
UNIVERSITETET I OSLO
Institutt for informatikk

Evolution by
Resemblance in
Component-based
Visual Application
Development

Hovedoppgave

Balder Mørk

12. mai 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30825614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

As end-user development (EUD) receives more and more focus in research,
using prefabricated software components and visual application builders
has been presented by several researchers as a useful aid in the process.
One of the challenges of this approach is the emergence of situations when
the available components aren’t entirely suitable for the task to be solved.
This thesis presents a possible solution to this problem, in the form of clone-
able components. By allowing the end-user to perform changes to a clone of
a familiar prototype, a new component with the desired properties can be
created without risking damage to the original component. This form of
evolution by resemblance lets end-users with little or no programming expe-
rience perform evolutionary software development based on existing soft-
ware components.

To demonstrate these concepts in practice, the thesis presents the Simple-
Builder, a modification of Sun Microsystems’ BeanBuilder application. The
SimpleBuilder contains new functionality for working with cloneable soft-
ware components. Example software components are provided, that also
provide a uniform interface for inter-component communication, allowing
a user of the SimpleBuilder to easily connect software components to each
other without writing program code.

i

ii

Foreword

The thesis you are about to read marks the conclusion of one year’s worth
of research for the Norwegian Candidatus Scientiarum degree. The the-
sis work has included development of a component-based development
toolkit that introduces the concept of cloning components as a way of aid-
ing evolutionary development of reusable components. The thesis was
written under the guidance of associate professor Anders Mørch at Inter-
Media, University of Oslo. InterMedia is a centre for interdisciplinary stud-
ies in new media and e-learning, and was established in 1998.

A note on the use of pronouns in this thesis: The reader may notice that
I consistently use the forms “he” and “his”, e.g. when describing differ-
ent scenarios. The reason for this is precisely that; I wish to be consistent
throughout the text, and I just happen to be male. By no means do I intend
to exclude females from the area of software engineering.

Acknowledgements

I would like to thank the following persons for support and help:

• Anders Mørch for guidance and help in writing, researching, and
finding interesting approaches to an interesting problem area: end
user development. As my guide and advisor on this thesis, he was an
invaluable asset in my research.

• Tone Bratteteig for valuable comments on the thesis in one of its last
incarnations, allowing me to do some much-needed, last minute pol-
ishing of the document you are now reading.

• Heidi Fløtberget for being my loving partner and faithful supporter
during the work on this thesis, and for pretending to be interested in
my enthusiastic elaborations on the subjects discussed herein.

• Heidi Tovdal for never doubting that I was able to pull this off in the
normalized time frame.

iii

• Kent Gøran Carlsson for nagging, pushing and poking me enough to
actually make me work on the thesis although fun, sun and alcoholic
beverages were available elsewhere.

• Every single lecturer and fellow student I have encountered during
my years at the Department of Informatics. I have had the pleasure of
meeting a whole host of interesting and knowledgeable people over
the course of my studies, adding more value to my studies than any
textbook or collection of lecture notes could ever have done. Marit,
you’re doing great work teaching our fresh fellow students, and I am
confident that one day you’ll get out of this place with a diploma.

iv

v

Table of Contents

1 Introduction 1
1.1 Facilitating EUD through component based toolkits 1
1.2 The cloning approach . 2
1.3 Problem description . 4

1.3.1 Delimitations . 4
1.4 Thesis structure . 4

2 Theory 6
2.1 Component based development 6

2.1.1 History . 6
2.1.2 Status . 7

2.2 Evolutionary software development 9
2.2.1 History . 9
2.2.2 Status . 12

2.3 Cloning and prototypes . 15
2.3.1 History . 15
2.3.2 Status . 17

2.4 Fitting the pieces together . 19

3 Tools and methods 23
3.1 Developer tools . 23

3.1.1 The Java programming language 24
3.1.2 Operating system and developer environment 24

3.2 Component technology . 25
3.2.1 Component-based vs. traditional programming . . . 26
3.2.2 JavaBeans . 27

3.3 The BeanBuilder . 28
3.3.1 Features . 30
3.3.2 Required extensions 34

3.4 Development strategy . 37

4 My contribution 40
4.1 A scenario for prototype-based EUD 40

vi

4.2 Working with cloneable components 42
4.2.1 A process model for clone-based component devel-

opment . 44
4.3 The SimpleBuilder . 47

4.3.1 Overview . 47
4.3.2 The palette and control panel 47
4.3.3 Customization of components 49
4.3.4 Extension of components 51
4.3.5 Connecting two components 52

4.4 The SimpleBeans . 52

5 Discussion 56
5.1 The road taken . 56
5.2 Alternative routes . 58

6 Further research 61
6.1 Remaining work . 61
6.2 Putting the SimpleBuilder to use 62
6.3 Improving the SimpleBuilder for prototype-based end user

development . 63

7 Conclusion 65

A Code listings 73
A.1 An example of an application stored as XML 73
A.2 The SimpleBean and SimpleBeanObject classes 79
A.3 Sample SimpleBean and corresponding BeanInfo 81

vii

List of Figures

2.1 The STEPS model of evolutionary software development . . 11
2.2 The spiral model of software development 13
2.3 Seeding, Evolutionary Growth and Reseeding 15
2.4 Graphical representation of objects in SELF 17
2.5 Cloning a text field in HyperCard 19
2.6 The HyperCard container hierarchy. 19
2.7 The results of listing 2.1 on page 21. 22

3.1 Example of proxy objects for non-visual components 29
3.2 A screenshot of the Sun BeanBuilder 31
3.3 A running application designed in the BeanBuilder 33
3.4 Component wiring in the BeanBuilder 34
3.5 The life cycle model of the SimpleBuilder development process 39

4.1 An imagined tool for client data retrieval. 41
4.2 The imagined tool after functionality extension 42
4.3 The use distance and design distance in customization and

extension . 45
4.4 The process model underlying the SimpleBuilder. 45
4.5 Screenshot of the SimpleBuilder directly after startup 48
4.6 A selected and an unselected component in the SimpleBuilder 50
4.7 The “Clones” tab of the builder palette 50
4.8 Three steps of cloning and customization 51
4.9 Just a few of the available methods when connecting two JFC

components. 53

5.1 My initial process model for developing with cloneable com-
ponents. 58

5.2 Inheritance scheme for clones made in the SimpleBuilder. . . 59

viii

Chapter 1

Introduction

Each problem that I solved became a rule which served after-
wards to solve other problems

— René Descartes

In this chapter, I will look at the premises for the work done as part of the
thesis. I will discuss the background for my work, and present a summary
of what my application should provide.

1.1 Facilitating EUD through component based tool-
kits

This thesis is part of an ongoing work at InterMedia, focused on the subject
of end-user development (EUD)1. The idea of user empowerment at the
workplace has long traditions in Scandinavia (Nygaard 1979, Bansler 1989,
Ehn 1993), so it seems natural that we continue research in this area. A
common problem with the use of software in today’s workplaces is that
work practice will often change faster that developers are able to update
software. The workers therefore need the possibility to customize, or even
create, software that is meant to support their day-to-day work (Mørch &
Mehandjiev 2000).

In this thesis, I will explore a new approach to component-oriented end-
user computing. Several attempts to support end-user development have

1For more information on end-user development, see the website of the “Network
of Excellence on End-User Development”, EUD-NET at http://giove.cnuce.cnr.it/
eud-net.htm. EUD-NET is sponsored by the European Commission, with the goal of
preparing a research agenda in the field of end-user development.

1

http://giove.cnuce.cnr.it/eud-net.htm
http://giove.cnuce.cnr.it/eud-net.htm

2 CHAPTER 1. INTRODUCTION

been based on toolkits that employ a visual interface for composing an ap-
plication from ready-made components (Stiemerling, Hinken & Cremers
1999, Costabile, Fogli, Fresta, Mussio & Piccinno 2003). The end-user de-
veloper usually chooses components from a palette, and places these on a
“canvas” or “root window”. He then performs customization of the com-
ponents by setting the values of the component’s parameters. The level of
customization allowed by a component is decided by the developer that
originally supplied it, through the developer’s choice of which parameters
are publicly accessible. If the components available to developers in com-
ponent assembly toolkits become too limited, the end-user developer has
no choice but to either work around the limitations, or ask an accomplished
programmer to perform the necessary changes to the components in ques-
tion.

1.2 The cloning approach

My goal is to add a new aspect to the component based development pro-
cess, in the form of cloneable components. In this context, I will define a
cloneable component as “A software component that may be copied accu-
rately, leaving a clone with all its properties set to the values of the original
at the time of cloning”. We need to account for the fact that users are likely
to encounter situations where the choice of components presented to them
is too limited to allow them to achieve their goal in a suitable way. I will
therefore attempt to present the user with a way of expanding the palette
of available components, and having these new components available for
later use.

Human creativity is often based on taking the familiar and changing it to fit
the present requirements (Ghiselin 1985). Based on this ideology, we want
to supply a mechanism for this type of evolution by resemblance. The user
should be able to select a familiar component, modify and extend it, and
have the resulting component available for use in the current - and for later
- software projects. Naturally, we also need to provide a basic set of com-
ponents that may be used and modified as described here. A key point in
the process is that the application stays “alive”. By allowing the user to edit
the application at any time, the traditional distinction between “application
environment” (actual use of an application) and “design environment” (de-
veloper tools, component assemblers etc.) disappears. To account for fac-
tors such as changing work practices and the increasing skills of end-user
developers, the project should be open for further modification by other
end-user developers. An important concept in the Scandinavian tradition
of software engineering is the idea of applications being designed with its
intended use in mind, a view known as the application perspective (Bjerknes

1.2. THE CLONING APPROACH 3

& Bratteteig 1988). By letting the user immediately extend and improve an
application based on experience from the use situation, this view is taken a
step further.

As argued in (Petroski 1992), a driving force for evolution of artifacts is the
presence of annoyances and mediocrity in existing solutions. Therefore,
applications created with our framework must be modifiable by both the
designer and other, future users. This flexibility is needed, not only on the
application level, but on the component level as well. Components must be
open for individual redesign and improvement, and they must be available
for use in other applications.

Although we see an increase in computer literacy in today’s workforce,
few end-users are familiar with the formality of programming languages.
It is not to be expected that average end-users have the necessary skills to
perform programming in a traditional sense. Workers usually relate to the
graphical interfaces presented to them, and often feel at home in this en-
vironment (Preece, Rogers, Sharp, Benyon, Holland & Carey 1994). Most
people that work with computers today are also familiar with the concept
of connecting pieces of electronic equipment. They know that to get visual
feedback from their computer, they need to connect a monitor to the VGA
port of the computer. Likewise, for the computer to receive input from
the user, a connection between the keyboard and computer is required. I
hope to lower the threshold of component assembly to a sufficient degree
that the prospective end-user developer is presented with the simple task
of choosing appropriate components needed for the application, and con-
necting them in such an intuitive process that it feels no more complicated
that hooking up a modern Hi-Fi sound system. To achieve this, the num-
ber of options presented to the user when establishing connections between
components needs to be reduced to an absolute minimum. Still, each com-
ponent needs to be flexible enough to accommodate a wide range of uses.

Most component assembly tools today present the user with a plethora of
options for configuration of components. This is okay for professional de-
velopers and very advanced users, but we need to reduce such complex-
ity in order to avoid overwhelming and confusing an end-user developer.
Assembly should be simple and straightforward. The user should not be
required to learn how to work with a new, unfamiliar interface. When the
user is satisfied with the state of the application, he should be able to save
the results to disk, and run the application like any other program on his
computer at a future point.

4 CHAPTER 1. INTRODUCTION

1.3 Problem description

Following on these premises, my challenge is this: To produce a component-
based developer environment with a level of complexity suitable for do-
main experts with little or no programming experience. The tool should
provide the opportunity to store specific configurations of a component as
a clone. The state of these cloned components should be stored as default
values for later use in future projects. The tool should also provide me-
chanics for extending a cloned component, i.e. adding features not present
in the original. Finally, the tool should simplify the process of “wiring up”
components to a level comparable to that of connecting common electronic
equipment found in modern homes. This tool is not to be regarded as a
product for deployment in companies and institutions. Rather, I hope to
provide a proof of concept; an artifact that can serve as basis for further
discussion within the field of end-user development, with a focus on com-
ponent assembly with clone-enabled components.

1.3.1 Delimitations

The development of a system like this is likely to take time, both in terms
of planning and implementation. As with any new development within
an area, a tool like this requires evaluation and field experiments to assess
its usefulness. Unfortunately, time does not allow for both development of
a product that is mature enough for actual testing of the application to a
degree that would provide useful feedback for further research. Therefore,
this thesis will focus on the actual development of a prototype toolkit for
clone-enabled component assembly. This means that I cannot present any
empiric evidence of the benefits of such an application; only my own the-
ories and personal experiences on how this may be used to aid end-user
development in the workplace.

Delivering a complete system for clone-based end user development while
at the same time writing a comprehensive report is beyond the scope of
two semesters’ worth of research. My hope is that the work done on the
SimpleBuilder will inspire and excite future students, and perhaps one day
lead to completion. It is also my sincere hope that I may return to this work
one day, or perhaps do research on other areas in the field.

1.4 Thesis structure

The thesis is divided into seven chapters:

1.4. THESIS STRUCTURE 5

• Chapter 1: Introduction, which you are reading now. The chapter
attempts to give a description of the premises for the thesis and the
problem which inspired my work on the SimpleBuilder.

• Chapter 2: Theory. This chapter presents the theoretical foundation
for this thesis, and discusses the literature on relevant issues.

• Chapter 3: Tools and Methods, in which I describe the process of my
work, and the tools I used.

• Chapter 4: My Contribution. Here, I try to explain what knowledge
is to be gained from this thesis, and what advances in the field I feel I
have done.

• Chapter 5: Discussion, which contains a general discussion on the
process of developing the SimpleBuilder, and what could have been
done differently.

• Chapter 6: Further Research. In this chapter I present ideas for further
exploration of the field, and how my work may be continued by other
researchers.

• Chapter 7: Conclusion. In the final chapter I summarize the results
of my research, and see in what respect I have addressed the problem
description from chapter 2.

Chapter 2

Theory

The difficulty lies, not in the new ideas, but in escaping the old
ones, which ramify, for those brought up as most of us have
been, into every corner of our minds.

— John Maynard Keynes

This chapter presents the scientific background for this thesis. I look at the
history of three points of interest (components, evolution and cloning), as
well as the literature available on the subjects. I will also try to tie these
subjects together, and see how research in these fields may impact on end-
user computing.

2.1 Component based development

2.1.1 History

The roots of component-based assembly can be traced to the early research
into object-oriented programming at the Norwegian Computing Centre
(NCC) in the mid-60s (Dahl, Myhrhaug & Nygaard 1968, Nygaard & Dahl
1978). The introduction of objects, semi-independent software modules,
led to the logical next step of ready-made components available for use in
later software projects. This type of code reuse was mentioned as early
as 1968, at the NATO Conference in Software Engineering1 (McIlroy 1968).
A pressing issue at the time was the so called “software crisis” (David &
Fraser 1968). As software projects grew increasingly more complex, it was

1This is probably one of the earliest occurrences of the term “Software Engineering”.
The expression was chosen to emphasize the need to focus on a structured approach to
programming, similar to that of engineers’ approach to construction.

6

2.1. COMPONENT BASED DEVELOPMENT 7

evident that products sometimes arrived late, and were unable to fulfill ex-
pectations. There was “(...) a rather large gap, between what was hoped
for from a complex software system, and what was typically achieved”.
Douglas McIlroy2, a visionary programmer of that time, argued that soft-
ware engineering was using backward techniques compared to, for ex-
ample, the electronics industry. He suggested a radical new strategy for
building new software, based on composing software from a large array of
available components; chosen from a catalogue. Hopefully this would en-
sure quality software, built from tried and tested components. A few years
later, McIlroy admitted that his idea of components hasn’t really caught on
(McIlroy 1972). There were no examples of companies offering components
as a retailed product, although software houses had employed component
architecture in-house to shorten delivery times and reduce complexity,

In the mid-80s the concept of “software integrated circuits” was introduced
by Brad Cox (Cox 1986), thus adopting the analogy to the electronics en-
gineering industry, used almost twenty years earlier by McIlroy. New,
object-oriented languages such as Smalltalk and C++, as well as the pro-
liferation of powerful computers, had shifted the programmers’ focus from
tight, hand-optimized code to code that improved modularity, extensibil-
ity and maintainability. Cox envisioned these components as an aid in the
evolutionary development of an application, in which parts of the applica-
tion could be easily swapped for other, newer parts that may add function-
ality, speed and robustness. To create an infrastructure for these compo-
nents he invented a new programming language based on C; Objective C.
The main description of Objective C, and how to use it as a tool for creat-
ing software components, is discussed in (Cox 1986). This object-oriented
language has lately been overshadowed by the success of C++, invented
by Bjarne Stroustrup, but is still in use in the Mac OS X3 and GNUStep4

projects.

2.1.2 Status

Until recently, the arguments for component based development were for
the most part concerned with economis: developers could spend less time
reinventing the wheel, and more time on developing new code. Addition-
ally, components were presented as a commercially viable product, that
could be sold to other developers and companies. Several websites ex-

2McIlroy later went on to invent the pipes and filters of UNIX. Some people regard this
as a form of component-based technology, as it allows the “gluing together” of separate
programs.

