tool (see Chapter 5 Tool problems). 
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Each use case should be traced to its relevant system-level requirements, which either 
specifies the assumption of the creation of the use case, or it may put constraints on the 
allowed behaviour (e.g. in the case of safety requirements). This is modelled using the refine 
relationship as in Figure 42 which depicts the relation the use case producedForgedPlates has 
to the system-level safety requirements. 
 
Assumptions: 
(1) The use case turnOn is described in [5] as sending the event TurnOn to all the devices 
represented in the controller, so that the device is created and initialized. In this thesis we only 
describe the initialization process of the devices. 
(2) The use cases turnOff and stop are not described in detail in [5], and are not described 
further in this thesis.  

4.1.4 Identify environmental assumptions  (Step 1.d) 

Input: Domain model, system context diagram (BDD), system-level requirements (REQ), 
Output: Added requirements to the requirement diagram (REQ), environmental constraints 
depicted in a parametric diagram (PAR). 
 
Environmental assumptions are very important to consider and specify in the requirements, as 
not taking them into account can have serious consequences [2]. If the requirements can be 
specified with equations, then we can model them with Constraint Blocks and Parametric 
diagrams, as introduced in chapter 2.5. When the assumptions have been made, these can be 
discussed with domain experts, as suggested in [2], and in this way assure that the 
assumptions made are correct. 
For instance, even though not specified in [5], the plates of the system will have a certain size 
and the container will only be able to room a certain amount of plates. When the container is 
full, the system needs to stop conveying plates to the container. This requirement may be 
modelled as an equation, which is dependent on the size of the container and the size of the 
plates. This constraint equation can be defined using a constraint block, and be made a 
property of the ProductionCell_System. By creating a parametric diagram, the constraint 
parameters can be bound to properties of Plate and Container. To uphold traceability between 
the elements of the system, the related requirement can be traced to the constraint block. The 
above example has not been modelled in this case study, but a detailed example of modelling 
a constraint is presented in chapter 4.2.6. 
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4.2 System architecture and design interwoven with 
safety-related activities 
This phase contains three concurrent groups of activities, namely designing and developing 
structure models, behavioural models, and requirement and safety design models.  
In the structure models we model the structure and interaction points of the blocks, while we 
model how the blocks interact in the behavioural model. In addition, we focus on the 
development of the requirements and the safety design models, where we formalize and trace 
requirements to related model elements using SysML cross-cutting constructs. On completion 
of this step we will have a set of diagrams that support generation of safety cases/arguments 
to be used in a certification process. 

4.2.1 Structural views (Step 2a) 

Input: System context diagram (BDD), system-level requirement diagram (REQ), domain 
model (containing the environment and terminology etc). 
Output: Structure diagram (BDD), glossary describing the blocks. 
 
In this step we focus on creating a structural definition of the system by decomposing the 
system of interest block from the system context diagram into its parts. These parts are 
defined using block constructs in a block definition diagram (as described in chapter 2.1). 
The input documents to the methodology and the models created in the first phase should 
support the assumptions made in this step. 
The decomposition is an iterative process, and starts with modelling the parts of 
ProductionCell_System, namely the hardware devices and the controller, 
ProductionCell_Controller. The controller represents the software which receives inputs from 
and sends output to the hardware devices to control the state of the devices. As the software is 
based on an object-oriented solution [5], the controller consists of blocks that correspond one-
to-one to the hardware devices (see assumption).  
Figure 14 shows a simplified version of the top-level structure of the production cell. The 
parts of the controller in this diagram will later be referenced as the top-level blocks or top-
level parts. In the next iteration of the design of the structure, the top-level blocks are further 
decomposed into its parts. This decomposition of blocks will continue until we reach the leaf 
blocks, namely the sensors and actuators which will interact with the relevant hardware parts 
of the system (see assumption). When this step is finished, the diagram will show the 
definition of the system structure (see Figure 44). How the parts in this structure are 
connected will be shown in the internal block diagrams in chapter 4.2.4. An explanation of the 
blocks in the structure diagram is also provided in the glossary in Appendix B. 
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Figure 14 - bdd [Block] ProductionCell_System [simplified top-level structural view]. 

Whole diagram is in the appendix, Figure 44. 

Assumptions: 
(1) The actual communication between the hardware and software is scoped out of this thesis. 
In [5] they model the communication with the hardware using servers to support their 
simulation. We assume that any signal that is sent between the software and hardware parts 
are understood by the recipient. In a real life control system there would be drivers translating 
the information sent between software and hardware.  
(2) As the hardware is scoped out of this case study, hardware devices are not further 
decomposed in this step. 

4.2.2 Modelling behaviour from the use case scenarios (Step 2b) 

Input: Use case diagram (UC), structure diagram (BDD).  
Output: Sequence diagram describing the interaction between the top-level blocks (SD). 
 
In this step the use cases that were defined in the use case diagram are refined by creating a 
sequence diagram for each use case and modelling the interactions between the top-level 
blocks, i.e. the parts of ProductionCell_Controller, which we defined in the structure 
diagram. In SysML, the sequence diagram is similar to UML 2.0. Each of the parts of the 
controller is represented by a lifeline, so that the interaction between them can be modelled. 
Since the background case study [5] describes the interaction between the classes in the 
controller as asynchronous, the interactions in Figure 15 are modelled using asynchronous 
signal messages. (Signals are shown in Figure 53.) 
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Figure 15 – sd [Block] ProductionCell_Controller [ProduceForgedBlanks]. This diagram only shows interactions 

between the top-level blocks. Whole diagram is in the appendix, Figure 58. 

As we start modelling the behaviour of the system, the sequence diagram gives a good 
overview over the interaction between the top-level parts of the system and is helpful 
regarding identifying the different send/receive signal events and the related operations for 
each of the top-level blocks, which will be helpful in the future steps of this methodology.  
For instance, when Press is ready, it sends the signal Load_Press to the Robot, which triggers 
it to start the operation load_press(), as is modelled in Figure 58 in the appendix. The 
operation load_press() is identified and can be added as a behavioural feature of the block 
Press. However, even though the sequence diagram is useful for identifying signals and 
operations, it must be noted that these diagrams are not exact descriptions of the system on 
this level, as it implies an ordering between all the signal events and operations (see chapter 
6.1.1). The devices in the system are concurrent and may receive signal events at any time, 
even if they are not be ready to act on them, which is not evident from this diagram. Hence, 
the system may have several alternative orderings. In later steps we will model the system 
using activity diagrams and state machines and through these diagrams the concurrency and 
lack of a particular ordering is more obvious. 
 
Assumptions: 
(1) Numbers are added by the tool, and are not there by choice, but are added by the tool.  
(2) We assume that the turnOn use case includes initialization. This use case is not described 
as a sequence diagram. 
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Consistency: 
(1) Lifelines represent each of the parts of the interaction’s owning block which the sequence 

diagram represents. 
(2) Identified operations on a lifeline should be added as operations to the block the part 

represents.  
(3) Receive events should be a part of the block’s provided interfaces. 
(4) Send events should be part of the block’s required interfaces.  

4.2.3 Specify block-level requirements. (Step 2c) 

Input: System-level requirements (REQ), structure diagrams (BDD). 
Output: Requirement diagram describing the partitioned and derived requirements with 
focus on the structure blocks (REQ). 
 
In an earlier step of the methodology, the system-level requirements were captured by 
inspecting the information given from stakeholders, standards and the domain model. Each of 
these requirements might affect one or more of the top-level parts of the system, which were 
captured in the structure diagram.  
As mentioned in chapter 2.3, textual requirements may be ambiguous, so the requirements 
will at any time be subject for partitioning, deriving or refining. This way we are able to 
create requirements that may be easier to fulfil and easier to show that they are satisfied. 
However, in this step, all the system-level requirements will be inspected to see if and how 
they relate to each of the top-level blocks of the system. This may result in new requirements, 
called block-level requirements, which are derived from the original system-level 
requirements. To trace these and keep track of the development, we use the deriveReqt 
relationship (see Table 1). The relationship originates from the derived requirement to the 
original system-level requirement. By capturing a rationale of the assumptions made and 
connecting it to the relationship connector, the requirements and assumptions may be 
inspected for validity at a later time. In addition, the derived requirement is traced to the 
related block or set of blocks using the trace relationship (see Table 1).  
Figure 16 shows the system-level safety requirement S1.0 from Figure 12, which concerns 
restricting machine mobility to avoid destroying machinery. This affects the software, which 
controls the hardware. So, for each of the top-level software blocks, we inspect whether S1.0 
affects it and/or its parts and if so, describe it in a new requirement, relate the derived 
requirement to the original requirement using the deriveReqt relationship and trace the 
derived requirement to the related top-level block. The requirements derived from S1.0 are all 
traced to the software blocks of the devices that only have a certain range of movement. In 
other words, S1.0 is traced to all of the devices, except for the belts, through its derived 
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requirements. Though not in this example, some requirements may be traced to more than one 
block, if their satisfaction requires a collaboration of several blocks. 

 
Figure 16 – Part of req [Package] ProdCell_Requirements, showing the derivation of one of the system-level 
requirements into block-level requirements. The full diagram and text can be viewed in the appendix A.3.1. 

Assumptions: 
(1) Since the main focus is the software of the system, we are only relating requirements to 
the software blocks. 
(2) Please note that in some of the requirements from [5], the notion of “blank” appears. This 
refers to a plate which is not forged. 

4.2.4 Communication and flow of items between top-level parts 
(Step 2d) 

Input: Structure diagrams (BDD), interaction diagrams (SD), block-level requirements 
(REQ) 
Output: Internal block diagrams (IBD) 
 
In this step we will connect the parts of the system and describe the interaction between them. 
There are three types of diagrams we wish to specify, which we will show through the 
following three examples; (1) the item flow through the hardware devices of the system, (2) 
the communication between the hardware and software, and (3) defining the interaction points 
between the top-level software blocks and describing their interaction by defining the 
interfaces. This will result in a set of internal block diagrams for the 
ProductionCell_System. Internal block diagrams were introduced in chapter 2.2. 
 
(1) First we will start with the item flow of the physical Plate through the hardware parts of 
the system. Even though the focus of the thesis is on the software of the system, it is 
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important to understand how the hardware parts will interact to be able to have a correct 
understanding of the system. 

 
Figure 17 – ibd [Block] ProductionCell_Domain [Item flow HW devices] 

In Figure 17 we have specified the item flow of the Plate through the hardware parts. The 
interaction points are specified using atomic flow ports, typed by Plate to describe that this is 
the only allowed item that may flow through the hardware devices. The port also describes the 
direction an item may flow, more specifically using the directions in, out or inout. This is 
visually described in the diagram with arrows on the ports. The choice of port design shows 
how the plate flows through each device. For instance, the feed belt receives the plate in one 
end, and sends it at the other end. In Figure 17, FeedBelt_HW has one flow port with direction 
in and another with direction out to show that the Plate flows through the feed belt. The robot, 
however, picks a plate with one of the arms and it stays there until it is dropped at the 
receiving device. Consequently, we represent this with a flow port with the direction inout to 
show that the plate flows in and out of Robot_HW at the same spot. The actual route and 
direction for the flow of a Plate is described using the item flow connector between the flow 
ports. 
 
Assumptions: 
(1) Even though the diagram in Figure 17 is created for the block ProductionCell_Domain6

(2) How the plates are introduced to the system is not defined. We assume that a plate arrives 
at the system as soon as the operator tells the system to add_blank. 

, 
our focus is on the ProductionCell_System. 

 
  

                                                 
6 The purpose of this internal block diagram (ibd) in Figure 17 is to show the interaction in 
ProductionCell_System. See Chapter 5 regarding the tool problem with boundary ports. 
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Consistency: 
The parts of ProductionCell_System shown in the internal block diagram correspond with the 
parts of the ProductionCell_System which were defined in the structure diagram. The names 
of the parts are consistent with the role names of the composition association. 
 

 
Figure 18 – Detail view of the ibd [Block] ProductionCell_Domain [HW/SW Communication].  

Full diagram in the appendix, Figure 49. 

