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ABSTRACT 

Wireless sensor network (WSN) is an emerging important research area. The variety in and 

number of applications is growing in wireless sensor networks. These wireless sensor nodes 

are tiny devices with limited energy, memory, transmission range, and computational power. 

Because WSNs in general and in nature are unattended and physically reachable from the 

outside world, they could be vulnerable to physical attacks in the form of node capture or 

node destruction. These forms of attacks are hard to protect against and require intelligent 

prevention methods. It is necessary for WSNs to have security measures in place as to prevent 

an intruder from inserting compromised nodes in order to decimate or disturb the network 

performance. Intrusion detection in wireless sensor networks is a much needed security 

measure. In this thesis we present an intrusion detection framework for wireless sensor 

networks which does not require prior knowledge of network behavior or a learning period in 

order to establish this knowledge. We have taken a more practical approach and constructed 

this framework with small to middle-size networks in mind, like home or office networks. 

The proposed framework is also dynamic in nature as to cope with new and unknown attack 

types. This framework is intended to protect the network and ensure reliable and accurate 

aggregated sensor readings. Theoretical simulation results indicate that compromised nodes 

can be detected with high accuracy and low false alarm probability when as much as 25% 

compromised nodes is present in the network. Theoretical simulation results regarding data 

aggregation indicates that compromised nodes will be limited in their influence on the 

aggregated data even with as much as 40% compromised nodes in the network. We have only 

simulated the framework theoretically in a mathematics program and evaluated the theoretical 

properties of the algorithms. The results are promising and the framework should be 

simulated in a network simulator for further evaluation.  
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1. INTRODUCTION 

Wireless sensor network (WSN) is an emerging important research area. The variety in and 

number of applications is growing in wireless sensor networks. They range from general 

engineering, environment science, health service, military, etc. Wireless sensor network range 

from sparse networks with 10’s of nodes to populated networks with 1000’s, possibly 10000’s 

or 100000’s of sensor collecting data from the environments.  

These wireless sensor nodes are tiny devices with limited energy, memory, transmission 

range, and computational power. A base station is usually present in the network, which 

receives the sensor data from the sensors. Such a base station is usually a powerful computer 

with more computational power, energy and memory. Currently most research in wireless 

sensor networks have focused on routing protocols, data aggregation and clustering protocols. 

However, in most circumstances, wireless sensor networks require some amount of security in 

order to maintain high survivability and integrity of the network. Many emerging and future 

applications could require strong security in place, in order to function acceptably.  

For military applications, WSNs could be placed behind enemy lines in order to detect and 

track enemy soldiers and vehicles. In indoor environment, sensor networks could be deployed 

in order to detect intruders and security violations via a wireless home security system. In 

office buildings, sensor networks could be deployed as a temperature monitoring/regulating or 

fire alarm system, etc.  

Because WSNs in general and in nature are unattended and physically reachable from the 

outside world, they could be vulnerable to physical attacks in the form of node capture or 

node destruction. These forms of attacks are hard to protect against and require intelligent 

prevention methods. It is necessary for WSNs to have security measures in place as to prevent 

an intruder from inserting compromised nodes in order to decimate or disturb the network 

performance.  

Classical intrusion prevention measures, such as encryption and authentication, can be used in 

wireless sensor networks to reduce intrusion. However, they cannot eliminate them. 

Encryption and authentication become useless in the event of a sensor node being 

compromised, because the nodes carry the private keys the attacker will then be in possession 

of the cryptographic keys.  
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Intrusion detection presents a second line of defense and it is a necessity in any high 

survivability network. Most existent works on intrusion detection systems in wireless sensor 

networks and mobile adhoc networks use some sort of definition of pattern for detection. i.e 

anomaly detection[Rajasegarar, et al. 2006] or rule based detection[Chen, et al. 2007]. These 

types of intrusion detection systems require prior knowledge of some sort in order to establish 

rules for behavior in the network, or definition of what normal behavior is. There are two 

drawbacks to these schemes.  

1. The need prior knowledge of what to be expected in the behavior in the network 

2. They cannot dynamically adapt to new unknown attacks. 

In this thesis we present an intrusion detection framework for wireless sensor networks which 

does not require prior knowledge of network behavior or a learning period in order to 

establish this knowledge. The proposed system is also dynamic in nature as to cope with new 

and unknown attack types.  
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2. WHAT IS A WIRELESS SENSOR NETWORK (WSN) 

A wireless sensor network is a network consisting of multiple wireless sensors, also called 

nodes, which cooperate in sensing some sort of physical or environmental conditions, such as 

temperature, sound, vibrations, light, movement etc. These networks can consist of everything 

from 10’s of nodes for sparsely populated networks, up to 100’s of thousands of nodes in 

densely populated networks. The individual sensor nodes are small and have limited energy, 

computational power and memory. This puts some restraints on the applications and protocols 

which are designed for use in such networks. Wireless sensor networks posses some unique 

characteristics which is listed below: 

• Self-organizing 

• Cooperating of sensor nodes 

• Short range communication and multihop routing 

• Limited energy, computational power and memory 

• Dynamically changing topology 

Self-organizing 

The position of sensor nodes need not be engineered or pre-determined, which allows random 

deployment in inaccessible terrains or disaster relief operations. In a rescue scenario, 

thousands of nodes could drop from an airplane over a large area. In order for the network to 

function, the sensor nodes must have network protocols and algorithms with self-organizing 

capabilities.  

Cooperating of sensor nodes 

Because of the limited resources of the nodes, it is necessary for the nodes to cooperate with 

each other. Several nodes may be tasked with sensing the same phenomenon these nodes may 

cooperate in a “cluster” where one node is tasked with compressing the sensor result from all 

the other nodes in the cluster and produce a “collective view” of the cluster on the situation, 

this is called data aggregation.  
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Short range communication and multihop routing 

Because of the nature of wireless sensor networks, all nodes in the network may not have a 

direct link to the base station. Hence, they use multihop communication in order to 

communicate [Draves, et al. 2004]. Multihop communication in wireless sensor networks is 

expected to consume less power than the traditional single hop communication, which is also 

desirable in order to keep the communication costs at a minimum.  

Limited energy, computational power and memory 

Since the nodes are desired to be as small an inexpensive as possible, wireless sensor 

networks are cursed with limited resources in the form of energy, computational power and 

memory.  

Dynamically changing topology 

In wireless sensor networks nodes will fail and drop out of the network, new nodes may be 

inserted into the network, hence, the topology will be dynamic and ever changing. 

2.1 APPLICATIONS OF WIRELESS SENSOR NETWORKS 

Figure 2.1 shows the complexity of wireless sensor networks, which generally consist of a 

data acquisition network and a data distribution network, monitored and controlled by a 

management center. The multitude of available technologies makes even the selection of 

components difficult, let alone the design of a consistent, reliable, robust overall system [Hu 

and Evans. 2003]. 
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Figure 2.1 From [Hu and Evans. 2003] 

The applications for wireless sensor networks are many. Wireless sensor networks could 

replace current wired counterparts and provide diverse operations where traditional networks 

would be impossible, due to the environment, scale of the operation or expenses in needed 

wiring. Some examples of areas of which WSNs could be used are listed below.     

 

Home automation 

Sensor nodes could be located in every room to measure the temperature, detect movement 

and report to an alarm system, detect smoke in case of a fire and report to a fire alarm system 

etc. 

General engineering 

It can be used for automotive driving, fingertip accelerometer virtual keyboards, sensing and 

maintenance in industrial plants, aircraft drag reduction, smart office space management, 

tracking of goods in retail stores, tracking of containers and boxes in shipping companies, 

social studies on human behavior, commercial and residential security [Ngai. 2005]. 
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Agriculture monitoring 

It can used in crop and livestock management and precision control with nodes placed on animals 

tracking their movement or temperature, managing the feeding of individual animals, automating 

the distribution of medicine for individual animals, etc. 

Civil engineering 

Nodes could be built into the walls or the concrete of buildings and detect changes in the 

structural integrity of buildings which can develop over the years or after earthquakes, 

extreme weather, fires etc.  

Military applications 

Large sensor networks could be deployed behind enemy lines in order to conduct surveillance or 

track enemy troops or vehicles. Wireless sensor networks could be used for asset monitoring and 

management, with sensor nodes embedded in the uniforms and weapons of the soldiers. Such 

networks could also be used for battlefield monitoring and asset coordination accordingly.  

 

 

Health care 

Small sensor nodes could be used for medical applications like surveillance of elderly people. 

Devices that are carried around or which are worn with the clothes like it is proposed in the 

field of Wearable Computing [Chen, et al. 1996] could monitor vital function and report them 

to the family doctor or directly to the ambulance in case of an emergency like a heart attack. 

In the future small sensor nodes could be implanted into the body in order to detect internal 

diseases like cancer at an early stage. This way it can be treated earlier, when the recovery 

probabilities are much higher [Ngai. 2005]. 
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2.2 REQUIREMENTS FOR APPLICATIONS IN WIRELESS SENSOR NETWORKS 

Due to the characteristics and limitations of WSN, there are some requirements for building 

applications for use in such networks. These requirements are listed below: 

 Power restrictions  

 Limited Computational power  

 Storage Restrictions  

Power restriction 

Because of the nature of wireless sensor networks, continuous power supply through wired 

connections is not an option. Sensor nodes are usually powered by small batteries or in some 

cases they could draw power from the environment, possibly by the use of small solar panels, 

motion generated power, etc. This limits the amount of power resources at hand. Wireless 

sensor networks could be placed in inhospitable environments, which make the replacements 

of batteries impossible. These limited power resources are used for sensor operations, sensor 

data processing and communication. The most power hungry operations of the nodes are 

communications between the nodes in the network, and this should be taken into 

consideration in the design of new applications. 

Limited Computational power 

The amount of available computational power is linked with the amount of available power 

for the entire node. Even though computations require less power than communications, there 

are still limitations to the amount computations the node can do. This is a critical limitation 

which requires consideration in the design of applications. Because of this limitation, robust 

security protocols with heavy encryption are not possible. Heavy asymmetric encryption 

require overhead in both communication and computation.  

Storage restrictions 

The amount of available memory is restricted by the small size of the nodes. This memory is 

shared for all operations of the node, and storing large numbers of encryption keys and 

routing information could easily fill up the available memory in large networks. This 

limitation needs to be considered in the development of applications 
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2.3 SECURITY IN WIRELESS SENSOR NETWORKS 

Security in wireless sensor networks will and should become a hot topic in future WSN 

research. Security protocols should be developed and deployed in the same time as the routing 

and aggregation protocols, instead of adding them later on as patches to existing holes in 

order to create a robust platform to deploy security critical applications. 

Sensors are often deployed in accessible areas, which add the risk of physical attack. This is 

why wireless sensor networks pose unique challenges. Security protocols and techniques used 

in traditional wired networks cannot be applied directly. Due to the scarce resources of 

wireless sensor networks, sensor nodes are limited in their energy, computation, and 

communication capabilities. New light weight, multi layered security schemes need to be 

developed in order to detect and prevent the new forms of attacks these networks are subject 

to, while using as little as possible of the scarce resources that exist in the networks.  

 

2.3.1 THREAT MODELS 

Attacks come in different sizes and shapes and can be conducted from the inside and the 

outside of the network.  

External attackers are attackers that are not legally part of the network. They could be part of 

another network which is linked to the target network using the same infrastructure or same 

communication technology. These nodes can carry out attacks without being authorized on 

the target network. These attackers could also be an outside node, not part of the network, but 

with jamming or eavesdropping capabilities. 

Internal attackers are compromised nodes which are authorized on the target network. These 

nodes are capable of more sophisticated attacks because they are seen as authorized by the 

network and fellow nodes. As an example they can produce false routing information to the 

network, and in this manner decimate the network or simply route attractive traffic through 

itself in order to collect data or maybe choose not to forward the packets consequently 

disrupting the connection. They could also be placed in strategic positions to report false 

sensor readings in order to “pollute” picture the sensor data presents.    

The attacker can be either active or passive 
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Passive attackers do not disrupt service. Eavesdropping is a good example of a passive attack, 

in this attack the attacker only listens to traffic that it can intercept. The attacker does not do 

anything active in the sense of attracting traffic to itself through the network. 

Active attackers alter data, obscure the operation or cut off nodes from neighbors. An active 

attacker must be able to inject packets to the network. A good example of an active attack is 

injecting false routing information to the network in order to decimate the network or route 

interesting traffic through itself. Active attackers can target the physical layer by jamming the 

transmissions of wireless signals or by destroying the hardware at certain nodes. Attackers 

can also target the network layer protocols such as routing by injecting false routing 

information, and they can target the application layer by injecting false information onto the 

network. In essence wireless sensor networks need protection on multiple layers in order to 

make attacks more difficult to carry out. 
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2.3.2 ATTACK TYPES 

[Sarma et al. 2006] Gives a good, layered based, overview of the various types of attacks 

against wireless sensor networks: 

Physical layer: 
 

Jamming 

Jamming is a popular Denial of Service (DoS) attack. In this attack the attacker attempts to 

jam the frequencies of the radio used for communication between the nodes in the network. In 

this attack, an adversary may use e few nodes in strategic positions to effectively jam most of 

the communications inside the network. In essence, an attacker needs only a few nodes in 

order to disseminate a large network.  

Tampering 

Because of the nature of wireless sensor networks, an adversary could easily get physical 

access to the sensor nodes. This may enable an attacker to compromise sensor nodes in order 

to get access to the cryptographic keying material, replicate the node and place several of his 

own nodes in the network or simply just destroy the sensor nodes in a DoS like manner.  

Sybil attack 

The Sybil attack is a particularly nasty attack. The Sybil attack is an attack that can span 

several layers in the protocol stack. The essence of the Sybil attack is that one single 

compromised node can impersonate several nodes. A node is inserted into the network and 

assumes identities of nodes from different parts of the network. The base of this attack is at 

the physical layer [Newsome, et al. 2004]. 
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Data link layer: 
 

Collision 

This is a DoS attack, where a node induces a collision in some small part of a transmitted 

packet. The packet will then fail the checksum check, because of the changes brought on by 

the collision, and the receiver node will then ask for a retransmission of the packet  

Exhaustion 

This attack is a collision attack taken a bit further. A malicious node may conduct a collision 

attack repeatedly in order to exhaust the power supply of the communicating nodes.     

Interrogation attack 

When the physical layer uses Request To Send (RTS) / Clear To Send (CTS) messages in 

order to conduct medium access control, a malicious node can repeatedly send RTS messages 

to a target node and ignore the CTS messages. By doing so, the malicious node can flood the 

network link of the target node. 

Sybil attack 

The Sybil attack becomes more prominent in the data link layer. Two types of the Sybil attack 

on the data link layer are: 

Data aggregation 

In a data aggregation scheme, the sensor data is aggregated throughout parts of the 

network in order to present a collective view of the monitored phenomenon. If an 

attacker controls a few nodes, he can have some effect on the aggregation result. If 

those nodes are Sybil nodes with many identities, an attacker would have a more 

prominent effect on the aggregation result.   

Voting 

In voting schemes, Sybil nodes can be used to “rig the election”. The impact on the 

voting result depends on the amount of identities the Sybil nodes are in possession of.  
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Network layer: 
 

Neglect and greed 

In this attack, a malicious node that is part of a network route can drop the packets but still 

send ACK to the sender. An attacker can drop just certain packets, or simply just drop all 

packets coming down the routing path.  

Missdirection 

In this attack a malicious node, that is part of a route, can instead of dropping packets, quite 

simply send them on a different path where there does not exist a route to the destination. The 

malicious node can do this for certain packets, or all packets.  