3http://www.apple.com/macosx/
4http://www.gnustep.org

http://www.apple.com/macosx/
http://www.gnustep.org

8 CHAPTER 2. THEORY

ist today with the main purpose of selling software components to poten-
tial developers, e.g. Chilkat Software5, a vendor of .NET components, and
ComponentSource6, a website where vendors offer components to a large
audience.

Lately, a new aspect of component-based software development has be-
come evident: given an interface that is simple enough, ready-made com-
ponents may enable a person with little or no programming experience
to assemble his own application without writing any code. This possi-
bility has been suggested by e.g. (Stiemerling et al. 1999) and (Costabile
et al. 2003). One of many challenges to developers today is the high level of
domain knowledge required to write an application that fulfills the client’s
needs. Developers tend to look at the application to be developed from
their own viewpoint, that of a software developer. Software designers with
an adequate understanding of the application domain are hard to find, and
a scarce resource (Curtis, Krasner & Iscoe 1988). In the traditional Scandi-
navian school of software development, it has been attempted to solve this
problem through close cooperation between developers and the eventual
users of the system in question (Nygaard 1979, Bansler 1989, Ehn 1993).
Obviously this requires a substantial amount of effort and time invested by
the developers. This raises the costs of development, and in effect limits
this methodology to large, mission-critical software projects.

With component-based software development, however, we could be fac-
ing a future where proficient users with sufficient technical knowledge
could assemble simple applications to further productivity. Such “super
users” are usually the first to take up new technologies and convey their
understanding of it to their colleagues. The emergence of these expert users
and their role in the workplace is discussed in (Kaasbøll & Øgrim 1994) and
(Åsand, Mørch & Ludvigsen 2004). As the “end-user developer” has exten-
sive domain knowledge, he is likely to be well equipped to understand the
requirements of a new application. With components that are sufficiently
generic, it should be possible to construct a wide range of applications for
most application areas, using simple and intuitive visual building toolkits.
Such a scenario is just one of several presented by researchers today, but it
is this hypothesis that will be further explored in this thesis.

Several technologies for component development exist today. However,
most of which are concerned with inter-component communication over
network connections. The Object Management Group (OMG)7 is a con-
sortium whose members include most large software houses (and several
smaller) active today. OMG was formed with the aim of providing a set

5http://www.chilkatsoft.com
6http://www.componentsource.com
7http://www.omg.org

http://www.chilkatsoft.com
http://www.componentsource.com
http://www.omg.org

2.2. EVOLUTIONARY SOFTWARE DEVELOPMENT 9

of specifications for standardized component software. One of the chief
results of OMG’s work is the Common Object Request Broker Architec-
ture (CORBA) (The Object Management Group 2003) specification for inter-
component communication. Competing technologies include Microsoft’s
Common Object Model (COM) (Microsoft Corporation 2004) and Sun Mi-
crosystems’ Enterprise JavaBeans (EJB) (Sun Microsystems 2003a) and Java
Remote Method Invocation (RMI) (Sun Microsystems 2004). These tech-
nologies are not necessarily suitable in an end-user development context,
though.

In the case of Microsoft products, the fact that they are tied to the Win-
dows platform limits their use. There are several other platforms available
to end-users today, and supporting only one operating system should be
unnecessary, considering the alternatives. CORBA and EJB/RMI, on the
other hand, are based on application servers that provide services to client
software over a network connection. These servers can run a variety of
operating systems, due to the open specifications of CORBA and the mul-
tiplatform nature of of Java. These technologies are fine for large, scalable
applications like web shops, internet bank services and the like, but unnec-
essarily complex for developing small stand-alone applications for day-to-
day use by end-users. Sun also provides component technology for stand-
alone application development; JavaBeans. These are designed to run on
a single computer, with the software components residing on local storage
media. JavaBeans are discussed in more detail in chapter 3 on page 23,
Tools and Methods.

2.2 Evolutionary software development

2.2.1 History

The stagewise model (Benington 1987) that was introduced in 1956, later
refined into the waterfall model (Royce 1987), is generally considered to
be the first attempt to describe a life cycle model for software engineer-
ing projects. The process was divided into sequential steps, each new step
requiring the completion of the previous. Although the waterfall model
included a feedback loop between stages in the development, the model
proved to be less than optimal for systems requiring interaction with end-
users. The reliance on early, elaborate documents describing the applica-
tion to be developed led to cumbersome and poorly understood user inter-
faces, and consequentially large amounts of unusable code. When writing
software of any size, there is always the possibility - or even probability
- that the software will turn out to be something different than what was

10 CHAPTER 2. THEORY

planned. Indeed, it is often the case that the customer has only a vague idea
of what he really needs, making the software specifications incorrect from
the very start. Although Benington, in his 1956 document, stressed that
an experimental prototype was required before the software development
proper began, and that the system should be incremented step by step, this
seems to have been ignored or forgotten by later users of the stagewise life
cycle models.

As a solution to the problems of a stagewise process, the notion of an evo-
lutionary approach to software development has been presented by sev-
eral researchers (McCracken & Jackson 1982, Floyd, Reisin & Schmidt 1989,
Dahlbom & Mathiassen 1993). The evolutionary approach to software de-
velopment is based on a process where the application undergoes several
stages of incremental expansion, where the direction of this evolution is
determined by experience from use (Fischer 2002). A model for this type
of evolutionary development with a high level of user participation is pro-
posed in (Floyd et al. 1989). This model, known as the STEPS8 model, has
been further expanded to accommodate for the introduction of end-user
tailoring of software as an additional force in the evolution of a software
system (Wulf & Rohde 1995).

The idea of incremental improvements to a program corresponded well
with Scandinavian traditions of constant dialogue and cooperation with the
intended users of a system. The developer could make an early version of
the program, and let the users provide him with feedback and suggestions.
New features, and changes to existing ones, could then be incorporated in
a later version of the software; this new version could be tested on users
again, and so on. This process is sometimes referred to as cooperative pro-
totyping (Bødker & Grønbæk 1991). Only through actual use of an artifact
is it possible to discover deficiencies and errors, and this in turn leads to a
refinement of the artifact through an evolutionary process (Petroski 1992).

The UTOPIA project (Ehn 1993) employed a design method called the tool
perspective, in which the designers strived to develop computer tools simi-
lar to the non-computerized tools already in use by graphic workers in the
newspaper industry. This could only be done through close cooperation
with the intended users, and extensive use of prototypes was employed to
reach the goal of simple, yet effective applications for end-users. The de-
velopers used mock-ups of the system they were working on, and let the
intended users provide feedback that could be used to refine the design.
This approach drew on the philosophical theories of Ludwig Wittgenstein,
who in his book Philosophical Investigations formulates his idea of the “lan-
guage game”:

8STEPS is an acronym for “Software Technology for Evolutionary Participative Systems
development.

2.2. EVOLUTIONARY SOFTWARE DEVELOPMENT 11

Figure 2.1: The STEPS model, extended to include end-user tailoring, from
(Wulf & Rohde 1995).

12 CHAPTER 2. THEORY

Let us imagine a language (...) The language is meant to serve
for communication between a builder A and an assistant B. A
is building with building-stones; there are blocks, pillars, slabs
and beams. B has to pass the stones, and that in the order in
which A needs them. For this purpose they use a language con-
sisting of the words ’block’, ’pillar’, ’slab’, ’beam’. A calls them
out; — B brings the stone which he has learnt to bring at such-
and-such a call. — Conceive of this as a complete primitive
language.

(Wittgenstein 1953, Aphorism no. 2)

One of the points Wittgenstein is trying to bring across is that a common
understanding of what is being discussed can only be gained through com-
munication. Correspondingly, the idea in the UTOPIA project was that
a complete understanding of software requirements could only be gained
through an ongoing dialogue between developers and users. A system’s
life cycle does not end at the time of deployment, though. System enhance-
ment after deployment is needed, as weaknesses in the system become ap-
parent, or the system’s context of use changes. Again, the changing envi-
ronment surrounding a system, and the dynamic nature of its users must
be taken into account (Bjerknes, Bratteteig & Espeseth 1991). This extends
the participatory nature of Scandinavian design approach into the mainte-
nance and enhancement phase as well.

2.2.2 Status

Evolutionary software development in traditional programming has re-
ceived criticism for its tendency to lead to unstructured and unmaintain-
able code (Kaasbøll 1997). Constant revisions to the original code base
had a tendency to introduce bugs and “spaghetti code”9. To support an
evolution-oriented way of developing software, a software development
model known as the spiral model (see figure 2.2 on the facing page) was
presented by Barry Boehm in the mid-80s (Boehm 1988). This model em-
ployed both specifying and prototyping approaches, in progressive cycles
eventually leading to the finished product. Each cycle starts with planning
the outcome of this cycle. It then proceeds to evaluation and prototyp-
ing, with an emphasis on risk assessment. The next step in development
is then performed, with each cycle ending in the planning of the next cy-
cle. This model has been very influential, but its complexity and scope is
aimed at internal development project in large corporations. In the context

9Spaghetti code is defined as “Code with a complex and tangled control structure, esp.
one using many GOTOs, exceptions, or other ’unstructured’ branching constructs.” (The
Jargon File 4.7.7 2004)

2.2. EVOLUTIONARY SOFTWARE DEVELOPMENT 13

Figure 2.2: The spiral model of software development, from (Boehm 1988).

of smaller applications, and end-user development in particular, its em-
phasis on planning, design and risk analysis is too complex; requiring a
substantial amount of formal training and experience from software engi-
neering.

The use of mock-ups and prototypes as an aid in the development pro-
cess is discussed in (Budde, Kautz & Kuhlenkamp 1992). Here, we are
presented with different approaches to the use of prototyping. While pro-
totypes are often made in the process of application development, there is
often a lack of awareness about this fact. Consciously using prototypes to
support evolutionary software development can help in several ways, and
different kinds of prototypes are presented:

• A prototype proper is used to illustrate particular aspects of the user
interface or parts of the functionality where uncertainty and ambigu-
ity arises. This kind of prototyping manifests itself as several, smaller
prototypes that are meant to highlight a specific portion of the appli-
cation

• Breadboards are built to clarify purely technical issues, and to help the
development team experiment with different construction-oriented
solutions to the functionality of the application. The use of bread-

14 CHAPTER 2. THEORY

board prototypes is frequently seen in traditional software develop-
ment, but it is seldom recognized as a prototyping strategy.

• Finally, pilot systems are prototypes of the application meant to be de-
ployed and tested with users. This kind of prototyping requires a
higher degree of completeness than the two previous types. As it is
to be tested in the application area, by real users, it also requires at
least rudimentary documentation, and some level of robustness. Pi-
lot systems are frequently the basis for the final product, the the line
between prototypes and early alpha versions of the product becomes
blurred.

Several experiments have been performed to establish the advantages and
disadvantages of evolutionary software development models. One of the
best known is Barry Boehm’s 1982 UCLA experiments, which was repeated
at the University of Aalborg in 1990 (Mathiassen, Seewaldt & Stage 1995).
The Aalborg experiment suggests that the spiral model is a useful frame-
work for evolutionary software development, but the authors also stress
that a mix of prototyping and formal specification is needed, as each of
these approaches uncovers new problems that is best solved by the other.
The techniques employed in these experiments were performed by IS stu-
dents with formal training in software engineering methods. As long as
this skill level is a requirement for the spiral process, it is beyond the ca-
pabilities of end-users or amateur developers. Again, it should be noted
that the spiral model is intended for professional use in large software en-
gineering projects.

Acknowledging the complexity of the spiral model, other, simpler models
have been proposed - e.g. the Seeding, Evolutionary Growth, Reseeding
model (SER) proposed by Gerhard Fischer (Fischer 2002). In this model,
we see an iterative process that includes the users as part of the design
team. After the seeding of a system, the developers take a back seat as the
users focus on suggesting solutions to problems found in the system. Feed-
back from users is incorporated in the next version of the application, and
this new version is reseeded for a new stage of feedback and evolutionary
growth. A graphical representation can be seen in figure 2.3 on the next
page.

The importance of evolutionary growth is also stressed in (Mørch 2003).
Here analogies are drawn to evolutionary mechanisms in other domains,
e.g. biology and architecture. This text also discusses techniques for involv-
ing end-users as active participants in the evolutionary process of software
development, and argues that end-users need will need access to represen-
tations that are less formal than implementation code to fully understand a
system. Mørch also presents the idea of resemblance as a useful way of de-
scribing relations between artifacts with a common evolutionary history.

2.3. CLONING AND PROTOTYPES 15

Figure 2.3: Seeding, Evolutionary Growth and Reseeding, from (Fischer
2002).

Making use of resemblance as a development technique could improve
user participation, a concept that we will see a prototype implementation
of in chapter 4.

2.3 Cloning and prototypes

2.3.1 History

Traditional object-oriented programming (OOP) is based on the concept of
inheritance. This view of the object-world is based on a fundamental distinc-
tion between the terms class and instance. A class is a formalized description
of all the properties we might find in the item we are trying to describe, and
it has the power to generate instances. Instances are the individual member
of the set described by the class, and they will need to contain values for
the variables defined in the class description. A class that inherits proper-
ties from another is called a subclass, e.g. a car class inheriting properties
from its superclass vehicle. The programming language Simula (Nygaard
& Dahl 1978) is considered the first object-oriented language, and as such
was the first to introduce this object-view.

Throughout the history of object-oriented programming, another approach
has been championed. The idea of prototypes10 implemented by delegation
is part of the inspiration for the cloning concept presented in this thesis.
While traditional OOP is based on the properties defined in the class con-
struct, prototype-based OOP recognizes the observation that it is often dif-
ficult in advance to say which characteristics are needed to describe a con-
cept. Ludwig Wittgenstein presents the following example of the problems

10Note that the term “prototype” is used in a different sense than in the previous section,
and that the two uses must not be confused with eachother

16 CHAPTER 2. THEORY

encountered when one tries to describe a concept to a person without any
background or earlier experience of it.

When one shews someone the king in chess and says: “This
is the king”, this does not tell him the use of this piece-unless
he already knows the rules of the game up to this last point: the
shape of the king. You could imagine his having learnt the rules
of the game without ever having been strewn an actual piece.
The shape of the chessman corresponds here to the sound or
shape of a word.

(Wittgenstein 1953, Aphorism no. 31).

As we see, it is difficult to say in advance which characteristics are needed
to describe a concept. It is easier, then, to deal with a specific example
first, and describe later experiences in terms of similarities and differences
to this. As new examples are encountered, people are able to make analo-
gies to previous concepts, and, instead on focusing on the “defaults” from
this previous concept, they can instead describe in what way a new ex-
ample differs from earlier experiences. An illustrative example is given in
(Lieberman 1986):

Suppose we wish to describe the properties of elephants, based on our en-
counter with the particular elephant Clyde. Using traditional object orien-
tation, we will probably define the class elephant, with properties such as
color, number of legs, weight etc. When we later meet the elephant Fred,
we can fill in these fields, thus having Clyde and Fred both relate to the
variables of the elephant class. Prototype-based object orientation holds a
different view. When a person is asked to describe an elephant, he is likely
to think of a specific elephant he has seen, either in real life or on television.
Thus, we store the description of Clyde as our prototype for an elephant.
If we are asked later about the characteristics of Fred, we can assume that
the answer will be the same as for Clyde. If it turns out that Fred is a white
elephant, we can describe him as “just like Clyde, except that the color is
white”.

Object creation based on this view of object orientation is based on cre-
ating new objects from earlier objects without involving classes, through
a cloning process. The new object will have all the properties of its proto-
type, and only discrepancies need to be explicitly stated. This paradigm for
object-orientation has been implemented in some experimental program-
ming languages, such as SELF. As a language that wishes to implement
this sort of object orientation needs to be dynamically typed (to allow for
the fact that the structure of objects is unknown at run time), they are writ-
ten as scripting languages or interpreted programming languages that run
on a virtual machine. This usually implies inferior performance in terms

2.3. CLONING AND PROTOTYPES 17

Figure 2.4: Graphical representation of objects in SELF, from (Smith & Un-
gar 1995).

of execution speed and memory footprint compared to conventional, com-
piled programs. Prototype-based object orientation has mostly appeared
in academic and research languages, and the performance issues may very
well be one of the reasons for this.

2.3.2 Status

Perhaps the best known example of classless object-oriented languages is
SELF (Ungar & Smith 1987, Smith & Ungar 1995), conceived by David Un-
gar and Randall Smith during their time at the Xerox Palo Alto Research
Center (PARC). SELF was further developed by Ungar at Stanford Univer-
sity, and a public release took place in 1990. Ungar was hired by Sun Mi-
crosystems Laboratories, where he led the SELF group from 1991 to 1995.
SELF had features that provided implementation challenges, like the need
to perform background compilation of new objects, and the need for an
efficient virtual machine on which the programs could run. Most of the
“HotSpot performance engine” used in the Java Virtual Machine is based
on the techniques employed by Ungar for SELF (Smith & Ungar 2001). SELF

is no longer an official project at Sun Microsystems Laboratories, but it has
been developed on and off over the last years anyway. The latest version
is 4.2.1, released for Macintosh and SPARC Solaris systems on April 16th,
2004.