(2) The internal block diagram in Figure 18 shows the interaction points between hardware 
and software. This is diagram however strongly simplified as the details of the actual 
communication with the hardware are scoped out of this case study. We include this diagram 
only to show how the flow of communication is assumed to be (see assumption). Each of the 
flow ports are typed with a flow specification containing the signals we assume would be sent 
to the controller. The conjugated port which is marked black, is also typed with the flow 
specification, but the directions of signals or items is opposite from what is specified in the 
flow specification.  
 
Assumptions: 
(1) We assume that the software and hardware understands the signals sent between them. In 
a real life system, these signals would be information that would need to be interpreted and 
converted into a signal that can be understood by controller.  
(2) Power flow and other mechanical/electrical flows are out of the scope for this thesis. 
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Figure 19 - ibd [Block] ProductionCell_System [Communication between top-level blocks] 

(3) The interaction between the software parts of the system were first identified in the 
sequence diagram in a previous step. This information is very useful to be able to specify 
interaction points and define interfaces for the top-level parts of the 
ProductionCell_Controller (see consistency comment below). The internal block diagram 
in Figure 19 shows the interaction points and communication between the parts of 
ProductionCell_Controller, in addition to showing how the operator communicates with the 
system.  
The interaction points are described using standard ports, which are similar to ports in UML 
2.0. Each of the ports in Figure 19 either provides or requires the interfaces which are defined 
in Figure 52. They are based on the information about the send/receive events from the 
sequence diagram (see consistency comment below). The SysML specification [7] states: “a 
block must be able to react to all signals that are specified in its behavioural port's provided 
interfaces”.  
Even though not specified in [5], we have added a user interface block, UI, to show the 
possible interaction an operator would have with the system. The boundary ports on the block 
ProductionCell_System are delegation ports which delegates received signals to relevant 
parts.  
 
Assumptions: 
We have assumed that the operator uses an user interface to communicate with the system, 
even though not defined in [5]. 
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Consistency: 
(1) All send events on a lifeline in the sequence diagram, which represents a part of the 
system, should be represented in one of the part’s required interfaces. 
(2) All receive events on a lifeline in the sequence diagram, which represents a part of the 
system, should be part of one of the part’s provided interfaces. 
(3) All parts in the internal block diagram for a block should be consistent with the parts 
defined for that block in the structure diagram. 

4.2.5 Identify top-level part activities and their sequences. (Step 2e) 

Input: Structure diagram (BDD), sequence diagram (SD) 
Output: Block diagram (BDD) describing activity composition, activity diagram (ACT) 
describing the ordering of the activities of the top-level parts.  
 
After completing this step we will have an activity diagram with an overview over the 
sequential and concurrent behaviour of, and the asynchronous interaction between the top-
level parts of the ProductionCell_Controller. In addition we will have a block definition 
diagram describing the composition of the activities of the system. Modelling at this level 
allows us to keep an overview over the system as a whole and the communication between the 
parts of the system throughout the duration of the activity. 
The main functionality in this case study, produceForgedPlates, which was captured in the 
use case diagram and refined in the sequence diagram, is the main activity in the example 
below. However, in this example, as shown in Figure 60, we have also included the initialize 
activities of each of the parts, and are therefore able to see the whole life span of the system 
between the receptions of the TurnOn and TurnOff signals. 
 
As described in chapter 2.4, an activity is composed of other activities or actions. While 
creating the sequence diagram in Figure 58, the operations of the top-level blocks were 
identified based on the interaction between the top-level parts of the system. These operations 
can now be used to identify the activities which the main activity is composed of, and which 
parts are responsible of executing them. The composition of the activities can be defined in a 
block definition diagram, as shown in Figure 20. 

 
Figure 20 – Detail view of bdd [Package] Activity [Composition of produceForgedBlanks] showing two of the 

contained activities. Whole diagram in the appendix, Figure 59. 
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There are also other approaches for identification of activities. In [8], they suggest identifying 
the main functionality for each block involved, or identifying activities using the 
effects/activities of state machines in addition to the above approach. 
 
To reference the contained activity in the diagram, we use a CallBehaviourAction7

2.4
 which has 

an association to the activity we wish to invoke, as described in chapter . One of the 
advantages, in addition of giving us possibilities to reuse the activity, is that we do not have to 
specify its details yet. To show the asynchronous interaction between the parts of the system, 
we represent the send and receive events, which were identified in the sequence diagram, as 
sendSignalActions and acceptEventActions. Each of the actions is then allocated to the part of 
the system responsible of executing it, using AllocateActivityPartitions, which resembles 
swim lanes in UML 2.0. This way we add traceability from each activity to the top-level part 
of the system that is responsible of its execution. 

 
Figure 21 – Detail view of the activity diagram, act [Activity] produceForgedBlanks, showing the activity partitions 

for the FeedBelt and Table. Full version is in appendix, Figure 60. 

Once the activities and actions are defined and allocated, we start to specify the order in 
which the actions in the diagram can execute, using control flows, as shown in Figure 21, 
where we see the FeedBelt and Table activity partitions. Defining the order in which the 
activities can be executed, adds constraints to the behaviour of the system. An activity will 

                                                 
7 A CallBehaviourAction may also represent other types of SysML behaviour. 
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not execute until it has tokens on all its required inputs. The sequence diagram can be helpful 
for us to identify the internal order of the activities of a part, by looking at the order of the 
operation calls and send events in each of the local execution occurrences. 
As soon as the owning activity starts executing, all the acceptEventActions in Figure 21 are 
ready to accept signal events at any time. By connecting these actions to their related 
activities using object flows, we add an extra constraint to the execution of the activity, by 
specifying that it cannot execute until it has received the signal, e.g. the connection between 
the actions ‘Accept Feed_Table Event’ and ‘feed_table’ in Figure 21. However, as the signal 
event may arrive at any time, it may also arrive before the control token, and in that case the 
received signal is stored in the input pin of the activity until the activity is ready to consume 
it. 
In contrast to the sequence diagram, the particular ordering in the activity diagram is defined 
within each partition (i.e. part of the system), and so, the asynchronous behaviour of the 
system is maintained. By following the sending and accepting of events between the 
partitions, we see the sequential behaviour through the system, and by following the control 
flow in the different activity partitions, we see the concurrent behaviour of the system. 
 
In Figure 60, when the controller receives the TurnOn signal, it broadcasts the same signal to 
all the top-level parts. As soon as the different parts accept the signal events, the control flows 
start in the different partitions of the diagram. When the controller receives the turnOff signal, 
the produceForgedPlates activity and its contained activities terminates, regardless of 
whether any of the contained activities are currently executing or not (see assumptions). 
 
Assumptions: 
(1) In [5] they describe that some signals are sent at the end of the initialize operation of some 
of the classes. We have chosen to model these signals outside the initialize activity. 
(2) We assume that there exists an activity after act produceForgedPlates that will take care 
of bringing the different devices and plates to safe positions. 
 
Consistency 
(1) Operations in top-level blocks should be consistent with the activities in the partition that 
represents that block. (i.e. the activity which the callbehaviouraction is associated with) 
(2) SendSignalActions in a partition should be part of a signal reception described in the 
owning block/part’s required interface and be a send event in the sequence diagram on the 
lifeline of the related part. 
(3) AcceptEventActions in a partition should be part of a signal reception in the owning 
block/part’s provided interface and be a receive event in the sequence diagram on the lifeline 
of the related part. 
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4.2.6 Constraints on physical properties of blocks (Step 2f) 

Input: Requirements for blocks (REQ), low-level structure diagram (BDD) 
Output: Constraint definition diagram (BDD), Parametric diagram (PAR) with physical 
constraints of the system. 
 
So far, the constraints we have added to the system have been related to environmental 
assumptions and behaviour. After inspecting and deriving requirements to block-level 
requirements, we may find that some physical properties of the hardware (or other) blocks 
also needs to be constrained. In this example, we will look at the requirement D2.3, “The 
magnet of the crane is not allowed to knock against the deposit belt or the container 
laterally”. According to the description of the crane, as described in chapter 3.1.1.6, the 
horizontal and vertical movement of the crane will happen simultaneously. We need to make 
sure that the crane is in a safe position vertically (i.e. the crane arm being at the container 
extension) before it reaches a position where it could possibly hit the container laterally (see 
Figure 23). We could have solved this by designing the  behaviour so that the crane retracts its 
arm to the safe position before it moves towards the container, but since we also have to 
satisfy a performance requirement, and wish to keep the design as true to [5] as possible, we 
will satisfy the requirement by adding a constraint to the hardware blocks representing the 
crane and its parts and assume that this constraint will be fulfilled in the hardware design. 
Since there are no sensors at the last safe horizontal position, we need to constrain 
relationship between the speeds of the motors in Crane_HW, 
 

 
Figure 22- Part of the block definition diagram that concerns the Crane_HW. 
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Figure 23 – Graphical description of the constraint parameter, safe_distance. 

 
Figure 24 - bdd [Package] Analysis [Crane_HW Constraint] 

We have added parts to the block of Crane_HW, as shown in Figure 22, to be able to show 
this example. As generally described in chapter 2.5, and depicted in Figure 24, we create the 
constraint block “Crane Horizontal Speed”, which constrains the relationship between the 
speeds of the two motors involved. This way we want to ensure that the time needed to move 
the arm to the retracted vertical position should be less than or the same as the time it takes to 
move to the last possible safe horizontal position.  
 
To be able to fulfil the requirement, we need to define some parameters in the constraint 
block that will be bound to properties in the hardware blocks, as shown in Figure 25: 

• safe_distance: describes the distance the extended arm can move from the deposit belt 
towards the container without colliding with the side of the container (see Figure 23).  

• speed_horizontal, speed_arm_vertical: the speed of the motors of the crane and the 
crane arm, respectively. 

• ext_db_max, ext_cont_min: the arm extensions at deposit belt and container, 
respectively. (Range: 0-1). 
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• full_length: the full length of the arm, which we need to be able to calculate the full 
moving distance. 

 
The equation below is based on the parameters above and well-known laws of physics8

self.speed_horizontal<=(self.speed_arm_vertical*self.safe_distance)/ 
: 

((self.ext_max-self.ext_min)*self.full_length) 
 
Since the constraint block, Crane Horizontal Speed, is defined to be a constraint property of 
Crane_HW in Figure 24, we can create the parametric diagram for Crane_HW. In the 
parametric diagram in Figure 25 we bind the parameters of the constraint property to the 
block properties9

 

 and hereby constrain them with the equation defined in the constraint block. 
The binding is done with a binding connector that ensures equality at both ends of the 
association. 

Figure 25 – Parametric diagram par [Block] Crane_HW [Horizontal Speed] 

  

                                                 
8 Using the physics law where distance = speed * time to come to this equation. 
9 Parametric diagrams can also be created for constraint blocks which are composed by other constraint blocks. 
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Assumptions: 
(1) Requirement D2.3 is also applicable regarding lateral collisions when moving towards the 
deposit belt. However, we have not considered this as it will be fulfilled if the requirement 
where arm should not be extended more than necessary is fulfilled. 
(2) The tool did not allow creating parametric diagrams for composite constraints (see chapter 
5.2), so the equation is more complex then intended.  
(3) We assume that by setting constraints on the hardware properties, these will be taken care 
of in the hardware design. 

4.2.7 Decompose activities of top-level parts into primitive actions 
(Step 2g) 

Input: Top-level activity diagram (ACT), structure diagram (BDD) 
Output: Block diagram describing the composition of activities (BDD) and activity 
diagrams describing the lower-level activities/actions (ACT). 
 
In chapter 4.2.5 we described the activities for each of the top-level parts of the system. In this 
step of the methodology, these activities will be decomposed into the activities of the lower-
level parts. This is an iterative process that ends when we reach the actions of the leaf blocks, 
which in our case study are actions of the type sendSignalActions or acceptEventActions, 
which we will use to send signals to the actuators or receive signals from the sensors. 
To identify the lower-level activities/actions of a composed activity, we must investigate the 
parts of the block responsible for the composite activity, and find the parts that have to be 
involved to fulfil the activity’s purpose. The methods of identifying the activities/actions can 
be the same as in 4.2.5. Some activities may represent operations with parameters. In that 
case, we create activity parameter nodes to reflect the parameters, as illustrated in Figure 26 
(see chapter 5.3 reg. tool problems). 