Internet smurf attack 

This attack is a DoS attack, where a malicious node can spoof the address of a victim node 

and broadcast echoes and route the replies to the victim node. This way the malicious node 

can flood the victim’s network link.  

Black hole attack 

This is a DoS attack, where a malicious node advertises a zero cost route through itself. If the 

routing protocol in the network is a “low cost route first” protocol, like distance vector, other 

nodes will chose this node as an intermediate node in routing paths. The neighbors of this 

node will also chose this node in routes, and compete for the bandwidth. This way the 

malicious node creates a black hole inside the network.   

Sybil attack 

In multipath routing protocols, a Sybil node can fool the protocol into thinking that multiple 

paths exist, when in reality all paths goes through the same Sybil node.  

Spoofing and altering routing information 

In this attack, a malicious node may be able to create routing loops, wormholes, black holes, 

partition the network, etc, by spoofing, altering or replaying routing information. 

Worm hole attack 
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Just like the theoretical wormholes in space, this attack can send packets, routing information, 

ACK etc, through a link outside the network to another node somewhere else in the same 

network. This way an attacker can fool nodes into thinking they are neighbors, when they are 

actually in different parts of the network. This can also confuse routing mechanisms that rely 

on knowing distances between nodes. A wormhole attack can be used as a base for eaves 

dropping, not forwarding packets in a DoS like manner, alter information in packets before 

forwarding them etc.    

Selective Forwarding attack 

In this attack, malicious nodes can decide not to forward packets of certain types or to or from 

certain nodes.  

 

Transport layer: 
 

Flooding attack 

In this attack, a malicious node may send continuous connection requests to a victim node 

effectively flooding the victim’s network link.  

 

2.3.3 SECURITY REQUIREMENTS 

As we have discussed previously, wireless sensor networks are subject to passive 

eavesdropping as well as active interfering over several layers. This can lead to leaking of 

sensitive information which is observed by a passive eavesdropper, message contamination or 

node impersonation by an active attacker.  

In this section we will examine the security requirements which are essential for a secure, 

high survivability wireless sensor network. 

Confidentiality 

Unlike wired networks, an attacker does not need to gain physical access to cables/switches 

for wiretapping or compromise routers and other nodes in order to conduct eavesdropping. 

Due to the fact that all signals are transmitted over the air, an attacker can eavesdrop on any 

node it chooses, as long as it is within radio coverage. In order to prevent information 



- 22 - 

traveling through the network from being compromised, confidentiality is a necessary 

requirement. Compromised nodes present a serious threat to confidentiality, because by 

compromising a node, an attacker can gain access to the cryptographic keys used to protect 

the communication.  

Authentication 

Authentication is necessary to distinguish legitimate sensor nodes from intruders. 

Authentication is also necessary in order to determine that the received data came from a 

authorized sensor node, and not injected by an attacker trying to falsify information.  

Authentication is also crucial in cluster formations, where sensor nodes form clusters 

according to location, sensing data etc. Authentication is needed in order to ensure that  nodes 

inside the cluster only accepts data from authorized nodes in the same cluster.  

Integrity 

Integrity is an important criterion, as information moving through the network could be 

altered. Without integrity we would not be able to trust the information received from the 

sensor network.  

Freshness 

Freshness is important, because attackers could replay packets to confuse the network. 

Freshness requirement ensures that only fresh unused data are accepted. 

Secure management 

Secure management is needed from the base station in order to securely manage distribution 

of cryptographic keying material, securely form clusters and adding or removing member of 

clusters. 

Availability 

Availability is a crucial requirement because it ensures that the services of the network are 

available at the time it is needed. DoS attacks could disrupt the availability of wireless sensor 

networks, so it is necessary to ensure that such attacks have as little impact as possible. 
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3. INTRUSION DETECTION 

As we have discussed previously, wireless sensor networks are subject to passive 

eavesdropping as well as active interfering. This can lead to leaking of sensitive information 

which is observed by a passive eavesdropper, message contamination or node impersonation 

by an active attacker.  

These attacks are similar to attacks on traditional wired networks. However, due to the 

characteristics of the wireless MAC layer, wireless sensor networks are subject to new forms 

of attack, and traditional protection mechanisms for wired networks are not sufficient to 

secure these networks. Unlike wired networks, an attacker does not need to gain physical 

access to cables/switches for wiretapping or compromise routers and other nodes in order to 

conduct eavesdropping. Due to all signals being transmitted over the air, an attacker can 

eavesdrop on any node it chooses, as long as it is within radio coverage, he can also easily 

inject packets and replay captured packets. 

Another major threat is the compromising of nodes. Since the nodes in wireless sensor 

networks are unattended and could be accessible to the public, there is a risk of nodes being 

captured, compromised or hijacked. Because of this threat, every node in the network should 

be skeptical to all other nodes in the network. Integrity validations, which rely on redundant 

information from different nodes, such as secure routing information, also rely on the 

trustworthiness of other nodes.  

Traditional defenses like encryption and authentication fail to protect the network when a 

node, which is in possession of the private cryptographic keys, can be compromised. Adhoc 

routing protocols also rely on the cooperation of other nodes in the network to establish routes 

and routing tables. If nodes are hijacked or compromised, attackers can decimate the entire 

network by submitting false routing information. On the other hand, they can make sure that 

all traffic passes through their node or nodes in order to eaves drop, conduct selective 

forwarding attacks, etc.  

If we have the ability to detect an intrusion or attack once it comes into the network, it can be 

stopped before it can cause any real damage to the system. This is what intrusion detection 

systems (IDS) have to offer.  
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3.1 INTRUSION DETECTION FOR TRADITIONAL NETWORKS 

All computer or network activity can be classified into three different classes: 

1. Normal activity 

2. Abnormal but not malicious 

3. Malicious activity 

The fundamental problem is how to classify different activities into one of these classes. Two 

main intrusion detection techniques are host-based and network-based intrusion detection.  

Host based intrusion detection is located at a host in the network, and monitors processes 

executing on the host for misuse.  

Network-based intrusion detection is located inside the network and monitors the activities 

inside the current network in order to detect misuse.  

Hybrid solutions exist which employs both techniques. A hybrid solution on a host may 

observe network traffic to and from the host, as well as processes executing on the same host, 

in order to detect misuse. 

The two most used traditional intrusion detection techniques used are the misuse detection 

and anomaly detection techniques.  

Misuse detection employs pattern recognition in its efforts to detect intrusion. This technique 

relies on the prior knowledge of misuse patterns which it can compare current activities to in 

order to detect illegal activities. This technique has the drawback of not being able to detect 

new and unknown attack types. 

Anomaly detection requires a learning period where it gathers information about the normal 

activities of the host or network. It then compares the current activities to the normal behavior 

it observed in the learning period in order to detect anomalies in the form of deviation from 

the norm. The drawback of this technique is that it may treat all anomalies as intrusions, 

hence, false detections are expected. 
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An intrusion detection model consists of six main components [Denning. 1987]: 

 Subjects: Initiator of activity on a target system-normally users. 

 Objects: Resources managed by the system-files, commands, devices, etc. 

 Audit records: Generated by target systems in responses to actions performed or 

attempted by subjects on objects-user login, command execution, file access, etc. 

 Profiles: Structures that characterize the behavior of subjects with respect to objects in 

terms of statistical metrics and models of observed activity. Profiles are automatically 

generated and initialized from templates. 

 Anomaly records: Generated when abnormal behavior is detected. 

 Activity rules: Actions taken when some condition is satisfied, which update profiles, 

detect abnormal behavior, relate anomalies to suspected intrusions, and produce 

reports. 

The observations of such systems are in the form of statistical data with variables in the form 

of cumulative observations of one or more activities over a period of time. This data can be 

represented by a statistical model like a uni or multivariate distribution with mean and 

standard deviation, Markov process model, time series model, etc.   

 

 3.2 INTRUSION DETECTION FOR WIRELESS SENSOR NETWORKS 

Intrusion detection systems for wireless sensor networks can be divided into three categories 

[Brutch and Ko.  2003]. 

1. Stand-alone 

2. Distributed and Cooperative 

3. Hierarchical 

Stand-alone 

In this architecture, an IDS is run on all nodes. All nodes run their IDS independently and 

without cooperation with each other. Decisions are based solely on the observations of the 

information collected at its own node. Nodes in the same network do not know anything about 

the situation of other nodes in the network. This could be suitable in networks where not all 

nodes are capable of running an IDS or does not have one installed. This architecture is not 

effective due to the fact that no alert information is passed between the nodes when an 
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intrusion is detected. Also there is no cooperation between the nodes, so if a node does not 

have conclusive evidence of an intrusion, it cannot cooperate with its neighbors in order to get 

more information about the suspected intrusion.  

 
Distributed and cooperative 

This architecture requires all nodes to have an IDS agent running on them. Every node 

participates in the intrusion detection and response. Every IDS agent is responsible for 

collecting data and detecting intrusions locally, but they can cooperate with neighbor nodes, 

when the evidence of an intrusion is inconclusive, in order to collect more information to 

verify or dismiss the attack. This architecture is suitable for flat network infrastructure. 

Hierarchical 

This architecture extends the distributed and cooperative IDS architecture and has been 

proposed for multi-layered network infrastructures where the network is divided into clusters. 

Cluster heads of each cluster generally have more functionality than other members in the 

cluster and, in a way act as the traditional control points in wired networks. Hierarchical IDS 

architecture makes use of this infrastructure model and assigns more of the responsibilities to 

the IDS agents running on the cluster heads. All nodes run an IDS agent and detect intrusions 

locally. The IDS agent running on the cluster head is responsible for detecting intrusions 

locally as well as globally for the cluster. Thus the cluster head IDS agent monitors network 

packet and initiates a global response when it detects an intrusion. 

  

3.2.1 INTRUSION DETECTION TECHNIQUES 

The intrusion detection systems for wireless sensor networks can base their detection 

techniques on the same approaches as the traditional systems, namely anomaly detection and 

misuse detection, or they could also use specification-based detection techniques. 

In misuse detection technique the system compares the actions in the network with known 

attack patterns. As described in the traditional IDS systems, these systems have the drawback 

of not being able to detect new and unknown attacks. They also require memory space to store 

the attack signatures. Hence, they can be difficult to implement in resource constraint sensor 

networks.  
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Anomaly detection techniques compare the activities of the network with what is expected as 

normal behavior and detect intrusions as activities that differ from the normal expected 

behavior by a statistical significant amount. These systems usually establish knowledge of 

what is “normal” behavior of the network during a learning period where they gather 

information which is considered as normal behavior. These systems also have some 

drawbacks. First, they are vulnerable to intruders in the learning period. Second, due to the 

unreliable communication of wireless sensor networks, the “normal” behavior of past 

observations may not be concurrent with the present behavior. Thus, false detections should 

be expected. 

Specification-based detection techniques monitor network behavior and compare, in the same 

manner as anomaly detection techniques, current behavior with what is expected to be 

“normal” behavior. The IDS flags nodes that differ from the norm by a significant statistical 

amount as intruders. The difference from the anomaly detection scheme is how the “normal” 

behavior knowledge is established. In the specification-based detection technique, the normal 

behavior is a manually specification of what is normal behavior. Like the other techniques, 

this one also has a drawback. Because the “normal” behavior is manually specified, it is 

unable to detect new or unknown attacks. Since it is an anomaly detection technique, it also 

suffers from the weakness of possibly producing false detections. 

 

3.2.2 EXAMPLE IDS ARCHITECTURES 
 

Local Intrusion Detection System (LIDS) 

The Local Intrusion Detection System (LIDS) is an example of a distributed and cooperative 

intrusion detection system [Alberts and Kuhn. 2002]. All nodes run a Local Intrusion 

Detection System (LIDS) for local detection, however, this can be extended globally by 

cooperating with LIDS on other nodes in the network. The LIDS exchange two types of data: 

• Security data to obtain complementary information from collaborating nodes 

• Intrusion alerts to inform others of locally detected intrusions 

The LIDS analyze data obtained locally and data obtained from other nodes in order to detect 

intrusions. In LIDS SNMP data is proposed as an audit data source. This eliminates this 
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problem and reduces power usage if an SNMP agent is already running on each node. Mobile 

agents are used to transport SNMP requests to other nodes, in order to distribute the detection 

tasks. The way this is done differs from traditional SNMP in that this approach brings the 

code to the data and not the data to the code. Thus, reducing the overhead of the network by 

telling the mobile agents, on the node in question, to audit the data on that node instead of 

having to transport all the data to the querying node. The result from the mobile agents is then 

transported back to their LIDS or to another node for further investigation. The LIDS 

architecture is shown in Figure 3.1  

 

Figure 3.1: The LIDS Architecture From [Anatvalee and Wu. 2007] 

LIDS can use misuse, anomaly and specification-based detection techniques. 

 

Dynamic Hierarchical IDS architecture 
 

This IDS is based on cooperation of IDS agents on nodes in the network [Anatvalee and Wu. 

2007]. The network infrastructure consists of clusters and all nodes must be part of a cluster. 

Cluster heads can again form clusters with each other and so on to form a multi layered 

infrastructure. 

The cluster nodes are responsible for monitoring, logging, analyzing, responding to intrusions 

detected and reporting to the cluster heads. The cluster heads are responsible for correlating 

reports from nodes in its cluster and, if needed, request additional information from nodes in 

order to correlate reports correctly. They are also required to analyze collected data before 

passing it to upper levels. The uppermost levels of the hierarchy have the authority and 

responsibility for managing the detection and response capabilities of the clusters and cluster 
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heads below them. They can send signature updates or directives and policies to alter the 

configurations for intrusion detection and response. Because of the responsibilities and 

authority of the upper layer nodes, there must be some criteria on selecting these nodes. The 

most important one being resistance to compromise of the node, which is to say the 

probability of the node being compromised. Figure 3.2 shows the architecture of this IDS. 

 

 

 

Figure 3.2: Dynamic intrusion detection hierarchy From [Anatvalee and Wu. 2007] 

 

3.2.3 DECISION MAKING 

An important part in cooperative intrusion detection is who makes the final decision about 

whether or not a node is malicious. This could be done in two ways. Either the nodes decide 

independently, or the nodes cooperate in a majority voting scheme.  

In an independent decision scheme a few nodes are tasked with collecting evidence of 

intrusion from other nodes and make the decision. The other nodes do not participate in this 

decision. In a cluster topology network, the cluster head would typically be the deciding node 

for the nodes in its cluster. This scheme could be vulnerable if an attacker compromises the 

deciding node. Then he would be able to control which nodes are decided to be intruders or 

not.  

In a cooperative decision scheme nodes cooperate in deciding the guiltiness of a suspected 

node. This could be done by a majority vote where nodes share their suspicion of other nodes 

and if the majority > 50% of the nodes think a node is malicious, then that node is decided to 

be an intruder. This scheme is less vulnerable in that no single node is in charge of the 
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decision making. Hence, he would have to control 50% of the nodes or more, in order to be in 

control of the decisions.   

 

4. DATA AGGREGATION 

 

4.1 WHAT IS DATA AGGREGATION 

Data aggregation is a process in which information is gathered and expressed in a summary 

form. Data aggregation is mostly used when we want to obtain information about particular 

groups based on some kind of variable. As an example we might be interested in knowing 

how our income compares to other people in the same job situation and in the same location 

as our self. In this case the information is income and the variables are location and job 

situation. If we have a database with information about individual income and personal 

information, like work place and living location, we could aggregate the data and produce a 

mean value, or perhaps a max value, of the income of people in the same situation as our self.  

