
Managing Change in Information Systems:
Technological Challenges

Dag I.K. Sjøberg
Department of Informatics, University of Oslo

N–0316 Oslo, Norway

dagsj@ifi.uio.no

Abstract: Information systems and other computer-based systems must continuously undergo change

in order to reflect change in their environments. The present technology used to implement such

systems, including models, methods, tools and languages, does not have an inherent understanding of the

nature of evolution. The rigidity of existing systems is a hindrance for user requested enhancements.

Propagating changes correctly is a particular problem. It is common to find that necessary changes

consequent on some other change have not been made, so that the system is inconsistent and will

eventually fail to operate correctly. The paper discusses tools for system maintenance and focuses on the

issue of automation. A tool that automatically generates and maintains all the information it needs is

presented. To provide more information about the form and extent of the evolution in real-world

systems, the same tool was instructed to collect change measurements. Information about the evolution

of a large health management system was recorded over a period of 18 months. Methods for and

problems of automatic change measurements collection are discussed.

1 Introduction

The dominant activity of the large-scale software industry is the production of changes to

application systems. Most changes are due to enhancements in functionality (Lientz et al.

1978). People do not know in advance or are not able to accurately express all the

desired functionality of (say) a large information system. Only experience from using the

system in an operational environment will enable the needs and requirements to be

properly formulated. The requirements assessment will continuously change during

maintenance, and new requirements may be as demanding as those that directed the initial

construction (Lientz & Swanson 1981). Other causes of change are accommodation to

new environments and error corrections (Swanson 1976, Lientz et al. 1978). Some

kinds of change may require extensive consequential change in the rest of the application,

e.g. changes to data definitions (Marche 1993, Sjøberg 1993a). Figures describing the

maintenance proportion of the total lifetime expenditure on a software system vary

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30824858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

between 50% and 90% (Zelkowitz 1978, Putnam 1982, Chikofsky & Cross 1990). As

application systems live longer and grow in size and complexity, it is likely that this trend

will continue (Pfleeger 1987).

The often unexpected and confusing situations that may occur due to changing

conditions and new insight during the information systems construction and maintenance

process (Lientz and Swanson 1981, Bjerknes 1992) may in turn lead to new user

requirements. Many factors may influence change in user requirements: change in

market, workforce, skills, economy, legislation, etc. The diversity and possibly

conflicting interests among users, problems in programmer-user communication,

programmer effectiveness, etc. may complicate the change process. Another crucial

factor in system maintenance is the suitability of the underlying technology in coping with

changes. Due to rigid structure in existing systems and inadequate methods and tools for

change management, implementing necessary changes consequent on new user

requirements are often impossible within reasonable costs.

Information systems should be designed and implemented with change in mind, and

the organisation should be planned for change (Brooks 1975). It may be difficult to

persuade software builders and managers to plan for change since it requires some extra

effort during initial construction which may hinder meeting short-term budget and time

goals. The short-term thinking discourages designing for maintenance even though it is

an investment that will more than pay off in the long run.

The prevalent assumption of stability in current teaching and practice, data modelling,

database schema construction, etc. must be breached. New and improved methods and

tools for implementing change are required. Tools providing software documentation are

one example. Most documentation is notoriously poor and virtually always obsolete.

The only reliable, up-to-date program information may be the source code itself or

information that is automatically generated from the source code. This paper presents a

recording tool that automatically generates and maintains information needed for change

and consequential change propagation.

To turn informatics in general and the fields of information systems and software

engineering in particular into a more exact science, more measurements on relevant issues

should be provided. Quantification of change processes is a means to acquire detailed

knowledge about the extent and form of system evolution. The paper reports a study of

the evolution in a large health management system and discusses the issue of automatic

change data collection.

The paper is organised as follows. Section 2 discusses the problem of change and

software maintenance. Section 3 categorises software maintenance tools and presents a

tool built by the author. Section 4 reports studies of system evolution and discusses the

issue of collecting change statistics. Section 5 concludes.