 
Figure 26 – Detail view of bdd [Package] Activity [Composition of activity]. 

Looking at the example from chapter 4.2.5 and the description of the system from [5], we see 
that the activities of the top-level blocks of ProductionCell_Controller are all composed of 
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lower-level activities. The decomposition of some of these activities is shown in Figure 26, 
where we show some of the lower-level activities for the feed belt and the table. After the 
activities/actions have been identified, we can allocate them to the parts of the top-level 
blocks and order them in sequence of execution as we did in chapter 4.2.5. 
 

 
Figure 27 – The activity diagrams, act add_blank, describing the operation add_blank() for the block FeedBelt from 

Figure 21. Also showing the lower level activity diagrams for turn_on and turn_off. 

Looking closer at the activity add_blank, in relation to the parts of the block FeedBelt, we see 
that it is composed of two activities, turn_on and turn_off. These are both activities of the 
block UniDirectionalMotor. In Figure 27 we allocate and put these activities in order. For the 
system to know when the plate is in the right position to call the turn_off activity, we add an 
acceptEventAction to illustrate that we have to wait for the signal Sensor_TurnedOn from the 
photoelectric_cell, i.e from the sensor at the end of the feed belt. We then decompose the 
activities turn_on and turn_off and use sendSignalActions to represent the sending of the 
signals TurnOn_UniDir_Motor and TurnOff_UniDir_Motor. We assume that these signals are 
sent to and understood by the hardware. 
Now we have fully decomposed the activity add_blank. To summarize it, we can “read” the 
activity by iterating bottom first through the set of activity diagrams. When FeedBelt receives 
the signal Add_Blank, the activity add_blank starts. First it executes turn_on, which sends a 
signal to the UniDirectionalMotor, then it waits for a signal from the sensor before it executes 
turn_off which sends a signal to the same motor. 
 
Consistency: 
The consistency is mostly the same as in chapter 4.2.5, only on a lower level. 
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(1) Operations in the lower-level blocks should be consistent with the activities in partitions 
that represent that block. (i.e. the activity which the callBehaviourAction is associated with) 
(2) Signals that are sent or received using sendSignalActions or acceptEventActions should be 
part of the flow specification/interface of the related port of the block those actions are 
allocated to. 
(3) The blocks which the partitions of an owning activity represent, should be parts of the 
block that is responsible for executing the owning activity. 

4.2.8 Capture the behaviour of individual parts. (Step 2h) 

Input: HW/SW communication (IBD), top-level internal structure (IBD), lower-level 
structure diagrams (BDD), activity diagram (ACT) 
Output: State machine (SM) for all behavioural blocks. 
 
Using the structure and activity diagrams we created earlier, we will in this step identify the 
blocks with behaviour and capture that behaviour by creating state machines for each of them. 
The state machine diagram in SysML is similar as the one in UML 2.0.  
 
For every software block that has been allocated from an activity, we create a state machine 
diagram. Following the methodology, we will create simple state machines for each of the 
leaf software blocks and reuse these in the orthogonal state machines we create for each of the 
composite software blocks. This will be described in detail below.   
 
In reactive systems, the sensor and actuator hardware blocks communicate with the software 
by feeding it with input or receiving output, respectively. The leaf software blocks, i.e. sensor 
and actuator blocks, show the state of the related hardware blocks through their properties. 
Since each of the leaf software parts of the same type (block) have the same behaviour in the 
system, we can create one state machine for each leaf block and reuse it in all the orthogonal 
state machines of the composite blocks where that block is a part. The state machines for the 
composite blocks will then behave regarding to the combination of the states of all their parts.  
 
The structure we use to create orthogonal state machines for the composite blocks (i.e. all 
blocks which are not leaf blocks) is depicted in Figure 28. Each layer represents a region or a 
set of regions in an orthogonal state machine. For each part the block is composed of, we 
create a region which will contain the state machine representing that part. In addition, we 
also create one more region which will contain the state machine for the composed block, in 
which transitions will occur based on the combined state of all its parts represented by the 
properties set in the other concurrent regions. 
 



42 
 

 
Figure 28 – Orthogonal model explaining the layer of regions for the state machines of the top-level blocks. 

As the system uses asynchronous communication, we have to take into account that the target 
block may not be ready to respond to an incoming signal.  In the activity diagram, this was 
solved using the available notation to buffer the signal at the input pin, waiting for the control 
token to arrive to so that the activity could execute. In the orthogonal state machine, however, 
we create buffers by adding, for every expected incoming signal, one concurrent region 
containing a state machine, so that the signal can be consumed whenever it is received and put 
the state machine into a state of “Signal X received”. As soon as the block is in the right state 
to process the signal, the block method corresponding to that signal is invoked in the buffer. If 
there are several buffers in the state machine, we must make sure that maximum one of the 
buffers are allowed to make a transition at any time. In other words, the guards of the 
transition in the buffer have to be disjoint (also see chapter 6.1.1). An alternative solution 
would be to defer the incoming signal events in all the states where they should not be 
consumed. However, in [10], they discuss that deferrable events should be used with care and 
may be modelled more directly using concurrent states, as the methodology suggests. 
 
We start by creating state machines for each of the leaf blocks from the structure diagram 
with behaviour, and then we create state machines for each of the higher-level, composite 
blocks with behaviour, until we reach the root block, ProductionCell_Controller. Below we 
show examples of a sensor state machine, an actuator state machine, a composite block state 
machine and finally the root block state machine. 
 
Leaf blocks 
As we can see in the internal block diagram for hardware/software communication10

                                                 
10 Since the hardware is not decomposed into parts, we only see which of the top-level hardware blocks the 
signal originates from. 

, a 
sensor software block will receive signals from the related hardware sensor. We must ensure 
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that the state machine for that software block has triggers to match those signals. In Figure 29 
we show that the Switch state machine will make a transition to another state when receiving 
one of the signals, Sensor_TurnedOn or Sensor_TurnedOff. This means that the hardware 
sensor has moved to another state, which will then be reflected in the properties of the 
software. Notice that in addition to the initial state, there are also two different entry points11

Figure 32

. 
This gives the opportunity for two different sensor parts in the system to start in different 
states, e.g. the two switches in Table (see ). 

 
Figure 29 - stm [Block] Switch [Behaviour] 

As we can see from one of the activity diagrams which contains activities that are allocated 
to an actuator, (e.g. Figure 27), an actuator software block may receive a call event. In the 
activity diagram this is modelled using callBehaviourActions. Inside the related activity, we 
see it communicates with the hardware by sending a signal to the related hardware actuator. 
To keep this consistent in the state machine, we must therefore ensure that the state machine 
has triggers that can respond to the call events and that signals are sent to the related 
hardware. We partly show this in Figure 30.  

 
Figure 30 - stm [Block] UniDirectionalMotor [Behaviour] 

 
 
 

                                                 
11 There is no need for both entry points, as the initial state will lead to same state as the “Sensor off” entry point. 
We have still added both entry points to specify the difference in the composite diagram (see Figure 32). 
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However, as we have not modelled the details for the target hardware, we do not show the 
sending of the signals specifically in the state machines for the actuator software blocks. We 
assume that by calling “turn_on” or other related call events, the related method ensures that 
the correct signal is sent to the correct hardware part. 
 
As we see from the two above diagrams, we update properties of the leaf blocks upon entry to 
the new state. These properties represent the state of the hardware and will eventually allow 
higher-level state machines to react to the combined states of all its parts. 
 
Composite blocks 
We now have one state machine for every leaf block in the structure diagram. For each 
composite block, we will now create an orthogonal state machine which will contain one 
region for each part of the block. In addition, there will be one region for each of the expected 
incoming signals, and one region which will contain the state machine that describes the 
behaviour of the composite block, based on the states of its parts and buffers. Below we will 
use parts of the state machines for Table and FeedBelt to describe state machines for 
composite blocks. 
 
Part regions 
As we can see from the excerpt of the structure diagram in Figure 31, the top-level block for 
Table consists of five parts, more precisely, two BiDirectionalMotors, two Switches and one 
Potentiometer. For each of these parts, we add the related state machine to a new region in the 
orthogonal state machine for Table, as shown in Figure 32. To differentiate between the 
different state machines of the same type, we also add the role names from the structure 
diagram to the state machines. 
 

 
Figure 31 - Excerpt of structure block definition diagram, whole diagram can be seen in Figure 44. 
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Figure 32 - Excerpt of orthogonal state machine for Table, showing only the regions for the parts of Table.  

Whole diagram in Figure 91. 

Buffer regions 
There are two different buffer designs in the model of this case study. We will show examples 
of both using the buffer regions of Table and FeedBelt. 
For the FeedBelt state machine, we add one region for each expected incoming signal as 
described earlier. This way we consume the signals when they arrive, which may be in any 
order and at any time. E.g. when the Add_Blank signal is received, the transition between the 
AddBlankBuffer Empty state and the AddBlankBuffer Full state is triggered. The state machine 
for the AddBlankBuffer will reside in the Full state until the FeedBelt’s parts reach the state 
where both the photoelectric_cell and the conveying_motor are off. It will then transition back 
to the empty state and call add_blank(). In the full state machine diagram in Figure 90, we can 
see that this call event will trigger the transition between states Belt empty and Wait for Plate 
to reach end. We also have to ensure that all the transition guards from the full state to the 
empty state used in the buffers are disjoint, to avoid indeterminism and potential dead locks 
(see chapter 6.1.1). From the FeedBelt example, we see that the two guards will never be true 
at the same time. 
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Figure 33 - Buffer regions from state machine for FeedBelt. For whole diagram, see Figure 90. 

 
Even though the events sent between the top-level blocks are described as asynchronous in 
[5], we can see by studying the activity diagram that when either Table, Press or DepositBelt 
send a signal, they will wait for the other device to respond before continuing. To emphasize 
this, we could have modelled the state machines without buffers and let the incoming signals 
trigger transitions in the main region. However, to keep consistency between the different 
diagrams, we decided to model these state machines with buffers too. These buffers do, 
however, have a slightly different design than the other ones, which is shown in Figure 34. 
There is only one buffer region regardless of number of expected incoming signals. The state 
machine in this region contains a number of states and transitions where each of the expected 
incoming signals will trigger a transition. We order them to show that there is an expected 
sequence in the reception of the signals. In Figure 34 the expected sequence of the incoming 
signals for Table is modelled in the buffer. We add guards to explicitly state when the 
transition may be triggered, even though it would not be necessary in this case, since the 
guards describe the only state where the call events may trigger a transition. 
 

 
Figure 34 – Detail view of buffer region from Table state machine. For whole diagram, see Figure 91. 

Main region 
In the main region we bring together all the parts of the composite block. The transitions 
made between the states are according to call events from the buffers or based on the 
properties of the sensors. Through the effects of the transitions in the main region, we also 
control the actuators. 
In Figure 35 we see the main region of the Table state machine, where we can see the 
different states Table can be in. These states can all be described with the values of the 
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properties set by the state machines of the leaf blocks, as described earlier. Combined the 
properties form the state invariant for each of the main region states. 
In the state machine of the main region of Table, we see that there are four states distributed 
in two composite states. In the composite Moving state, we use orthogonal states to describe 
the states Moving Up(...) and Moving Down(...), since a movement in Table contains 
concurrent activity in the two actuator parts, namely rotating_motor and elevation_motor. 
Once the related call event from the buffer has been received (e.g. go_unload_position()), 
both motors will start moving and will be stopped individually as soon as their related sensors 
let the system know that the right rotation or elevation position has been reached. When both 
regions have reached their final states, indicating that the position of the Table has been 
reached, the state machine makes a transition to one of the sub-states of the Not Moving 
composite state and sends a signal to one of the other top-level blocks, e.g. 
^feedbelt.Feed_Table() (see assumption). 
 
Root block 
After creating state machines for all the parts of the controller block, we are now able to 
arrange them in a state machine for the ProductionCell_Controller, where we describe the life 
span of the controller and the concurrency between the devices.  
Figure 89 shows the controller state machine. We focus on the operating state of the system 
and abstract from the details of the other states. When the controller receives the signal 
TurnOn(), the system starts initializing (see assumptions), and the devices will move to their 
starting positions.  
 