 

4.2 DATA AGGREGATION IN WIRELESS SENSOR NETWORKS 

Data aggregation is a fundamental part of energy saving in wireless sensor networks. As a 

result of energy resources being scarce and communication between nodes being the most 

power hungry operations, reducing the amount of communication is essential to prolong the 

network lifetime. Data aggregation helps to reduce the communication in cluster based 

network topologies by allowing only the cluster heads or appointed aggregator nodes to 

forward data to the receiver (i.e the base station or a sink). The data aggregator node receives 

sensor data results from sensor nodes and does some computations on the data to produce a 

collective view of the observed physical phenomenon. This computation could be simply 

finding a mean value of the observations in that nodes area. This aggregation result is then 

forwarded towards the destination as a single observation instead of having every single 

sensor node convey their result to the destination, and by doing so using considerably more 

energy resources.  
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Because of the energy saving potential in using in network data aggregation in wireless sensor 

networks, this has been a hot research topic and several aggregation schemes have been 

proposed [Considine et al. 2004] [Manjhi, et al. 2005] [Cormode, et al. 2005] [Madden, et al. 

2002] [Shrivastava, et al. 2004] [Skraba, et al. 2006] are just a few examples.  

 

4.3 SECURITY IN DATA AGGREGATION 

As we have previously discussed, in-network data aggregation in wireless sensor networks is 

an essential part in energy efficiency and helping prolong network lifetime. However, this is a 

potential security risk as it introduces a single point of failure. If the sensor node in charge of 

data aggregation is compromised, an attacker would be in complete control of sensor reading 

for all nodes which have that node as its aggregation point.  

By having a compromised aggregation node in the network, an attacker could have serious 

influence over the final aggregation result, which is received by the destination, depending on 

the size, topology and which node he has compromised. In the worst case scenario of a 

hierarchical aggregation topology, an attacker compromises the aggregation node closest to 

the destination and by doing so, he could induce a DoS attack by refusing to forward any data, 

or he could simply manipulate the aggregation result to his own choosing. In a flat 

aggregation topology with data aggregation only being performed at the cluster head, an 

attacker who compromises the cluster head would be in complete control of the sensor 

readings of that cluster.  

An attacker does not necessarily have to compromise the aggregation node to have an impact 

on aggregation result. Compromised sensor nodes could also have an impact on the 

aggregation result by submitting false readings to the aggregating node. If an attacker controls 

several nodes, he could have a severe impact on the aggregation result, depending on the size 

of the network. It is important to implement some sort of robust aggregation in order to 

minimize the impact of compromised nodes.  

It is important to protect the network from these types of vulnerabilities by designing security 

mechanisms to counter the threat of aggregation node compromise and compromised nodes 

interfering with aggregation results. As discussed previously in the intrusion detection 

chapter, intrusion detection systems could be used to detect compromised sensor nodes. 

Hence, intrusion detection schemes could be designed to defeat threats against the aggregation 
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process also. In the next section we present our proposal for an intrusion detection framework 

to defeat threats against data aggregation in a flat aggregation topology as well as protect the 

network against several of the other threats posed by compromised nodes.   

 

5. PROPOSED INTRUSION DETECTION ARCHITECTURE 

In this section we present our proposal for an algorithm that does anomaly based intrusion 

detection, and at the same time handles threats against data aggregation in a flat aggregation 

topology. 

 

5.1 BACKGROUND MATHEMATICS 

Before we go into the details of the algorithm we need to introduce some of the mathematics 

we use in the computations. In this section we shall become acquainted with Mahalanobis 

distances theory, the chi-squared distribution and the Orthogonalized Gnanadesikan-

Kettenring (OGK) robust estimators) [Maronna, et al 2006]. These mathematical operations 

and principals are at the heart of our algorithm and therefore it is important to understand the 

properties of them.  

5.1.1 MAHALANOBIS DISTANCES 

Our algorithm depends on multivariate data to calculate the normal behavior of the network. 

These multivariate data are represented by a collection of attribute vectors for each node in 

the neighborhood being watched. The attribute vectors represent the behavior of the nodes, 

with each attribute representing a part of that behavior. The attributes could be observed 

packet loss rate, forward delay time, packet sending rate, sensor readings, etc. All these 

attribute vectors are collected in a data set in the form of a matrix (Table 5.1), where the 

columns represent the individual attributes and the rows representing attribute vectors for 

each node. This data set is a representation of a multivariate data set. 
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   Packet sending rate Forward delay time Sensor readings 

Node 1         

Node 2         

Node 3         

Node 4         

Node 5         

Node 6         

Node 7         

Node 8         

Node 9         

 

The shape and size of this multivariate data set is quantified by the covariance matrix 

[Filzmoser]. The Mahalanobis distance is a well known distance measure that takes into 

account the covariance matrix, and the Mahalanobis squared distance (MD2) is an approach to 

multivariate outlier detection based on the means of the variables (attributes) and the 

covariance matrix for a sample data set with one or more variables (attributes) [Maronna, et al 

2006].  

The MD2 is a measure of how far a random vector, of variables or attributes, is from the 

middle (mean) of its distribution. The MD2 provides a reasonable summary distance of each 

item from the mean. For a q-dimensional multivariate sample ݔ௜ ൌ ሼݕଵ, ,ଶݕ … , ௤ሽ ሺ1ݕ ൑ ݅ ൑

݊ሻ the MD2 is defined as 

௜ଶܦܯ ൌ ൫ሺݔ௜ െ ௜ݔሻ்Σିଵሺߤ െ 1  ݎ݋݂  ሻ൯ߤ ൑ ݅ ൑ ݊       (1) 

Where ߤ ൌ ሼߤଵ, ,ଶߤ … ,  ௤ሽ, is the estimated multivariate location or means and Σ is theߤ

estimated covariance matrix.  

Tabel 5.1: Visual represenstation of data set vith attribute vectors 
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Figure 5.1: Mahalanobis distance ellipse with 2 independent variables  

(http://www.jennessent.com/arcview/mahalanobis_description.htm) 

Figure 5.1 depicts a visual representation of a Mahalanobis distances distribution for a two-

variable sample. We can observe how the samples are scattered in a cluster with the mean as 

the single two-dimensional point in the middle. In a three-variable distribution the samples 

will be scattered in a three-dimensional sphere, with the mean as the three-dimensional point 

in the middle of the distribution. What is important to notice is that the Mahalanobis distances 

distribution is not necessarily completely circular in shape, it may be more ellipsoid. This is 

influenced by the distribution of the individual variables and the covariance between them.   

 

5.1.2 CHI-SQUARED DISTRIBUTION 

The chi-squared distribution is a much used probability distribution in inferential statistics, 

where one wants to draw a conclusion about something on the basis of what one already 

knows. The chi-squared distribution has one variable: q – a positive integer that specifies the 

degree of freedom (number of variables).  

If ݂ሺݔ௜ሻ is distributed as ௤ܰሺߤ,  ௜ሻ follows a multivariateݔሻ, i.e., q-dimensional vector ݂ሺߑ

normal distribution with mean vector μ and variance-covariance matrix Σ, the Mahalanobis 

squared distance = ൫ሺݔ௜ െ ௜ݔሻ்Σିଵሺߤ െ  ሻ൯  is distributed as ߯௤ଶ, where the q is the number ofߤ
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variables in the multivariate data, in our case is the number of variables (attributes) in the 

observation data set [Liu et al. 2007] [Maronna, et al 2006].  

We use the chi-squared cumulative distribution function (CDF) in our algorithm depicted in 

figure 5.2 below. This function can be used to express the probability (α) of a multivariate 

sample (attribute vector) being less than or equal to a value ܺ௤ଶሺߙሻ, where ܺ௤ଶሺߙሻ is the value 

of the chi-squared distribution where it is expected that α percent of the distribution is 

situated. We use this value ܺ௤ଶሺߙሻ in the calculation of the threshold value Ѳ for the MD2, 

over which a node is suspected to be an outlier. 

 

Figure 5.2: Chi-squared cumulative distribution function (CDF) 

 

Using this approach, multivariate outliers can be defined as ݔ௜’s with significantly large 

Mahalanobis squared distances. However, this approach has some shortcomings. If the 

Mahalanobis distances are not estimated by some robust procedure, single outlying ݔ௜’s or 

groups of outlying ݔ௜’s can have a severe influence on the distance measure because the 

multivariate location ߤ and the covariance matrix Σ are usually estimated in a non-robust 

manner[Filzmoser]. As a result, real outliers may not be found. Hence, robust estimates for 

the multivariate location ߤ and the covariance matrix Σ, are needed.  
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5.1.3 ORTHOGONALIZED GNANADESIKAN-KETTENRING (OGK)ROBUST ESTIMATES 

”The insider attacker detection algorithm” by [Liu et al. 2007] propose the use of the 

orthogonalized Gnanadesikan–Kettenring estimate (OGK) [Maronna, et al 2006] in 

calculating the robust estimates of the sample means ߤ and the robust estimate of the samples 

covariance matrix Σ. Acording to [Maronna, et al 2006] and [Liu et al. 2007] the computation 

of the robust estimates of the sample means ߤ and covariance matrix Σ, is done in the 

following manner: 

First we have to define how to calculate the single-variate mean ̂ߤ and variance ߪොଶ.  

Let ܻ  ൌ   ሼݕଵ, ,ଶݕ . . . . ,  ௡ሽ be a single-variate sample set coming from a distribution with meanݕ

 = ଴ be the MAD of Y., where MAD(Y )ߪ ଴  be the median and andߤ ଶ. Letߪ and variance ߤ

median(|Y − median(Y )|). 

Define a weight function  

ܹሺݔሻ ൌ   ൬1 – ቀ ௫
௖భ
ቁ
ଶ
൰
ଶ
|ݔ|ሺܫ  ൑   ܿଵሻ (1) 

and a ρ-function  

ሻݔሺߩ  ൌ  ݉݅݊ሺݔଶ, ܿଶଶሻ,  (2) 

where ܿଵ = 4.5 and ܿଶ = 3. Then ̂ߪ ,ߤොଶ can be estimated by: 

ߤ̂  ൌ   ∑ ௬೔ௐሺ௩೔ሻ೙
೔సభ
∑ ௐሺ௩೔ሻ೙
೔సభ

௜ݒ ݎ݋݂   ൌ  
௬೔ ି ఓబ
ఙబ

  (3)  

ොଶߪ ൌ   ఙబ
௡
∑ ሺ ௬೔ ି ఓෝߩ

ఙబ
 ሻ௡

௜ୀଵ , (4)  

Now we describe the OGK estimates ̂ߤ and ߑ෠ based on the multivariate data set ܨሺݔሻ  ൌ

 ሼ݂ሺݔ௜ሻ  ൌ   ሺ ଵ݂ሺݔ௜ሻ, ଶ݂ሺݔ௜ሻ, . . . , ௤݂ሺݔ௜ሻሻ் |ݔ௜   א  ܰሺݔሻሽ. Let ̂ߤ (·) and ߪොଶ(·) denote the univariate 

statistics, as described in Eq. (3) and (4). The OGK estimates can be computed in the 

following manner:  

1) Compute ܩሺݔሻ  ൌ   ሼ݃ሺݔ௜ሻ|ݔ௜   א  ܰ ሺݔሻሽ from  ܨሺݔሻ, where ݃ሺݔ௜ሻ  ൌ  ܲିଵ݂ሺݔ௜ሻ for 

ܲ  ൌ  ݀݅ܽ݃ሺߪොሺ ܨଵ෩ ሺݔሻሻ, ,ሻሻݔଶ෪ሺܨ ොሺߪ . . . ,   ሻ is the j-th component set ofݔ௝ሺܨ  ሻሻሻ. Hereݔଶ෪ሺܨ ොሺߪ

ሻݔ௝ሺܨ  ሻ, withݔሺܨ   ൌ   ሼ ௝݂ሺݔ௜ሻ|ݔ௜   א   ෩ܰሺݔሻሽ, 1  ൑  ݆  ൑   .ݍ 
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2) Calculate a q × q matrix R, with ௝ܴ,௞ , the element at the jth-row and k-th column defined 

as ௝ܴ,௞  ൌ ቊൣߪො
ଶ൫ܩ௝  ൅ ܩ௞൯ െ ߪොଶ൫ܩ௝ െ ܩ௞൯൧  ݂݅ ݆  ്  ݇

1                                                           ݂݅ ݆  ൌ  ݇
      

3) Apply the spectral decomposition to obtain R = QΛQT , where Q is the q×q matrix whose 

columns are the eigenvectors of R, and Λ is the diagonal matrix composed of R’s eigenvalues.  

4) Compute ܪሺݔሻ  ൌ   ሼ݄ሺݔ௜ሻ|ݔ௜ א  ܰሺݔሻሽ from ܩሺݔሻ, where ݄ሺݔ௜ሻ  ൌ  ்ܳ݃ሺݔ௜ሻ. Then 

calculate ߂  ൌ   ሺ̂ߤሺܪଵሺݔሻሻ, ,ሻሻݔଶሺܪሺߤ̂ . . . ,  ሻሻሻ், andݔ௤ሺܪሺߤ̂

 ߁ ൌ  ݀݅ܽ݃ሺߪොଶሺܪଵሺݔሻሻ, ,ሻሻݔଶሺܪොଶሺߪ . . . ,  ሻ denotes the j-th componentݔ௝ሺܪ ሻሻሻ. Hereݔ௤ሺܪොଶሺߪ

set of ܪሺݔሻ.  

5) Let ܸ  ൌ  ܲ ܳ. The robust estimates of multivariate location and dispersion are ̂ߤ  ൌ  ߂ ܸ 

and ߑ෠  ൌ   .respectively , ܶ ܸ߁ ܸ 

The use of OGK in calculating the robust estimations of ߤ and Σ will make them less 

influenced by outliers and more close to the true values of ߤ and Σ, hence real outliers will 

have a higher probability of being spotted. The OGK computes the multivariate dispersion 

estimates based on pair wise robust correlation or covariance estimation, which reduces the 

computational complexity in the data dimension q from exponential (2௤) to quadratic (ݍଶ) 

[Alqallaf, et al. 2002]. 

 

5.1.4 COMPUTING THE THRESHOLD Ѳ଴ 

Previously we discussed that ܦܯ௜ଶ ൌ ቀሺݔ௜ െ ௜ݔሻ்Σିଵሺߤ െ -ሻቁ  is distributed as the chiߤ

squared distribution with q- degrees of freedom [Liu et al. 2007] [Filzmoser]. Hence, a simple 

solution for calculating the threshold Ѳ଴ could simply be to use ܺ௤ଶሺߙሻ as the threshold, where 

ߙ is in the upper 90’th percentile of the chi-squared distribution. We could choose ߙ ൌ 0,975 

i.e 97.5% of the Mahalanobis squared distances is expected to be equal to or lesser then the 

chi-squared distributions value at 97.5% This is a fixed value and can therefore produce false 

positives when the multivariate dataset has not so normal distributed variables (attributes), 

which could be the circumstances in real life sensor networks. Therefore we propose the use 

of a mor dynamic threshold based on the weight function in the reweighting step of [Maronna 
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& Zamar 2002]. Where they define the threshold for the Mahalanobis distances in the 

reweighting step in the following manner: 

݀଴ ൌ
ܺ௤ଶሺߙሻ כ ݉݁݀݅ܽ݊ሺܦܯଵଶ,ܦܯଶଶ, … ௡ଶሻܦܯ,

ܺ௤ଶሺ0.5ሻ
, 

Where n is the number of nodes in the multivariate sample data set. In our detection algorithm 

we use ݀଴ as the threshold Ѳ଴ for detection. If a node has a Mahalanobis squared distance 

larger than ݀଴, it is considered to be an insider attacker. We expect that this threshold will 

produce fewer false positives than the fixed threshold, as a result of its dependency of the 

calculated Mahalanobis squared distances distribution. 