2 The Problem of Change and Software Maintenance

The term software maintenance denotes all changes to the software of an information

system after its first installation in its operational environment. Since software systems

do not physically wear out or break (although a physical copy on any medium may

deteriorate), software maintenance differs from general maintenance in that the former is

not concerned with rectification to an earlier state. Software does not change on its own,

but is changed by people (or possibly by other software such as tools) to adapt to

changed requirements, to improve performance, to correct errors, etc. The maintenance

activities have been divided into the following categories (Swanson 1976):

• Corrective maintenance (detecting and correcting errors - routine debugging)

• Adaptive maintenance (accommodation of changes to the environment - including

hardware and system software)

• Perfective maintenance (user requested enhancements, improved documentation,

enhanced performance)

It has been reported that the respective categories count for 17%, 18% and 60% of the

total maintenance activities (Lientz et al. 1978). Within the third category, two thirds

were user requested enhancements. This shows that the majority of changes are not due

to errors or other causes that one might believe could be prevented by better requirements

analysis, design and implementation techniques. For example, one might argue that the

software changes could be reduced by more use of prototyping techniques (Budde et al.

1992). Prototyping may be useful during initial construction and may enable end-users

to express their needs and requirements more accurately in areas such as screen design

and certain aspects of system behaviour. However, since new requirements, changing

environments, bug-fixing, etc. are encountered after the system has become operational,

it is the operational system itself which has to be changed. The challenge is thus to build

large, long-lived, data-intensive systems that can be incrementally modified in compliance

with changing user needs. So, reducing the extent of perfective change is not necessarily

desirable. It is usual for people carrying out tasks to recognise improved methods and

opportunities. Information systems, for example, are therefore most likely to support

people well if they facilitate change, and allocating resources to at least perfective change

should be regarded as valuable.

The problem of change is closely related to scale. A whole class of problems only

show up when a system becomes long-lived (typically involving persistent data) and

grows in size, complexity and diversity (variability). This is confirmed by studies

showing that software maintenance costs are significantly affected by age, size (Lientz

and Swanson 1981) and complexity (Banker et al. 1993). Methods, tools and

programming languages are also the subject of new and changed requirements in order to

cope with increase in scale. For example, they must support incremental design,

construction and commissioning.

2.1 The Software Development and Maintenance Process

The classical model for describing the software development process is the so-called

waterfall model (Royce 1970). This analysis-design-implementation-testing model of the

software development life cycle, however, does not comply with the way systems are

built in the real world. Obvious inadequacies are the lack of recognition of the

importance of system changes and its description of systems development as a sequential

process. Some of the deficiencies are encompassed in the “spiral model” (Boehm 1988)

which adds the notion of risk analysis and allows for iteration of the development tasks.

The problem of software maintenance is not explicitly addressed by any of these

models, though it is common to extend the classical model with a separate maintenance

phase after testing. In practice, however, the phases of development are repeated during

maintenance. New requirements must be determined, the existing software application

needs re-design (Braa et al. 1992) and re-coding, new tests must be undertaken, etc.

This does not mean that the software development and software maintenance life cycles

follow the exactly same pattern; at a detailed level the stages and the relative effort applied

to the stages may differ (Chapin 1988). Nevertheless, to satisfy new user requirements,

we need methods and tools for managing various kinds of software change – independent

of whether they occur during initial construction or after the software application has

become operational.

2.2 Change Propagation

It is deceptively easy to change software (simple editing). Software is therefore changed

much more frequently than tangible products. However, it is not easy to make consistent

changes; it is easy to cause a mutation, but very hard to generate a viable one, particularly

if multiple copies have been shipped, etc. A change in one place may have unintended

effects elsewhere; even minor local changes can have global impact. Included in the

consequences are new errors (the ripple effect). One study found that more than 50% of

all errors were due to previous changes (Collofello & Buck 1987). The challenge is to

ensure that all consequential changes are dealt with correctly by propagation throughout

the system and that no unnecessary changes occur, perturbing working practices and

operational software.

The issue of change propagation will be illustrated by an example (Figure 1). Many

information systems are centred around a database. User requested enhancements in the

functionality of such a system may typically require change in the kind of information

provided by the database, which is described by a data model. (The “⇒” in the figure

should be read “may imply”.) A change to a data model must normally be propagated to

the database schema. Changes to database schemata (schema evolution) may in turn have

new user
requirements

change to
data model

change to
db schema

change to
db data

change to
application programs

⇒ ⇒
⇒
⇒

Figure 1: Change propagation

serious impact on other parts of the schema, on extensional data (user data stored in the

database) and on application programs (including interfaces for data entry, queries, report

generation, etc.).