When all the parts are done with initialization, the state machine will make a transition to the 
operating orthogonal state, where all the state machines that were created for the composite 
top-level blocks are arranged into regions to be able to show the concurrency between the 
parts of the controller.  
 
The state machines for the parts of the system are non-terminating. However, when the signal 
TurnOff is received, the state machine exits the operating state after finishing executing any 
possible transitions effects or entry/exit activities (see assumptions). After shutting down the 
system and bringing the system to a safe state, the system goes back to the idle state. 
Emergency stop is not modelled in this case study. 
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Figure 35 – Detail view of main region of the Table state machine. For whole diagram, see appendix, Figure 91. 
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Assumptions: 
(1) There are no plates in the system at start-up of the system. 
(2) When the operator turns off the system, we assume that the shutdown state will contain 
measures to bring all the devices and plates to safe positions.  
(3) We use OCL to describe guards. 
(4) The syntax “:=” is used for assigning values, to be able to differentiate it from the OCL 
syntax of the guards. 
(5) We use the semantics “^target.Signalname(args)” for send clauses, as suggested in [11]. 
(6) There is no system for resending lost signals, or handling duplicate signals in [5]. We 
therefore assume that all signals that are sent, will be received once by the target within a 
acceptable amount of time. 
(7) When triggering a transition using a call event for operation “turn_on”/”turn_off” or 
other similar operations in the leaf blocks, we assume that a related signal will sent to the 
related hardware block, even though this is not modelled in this case study. 
 
Consistency: 
(1) There should be a state machine for each block with behaviour in the block definition 
diagram. 
(2) For each operation in a block in the block definition diagram and thus for each activity 
allocated to that block through a callBehaviourAction in the activity diagram, there should be 
a related call event in the state machine for that block. 
(3) For each acceptEventAction in the activity diagram which is allocated to a block, and thus 
for each receive event on a lifeline representing that block in a sequence diagram, there 
should be a transition which triggers for the same event in the state machine for that block.  
(4) For each acceptEventAction in the activity diagram which is allocated to a top-level block, 
and thus for each receive event on a lifeline representing that block in a sequence diagram, 
there should be a buffer region that contains a trigger event for the same event in the state 
machine for that block. 
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4.2.9 Pre- and post conditions (Step 2i) 

Input: Structure diagrams (BDD), activity diagrams (ACT) 
Output: Pre- and post conditions for the top-level blocks. 
 
In this step, we will specify the pre- and post conditions for the operations in the top-level 
blocks. These conditions will be useful in the safety design later in the methodology. Pre/post 
conditions set constraints to what state the owning block and its environment can be in 
before/after the execution of a method.  
The activities which were identified in the activity diagrams of this case study are consistent 
with the operations of the blocks, so we can investigate them to find which pre/post 
conditions exist for each of the methods in the top-level blocks of the system. By inspecting 
the activity diagrams we can find the state of the system before and after execution of the 
relevant activity. To find the pre-condition, we investigate all required inputs to an activity, 
trace the control flow back to the previous activity/activities and check the state of the system. 
For the post-conditions, we check the state of the system after execution of the activity. In 
SysML any constraint language can be used. In this case study we use OCL. 
 
For instance, by looking at Figure 21 and Figure 27, we see FeedBelt activity add_blank and 
its lower-level activity diagram. For a control token to arrive at the activity add_blank, it will 
come from either feed_table or initialize. By inspection of these activities (Figure 66 in the 
appendix), we can see that both the photoelectric cell and the motor of feed belt are turned off 
when the activities are finished executing (see assumption below). 
 
The result of the investigation for the operation add_blank() is12

context FeedBelt::add_blank() 
: 

pre: self.photoelectric.value=false and self.conveying_motor.on=false 
post: self.photoelectric.value=true and self.conveying_motor.on=false 
 
  

                                                 
12 In the tool the context is set. We add it here to specify the context.  
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4.2.10 Formalizing requirements. (Step 2j) 

Input: Requirement diagrams (REQ), structure diagrams (BDD) 
Output: Cross-cutting diagram with formalized requirements and related blocks. 
 
In chapter 4.2.3 we derived the system-level requirements into block-level requirements to 
describe the effect the system-level requirements have on each of the top-level parts of the 
system. This process made the requirements more specific. However, as they are textual, they 
may still be ambiguous and be subjects for interpreting. 
In this step, we will therefore formalize the requirements using the context of the related 
blocks and parts, and base it on their attributes and operations. The result of this will be new 
refined requirements which are related to the originals using the refine relationship. This will 
ease the process when we in the next step will look for design elements that satisfy the 
requirement. 

 
Figure 36 - req [Package] Requirements [Formalizing req D3.5] 

Requirement D3.5 was originally derived from S3.0 (Figure 114), which has been partitioned 
into D3.5A and D3.5B. By partitioning the requirement into two smaller ones, they became 
more specific, though the two partitioned requirements combined should neither add or 
remove anything from the containing requirement [8]. We will use D3.5A as an example for 
this step, as shown in Figure 36. 
The text of D3.5A is “The deposit belt must be stopped after a plate has passed the 
photoelectric barrier at its end”. Looking at the text of the requirement, we need to ask 
ourselves two questions: How is the deposit belt stopped? How to register that the plate has 
passed the end of the photoelectric barrier? We will need to look at the block attributes and 
methods of DepositBelt, which we traced the requirement to in an earlier step. From this we 
see that the deposit belt is stopped by calling the part conveying_motor’s method turn_off(). 
We support the formalization of the first part of the requirement with the rationale:  
 

“The deposit belt is stopped iff belt2.conveying_motor.turn_off()”. 
 

We use the full name from the perspective of the controller as there are several 
conveying_motors in the system. For the second part of the requirement, we know that if a 
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plate is going to pass the photoelectric cell, the cell’s value has to be true first, then false. The 
rationale we use for this is:  
 

“The plate has passed the end of the photoelectric barrier iff 
first belt2.photoelectric_cell.value=true, then belt2.photoelectric_cell.value=false” 

 

After we have formalized these parts of D3.5A, we can create a new refined requirement with 
the rationales connected, so that we provide the history and reasoning of the refinement. The 
formalized text will be: 

“belt2.conveying_motor.turn_off() must be executed 
when belt2.photoelectric_cell.value changes from true to false.” 

 

This process is done for every requirement. Using the tool, we create one diagram per main 
requirement. We will continue working on these in the next step. Because of time constraints, 
we have formalized only a small set of requirements.  
 
Side notes:  
(1) Some of the requirements in this step may give pre- or post conditions to block methods. 
These pre/post conditions for the methods can be compared to those that were found in the 
previous step. This way we may also uncover faults in the design or discover requirements 
which are not precise enough. 
(2) SysML also allows the creation of test cases for each requirement like we show an 
example of in Figure 37. As in regular test case generation, test cases should be made 
independent from the design process. 

 
Figure 37 – Test cases to verify the requirement D3.5A 
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4.2.11 Mapping requirements to the design. (Step 2k) 

Input: Set of formalized cross-cutting diagrams with formalized requirements (REQ), all 
design diagrams. 
Output: Safety analysis cross-cutting diagrams containing requirements and related slices 
of diagrams. 
 
In this step we will map the requirements we formalized in the previous step to the relevant 
slices of the design diagrams, so that we can be able to support safety arguments/cases for the 
certification process. A slice is a relevant part of a diagram which shows that a requirement is 
satisfied. For each formalized requirement, we will investigate the diagrams of the related 
blocks to find all the relevant slices to prove that the requirement is satisfied in the design. 
The requirement D3.5A, which we use as an example in this step, is related to the behaviour 
of the system, so to find the slices needed, the subjects of our investigation will be the 
behavioural diagrams of the model. 
 
The text of the formalized requirement of D3.5A is “belt2.conveying_motor.turn_off() must 
be executed when belt2.photoelectric_cell.value changes from true to false”. By looking at 
the block traces defined for the requirement earlier in Figure 114, and the structure diagram in 
Figure 44, we see that we have to check the behavioural design models created for 
DepositBelt and its parts, namely photoelectric_cell and conveying_motor. To check this, we 
want to find all situations in the model where the photoelectric_cell of DepositBelt goes from 
true to false, to verify that the turn_off() method of conveying_motor of DepositBelt is always 
executed right after. 
 
In our model, we have to check the activity diagrams and the state machines to find all the 
relevant slices13

In 

. This means investigating all activities that are allocated to DepositBelt or 
any of its parts, in addition to investigating the composite state machine for DepositBelt. 

Figure 38, which is an extension of Figure 36 from the previous step, we show all the 
relevant slices from our diagrams that relate to the situation where the sensor goes from true 
to false. When checking the state machines for DepositBelt and its parts, we find the 
situation described in the main region of the state machine. More precisely, we find that when 
the property belt2.photoelectric_cell.value changes from true to false, a transition is made, so 
that the exit activity conveying_motor.turn_off() of the Belt running state is executed.  
In the activity diagram, we check the activities initialize and bring_past_end, which both are 
allocated to DepositBelt in the diagram act produceForgedPlates and find that the related 
situation is described in the activity bring_past_end, where it receives the signals 

                                                 
13 We have not modelled this scenario using sequence diagrams in this case study, as we have used sequence 
diagrams only for modelling interaction between the top-level blocks. 
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Sensor_TurnedOn and Sensor_TurnedOff in sequence and then executes the activity turn_off, 
which is allocated to the conveying_motor. 
 
All slices that are identified are then connected to the related requirement using the satisfy 
relationship, meaning that we in the role of safety engineers see that the slice satisfies/fulfils 
the targeted requirement. When it comes to other requirements, we might only need small 
parts of state machines regions or activities, or we might need sets of several slices to satisfy a 
requirement. However, to describe this specifically in a diagram requires more tool support. 
 
Even though this is not a focus of this case study, we wish to mention that any related test 
cases that have been created may also be mapped to the requirement using the verify 
relationship, as shown in Figure 118 in the appendix. 
 
At this point, it is impossible to give an exact recipe how to map any requirement to the 
model, as the complexity depends on the requirement in question. But the big lines can be 
extracted from the steps in the requirement management in this methodology; 

• Capture, partition, derive and refine the requirements. 
• Formalize the requirements to meet the design terminology; attributes, operations etc. 
• Map the requirement to related slices of the structure or behaviour 
• Verify the requirements using test cases. 

 
We need to keep a close eye to the development of the requirements to ensure that no wrong 
assumptions are made about the system or its environment that may propagate into the design 
of the system. By partitioning, deriving and refining the requirements it may be easier to show 
that the requirement is fulfilled or not. Also, by keeping track of all the assumptions made, 
domain experts may investigate these to ensure that no wrong assumptions have been made. 
 
Also see chapter 5.1 for description of tool problems, and chapter 6.1.3 for lessons learned 
regarding traceability. For more examples of traceability mappings for safety design, see 
appendix, A.10. 
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Figure 38 - Cross-cutting diagram bringing together the structure, behaviour and requirement diagram for 
requirement D3.5A. 
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5 Tool problems 
We used IBM Rational® Software Architect™ Standard Edition, Version: 7.5.0, [12] 
extended with the plug-in EmbeddedPlus SysML Toolkit 2.5.1.1, [13]. In this chapter we will 
describe some of the problems we met during the development using these above-mentioned 
tools. The problems mentioned have been investigated without finding a solution. However, 
we do recognize that some problems may be user problems, where the solution may exist in 
the tool, but is not found. In Appendix C there is an additional list over tool problems we have 
not mentioned here. 

5.1 Graphical 
In our view, the biggest challenge of the tool is graphical. To be able to quickly get an 
overview, ensure that a model is correct and avoid misunderstandings when reading a 
diagram, it should be built up as logical as possible and the connectors should not be tangled. 
 
Tangled connectors 
When opening a previously stored diagram, it tends to open with tangled connectors, even if 
they were arranged neatly upon saving and closing the diagram. We also experienced that 
moving one element in a diagram could cause connectors to be rearranged illogically. For 
instance, if we rearranged the position of an action which was connected to a fork node while 
working in an activity diagram, all outgoing connection lines were rearranged illogically. This 
problem mostly occurred when the diagrams grew large. Hence, making small changes to and 
getting new screenshots of a diagram was very time consuming, as the connectors needed to 
be rearranged. We discovered that by choosing the “arrange” function in the menu of the tool 
followed by “undo”, the diagram was brought back to the last saved diagram, with neatly 
arranged connectors intact. However, this did not always work. 
 