   

5.2  MODIFICATIONS  

Our algorithm is based on the proposal of F.Liu, X.Cheng and D.Chen [Liu et al. 2007], but 

with some small modifications. While [Liu et al. 2007] operates with two neighborhoods, our 

algorithm operates with three. The third neighborhood is a result of the data aggregation 

scheme, as it introduces the cluster as a separate neighborhood  ଵܰ
 This is needed because of .כ

the assumption we make that the subject of the sensor measurements is locked to the region of 

the cluster, and may differ from the subject of the sensor measurements of the other nodes in 

the two other neighborhoods ଵܰ and ଶܰ. Hence the sensor measurements will only be 

evaluated by the intrusion detection algorithm inside the cluster.  

The next modification we introduce is a different calculation of the threshold for decision 

making regarding whether a node is to be regarded as an outlier node or not. We propose a 

dynamically computed threshold which depends on the actual distribution of the Mahalanobis 

squared distances (5.1.4). We introduce this modification because we assume that it will 

reduce the number of falsely accused nodes in the network, when no outliers are present.  

The third modification we propose is the use of two different values for ߙ  in the calculation 

of the thresholds with the use of  ܺ௤ଶሺߙሻ. We propose to increase the value of ߙ when the 

threshold for the cluster neighborhood is to be calculated. We find this necessary as a result of 

the assumption that the clusters will be very sparse networks with few nodes and, as we will 
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observe in the simulation results, the false detection probability tends to increase as the 

neighborhood becomes increasingly sparse. This is a result of the algorithm having less 

information to calculate the robust statistics of the Mahalanobis squared distances.  

The fourth and final modification I introduce, is the use of MAD as the sample standard 

deviation in the “False information filtering” protocol (5.3.3). The reason I introduce this 

modification is that the MAD calculations is less effected by the presence of outliers, as it 

relies on the median instead of the mean. Hence, it should be more effective in detecting real 

outliers. 

 

5.3 MY PROPOSED SCHEME FOR INTRUSION DETECTION 

In this section we introduce the proposal for an intrusion detection algorithm.  

5.3.1 INTRODUCTION 

This algorithm uses the anomaly detection technique in detection of intrusion. The proposed 

intrusion detection algorithm collects attribute vectors for each node in its neighborhood and 

comprises a data set consisting of all attribute vectors.  

 

5.3.2 ASSUMPTIONS 

We consider a cluster based sensor network with N sensors uniformly distributed in clusters 

within the network area. We assume that the data aggregation is only done by the clusterhead 

of each cluster, and there is only one level of clusters (i.e flat aggregation topology). 

 All sensors have the same capabilities, and communicate through bidirectional links. We 

assume sensors in the clusters are burdened with similar workloads and sensor readings. We 

assume sensors in the close proximity of each other, also in different clusters, behave 

similarly under normal conditions.  

An insider attacker is a sensor under the control of an adversary. It has the same network 

resource as a normal sensor, but its behavior is different compared to others. For example, an 

insider attacker may drop or broadcast excessive packets, report false readings that deviate 

significantly from other readings of neighboring sensors, etc.  
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We assume each sensor works in promiscuous mode intermittently and listens for activities of 

direct neighbors. Which means, sensor ݔ can overhear the message to and from the immediate 

neighbor ݔ௜ no matter whether or not ݔ is involved in the communication. The monitoring is 

conducted intermittently, and ݔ௜’s networking behavior is modeled by a q-component attribute 

vector ݂ሺݔ௜ሻ  ൌ   ሺ ଵ݂ሺݔ௜ሻ, ଶ݂ሺݔ௜ሻ, . . . , ௤݂ሺݔ௜ሻሻ் with each component describing ݔ௜’s activity in 

one aspect. For each fixed ݆ ሺ1  ൑  ݆  ൑  ௜ሻ represents the actualݔሻ, the component ௝݂ሺݍ 

monitoring result, such as the number of packets being dropped or broadcasted during one 

monitoring period. Therefore, ௝݂ሺݔ௜ሻ can be continuous or discrete.  

We assume that the base station has a complete overview of the entire network and controls 

the initial clustering and cluster head elections. We also assume that the base station controls 

the adding of new sensor nodes to the network.  

We assume that there exists a clustering protocol that can handle the reelection of cluster 

heads based on remaining energy levels, and that this protocol can handle cluster head 

removal in case of faulty or compromised cluster heads detected by the intrusion detection 

system. 

We assume that in any local area of the sensor field, all ݂ሺݔ௜ሻ, where ݔ௜’s are normal sensors, 

follow the same multivariate normal distribution.  After an internal adversary is detected, the 

cluster head of that node should remove it from the cluster and send a report to the base 

station. In addition, we assume there exists a MAC layer protocol to coordinate neighboring 

broadcastings such that no collision occurs.  

 

5.3.3 OPERATIONS 

In this section we describe the operations of the proposed intrusion detection system 

Clustering method 

Due to the assumption that the base station has a complete overview over the network, prior to 

deployment, we propose that the base station coordinates the clustering operation, and elects 

the cluster head of each cluster after the sensor nodes are deployed in the working 

environment. For the remaining network lifetime the election of new cluster heads are 

performed within the individual cluster based on remaining reported energy level of nodes. 

New cluster heads are elected at a timely manner, when the current cluster head fails or if the 
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current cluster head is found to be an insider attacker by the IDS. New nodes are not allowed 

into the clusters unless the base station explicitly organizes the introduction of the new node.  

Intrusion detection 

Our algorithm consists of four main phases with some sub-phases to each main phase. The 

phases are: 

 Information collection phase 

o Information collection for ଵܰ and ଶܰ 

o Information collection phase for cluster (sensor data) 

 Information filtering phase 

o Information filtering phase for ଶܰ 

 Outlier detection phase 

o Outlier detection phase for ଵܰ  and ଶܰ 

o Outlier detection phase for cluster 

o Data aggregation for sensor data in cluster 

 Voting phase 

o Voting phase for ଵܰ and ଶܰ 

o Voting phase for cluster 

 
Information collection phase 

Information collection in ࡺ૚  and ࡺ૛ 

Let ଵܰሺݔሻ denote a bounded closed set of ܴଶ that can be directly monitored by sensor ݔ. 

Specifically, ଵܰሺݔሻ is ݔ’s one-hop neighborhood. 

Let ܰሺݔሻሺل   ଵܰሺݔሻ denote another closed set of ܴଶ  that contains the sensor ݔ and additional 

݊  െ  1 nearest sensors. The set ଶܰሺݔሻ represents another neighborhood of ݔ, whose selection 

is determined by the node density in the network. For a dense network, we can simply choose 

ଶܰሺݔሻ  ൌ   ଵܰሺݔሻ, while for a sparse network, ଶܰሺݔሻ may include ݔ’s two-hop neighbors, 

sensor ݔ monitor the activities of sensors in ଵܰሺݔሻ and express the results using ݍ-component 

attribute vectors. Then, the observed results are broadcasted within the neighborhood ଶܰሺݔሻ, 

so that sensor ݔ obtains a set ܨଵሺݔሻof attribute vectors, where ܨଵሺݔሻ  ൌ   ሼ݂ሺݔ௜ሻ  ൌ

 ሺ ଵ݂ሺݔ௜ሻ, ଶ݂ሺݔ௜ሻ, . . . , ௤݂ሺݔ௜ሻሻ் |ݔ௜   א   ଶܰሺݔሻሽ.  
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During this phase sensor ݔ will have acquired a dataset which should represent the true 

activities of the neighborhood ଶܰሺݔሻ.  

 

Information collection within the cluster 

Let ଵܰ
 .ݔ ሻ denote a bounded closed set of ܴଶ that can be directly monitored by sensorݔሺכ

Specifically, ଵܰ
 .s cluster’ݔ ሻ isݔሺכ

Sensor ݔ monitors the activities of sensors in ଵܰ
ݍ ሻ and express the results usingݔሺכ െ 1 -

component attribute vectors. Then, the observed results are broadcasted within the 

neighborhood ଵܰ
 ሻ ofݔଶሺܨ obtains a set ݔ s sensor reading, so that sensor’ݔ ሻ together withݔሺכ

attribute vectors, where ܨଶሺݔሻ  ൌ   ሼ݂ሺݔ௜ሻ  ൌ   ሺ ଵ݂ሺݔ௜ሻ, ଶ݂ሺݔ௜ሻ, . . . , ௤݂ିଵሺݔ௜ሻ, ௤݂ሺݔ௜ሻሻ் |ݔ௜   א

  ଵܰ
 ௜ݔ ௜ሻ is the sensor readings ofݔሻሽ, where ௤݂ሺݔሺכ

During this phase sensor ݔ will have acquired a dataset which should represent the true 

activities of the neighborhood ଵܰ
 .ሻݔሺכ

 

Information filtering phase 

After the information collection phase for ଵܰሺݔሻ  and ଶܰሺݔሻ, sensor ݔ will have acquired a 

dataset ܨଵሺݔሻ which should represent the true activities of the neighborhood ଶܰሺݔሻ. However 

there may exist insider attackers within the neighborhood ଵܰሺݔሻ which could have modified 

and forwarded a monitoring result of one or more nodes in the neighborhood ଶܰሺݔሻ െ ଵܰሺݔሻ. 

Hence, node ݔ should filter the results as much as possible in order to produce accurate 

detections of outliers according to the modified “trust-based information filtering protocol” 

proposed by[Liu et al. 2007].  

Based on the direct neighborhood monitoring, sensor ݔ assigns a trust value to each 1-hop 

neighbor ݔ௜ א   ଵܰሺݔሻ. The trust value ܶሺݔ௜ሻ is in the range {0,1}, where values closer to 1 

indicates a higher trust in that the neighbor ݔ௜ is a normal sensor.  

The consideration is that the sensors in close proximity should behave similarly. This 

indicates that ܶሺݔ௜ሻ can be computed according to the degree of ݔ௜’s deviation from the 

neighborhood activities.  
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The modified trust-based information filtering protocol is described in detail next. 

Let ܨଵሺݔሻ denote the attribute vectors of  ଵܰሺݔሻ, i.e. 

ሻݔଵሺܨ  ൌ   ሼ݂ሺݔ௜ሻ  ൌ   ሺ ଵ݂ሺݔ௜ሻ, ଶ݂ሺݔ௜ሻ, . . . , ௤݂ሺݔ௜ሻሻ் |ݔ௜   א   ଶܰሺݔሻሽ 

Let ̂ߤ௝, ߪො௝ denote the sample mean and sample standard deviation of  ܨଵሺݔሻ’s j-th component 

set ܨଵ,௝ሺݔሻ ൌ ሼ ௝݂ሺݔ௜ሻ|ݔ௜ א ଵܰሺݔሻሽ, respectively, i.e., 

jߤ̂ ൌ
1
݊ଵ
 ෍ ௝݂ሺݔ௜ሻ,
௡భ

௜ୀଵ

  

ሺܦܣܯ = ොjߪ ௝݂ሺݔ௜ሻሻ 

where ݊ଵ is the number of nodes in ଵܰሺݔሻ, and MAD(Y ) = median(|Y − median(Y )|) is our 

proposal for the calculation of the sample standard deviation. In [Liu et al. 2007] the sample 

standard deviation is calculated in the following manner:  

ොj = ඩߪ
1

݊ଵ െ 1෍ ൫ ௝݂ሺݔ௜ሻ െ j൯ߤ̂
ଶ

௡భ

௜ୀଵ

, 

 

Sensor ݔ first standardizes each data set ܨଵ,௝ሺݔሻ ሺ1 ൑ ݆ ൑  ሻ and computes the absoluteݍ

values to obtain 

ሻݔଵ,௝ሺܨ ൌ ሼ ௝݂ሺݔ௜ሻ|ݔ௜ א ଵܰሺݔሻሽ,  

Where 

݂′௝ሺݔ௜ሻ ൌ ቤ ௝݂
ሺݔ௜ሻ െ jߤ̂

 ොjߪ
ቤ. 

For each ݔ௜ א ଵܰሺݔሻ, sensor ݔ computes the maximum attribute component ݂’ெሺݔ௜ሻ  ൌ

 ௜ሻ|1ݔሼ݂’௝ሺݔܽ݉  ൑  ݆  ൑  ௜’s deviation from theݔ ሽ, which indicates the “extremeness” ofݍ 

neighborhood activities. Then, the trust value is computed as 

ܶሺݔ௜ሻ ൌ
ெ݂
௠

݂ ′ெሺݔ௜ሻ
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Where 

ெ݂
௠ ൌ min൛݂ ′ெሺݔ௜ሻหݔ௜ א   ଵܰሺݔሻൟ. 

A node ݔ௝்ሺ1  ൑  T  ൑  tሻ is said to be the reliable relay node for ݔ௝ if 

ܶ൫ݔ௝்൯ ൌ max൛ܶ൫ݔ௝௦൯ห1 ൑ ݏ ൑  ൟݐ

ܶ൫ݔ௝்൯ ൒ ௠ܶ௜௡ 

Where 

௠ܶ௜௡ ൌ ெ݂
௠/7 

௠ܶ௜௡ is the minimum acceptable trust value.  

The decision of defining ௠ܶ௜௡ ൌ ெ݂
௠/7, is based on conducted simulations and should be 

regarded as such. However, as the simulation results later in the thesis will show, ௠ܶ௜௡ ൌ

ெ݂
௠/7 appears to be a good threshold for minimum acceptable trust value. 

Sensor ݔ will dismiss the information about ݔ௝    א   ଶܰሺݔሻ  െ  ଵܰሺݔሻ if no reliable relay node 

for ݔ௝  can be found in ଵܰሺݔሻ . Thus after filtering ܨଵሺݔሻ, sensor ݔ will only consider 

information carried by sensors from the set ෩ܰଶሺݔሻ, where ෩ܰଶሺݔሻ א   ଶܰሺݔሻ. ෩ܰଶሺݔሻ contains ݔ’s 

direct neighbors in ଵܰሺݔሻ and ݔ’s neighbors in ଶܰሺݔሻ  െ  ଵܰሺݔሻ  that have a trustworthy relay 

node in ଵܰሺݔሻ. The new data set to be assessed by sensor ݔ is ܨ෨ଵሺݔሻ  ൌ   ሼ݂ሺݔ௜ሻ  ൌ

 ሺ ଵ݂ሺݔ௜ሻ, ଶ݂ሺݔ௜ሻ, . . . , ௤݂ሺݔ௜ሻሻ் |ݔ௜   א   ෩ܰଶሺݔሻ ሽ 

 

Insider attacker detection phase for ࡺ෩૛ሺ࢞ሻ 

Sensor x detects if any insider attackers exist by studying the data set ܨ෨ଵሺݔሻ. The detection is 

conducted by computing the Mahalanobis squared distance of each nodes attribute vector and 

comparing it to the threshold Ѳ଴ calculated with the chi-squared value ܺ௤ଶሺߙሻ (5.1.4). Sensor 

 ௜ is determined to be an insider attacker if the distance is larger than the threshold θ0. Theݔ

detection phase is conducted in the following manner: 
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1. Compute the Orthogonalized Gnanadesikan-Kettenring (OGK) robust estimates of the 

sample set ܨ෨ଵሺݔሻ means ߤ and covariance matrix Σ as described in 5.1.3 

2. Compute the Mahalanobis squared distances of each ݂ሺݔ௜ሻ|ݔ௜   א   ෩ܰଶሺݔሻ 

3. Compute the threshold θ0 as described in 5.1.4. 

4. Compare the calculated Mahalanobis squared distances to the threshold θ0. 

5. Mark the nodes with Mahalanobis squared distances larger than the threshold θ0 as 

insider attackers. Mark the nodes with Mahalanobis squared distances lesser than the 

threshold θ0 as normal nodes.  