At present, schema modifications are often dealt with in an ad hoc way. The

necessary data conversions and program modifications may be expensive due to factors

such as a requirement to shutdown the system, programmer effort, machine resources,

etc. However, research on schema evolution is emerging (Banerjee et al. 1987, Skarra &

Zdonik 1987, Lerner & Habermann 1990, Monk & Sommerville 1993). Work on

quantifying the extent and form of schema evolution will be described in Section 4.

3 Software Maintenance Tools

Tools for managing change in information systems can broadly be divided into those

supporting project management (Section 3.1) and those supporting implementation

(Section 3.2). Tools in the latter category are oriented towards technical issues, and they

should as far as possible extract all the information they need automatically. One example

of such a tool is the thesaurus tool (Section 3.3).

3.1 Change Management at the Project Management Level

Project management is an activity at the overall software life cycle level and involves

tasks like scheduling, team management and resource allocation (people, programming

languages, tools, operating systems, hardware, etc.). The administration of changes at

this level is an important part of project management and is commonly referred to as

change management (Humphrey 1990) or change control (Ferraby 1991). The change

process is formalised in that all change requests are evaluated with respect to the need for

the change, the impact of the change on the project and system, schedule of necessary

activities, etc. During the implementation of a change, information is recorded about who

did what when, what is the status, what remains, etc. IBM's Information/Management

product is an example of a tool providing support for such change management (IBM

1992):

The Change Management facility helps you coordinate the various tasks your organization
performs to make and test changes in your data processing environment. You can enter data
about changes made to any area of your organization's operations: to software and hardware
components of the operating system or to procedures, publications, and facilities.

Change management tools at this level are thus support systems that record information

and produce corresponding reports.

3.2 Change Management at the Implementation Level

Developing the software of large and long-lived information systems is a complex and

time consuming task. Methods and tools should assist in managing this complexity and

increase the efficiency and reliability of the development. It is crucial that the software

engineers and programmers find it worthwhile to learn and apply the methods and tools.

They should not hinder normal working practice, but software builders must understand

that they have to invest in setting up and preserving structure if they want an easier

maintenance future. The following activities should be supported:

• Predicting change consequences (impact analysis)

• Propagating necessary consequential changes

• Detecting inconsistencies after change or preventing them

• Detecting and recording change (necessary for recompilation, etc.)

A sophisticated maintenance tool should also support activities such as reverse engi-

neering (Bachman 1988) and automatic documentation. There is a significant amount of

“legacy systems” (Brodie 1992) which will still be operational for many years to come.

In order to satisfy new requirements, such code is continuously being modified causing

deterioration of its structure (Lehman & Belady 1985). One approach to help solve this

problem is reverse engineering which is to generate an abstract version of a concrete

program and then re-implement the abstract version. Typically, COBOL programs are

being re-implemented in COBOL itself or in a more up-to-date programming language

(Griswold & Notkin 1992).

A severe problem in the software application industry is obsolete or missing

documentation. The major reason for this is that documentation is normally not updated

in accordance with modifications to the software. For some sorts of documentation this

problem may be alleviated by tools that provide automatic documentation based on static

analysis of source code. Such tools may typically generate call graphs, control and data

flow charts, cross-reference information, metrics reports, etc.

3.3 The Thesaurus Tool

The Thesaurus tool was built by the author to support software maintenance at the

implementation level (Sjøberg et al. 1993, Sjøberg et al. 1994a). The term thesaurus

generally denotes “a ‘treasury’ or ‘storehouse’ of knowledge, as a dictionary,

encyclopædia, or the like” (Oxford 1961). (The term is not used in the more popular

meaning denoting a dictionary of synonyms.) In this context the “knowledge” is

information about names and identifiers such as where they are defined and used, what

kinds they are, in which contexts they occur, etc. The information captures all the

software written in all the languages of an application. Information about extensional

data in a database is also included.

The thesaurus is a meta-database that focuses on names which are central to system

builders’ thinking and thus influence the way software is organised. Meaningful names

are important for problem solving, understanding of semantic structure and retention

(Barnard et al. 1982, Weiser & Shneiderman 1987, Anand 1988). The choice of names

for identifiers is crucial for the readability of programs and is particularly important when

trying to administer and manage change. The meanings attached to names are relatively

stable when dealing with concepts at an abstract level (even though the detailed semantics

and interpretation may vary between people and between contexts). This contrasts with

all changes in physical software implementations. Therefore, there is potential for tools

that help manage the evolution while preserving the use of names. A focus on names

may encourage people to be more conscious of what the names are supposed to refer to,

though the semantic relation between names and what they refer to is a classical, largely

unresolved problem (Nelson 1992). Choosing names carefully would also prevent name

ambiguity.