Requirement blocks 
Graphically, it was a problem to get a good overview of the requirements. The text in 
requirement blocks does not wrap, so the blocks had to be very wide for us to be able to read 
the whole text. This made it difficult to keep the requirement diagrams nice, especially when 
we started to partition and derive the requirements. We think it would be helpful to be able to 
export the diagrams into tables, as mentioned in [8]. 
 
Slices 
When modelling traceability, we wanted to set focus on specific parts of a diagram. To do 
this, we dragged existing diagrams into the safety analysis diagram. However, the layout of 
the original diagram was not preserved in the copy, and the nodes and connectors were in a 
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jumble. Our solution was to either rearrange the diagram copy, which was time consuming at 
best, or use screenshots from the original diagram. The latter is not a solution when we in the 
future wish to automate the diagram, since the screenshot contains nothing but visual 
information. A solution, if made possible in the tool, could be to import a slave of the original 
diagram, where no changes of elements are allowed, but where we could filter out the 
uninteresting parts of the diagram and thereby highlight the parts of the diagram we are 
interested in, or by preserving the original layout of the diagram and then closing all 
compartments, except the ones with the information we wish to highlight. 
 
Internal block diagrams - Boundary ports 
When creating internal block diagrams, we define the structure of the parts of a block. This 
block may have ports, which are called boundary ports when describing them in the diagram 
of the owning block. However, we were not able to show these boundary ports. For instance, 
when describing the physical item flow (as in Figure 48), we originally created the diagram 
for the block ProductionCell_System. We were able to create boundary ports in the diagram at 
first, but when opening the diagram after closing it, both ports and any item flow connectors 
connected to it, were gone. The ports were still in the model. We solved this by creating the 
internal block diagram for higher level block, ProductionCell_Domain, instead. This made 
the tool treat the flow port of ProductionCell_System as a normal flow port. 
 
Internal block diagrams - Item flows 
We had a similar, but opposite problem with item flows. When deleting an item flow from the 
internal block diagram and model, it did not disappear from the diagram until we closed and 
reopened it. 

5.2 SysML Compliance 
According to a report on the SysML Forum14

 

, no tools are complete regarding compliance to 
the SysML standard. However, if we were to follow this further, we would need information 
regarding how they have measured the different tools, and find out what was lacking in the 
different tools. 

Missing frames, regions and boundaries 
In the SysML standard [7], there is a requirement regarding diagram frames. Frames are 
missing in the block definition, requirement and use case diagrams of the tool. According to 
email correspondence with EmbeddedPlus, this is an error in the specification, and they are 
working to correct this in the next version of SysML. Two similar problems are that system 
boundary is missing for use cases, and interruptible regions are missing for activity diagrams. 

                                                 
14 http://www.sysmlforum.com/tools.htm 
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Parametric diagram 
Using these tools gives us only a limited possibility of creating parametric diagrams. 
According to the SysML standard [7], it should be possible to create parametric diagrams for 
both regular blocks with constraint properties and for composite constraint blocks. However, 
the tool only allows parametric diagrams for the regular blocks.  
In chapter 4.2.6, regarding the creation of constraints on physical blocks, we originally 
wanted to make a parametric diagram for a composite constraint block. The purpose of this 
was to make the diagram more readable, try out the composite constraint blocks and show an 
example of reusing constraint blocks. Even though the tool allowed us to create composite 
constraint blocks, it was not possible to create parametric diagrams for them. 
 
Send/receive signals in state machines 
The SysML standard also describes the usage of a graphical notation for sendSignal and 
receiveSignal actions in state machines. This is not available in the tool. Describing the 
sending and receiving of signals graphically may be better, as to be more specific, preserve 
consistency, make diagrams easily readable and may also be easier to automate. Text is error 
prone. 

5.3 Usability problems 
Internal block diagrams 
When creating internal block diagrams, all properties, references, ports and parts are shown as 
default upon creation of the diagram (though none of the connections). With several internal 
block diagrams, it is easy to accidentally delete a port or part which is in use in another 
diagram. When this happens, we get a warning, but with no possibility to cancel, the element 
is then deleted from the model anyway. It is possible to undo after deleting, but a cancel 
option might be a better feature. 
 
Error messages 
The error messages in the tool are sometimes very subtle and give little explanation to where 
the problem is. This goes for error messages that occur during validation of the model and 
normal error messages. 
 
Activity diagram/User problem 
In the activity diagram we defined parameters for some of the activities, e.g. the Table activity 
act move in Figure 68. However, when calling the activity, as in Figure 67, we were not able 
to specify a value for that parameter. There is an action called createObjectAction, which we 
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can type with the ValueType we want, but we did not manage to find out how to specify, for 
instance, the loadposition literal value of the Table_Position valuetype.  
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6 Discussion 

6.1 Lessons learned 
During the development of the model, several issues needed to be closely inspected. 

6.1.1 Asynchronous communication 

The asynchronous, concurrent behaviour in the system created some challenges during 
modelling. These situations had a tendency to surface while modelling the robot. The robot 
was designed receive several concurrent incoming signals from three different sources and act 
on them according to its state and was the most complex of the devices in the system. 
 
(Lack of) Ordering of events 
When we modelled the interactions of the top-level blocks, using the sequence diagram (see 
Figure 58), an ordering15

By using combined fragments we tried to show more of the possible orderings, but at the top-
level this wasn’t possible as either the combined fragments would have had to been allowed 
to overlap, or the sequence diagram would be very complex which would make it prone to 
errors and thus work against its purpose. In the high-level activity diagram (see 

 was imposed on the send and receive events. However, as there are 
many possible orderings of events that may occur, this sequence diagram only describes one 
of the possible orderings of events in the system. 

Figure 60), 
however, we were able to show the interaction and concurrency without imposing an 
ordering. 
 
Deadlocks 
When we modelled activities, we used the existing notation in the activity diagram to model 
that each device may accept the expected incoming signals at any time by using 
AcceptEventActions. When a signal is accepted, it is stored in the input pin of the related 
activity until all object/control tokens are present at the inputs of the activity and the signal is 
then consumed. In this sense, the asynchronous communication and ordering are taken care 
of. However, we met a different challenge in the activity diagrams when designing the robot 
behaviour. In the partition of the robot, we added a decision node (see Figure 94) and guards 
so that the control flow can choose its path based on the state of the robot. Since the robot has 
two arms, there is always the choice of two activities, which can be executed if the related 
signal has been accepted. By inspecting the diagram closer, we discovered that the way we 
modelled the behaviour of the Robot may cause dead locks (see Figure 62). For instance, if 
                                                 
15 An ordering of events occurrences is also called a trace [14] S. S. Alhir, UML in a nutshell: a desktop 
quick reference: O'Reilly & Associates, Inc., 1998.. 
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the robot is in a state where arm1 is loaded, and the press is still loaded, the control token may 
still choose the path to the load_press activity. Hence, we will experience a dead lock, since 
the Robot will be waiting for the Press to send the Load_Press signal. Whether the related 
signal has been accepted or not is not a condition for the guard. 
We did not have time to fix this issue in this thesis, but we have the following suggestions for 
solutions: (1) Add an extra condition to the guards, either by checking whether the received 
signal has arrived, or checking the press property pos, which describes the position of the 
Press, or (2) impose an ordering to the activities, which may cause us to reuse the same 
activity several times in the same partition. In that case, we may create central buffers for 
each of the incoming signals, where the signals will be stored when they are accepted. These 
buffers can be shared by the activities waiting for the same signal. 
 
Race conditions 
Yet another situation surfaced when we were modelling the state machine for the Robot. To 
be able to receive incoming signals at any time, we had two design choices, either (1)defer 
each signal event in all states except in the state where it is expected to trigger a transition, or 
(2)create signal buffers. Since [10] advised against deferring signal events, we decided to 
create signal buffers, as described in 4.2.8. 
In state machines, where we have several concurrent signal buffers, it is important that the 
guards of the buffers are disjoint, so that we avoid race conditions. E.g. if the two of the 
buffer guards of Robot are not disjoint, then they may both trigger a transition at the same 
time. The effect on both of the transitions will each call an event in the main region state 
machine, and the outcome is undetermined. One of the call events will be lost, and since the 
signal is not repeated, we will eventually end up in a dead lock. An example is if Press and 
Table send signals to Robot, and the state of Robot triggers a transition in both buffers. If 
robot picks the plate from the Table, the Robot will never pick the plate from Press, and we 
have a dead lock. 
To avoid this, we investigated the possible signals for every state in the composite idle state 
of Robot and discovered that there are two possible signal buffers that may transition for each 
of the states (see Table 2). In the state Arm1_loaded, the two signals are sent from the same 
source and will never be present in the buffers at the same time, so we could merge the two 
buffers into one, as shown in Figure 94. 

ARM 1 
LOADED 

ARM 2 
LOADED 

ROBOT_STATE Signal buffers that may 
trigger a transition 

FALSE FALSE Unloaded PFT PFP 
FALSE TRUE Arm2_loaded PFT DOB 
TRUE FALSE Arm1_loaded LP PFP 
TRUE TRUE Arm12_loaded LP DOB 

Table 2 – Describing in which signal buffers each state of the Robot may trigger a transition.   
(PFT – Pick from table, PFP – Pick From Press, LP – Load Press, DOB – Deposit On Belt) 
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To avoid the race condition problem in the other possible states, we added a priority between 
sets of signal buffers, by adding a property that is set when the signal is received. If two 
buffers are in danger of transitioning at the same time, we add a priority to one of the 
transitions that has to wait. We gave priority to the signal events that were sent by devices that 
were the last in the production chain of the two. This experience taught us the importance of 
disjoint buffer guards between the regions, in other words, there should be an XOR relation 
between them.  

6.1.2 Hardware devices and communication with software 

While working with this thesis we have learnt more on how hardware and software may 
communicate and how different types of sensors work. Even though the hardware has been 
mostly scoped out of this thesis, we needed information as to how e.g. the hardware 
potentiometer may work to be able to create a realistic state machine. Switches and 
photoelectric cells are straightforward, as they have two states, on or off, while potentiometers 
may be designed in different ways. In our design, we assume that we in the call event 
wait(v:Value_Type) send a signal to the hardware potentiometer so that it will let us know 
when the related device is in the right position by sending us a signal Sensor_PosOK when 
this happens. This way we are able to abstract from the details about how the actual 
potentiometer works. 

 
While working with this case study, we have understood that the object-oriented solution we 
base our design on is not typical for control systems. In a full solution there would for 
instance be a driver between the hardware and software that transforms the signal from the 
hardware, into a signal that the software can interpret, but as this is not described in [5], we 
have abstracted away from the driver and assume that the controller understands the signals 
from the hardware. 

6.1.3 Traceability and mapping of requirements 

Based on our experience in this thesis, we see that creating traceability links to support the 
generation of safety cases can be a lot of work and requires specific effort throughout the 
development process. It demands that the safety engineers have a lot of knowledge about the 
system, its usage and properties to be able to trace the requirements to the appropriate blocks, 
operations and diagrams. By adding the traceability during the development, it seems to ease 
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the process, though this would need to be investigated further. Even though we had firsthand 
knowledge about the system, the modelling and extracting of the correct information and 
slices from the diagrams proved to be difficult due to tool problems as described in chapter 5 
regarding slices. This will demand more tool support.  
 
One aspect that came to mind during the work with this thesis, is that the safety analysis 
design may become outdated, if parts of the system change, e.g. during development or in 
later versions. In future work, we also need to make sure that changes made in the design are 
updated in the safety analysis design to keep the diagrams consistent, and that changes are 
marked in case the changes require further inspection regarding the safety analysis. 
 