6. Broadcast the result from previous the step within the neighborhood ܰᇱሺݔሻ, where 
෩ܰଶሺݔሻ ك ܰᇱሺݔሻ. Choosing a larger neighborhood ܰᇱሺݔሻ ensures that more nodes 

participate in the voting. At the same time node ݔ will receive the results from others 

and registers the votes about its neighbors in ଵܰ
 .ሻݔሺכ

7. After ݔ receives the broadcasted results, it count the number of positive detections for 

each node in ଵܰ
௜ݔ ሻ.If the proportion of positive detections for a nodeݔሺכ א    ଵܰ

 ,ሻݔሺכ

Then that node is decided to be an insider attacker.  

a. If ݔ Is the cluster head, it removes the confirmed insider attacker from the 

cluster and notifies the base station.  

b. If ݔ is a regular cluster node, it waits to see if the cluster head removes the 

confirmed attacker from the cluster.  

c. If the cluster head does nothing, ݔ broadcasts an alarm message within the 

cluster specifying the confirmed insider attacker. If ݔ receives alarm messages 

from other nodes in the cluster, it counts the number of received alarm 

messages.  

i. If the majority of the cluster has confirmed the specified node as an 

insider attacker, the cluster head is deemed as an insider attacker and 

removed by the cluster nodes. A new node is elected as cluster head 

and removes the confirmed insider attacker.  

ii. If the majority of the cluster has not confirmed the specified node as an 

insider attacker, ݔ regards the detection as an error. 

d. If the cluster head tries to remove a node which is not detected by the other 

nodes in the cluster as an insider attacker, the other nodes will collude in 

removing the cluster head in the same manner as c. 
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Insider attacker detection phase for the cluster ࡺ૚
 ሺ࢞ሻכ

Sensor x detects if any outliers exist by studying the data set ܨଵכሺݔሻ. The detection is 

conducted by computing the Mahalanobis squared distance of each nodes attribute vector and 

comparing it to the threshold θ0 calculated with the chi-squared value ܺ௤ଶሺߙሻ. Sensor ݔ௜ is 

determined to be an insider attacker if the distance is larger than the threshold θ0. The 

detection phase is conducted in the following manner: 

1. Compute the Orthogonalized Gnanadesikan-Kettenring (OGK) robust estimates of the 

sample set ܨଵכሺݔሻ means ߤ and covariance matrix Σ as described in 5.1.3 

2. Compute the Mahalanobis squared distances of each ݂ሺݔ௜ሻ|ݔ௜   א   ଵܰ
 .ሻݔሺכ

3. Compute the threshold θ0 as described in 5.1.4. 

4. Compare the calculated Mahalanobis squared distances to the threshold θ0. 

5. Mark the nodes with Mahalanobis squared distances larger than the threshold θ0 as 

insider attackers. Mark the nodes with Mahalanobis squared distances lesser than the 

threshold θ0 as normal nodes.  

6. Broadcast the result from previous the step within the neighborhood  ଵܰ
 ሻ. At theݔሺכ

same time node ݔ will receive the results from the other nodes in ଵܰ
 .ሻݔሺכ

7. After ݔ receives the broadcasted results, it count the number of positive detections for 

each node in ଵܰ
௜ݔ ሻ.If the proportion of positive detections for a nodeݔሺכ א    ଵܰ

 ,ሻݔሺכ

Then that node is decided to be an insider attacker.  

a. If ݔ Is the cluster head, it removes the confirmed insider attacker from the 

cluster and notifies the base station.  

b. If ݔ is a regular cluster node, it waits to see if the cluster head removes the 

confirmed attacker from the cluster.  

c. If the cluster head does nothing, ݔ broadcasts an alarm message within the 

cluster specifying the cluster head as an insider attacker.  

i. If the majority of the nodes in the cluster broadcast an alarm, the cluster 

head is deemed as an insider attacker and removed by the cluster nodes. 

A new node is elected as cluster head and removes the confirmed 

insider attacker. 

ii. If the majority of the nodes in the cluster broadcast an alarm, ݔ regards 

the detection as an error. 
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d. If the cluster head tries to remove a node which is not detected by the other 

nodes in the cluster as an insider attacker, the other nodes will collude in 

removing the cluster head in the same manner as c. 

 

Data aggregation phase for the cluster ࡺ૚
 ሺ࢞ሻכ

During the insider detection phase for the cluster ଵܰ
 ሻ, each node computes theݔሺכ

Orthogonalized Gnanadesikan-Kettenring (OGK) robust estimates of the sample set ܨଵכሺݔሻ 

means ߤ and covariance matrix Σ as described in 5.1.3. We propose the use of the robustly 

calculated mean of the sensor readings as the aggregation result. However, if an insider 

attacker has been identified, the sensor readings of that node should be dismissed and the 

robust estimate should be calculated from the resulting sample set ܨ෨ଵכሺݔሻ. The data 

aggregation phase is conducted in the following manner: 

1. If no insider attacker has been identified, the cluster head uses the robustly calculated 

mean value of the sensor readings. 

2. If an insider attacker has been identified, remove this nodes attribute vector from the 

sample data set ܨଵכሺݔሻ and compute the new robust estimate for the sensor readings 

from the resulting sample set ܨ෨ଵכሺݔሻ. The resulting robustly calculated mean is used as 

the aggregation result.  

However, if the cluster head has been compromised, the other nodes in the cluster should 

monitor the aggregation result of the cluster head for discrepancies.  

As a result of the intrusion detection phase, all nodes in the cluster has the exact same sample 

set ܨଵכሺݔሻ. Hence, they have calculated the exact same robust mean values for the sensor 

readings. Thus, if the aggregation result from the cluster head differs from the robust means 

calculated by each of the other nodes, it will be discovered, and the other nodes in the cluster 

regards the cluster head as an insider attacker and removes conducts a mutiny. This way the 

network is protected from compromised cluster heads trying to alter the aggregation results. 
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6. SIMULATION STUDY 

Simulations are preformed in Wolfram Mathematica version 6.0.0. Needed package loaded: 

“MultivariateStatistics`”. 

System: Windows Vista Ultimate SP1 

Graphs and tables are constructed in Microsoft Excel, Microsoft office 2007.  

 

SCENARIOS 

During this section we denote insider attackers as outliers or outlying nodes. In order to 

observe how our modifications perform, we compare the results with the results of the 

original algorithm proposed by [Liu et al. 2007]. In our simulation results we denote our 

proposal for the dynamic threshold by ߠԢ, and the original proposal for the fixed chi-squared 

threshold by ߠ. 

We will simulate various scenarios in which insider attackers are present, and evaluated the 

theoretical performance of the algorithm.  

We have limited the simulations to evaluate the performance of the algorithm on one 

node ݔ௜ א ܰሺݔሻ, with a neighborhood  ଵܰ
 ,ሻ, consisting of the 1-hop neighbors in the clusterݔሺכ

a neighborhood ଵܰሺݔሻ consisting of all 1-hop neighbors (including the neighbors in the 

cluster), and a neighborhood ଶܰሺݔሻ consisting of all 1 and 2-hop neighbors, where ଵܰ
ሻݔሺכ א

ଵܰሺݔሻ א ଶܰሺݔሻ א ܰሺݔሻ.  

We will evaluate the algorithm in sparse networks with a cluster neighborhood ଵܰ
 ሻݔሺכ

consisting of 5 nodes, and the 1-hop neighborhood ଵܰሺݔሻ, consisting of 10 nodes, while the 

neighborhood ଶܰሺݔሻ consists of 20 nodes.  

The behavior of each node is modeled by a vector containing q=3 attributes. As stated in 

section 5.3, the IDS only examine the sensor readings as an attribute within the cluster. Hence 

we only evaluate the sensor readings in the simulation scenario for ଵܰ
  .ሻݔሺכ
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We evaluate the IDS in six scenarios.  

 In the first scenario we evaluate how our algorithm performs in the neighborhood 

ଶܰሺݔሻ, containing 20 nodes, while the percentage of outliers varies from 0 to 50%. We 

also evaluate how our proposal for the dynamic threshold Ѳ’ performs as opposed to 

the fixed chi-squared threshold Ѳ proposed by [Liu et al. 2007], by comparing false 

alarm probability as well as the detection accuracy for both thresholds Ѳ’ and Ѳ in 

ଶܰሺݔሻ 

 

 In the second scenario we evaluate how our algorithm performs in the neighborhood 

ଵܰሺݔሻ containing 10 nodes, while the percentage of outliers varies from 0 to 50%. We 

also evaluate how our proposal for the dynamic threshold Ѳ’ performs as opposed to 

the fixed chi-squared threshold Ѳ proposed by [Liu et al. 2007], by comparing false 

alarm probability as well as the detection accuracy for both thresholds Ѳ’ and Ѳ in 

ଵܰሺݔሻ. 

 

 In the third scenario we evaluate how our algorithm performs in the neighborhood 

ଵܰ
 ሻ consisting of only 5 nodes, while the number of outliers varies from 0 to 40%ݔሺכ

(0-2 nodes). We also observe how our proposal for the dynamic threshold Ѳ’ performs 

as opposed to the fixed chi-squared threshold Ѳ proposed by [Liu et al. 2007], in 

ଵܰ
 .ሻݔሺכ

 

 In the fourth scenario We evaluate the accuracy of the robust estimator µ’for the 

sensed data, which will be used as the data aggregation result, by comparing it to the 

true mean value of the sensed data from normal nodes only. We will also evaluate the 

degree of which an outlier can contaminate the aggregation result before the 

probability of getting caught is over 50%. This is the worst case scenario. 

 

 In the fifth scenario we evaluate the detection accuracy and false alarm probability in 

ଵܰ
 ሻ when the accuracy of the sensors increases and the standard deviation of theݔሺכ

sensor data distribution decreases to 1, 0.1 and 0.01 percent of the true mean value. 

We will evaluate the degree of which an outlier can be deviating from the true mean 

value of the attributes, before it is deemed an outlier by the detection algorithm. 
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 In the sixth scenario we will evaluate the modified false information filtering protocol 

and evaluate how our proposal of using the MAD as the sample standard deviation σ 

compares with the original proposal of [Liu et al. 2007].  

In all scenarios the outliers can be outlying in one single attribute, or all three attributes, we 

also assume that the data set ܨଵሺݔ௜ሻ of attribute-vectors have already been filtered according 

to the modified “thrust-based information filtering protocol” described in 5.3.3.  

All results are averaged over 10 runs consisting of 1000 iterations with randomly generated 

multivariate attribute values for every iteration.  

The values of the attributes of the nodes are generated with the built in RandomReal 

[MultinormalDistribution [{ߤଵ, ߤଶ, ߤଷ},Σ,”number of vectors”]] function in Mathematica (Apendix 

A) where the values are drawn from  ଷܰሺߤ௜, ௜ߤ ሻ, whereߑ ൌ ሺߤଵ, ,ଶߤ -ଷሻ, and the varianceߤ

covariance matrix Σ is defined using the standard deviations ߪ௜ ൌ ሺߪଵ, ,ଶߪ  ଷሻ and theߪ

correlation coefficient matrix ߩ ൌ
1 0 0
0 1 0
0 0 1

, which indicate no correlation between the 

attributes.  

The variance-covariance matrix ߑ ൌ ሺߑ௜௝ሻcan be determined by ߑ௜௝ ൌ   .௝ߪ௜ߪ௜௝ߩ

We will specify the values for µ௜ and ߪ௜in each scenario. 

 

DETERMINING THE CHI-SQUARED PERCENTILE  

The thresholds Ѳ and Ѳ’ are calculated with ܺଷଶሺ0,975ሻ for ଵܰሺݔሻ and ଶܰሺݔሻ and ܺଷଶሺ0,9999ሻ 

for ଵܰ
ሻ. The reason for increasing the detection threshold in ଵܰݔሺכ

 ሻ is the tendency of theݔሺכ

outlier detection algorithm to increase in false alarm probability in sparse networks and no 

outlying nodes are present. This is a result of the data set ܨଶሺݔ௜ሻbecoming small, and less 

information is used in calculating the robust statistics. Figures 6.1 and 6.2 below illustrate this 

tendency.  

However we can observe that the detection accuracy does not suffers so much from this 

increase in the threshold, because the robust statistics employed in the calculation of the 

Mahalanobis distances will still punish outliers by assigning them with significantly larger 

distances in comparison to the normal nodes.   
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          Figure 6.1: False alarm accuracy tendency ܺଷଶሺ0,975ሻ  Figure 6.2: False alarm accuracy tendency ܺଷଶሺ0,9999ሻ 

Ѳ’ denotes our proposal for the dynamic threshold, while Ѳ denotes the original proposal for 

the static threshold [Liu et al. 2007] 

Figure 6.1 illustrates the false alarm probability when the number of nodes varies from 5 to 20 

with 0 % outliers, and the threshold is calculated with ܺଷଶሺ0,975ሻ. 

Figure 6.2 illustrates the false alarm probability when the number of nodes varies from 5 to 20 

with 0 % outliers, and the threshold is calculated with ܺଷଶሺ0,999ሻ. 

Observe that the false alarm accuracy is brought back to an acceptable level with a larger chi-

squared percentile, and that the proposed dynamic threshold Ѳ’ has a lower false alarm 

probability than the fixed threshold Ѳ.  

 

FIRST SCENARIOTO  

In this scenario there are 20 nodes in the neighborhood ଶܰሺݔሻ of which the percentage of 

outliers varies from 0 to 50%. We evaluate how our proposal for the dynamic threshold Ѳ’ 

performs as opposed to the fixed chi-squared threshold Ѳ by comparing false alarm 

probability as well as the detection accuracy for both thresholds.  

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10,50,100ሻ and ߪ௜ ൌ

ሺ1,5,10ሻ.  

 For outliers in one attribute, the attribute values are generated with ߤ௜ ൌ ሺ10,50,200ሻ 

and ߪ௜ ൌ ሺ1,5,20ሻ,  
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 For outliers with three outlying attributes, the attribute values are generated with 

௜ߤ ൌ ሺ20,100,200ሻ and ߪ௜ ൌ ሺ1,5,20ሻ. 

Figure 6.3: False alarm probability n = 20    Figure 6.4: Detection accuracy n = 20 

Ѳ’ denotes our proposal for the dynamic threshold, while Ѳ denotes the original proposal for 

the static threshold [Liu et al. 2007] 

Figure 6.3 illustrates the false alarm probability when the percentage of outliers varies from 0 
to 40% with 20 nodes. 

Figure 6.4 illustrates the detection accuracy when the percentage of outliers varies from 0 to 
40% with 20 nodes. 

 

 SECOND SCENARIO 

In this scenario there are 10 nodes in the neighborhood ଵܰሺݔሻ of which the percentage of 

outliers varies from 0 to 40%. As in the first scenario we observe how our proposal for the 

dynamic threshold Ѳ’ performs as opposed to the fixed chi-squared threshold Ѳ by comparing 

the false alarm probability as well as the detection accuracy for both thresholds.  