SELF also employs a graphical interface for interaction with the objects,
called Seity (figure 2.4). The “traits” term, seen in the name of the par-
ent object in figure 2.4, is used to describe an object that is intended to be

18 CHAPTER 2. THEORY

cloned from, but not be put to use by itself. This may seem similar to a
traditional class description, but traits objects to not contain implementa-
tion or instantiation details for its inheritors. As such, it can be seen as an
equivalent of the abstract classes of traditional object-orientation. In SELF,
the user may freely add “slots” to objects by direct manipulation of the
data objects, where each slot contains another object. This other object may
also be a method or a variable (in reality, every entity in SELF is an object!).
To allow for this extreme mutability of the programs, SELF does not pro-
duce executable files as a result of compilation. Rather, the running system
is stored as a snapshot, to be reloaded into the virtual machine the next
time one wishes to start the program. The syntax of SELF is based on that
of Smalltalk, but is simplified and adapted to the prototypical nature of the
object orientation mechanisms of the language.

There is still a vocal minority of programming language developers, mostly
based in the California area (e.g. at Sun Microsystems and Apple Com-
puters), that continue to develop the prototype-delegation paradigm. Lan-
guages inspired by SELF include Cecil, Cel, Merlin and several other, un-
known languages11. Additionally, there are other languages that are based
on other syntaxes, but most owe the majority of their design to Smalltalk
or SELF. Perhaps most notable of these is NewtonScript (Apple Computer,
Inc. 1993), the scripting language used by Apple for their Newton PDA -
the first PDA to be mass produced - in the early 90s. Drawing on experi-
ences from the HyperCard application12 - the flexibility of HyperCard also
mentioned in (Mørch 1997) - the Newton team decided that a prototype-
based object model was simpler and more intuitive for creating graphical
interfaces with container inheritance. Container inheritance describes a re-
lationship between GUI elements where unhandled messages sent to an
object is passed further up the hierarchy. In HyperCard, for example, if a
message is sent to a button, the system will look for a handler in the but-
ton, then in its card, then in the card’s background and finally in the stack
(see figure 2.6 on the next page). HyperCard also has features for cloning
GUI elements. This is simply done by holding down a specific key, while
dragging a clone from an element using the mouse. An example is shown
in figure 2.5 on the facing page.

A fundamental concept in prototyping programming languages is the way

11For a non-exhaustive list of prototype-based programming languages, see http://www.
dekorte.com/Proto/Chart.html.

12HyperCard was a Macintosh program for easy creation of databases, graphical user
interfaces (GUIs) and prototypes for other applications. It was based on a concept of a
“stack of cards” in which the developer could place GUI elements like text boxes, buttons
etc. HyperCard included hypertext facilities from the first version, and has inspired several
graphical development environments - including reimplementations for other platforms,
such as SuperCard (http://www.supercard.us).

http://www.dekorte.com/Proto/Chart.html
http://www.dekorte.com/Proto/Chart.html
http://www.supercard.us

2.4. FITTING THE PIECES TOGETHER 19

Figure 2.5: Cloning a text field in HyperCard.

Figure 2.6: The HyperCard container hierarchy.

an object passes unhandled messages to its parent, or prototype object.
NewtonScript’s strengths in the area of GUI development has inspired proto-
type-based languages like Dialect13. Other projects inspired by Newton-
Script include the Io programming language and Lua - an extension lan-
guage for C.

2.4 Fitting the pieces together

Programming tools utilizing visual components seem to be the best way to
approach end-user development (Chang, Ungar & Smith 1995, Stiemerling
et al. 1999, Costabile et al. 2003). Direct manipulation of visual objects on

13http://dialect.sourceforge.net/

http://dialect.sourceforge.net/

20 CHAPTER 2. THEORY

the screen is likely to simplify object-oriented programming and give the
user a feeling of direct interaction with the pieces that make up an appli-
cation. The open question is: What should be an object on the screen? Al-
though in reality an on-screen component may consist of several objects on
a source code level, it is argued in (Chang et al. 1995) that the programmer
should be “tricked” into thinking that the representations on the computer
screen are the actual objects he is working with. Domain modeling, the pro-
cess of mapping programming language classes to real-world objects and
concepts (Fowler & Scott 2000), is an acknowledged technique when devel-
oping information systems. In the context of end-users designing graphical
interfaces and simple applications, however, it becomes awkward to use.
Analyzing a GUI on the class level can quickly become counter-productive,
as components usually regarded as a single entity are likely to consist of
multiple classes on the API level (e.g. scrollable lists, that will at least con-
sist of a scrollable view, the actual list, and a data type containing the actual
values). Relating to GUI components is likely to be a more appropriate level
of granularity for end-user developers.

Adding cloning functionality similar to SELF, but for GUI components, will
further increase the flexibility of the builder application. A textual repre-
sentation of GUI elements such as buttons and text boxes adds a level of
abstraction to the development process, and users should be spared the
burden of learning the structured and unfamiliar syntax of computer lan-
guages required to create a visual computer application. For example, con-
sider the contents of listing 2.1 on the next page, required to produce the
window in figure 2.7 on page 22. If I wanted to add any kind of function-
ality to the button in the example, several lines of code would have to be
written, including the use of additional classes to handle events from the
mouse and keyboard of the user. Furthermore, a large majority of com-
puter systems in use today are based on the classic windows-icons-menus-
pointing device (WIMP) paradigm for graphical interfaces. Since this is the
setting in which end-users perform their daily work, this must surely be
the most natural environment for end-users to customize their applications
(Costabile et al. 2003). A hypothesis we address in this thesis is therefore
the following: Visual components that are easily recognizable from previ-
ous experience with other applications will lower the threshold for learning
end-user development.

Based on Petroski’s theory that evolution of artifacts is done by correcting
the faults of existing artifacts (Petroski 1992), such a toolkit should include
the option to modify the available components to suit the needs of end-user
developers. This way, the application is not only open for further develop-
ment, but the components that make up the environment can be modified
and improved as well. This is particularly important in situations where
the set of available components do not support the functionality that the

2.4. FITTING THE PIECES TOGETHER 21

import j avax . swing . * ;
import j ava . awt . * ;

public c l a s s HelloWorldSwing {
private s t a t i c void createAndShowGUI () {

JFrame . setDefaultLookAndFeelDecorated (t rue) ;

JFrame frame = new JFrame (" HelloWorldSwing ") ;
frame . se tDefaul tCloseOperat ion (JFrame . EXIT_ON_CLOSE) ;

frame . getContentPane () . setLayout (new GridLayout (3 , 1)) ;

JLabe l label = new JLabe l (" Hello World ") ;
frame . getContentPane () . add (label) ;

JButton button = new JButton (" Useless button ") ;
frame . getContentPane () . add (button) ;

J T e x t F i e l d f i e l d = new J T e x t F i e l d (" Enter anything ") ;
frame . getContentPane () . add (f i e l d) ;

frame . pack () ;
frame . s e t V i s i b l e (t rue) ;

}

public s t a t i c void main (S t r i n g [] args) {
javax . swing . S w i n g U t i l i t i e s . invokeLater (new Runnable () {

public void run () {
createAndShowGUI () ;

}
}) ;

}
}

Listing 2.1: Example code for creating a window with a simple GUI with
Java.

22 CHAPTER 2. THEORY

Figure 2.7: The results of listing 2.1 on the page before.

end-user wants to achieve. Modifiable components, presented in this text
as a solution to the problem of limiting components, is not the only way to
deal with this problem. Another solution could be to simply offer such a
wide array of components that the end-user never will experience the prob-
lem of inadequacy in the available set of components. This will of course
introduce another problem, that of efficient cataloguing of components, a
concern that was presented along with the idea of software components
were introduced (McIlroy 1968).

The notion of evolution and change within the context of a single com-
ponent is also consistent with Brad Cox’s view that software components
should be easily replaceable (Cox 1986). The user is likely to make an early
prototype of his application at a very early stage. By never actually “freez-
ing” the application, he should be able to continually add functionality and
refine existing features at later stages, following the ideas of evolutionary
software development.

It is claimed in (Rieman 1996) that users often learn how to use new tools by
exploration and experimentations, trial and error. However, this presents
the risk of users involuntarily causing errors that could be hard to recover
from. Providing malleable components from which the end-user developer
can make clones is a goal with my component-based toolkit. This way, the
developer can safely experiment with a cloned component without damaging the
original, as long as the original can at any point resume operation if the clone
turns out to be malfunctioning. When a new component has the desired
properties, it will be available for later use from the palette of components
that component assemblage tools usually provide. This visual equivalent to
“programming by example” lets the user examine a relevant, but not quite
appropriate component, and experiment with different parameters to fine
tune it. After seeing the effects of changes made to the component, the user
can proceed to make more drastic changes, thus learning more about the
technical details of the toolkit in small increments.

Chapter 3

Tools and methods

I can’t understand a word you say. And you’re poorly dressed.
You must be some sort of technology expert. Or a rodeo clown.

— Dilbert’s Pointy Haired Boss (from the comic strip “Dilbert” by
Scott Adams)

This chapter describes the tools used for the thesis, as well as the rationale
for choosing them. I will give a walkthrough of the technologies employed
in the SimpleBuilder project, including BeanBuilder; the basis for Simple-
Builder. A discussion on the work needed to change the BeanBuilder into
the tool we were looking for is provided in 3.3.2 on page 34. I will also
describe how I performed the development and research needed for the
thesis.

3.1 Developer tools

Although I set out to develop a framework for application development,
I naturally needed to choose an environment for developing the applica-
tion framework itself. I also had to choose a programming language for
implementing the toolkit. Due to the large number of source code files that
would make up the final application, I decided that an Integrated Devel-
opment Environment (IDE) was needed. An IDE combines management of
source code with an editor, usually supporting standard features as symbol
completion, syntax highlighting and coloration of the code. It should also
include a compiler and a debugger, essentially simplifying the program-
ming process to editing of source code, and pressing a button to perform
compilation and packaging of the program.

23

24 CHAPTER 3. TOOLS AND METHODS

3.1.1 The Java programming language

I had already decided to use the Java programming language, version 1.4,
as the implementation language for this project. The two main reasons for
this were its multiplatform nature, and the fact that it is the programming
language I am most familiar with. Java is an object-oriented programming
language developed by James Gosling and his fellow engineers at Sun Mi-
crosystems. Work on Java started in 1991, and the first public version was
announced in 1995. It was designed to be a platform-independent language
with syntax similar to C++ (Gosling, Steele & Joy 2000).

As the inventors wanted a simpler and more consistent language than C++,
they decided not to include some of the more advanced features of C++,
such as templates or pointer arithmetics. another C++ feature deliberately
left out of Java is that of multiple inheritance. Multiple inheritance lets a
class inherit from two or more superclasses. This was left out of Java be-
cause it can lead to problems, for example when the compiler has to decide
which of two conflicting method implementations to choose from. Java’s
solution to this problem is the use of interfaces. An interface is similar to
a class definition, except that it does not allow any implementation code
for included functions. This means that it’s entirely up to the implement-
ing class how to actually implement a function. The result of this is that
when a programmer writes code utilizing these implementor classes, he
can safely assume that a function is supported, while ignoring the details
of its implementation.

Java also draws upon other OO languages like Smalltalk, and one of Java’s
chief features is the built-in garbage collection. To provide platform inde-
pendence, Java also contains the Java Virtual Machine (JVM). This means
that programs are compiled into bytecode, which in return runs on the
JVM. Any computer platform that has a working JVM can run Java ap-
plications. Java is also supplied with a large library of standard classes.
Many of these are concerned with providing a unified interface for a sup-
ported platform’s GUI features, essentially making Java programs platform
independent. Other classes implement text processing tools such as regular
expressions, or abstract data types such as lists and hash tables.

3.1.2 Operating system and developer environment

For most of my daily work, my preferred computer platform is the Apple
Macintosh Operating System, version 10.3 (Mac OS X). Mac OS X is based
on the operating system FreeBSD, which in turn is based on UNIX. This
provides a stable, standardized platform and a host of open source devel-
opment aids. As Mac OS X comes with a powerful IDE and a high level of

3.2. COMPONENT TECHNOLOGY 25

Java integration with the operating environment, this platform seemed like
the obvious choice for my development work. Apple’s free development
environment XCode provides easy organization of source code files, as well
as an editor, source code management and version control1, one-click com-
pilation and packaging, and an online help system and API specification
for Java2. With the development environment ready, I needed to search for
a suitable starting point for my project. Writing a component-based devel-
opment environment from scratch was well beyond the scope of a 1-year
research project. I started looking for such an environment, which needed
to have available source code, and be both component-based and written
in Java. Luckily, Sun has developed their own technology for component-
based development with Java; JavaBeans.

3.2 Component technology

For a piece of software to qualify as a software component, it has to be both a
unit of deployment and a unit of versioning and replacement (Szyperski 1998).
This means that a software component must be delivered in compiled form,
runnable on a real or virtual machine. Deploying a software component
should not require neither the installation of programming tools, nor the
presence of a professional developer. The “versioning and replacement”
part means that the software components should be easily replaceable, and
be packaged as a bundle that can be swapped for another version without
affecting other parts of a system. This also means that software component
must be considered at the level of packages or modules, i.e. a set of classes
rather than an object. A software component can consist of several classes,
or just one. It will, however, usually be supplied with a descriptor of some
kind, usually an auxiliary class which defines the component’s interface.
When the internal structure of the component is hidden in this way, ex-
posing only the component’s connection points, it is usually referred to as
a black box component (Szyperski 1998). Alternative ways of component
encapsulations are white box, where all the internals of the component are
visible and modifiable, and glass box, where the code is visible, but not open
for modification.

1Version control is offered through integration with the Concurrent Versions System,
CVS. CVS allows storage of source code in a central repository, and has features for version-
ing and branching of source code trees. This also means that reverting to earlier versions
in the case of newly introduced bugs is possible. It also has mechanisms for resolving con-
flicting changes to source code performed by multiple developers, but this was not needed
for the work described here.

2For more information on XCode, see http://www.apple.com/macosx/features/
xcode/.

http://www.apple.com/macosx/features/xcode/
http://www.apple.com/macosx/features/xcode/

26 CHAPTER 3. TOOLS AND METHODS

3.2.1 Component-based vs. traditional programming

By letting the developer see the objects right in front of him while creating
an application, visual software components such as JavaBeans let us bypass
the extra level of indirection that the source code of conventional program-
ming represents. With component assembly, there is no real distinction
between the designed object and the runtime object. While working in a
component assembly tool, the designed application is displayed in its own
window, and what you see in this window represents the final application.
When switching from the “design runtime” (the component assembly tool)
and the “user runtime” (the running application) the components will stay
where they were placed, and look the same as at they did in the design
view of the application.

When a programmer is designing the individual components, significant
care and planning is required. To ensure that the components are prac-
tically reusable, they need to be - among other things - robust, properly
documented, and thoroughly tested. However, once a component is com-
plete and working it should significantly simplify the development process
for those that put it to use.

While object-oriented programming can be considered prerequisite for soft-
ware components, object-orientation and component-orientation are not
the same. Object-orientation focuses on programming according to a model
of real or imagined entities in a system. Component-orientation focuses
on the assumption that programs should be built by gluing together pre-
fabricated components, and for the person doing component assembly the
traditional distinction between class and object is no longer of interest: the
component is the unit he relates to. In the special case of components made
for visual builder tools, the intention is to reduce the amount of code writ-
ten by a developer to an absolute minimum. In contrast, writing a pro-
gram using conventional programming may include typing in thousands
and thousands of lines of text in a structured, but often hard to grasp, lan-
guage. Finished software components will still be developed in this tradi-
tional way, to furnish component libraries. As a means to simplify and en-
courage end-user programming, component-based development seems to
be an excellent tool. While end-users are typically domain experts, they can
not be expected to be familiar with conventional programming languages.
They will, however, usually have experience in filling out preference forms
and other simple customization of programs (Mørch & Mehandjiev 2000).

3.2. COMPONENT TECHNOLOGY 27

3.2.2 JavaBeans

JavaBeans were introduced with the 1.1 version of Sun’s Java program-
ming language. JavaBeans is not a specific product; rather, it is a set of
specifications that a Java class needs to satisfy to be treated as a Bean (Sun
Microsystems 2003b). JavaBeans are Sun’s solution to the problem of mak-
ing “software integrated circuits” (Cox 1986, Szyperski 1998) - software
components with a clearly defined interface, which can later be assem-
bled into complete applications. JavaBeans were introduced as a platform-
independent solution to allow extensive reuse of self-contained software
components (Sun Microsystems 2003b) with clearly defined public inter-
faces. JavaBeans require that all components are available in compiled form
on the same host, and as such are suitable for stand-alone or client-side ap-
plications. They are specifically designed to be used with builder applica-
tions3. These application normally use the concept of a palette for holding
the components, in the same way that an art painter’s palette contains the
colors used to create a painting. Most JavaBeans will be supplied with an
icon to be used for representing the components in the palette of such a tool.
JavaBeans will usually also include a BeanInfo class that can tell builder ap-
plications about the properties of the JavaBean, such as accessor methods,
variables, a short name for use in menus etc, as well as information about
the icon to be used for the palette.