The comprehensiveness of the thesaurus is in contrast to most commercially available

tools which focus either on the source code only (source code analysers) or on database-

specific information (data dictionaries). A few data dictionary tools also include source

code information, but relationships between names and identifiers in the software written

in the various languages are not recorded automatically. All the contents of the thesaurus

are automatically maintained. The whole application system is analysed, and the

thesaurus updated, regularly at times specified by the user, for example daily at 02:00. A

full analysis and update can also be initiated at any time.

The author has built two thesaurus tools. The HMS thesaurus tool was developed for

a health management system (HMS) in an industrial (C, C++, X Window System and

relational database) environment (Sjøberg 1993a). Another thesaurus tool was thereafter

built in the research context of the strongly typed, persistent programming language

Napier88 (Morrison et al. 1989). (The concept of persistence tackles the mismatch

between database systems and programming languages (Atkinson 1978); a uniform

model for representations and operations on persistent and transient data is provided.)

Some of the features of the thesaurus tools are:

• structure and dependency visualisation,

• impact analysis, and

• automatic build management, including smart recompilation. (In large application

systems, recompilations represent a significant part of the maintenance costs and may

thus be a hindrance for required system evolution.)

Moreover, well-structured software is a requirement for easy maintenance in the future

(Lehman and Belady 1985, Gibson & Senn 1989). To ensure correctness and prevent

deteriorating structure, a set of application independent constraints to which each suite of

application software should adhere, have been defined (Sjøberg 1993b). Another

thesaurus-based tool automatically verifies these constraints.

When introducing a tool that automatically checks the quality of software, one should

ask: Who should use the tool? How should the working process be organised to benefit

as much as possible from the tool? How should the project management motivate and

encourage active use of the tool? It is particularly important that inexperienced and

immature programmers find bugs and inconsistencies by themselves before the software

is released. The only purpose of the tool should be to improve the quality of the

software; a negative attitude may be created if it is felt that the tool is used for individual

monitoring purposes, e.g. by the project management.

The present tools focus on the implementation phase (initial construction and

maintenance). There is a trade-off between automation and to what extent also other

phases of the life cycle can be supported. If design structures, data model specifications,

etc. become more well-structured, thesauri may extend their scope of information and

form a basis for tools supporting other phases of the life cycle as well.

4 Change Statistics

In order to more accurately identify the requirements of methods and tools for change

management, relevant information about the extent and kind of change should be

provided. For example, Lehman has proposed five “laws” concerning software

evolution (Lehman and Belady 1985), which are based on long experience and

quantitative studies of several systems, mostly operating systems. The first two follow:

• A program must continuously undergo change in order to reflect change in its

environment. If not, the program will become less and less useful.

• As a large program is continuously changed, its complexity increases, which reflects

deteriorating structure, unless work is done to maintain or reduce it.

Changes to data models and database schemata are a kind of change that is particularly

serious concerning the impact on the rest of the system (Section 2.2). As a step further in

the direction of quantifying such change, the HMS thesaurus tool (Section 3.3) was

instructed to collect change measurements in a large health management system over a

period of 18 months, both during initial construction and after the system became

operational (Sjøberg 1993a). The results were:

• 140% increase in the number of relations

• 270% increase in the number of relations

• every relation was changed

• more additions than deletions, but still a significant number of deletions

The extent of schema evolution and the considerable consequential changes to code

confirm the need for supporting tools.

Another study reports the evolution of the data models in seven traditional

applications: “Sales and payments”, “Property inventory”, etc. (Marche 1993).

Approximately 60% of the entity attributes changed during the period of investigation (6

to 80 months depending on the application).

The studies of Marche and the author are the only examples of data model or database

schema evolution measurements found in the literature. In spite of the changes reported

these studies, it is often claimed that there is less need for change in traditional systems

since they are simpler and their functionality and behaviour better understood (Banerjee et

al. 1987). However, it could also be the case that the traditional systems are so rigid, and

the consequences of change so extensive, that due to lack of appropriate methods and

tools, user requested change is simply rejected. An example is the Norwegian census

database – a CODASYL network database containing 5 gigabytes of data about 5 million

persons. In spite of changed user needs, the schema has not been changed during the last

decade due to extreme costs – typically measured in units of person-years; any (minor)

schema change would imply database reorganisation and application code modification,

the needed work amounting to at least half a person-year per minor schema change

(Gløersen 1993).

