-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by NORA - Norwegian Open Research Archives

Managing Change in Information Systems:
Technological Challenges

Dag |.K. §aberg

Department of Informatics, University of Odo
N-0316 Oslo, Norway

dags @ifi.uio.no

Abstract: Information systems and other computer-based systems must continuously undergo change
in order to reflect change in their environments. The present technology used to implement such
systems, including models, methods, tools and languages, does not have an inherent understanding of the
nature of evolution. The rigidity of existing systems is a hindrance for user requested enhancements.
Propagating changes correctly is a particular problem. It is common to find that necessary changes
conseguent on some other change have not been made, so that the system is inconsistent and will
eventually fail to operate correctly. The paper discusses tools for system maintenance and focuses on the
issue of automation. A tool that automatically generates and maintains all the information it needs is
presented. To provide more information about the form and extent of the evolution in real-world
systems, the same tool was instructed to collect change measurements. Information about the evolution
of a large health management system was recorded over a period of 18 months. Methods for and

problems of automatic change measurements collection are discussed.

1 Introduction

The dominant activity of the large-scale software industry is the production of changesto
application systems. Most changes are due to enhancements in functionality (Lientz et al.
1978). People do not know in advance or are not able to accurately express all the
desired functionality of (say) alarge information system. Only experience from using the
system in an operational environment will enable the needs and requirements to be
properly formulated. The requirements assessment will continuously change during
maintenance, and new requirements may be as demanding as those that directed theinitial
construction (Lientz & Swanson 1981). Other causes of change are accommodation to
new environments and error corrections (Swanson 1976, Lientz et al. 1978). Some
kinds of change may require extensive consequential change in the rest of the application,
e.g. changes to data definitions (Marche 1993, Sjgberg 1993a). Figures describing the
maintenance proportion of the total lifetime expenditure on a software system vary

https://core.ac.uk/display/30824858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

between 50% and 90% (Zelkowitz 1978, Putnam 1982, Chikofsky & Cross 1990). As
application systems live longer and grow in size and complexity, it islikely that thistrend
will continue (Pfleeger 1987).

The often unexpected and confusing situations that may occur due to changing
conditions and new insight during the information systems construction and maintenance
process (Lientz and Swanson 1981, Bjerknes 1992) may in turn lead to new user
requirements. Many factors may influence change in user requirements. change in
market, workforce, skills, economy, legislation, etc. The diversity and possibly
conflicting interests among users, problems in programmer-user communication,
programmer effectiveness, etc. may complicate the change process. Another crucial
factor in system maintenance is the suitability of the underlying technology in coping with
changes. Dueto rigid structure in existing systems and inadequate methods and tools for
change management, implementing necessary changes consequent on new user
requirements are often impossi ble within reasonabl e costs.

Information systems should be designed and implemented with change in mind, and
the organisation should be planned for change (Brooks 1975). It may be difficult to
persuade software builders and managers to plan for change since it requires some extra
effort during initial construction which may hinder meeting short-term budget and time
goals. The short-term thinking discourages designing for maintenance even though it is
an investment that will more than pay off in the long run.

The prevalent assumption of stability in current teaching and practice, data modelling,
database schema construction, etc. must be breached. New and improved methods and
tools for implementing change are required. Tools providing software documentation are
one example. Most documentation is notoriously poor and virtually always obsolete.
The only reliable, up-to-date program information may be the source code itself or
information that is automatically generated from the source code. This paper presents a
recording tool that automatically generates and maintains information needed for change
and consequential change propagation.

To turn informatics in general and the fields of information systems and software
engineering in particular into amore exact science, more measurements on relevant issues
should be provided. Quantification of change processes is a means to acquire detailed
knowledge about the extent and form of system evolution. The paper reports a study of
the evolution in alarge health management system and discusses the issue of automatic
change data collection.

The paper is organised as follows. Section 2 discusses the problem of change and
software maintenance. Section 3 categorises software maintenance tools and presents a
tool built by the author. Section 4 reports studies of system evolution and discusses the
issue of collecting change statistics. Section 5 concludes.

2 The Problem of Change and Software Maintenance

The term software maintenance denotes all changes to the software of an information
system after itsfirst installation in its operational environment. Since software systems
do not physically wear out or break (although a physical copy on any medium may
deteriorate), software maintenance differs from general maintenance in that the former is
not concerned with rectification to an earlier state. Software does not change on its own,
but is changed by people (or possibly by other software such as tools) to adapt to
changed requirements, to improve performance, to correct errors, etc. The maintenance
activities have been divided into the following categories (Swanson 1976):

* Corrective maintenance (detecting and correcting errors - routine debugging)

» Adaptive maintenance (accommodation of changes to the environment - including
hardware and system software)

» Perfective maintenance (user requested enhancements, improved documentation,
enhanced performance)

It has been reported that the respective categories count for 17%, 18% and 60% of the
total maintenance activities (Lientz et al. 1978). Within the third category, two thirds
were user requested enhancements. This shows that the majority of changes are not due
to errors or other causes that one might believe could be prevented by better requirements
analysis, design and implementation techniques. For example, one might argue that the
software changes could be reduced by more use of prototyping techniques (Budde et al.
1992). Prototyping may be useful during initial construction and may enable end-users
to express their needs and requirements more accurately in areas such as screen design
and certain aspects of system behaviour. However, since new requirements, changing
environments, bug-fixing, etc. are encountered after the system has become operational,
it isthe operational system itself which hasto be changed. The chalengeisthusto build
large, long-lived, data-intensive systems that can be incrementally modified in compliance
with changing user needs. So, reducing the extent of perfective change is not necessarily
desirable. It isusua for people carrying out tasks to recognise improved methods and
opportunities. Information systems, for example, are therefore most likely to support
people well if they facilitate change, and allocating resourcesto at least perfective change
should be regarded as valuable.