Inspired by Sun’s work with the Object Management Group and their Com-
mon Object Request Broker Architecture (CORBA, see 2.1.2 on page 8), En-
terprise JavaBeans (EJB) were presented as the solution for server-side ap-
plications (Sun Microsystems 2003a). Enterprise JavaBeans are components
normally running on an application server to provide services offered by
underlying middleware systems; such as transactions, persistence and se-
curity. Enterprise JavaBeans are also interoperable with CORBA compo-
nents, although more application server implementations for EJB exist than
for CORBA.

A challenge presented by the component-based architecture of JavaBeans
is that of the components’ persistence. Persistence is a term used for the way
components are saved to disk when the application is not running or being
edited. After having done the necessary customization of the objects, the
developer will want to store these changes. As objects and their state are
normally associated with the run-time state of an application, JavaBeans
has previously utilized the concept of serializable objects; that the objects
in memory can be written to disk for later use and/or further modification

3The term “builder application” is used to describe a tool for assembling an application
from pre-built components. It is not to be confused with the conventional developer tools
used for creating the components in the first place.

28 CHAPTER 3. TOOLS AND METHODS

(Gosling et al. 2000). Earlier, this was performed by simply writing the
object data in memory to a file with the .ser extension. A problem with this
was that the information about the components’ relations to each other was
difficult to preserve.

With version 1.4 of Java, a new interface for storing objects along with the
graphs of interconnected JavaBeans, is provided by a system of XML-based
Long Term Persistence (LTP) (Java Community Process 2003). LTP also
stores the customizations done to the components that make up the ap-
plication being developed. The mechanism essentially works by storing
object names along with the method calls and corresponding parameters
required to restore the object to its state at the time of serialization. Storing
and restoring graphs of JavaBeans is done with only a few lines of code
(although the resulting XML can be rather verbose). The Java code of list-
ing 3.1 on page 30 demonstrates the basic principle of this mechanism. The
results of storing a text field as XML can be seen in listing 3.2 on page 32.
If the file had described multiple components, connections to other com-
ponents would have been expressed as a sequence of set/get methods (see
the appendix for an example). When such a file is reconstructed, it will re-
sult in a set of components and event listener object with the same relations
they had at the time of saving to disk.

JavaBeans can be assembled into applications by using one of several avail-
able visual builder tools. JavaBeans can both be visual (buttons, listboxes
etc.) and non-visual (e.g. components for manipulating and/or storing
data). Non-visual components are normally represented by a visual proxy
object to allow for manipulation and connection to other components, e.g.
the DefaultListModel in figure 3.1 on the facing page. Of course, these
proxy objects are invisible when running the assembled application. The
developer must also connect the components to each other to specify the
interaction between them. Wizards that query the object for available meth-
ods aid this work, and the developer can actually build an entire applica-
tion without writing a single line of Java code.

3.3 The BeanBuilder

The intention with my thesis is to provide a functional toolkit that allows
end users to develop their own applications without prior programming
experience, but by reusing, customizing and integrating existing applica-
tions and application components. We hope to provide a toolkit that en-
ables the user to employ concepts he is already familiar with from everyday
work activities, so that end-users may develop an application that takes ad-
vantage of their domain expertise. To achieve this, there are a number of

3.3. THE BEANBUILDER 29

Figure 3.1: The DefaultListModel is a wrapper for the Vector class, i.e. a
general storage class with functionality for event listener notification. This
allows the user to add interaction to the list model in the same way as for
visual components, e.g. for putting values typed in a text field into the
vector represented by the proxy object.

30 CHAPTER 3. TOOLS AND METHODS

/ * *
* @param f i l e N a m e t h e name o f t h e XML f i l e

* @param o b j e c t T o W r i t e r o o t c o n t a i n e r o f t h e a p p l i c a t i o n

* /
void W r i t e F i l e (S t r i n g fileName , Object ob jectToWrite) {

XMLEncoder e = new XMLEncoder (
new BufferedOutputStream (

new FileOutputStream (fileName))) ;
e . wr i teObjec t (ob jectToWrite) ;
e . c l o s e () ;

}

/ * *
* @param f i l e N a m e t h e name o f t h e XML f i l e

* /
void ReadFile (S t r i n g fileName) throws IOException {

XMLDecoder d = new XMLDecoder (
new BufferedInputStream (

new Fi le InputStream (fileName))) ;
System . out . p r i n t l n (" Read o b j e c t : " + d . readObject ()) ;
d . c l o s e () ;

}

Listing 3.1: Example code for storing and restoring a JavaBean application
from XML

requirements that need to be met by the toolkit.

3.3.1 Features

The BeanBuilder was built by Mark Davidson, software engineer at Sun
Microsystems, as a simple demonstration of the new features of JavaBeans
as of Java version 1.4. As such, it makes no assumptions to be a production-
quality tool for application development. Still, it has a number of features
that are interesting to us:

• Long Time Persistence
The BeanBuilder utilizes the LTP scheme of Java 1.4 to store designed
applications as references to components and their connections to
each other (often referred to as wiring, an analogy to electronics) in
an XML file. This also means that the BeanBuilder can be run in
“interpret mode”. This means that an XML file can be given as a
command-line argument to the BeanBuilder, to run an assembled ap-
plication without starting the builder environment. In this mode, the
Builder simply reads the XML file, reconstructs the application, and

3.3. THE BEANBUILDER 31

Figure 3.2: A screenshot of the Sun BeanBuilder in use. The palette with
icons for different components can be seen in the top section of the shot,
with the property sheet and the designed application in the lower left and
right part, respectively. A larger picture of the similar SimpleBuilder can
be found in figure 4.5 on page 48.

32 CHAPTER 3. TOOLS AND METHODS

<?xml version=" 1 . 0 " encoding="UTF−8" ?>
<java version=" 1 . 4 . 2 _03 " c l a s s =" java . beans . XMLDecoder">

< o b j e c t c l a s s =" javax . swing . J T e x t F i e l d ">
<void property=" p r e f e r r e d S i z e ">

< o b j e c t c l a s s =" java . awt . Dimension ">
<int >168</int >
<int >63</int >

</o b j e c t >
</void >
<void property=" bounds ">

< o b j e c t c l a s s =" java . awt . Rectangle ">
<int >62</int >
<int >93</int >
<int >168</int >
<int >63</int >

</o b j e c t >
</void >
<void property=" t e x t ">

< s t r i n g >XML example</s t r i n g >
</void >

</o b j e c t >
</java >

Listing 3.2: A JTextField component stored as an XML file, with its text set
to "XML example". The integer values describe the component’s size in
pixels.

hands over control to it.

• Easy wiring of components
An API introduced in Java 1.3, called Dynamic Proxy Classes, is used
in BeanBuilder for connecting components. JavaBeans communicate
through events. The BeanBuilder generates proxy objects for event
listening at design time; objects that implement listener interfaces
specified when connecting components. If a proxy object later re-
ceives such an event, it can trigger a user-specified method in a Jav-
aBean. In practice, this means that no “glue code” is necessary to con-
nect components, as objects that would have required specific event
listeners before now can communicate through dynamically gener-
ated proxy objects. To create these proxy objects, the user draws a
line between two components, and the BeanBuilder will present a
wizard for connecting the components. When the user has selected
a trigger event for inter-component communication, and the meth-
ods to be invoked at the source and target object, the proxy object is
generated based on this information. This object will be stored along
with all the other components when the user saves the application to

3.3. THE BEANBUILDER 33

Figure 3.3: The application from figure 3.2 while running. Note that the
proxy object, as well as the resizing handles and event arcs are no longer
visible

disk. The advantages of avoiding any programming is that the user
never leaves the purely graphical environment of component assem-
bly, and that he does not have to learn a programming language to
create simple applications.

• Flexible layout management
The BeanBuilder also uses the new SpringLayoutManager from Java
1.4. This is a layout manager specifically designed for use in visual
builder tools, to allow for flexible behavior when resizing windows
of assembled applications. The layout manager works by “attaching”
the edges of components to each other, so that for example a text field
whose edges are attached to that of the containing window will be
resized accordingly when the window changes shape. Traditionally,
layout management in Java has required programming skills, and the
ability to imagine the graphical results of a textual representation, in
the form of program code.

• Simple and small enough
The source code of the BeanBuilder consists of about 12,000 lines of
Java code. While this may sound imposing, this is a small enough
number for one developer to get an adequate grasp of the logic and
structure of the application. The code is distributed in a logical direc-

34 CHAPTER 3. TOOLS AND METHODS

Figure 3.4: Component wiring in the BeanBuilder. Text entered into the
JTextField component will show up in the JLabel component. This rela-
tion is represented by an arrow. When text is entered, an ActionPerformed
event will be fired, and the proxy event listener will invoke the JLabel’s
setText() method with the JTextField’s getText() as the argument.

tory structure based on the functionality of defined classes, making it
simpler to find the appropriate file for a given functionality. In addi-
tion, the code is for the most part well commented, including tags for
the JavaDoc tool4.

• Available source code
Perhaps the most important issue for us; the full source code of Bean-
Builder is available from Sun’s website. It is released under a BSD-
style5 licence, which essentially means that developers may do what-
ever they wish with the code, except claim that they wrote it.

3.3.2 Required extensions

Following the features mentioned in the problem description (1.3 on page 4),
it is highly desirable from an end-user development point of view that we

4JavaDoc is a tool for extracting documentation from source code. Every class and
method can be commented with tags that when run through the JavaDoc tool will produce
meaningful documentation in HTML format. See listing 3.1 on page 30 for an example of
the @params keyword in use.

5The term “BSD-style” comes from the license accompanying the Berkeley Software Dis-
tribution of the UNIX operating system. This was the first use of this particular wording in
an open source license. Similar license are used for a host of software projects today, many
of which have no relation to the BSD operating systems.

3.3. THE BEANBUILDER 35

end up with a toolkit that is able to save the state of an application, includ-
ing both the objects used and the relations between them. The user must
also be able to (re)start an application under development with a simple
double-click at any time after finishing a stage in the development process.
However, it should also be possible to open the application with an editor
to perform additional work, potential bug fixes, or changes needed to meet
new requirements in the problem domain. In other words, the application
must be extensible without requiring the user to wander too far from the
use situation.

While developing the application, the user should be able to easily switch
between layout editing of an application (analogous to placing the com-
ponents of a Hi-Fi set, adjusting the position of speakers etc.), and the
event-management part of the development (connecting the wires between
tape decks and amplifiers, turning knobs and connecting different outputs
and inputs). This needs to be a simple and intuitive process, and the user
should be aware of which mode he is in at any time.

The user should also be able to easily switch between building mode and
use mode of the application at any time. This is useful while developing
the application, as the user is likely to want to quickly see the changes done
to the application, and how it works out in practice. This can be seen as
analogous to the test/debug/test cycle of conventional programming. By
making this switch fast and cognitively simple, the developer may also
request comments and suggestions from his co-workers, and even let them
perform rearrangement and alterations to the GUI!

Required changes in functionality

The most important change required in the BeanBuilder toolkit is the ad-
dition of cloneable components. This needs to be done in such a way that
the original component is preserved, and the new component is the ob-
ject of further modification and extension. This level of malleability in
components means that we must provide features to save the state of the
user’s carefully configured components. This should also imply that we
present the user with functionality for editing and extending components.
It is likely that such a feature will be used mainly by end user developers
with some experience and confidence in working with the toolkit (hope-
fully most users will reach this level eventually), and at this stage it should
be safe to introduce the developer to simple Java code. In fact, changing the
internals of a component without writing code is likely to be far beyond the
scope of this project. A possible solution is adding an “edit” option to the
components, which presents the user with a simple view of the Java code
for the core functionality of the component. After the changes have been

36 CHAPTER 3. TOOLS AND METHODS

committed, the new Java class could be compiled in the background. This is
essentially what goes on in the background when a SELF object is changed
(see 2.3.2 on page 17 for more on SELF).

It is necessary to separate the editing of cloned components into to cat-
egories: Customization is the act of setting default values like labels, col-
ors, and other properties publicly available in the component. Extension,
on the other hand, is the act of changing the nature of the component;
adding functionality and behavior, offering new properties for editing and
other changes that require a source code level redesign of the component
(Mørch 1997). I consider both to be equally important to provide true user-
editable components, but extension requires an easy interface for changing
the Java code of components. More on this in chapter 4 on page 40.

While the BeanBuilder certainly makes life easier for programmers with
Java experience by providing wizards for establishing relations between
components, this wizard is much too confusing for novice developers. The
wizard will present the user with all methods exposed by the source and
target components, most of which will be irrelevant when connecting com-
ponents. Knowing which methods to choose essentially requires knowl-
edge of the Java API specification, which is clearly beyond what should be
expected from end-users. One potential solution to this problem is sup-
plying only components that have a small enough choice of public meth-
ods that it will be apparent how to connect components using the wizard.
For this initial version of the SimpleBuilder this is the chosen approach.
The example components supplied with the SimpleBuilder (called “Sim-
pleBeans”) only offer one pair of set/get methods: setValueSBO() and
getValueSBO()6. Another approach is bypassing the entire system of using
wizards for establishing connections, and instead providing components
with a set of different types of “connectors”, similar to the different types
(RCA Audio, jack, antenna and SCART, for example) of connectors found
on Hi-Fi equipment. This may potentially limit the versatility of compo-
nents, but with sufficient planning I believe this to be a viable solution. It
will then be evident how to connect the components, as a getString() “con-
nector” of one component will only fit a setString() “connector” on another.
This is the approach chosen in the EVOLVE tailoring platform (Stiemerling
et al. 1999).

6The SBO part of these method names is short for “SimpleBeanObject”, a simple wrapper
object that can contain an object of any class, along with a field describing its type. More on
this in 4.4 on page 54.

3.4. DEVELOPMENT STRATEGY 37

Changes in GUI

While working with component assembly, it is essential that the user is able
to modify certain properties of the components. These could be attributes
like position, size, the text on buttons, etc. However, the huge property
sheet presented in the BeanBuilder is likely to be confusing and difficult
to get an overview of. Even in “simple mode” the number of options is
quite daunting to a novice user. Based on experience, presenting a user
with too many options may even tempt the user to spend too much time
being “creative” with fonts and coloration, and too little time on making
an efficient and pleasant-to-use application. One possible solution to this
is providing an “even simpler mode”, which provides only the simplest of
options to the user.

Another part of BeanBuilder that could benefit from redesign for the in-
tended audience of our project is the switching between layout mode and
event management mode. Today, this is done by choosing the mode from
a listbox, and the current mode is indicated by the coloration of the con-
nections between components. (When in layout mode, connections be-
tween components are used to “anchor” them to other elements of the
GUI, to better support resizing of the application window. See the point
on SpringLayoutManager in 3.3.1 on page 33) If we choose to provide each
component with several connectors whose appearance depend upon the
type of data passed through the connector, a possible solution could be
to only display these connectors when in event management mode. In
essence, the event management mode presents the user with the “wiring”
of the application. This could be seen as analogous to peeking behind a Hi-
Fi set to connect wires between the connectors at the back of components,
while only relating to the buttons and dials in front of the components the
rest of the time.

3.4 Development strategy

As this project was based around an existing application, I was faced with
the problem of understanding a fairly large amount of source code written
by a person that I could not get personal assistance from. Because of this,
a large amount of time went into trying to grasp the structure and logic of
the source tree accompanying the BeanBuilder distribution. Understand-
ing code written by others is proven to be a time-consuming task (Paul,
Prakash, Buss & Henshaw 1991), and because of the limited time available
to me I had to start development at an early stage. As there were large
uncertainties around what was technically feasible, and indeed about my

38 CHAPTER 3. TOOLS AND METHODS

own skills as a programmer, I opted for a development model similar to the
spiral model of Barry Boehm (Boehm 1988). As a functioning application
was the starting point for my development, an evolutionary process with
incrementally added functionality seemed the only option.

My first goal was to get the application to compile and run in the developer
environment I had chosen. I then proceeded to setting up a tentative list of
features I wanted to add, along with personal notes on how I hoped to be
able to implement them. Every new feature I decided to add corresponded
to a cycle in the spiral model (figure 2.2 on page 13). I started each stage
with studying the appropriate part of the BeanBuilder source code, and
searching the Java API documentation for functionality that might aid me.
I then wrote a short, informal list of keywords that outlined the plan for
implementing the relevant piece of functionality. I then proceeded to pro-
gram the new functionality, followed by testing. This seemed to be the only
viable way, as I was dealing with unfamiliar technology and code written
by another person. The process model for my development can be seen in
figure 3.5 on the facing page.

Every time I felt that I had added a useful and satisfactory feature, I com-
mitted the changes to CVS (see 3.1.2 on page 25). This way, if it turned
out that I had done irreparable damage to the application, I could easily
revert to an earlier version and discard the changes. As I learnt more about
the features offered by the Java 1.4 class library and the mechanics of the
BeanBuilder, I was able to more confidently assess every new piece of func-
tionality. In effect I was learning about the features of the JavaBeans API
and Java’s mechanisms for reflection on a just-in-time basis. I often had
to stop programming to scan the API documentation for information rele-
vant to what I wanted to implement, as shown by the inner loop in figure
3.5. Luckily I had the Java API documentation at hand all the time, so that I
could easily look up any class description or method I was unfamiliar with.