To acquire more general knowledge about the extent and form of change, applications

systems in various application domains should be measured. One may then be able to

identify properties related to change consequences that are independent of application

domain, data model and implemented system.

4.1 Automatic Measurement Collection

It may be impractical to collect change data manually in a large, real-world application

system. There are two reasons for automating the process:

• Reliability In large systems with frequent changes manual collection is error-prone.

• Economy It is very hard to persuade people on a project to spend time and effort on

keeping track of the change history.

The latter is one major reason for the lack of measurements in this area.

Automating the process requires simple detection of change. For example, it may be

hard for a tool to distinguish between a rename and a deletion followed by an addition.

Moreover, it is often semantically difficult to tell what kind of change has occurred. For

example, assuming a type Person has been renamed to Patient and at the same had several

attributes removed and added. Has Person been changed, or has Person been removed

and a new type Patient been created? The more sophisticated categories of change we

create, the harder is automation.

In the health management study reported in the previous section, the automatic change

data collection was made complicated by the significant change to also other parts of the

system structure and to the development environments. Due to changes to directory

structures and file naming conventions, changes to the support software (e.g. operating

system, DBMS, version control systems), etc., tools collecting change statistics need to

be subject to the same change control mechanisms as the rest of the system under study.

Completely automated collection of change data seems thus impossible. Therefore, in

order to collect reliable measurements of a real-world system, the application

development people on the site must have the time and interest in co-operating with the

experiment. One problem is to convince them that the data collection is worth the

investment.

5 Conclusions

Adapting large, long-lived information systems to their changing circumstances and

requirements, remedying errors and improving existing functions are the technologically

most challenging issues for software engineers responsible for the implementation of

such systems. Methods and tools for systems development should have an inherent

understanding of the nature of evolution in large information systems. Hence, they

should provide adequate means for managing change, including necessary consequential

change.

Thesauri that collect and correlate information about all names used in the whole

processing environment of an application system form a useful platform for software

development environments. This approach has proved computationally feasible and

extremely useful both in an open, industrial environment and in a closed, research

environment. The focus on names is justified by the observation that within a context

(e.g. an application) people tend to use the names to have a consistent intended meaning.

Thus names are interesting markers when trying to administer and manage change.

A whole class of tools could utilise the thesaurus information to support change and

build management, incremental schema design, visualisation, schema evolution, etc. can

be envisaged in a software engineering environment. Future research will emphasise

change management. Supporting tools can operate at two levels (Atkinson et al. 1993).

First, informative systems like the thesaurus interfaces and parts of EnvMake provide

application developers and maintainers with data about the existing system, its present

representation and some of its dependencies. Second, more challenging to build are

automatic systems that directly implement some of the steps necessary to deal with the

consequences of change. Further work on automation requires more knowledge about

which changes should be propagated and which absorbed. Notations to describe

propagation requirements should be developed.

For reliability and efficiency reasons, the information required by change management

tools should be automatically maintained. (Information that relies on manual update is

usually out of date.) A consequence of this requirement, at least at present, is that most

of the thesaurus information relates to the implementation and operational phases since

information related to earlier phases is harder to collect and analyse automatically.

Ultimately, however, information related to all phases of the life cycle should be

collected, e.g. the analysis tool could scan design structures.

To turn informatics into a more exact science, more measurements should be obtained

provided they are relevant. Claimed problems and proposed solutions should be

quantified. The reported study of the evolution in a large health management system is

one step further in this direction. Other areas also need quantification. For example, as a

supplement to anecdotal description of user experiences, attempts should be made to

quantify the potential benefits of new and enhanced methods and tools (Basili & Reiter

1981, Law & Naeem 1992). This may be achieved by measuring and analysing

application systems before and after the methods have been adhered to and the supporting

tools applied (Sjøberg et al. 1994b).

Identifying what is interesting to measure and carrying out experiments yielding

reliable results are non-trivial tasks. For example, many human properties that are crucial

for change management in large-scale information systems (people’s efficiency, skill in

management, ability to communicate, etc.) are difficult to measure. We are certain,

however, that much more than is the case at present could and should be measured within

the fields of information systems and software engineering.