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10,50,100ሻ and ߪ௜ ൌ

ሺ1,5,10ሻ.  

 For outliers in one attribute, the attribute values are generated with ߤ௜ ൌ ሺ10,50,200ሻ 

and ߪ௜ ൌ ሺ1,5,20ሻ,  

 For outliers with three outlying attributes, the attribute values are generated with 

௜ߤ ൌ ሺ20,100,200ሻ and ߪ௜ ൌ ሺ1,5,20ሻ. 
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Figure 6.5: False alarm probability n = 10    Figure 6.6: Detection accuracy n = 10 

Ѳ’ denotes our proposal for the dynamic threshold, while Ѳ denotes the original proposal for 

the static threshold [Liu et al. 2007] 

Figure 6.5 illustrates the false alarm probability when the percentage of outliers varies from 0 
to 40% with 10 nodes. 

Figure 6.6 illustrates the detection accuracy when the percentage of outliers varies from 0 to 
40% with 10 nodes. 

 

THIRD SCENARIO 
In this scenario there are 5 nodes in the neighborhood ଵܰ

 ሻ, and the percentage of outliersݔሺכ

vary from 0 to 40% (0 to 2 nodes). As in the two previous scenarios, we also here evaluate 

how our proposal for the dynamic threshold Ѳ’ performs as opposed to the fixed chi-squared 

threshold Ѳ by comparing the number of false positives with the use of both values as 

thresholds.  

However we have chosen to increase the chi-squared threshold to the 0,9999 percentile as a 

result of the increase of false alarm probability we observed earlier, when the number of 

nodes in the neighborhood decreases.  

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10,50,100ሻ and ߪ௜ ൌ

ሺ1,5,10ሻ.  

 For outliers in one attribute, the attribute values are generated with ߤ௜ ൌ ሺ10,50,200ሻ 

and ߪ௜ ൌ ሺ1,5,10ሻ,  

 For outliers with three outlying attributes, the attribute values are generated with 

௜ߤ ൌ ሺ20,100,200ሻ and ߪ௜ ൌ ሺ1,5,10ሻ. 
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Figure 6.7: False alarm probability n = 5   Figure 6.8: Detection accuracy n = 5 

Ѳ’ denotes our proposal for the dynamic threshold, while Ѳ denotes the original proposal for 

the static threshold [Liu et al. 2007] 

Figure 6.7 illustrates the false alarm probability when the percentage of outliers varies from 0 
to 40% with 5 nodes. 

Figure 6.8 illustrates the detection accuracy when the percentage of outliers varies from 0 to 
40% with 5 nodes. 

 

FOURTH SCENARIO 

In this scenario there are 5 nodes in the neighborhood ଵܰ
 ሻ, and 0 outliers. We evaluate theݔሺכ

accuracy of the robust mean estimation of  the sensed data distribution, which will be used as 

the data aggregation result in our proposed IDS, by comparing it with the true mean of the 

sensed data set. We evaluate the accuracy of the roust mean astimation when the standard 

deviation σ of the normal sensor data distribution varies between 0.01%, 0,1% and 1% of the 

true mean.  

 For all nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,10000,10000ሻ and 

௜ߪ ൌ ሺ100,10,1ሻ.  
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Figure 6.9: max deviation of the robust mean estimate µ’ from the true mean µ  

(The Max +/- gives the maximal observed deviations, while the Mean +/- gives the mean of 

the deviations) 

Figure 6.9 illustrates how much the robust mean estimate deviates from the true mean of the 

sensed data with 0% outliers.   

 

FIFTH SCENARIO 

In the fifth scenario we evaluate the detection accuracy and false alarm probability in ଵܰ
 ሻݔሺכ

when the accuracy of the sensor readings increases and the standard deviation of the sensor 

data distribution decreases to 1, 0.1 and 0.01 percent of the true mean.  

We will evaluate the degree of which an outlier can be deviating from the true mean of the 

attributes, before he is deemed an outlier by the detection algorithm. 

Part 1 

20% outliers 

σ =1% of the true mean 

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,10000,10000ሻ and 

௜ߪ ൌ ሺ100,100,100ሻ.  

 For outliers in one attribute, the attribute values are generated with 

௜ߤ  ൌ ሺ10000,10000,12000ሻ and ߪ௜ ൌ ሺ100,100,0.0001ሻ, for 20% outlying 

value. 
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௜ߤ  ൌ ሺ10000,10000,11500ሻ and ߪ௜ ൌ ሺ100,100,0.0001ሻ, for 15% outlying 

value 

௜ߤ  ൌ ሺ10000,10000,11000ሻ and ߪ௜ ൌ ሺ100,100,0.0001ሻ, for 10% outlying 

value 

௜ߤ  ൌ ሺ10000,10000,10500ሻ and ߪ௜ ൌ ሺ100,100,0.0001ሻ, for 5% outlying 

value 

 
σ =0.1% of the mean 

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,10000,10000ሻ and 

௜ߪ ൌ ሺ10,10,10ሻ.  

 For outliers in one attribute, the attribute values are generated with 

௜ߤ  ൌ ሺ1000,1000,1020ሻ and ߪ௜ ൌ ሺ10,10,0.0001ሻ, for 2% outlying value. 

௜ߤ  ൌ ሺ1000,1000,1010ሻ and ߪ௜ ൌ ሺ10,10,0.0001ሻ, for 1% outlying value 

௜ߤ  ൌ ሺ1000,1000,1005ሻ and ߪ௜ ൌ ሺ10,10,0.0001ሻ, for 0.5% outlying value 

௜ߤ  ൌ ሺ1000,1000,1003ሻ and ߪ௜ ൌ ሺ10,10,0.0001ሻ, for 0.3% outlying value 

σ =0.01% of the mean 
 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,10000,10000ሻ and 

௜ߪ ൌ ሺ1,1,1ሻ.  

 For outliers in one attribute, the attribute values are generated with 

௜ߤ  ൌ ሺ10000,10000,10020ሻ and ߪ௜ ൌ ሺ1,1,0.0001ሻ, for 0,2% outlying value. 

௜ߤ  ൌ ሺ10000,10000,10010ሻ and ߪ௜ ൌ ሺ1,1,0.0001ሻ, for 0,1% outlying value 

௜ߤ  ൌ ሺ10000,10000,10005ሻ and ߪ௜ ൌ ሺ1,1,0.0001ሻ, for 0.05% outlying value 

௜ߤ  ൌ ሺ10000,10000,10003ሻ and ߪ௜ ൌ ሺ1,1,0.0001ሻ, for 0.03% outlying value 
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20% outliers 
 

  
Figure 6.10: False alarm probability when σ = 1%   Figure 6.11: False alarm probability when σ = 0.1%  

 

Figure 6.12: False alarm probability when σ = 0.01% 

 

  
Figure 6.13: Detection accuracy when σ = 1%   Figure 6.14: Detection accuracy when σ = 0.1% 
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Figure 6.15: Detection accuracy when σ = 0.01% 

Ѳ’ denotes our proposal for the dynamic threshold, while Ѳ denotes the original proposal for 

the static threshold [Liu et al. 2007] 

Figs. 6.10 and 6.13 illustrate how the false alarm probability and detection accuracy changes 

when 20% outliers (1 node) are “decreasingly outlying” and the sensed data have a 1% 

standard deviation σ from the true mean.   

Figs. 6.11 and 6.14 illustrate how the false alarm probability and detection accuracy changes 

when 20% outliers (1 node) are “decreasingly outlying” and the sensed data have a 0.1% 

standard deviation σ from the true mean.   

Figs. 6.12 and 6.15 illustrate how the false alarm probability and detection accuracy changes 

when 20% outliers (1 node) are “decreasingly outlying” and the sensed data have a 0.01% 

standard deviation σ from the true mean.   

 

40% outliers 

σ =1% of the true mean 

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,10000,10000ሻ and 

௜ߪ ൌ ሺ100,100,100ሻ.  

 For outliers in one attribute, the attribute values are generated with 

௜ߤ  ൌ ሺ10000,10000,16000ሻ and ߪ௜ ൌ ሺ100,100,0.0001ሻ, for 60% outlying 

value. 
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௜ߤ  ൌ ሺ10000,10000,15000ሻ and ߪ௜ ൌ ሺ100,100,0.0001ሻ, for 50% outlying 

value 

௜ߤ  ൌ ሺ10000,10000,14000ሻ and ߪ௜ ൌ ሺ100,100,0.0001ሻ, for 40% outlying 

value 

௜ߤ  ൌ ሺ10000,10000,13000ሻ and ߪ௜ ൌ ሺ100,100,0.0001ሻ, for 30% outlying 

value 

σ =0.1% of the true mean 

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,10000,10000ሻ and 

௜ߪ ൌ ሺ10,10,10ሻ.  

 For outliers in one attribute, the attribute values are generated with 

௜ߤ  ൌ ሺ10000,10000,10600ሻ and ߪ௜ ൌ ሺ10,10,0.0001ሻ, for 6% outlying value. 

௜ߤ  ൌ ሺ10000,10000,10500ሻ and ߪ௜ ൌ ሺ10,10,0.0001ሻ, for 5% outlying value 

௜ߤ  ൌ ሺ10000,10000,10400ሻ and ߪ௜ ൌ ሺ10,10,0.0001ሻ, for 4% outlying value 

௜ߤ  ൌ ሺ10000,10000,10300ሻ and ߪ௜ ൌ ሺ10,10,0.0001ሻ, for 3% outlying value 

σ =0.01% of the true mean 

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,10000,10000ሻ and 

௜ߪ ൌ ሺ1,1,1ሻ.  

 For outliers in one attribute, the attribute values are generated with 

௜ߤ  ൌ ሺ10000,10000,10060ሻ and ߪ௜ ൌ ሺ1,1,0.0001ሻ, for 0,6% outlying value. 

௜ߤ  ൌ ሺ10000,10000,10050ሻ and ߪ௜ ൌ ሺ1,1,0.0001ሻ, for 0,5% outlying value 

௜ߤ  ൌ ሺ10000,10000,10040ሻ and ߪ௜ ൌ ሺ1,1,0.0001ሻ, for 0.4% outlying value 

௜ߤ  ൌ ሺ10000,10000,10030ሻ and ߪ௜ ൌ ሺ1,1,0.0001ሻ, for 0.3% outlying value 
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Figure 6.16: False alarm probability when σ = 1%   Figure 6.17: False alarm probability when σ = 0.1% 

 

Figure 6.18: False alarm probability when σ = 0.01% 

  
Figure 6.19: Detection accuracy when σ = 1%   Figure 6.20: Detection accuracy when σ = 0.1% 
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Figure 6.21: Detection accuracy when σ = 0.01% 

Ѳ’ denotes our proposal for the dynamic threshold, while Ѳ denotes the original proposal for 

the static threshold [Liu et al. 2007] 

Figs. 6.16 and 6.19 illustrate how the false alarm probability and detection accuracy changes 

when 40% outliers are “decreasingly outlying” and the sensed data have a 1% standard 

deviation σ from the true mean.   

Figs. 6.17 and 6.20 illustrate how the false alarm probability and detection accuracy changes 

when 40% outliers are “decreasingly outlying” and the sensed data have a 0.1% standard 

deviation σ from the true mean.   

Figs. 6.18 and 6.21 illustrate how the false alarm probability and detection accuracy changes 

when 40% outliers are “decreasingly outlying” and the sensed data have a 0.01% standard 

deviation σ from the true mean.   

 
Part 2 

Now that we have observed the degree of which an outlier can deviate from the normal 

attribute distribution before getting caught, it would be interesting to examine the detection 

accuracy and false alarm probability of the algorithm when outliers deviates beyond these 

values. In the following observations, the outliers have had an outlying value of 200% the true 

mean of the normal attribute distribution. 

  

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90
1,00

0,6 % 0,5 % 0,4 % 0,3 %

D
et
ec
ti
on

 A
cc
ur
ac
y

Outlying value % deviation from true mean of normal 
nodes

Ѳ' Ѳ



- 62 - 

σ =1% of the true mean 

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,15000,20000ሻ and 

௜ߪ ൌ ሺ100,100,200ሻ.  

 For outliers, the attribute values are generated with 

௜ߤ  ൌ ሺ10000,15000,60000ሻ and ߪ௜ ൌ ሺ100,100,300ሻ, for 200% outlying 

value. 

σ =0.1% of the true mean 

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,15000,20000ሻ and 

௜ߪ ൌ ሺ10,10,20ሻ.  

 For outliers, the attribute values are generated with 

௜ߤ  ൌ ሺ10000,15000,60000ሻ and ߪ௜ ൌ ሺ10,10,30ሻ, for 200% outlying value. 

σ =0.01% of the true mean 

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,15000,20000ሻ and 

௜ߪ ൌ ሺ1,1,2ሻ.  

 For outliers, the attribute values are generated with 

௜ߤ  ൌ ሺ10000,15000,60000ሻ and ߪ௜ ൌ ሺ1,1,3ሻ, for 200% outlying value. 

 

 
Figure 6.22: False alarm probability when σ = 0.01%   Figure 6.23: Detection accuracy when σ = 0.01% 
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Figure 6.24: False alarm probability when σ = 0.1%   Figure 6.25: Detection accuracy when σ = 0.1% 

 

  
Figure 6.26: False alarm probability when σ = 1%          Figure 6.27: Detection accuracy when σ = 1% 

 

Ѳ’ denotes our proposal for the dynamic threshold, while Ѳ denotes the original proposal for 

the static threshold [Liu et al. 2007] 

Figure 6.22 illustrates the false alarm probability when the outlying value is 200% of true 

mean and the standard deviation of the normal distribution for all three attributes is 0.01% of 

true mean, while the percentage of outliers varies from 0 to 40%.  

Figure 6.24 illustrates the false alarm probability when the outlying value is 200% of true 

mean and the standard deviation of the normal distribution for all three attributes is 0.1% of 

true mean, while the percentage of outliers varies from 0 to 40%. 
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Figure 6.26 illustrates the false alarm probability when the outlying value is 200% of true 

mean and the standard deviation of the normal distribution for all three attributes is 1% of true 

mean, while the percentage of outliers varies from 0 to 40%. 

Figure 6.23 illustrates the detection accuracy when the outlying value is 200% of true mean 

and the standard deviation of the normal distribution for all three attributes is 0.01% of true 

mean, while the percentage of outliers varies from 0 to 40%. 

Figure 6.25 illustrates the detection accuracy when the outlying value is 200% of true mean 

and the standard deviation of the normal distribution for all three attributes is 0.1% of true 

mean, while the percentage of outliers varies from 0 to 40%. 

Figure 6.27 illustrates the detection accuracy when the outlying value is 200% of true mean 

and the standard deviation of the normal distribution for all three attributes is 1% of true 

mean, while the percentage of outliers varies from 0 to 40%. 

 

ROBUST MEAN ACCURACY 

We now evaluate the accuracy of the robust mean, which is to be used as the aggregation 

result. First we observe the accuracy when no outliers are present in the cluster. Then we 

evaluate the worst case scenario with 20 and 40% outliers and examine just how much they 

can disturb the aggregation result while having less than 50% chance of being caught.   

 
Figure 6.28: Deviation of the robust mean estimate µ’ from the calculated mean µ  
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As we observed in the fourth scenario, the accuracy of the robust mean  increase as the 

accuracy of the sensors increase, and as we observed above (part 1), the maximal deviation an 

outlier can have from the sensed data, while having a <50% chance of being caught, is limited 

by the sensor accuracy.  