3.4. DEVELOPMENT STRATEGY 39

Figure 3.5: The life cycle model of the SimpleBuilder development process.
This process was preceded by careful consideration of which features that
were required, based on my theories on what the end result should look
like.

Chapter 4

My contribution

If I have seen farther than others, it is because I was standing on
the shoulders of giants.

— Sir Isaac Newton

In this chapter, I will describe my experiences from working with Jav-
aBeans and the BeanBuilder, and what I feel I have achieved in the process.
Finally, I will describe the SimpleBuilder, a modified version of Sun’s Bean-
Builder, and the SimpleBean framework for JavaBean components. But first
of all, to help illustrate how the techniques described in this thesis could be
put to practical use, I will start off by presenting an example scenario for
end-user development.

4.1 A scenario for prototype-based EUD

To a certain degree, the discussions of this thesis have focused on the com-
ponents at a microscopic level. To put the concept of cloning in component-
based application builders in perspective, I will now present a future work-
place scenario for this sort of end-user development.

Imagine Tom, a secretary of a small company. One of his responsibilities is
trying to keep track of the business relations of the company. Tom is rea-
sonably computer literate, and fascinated with the possibilities of end-user
development. Using a tool similar to the SimpleBuilder, he has assembled a
small application that connects to the company database of customers (fig-
ure 4.1 on the facing page). When building the application, Tom wanted a
uniform size for the text fields used for displaying customer information.
After he got the first text field exactly the right size, he could then clone it.
By having a cloned configuration of the text field available in the builder

40

4.1. A SCENARIO FOR PROTOTYPE-BASED EUD 41

Figure 4.1: An imagined tool for client data retrieval.

palette, he could easily place identical-sized text fields for the other infor-
mation items: address, telephone number and outstanding debt.

The application allows easy access to customer information, but as the
client database grows, Tom finds it frustrating to have to browse the in-
formation for every single customer to identify the ones with outstanding
debts. He wants his application to display this information at a glance.
Sadly, the list of matching search results is already sorted alphabetically,
and Tom actually prefers this way. Wishing to add some sort of text high-
lighting to the list component, he decides to try extending the component
with this new functionality. To avoid damaging the already functional list
component, he decides to clone it, and experiment with the code of the
clone instead. Browsing through the source code, he finally finds the piece
of code where the text color is set:

setForeground (Color . black) ;

Tom finds another piece of the code where the if-else construct is used, and
he tries his hand at changing the Java code of his list component:

i f (customer . getDebt () > 0 . 0) {
setForeground (Color . red) ;

}

When he tries to use the compiled result of this code, he realizes that every
name appearing after the first customer with debt to the company also ap-
pears in red. He then realizes that the color must be reset for each customer,
and writes:

i f (customer . getDebt () > 0 . 0) {

42 CHAPTER 4. MY CONTRIBUTION

Figure 4.2: The same tool after the list component is extended with new
functionality.

setForeground (Color . red) ;
}
e lse {

setForeground (Color . black) ;
}

The final result is a list that will display all customers who owe the com-
pany money in red text, saving Tom the time spent browsing through a
long list to find debtors (figure 4.2). This simple example shows how the
use of cloning techniques when customizing and extending visual compo-
nents can help the end-user help himself; changes that would likely have
warranted the involvement of a professional developer can now be done by
an end-user developer. As the hiring of professional developers invariably
implies extra expenses for a company, this kind of user empowerment can
also help to cut development costs for small companies. Also, it can hope-
fully encourage users to acquire development skills, as it becomes easier
for users to influence their day-to-day interaction with computer tools by
designing the tools themselves.

4.2 Working with cloneable components

The act of building applications with cloneable components has not seen
much exploration in literature on the Human-Computer Interaction (HCI)
and software engineering fields of research. To be able to discuss this mech-
anism, we must agree upon a language for describing key concepts in the

4.2. WORKING WITH CLONEABLE COMPONENTS 43

process. Consequently, there is a need to establish a clear set of terms to
be used. In (Mørch 1997), we are presented with three levels of end-user
tailorability in applications: customization, integration and extension. Of
these levels, customization and extension are of particular interest to this
thesis. I will now give an explanation of some key subjects in the context of
the SimpleBuilder project.

• The first step of this process is the selection of the component that most
closely matches the needs for this particular part of the application.
To aid the developer in this task, the builder tool can provide both
graphic and textual aids, e.g. descriptive palette icons for the com-
ponent, or short, descriptive tooltip texts. The user chooses the de-
sired component, and places it on the design canvas. Careful thought
must be given to how we can best help the end-user developer to
find the component that is best suited to the task at hand, and a lot
of resources are put into research on the most effective presentation
of palette items by the producers of software that uses icons to offer
functionality (e.g. office applications like Microsoft Word and Excel).

• Customization of components is defined in Mørch’s paper as “Modfy-
ing the appearance of presentation objects, or editing their attribute
values by selecting among a set of predefined configuration options.”
In classic component builder tools, the user is free to choose from a
large palette of components. He may then place the component in
his design, and begin the work of customizing it to fit the needs of
this particular application. This is usually done through the use of a
property sheet, where the user may modify the component within the
limits set by the component’s designer. This process is similar to the
sort of customization done by most end-users in the preference pan-
els of productivity suites and the like (Mørch & Mehandjiev 2000).
As this activity must be performed within the configuration options
given by the component designer, the level of customization can not
be extended beyond what is offered by such a property sheet.

• Extension of components is then the logical next step in the modifica-
tion of components needed to make up the final application. When
extending a component, the user actually modifies implementation
code, allowing for almost unlimited flexibility in adding desired fea-
tures and functionality in an object. When taking the step from cus-
tomization to extension, there is a significant increase in the design dis-
tance (see figure 4.3 on page 45)between the components with which
the user interacts, and the underlying implementation code. The de-
sign distance describes the mental leap from understanding how the
on-screen component works, and figuring out the logic underlying
the implementation code. This also introduces a greater danger of

44 CHAPTER 4. MY CONTRIBUTION

inadvertently damaging the object being extended. One solution to
this is the traditional object-oriented technique of subclassing. In the
SimpleBuilder, an alternative approach is chosen; cloning.

• Cloning components is presented in this thesis as a powerful tech-
nique to aid in end-user tailoring and development of software com-
ponents. The advantage of having cloning functionality in a builder
tool is (at least) two-fold. When doing customizations to a compo-
nent, the user might want to store a particular configuration of the
component for use later - either for the application he is working
with, or another application. When using a builder tool with cloning
functionality the user can make his desired customizations, produc-
ing a useful prototype. He may then clone this, and store this config-
uration in the palette.

Additionally, the process of extending a component with new func-
tionality requires some low-level editing on a source code level. Try-
ing to perform these changes on a component directly can be poten-
tially disastrous, as the typical expertise of an end-user developer
does not include high programming skills. By cloning the original
component - also known as the prototype (Lieberman 1986) - and ex-
perimenting with the clone instead, the user may safely experiment
with code changes and added functionality without fearing that he
might disturb the operation of the original component.

4.2.1 A process model for clone-based component development

Now that we have a useful vocabulary for describing component tailoring,
we need to put the terms in a meaningful context. I will continue by pre-
senting a process model of the steps included in component building with
clone functionality (figure 4.4 on the next page). This model is not intended
to describe the entire process of building an application from components;
rather, it is focused on how the user may act in relation to a particular com-
ponent. Although it is just a piece of the big picture, it is precisely this area
that I wish to focus on in this thesis.

The first step of this process is the selection of a component. After choos-
ing the desired component from the palette and placing it in the design
pane, the user can the proceed to perform the desired customizations to the
component. The user’s interaction with the component has traditionally
stopped here, but with the described process model the option to perform
a cloning operation on the component is introduced.

The user may now decide on the next step in the process. He could decide
that the customization done on the component is of potential use in later

4.2. WORKING WITH CLONEABLE COMPONENTS 45

Figure 4.3: The use distance (user-component) and design distance
(component-code) in customization and extension contexts. Shaded boxes
represent the means used to perform end-user development. Adapted from
(Mørch 1997).

Figure 4.4: The process model underlying the SimpleBuilder.

46 CHAPTER 4. MY CONTRIBUTION

applications, or even in the application currently being designed. If so,
he can choose to clone the component (dashed line), leaving a copy of its
current state in the palette. The user can now proceed to experimenting
with other settings in the property sheet. The changes will be saved when
exiting the builder tool, and the exact configuration of the component will
be available again for later use. If the user wishes to experiment further
without loosing a “good” configuration, he may of course make a clone of
a clone, and so on.

If, on the other hand, he decides that the functionality or customizability
offered by the original component is too limiting, he may decide to create
an entirely new class, by creating an extended class definition based on the
class of the prototype. Unless the end-user developer is an experienced
Java programmer, this part of the cloning warrants a mechanism for easy
and reasonably safe extension of a class definition with new functionality.
Hopefully, the fact that the implementation code of the prototype is avail-
able in the newly-cloned class definition can help the user understand the
correlation between Java code and component behaviour. The fact that he
is working on a copy of the prototype also means that there is no risk of
damaging the original, functioning component. After having performed
the necessary extensions, components of this new type will be available
for later use. Naturally, customized configurations of this new component
will be available along with the cloned configurations of “standard” com-
ponents.

Based on this, the SimpleBuilder presents us with two levels of cloning. We
have cloning from application, in which a useful configuration of a deployed
component is saved as a clone, that can itself be a basis for other clones. The
other form of cloning is cloning from palette, in which the formal definition
of the prototype is copied, in the form of Java code. This mechanism is
intended for users that wish to extend a component with new or changed
functionality. Because of the distinction between object and class in the Java
programming language, both of these forms of cloning must be available
if we want to aid the actions of customization and extension by adding
the cloning element to the process. As mentioned in 2.4 on page 19 the
component, rather than the object, is the level of granularity one is working
with. Thus, in a builder tool context, the deployed components can be seen
as the equivalent of the objects of traditional OO, while the palette items
clicked to produce components can be compared to traditional classes. In
the SimpleBuilder, I wanted to provide the benefits of cloning functionality
on both of these levels.

4.3. THE SIMPLEBUILDER 47

4.3 The SimpleBuilder

4.3.1 Overview

The SimpleBuilder is a visual builder tool for assembling components based
on the JavaBean technology. It is based on the Sun BeanBuilder application,
a tool written to demonstrate some of the new features for component as-
sembly in later versions of Java. The BeanBuilder has been extended in
several areas; some of them are readily apparent, others are not. In this sec-
tion, I will give a presentation of the tool in its current state, and describe
the features it has to offer.

4.3.2 The palette and control panel

The palette (marked as 1 in figure 4.5 on the next page) is one of the most
important parts of the SimpleBuilder interface1. It is divided into tabs ac-
cording to the category of the components. Each tab holds a collection of
components for easy selection and deployment on the design canvas (4).
All icons have tooltip texts, which means that the name of the component
represented by the icon will be shown when the mouse pointer is hover-
ing over the icon. In addition, a short description of the component will
be shown in the status bar under the control panel (2) After clicking on the
desired icon, a subsequent click in the design canvas will instantiate a com-
ponent. Newly instantiated components that display text, like labels and
text fields, will have this text set to the short name of the component, e.g.
“JTextField”.

When a component is cloned, either for extension or customization pur-
poses, it will be placed in the “Clones” tab of the palette. If no such tab
exists, one will be created. The SimpleBuilder also supports loading of new
components, e.g. from Java Archive (JAR) files. These will be loaded in the
"User" tab of the palette. To ensure that these components are available for
later SimpleBuilder projects, the palette is stored as an XML file upon exit,
and restored the next time SimpleBuilder is run. This XML file contains the
class name of components to appear in the palette or, in the case of cus-
tomized clones, the name of the component’s XML file. An example file is
shown in listing 4.1 on page 49.

1In the screenshot, one will notice that the three components in the “Simple” category
all have the same icon. The simple reason for this is my lack of skills with digital artwork
software. I chose a generic icon - the image of a computer - for all my components, but of
course this is simply a matter of swapping the Graphics Interchange Format (GIF) file for a
more descriptive image.

48 CHAPTER 4. MY CONTRIBUTION

Figure 4.5: Screenshot of the SimpleBuilder directly after startup. In the
property sheet (3) the selected component, a SimpleTextField, exposes a
single user-customizable property - the text it contains.

4.3. THE SIMPLEBUILDER 49

<?xml version=" 1 . 0 " ?>
<!−− P a l e t t e c o n f i g u r a t i o n f i l e a u t o g e n e r a t e d by

S i m p l e B u i l d e r . −−>
<!DOCTYPE p a l e t t e [

<!ELEMENT p a l e t t e (tab +)>
<!ATTLIST tab name CDATA #REQUIRED>
<!ELEMENT tab (item +)>
<!ELEMENT item (#PCDATA) >

] >
< p a l e t t e >
<tab name=" Simple ">

<item >simplebeans . SimpleCanvas</item >
<item >simplebeans . S impleTextFie ld</item >
<item >simplebeans . S i m p l e S c r o l l L i s t </item >

</tab >
<tab name=" Swing ">

<item >javax . swing . JButton</item >
<item >javax . swing . JCheckBox</item >
<item >javax . swing . JComboBox</item >
<item >javax . swing . J T e x t F i e l d </item >

</tab >
<tab name=" Clones ">

<item >javax . swing . JTextF ie ld15547391 . xml</item >
</tab >
</ p a l e t t e >

Listing 4.1: Example XML file for the palette

4.3.3 Customization of components

The component currently selected (no. 1 in figure 4.6 on the next page)
will be marked with white handles for resizing and moving the compo-
nent. The grey handles seen in figure 4.6 are for event hookups between
components - more on this in 4.3.5 on page 52. Selecting a component also
displays its exposed properties in the property sheet, (area no. 3 in fig-
ure 4.5. Note that if there exists a corresponding BeanInfo class, only the
properties that are listed there will be displayed in the sheet. Using the
BeanInfo interface, the component designer can also specify different lev-
els of detail for the property list, to allow users of assembly tools to ignore
properties that are irrelevant for the task at hand. In this screenshot, this
level of detail is set to “standard” (upper part of the property sheet). The
component designer may choose which methods should be displayed for
the settings “standard”, “expert” and “preferred” by specifying the corre-
sponding level in the method descriptors of the BeanInfo class.

If the user wishes to clone a particular configuration of a component, this

50 CHAPTER 4. MY CONTRIBUTION

Figure 4.6: A selected (1) and an unselected component (2).

Figure 4.7: If, for example, the user wishes to clone the selected component
from figure 4.6, a new item appears in the “Clones” tab of the palette. The
message in the status bar reflects the fact that the icon represents a clone.

is done by clicking the “clone component” button (leftmost in the control
panel). The SimpleBuilder will then store the specific configuration as a
clone, and write the configuration to disk using the LTP mechanisms of
Java 1.4 (see 3.2.2 on page 27). The file name of the stored clone is con-
structed from the class name of the component and its hash value. The
resulting XML files are stored in the “clonedir” directory. After cloning,
the clone will be available in the “Clones” tab of the palette (see figure 4.7).
If the user selects this icon and deploys it in the design canvas, it will ap-
pear identical to its prototype’s configuration at the time of cloning. All
components added to the “Clones” tab will be available for later projects,
and the cloned components behave just like any other component, except
for the different starting values when deployed.

An illustration of an example process of cloning and customization is given

4.3. THE SIMPLEBUILDER 51

Figure 4.8: Three steps of cloning and customization. From left to right:
Customizing the prototype component (in this case a JTextField) to be
cloned, deploying an identical clone of the prototype, continuing cus-
tomization of the clone.

in figure 4.8. Let us continue with the JTextField component from figures
4.6 and 4.7. The user performs the desired customizations (e.g. font, size
and coloration), and decides that this is a configuration that can be useful
in later projects. He therefore decides to add a clone of the component to
the “Clones” tab of the palette. This is done by selecting the component in
the application, and clicking the “Clone component” button. In the second
step, he deploys the clone of the component, which will be identical to the
prototype. In the third step, the users continues experimentation with the
clone, changing text and color. The cloned configuration will be unaffected,
remaining in the palette for further use.

4.3.4 Extension of components

If the user feels that the components available to him do not fully satisfy
his needs, he has the option to clone component with the intension of mod-
ifications by extending its implentation code. In the SimpleBuilder, this is
done by selecting an icon in the palette and clicking the “Clone component”
button, thereby performing the cloning from palette described earlier. The
application will then ask the user to supply a new name for the cloned
class, to avoid overwriting the prototype class. The user can then proceed
to experiment with the code of the cloned component. This mechanism can
be used to add new functionality to a component, or change the existing
implementation. Although this requires knowledge of Java programming,
the process is made easier by supplying the full code of the prototype. This
way, the user can study the logic of the existing code, and use this as a basis
for his own, new functionality. Doing these changes will be perfectly safe,
as the prototype class will not be affected in any way; the worst-case sce-
nario is that the clone class is rendered useless. At the time being, there is

52 CHAPTER 4. MY CONTRIBUTION

no tool to help users with no programming experience to do this particular
task, but I have hopes that such a tool can be added to the SimpleBuilder
package in the future.