Acknowledgements

Numerous stimulating discussions with Malcolm Atkinson and Ray Welland were

essential for the ideas and work reported in this paper. The author was supported by the

Research Council of Norway.

References

Anand, N. (1988). “Clarify Function!”. ACM SIGPLAN Notices, Vol. 23, No. 6, pp. 69–79.

Atkinson, M.P. (1978). “Programming Languages and Databases”. In: Fourth International Conference

on Very Large Data Bases, Berlin, West Germany, 13th–15th September 1978, IEEE and ACM,

pp. 408–419.

Atkinson, M.P., Sjøberg, D.I.K. and Morrison, R. (1993). “Managing Change in Persistent Object

Systems”. In: First JSSST International Symposium on Object Technologies for Advanced

Software, Kanazawa, Japan, 4th—6th November 1993, Lecture Notes in Computer Science 742,

Springer-Verlag, pp. 315–338.

Bachman, C. (1988). “A CASE for Reverse Engineering”. Datamation, Vol. 34, No. 13, pp. 49–56.

Banerjee, J., Kim, W., Kim, H.–J. and Korth, H.F. (1987). “Semantics and Implementation of Schema

Evolution in Object-Oriented Databases”. In: ACM SIGMOD 1987 Conference on the

Management of Data, San Francisco, CA, 27th–29th May 1987, pp. 311–322.

Banker, R.D., Datar, S.M., Kemerer, C.F. and Zweig, D. (1993). “Software Complexity and

Maintenance Costs”. Communications of the ACM, Vol. 36, No. 11, pp. 81–94.

Barnard, P., Hammond, N.V., MacLean, A. and Morton, J. (1982). “Learning and Remembering

Interactive Commands”. In: Conference on Human Factors in Computer Systems, A C M

Washington, CD 1982.

Basili, V.R. & Reiter, R.W. (1981). “A Controlled Experiment Quantitatively Comparing Software

Development Approaches”. IEEE Transactions on Software Engineering, Vol. SE-7, No. 3, pp.

299–320.

Bjerknes, G. (1992). “Dialectical Reflection in Information Systems Development”. Scandinavian Journal

of Information Systems, Vol. 4, pp. 55–77.

Boehm, B.W. (1988). “A Spiral Model of Software Development and Enhancement”. IEEE Computer,

Vol. 21, No. 5.

Brodie, M. (1992). “The Promise of Distributed Computing and the Challenges of Legacy Systems,

Invited paper”. In: Tenth British National Conference on Databases, Aberdeen, Scotland, 6th–8th

July 1992, Lecture Notes in Computer Science 618, Springer-Verlag, pp. 1–28.

Brooks, F.P. (1975). The Mythical Man-Month. Addison Wesley.

Braa, K., Bratteteig, T. and Øgrim, L. (1992). “Redesign Process in System Development”. In: 15th

IRIS, Larkollen, Norway, August 1992, pp. 112–126.

Budde, R., Kautz, K., Kuhlenkamp, K. and Züllighoven, H. (1992). Prototyping. An Approach to

Evolutionary System Development. Berlin, Springer-Verlag.

Chapin, N. (1988). “Software Maintenance Life Cycle, Proceedings”. In: Conference on Software

Maintenance, Phoenix, AR, USA, 24th–27th October 1988, IEEE Computer Society Press, pp.

6–13.

Chikofsky, E. & Cross, J. (1990). “Reverse Engineering and Design Recovery: A Taxonomy”. IEEE

Software, Vol. 7, No. 1, pp. 13–17.

Collofello, J.S. & Buck, J.J. (1987). “Software Quality Assurance for Maintenance”. IEEE Software,

September 1987, pp. 46–51.

Ferraby, L. (1991). Change Control During Computer Systems Development. Prentice-Hall (UK).

Gibson, V.R. & Senn, J.A. (1989). “System Structure and Software Maintenance Performance”.

Communications of the ACM, Vol. 32, No. 3, pp. 347–358.

Gløersen, R. (1993). Private Communication. Statistics Norway, Oslo, Norway.

Griswold, W.G. & Notkin, D. (1992). “Computer-Aided vs. Manual Program Restructuring”. ACM

Software Engineering Notes, Vol. 17, No. 1, pp. 33–41.

Humphrey, W.S. (1990). Managing the Software Process. Reading, Massachusetts, Addison-Wesley.

IBM (1992). The Information Management Library: Problem, Change, and Configuration Management,

User's Guide. SC34-4328-00, IBM.