Another issue is that tracing requirements from both the activity diagram and the state 
machines may result in some redundancy. From the experience with this case study, we learnt 
that one composite state machine diagram describes the whole behaviour of a block and the 
states of its parts, while we need to inspect several activity diagrams to discover the behaviour 
or state of the same block. More specifically, the main region and buffers of a composite state 
machine, combined, contain the most specific and compact information in the model as all the 
information about each part of a block and its behaviour can be shown in one diagram. 
However, the diagrams may easily become complex, but by using composite states, we are 
able to view the design of the device at different levels. In addition, the state machines also 
contain state invariants and properties, which provide a lot of useful information. To find the 
state of the parts of the system in an activity diagram, it requires more effort, as we need to 
inspect several diagrams. For instance, by looking at the safety analysis diagram for 
requirement 3.4 in the appendix A.10.3, we see that to be able see the state of the Table before 
the activity feed_table is executed by FeedBelt, we need to inspect the diagram act move 
which is called from act go_loadposition, which is the last activity before it sends the signal 
Feed_Table. On the other hand, the activity diagrams use the sequences of actions to describe 
block behaviour in a very intuitive manner. Specifically, when it came to the safety analysis 
conducted in this thesis, activity diagrams gave a visually good overview to show sequences 
of actions between the environment and system, e.g. bring_past_end in D3.5A. However, 
which diagram or combination of diagrams is most useful in which contexts will depend on 
the requirement and needs more research. 

6.2 Conclusion 

6.2.1 SysML Evaluation 

A modelling language will give positive effects, by gaining a common and unambiguous 
understanding of a system by looking at the system at a higher abstraction. In this case study 
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we use SysML to bring together system, software and safety engineers and this may bring a 
common understanding of the system.  
As a novice to modelling systems, there are a lot of new concepts that may be difficult to 
comprehend at first. There are several similar concepts that describe the same parts of the 
model in different contexts, e.g. block/part or action/activity. In any language, there is a 
threshold for learning a new modelling language, but since SysML is a subset of the 
standardized and much used modelling language in both industry and education, UML, and 
the extensions of SysML are built upon similar constructs that we are used to see in UML; the 
learning threshold of the language may be lower. However, the similarities between the 
languages may also cause some confusion. Tool problems or tools that do not comply with the 
standard may also cause confusion about the language. 
As for safety design, the cross-cutting links, which we use between the requirements and 
model elements, help us bring the different parts of the system together and we think this is 
helpful on the way to generating safety cases. At the point we reached in our research in this 
case study, the SysML constructs proved to be able to describe what we set out to do, namely 
to trace which parts of the design diagrams each requirement was satisfied. However, we 
think that there are some challenges that may need to be met. In addition to the tool problems 
regarding slicing, one challenge was to specifically show when a sets of slices originating 
from diagrams from separate top-level blocks were collaborating to satisfy a requirement. It 
might be useful to look into expanding the profile to create more specific constructs to be able 
to handle sets of slices, smaller slices or specific sequences.  

6.2.2 Tool evaluation 

The application Rational Software Architect from IBM16 is based on Eclipse, and is an 
extendible and quite user-friendly tool when it comes to the user interface. It is easy to install, 
and easy to extend with plug-ins like the SysML ToolKit from EmbeddedPlus17

                                                 
16 http://www.ibm.com 

. As described 
in chapter 5, some of the problems of the tools caused us to use a lot of time on tidying up the 
models. As we are new to this tool, it took some extra time to investigate if some of the 
problems actually were problems with the tool or if we just hadn’t found the solution yet. As 
mentioned, confusion about SysML constructs may also be caused by problems with the tool, 
e.g. properties that need to be set may be hidden in the user interface. With more experience 
with the tool, however, one will know where to look for solutions. If new users are familiar 
with Eclipse, we think the threshold for learning this tool is lower. The price of the tools are 
quite high, however, which may be a high threshold for purchasing the tools. All in all, for the 
work performed in this thesis, the tool left us with mostly positive experiences to be able to 
fulfil our task, even though some of the problems described in chapter 5 and appendix C, 
made it challenging at times, and should be fixed.   

17 http://www.embeddedplus.com 
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6.3 Future work 
Fix shortcomings 
As mentioned earlier, there are some shortcomings to this model that needs to be corrected 
and extended. The error in the Robot partition of the activity diagram as described in 6.1.1 
needs to be fixed, and depending on the decisions made, some changes may be needed in the 
state machine for Robot as well to keep the models consistent. 
 
More experience in traceability and analysis 
In this thesis we have traced six requirements to the model elements. To be able to make well-
educated decisions, more experience is needed in this field, e.g. to be able to realize which 
diagrams are most convenient to use in certain contexts. Performance also plays an immense 
role in safety, e.g. showing that the feed belt motor must stop within a certain time after the 
photoelectric cell has turned on is important for the safety requirement to be fully satisfied. 
More examples regarding performance analysis might therefore be interesting to look into. 
 
Tool and language support 
From the experiences with the tools used in this case study we see that we may need more 
tool support to be able to effectively mark slices of a diagram. Also, we need to be sure that 
slices are kept up to date when changes are made to the system. In addition, since the trace 
construct we use to trace requirements to related blocks is a very general and weak 
relationship, it might be interesting to look into extending the profile, to create more specific 
constructs to fulfil the purpose of safety analysis. 
 
Automation 
The final goal is to be able to automate the generation of safety cases. How to automate and 
extract the traced parts of the model to be able to support the generation of safety cases is an 
important part of future work. 
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Appendix A Production Cell Case 
Study 

A.1 System-level diagrams 

A.1.1 Context  diagram 

 
Figure 39 - System context diagram which shows the elements in the environment that may interact with the system. 
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A.1.2 High-level requirement Diagrams 

 
Figure 40 - System level requirements, high-level requirements which all will be further partitioned and derived. 
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A.1.3 Use case diagram 

 
Figure 41 - Use Case Diagram for the Production Cell System, describing the system's main functions and actors  

The Hardware subsystem represents the set of hardware devices which will provide input to 
and receive the output from the controller. 
 
Reg. Use case diagram: The boundary in this diagram has been added to the image outside 
the tool as we could not locate the system boundary in the tool (see Chapter 5 Tool problems) 
The allocated stereotype has been removed to ensure that the image is consistent with this 
stage in the methodology,  
  



72 
 

A.1.4 Use case specification for ‘Turn On’ 
Use Case Turn on 
Actor  Operator, FeedBelt, Table, Robot, Press,  DepositBelt, Crane 
Pre-condition  System is turned off 

 No plates are present in the system 
Description 1. The operator turns on the system. 

2. The system tells the machines in the system to turn on and go to their 
initial positions. 

a. The system commands the feed belt to turn off its motor. 
b. The feed belt turns off its motor. 
c. The system commands the table to move into its load position. 
d. The table lowers and rotates until it reaches its load position.  
e. The system stores a request that the table is ready for a new 

plate until the feed belt is ready to act on it. 
f. The system commands the robot to move to the table pick up 

position. 
g. The robot retracts both its arms and rotates until it reaches the 

table pick up position (position 2). 
h. The system commands the press to move to its load position. 
i. The press moves its movable plate upwards until in the top 

position, and then moves its movable plate downwards until it is 
in middle (load) position. 

j. The system stores a request that the press is ready to receive a 
plate until the robot is ready to act on it. 

k. The system stores a request that the deposit belt is ready to 
receive a plate until the robot is ready to act on it. 

l. The system commands the crane to move to its pickup position 
over the deposit belt. 

m. The crane moves towards the deposit belt and extends its arm 
until it is in the pickup position over the deposit belt. 

n. The system stores a request for the deposit belt to bring a plate 
to the end of the belt. The system stores this request until the 
deposit belt is ready to act on it. 

Post-condition  All the physical machines in the system are turned on and in their initial 
position and are ready to receive a plate. 
 FeedBelt’s belt is not running. 
 Table is in load position. 
 Robot is in position 2, arms are retracted. 
 Press is in load position. 
 Crane is positioned over the deposit belt, arm extended to the 

deposit belt extension. 
 No plates are in the system. 
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A.1.5 Use case description for ‘Produce forged plates’ 

Use Case Produce forged plates 
Actor  Operator 

 FeedBelt_HW 
 Table_HW 
 Robot_HW 
 Press_HW 
 DepositBelt_HW 
 Crane_HW 

Pre-condition  System and all machines are turned on 
 FeedBelt is not running. 
 There is no plate at the end of the feed belt. 

Description 1. The operator adds a new plate to the feed belt. 
2. The system commands the feed belt to move the plate to the end of the 

belt. 
3. The feed belt moves the plate to the end of the belt. 
4. When the table is in load position, the system commands the feed belt to 

feed the plate onto the table. 
5. The feed table feeds the plate onto the table. 
6. The system commands the table to go to its unload position. 
7. The table rotates and elevates to its unload position. 
8. When the robot’s upper arm is unloaded and the robot is ready, the 

system commands the robot to pick up the plate from the table. 
9. The robot rotates until its upper arm points to the table, and then it 

extends its upper arm until it is positioned over the table, and activates 
its magnet to pick up the plate, before it retracts its upper arm to its 
retracted position. 

10. When the plate is picked from the table, the system commands the table 
to go to its load position. 

11. The table rotates and lowers itself to its load position. 
12. When the press is in load position and the robot is ready, the system 

commands the robot to load the plate to the press. 
13. The robot rotates until its upper arm points to the press, then it extends 

its upper arm until its magnet is positioned over the press, and 
deactivates its magnet to drop the plate, before it retracts its upper arm 
until it is in its retracted position. 

14. The system commands the press to forge the plate and to bring the 
movable plate to its unload (bottom) position. 

15. The press moves its movable plate upwards until it arrives to the top 
position, where the plate is forged, then it moves to its bottom (unload) 
position. 

16. When the robot’s lower arm is unloaded and the robot is ready, the 
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system commands the robot to pick up the plate from the press. 
17. The robot rotates until its lower arm points to the press, and then it 

extends its lower arm until its magnet is positioned over the press and 
activates its magnet to pick up the plate and then retracts its lower arm. 

18. When the plate is picked up from the press, the system commands the 
press to go to its load position. 

19. The press moves its movable plate to its load (middle) position. 
20. When the deposit belt is ready to receive a new plate and the robot’s 

lower arm is loaded and the robot is ready, the system commands the 
robot to drop the plate on the deposit belt. 

21. The robot rotates so that its lower arm points to the deposit belt, then it 
extend its lower arm until the magnet is over the deposit belt. There it 
deactivates its magnet to drop the plate onto the deposit belt and 
retracts the lower arm to its retracted position. 

22. When there is no plate at the end of the deposit belt, the system 
commands the deposit belt to move a new plate to the end of the belt. 

23. The deposit belt brings the plate to the end of the belt. 
24. When there is a new plate at the end, the system commands the crane to 

pick up the plate and bring the plate to the container. 
25. When the crane is in its initial position over the deposit belt, it activates 

its magnet so that it picks up the plate and moves horizontally towards 
the container at the same time as it retracts its arm until it reaches its 
container position. It deactivates its magnet, so that the plate is dropped 
into the container and moves back to its initial position. 

Post-conditions  The plate that was added is forged and placed into the container 
 Other plates may be anywhere in the system 
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Figure 42 - System-level requirements refine the use case produceForgedPlates 
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A.2 Structure diagrams 

A.2.1 Structure diagram with top-level blocks

 
Figure 43 - bdd [Package] ProductionCell_Structure [top-level blocks]. For simplified diagram, see Figure 45. 
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A.2.2 Full structure diagram 

 
Figure 44 - bdd [Package] ProductionCell_Structure [ProductionCell_Controller and parts]. Full structure diagram 

of ProductionCell_Controller  and its parts (without the superclasses Actuator/Sensor to avoid more cluttered 
diagram). 
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A.2.3 Simplified structure diagrams 

 
Figure 45 - Simplified structure diagram over the top-level blocks. Full diagram in Figure 43. 
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Figure 46 - Simplified stucture diagram over the system of interest and lower level blocks. Full diagram in Figure 44. 
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A.2.4 Internal Block diagrams 

 
Figure 47 – ibd [Block] ProductionCell_System [Ports and interfaces between top-level blocks]. Interfaces shown in 

Figure 52. 
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Figure 48 – ibd [Block] ProductionCell_Domain [Item Flow - Plate] 
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Figure 49 - ibd [Block] ProductionCell_Domain [HW/SW Communiaction], see close ups in Figure 50 and Figure 51. 
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Figure 50 - Part of the ibd [Block] ProductionCell_Domain [HW/SW Communiaction]. Whole diagram in Figure 49. 
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Figure 51 - Part of ibd [Block] ProductionCell_Domain [HW/SW Communiaction]. Whole diagram in Figure 49. 
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A.2.5 Interfaces for top-level blocks 

 
Figure 52 - Interfaces used on the standard ports of the top-level blocks.  