4.3.5 Connecting two components

Simply placing the required components on the design canvas will of course
not create a useful application. To provide any kind of functionality, the
components will need to be connected in some way. The basic procedure
for communication between JavaBean components is as follows: When the
state of a component changes, such as text being entered in a text field, or
a button being pressed, the component generates an Event object that is
passed to every registered event listener. These listeners will be dynami-
cally generated proxy objects. Proxy objects are initialized with information
on which component triggered the event, as well as information on a target
component in which a certain method will be invoked.

In the SimpleBuilder, such an event hookup is done by clicking and drag-
ging an arc from the grey event handles of the source component to an
event handle on the target component. When using standard JFC com-
ponents, this action will cause an event hookup wizard to appear (for an
example, see 4.9 on the facing page). The wizard queries the source and
target object for available methods, and lets the user choose the method to
be invoked in the target object and, if this method requires a parameter,
a method in the source object to provide this value. This step is skipped if
both components are SimpleBeans, however. More on this in 4.4 on page 54.

4.4 The SimpleBeans

The standard software components of the Java class library are not entirely
suitable for clone-based end-user development. First of all, most of these
components expose a large array of options for user customization, many
of which can seem confusing or incomprehensible for a user with no pro-
gramming experience. These components are also intended to be used in
conventional object-oriented programming, and are designed to be very
versatile. Secondly, the standard components are normally not accompa-
nied by their source code. This effectively eliminates the possibility to per-
form extension of the components in the way I have described here. The
problem of lowering the threshold for extending components sufficiently
for end-user development led me to write a few simplified versions of com-
monly used GUI components. These components expose a far less complex
choice of customizable properties, as can be seen from the property sheet

4.4. THE SIMPLEBEANS 53

Figure 4.9: Just a few of the available methods when connecting two JFC
components.

in figure 4.5. They are also supplied with source code, which resides in
the “srcdir” directory directly under the SimpleBuilder’s working direc-
tory. This means that while they offer fewer customization options than
their JFC counterparts, they can be easily extended with new functionality.

Another problem with the general nature of the standard JFC components
is that they expose a long list of available methods when they are to be con-
nected to other components. When the user connects two components to
each other in design mode, the SimpleBuilder will query the component’s
BeanInfo class for a list of available methods. As an example, some of the
available methods presented when connecting to JTextField components
are shown in figure 4.9. To make the process of connecting components eas-
ier, the example components all implement the same interface, which only
offers one pair of set/get methods. This puts the responsibility of handling
different data types on the component itself. This could prove a challenge
for component designers, but should make life easier on the end-user de-
veloper for which the SimpleBuilder is intended.

54 CHAPTER 4. MY CONTRIBUTION

The SimpleBean framework

In order to be as simple and straightforward to use as possible, the example
components accompanying the SimpleBuilder are implementing an inter-
face called SimpleBean. At the present stage of development, this inter-
face defines only two methods: setValueSBO() and getValueSBO(). These
methods are used for simplifying the process of connecting two compo-
nents on the design canvas of the builder. The fact that every component
implementing the SimpleBean interface must support these two methods
means that component hookup can be performed without querying the
user for information about which methods on the source and target com-
ponents should be connected.

The SBO part of the method names refers to the class SimpleBeanObject,
the other part of the SimpleBean framework. These objects are used as
wrapper classes for message passing between components. They can con-
tain one instance of any Java object, such as strings, integers and the like.
In addition to an object reference, the class also defines a field for describ-
ing the type of its contents. The currently used fields are TYPE_STRING,
TYPE_DOUBLE and TYPE_INT. Additionally, a boolean variable describes whe-
ther or not the contained object is an array of the specified type, or a single
value. This way, a SimpleBean component receiving a SimpleBeanObject
can check its type, and behave accordingly. This provides a unified inter-
face for sending text, number values or any other kind of data between
components; the responsibility for properly handing data types is placed
on the component implementation.

SimpleCanvas

The SimpleCanvas component was the first component I wrote, mainly for
testing the functionality of the SimpleBuilder. It consists of a simple panel
with a user-customizable color. The user can resize and move this panel,
and use it as a background for other components. This makes it useful as
a means to add color to an application, perhaps to signify different parts of
a GUI, e.g. one part for textual input and one part for feedback from the
application.

SimpleTextField

The SimpleTextField class is a subclass of the generic JTextField, the JFC
component for text entry in graphical Java applications. While the JTextField
provides a dazzling array of customization options, the SimpleTextField

4.4. THE SIMPLEBEANS 55

simply lets you define its placement, its size and the text initially contained
in the field. When the carriage return key is pressed, the component will
fire an event object to instruct listeners that the text property has changed.

SimpleScrollList

My last example component was an implementation of a scrollable list.
Normally, a scrolling list consists of at least three parts: The scrolling pane
itself, the list to be scrolled, and some sort of data collection to hold the
data of the list. The SimpleScrollList is basically a scrolling pane that cre-
ates its own list component and data vector when instantiated. By hiding
these implementation details from the user, the component will appear to
the end-user developer as a self-contained component for displaying a list
of strings. This is an example of how software components can contain ob-
jects of several different classes, yet appear as a single entity to the end-user
developer.

Chapter 5

Discussion

It is better to debate a question without settling it than to settle
a question without debating it

— Joseph Joubert

This chapter contains a general discussion on the process of making the
SimpleBuilder, and the research done for this thesis. I will also describe
some of the problems I encountered during my work, and alternative solu-
tions that I rejected.

5.1 The road taken

The SimpleBuilder project seemed a daunting task to me at first, and I cer-
tainly saw my share of false starts and dead ends. I spent considerable
time trying to find a suitable basis for my builder tool before I found the
BeanBuilder. I scanned through the projects at SourceForge1, but nothing
seemed entirely suitable. I needed a tool with available source code, and a
license that allowed me to use it as a basis for my own project. In addition,
I wanted it to be mulitplatform, and I needed it to be small enough that
it was possible for me to get a reasonable grasp of its logic and structure
within the time allotted to a Cand. Scient. thesis - less than a year. Sadly,
the projects I found while browsing the Internet were either too immature,
or far too complex for a one-man, one-year project. I find it quite ironic that
the (hopefully) best candidate, the BeanBuilder, is a product from Sun Mi-
crosystems, the company behind the Java programming language and the

1A website offering free web space and CVS access for open source developers, http:
//www.sf.net.

56

http://www.sf.net
http://www.sf.net

5.1. THE ROAD TAKEN 57

JavaBeans architecture. In retrospect, Sun’s website was perhaps the first
place I should have looked.

Although I have a good grasp of programming in general, and Java pro-
gramming in particular, programming with graphical interfaces was an un-
explored territory for me. I have taught beginner classes in object-oriented
programming with Java for four semesters, but my only experience with
GUI programming in Java was a few simple assignments using the Ab-
stract Windowing Toolkit (AWT, the GUI class libraries used prior to Java
1.2) when I took the beginner course in Java at the University of Oslo. So,
I had to read up on creating GUIs with the Java Foundation Classes (JFC,
also known as “Swing”), the toolkit used in current versions of Java. An ex-
ample follows: At one point I needed to perform the simple task of asking
the user to input a string value, to be used as the name for a new, cloned
class definition. I spent much time in finding out how to produce a modal
window with the desired layout and feedback options, and returning the
value entered by the user to the calling method. A few days after creating
an ugly, but functional requester, I was made aware of the functionality in
JFC for performing this exact task: the JDialog class of requester windows.
Consequently, I had to go back to my code and change it to utilize this
much cleaner solution for getting a string value from the user.

At the outset of my thesis work, I had only a faint notion of the technical
details behind JavaBeans. Although I had come to read a lot of literature on
the subject of component technology, most of this literature discussed the
technicalities of different software component implementation in a very su-
perficial matter. When writing the example JavaBeans for my application,
called SimpleBeans, I spent a considerable amount of time pondering on
the access modifiers of methods. Which methods should be public, which
should be private, and so on. The SimpleBuilder uses reflection to inspect
classes and examine which public interfaces the offer to the world outside,
so I was sure that these access modifiers were an important point. As it
turned out, the JavaBeans technology offers special classes for making this
part of the process easier, namely the BeanInfo interface. By accompany-
ing each component with its own BeanInfo implementation, I could easily
control which properties should be visible to the SimpleBuilder, and which
should remain hidden.

To have a good picture of the theoretical basis for the application, I searched
books and archives for relevant (and some not-so-relevant) articles on the
subjects of user participation, software components, evolutionary develop-
ment and object cloning. I found the papers on prototyping and cloning
particularly interesting, as they presented a view on object-orientation I
had never encountered before. Although I had encountered some of the
other subjects in courses taken at the University of Oslo, I think I can safely

58 CHAPTER 5. DISCUSSION

Figure 5.1: My initial process model for developing with cloneable compo-
nents.

say that working with the idea of cloneable components has been a tremen-
dous learning experience for me. Not only have I had to learn the princi-
ples of programming for a graphical environment, I have also had the plea-
sure to read pages upon pages of interesting article; each of them giving
me valuable new perspectives on how component-orientated development
and user empowerment in the workplace can be combined.

5.2 Alternative routes

One of the first things I needed to find out was what the process of cloning
and modifying components should look like. I decided to focus on the two
mechanisms of extension and customization, taken from (Mørch 1997). At
first, I imagined that the process would look like the one in figure 5.1. First
the user selects the component, performs a cloning operation, and then pro-
ceeds to modify this component either through customization or through
extension. As I started programming, in became increasingly clear to me
that the class/object duality of the Java programming language would make
this impractical. As customization is done on individual component, while
extension is performed on classes, the two cloning operations would need
to be implemented differently.

As I was trying to make a descriptive illustration in Microsoft PowerPoint,
I became aware of the pattern of my own work: When making text boxes,
I started out by customizing one box; choosing color, font and line width. I
then made copies of this, only changing the text and placement. This was a
simple form of cloning, and I realized that the “cloning from application”
concept could be done in a similar way. The user would want to produce
a useful configuration of a component, and then cloning this to have the
configuration available from the palette. Further customization can then
be done. These ideas evolved into the process model described in 4.2.1 on
page 44.

I also spent much time and energy on the problem of simple communica-

5.2. ALTERNATIVE ROUTES 59

Figure 5.2: Inheritance scheme for clones made in the SimpleBuilder.

tion between components. JavaBeans communicate by sending subclasses
of the AWTEvent class to eachother. These event objects can be fired when
a change occurs in a component, such as a field receiving a new value, or
a button receiving a mouse click. Before I had an adequate understanding
of the concept of dynamic proxy classes, used to create on-the-fly classes
for event listening, I tried to make the SimpleBean components themselves
implement the EventListener interface. As my SimpleBeans initially were
subclasses of the SimpleBean class, I cursed the lack of multiple inheritance
in Java (see 3.1.1 on page 24). As my subclasses needed to subclass GUI
components like textfields and the like, they could not at the same time
implement the event listening code I wanted to include in the SimpleBean
definition. As it turned out, there were good reasons for this. When i finally
understood how JavaBeans were meant to be connected, through dynamic
event listeners, I rewrote the SimpleBean definition to simply being an in-
terface specification.

I was not quite sure how to write the code for extending classes, i.e. letting
the user write new classes based on existing ones. I considered making new
classes subclasses of the original, keeping with the mindset of traditional
object orientation. However, I decided to abandon this idea in favor of
another approach: making the clone a sibling class2 instead (figure 5.2).
I saw this as the best way to ensure that the cloned class mimicked the
original in as many ways as possible. Thus, the mechanisms for extending
classes in the SimpleBuilder are as simple as they are effective: a complete
copy of the original source file is made, along with its BeanInfo class (if it
exists). The copy is given a new name by the users, and compiled into a
new class. As mentioned elsewhere in this paper, functionality to actually
change the cloned class definition is lacking; the only option is traditional
programming in a text editor.

2In class inheritance, the term “sibling class” is often used to describe a class which has
the same superclass (the same parent, hence the term) as another class.

60 CHAPTER 5. DISCUSSION

When I was writing the code for extending classes, I stumbled upon yet
another dilemma. As recompilation was required to create extended class
definitions, I needed a place to store the source code for these new classes
- and also the source code and compiled bytecode of the prototype compo-
nents that were to be cloned. Java classes are normally organized in pack-
ages. Package names consist of words separated by periods. If desired, the
first word will usually represent the organization which created the pack-
age. The rest of the package name reflects the function of the class, and the
directory structure in which it resides. Because of this, I wanted a directory
structure that reflected the package containing the class to be cloned. After
some thinking, I initially settled on a directory structure scheme like this:

<working directory>/sourcedir/<package name>/<classname>/<classname>.java

As an example, the path for the class javax.swing.JTextField following this
sceme would be srcdir/ javax/swing/JTextField/JTextField.java. It then became
clear to me that this would require considerable massaging of path name
and package qualifiers in the code that dealt with retrieving, copying and
compiling source code. As it turned out, I could exploit the fact that the
Java Virtual Machine will search a directory structure corresponding to the
package qualifiers when looking for a new class. Therefore, I decided that
source files of classes belonging to the same package would reside in the
same directory, e.g. srcdir/javax/swing/JTextField.java. This way, if a clone
operation is performed, the resulting bytecode will be found as srcdir/-
javax/swing/JTextFieldClone.class. This is exactly where the Virtual Machine
will look if “srcdir” is in the search path, and the class javax. swing.JTextField-
Clone is requested.

Chapter 6

Further research

Genius begins great works; labor alone finishes them.

— Joseph Joubert

This chapter will look at the path ahead for clone-based end user devel-
opment and visual programming with the SimpleBuilder. I will suggest a
few directions for further research, as well as some specific tasks for future
researchers in the field. Hopefully, this chapter can inspire others to further
work; perhaps as a new master’s thesis.

6.1 Remaining work

As a truly useful tool for research on component cloning, the SimpleBuilder
is far from finished. Before attempting to put it to serious use, it needs to
be thoroughly tested for stability issues and lingering bugs. Missing from
the toolkit is also the option to overwrite cloned components, i.e. saving
work-in-progress without adding another clone to the palette.

Also, the SimpleBean framework is very rudimentary and not really thor-
oughly tested. The sample components are mostly for testing and demon-
stration purposes. Without a doubt, several more components are needed
to provide the end-user developer with a palette of flexible and useful com-
ponents for application development.

The SimpleBuilder should also be packaged for easy, double-click startup
on all Java-enabled platforms. At the time being, environment variables
containing information about the placement of auxiliary Java classes needs
to be set via the command line; preferably through a shell script. This is
fine for UNIX-based platforms, but could be a problem for users that are

61

62 CHAPTER 6. FURTHER RESEARCH

accustomed to the point-and-click simplicity of windowing environments.
Once these pieces of the puzzle are in place, the time-consuming work of
evaluating the benefits of these new features must be done. The concepts
must be tested on a real audience, and only then can the potential merits of
the methods described herein be measured.

6.2 Putting the SimpleBuilder to use

Although considerable work has been put into understanding and devel-
oping Sun’s BeanBuilder into the SimpleBuilder, this is clearly only the be-
ginning of the story. No tool is useful unless it is put to work, and the
SimpleBuilder is no exception. The SimpleBuilder was never intended to
be a professional tool for “real world” usage, however. It is intended as a
tool for research into a specific area within end user development; that of
evolutionary development by cloning and following examples. While still
lacking several of the features I would have liked to see in the product, the
SimpleBuilder can be used as a starting point for simple exploration of this
field of study. I envision several forms of research possible, based on the
state of SimpleBuilder today:

• Research is needed to see whether my theories about evolution by
resemblance are sound. To do this, it seems practical to gather a
group of non-experts and ask them to perform specific simple tasks.
I believe that at this stage this needs to be done as qualitative re-
search, rather than quantitative. It should be interesting to receive
feedback from people from the intended target group, providing the
data needed to study whether the approach taken with SimpleBuilder
seems to have a positive effect on productivity and creativity in end
user development.

• The SimpleBuilder is based on a tool made by programmers, for pro-
grammers. As such it is likely that the placement of buttons is subop-
timal, and that the interface is unintuitive, cluttered, confusing or oth-
erwise inefficient. Valuable information could be gained by perform-
ing usability testing with end users. Usability testing, for example
in the form of heuristic evaluation (Nielsen 2004) or “thinking-aloud”
evaluation (Lewis & Rieman 1994), is an important step in determin-
ing problems with user interfaces. By letting several users perform
such tests, one could learn a lot about how to make interfaces that
simplify the development process for end user programmers. There
is doubtless a lot that can be done to make the SimpleBuilder easier
to use, and less confusing to newcomers.

• As prototype-based component development is such a fresh field of

6.3. IMPROVING THE SIMPLEBUILDER FOR PROTOTYPE-BASED
END USER DEVELOPMENT 63

research, there is no literature on suitable application domains for
the use of such tools. This could be an interesting topic of research.
Although the goal of end-user development research is to enable end-
user empowerment in a large array of application domains, I suspect
that there are some fields that lend themselves more easily to this
activity than others. This in turn could provide basis for choosing
suitable arenas for field testing of end-user development tools such
as the SimpleBuilder.