Law, D. & Naeem, T. (1992). “DESMET – Determining an Evaluation Methodology for Software

Methods and Tools”. In: CASE, Current Practice, Future Prospects. Spurr, K. and Layzells, P.

(editors), J. Wiley & Sons, Chichester, England, pp. 167–181.

Lehman, M.M. & Belady, L. (1985). Program Evolution, Processes of Software Change. A.P.I.C.

Studies in Data Processing No. 27, London, Academic Press.

Lerner, B.S. & Habermann, A.N. (1990). “Beyond Schema Evolution to Database Reorganisation”. In:

Conference on Object-Oriented Programming Systems, Languages and Applications, 1990, pp.

67–76.

Lientz, B.P. & Swanson, E.B. (1981). “Problems in Application Software Maintenance”.

Communications of the ACM, Vol. 24, No. 11, pp. 763–769.

Lientz, B.P., Swanson, E.B. and Tompkins, G.E. (1978). “Characteristics of Application Software

Maintenance”. Communications of the ACM, Vol. 21, No. 6, pp. 466–471.

Marche, S. (1993). “Measuring the Stability of Data Models”. European Journal on Information

Systems, Vol. 2, No. 1, pp. 37–47.

Monk, S. & Sommerville, I. (1993). “Schema Evolution in OODBs Using Class Versioning”. SIGMOD

Record, Vol. 22, No. 3, pp. 16–22.

Morrison, R., Brown, F., Connor, R. and Dearle, A. (1989). The Napier88 Reference Manual. Technical

Report PPRR-77-89, Universities of Glasgow and St Andrews.

Nelson, R.J. (1992). Naming and Reference. The Problems of Philosophy, Routledge, London.

Oxford (1961). The Oxford English Dictionary. Oxford University Press, London.

Pfleeger, S.L. (1987). Software Engineering – The Production of Quality Software. Macmillan.

Putnam, L.H. (1982). “Software Cost Estimating and Life Cycle Control”. IEEE Catalog.

Royce, W.W. (1970). “Managing the Development of Large Software Systems”. In: IEEE WESCON,

1970.

Sjøberg, D.I.K. (1993a). “Quantifying Schema Evolution”. Information and Software Technology, Vol.

35, No. 1, pp. 35–44.

Sjøberg, D.I.K. (1993b). Thesaurus-Based Methodologies and Tools for Maintaining Persistent

Application Systems. Ph.D. Thesis, Department of Computing Science, University of Glasgow.

Sjøberg, D.I.K., Atkinson, M.P., Lopes, J. and Trinder, P. (1993). “Building an Integrated Persistent

Application”. In: Fourth International Workshop on Database Programming Languages – Object

Models and Languages, Manhattan, New York City, USA, 30th August – 1st September 1993,

Springer-Verlag and British Computer Society, pp. 359–375.

Sjøberg, D.I.K., Atkinson, M.P. and Welland, R. (1994a). “Thesaurus-Based Software Environments”.

In: Workshop on Research Issues in the Intersection between Software Engineering and Databases,

16th International Conference on Software Engineering, Sorrento, Italy, 16th–17th May 1994.

Sjøberg, D.I.K., Cutts, Q., Welland, R. and Atkinson, M.P. (1994b). “Analysing Persistent Language

Applications”. In: Sixth International Workshop on Persistent Object Systems, Tarascon,

Provence, France, 5th – 9th September 1994.

Skarra, A.H. & Zdonik, S.B. (1987). “Type Evolution in an Object-Oriented Database”. In: Research

Directions in Object-Oriented Programming. Shriver, B.S. and Wegner, P. (editors), MITP,

Cambridge, MA, Computer Systems, pp. 393–415.

Swanson, E.B. (1976). “The Dimensions of Maintenance”. In: Second International Conference on

Software Engineering, 13–15 October, San Francisco, California, Long Beach, CA, 1976, IEEE

Computer Society. IEEE Catalog No 76CH1125-4 C, pp. 492–497.

Weiser, M. & Shneiderman, B. (1987). “Human Factors of Computer Programming”. In: Handbook of

Human Factors. Salvendys, G. (editor), John Wiley & Sons, pp. 1398–1415.

Zelkowitz, M.V. (1978). “Perspectives on Software Engineering”. ACM Computing Surveys, Vol. 10,

No. 2, pp. 197–216.