Show signal receptions of the signals in Figure 53. 

A.2.6 Signals for top-level blocks 

 
Figure 53 - High Level Signals, which are shown as receptions in the interfaces in Figure 52. 
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A.3 Derived block-level requirement diagrams 

A.3.1 Req S1.0 

 
Figure 54 - req [Package]  Requirements [req s1.0 derived] 
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S1.0 A machine should be stopped before the end of its possible movement, otherwise it 
would destroy itself. 

D1.1 The robot must not be rotated clockwise if arm 1 points towards the table, and it must 
not be rotated counterclockwise if arm 1 points towards the press. 

D1.2 Both robot arms must not be retracted or extended more than necessary. 

D1.3 The press must not be moved downward if the sensor 1, press_bottom, is true, and it 
must not be moved upward if sensor 3, press_top, is true. 

D1.4 The table must not be moved downward if the sensor 7, table_bottom, is true, and it 
must not be moved upward if sensor 8, table_top, is true. 

D1.5 The table must not be rotated clockwise if it is in unloaded position (position required 
for transferring plates to the robot), and it must not be rotated counterclockwise if it is in 
loaded position (position required to receive plates from the feed belt). 

D1.6 If the crane is positioned above the container, it may only move towards the deposit 
belt, and if it is positioned above the deposit belt, it may only move towards the 
container. 

D1.7 The magnet of the crane must not be moved downward if it is in the position required 
for picking up a plate from the deposit belt, and it must not be moved upwards beyond a 
certain limit. 
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A.3.2 Req S2.0 

 

 

 

S2.0 Collisions are possible between the press and the robot, and between the crane and 
the conveyor belts. 

D2.1 The press may only move when no robot arm is positioned inside it. 

D2.2 The robot having an arm in the proximity of the press may only rotate if this arm is 
retracted or if the press is in its lower or upper position. 

D2.3 The magnet of the crane is not allowed to knock against the deposit belt or the container 
laterally. 

D2.4 The magnet of the crane is not allowed to knock against the deposit belt or the container 
from above. 
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A.3.3 Req S3.0 

 
 
S3.0 Metal blanks can be dropped outside safe areas (belts, table, press) for two reasons 

-the electromagnets of the robot arms or of the crane are deactivated, - a belt 
transports a blank too far. 

D3.1 The magnet of arm 1 may only be deactivated if it is inside the press. 

D3.2 The magnet of arm 2 may only be deactivated if it is above the deposit belt. 

D3.3 The magnet of the crane may only be deactivated if it is above the container and 
sufficiently close to it. 

D3.4 The feed belt may only convey a plate through its photoelectric barrier if the table is in 
loading position. 

D3.5 The deposit belt must be stopped after a plate has passed the photoelectric barrier at its 
end and may only be started after the crane has picked up the plate. 
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A.3.4 Req S4.0 

 
 
S4.0 Errors occur if blanks are piled on each other, overlapped, or too close for being 

distinguished by the photoelectric cell. 

D4.1 A new blank may only be put on the feed belt if sensor belt1.photoelectric_cell confirms 
that the former one has arrived on the table. 

D4.2 A plate may only be put on the deposit belt if sensor 14, belt2_blank_at_end, confirms 
that the former one has arrived at the end of the deposit belt. 

D4.3 Blank may not be put on the table if it is already loaded. 

D4.4 Blank may not be put into the press if it is already loaded. 

D4.5 If the table is loaded, the robot arm 1 may not be moved above the table if it is also 
loaded (otherwise the two blanks collide). 
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A.4 ValueType diagram 

 
Figure 55 - bdd [Package] ValueTypes 
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A.5 Sequence diagrams 

 
Figure 56 - sd produceForgedPlates [system-level interaction] 

 

 
Figure 57 – sd [Block] ProductionCell_Controller [produceForgedPlates – top-level interaction] 

This diagram only shows the interaction between the top-level blocks. 
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Figure 58 - sd [Block] ProductionCell_Controller [produceForgedPlates – top-level full version] 
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A.6 Activity diagrams 

A.6.1 Block definition diagram 

 
Figure 59 - bdd [Package] Activity [Composition of act produceForgedPlates] 
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A.6.2 High level 

 
Figure 60 – The full activity diagram, act ProduceForgedPlates. 

For a closer look, see Figure 61, Figure 62 and Figure 63.  
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Figure 61 - Detail view of partitions for Controller, FeedBelt and Table  
from the diagram act ProduceForgedPlates in Figure 60 
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Figure 62 - Detail view of partitions for Robot from the diagram act ProduceForgedPlates in Figure 60.  
Note that there is an error in this diagram, see 6.1.1 for details. 
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Figure 63 - Detail view of partitions for Press, DepositBelt and Crane 
from the diagram act ProduceForgedPlates in Figure 60. 
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A.6.3 Low level activity diagrams 

A.6.3.1 FeedBelt 

 
Figure 64 - Activity diagram for FeedBelt, act initialize, which is called from diagram in Figure 60. 

 
Figure 65 - Activity diagram for FeedBelt, act add_blank. which are called from diagram in Figure 60. 
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Figure 66 - Activity diagram for FeedBelt, act feed_table. which are called from diagram in Figure 60. 

A.6.3.2 Table 

 
Figure 67 - Activity diagrams for Table, act initialize, act go_unload_position and act go_load_position. which are 

called from diagram in Figure 60. 
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Figure 68 - Activity diagram for Table, act move, which is called from Figure 67. 

A.6.3.3 Robot 

 
Figure 69 - Activity diagram for Robot, act initialize, which is called from Figure 60. 
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Figure 70 - Activity diagram for Robot, act pick_from_table, which is called from the diagram in Figure 60. 

 
Figure 71 – Activity diagram for Robot, act load_press, which is called from the diagram in Figure 60. 
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Figure 72 – Activity diagram for Robot, act pick_from_press, which is called from the diagram in Figure 60. 

 
Figure 73 – Activity diagram for Robot, act deposit_on_belt, which is called from the diagram in Figure 60. 
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Figure 74 - Activity diagram for Robot, act deposit_on_belt_int, which is called from the diagram in Figure 60. 

 

Figure 75 – Activity diagram for Robot, act move, which is called from most of the above Robot diagrams. 
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A.6.3.4 Press 

 
Figure 76 - Activity diagram for Press, act initialize, which is called from Figure 60. 

 
Figure 77 - Activity diagram for Press, act forge, which is called from the diagram in Figure 60. 
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Figure 78 - Activity diagram for Press, act go_load_position, which is called from the diagram in Figure 60. 

A.6.3.5 DepostiBelt 

 
Figure 79 - Activity diagram for DepositBelt, act initialize, which is called from the diagram in Figure 60. 
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Figure 80 - Activity diagram for DepostiBelt, act bring_past_end, which is called from the diagram in Figure 60. 

A.6.3.6 Crane 

 
Figure 81 - Activity diagram for Crane, act initialize and act pick_from_belt, which are called from the diagram in 

Figure 60. 



108 
 

 
Figure 82 - Activity diagram for Crane, act load_in_container, which is called from the diagram in Figure 60. Note 

that this activity diagram describes the second part of the method pick_from_belt as it is described in [5], first part is 
described act pick_from_belt in Figure 81. 
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A.6.3.7 Arm 

 
Figure 83 - Activity diagram for Arm, act retract, which is called from Robot and Crane activities. 

 
Figure 84 - Activity diagram for Arm, act extend, which is called from Robot and Crane activities. 
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Figure 85 – Activity diagrams for Arm, act pick and act drop, which are called from Robot and Crane activities. 

A.6.3.8 UniDirectionalMotor 

 
Figure 86 – Activity diagrams for UniDirectionalMotor, act turn_off and act turn_on, which are called from FeedBelt 

and DepositBelt activities. 
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A.6.3.9 BiDirectionalMotor 

 
Figure 87 - Activity diagrams for BiDirectionalMotor, act turn_on and act turn_off, which are called from Table, 

Robot, Press and Crane activities. 

A.6.3.10 Magnet 

 
Figure 88 - Activity diagrams for  Magnet, act demagnetize and act magnetize, which are called from Arm activities in 

Figure 85. 
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A.7 State machines 

 
Figure 89 stm [Block] ProductionCell_Controller, with focus on the state Operating. 
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Figure 90 - stm [Block] FeedBelt [Operating]. 
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Figure 91 - stm [Block] Table [Operating]. For details, see Figure 92 and Figure 93. 
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Figure 92 – Part of state machine for Table, showing only buffer and main regions. For whole diagram, see Figure 91. 
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Figure 93 – Part of state machine for Table, showing only the part regions. For whole diagram see Figure 91. 
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Figure 94 - stm [Block] Robot [Operating], for detail view, see Figure 95, Figure 96 and Figure 97. 
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Figure 95 – Detailed view of buffer regions from stm [Block] Robot [Operating]. Whole diagram in Figure 94. 
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Figure 96 – Detailed view of main region from stm [Block] Robot [Operating]. Whole diagram in Figure 94. 

 
Figure 97 - Detailed view of part regions from stm [Block] Robot [Operating]. Whole diagram in Figure 91. 
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Figure 98 - stm [Block] Press [Operating] 
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Figure 99 - stm [Block] DepositBelt [Operating] 
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Figure 100 - stm [Block] Crane [Operating], for details, see Figure 101 and Figure 102. 
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Figure 101 – Detailed view of Crane buffer and main regions from state machine diagram in Figure 100. 



125 
 

 
Figure 102 - Detailed view of Crane part regions from state machine diagram in Figure 100. 



126 
 

 
Figure 103 - stm [Block] Arm [Operating] 

 
Figure 104 - stm [Block] UniDirectionalMotor [Behaviour] 
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Figure 105 - stm [Block] BiDirectionalMotor [Behaviour] 

 
Figure 106 - stm [Block] Magnet [Behaviour] 

 

 
Figure 107 - stm [Block] PhotoElectricCell [Behaviour] 

 
Figure 108 - stm [Block] Switch [Behaviour] 
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Figure 109 - stm [Block] Potentiometer [Behaviour] 

A.8 Parametric diagram 

 
Figure 110 - par [Block] Crane_HW [Crane Horizontal Speed] 
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A.9 Cross-cutting diagrams 

 
Figure 111 - High level requirements refined from use case. 

 
Figure 112 - Requirement S1.0 with derived requirements and traces to top-level blocks. 

 
Figure 113 - Requirement S2.0 with derived requirements and traces to top-level blocks. 
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Figure 114 - Requirement S3.0 with derived requirements and traces to top-level blocks. 
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Figure 115 - Requirement S4.0 with derived requirements and traces to top-level blocks. 
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A.10 Safety analysis for selected requirements 
The safety diagrams are very large in size, so we have chosen to show the diagrams in parts. 
For each example we will first show the diagram as a whole, and then we show a close-up of 
a main safety analysis part of the diagram, where the text is readable.  
In each diagram, we show slices of relevant design diagrams. But we also give you links to 
the whole diagrams and explain which slices are extracted. 

A.10.1 Safety analysis diagram for req 2.2.  

The next two pages show the safety analysis diagram for requirement 2.2. The first image is 
the full image, the second shows a close-up view for the analysis. 
 
For detailed views of the activity diagrams: 
Robot partition in Figure 62 
Press partition in Figure 63. 
Robot activity diagram, act pick_from_press, in Figure 72. 
Robot activity diagram, act pick_from_table in Figure 70. 
 
We do not show examples from the following diagrams, but they are part of the analysis. 
Robot activity diagram, act deposit_on_belt_in in Figure 74. 
Robot activity diagram, act load_press in Figure 71. 
Press activity diagram, act forge in Figure 77. 
 
For detailed views of the state machine diagrams: 
Robot in Figure 96, slice: the idle state 
Press in Figure 98, slice from main region: Moving Down and Unload Position states and the 
transition between them. 
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A.10.2 Safety analysis for requirement 2.3A 

The next two pages show the safety analysis diagram for requirement 2.3A. The first image is 
the full image, the second shows a close-up view for the analysis. 
 