6.3 Improving the SimpleBuilder for prototype-based
end user development

Clearly, the SimpleBuilder is not a finished product — and it is unlikely
that it ever will be. Just as the SimpleBuilder is intended to support devel-
opment of applications in constant evolution, I hope that the SimpleBuilder
itself will undergo several revisions and constant refinement. The code may
appear messy, as functionality to support the new cloning features has been
grafted onto existing code in several places. The source tree would likely
benefit from code cleanup and refactoring of cloning functionality into sep-
arate classes where possible. Several features are missing or incomplete in
the current version of the tool. A non-exhaustive list follows:

• A help system is needed. Research shows that while exploration of
a program is a powerful way of learning how to use a new system,
this is often done with the aid of available documentation (Rieman
1996). Today, there is no documentation or help system for the Sim-
pleBuilder aside from the BeanBuilder tutorial and the feature de-
scriptions presented in this thesis. This lack of formal documentation
clearly needs to be adressed, both to ensure continued work on the
SimpleBuilder, and to supply test users with an aid they most likely
would have had available in a “real world” situation. This also in-
cludes documentation of accompanying example components. The
use of standard JavaBeans components is outside the scope of this
documentation process, but the SimpleBean components accompa-
nying the SimpleBuilder need to be documented.

• Proper consideration should also be given as to whether one should
implement typed ports, such as those of EVOLVE (Stiemerling et al.
1999). While this can simplify the process of connecting, or “wiring”,
the components, it also introduces an additional level of complexity,
namely that of data types. The current approach of only one object
type being passed between components is certainly simplest for the
user, but it places the burden of knowing how to handle different val-

64 CHAPTER 6. FURTHER RESEARCH

ues on the component implementation. This is consistent with our
goal of taking the burden of computer-specific terms (i.e. data types)
off the end-users shoulders, but it may limit functionality in unfore-
seen ways. Further research on this area is needed, and feedback from
the team behind EVOLVE will surely be of use.

• The class extension mechanisms of the SimpleBuilder today are rudi-
mentary, to say the least. A copy is performed on the source code of
the original component, and the resulting source file must be edited
by hand by means of traditional Java programming. To allow ac-
tual end-user developers to safely implement new functionality in a
SimpleBean, a new type of tool is needed. In the SELF programming
environment (2.3.2 on page 17), adding functionality to an object is a
simple process of either editing an existing method object, or adding
a new one - which can be based on an existing method. I hope that a
similar mechanism can be implemented for the SimpleBuilder, i.e. a
graphical interface for extending Java classes. By limiting the scope to
SimpleBeans components, some delimiting can be made. For exam-
ple, I envision that adding data fields or methods to a class can lead to
automatic updating of the corresponding BeanInfo class, to reflect the
changes. Such an editing tool would certainly be an exiting project,
and may lower the threshold for actual Java programming.

• In chapter 4, I brushed briefly on the distinction between selection
from the palette, and selection from the application. As mentioned in
the previous point, extending classes (from the palette) needs more
work to be practical. An exciting angle for future research could also
be to focus on the selection and cloning from components in the ap-
plication. Experience from the use of an application will likely inspire
the end-user developer to examine the components of a running ap-
plication, and figure out ways to improve these. Figuring out how to
improve functionality this aspect of component cloning would be an
intriguing challenge, both theoretically and technically.

• When I set out to create the SimpleBuilder, my vision was that of a
multiplatform, flexible tool for working with cloneable components.
As it is written entirely in Java, it should run on all platforms with
a working Java Virtual Machine and class library. However, all de-
velopment has been done under Mac OS X. I have not had the time
or resources to check the tool’s performance and behavior on other
platforms, such as Microsoft Windows, GNU/Linux or Solaris. There
are no obvious reasons as to why it should not work, but appearance,
placement of buttons etc. needs to be checked. Likewise, although
the file manipulation done in the application is written in platform-
independent code, this has not been tested.

Chapter 7

Conclusion

The outcome of any serious research can only be to make two
questions grow where only one grew before.

— Thorstein Vebler

The goal of this thesis, as formulated in 1.3 on page 4, was to provide a
simple toolkit for component assembly using cloning techniques and user
modification of components. Some literature had been written on the sub-
ject, but there was no working toolkit available to demonstrate the theories
as concrete actions in an actual application builder. This thesis describes
the making of such a toolkit.

The work described herein is a work in progress, not a professional appli-
cation ready for shrink-wrapping and sale to the masses. The work has
consisted of much research, both in literature and API documentations, but
also programming work on the “SimpleBuilder”, a modification of the Sun
Bean Builder. I must confess that I have grown increasingly fascinated with
the concepts of prototype-based object orientation, of end user empower-
ment and of component technology. I have learnt a great deal about soft-
ware development methodologies, the philosophy of software engineering
and user participation, and, on a more technical level, I have learnt a lot
about the internals and externals of the Java programming language.

The thesis work started out with a considerable amount of research into
existing solutions, and literature on the subjects of evolutionary develop-
ment, software components and the prototype/clone concept. Following
this, I sat down to decide which features I wanted in a tool for supporting
these components in a manner simple enough for users with no program-
ming experience. In the problem definition of this document, my main
concern was whether it was feasible to create a multiplatform component
assembly tool supporting cloning of components, that was also simple to

65

66 CHAPTER 7. CONCLUSION

use. Looking at the results, I think that at least a small step has been taken
in that direction.

In chapter 4, I presented the SimpleBuilder, which along with this thesis is
the chief result of my work. The SimpleBuilder serves as a proof of concept
that can serve as a basis for discussion on the topic, as well as for further
development. It is probably not mature enough to be used for in-depth
research on the topic of how useful these programs can be in real-life situa-
tions. However, it was my intention that the SimpleBuilder could be a use-
ful artifact for concretization of terms such as cloning, customization and
extension of components. I feel that at least this goal has definitely been
reached. In this document, I have also presented a model for clone-based
development that surely should be an interesting basis for further discus-
sion. The topic of evolution by cloning familiar components is not explored
in great detail in the available literature. I hope that I have contributed ma-
terial that can serve as foothold; a starting point for this exploration.

Bibliography

Apple Computer, Inc. (1993), ‘The NewtonScript Programming Language’.

Bansler, J. (1989), ‘Systems development research in scandinavia: Three the-
oretical schools’, Scandinavian Journal of Information Systems 1(9), 3–20.

Benington, H. D. (1987), Production of large computer programs, in ‘Pro-
ceedings of the 9th international conference on Software Engineering’,
IEEE Computer Society Press, pp. 299–310.

Bjerknes, G. & Bratteteig, T. (1988), ‘Computers utensils or epaulets? the
application perspective revisited’, AI & Society 2(3), 258–266.

Bjerknes, G., Bratteteig, T. & Espeseth, T. (1991), ‘Evolution of finished com-
puter systems the dilemma of enhancement’, Scandinavian Journal of
Information Systems 3, 25–45.

Boehm, B. W. (1988), ‘A spiral model of software development and en-
hancement’, IEEE Computer: Innovative Technology for Computer Profes-
sionals 21(5), 61–72.

Budde, R., Kautz, K. & Kuhlenkamp, K. (1992), Prototyping - An Approach to
Evolutionary System Development, Springer Verlag, New York.

Bødker, S. & Grønbæk, K. (1991), ‘Cooperative Prototyping - Users and de-
signers in mutual activity’, International Journal of Man-Machine Stud-
ies, special issue on CSCW 34(3), 453–478.

Chang, B.-W., Ungar, D. & Smith, R. B. (1995), Getting close to objects:
object-focused programming environments, in M. Burnett, A. Gold-
berg & T. Lewis, eds, ‘Visual Object-Oriented Programming’, Prentice-
Hall, pp. 185–198.

Costabile, M. F., Fogli, D., Fresta, G., Mussio, P. & Piccinno, A. (2003), Build-
ing environments for end-user development and tailoring, in ‘IEEE
Symposium on Human Centric Computing Languages and Environ-
ments’, IEEE Press, pp. 31–38.

67

68 BIBLIOGRAPHY

Cox, B. J. (1986), Object oriented programming: an evolutionary approach,
Addison-Wesley Longman Publishing Co., Inc.

Curtis, B., Krasner, H. & Iscoe, N. (1988), ‘A field study of the software
design process for large systems’, Commun. ACM 31(11), 1268–1287.

Dahl, O.-J., Myhrhaug, B. & Nygaard, K. (1968), Some features of the simula
67 language, in ‘Proceedings of the second conference on Applications
of simulations’, IEEE Press, pp. 29–31.

Dahlbom, B. & Mathiassen, L. (1993), Computers in context: The philosophy
and practice of systems design, Blackwell Publishers, Cambridge.

David, E. E. & Fraser, A. (1968), Software: The state of the art, in P. Naur &
B. Randell, eds, ‘Software engineering: report on a conference spon-
sored by the NATO Scientific Committee’, Scientific Affairs Division,
NATO, Garmisch, pp. 119–125.

Ehn, P. (1993), Scandinavian design: On participation and skill, in
D. Schuler & A. Namioka, eds, ‘Participatory Design: Principles and
Practice’, Lawrence Erlbaum, New Jersey, pp. 41–77.

Fischer, G. (2002), ‘Beyond "Couch Potatoes": From Consumers to Design-
ers and Active Contributors’, First Monday 7(12).
URL: http: // www. firstmonday. dk/ issues/ issue7_ 12/ fischer/

Floyd, C., Reisin, F.-M. & Schmidt, G. (1989), Steps to software develop-
ment with users, in C. Ghezzi & J. A. McDermid, eds, ‘Proceedings
of ESEC ’89, 2nd European Software Engineering Conference’, Berlin,
pp. 48–64.

Fowler, M. & Scott, K. (2000), UML distilled (2nd ed.): a brief guide to the
standard object modeling language, Addison-Wesley Longman Publish-
ing Co., Inc.

Ghiselin, B., ed. (1985), The Creative Process, a Symposium, University of Cal-
ifornia press.

Gosling, J., Steele, G. & Joy, B. (2000), Java Language Specification, Addison-
Wesley.

Java Community Process (2003), ‘Java Specification Requests #057 Long-
Term Persistence for JavaBeans Specification’. 7 oct. 2003.
URL: http: // jcp. org/ en/ jsr/ detail? id= 057

Kaasbøll, J. (1997), ‘How evolution of information systems may fail: many
improvements adding up to negative effects’, European Journal of Infor-
mation Systems 6, 172–180.

http://www.firstmonday.dk/issues/issue7_12/fischer/
http://jcp.org/en/jsr/detail?id=057

BIBLIOGRAPHY 69

Kaasbøll, J. & Øgrim, L. (1994), Super-users: Hackers, management
hostages, or working class heroes? a study of user influence on re-
design in distributed organizations, in P. Kerola, ed., ‘Precedings of the
17th Information systems Research seminar In Scandinavia’, pp. 784–
798.

Lewis, C. & Rieman, J. (1994), ‘Task-Centered User Interface Design’.
URL: http://hcibib.org/tcuid/chap-5.html

Lieberman, H. (1986), Using prototypical objects to implement shared
behavior in object-oriented systems, in ‘Conference proceedings on
Object-oriented programming systems, languages and applications’,
ACM Press, pp. 214–223.

Mathiassen, L., Seewaldt, T. & Stage, J. (1995), ‘Prototyping and specifying:
Principle and practices of a mixed approach’, Scandinavian Journal of
Information Systems 7(1), 55–72.

McCracken, D. D. & Jackson, M. A. (1982), ‘Life-cycle concept considered
harmful’, ACM Software Engineering Notes 7(2), 29–32.

McIlroy, D. (1968), Mass produced software components, in P. Naur &
B. Randell, eds, ‘Software engineering: report on a conference spon-
sored by the NATO Scientific Committee’, Scientific Affairs Division,
NATO, Garmisch, pp. 138–150.

McIlroy, D. (1972), ‘The outlook for software components’, International
state of the art report: software engineering 11, 243–252.

Microsoft Corporation (2004), ‘COM: Delivering on the Promises of Com-
ponent Technology’. 5. feb 2004.
URL: http: // www. microsoft. com/ com/

Mørch, A. (1997), Three levels of end-user tailoring: customization, integra-
tion, and extension, in ‘Computers and design in context’, MIT Press,
pp. 51–76.

Mørch, A. (2003), Evolutionary growth and control in user tailorable sys-
tems, in ‘Adaptive evolutionary information systems’, Idea Group
Publishing, pp. 30–58.

Mørch, A. I. & Mehandjiev, N. D. (2000), ‘Tailoring as collaboration: The
mediating role of multiple representations and application units’,
Comput. Supported Coop. Work 9(1), 75–100.

Nielsen, J. (2004), ‘How to conduct a heuristic evaluation’. 21 jan. 2004.
URL: http: // www. useit. com/ papers/ heuristic/ heuristic_

evaluation. html

http://www.microsoft.com/com/
http://www.useit.com/papers/heuristic/heuristic_evaluation.html
http://www.useit.com/papers/heuristic/heuristic_evaluation.html

70 BIBLIOGRAPHY

Nygaard, K. (1979), The iron and metal project. trade union participation,
in Å. Sandberg, ed., ‘Computers dividing man and work’, Utbild-
ningsproduktion.

Nygaard, K. & Dahl, O.-J. (1978), The development of the SIMULA lan-
guages, in ‘The first ACM SIGPLAN conference on History of pro-
gramming languages’, ACM Press, pp. 245–272.

Paul, S., Prakash, A., Buss, E. & Henshaw, J. (1991), Theories and tech-
niques of program understanding, in ‘Proceedings of the 1991 confer-
ence of the Centre for Advanced Studies on Collaborative research’,
IBM Press, pp. 37–53.

Petroski, H. (1992), The evolution of useful things, A. Knopf, New York.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S. & Carey, T. (1994),
Human-Computer Interaction, Addison-Wesley.

Rieman, J. (1996), ‘A field study of exploratory learning strategies’, ACM
Trans. Comput.-Hum. Interact. 3(3), 189–218.

Royce, W. W. (1987), Managing the development of large software sys-
tems: concepts and techniques, in ‘Proceedings of the 9th international
conference on Software Engineering’, IEEE Computer Society Press,
pp. 328–338.

Smith, R. B. & Ungar, D. (1995), Programming as an Experience: The
inspiration for Self, in ‘ECOOP ’95 Conference Proceedings’.
URL: http: // www. sun. com/ research/ self/ papers/

programming-as-experience. html

Smith, R. B. & Ungar, D. (2001), ‘Programming as an Experience: The inspi-
ration for Self’. 6. feb 2004.
URL: http: // research. sun. com/ research/ features/ tenyears/

volcd/ papers/ ungar. htm

Stiemerling, O., Hinken, R. & Cremers, A. B. (1999), The EVOLVE Tailoring
Platform: Supporting the Evolution of Component-Based Groupware,
in ‘Proceedings of EDOC’99’, IEEE Press, pp. 106–115.

Sun Microsystems (2003a), ‘Enterprise JavaBeans Technology’. 8 oct. 2003.
URL: http: // java. sun. com/ products/ ejb/ index. jsp

Sun Microsystems (2003b), ‘JavaBeans’. 7 oct. 2003.
URL: http: // java. sun. com/ products/ javabeans/

Sun Microsystems (2004), ‘Java Remote Method Invocation (RMI)’. 5 feb.
2004.
URL: http: // java. sun. com/ products/ jdk/ rmi/ index. jsp

http://www.sun.com/research/self/papers/programming-as-experience.html
http://www.sun.com/research/self/papers/programming-as-experience.html
http://research.sun.com/research/features/tenyears/volcd/papers/ungar.htm
http://research.sun.com/research/features/tenyears/volcd/papers/ungar.htm
http://java.sun.com/products/ejb/index.jsp
http://java.sun.com/products/javabeans/
http://java.sun.com/products/jdk/rmi/index.jsp

BIBLIOGRAPHY 71

Szyperski, C. (1998), Component Software: Beyond Object-Oriented Program-
ming, Addison-Wesley.

The Object Management Group (2003), ‘Introduction to OMG Specifica-
tions’. 8 oct. 2003.
URL: http: // www. omg. org/ gettingstarted/ specintro. htm#

CORBA

The Jargon File 4.7.7 (2004). 20 feb. 2004.
URL: http: // www. catb. org/ ~esr/ jargon/

Ungar, D. & Smith, R. B. (1987), Self: The power of simplicity, in ‘Con-
ference proceedings on Object-oriented programming systems, lan-
guages and applications’, ACM Press, pp. 227–242.

Wittgenstein, L. (1953), Philosophical investigations, Basil Blackwell & Mott,
Oxford.

Wulf, V. & Rohde, M. (1995), Towards an integrated organization and tech-
nology development, in ‘Proceedings of the conference on Designing
interactive systems’, ACM Press, pp. 55–64.