The results from the simulations in part 1, with the standard deviation σ = 1, 0.1 and 0.01% of 

the true mean, give us the max outlying deviation, with the outlier having less than 50% 

probability of being cought, of 5, 0.5% and 0.05% with 20% outlying probability, and 40%, 

4% and 0,4% with 40% outlier probability.  

We present the result of the evaluation in table 6.1 below. 

20% OUTLIERS 

σ =1% of the true mean 

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,10000,10000ሻ and 

௜ߪ ൌ ሺ100,100,100ሻ.  

 For outliers, the attribute values are generated with 

௜ߤ  ൌ ሺ10000,10000,10500ሻ and ߪ௜ ൌ ሺ100,100,0.0001ሻ, for 5% outlying 

value. 

σ =0.1% of the true mean 

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,10000,10000ሻ and 

௜ߪ ൌ ሺ10,10,10ሻ. 

 For outliers, the attribute values are generated with 

௜ߤ  ൌ ሺ10000,10000,10050ሻ and ߪ௜ ൌ ሺ10,10,0.0001ሻ, for 0.5% outlying 

value. 

σ =0.01% of the true mean 

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,10000,10000ሻ and 

௜ߪ ൌ ሺ1,1,1ሻ.  

 For outliers, the attribute values are generated with 

௜ߤ  ൌ ሺ10000,10000,10005ሻ and ߪ௜ ൌ ሺ1,1,0.0001ሻ, for 0.05% outlying 

value. 
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40% OUTLIERS 

σ =1% of the true mean 

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,10000,10000ሻ and 

௜ߪ ൌ ሺ100,100,100ሻ.  

 For outliers, the attribute values are generated with 

௜ߤ  ൌ ሺ10000,10000,14000ሻ and ߪ௜ ൌ ሺ100,100,0.0001ሻ, for 40% outlying 

value. 

σ =0.1% of the true mean 

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,10000,10000ሻ and 

௜ߪ ൌ ሺ10,10,10ሻ. 

 For outliers, the attribute values are generated with 

௜ߤ  ൌ ሺ10000,10000,10400ሻ and ߪ௜ ൌ ሺ10,10,0.0001ሻ, for 4% outlying value. 

σ =0.01% of the true mean 

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10000,10000,10000ሻ and 

௜ߪ ൌ ሺ1,1,1ሻ.  

 For outliers, the attribute values are generated with 

௜ߤ  ൌ ሺ10000,10000,10040ሻ and ߪ௜ ൌ ሺ1,1,0.0001ሻ, for 0.4% outlying value. 

Deviation 0 % outliers 

Deviation  1 %  0,10 %  0,01 % 
Max +/‐  1,60 %  0,16 %  0,02 % 

Mean +/‐  0,01 %  0,00 %  0,01 % 

Deviation, 50% detection accuracy, 20% outliers 

1%  0,1%  0,01 % 
Max +/‐  4,10 %  0,34 %  0,04 % 

Mean +/‐  0,50 %  0,05 %  0,01 % 

Deviation, 50% detection accuracy, 40% outliers 

1%  0,1%  0,01 % 
Max +/‐  29,70 %  3,89 %  0,33 % 

Mean +/‐  4,70 %  0,47 %  0,05 % 
Table 6.1: deviation of the robust mean when outliers try  

to influence the estimation 
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(The Max +/- row gives the maximal observed deviation values, while the Mean +/- row gives 

us the mean of the deviations over the 1000 iterations the simulation has run) 

Table 6.1 contains the results of the max and mean deviation of the robust mean from the true 

mean when the presence of outliers varies from 0 to 40%, and the probability of the outliers 

being detected is < 50%  

 

SIXTH SCENARIO 

In this scenario we evaluate the modified false information filtering protocol and evaluate 

how our proposal of using the MAD as the sample standard deviation σ compares with the 

original proposal of [Liu et al. 2007] in detecting outliers and generating false alarms. We 

consider the percentage of outlying nodes that is flagged as untrustworthy relay nodes.  

The number of nodes in the 1-hop neighborhood ଵܰሺݔሻ is set to 10, and the percentage of 

outliers varies from 0 to 40%. 

 For normal nodes, the attributes are generated with ߤ௜ ൌ ሺ10,15,20ሻ and ߪ௜ ൌ ሺ1,1,1ሻ.  

 For outliers in one attribute, the attribute values are generated with ߤ௜ ൌ ሺ10,15,40ሻ 

and ߪ௜ ൌ ሺ1,1,1ሻ,  

 For outliers with three outlying attributes, the attribute values are generated with 

௜ߤ ൌ ሺ30,35,40ሻ and ߪ௜ ൌ ሺ1,1,1ሻ. 

 

 
Figure 6.29: false alarm probability in thrust based filtering 
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Figure 6.30: detection accuracy of outliers in thrust based filtering 

Figure 6.29 Illustrates the false alarm probability of the trust based information filtering 

protocol with T(xj)’ denoting our modified version and T(xj) denoting the original proposal 

by [Liu et al. 2007].  

Figure 6.29 Illustrates the detection accuracy of the trust based information filtering protocol 

with T(xj)’ denoting our modified version and T(xj) denoting the original proposal by [Liu et 

al. 2007].  
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6.1 DISCUSSION OF SIMULATION RESULTS  

 

In the first scenario with 20 nodes. 

As illustrated in figures 6.1 and 6.4, clearly the algorithm can detect outliers with a high 

detection accuracy and a low false alarm probability. This is consistent with the findings in 

the simulation study of [Liu et al. 2007]. 

We can also note that the dynamic threshold Ѳ’ is slightly more accurate than the static chi-

squared threshold Ѳ in false alarm probability, and we notice that the increase of the 

percentage of outlying nodes does not lead to an increase in the false alarm probability, this 

property is the result of the robust statistics employed in the calculations of the Mahalanobis 

squared distances [Liu et al. 2007]. 

However,  the static chi-squared threshold Ѳ is slightly more accurate in detecting outliers 

when the outlying probability becomes large, since it is not influenced by the values of the 

Mahalanobis squared distances, which will be more and more influenced by outlying values 

as the number of outliers increase.  

We also observe that for outliers in one attribute, both thresholds has similar accuracy, 

however for outliers in 3 attributes, the detection accuracy of the proposed dynamic chi-

squared threshold Ѳ’ decreases significantly with over 40% outliers, while the static chi-

squared threshold Ѳ remains fairly accurate, even with 45% outliers in the neighborhood.  

All in all, we notice that our proposal for the dynamic threshold Ѳ’ holds some attractive 

properties, like low false detection probability with 0 outliers present in the neighborhood, 

which will normally be the case, and fairly high detection accuracy, even with 25% outliers in 

the neighborhood.    

In the second scenario with 10 nodes. 

As illustrated in figures 6.5 and 6.6, the algorithm can detect outliers with a high detection 

accuracy and a low false alarm probability even with a sparse neighborhood consisting of 

only 10 nodes. However we observe an increase in the false alarm probability from the 

previous scenario with 20 nodes, when 0 outliers exist in the neighborhood. This is expected 
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because the dataset ܨଵሺݔ௜ሻ is smaller and less information is used to estimate the sample 

means and sample covariance matrix.  

We notice that the dynamic threshold Ѳ’ has a slightly lesser false alarm probability than the 

static chi-squared threshold Ѳ, and we observe that the increase of the percentage of outlying 

nodes does not lead to an increase in the false alarm probability. This is consistent with the 

findings in the first scenario. 

We observe in this scenario, with 10 nodes, that the accuracy of detection algorithm to detect 

outliers decrease dramatically when the number of outliers exceeds 20% and the outliers are 

outliers in only 1 attribute. This is consistent with the findings in the first scenario and the 

simulation study of [Liu et al. 2007]. 

In the third scenario with 5 nodes. 

As illustrated in figures 6.7 and 6.8, the algorithm can detect outliers with a fairly high 

detection accuracy and a low false alarm probability even with a sparse neighborhood 

consisting of only 5 nodes.  

We notice that our proposed dynamic threshold Ѳ’, in this scenario as well, has a lower false 

alarm probability than the static chi-squared threshold Ѳ.  

However, we observe a decrease in the detection accuracy from the previous scenario with 10 

nodes, as the percentage of outliers in only 1 attribute increases. However, this is to be 

expected as a result of the increase of the chi-squared percentile to ܺଷଶሺ0,9999ሻ in the 

determination of the thresholds Ѳ’ and Ѳ.  

Since the same nodes already have been evaluated by the detection algorithm in the previous 

scenario regarding ଵܰሺݔሻ, which doesn’t suffer from this increase of the threshold, this 

decrease in detection accuracy should have little impact on the total performance of the 

algorithm.  

In the fourth scenario with 5 nodes. 

An important part of our proposed intrusion detection scheme, is the generation and 

protection of the aggregated data of the cluster head. First we evaluate how well the robust 

estimates perform in a cluster of 5 nodes and no outliers present. 
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Figure 6.9 illustrates how much the robust mean estimate deviates from the true mean of the 

sensed data. This is important to observe because it illustrates how accurate the aggregated 

result will be as a result of the accuracy of the sensors. More accurate sensors will have less 

variance in the sensed data, when the sensors are sensing the same physical phenomenon, and 

as figure 6.9 illustrates, the more accurate the sensors are, the more accurate the aggregation 

result will become. This observation tells us that we need to be aware of how much the sensor 

readings might fluctuate between the nodes in a cluster, as well as the demanded accuracy of 

the sensor data from each cluster.   

 

In the fifth scenario with 5 nodes. 

From our observations in part 1, it would appear that an outlier can have an outlying attribute 

value of approximately 5 כ with 20% outliers and approximately 40 ߪ כ  ,with 40% outliers ߪ

while having less than 50% chance of being caught. This indicates that an outlying node is 

limited in how much it can deviate in its behavior before the algorithm deems it an outlier. 

We also notice that the proposed dynamic threshold Ѳ’ has a slightly less detection accuracy 

compared the static threshold Ѳ, but not drastically so.  

In part 2 we are interested in examining the detection accuracy and false alarm probability of 

the algorithm when outliers deviate beyond the values in part 1. In the observations the 

outliers have an outlying value of 200% the true mean of the normal attribute distribution. 

We observe in Figs. 6.22, 6.24 and 6.26, that the false alarm probability is consistent with the 

previous results from the third scenario, which implies that, the variance of the normal 

attribute distribution has no effect on the false alarm probability.  

In Figs. 6.23, 6.25 and 6.26 however, we observe that the detection accuracy is greatly 

influenced by the variance of the normal attribute distribution. This is of course a result of the 

outliers distance to the center of the multivariate distribution becoming larger when the 

multivariate standard deviation decreases, and the outlying deviation remains the same, in this 

case 200% of the true mean.  

As a result of this, an attacker should become increasingly limited in his influence on the 

aggregated data result, as the accuracy of the sensors increase. But just how much can a smart 

attacker influence the aggregation result. From table 6.1 we can observe the max deviation of 
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the robust mean estimate an outlier can influence. We observe that the more accurate the 

sensors are ሺߪ െ൐  0%ሻ the lesser the outliers can influence the estimate. This nice property 

of the algorithm can be very useful when you are able to estimate that the worst case scenario 

can cause only so much deviation on the aggregated result.     

Sixth scenario 

In this scenario we evaluate the modified false information filtering protocol and evaluate 

how our proposal of using the MAD as the sample standard deviation σ compares with the 

original proposal of [Liu et al. 2007] in detecting outliers and generating false alarms. 

We observe in Figs. 6.29 and 6.30 that our proposed trust value function T(xj)’, using MAD 

as the sample standard deviation σ, performs quite nicely in detecting outliers as well as 

having acceptable low false alarm probability. This is a result of using MAD as the sample 

standard deviation σ, due to outliers having little effect on this method until they number ≥ 

50% of the nodes in the neighborhood.  We also observe that the original proposal of the trust 

value function T(xj) [Liu et al. 2007] has acceptable low false alarm probability, but has a 

breakdown point of 20% in the detection accuracy.     

All in all, our proposed algorithm has a quite acceptable theoretical performance. We have 

observed that it has good detection accuracy with as much as 25% outliers present, while 

having low false alarm probability. We have observed that it limits how much an adversary 

can manipulate the aggregation result, depending on the variance of the normal sensor 

readings. We have observed that the detection accuracy increases with the number of outlying 

attributes for each outlier and we have observed that the proposal of using the robust mean of 

the sensor data distribution could be used as the aggregation result of the cluster, depending 

on the demands for accuracy in the sensor readings and aggregation result of course.   
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7. CONCLUSION 

Wireless sensor network (WSN) is an emerging important research area, and the variety in 

and number of applications is growing in wireless sensor networks. These wireless sensor 

nodes are tiny devices with limited energy, memory, transmission range, and computational 

power. Currently most research in wireless sensor networks have focused on routing 

protocols, data aggregation and clustering protocols.  

Because WSNs in general and in nature are unattended and physically reachable from the 

outside world, they could be vulnerable to physical attacks in the form of node capture or 

node destruction (DoS). These forms of attacks are hard to protect against and require 

intelligent prevention methods. It is necessary for WSNs to have security measures in place as 

to prevent an intruder from inserting compromised nodes in order to decimate or disturb the 

network performance. 

Data aggregation is a fundamental part of energy saving in wireless sensor networks. 

However, this is a potential security risk as it introduces a single point of failure. It is 

important to protect the network from these types of vulnerabilities by designing security 

mechanisms to counter the threat of aggregation node compromise and compromised nodes 

interfering with aggregation results. 

In this thesis we have presented a novel intrusion detection framework for wireless sensor 

networks to act as second line of defense in conjunction with the preventive measures, such as 

encryption and authentication. We have taken a more practical approach in our assumptions 

and tried to develop a framework for small home or office sensor networks with few nodes.  

Our IDS framework does not require prior knowledge of network behavior or a learning 

period in order to establish this knowledge. The proposed framework is also dynamic in 

nature as to cope with new and unknown attack types. By exploiting the similarity in behavior 

of nodes in proximity of each other, our IDS framework can achieve a high detection 

accuracy and low false alarm probability as indicated by the theoretical simulation study in 

section 6, and by using the OGK robust estimate of the mean for the sensor readings 

distribution within the clusters, our framework can achieve high accuracy of aggregation 

results, even with smart attackers trying to influence the aggregation result by seeding the 

aggregator node with slightly outlying sensor readings.  
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A nice property of the framework is that it can be “tailored” to fit various scenarios as a result 

of the possibility of monitoring different aspects of networking behavior simultaneously. 

Another nice property of our IDS framework is that it has low memory usage, as it doesn’t 

require a specification file for normal behavior or a pattern recognition file for known attacks. 

Due to time constraints, we have not been able to properly simulate our intrusion detection 

framework, or implement it in real life situations. This should be a target for future work 

regarding this framework. Another possible future research topic could be “tailoring” the 

framework to detect certain attacks by choosing which behavior attributes to monitor. Further 

research is needed in determining the minimum trust value in the modified trust-based 

information filtering protocol, as it has been determined purely by theoretical simulation in 

this thesis.  
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APENDIX A 
 

Mathematica code for calculation simulations of outlier detection. 