The parametric diagram for the constraint property of Crane_HW, can be seen in Figure 110.  
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A.10.3 Safety analysis diagram for requirement 3.4 

The next two pages show the safety analysis diagram for requirement 3.4. The first image is 
the full image, the second shows a close-up view for the analysis. 
 
For detailed views of the activity diagrams: 
FeedBelt and Table partition in Figure 61. 
Table activity diagram, act move in Figure 68. 
 
For detailed views of the state machine diagrams: 
Table in Figure 92, slice from main region: “Moving Down and Rotating Clockwise” and 
“LoadPosition” states and the transition between them. 
FeedBelt in Figure 90. 
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A.10.4 Safety requirement for requirement 3.5A 

The next page shows the safety analysis diagram for requirement 3.4. 
 
To see the DepositBelt activity diagram for act bring_past_end, see Figure 80. 
To see the whole state machine diagram for DepositBelt, see Figure 99. 
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A.10.5 Safety analysis for requirement 3.5B 

The next two pages show the safety analysis diagram for requirement 3.5B. The first image is 
the full image, the second shows a close-up view for the analysis. 
 
For detailed views of the activity diagrams: 
DepositBelt and Crane partion in Figure 63. 
DepositBelt activity diagram, act bring_past_end, in Figure 80. 
 
For detailed views of the state machine diagrams: 
ArmBehaviour in Figure 103, slice: arm main region. 
DepositBeltBehaviour in  Figure 99. (have not sliced this) 
CraneBehaviour in Figure 100. (have not sliced this) 
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A.10.6 Safety analysis diagram for requirement 4.1 

The following diagram shows the safety analysis diagram for requirement 3.5B. 



146 
 

 

 



147 
 

A.11 Test diagrams 

A.11.1 Req D3.5A tests 

 
Figure 116 - act [Package] Analysis [Test case for req D3.5A] 

 
Figure 117 - sm [Package] Analysis [Test case for req D3.5A] 
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Figure 118 - Cross-cutting diagram with traces and tests for req D3.5A



149 
 

Appendix B Glossary 
Software block Software blocks in this model represent the physical part 

of the same name and contains the control logic needed 
to control the that part. 

      

Hardware block Hardware block represent the physical part. Only the high 
level hardware blocks are represented in this model. 

      

     
Block Description Part of Specialization 

of 
Contains 

Actuator Superclass generalizing the software blocks which 
represent the hardware parts which can be 
activated/deactivated by the control system. 

---- ----   

Arm Software block in the control system which contains the 
logic to control the physical extendable arm of the 
containing machine and enables the machine to reach 
nearby machines at different distances to pick up/drop 
metal plate. 

Robot, Crane ---- Potentiometer, 
Magnet, 
BidirectionalMotor 

BidirectionalMotor Software block in the control system which contains the 
logic needed to activate/deactivate the physical motor 
(actuator) which can move in both progressive or 
regressive direction. 

Table, Robot, Press, Crane, 
Arm 

ElectricMotor   

Container Software block representing the final destination for the 
forged metal plates. No control logic. 

---- ----   

Crane Software block in the control system which contains the 
logic needed to control the physical crane and 
communicate with the surrounding machines.. 

ProductionCell_Controller ---- BidirectionalMotor, 2 
Switch, Arm 

Crane_HW Hardware block representing the physical crane. ProductionCell_HW ----   

DepositBelt Software block in the control system which contains the 
logic needed to control the physical deposit belt and 
communicate with the surrounding machines. 

ProductionCell_Controller ---- UnidirectionalMotor, 
PhotoelectricCell 

DepositBelt_HW Hardware block representing the physical deposit belt. ProductionCell_HW ----   
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ElectricMotor Superclass generalizing the software blocks which 
represent two types of physical motors (actuators) which 
can be activated/deactivated by the control system. 

---- Actuator   

FeedBelt Software block in the control system which contains the 
logic needed to control the physical feed belt and 
communicate with the surrounding machines. 

ProductionCell_Controller ---- UnidirectionalMotor, 
PhotoelectricCell 

FeedBelt_HW Hardware block representing the physical feed belt. ProductionCell_HW ----   

Magnet Software block in the control system which contains the 
logic needed to activate/deactivate the physical magnet 
(actuator) which is placed at the end of each arm. 

Arm Actuator   

Operator Block used to describe a human in a block diagram. In this 
model it is included to be able to describe the human in 
the domain's internal block diagram. No control logic. 

ProductionCell_Domain ----   

PhotoelectricCell Software block in the control system which contains the 
logic needed to react to the input from the physical 
photoelectric cell (sensor). 

FeedBelt, DepositBelt Sensor   

Potentiometer Software block in the control system which contains the 
logic needed to react to the input from the physical 
potentiometer (sensor) which describes either the 
extension range or the angle of a machine or part. 

Robot, Arm Sensor   

Press Software block in the control system which contains the 
logic needed to control the physical press and 
communicate with the surrounding machines. 

ProductionCell_Controller ----   

Press_HW Hardware block representing the physical press. ProductionCell_HW ----   

ProductionCell_Controller The software top level block. ProductionCell_Domain ----   

ProductionCell_Domain This is the top level block in this model. It describes the 
whole domain of the system, which contains the system of 
interest (both software and hardware), the operator, the 
plates that will be/are forged and the container.  

---- ---- ProductionCell_Syste
m, Operator, Plate, 
Container 

ProductionCell_HW The top level hardware block this represents the hardware 
as a whole. 

ProductionCell_Domain ----   

ProductionCell_System Block that represents the system of interest, both 
hardware and softare blocks. 

ProductionCell_Domain ---- ProductionCell_Contr
oller, 
ProductionCell_HW 
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Robot Software block in the control system which contains the 
logic needed to control the physical robot and 
communicate with the surrounding machines. 

ProductionCell_Controller ----   

Robot_HW Hardware block representing the physical robot. ProductionCell_HW ----   

Sensor Superclass generalizing the software blocks that represent 
the hardware parts which register change in the 
environment and provide input to the control system. 

---- ----   

Switch Software block in the control system which contains the 
logic needed to react to the input from the physical switch 
(sensor) which describes the position of parts of a 
machine. 

Table, Press, Crane Sensor   

Table Software block in the control system which contains the 
logic needed to control the physical rotary table and 
communicate with the surrounding machines. 

ProductionCell_Controller ---- 2 BidirectionalMotor, 
2 switches, 
Potentiometer 

Table_HW Hardware block representing the physical rotary table. ProductionCell_HW ----   

UI Block representing the user interface. This is not designed 
into further detail. 

---- ----   

UnidirectionalMotor Software block in the control system which contains the 
logic needed to activate/deactivate the physical motor 
(actuator) which can move only in progressive direction. 

FeedBelt, DepositBelt ElectricMotor   
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Appendix C Tool problems 
Problem Description Answer/(temporary) solution 
Signals (send 
in state 
machine) 
 

Conformance (optional): 
Graphical notation for SendSignal is not 
available in state machines. 

It is not required, but could contribute 
to make a simpler and more consistent 
diagram. 

Sequence 
diagram 

Conformance: 
Not possible to decompose lifelines, or 
use extra global combined fragments 
[14] . 
 

A combined fragment can’t go outside 
the diagram frame to include an 
incoming signal to a part. (e.g. include 
the first Add_Blank signal in a 
combined fragment in  

Error 
messages 

General: 
Some of the error messages during 
validation are very subtle and give less 
than little explanation for where the 
problematic elements are.  Often occurs 
with association errors. 
 

 

Association 
problems 

General:  
It may seem that some associations are 
left in the model after an associated 
block or node has been deleted from the 
model. Unsure when this happens. 
 

Errors often have occurred on 
associations which are not connected 
to anything in the model. 

Using existing 
activities in 
state machines 

Tool: 
If we wish to use a previously modelled 
activity in a state machine, the whole 
activity is moved to/inside the state 
machine, without updating references in 
the activity’s containing activity 
diagram where it is/may be used.  
 

If the activity is referenced in another 
activity diagram, this will make the 
containing activity diagram 
incomplete. 

Signals (send 
activity) 

Tool: 
When adding a SendSignalAction in an 
activity diagram, the tool asks us to 
either create a Signal or select an 
existing element and then it 
automatically inserts the chosen signal 
in the parameters signal and the type of 
the automatically created target input 
pin. 
  

Use the SendSignal action’s properties 
tab to set all properties correct. 

Messy 
diagrams 

Graphical: 
Long qualified names and stereotypes 
are default in the program, and tends to 
clutter the diagram. 

Haven’t looked much into how to 
change the default settings, but I have 
tried, without finding other solutions 
than to select each of the elements I 
want to change and changing their 
appearance. 
 

Control/Object 
flow 

Graphical: 
Unable to change the default look of the 

This is not a requirement, but would 
be a nice feature to be able to 
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control and object flow to distinguish 
them from each other in an activity 
diagram.  

distinguish flows in a large diagram.  
 
Solution: Select manually all 
connectors of one type and change 
colour of the lines. Not possible to 
make them dashed. 
 

Activity 
parameter 
node 

Graphical: 
The node is visually the same as a 
normal port in the diagram while the 
specification examples use a large 
rectangle node. Can make the instant 
understanding of the diagram more 
difficult. 
 

Not an important flaw. Most for 
people without experience? 

Activity Graphical: 
Only way of making an activity is by 
making an activity diagram in the 
model. 
 

The specification describes an activity 
as a normal block, but it is not possible 
to create the activity block without 
creating the diagram. 

Item flow Graphical: 
Deleting an item flow in an IBD 
diagram does not give an immediate 
effect visually even though they are 
deleted from the model. 
 

Close and open the diagram and the 
item flows are gone. 

Flow port Graphical: 
Flow ports that are placed on the 
boundary of the containing block in an 
IBD will disappear when closing and 
opening the diagram. They are created in 
the model, however. 
  

By creating an IBD for the containing 
block (one level above) of the block 
that needs the boundary port, the port 
will stick to the boundary. 

Activity 
diagram and 
Accept Event.  

Graphical (minor detail): 
When choosing a trigger event, the name 
isn’t set. 

By changing the name as in the state 
machine trigger events,  the name 
would be sure to be in synch with the 
event. This could avoid human errors 
during design if just changing the 
name and not the triggered event. 
(which will make it look right, but be 
an error in the design of the model.) 
 

Flow ports Graphical: 
When typing a flow port with a flow 
specification, this is registered by the 
tool as an interface and therefore the 
both the port and the conjugated port is 
marked with a lollipop symbol (if the 
notation is correct, this is correct). See 
Figure 49 for an example. 
 

SysML specification uses lollipop 
notation only for standard ports. 

Activity 
partition 

Graphical: 
The “swimlanes” 
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AllocateActivityPartitions can’t be 
rearranged among themselves. 
 

IBD Graphical: 
Troublesome to make nice graphical 
diagrams when opening the part 
compartments of parts of the main 
block. 
 

When moving the bottom-most part in 
the ibd, this movement causes the 
whole containing part and its 
contained parts to move inside the 
diagram. 
By moving it far enough down in the 
diagram, the diagram keeps still until 
the bottom part is moved again.. 

Activity/Action 
parameter – 
specifying 
values 
 

User/tool: 
Possible to type the parameter node, but 
not to specify the value. 

May be user problem, not finding out 
how to type an input for an activity 
parameter node. 

Activity 
diagram – 
Interruptible 
region 
 

User/Tool: 
Lack of interruptible region in the 
activity diagram.  

There are some menu choices 
regarding interruptible region, but we 
were unable to find where to find the 
element to draw the region. 

Different 
configurations  

User/Tool: 
[8] describes an initial values 
compartment to be able to define 
different values to different block 
configurations.  We have not found this 
feature.  

Tried to look for this regarding making 
different configurations for e.g. the 
different configurations for the arm. 

IBD User/Tool: 
When creating several IBDs to cover 
different aspects of the model, it may be 
easy to delete a part or port that is in use 
in another diagram.  
We get a warning, but no change to 
cancel. Some of the times this has 
happened, a delete has been impossible 
to undo.  
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