Åsand, H.-R. H., Mørch, A. & Ludvigsen, S. (2004), Superbrugere: En
strategi for ikt-omstilling, in A. M. Kanstrup, ed., ‘E-læring på arbe-
jde’, Roskilde Universitetsforlag. Learning Lab Denmark, pp. 131–147.

http://www.omg.org/gettingstarted/specintro.htm#CORBA
http://www.omg.org/gettingstarted/specintro.htm#CORBA
http://www.catb.org/~esr/jargon/

72

Appendix A

Code listings

A.1 An example of an application stored as XML

Listing A.1: This is the XML representation of a simple application consist-
ing of a textfield, and a label that displays the last text to be entered in this
field.
<?xml version=" 1 . 0 " encoding="UTF−8" ?>
<java version=" 1 . 4 . 2 _03 " c l a s s =" java . beans . XMLDecoder">

< o b j e c t c l a s s =" javax . swing . JFrame ">
<void property=" s i z e ">

< o b j e c t c l a s s =" java . awt . Dimension ">
<int >300</int >
<int >322</int >

</o b j e c t >
</void >
<void id=" JPanel0 " property=" contentPane ">

<void method=" add ">
< o b j e c t id=" JLabel0 " c l a s s =" javax . swing . JLabe l ">

<void property=" bounds ">
< o b j e c t c l a s s =" java . awt . Rectangle ">

<int >72</int >
<int >174</int >
<int >37</int >
<int >16</int >

</o b j e c t >
</void >
<void property=" t e x t ">

< s t r i n g >JLabel</s t r i n g >
</void >

</o b j e c t >
</void >
<void method=" add ">

< o b j e c t id=" J T e x t F i e l d 0 " c l a s s =" javax . swing . J T e x t F i e l d "
>

73

74 APPENDIX A

<void property=" bounds ">
< o b j e c t c l a s s =" java . awt . Rectangle ">

<int >60</int >
<int >105</int >
<int >70</int >
<int >22</int >

</o b j e c t >
</void >
<void property=" s c r o l l O f f s e t ">

<int >1</int >
</void >
<void property=" t e x t ">

< s t r i n g > J T e x t F i e l d </s t r i n g >
</void >
<void method=" addActionListener ">

< o b j e c t c l a s s =" java . beans . EventHandler " method="
c r e a t e ">

< c l a s s > java . awt . event . Act ionLis tener</ c l a s s >
< o b j e c t i d r e f =" JLabel0 "/>
< s t r i n g > s e t T e x t</s t r i n g >
< s t r i n g >source . t e x t </s t r i n g >

</o b j e c t >
</void >
<void property=" document ">

<void property=" documentProperties ">
<void id=" Boolean0 " method=" get ">

< s t r i n g > f i l t e r N e w l i n e s </s t r i n g >
</void >

</void >
</void >

</o b j e c t >
</void >
<void property=" p r e f e r r e d S i z e ">

< o b j e c t c l a s s =" java . awt . Dimension ">
<int >300</int >
<int >300</int >

</o b j e c t >
</void >
<void property=" bounds ">

< o b j e c t c l a s s =" java . awt . Rectangle ">
<int >0</int >
<int >0</int >
<int >300</int >
<int >300</int >

</o b j e c t >
</void >
<void property=" layout ">

< o b j e c t id=" SpringLayout0 " c l a s s =" javax . swing .
SpringLayout ">

A.1. AN EXAMPLE OF AN APPLICATION STORED AS XML 75

<void method=" addLayoutComponent ">
< o b j e c t i d r e f =" J T e x t F i e l d 0 "/>
< o b j e c t c l a s s =" java . beans . Expression ">

< o b j e c t i d r e f =" SpringLayout0 "/>
< s t r i n g > g e t C o n s t r a i n t s</s t r i n g >
<array c l a s s =" java . lang . Object " length=" 1 ">

<void index=" 0 ">
< o b j e c t i d r e f =" J T e x t F i e l d 0 "/>

</void >
</array >
<void property=" value ">

<void property=" x ">
< o b j e c t c l a s s =" javax . swing . Spring " method="

constant ">
<int >60</int >

</o b j e c t >
</void >
<void property=" y ">

< o b j e c t c l a s s =" javax . swing . Spring " method="
constant ">

<int >105</int >
</o b j e c t >

</void >
<void method=" s e t C o n s t r a i n t ">

< s t r i n g >East</s t r i n g >
<n u l l/>

</void >
<void method=" s e t C o n s t r a i n t ">

< s t r i n g >South</s t r i n g >
<n u l l/>

</void >
</void >

</o b j e c t >
</void >
<void method=" addLayoutComponent ">

< o b j e c t i d r e f =" JLabel0 "/>
< o b j e c t c l a s s =" java . beans . Expression ">

< o b j e c t i d r e f =" SpringLayout0 "/>
< s t r i n g > g e t C o n s t r a i n t s</s t r i n g >
<array c l a s s =" java . lang . Object " length=" 1 ">

<void index=" 0 ">
< o b j e c t i d r e f =" JLabel0 "/>

</void >
</array >
<void property=" value ">

<void property=" x ">
< o b j e c t c l a s s =" javax . swing . Spring " method="

constant ">
<int >72</int >

76 APPENDIX A

</o b j e c t >
</void >
<void property=" y ">

< o b j e c t c l a s s =" javax . swing . Spring " method="
constant ">

<int >174</int >
</o b j e c t >

</void >
<void method=" s e t C o n s t r a i n t ">

< s t r i n g >East</s t r i n g >
<n u l l/>

</void >
<void method=" s e t C o n s t r a i n t ">

< s t r i n g >South</s t r i n g >
<n u l l/>

</void >
</void >

</o b j e c t >
</void >
<void method=" addLayoutComponent ">

< o b j e c t i d r e f =" JPanel0 "/>
< o b j e c t c l a s s =" java . beans . Expression ">

< o b j e c t i d r e f =" SpringLayout0 "/>
< s t r i n g > g e t C o n s t r a i n t s</s t r i n g >
<array c l a s s =" java . lang . Object " length=" 1 ">

<void index=" 0 ">
< o b j e c t i d r e f =" JPanel0 "/>

</void >
</array >
<void property=" value ">

<void property=" x ">
< o b j e c t c l a s s =" javax . swing . Spring " method="

constant ">
<int >0</int >

</o b j e c t >
</void >
<void property=" y ">

< o b j e c t c l a s s =" javax . swing . Spring " method="
constant ">

<int >0</int >
</o b j e c t >

</void >
<void property=" width ">

<n u l l/>
</void >
<void property=" height ">

<n u l l/>
</void >
<void method=" s e t C o n s t r a i n t ">

A.1. AN EXAMPLE OF AN APPLICATION STORED AS XML 77

< s t r i n g >East</s t r i n g >
< o b j e c t c l a s s =" javax . swing . Spring " method="

constant ">
<int >0</int >
<int >0</int >
<int >2147483647</int >

</o b j e c t >
</void >
<void method=" s e t C o n s t r a i n t ">

< s t r i n g >South</s t r i n g >
< o b j e c t c l a s s =" javax . swing . Spring " method="

constant ">
<int >0</int >
<int >0</int >
<int >2147483647</int >

</o b j e c t >
</void >

</void >
</o b j e c t >

</void >
</o b j e c t >

</void >
</void >
<void property=" glassPane ">

<void property=" bounds ">
< o b j e c t c l a s s =" java . awt . Rectangle ">

<int >0</int >
<int >0</int >
<int >300</int >
<int >300</int >

</o b j e c t >
</void >

</void >
<void property=" layeredPane ">

<void property=" bounds ">
< o b j e c t c l a s s =" java . awt . Rectangle ">

<int >0</int >
<int >0</int >
<int >300</int >
<int >300</int >

</o b j e c t >
</void >

</void >
<void property="name">

< s t r i n g >frame0</s t r i n g >
</void >
<void method=" addWindowListener ">

< o b j e c t c l a s s =" apple . l a f . AquaRootPaneUI "/>
</void >

78 APPENDIX A

<void property=" v i s i b l e ">
< o b j e c t i d r e f =" Boolean0 "/>

</void >
</o b j e c t >

</java >

A.2. THE SIMPLEBEAN AND SIMPLEBEANOBJECT CLASSES 79

A.2 The SimpleBean and SimpleBeanObject classes

Listing A.2: SimpleBean.java
/ /
/ / S impleBean . j a v a
/ / S impleBean framework
/ /
/ / C r e a t e d by B a l d e r ¿Mrk on Tue Feb 2 4 2 0 0 4 .
/ / C o p y r i g h t (c) 2004
/ /
package simplebeans ;

public i n t e r f a c e SimpleBean {
public void setValueSBO (SimpleBeanObject value) ;
public SimpleBeanObject getValueSBO () ;

}

Listing A.3: SimpleBeanObject.java
/ /
/ / S i m p l e B e a n O b j e c t . j a v a
/ / S impleBean framework
/ /
/ / C r e a t e d by B a l d e r ¿Mrk on Wed Feb 2 5 2 0 0 4 .
/ / C o p y r i g h t (c) 2004
/ /

package simplebeans ;

public c l a s s SimpleBeanObject {
s t a t i c f i n a l i n t TYPE_INT = 0 ;
s t a t i c f i n a l i n t TYPE_DOUBLE = 1 ;
s t a t i c f i n a l i n t TYPE_STRING = 2 ;
s t a t i c f i n a l i n t TYPE_OTHER = 3 ;

Object o ;
i n t type ;
boolean array ;
public SimpleBeanObject (Object o , i n t type) {

t h i s (o , type , f a l s e) ;
}

public SimpleBeanObject (Object o , i n t type , boolean
array) {

t h i s . o = o ;
t h i s . type = type ;
t h i s . array = array ;

}

80 APPENDIX A

public Object ge tOb jec t () {
return o ;

}

public i n t getType () {
return type ;

}

public boolean i sArray () {
return array ;

}
}

A.3. SAMPLE SIMPLEBEAN AND CORRESPONDING BEANINFO 81

A.3 Sample SimpleBean and corresponding BeanInfo

Listing A.4: SimpleTextField.java
/ /
/ / S i m p l e T e x t F i e l d . j a v a
/ / S i m p l e T e x t F i e l d
/ /
/ / C r e a t e d by B a l d e r ¿Mrk on Mon Feb 2 3 2 0 0 4 .
/ / C o p y r i g h t (c) 2004
/ /
package simplebeans ;

import j ava . u t i l . * ;
import j ava . awt . event . * ;
import j avax . swing . * ;
import j ava . beans . * ;
import simplebeans . SimpleBeanObject ;
import simplebeans . SimpleBean ;

public c l a s s SimpleTextFie ld extends J T e x t F i e l d implements
SimpleBean {
private PropertyChangeSupport changes = new

PropertyChangeSupport (t h i s) ;
private SimpleBeanObject valueSBO = new

SimpleBeanObject (" " , SimpleBeanObject . TYPE_STRING) ;

public SimpleTextFie ld () {
addKeyListener (new KeyAdapter () {

public void keyReleased (KeyEvent e) {
char i n n t a s t e t = e . getKeyChar () ;
i f (i n n t a s t e t = = KeyEvent .VK_ENTER)

changes . f irePropertyChange (" valueSBO " ,
valueSBO , new SimpleBeanObject (getText () ,
SimpleBeanObject . TYPE_STRING)) ;

}
}) ;

}

public s t a t i c void main (S t r i n g [] args) {
JFrame j = new JFrame (" Test ") ;
j . getContentPane () . add (new SimpleTextFie ld ()) ;
j . s e t V i s i b l e (t rue) ;

}

public void s e t T e x t (S t r i n g t e x t) {
S t r i n g oldText = getText () ;
super . s e t T e x t (t e x t) ;
changes . f irePropertyChange (" t e x t " , oldText , t e x t) ;

82 APPENDIX A

}

public S t r i n g getText () {
return super . getText () ;

}

public void setValueSBO (SimpleBeanObject s) {
valueSBO = s ;
switch (s . getType ()) {

case SimpleBeanObject . TYPE_STRING :
s e t T e x t ((S t r i n g) s . ge tOb jec t ()) ;
break ;

/ / Other t y p e s h a n d l e d h e r e
default :

}
}

public SimpleBeanObject getValueSBO () {
return new SimpleBeanObject (getText () ,

SimpleBeanObject . TYPE_STRING) ;
}

public void addPropertyChangeListener (
PropertyChangeListener l) {

i f (changes = = null)
super . addPropertyChangeListener (l) ;

e lse
changes . addPropertyChangeListener (l) ;

}

public void removePropertyChangeListener (
PropertyChangeListener l) {

i f (l ! = null)
changes . removePropertyChangeListener (l) ;

}

public PropertyChangeListener []
getPropertyChangeListeners () {

return changes . getPropertyChangeListeners () ;
}

}

Listing A.5: SimpleTextFieldBeanInfo.java
/ /
/ / S i m p l e T e x t F i e l d B e a n I n f o . j a v a
/ / S i m p l e T e x t F i e l d
/ /
/ / C r e a t e d by B a l d e r ¿Mrk on Mon Feb 2 3 2 0 0 4 .

A.3. SAMPLE SIMPLEBEAN AND CORRESPONDING BEANINFO 83

/ / C o p y r i g h t (c) 2004
/ /
package simplebeans ;

import j ava . beans . * ;
import simplebeans . * ;
import j ava . lang . r e f l e c t . * ;

public c l a s s SimpleTextFieldBeanInfo extends SimpleBeanInfo
{
private s t a t i c f i n a l Class beanClass = SimpleTextFie ld .

c l a s s ;

public BeanDescriptor getBeanDescr iptor () {
BeanDescriptor bd = new BeanDescriptor (beanClass) ;
bd . setDisplayName ("A simpler t e x t f i e l d ") ;
bd . s e t P r e f e r r e d (t rue) ;
return bd ;

}

public PropertyDescr iptor [] ge tProper tyDescr ip tors () {
t r y {

Proper tyDescr iptor t e x t = new
PropertyDescr iptor (" t e x t " , beanClass) ;

t e x t . s e t P r e f e r r e d (t rue) ;
t e x t . setBound (t rue) ;
Proper tyDescr iptor value = new

PropertyDescr iptor (" valueSBO " , beanClass) ;
value . setBound (t rue) ;
value . setHidden (t rue) ;
Proper tyDescr iptor rv [] = { t ex t , value } ;
return rv ;

} catch (I n t r o s p e c t i o n E x c e p t i o n e) {
throw new Error (e . t o S t r i n g ()) ;

}
}

public EventSetDescr iptor [] ge tEventSe tDescr ip tors () {
t r y {

EventSetDescr iptor changed = new
EventSetDescr iptor (beanClass ,

"
propertyChange " ,

j ava
. beans . PropertyChangeListener . c lass ,

"
propertyChange ") ;

changed . setDisplayName (" Value changed ") ;
EventSetDescr iptor [] rv = { changed } ;

84 APPENDIX A

return rv ;
} catch (I n t r o s p e c t i o n E x c e p t i o n e) {

throw new Error (e . t o S t r i n g ()) ;
}

}

/ / Return d e s c r i p t o r s f o r t h e c o n n e c t i o n wizard in t h e
S i m p l e B u i l d e r .
/ / The wizard w i l l i g n o r e h idde n methods . (s e t H i d d e n (

t r u e)) .
public MethodDescriptor [] getMethodDescriptors () {

t r y {
Method getValueSBOMethod , setValueSBOMethod ,

propertyChangeMethod ;

Class [] getValueArgs = { } ;
getValueSBOMethod = SimpleTextFie ld . c l a s s .

getMethod (" getValueSBO " , getValueArgs) ;
MethodDescriptor getValueDescr iptor = new

MethodDescriptor (getValueSBOMethod) ;
getValueDescr iptor . setHidden (t rue) ;

Class [] setValueArgs = { SimpleBeanObject . c l a s s
} ;

setValueSBOMethod = SimpleTextFie ld . c l a s s .
getMethod (" setValueSBO " , setValueArgs) ;

MethodDescriptor [] rv = { getValueDescriptor ,
new MethodDescriptor (setValueSBOMethod) } ;

return rv ;
}

catch (Exception e) {
throw new Error (e . t o S t r i n g ()) ;

}
}

public j ava . awt . Image get Icon (i n t kind) {
System . e r r . p r i n t l n (" g e t t i n g icon f o r

SimpleTextFie ld ") ;
j ava . awt . Image img = loadImage (" SimpleTextFie ld16 .

g i f ") ;
i f (img = = null)

System . e r r . p r i n t l n (" Couln ’ t load icon ") ;
return img ;

}

}

	Introduction
	Facilitating EUD through component based toolkits
	The cloning approach
	Problem description
	Delimitations

	Thesis structure

	Theory
	Component based development
	History
	Status

	Evolutionary software development
	History
	Status

	Cloning and prototypes
	History
	Status

	Fitting the pieces together

	Tools and methods
	Developer tools
	The Java programming language
	Operating system and developer environment

	Component technology
	Component-based vs. traditional programming
	JavaBeans

	The BeanBuilder
	Features
	Required extensions

	Development strategy

	My contribution
	A scenario for prototype-based EUD
	Working with cloneable components
	A process model for clone-based component development

	The SimpleBuilder
	Overview
	The palette and control panel
	Customization of components
	Extension of components
	Connecting two components

	The SimpleBeans

	Discussion
	The road taken
	Alternative routes

	Further research
	Remaining work
	Putting the SimpleBuilder to use
	Improving the SimpleBuilder for prototype-based end user development

	Conclusion
	Code listings
	An example of an application stored as XML
	The SimpleBean and SimpleBeanObject classes
	Sample SimpleBean and corresponding BeanInfo