Needs["MultivariateStatistics`"]; 
fpc={}; 
fpv={}; 
ndo1={}; 
ndo2={}; 
vnrm1={}; 
vnrm2={}; 
vnrm3={}; 
vonm1={}; 
vonm2={}; 
vonm3={}; 
def={}; 
kk=0; 
Clear[X,c1,c2,R,G,P,u,u0,m,p,n,q,W,v,v2,k,Q,Qt,V,H,∆,Λ,aa,bb,cc,dd,ff,c2,bb
b,aa,bb,cc,dd,Xt,qq,A,n1,n2,ch1,x1,x2,x3,x4,x5,def,rr,oo,pp,α]; 
n1=3;              "number of normal nodes"; 
n2=2;              "number of insider attackers"; 
n=n1+n2;     "Number of nodes in the neighborhood"; 
q=3;                "Number of variables measured"; 
c1=4.5; 
c2=3; 
α=0.9999; 
 
aa={100,150,200};"standard deviation normal nodes"; 
bb={{1,0,0},{0,1,0},{0,0,1}};"corelation matrix p normal nodes"; 
cc=Table[Extract[aa,i]*Extract[aa,j]*Extract[bb,{i,j}],{i,q},{j,q}];"covari
ance matrix Σ for normal nodes"; 
dd={10000,15000,20000};"μ mean values for normal nodes"; 
 
oo={100,150,300};"values of σ (standard deviation) insider attackers"; 
pp={{1,0,0},{0,1,0},{0,0,1}};"corelation matrix insider attackers"; 
rr=Table[Extract[oo,i]*Extract[oo,j]*Extract[pp,{i,j}],{i,q},{j,q}];."creat
e the covariance matrix Σ insider attackers"; 
ss={10000,15000,60000};"values of μ (mean) for the insider attackers"; 
 
"Defining the functions used in the calculations by the algoritm"; 
"σ0"; MAD[x_]:=Median[Abs[x-Median[x]]]; 
 
"μ0"; u0[x_]:=Median[x]; 
 
W[x_,i_]:=If[Abs[x]≤c1,(1-(x/c1)^2)2,0]; "Weighting function"; 
 
p[x_]:=Min[x^2,(c2)^2];                                                      
"p function"; 
 
v[x_,i_]:=(Extract[x,i]-u0[x])/MAD[x];"this is what the weight function 
takes as input"; 
 

u[x_]:= / ;  
 

m[x_]:=If[MAD[x]≠0,MAD[x]2/n* ,1]; 
 
v2[x_,i_]:=(Extract[x,i]-u[x])/MAD[x];"This is what the p function takes as 
input";    
 
 
"this is where the calculations begin" 
 
 

⁄i=1
n HExtract@x, iD∗ W@v@x, iD, iDL ⁄i=1

n W@v@x, iD, iD

‚
i=1

n
p@v2@x, iDD
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kkk=Input["enter number of iterations"]; 
While[kkk≠0, 
 If[!IntegerQ[kkk]||kkk≤0,Break[]]; 
 
Clear[X,V,X1,X2,Xa,Xb,Xc,H,∆,Γ,A,i,Xt,R,G,P,k,Q,Qt,V,H,∆,Λ,ff,bbb,ccc,Xt,qq
,A,ch1,x1,x2,x3,x4,x5,x6,x7,sp,sq]; 
 
X1=RandomReal[MultinormalDistribution[dd,{cc[[1]],cc[[2]],cc[[3]]}],n1];"He
re we generate the values for the normal nodes"; 
 
X2=RandomReal[MultinormalDistribution[ss,{rr[[1]],rr[[2]],rr[[3]]}],n2];."G
enerating the data for the insider attackers"; 
 X={};"putting the normal nodes and the insider attackers in the same 
matrix of observation data for neighborhood"; 
 For[i=1,i≤n1,i++,AppendTo[X,X1[[i]]]]; 
 For[i=1,i≤n2,i++,AppendTo[X,X2[[i]]]]; 
 Xt=Transpose[X]; 
  
 "Step 1"; 
 bbb={}; 
 ccc={}; 
 For[i=1,i≤q,i++,AppendTo[bbb,(m[Xt[[i]]](1/2)]]; 
 P=DiagonalMatrix[bbb]; 
 Pin=Inverse[P]; 
 G=X.Pin; 
 Gt=Transpose[G]; 
  
 "Step 2"; 
 qq={}; 
 
For[i=1,i≤q,i++,For[j=1,j≤q,j++,AppendTo[qq,If[i==j,1,1/4*(m[(Gt[[i]]+Gt[[j
]])]-m[(Gt[[i]]-Gt[[j]])])]]]]; 
 R=Table[Take[qq,{q*i-(q-1),q*i}] ,{i,q}]; 
  
 "Step 3"; 
 {k,Qt}=Eigensystem[R]; 
 Λ=DiagonalMatrix[k]; 
 Q=Transpose[Qt]; 
  
 "Step 4"; 
 H={}; 
 For[i=1,i≤n,i++,AppendTo[H,Qt.G[[i]]]]; 
 ∆={}; 
 For[i=1,i≤q,i++,AppendTo[∆,u[H[[All,i]]]]]; 
 A={}; 
 For[i=1,i≤q,i++,AppendTo[A,m[H[[All,i]]]]]; 
 Γ=DiagonalMatrix[A]; 
  
 "Step 5"; 
 V=P.Q; 

 =V.∆; 

 =V.Γ.Transpose[V]; 
 Xa={}; 
 Xb={}; 
 Xc={}; 
 sp={}; 
 sq={}; 
 For[i=1,i≤q,i++,AppendTo[Xa,Mean[X1[[All,i]]]]]; 
 For[i=1,i≤q,i++,AppendTo[Xc,Mean[X[[All,i]]]]]; 

 For[i=1,i≤q,i++,AppendTo[sp,(((Extract[ ,i]/Extract[Xa,i])*100)-100)]]; 
 For[i=1,i≤q,i++,AppendTo[sq,(((Extract[Xc,i])/Extract[Xa,i])*100)-100]]; 
 For[i=1,i≤q,i++,AppendTo[Xb,Variance[X[[All,i]]]]]; 
  
  

μ
ˆ

Σ
ˆ

μ
ˆ
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 "Calculating the squared Mahalanobis distances"; 
 ff={}; 

 MD3[x_]:=(x- ).PseudoInverse[ ].(x- ); 
 For[i=1,i≤n,i++,AppendTo[ff,MD3[X[[i]]]]]; 
  
 "Determinig the thresholds"; 
 x1={}; 
 x2={}; 
 x3={}; 
 x4={}; 
 x5={}; 
 "Regular chi-squared threshold"; 
 ch=Quantile[ChiSquareDistribution[q],α]; 
 "Variating chi-squared threshold"; 
 ch1=(ch*Median[ff])/Quantile[ChiSquareDistribution[q],0.5]; 
  
 For[i=1,i≤n1,i++,If[Extract[ff,i]≥ch,AppendTo[x1,1]]]; 
 For[i=1,i≤n1,i++,If[Extract[ff,i]≥ch1,AppendTo[x2,1]]]; 
 x6={}; 
 x7={}; 
 For[i=(n1+1),i≤n,i++,If[Extract[ff,i]≤ch,AppendTo[x6,1]]]; 
 For[i=(n1+1),i≤n,i++,If[Extract[ff,i]≤ch1,AppendTo[x7,1]]]; 
  
 def={}; 
 For[i=1,i≤q,i++,AppendTo[x4,StandardDeviation[X1[[All,i]]]]]; 
 For[i=1,i≤q,i++,AppendTo[def,Abs[(100-
(((Extract[bbb,i])/Extract[x4,i])*100))]]]; 
 For[i=1,i≤q,i++,AppendTo[x3,StandardDeviation[X[[All,i]]]]]; 

 For[i=1,i≤q,i++,AppendTo[x5,(Extract[ ,{i,i}])(1/2)]]; 
 AppendTo[fpc,Length[x1]]; 
 AppendTo[fpv,Length[x2]]; 
 AppendTo[ndo1,Length[x6]]; 
 AppendTo[ndo2,Length[x7]]; 
 AppendTo[vnrm1,Extract[sp,1]]; 
 AppendTo[vnrm2,Extract[sp,2]]; 
 AppendTo[vnrm3,Extract[sp,3]]; 
 kk++; 
 kkk--; 
 ] 
Print[kk,"iterations"] 
 
 

( )."Number of false positives calculated chi-squared" 
"" 

( )."Number of false positives variable chi-squared" 
"" 
"" 
 

( )."Number of not detected outliers calculated chi-
squared" 
"" 

( )."Number of not detected outliers variable chi-
squared" 
"" 
"" 
 
Min[vnrm1]."Min variation normal vs. robust μ1" 
Min[vnrm2]."Min variation normal vs. robust μ2" 

μ
ˆ

Σ
ˆ

μ
ˆ

Σ
ˆ

‚
i=1

Length@fpcD
HExtract@fpc, iDL

‚
i=1

Length@fpvD
HExtract@fpv, iDL

‚
i=1

Length@ndo1D
HExtract@ndo1, iDL

‚
i=1

Length@ndo2D
HExtract@ndo2, iDL
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Min[vnrm3]."Min variation normal vs. robust μ3" 
"" 
Max[vnrm1]."Max variation normal vs. robust μ1" 
Max[vnrm2]."Max variation normal vs. robust μ2" 
Max[vnrm3]."Max variation normal vs. robust μ3" 
"" 
Mean[vnrm1]."Mean variation normal vs. robust μ1" 
Mean[vnrm2]."Mean variation normal vs. robust μ2" 
Mean[vnrm3]."Mean variation normal vs. robust μ3" 
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APENDIX B 
Mathematica code for the trust-based information filtering protocol 

aac={}; 
aad={}; 
aaa={}; 
aab={}; 
kk=0; 

Trust - based information filtering 

Needs["MultivariateStatistics`"]; 
Clear[F,a,•,•,n1,a,b,c,d,n,n1,n2,q,aa,bb,cc,dd,oo,pp,rr,ss,F11,F22]; 
n1=16;               "Number of normal nodes in the neighborhood"; 
n2=4;               "Number of insider attacker nodes in the neighborhood"; 
n=n1+n2;     "Number of nodes in the neighborhood"; 
q=3;                "Number of variables measured"; 
b={}; 
 
c={}; 
aa={1,1,1};"standard deviation normal nodes"; 
bb={{1,0,0},{0,1,0},{0,0,1}};"corelation matrix p normal nodes"; 
cc=Table[Extract[aa,i]*Extract[aa,j]*Extract[bb,{i,j}],{i,q},{j,q}];"covari
ance matrix • for normal nodes"; 
dd={10,15,20};"• mean values for normal nodes"; 
F11=RandomReal[MultinormalDistribution[dd,{cc[[1]],cc[[2]],cc[[3]]}],n1];"H
ere we generate the values for the normal nodes"; 
 
oo={1,1,1};"values of • (standard deviation) insider attackers"; 
pp={{1,0,0},{0,1,0},{0,0,1}};"corelation matrix insider attackers"; 
rr=Table[Extract[oo,i]*Extract[oo,j]*Extract[pp,{i,j}],{i,q},{j,q}];."creat
e the covariance matrix • insider attackers"; 
ss={30,35,40};"values of • (mean) for the insider attackers"; 
F22=RandomReal[MultinormalDistribution[ss,{rr[[1]],rr[[2]],rr[[3]]}],n2];."
Generating the data for the insider attackers"; 
 
F={};"putting the normal nodes and the insider attackers in the same matrix 
of observation data for neighborhood"; 
For[i=1,i•n1,i++,AppendTo[F,F11[[i]]]]; 
For[i=1,i•n2,i++,AppendTo[F,F22[[i]]]]; 
F//MatrixForm 
•[x_]:=Median[x]; 

•[x_,j_]:= ; 
 
MAD[x_]:=If[Median[Abs[x-Median[x]]]•0,Median[Abs[x-Median[x]]],Median[x]]; 
k={}; 
For[i=1,i•q,i++,AppendTo[b,•[F[[All,i]]]]]; 
For[i=1,i•q,i++,AppendTo[c,MAD[F[[All,i]]]]]; 
For[i=1,i•q,i++,AppendTo[k,•[F[[All,i]],i]]]; 
b//MatrixForm 
c//MatrixForm 
k//MatrixForm 
a={}; 
For[j=1,j•n,j++,For[i=1,i•q,i++,AppendTo[a,If[Abs[(Extract[F[[j]],i]-
Extract[b,i])/Extract[c,i]]==0,0.1,Abs[(Extract[F[[j]],i]-
Extract[b,i])/Extract[c,i]]]]]]; 
l={}; 
 
For[j=1,j•n,j++,For[i=1,i•q,i++,AppendTo[l,If[Abs[(Extract[F[[j]],i]-
Extract[b,i])/Extract[k,i]]==0,0.1,Abs[(Extract[F[[j]],i]-
Extract[b,i])/Extract[k,i]]]]]]; 
d=Table[Take[a,{q*i-2,q*i}] ,{i,n}]; 
d//MatrixForm 
o=Table[Take[l,{q*i-2,q*i}] ,{i,n}]; 
o//MatrixForm 

1
n1− 1

∗‚
i=1

n
HExtract@x, iD −Extract@b, jDL2
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g={}; 
For[i=1,i•n,i++,AppendTo[g,Max[d[[i]]]]]; 
g//MatrixForm 
m={}; 
For[i=1,i•n,i++,AppendTo[m,Max[o[[i]]]]]; 
Clear[h,Mm,p]; 
 
h={}; 
t={}; 
u={}; 
Mm=Min[g]; 
For[i=1,i•n,i++,AppendTo[h,If[Extract[g,i]•0,Mm/(Extract[g,i]),(Mm/0.1)]]]; 
For[i=1,i•n1,i++,AppendTo[t,If[Extract[g,i]•0,Mm/(Extract[g,i]),(Mm/0.1)]]]
; 
For[i=(n1+1),i•n,i++,AppendTo[u,If[Extract[g,i]•0,Mm/(Extract[g,i]),(Mm/0.1
)]]]; 
h//MatrixForm 
p={}; 
r={}; 
s={}; 
Mm2=Min[m]; 
For[i=1,i•n,i++,AppendTo[p,Mm2/(Extract[m,i])]]; 
For[i=1,i•n1,i++,AppendTo[r,Mm2/(Extract[m,i])]]; 
For[i=(n1+1),i•n,i++,AppendTo[s,Mm2/(Extract[m,i])]]; 
 
Tmin=Mm/7 
Tmin2=Mm2/2 
For[i=1,i•n,i++,If[Extract[h,i]•Tmin,Print[i+"Node is NOT trustworthy with 
trustvalue of".(Extract[h,i])],Print[(i)+"Node is trustworthy with trust 
value of".(Extract[h,i])]]] 
 
For[i=1,i•n1,i++,If[Extract[h,i]•Tmin,AppendTo[aaa,1]]]; 
For[i=(n1+1),i•n,i++,If[Extract[h,i]>Tmin,AppendTo[aab,1]]]; 
"" 
"" 
"" 
 
For[i=1,i•n,i++,If[Extract[p,i]•Tmin2,Print[i+"Node is NOT trustworthy with 
trustvalue of".(Extract[p,i])],Print[(i)+"Node is trustworthy with trust 
value of".(Extract[p,i])]]] 
For[i=1,i•n1,i++,If[Extract[p,i]•Tmin2,AppendTo[aac,1]]]; 
For[i=(n1+1),i•n,i++,If[Extract[p,i]>Tmin2,AppendTo[aad,1]]]; 

( )."Number of false positives MAD" 
"" 

( )."Number of not detected outliers MAD" 
"" 
"" 
"" 

( )."Number of false positives original" 
"" 

( )."Number of not detected outliers original" 
kk++; 
kk."iterations" 

‚
i=1

Length@aaaD
HExtract@aaa, iDL

‚
i=1

Length@aabD
HExtract@aab, iDL

‚
i=1

Length@aacD
HExtract@aac, iDL

‚
i=1

Length@aadD
HExtract@aad, iDL