The problem of change is closely related to scale. A whole class of problems only
show up when a system becomes long-lived (typically involving persistent data) and
grows in size, complexity and diversity (variability). This is confirmed by studies
showing that software maintenance costs are significantly affected by age, size (Lientz
and Swanson 1981) and complexity (Banker et al. 1993). Methods, tools and
programming languages are a so the subject of new and changed requirementsin order to

cope with increase in scale. For example, they must support incremental design,
construction and commissioning.

2.1 The Software Development and Maintenance Process
The classical model for describing the software development process is the so-called
waterfall model (Royce 1970). This analysis-design-implementation-testing model of the
software development life cycle, however, does not comply with the way systems are
built in the real world. Obvious inadequacies are the lack of recognition of the
importance of system changes and its description of systems development as a sequential
process. Some of the deficiencies are encompassed in the “spiral model” (Boehm 1988)
which adds the notion of risk analysis and alows for iteration of the development tasks.
The problem of software maintenance is not explicitly addressed by any of these
models, though it is common to extend the classical model with a separate maintenance
phase after testing. In practice, however, the phases of development are repeated during
maintenance. New requirements must be determined, the existing software application
needs re-design (Braa et al. 1992) and re-coding, new tests must be undertaken, etc.
This does not mean that the software development and software maintenance life cycles
follow the exactly same pattern; at adetailed level the stages and the relative effort applied
to the stages may differ (Chapin 1988). Nevertheless, to satisfy new user requirements,
we need methods and tools for managing various kinds of software change — independent
of whether they occur during initial construction or after the software application has
become operational.

2.2 Change Propagation

It is deceptively easy to change software (Ssmple editing). Software is therefore changed
much more frequently than tangible products. However, it is not easy to make consi stent
changes; it is easy to cause a mutation, but very hard to generate aviable one, particularly
if multiple copies have been shipped, etc. A change in one place may have unintended
effects elsewhere; even minor local changes can have global impact. Included in the
consequences are new errors (the ripple effect). One study found that more than 50% of
al errors were due to previous changes (Collofello & Buck 1987). The challengeisto
ensure that all consequential changes are dealt with correctly by propagation throughout
the system and that no unnecessary changes occur, perturbing working practices and
operationa software.

The issue of change propagation will be illustrated by an example (Figure 1). Many
information systems are centred around a database. User requested enhancementsin the
functionality of such a system may typically require change in the kind of information
provided by the database, which is described by a data model. (The“[I " in the figure
should be read “may imply”.) A change to a data model must normally be propagated to
the database schema. Changes to database schemata (schema evolution) may in turn have

changeto

new user changeto Cchangeto O dodaa
requirements data model doschema [changeto
application programs

Figure 1. Change propagation

serious impact on other parts of the schema, on extensional data (user data stored in the
database) and on application programs (including interfaces for data entry, queries, report
generation, etc.).

At present, schema modifications are often dealt with in an ad hoc way. The
necessary data conversions and program modifications may be expensive due to factors
such as a requirement to shutdown the system, programmer effort, machine resources,
etc. However, research on schema evolution is emerging (Banerjee et al. 1987, Skarra &
Zdonik 1987, Lerner & Habermann 1990, Monk & Sommerville 1993). Work on
guantifying the extent and form of schema evolution will be described in Section 4.

3 Software Maintenance Tools

Tools for managing change in information systems can broadly be divided into those
supporting project management (Section 3.1) and those supporting implementation
(Section 3.2). Toolsin the latter category are oriented towards technical issues, and they
should asfar as possible extract al the information they need automatically. One example
of such atool isthe thesaurustool (Section 3.3).

3.1 Change Management at the Project Management Level

Project management is an activity at the overall software life cycle level and involves
tasks like scheduling, team management and resource allocation (people, programming
languages, tools, operating systems, hardware, etc.). The administration of changes at
this level is an important part of project management and is commonly referred to as
change management (Humphrey 1990) or change control (Ferraby 1991). The change
processisformalised in that all change requests are evaluated with respect to the need for
the change, the impact of the change on the project and system, schedule of necessary
activities, etc. During the implementation of a change, information is recorded about who
did what when, what is the status, what remains, etc. 1BM's Information/Management
product is an example of atool providing support for such change management (IBM

1992):

The Change Management facility helps you coordinate the various tasks your organization
performs to make and test changes in your data processing environment. Y ou can enter data
about changes made to any area of your organization's operations. to software and hardware
components of the operating system or to procedures, publications, and facilities.

Change management tools at this level are thus support systems that record information
and produce corresponding reports.

3.2 Change Management at the Implementation Level

Developing the software of large and long-lived information systems is a complex and
time consuming task. Methods and tools should assist in managing this complexity and
increase the efficiency and reliability of the development. It is crucial that the software
engineers and programmers find it worthwhile to learn and apply the methods and tools.
They should not hinder normal working practice, but software builders must understand
that they have to invest in setting up and preserving structure if they want an easier
maintenance future. The following activities should be supported:

 Predicting change consequences (impact anaysis)

* Propagating necessary consequential changes

» Detecting inconsistencies after change or preventing them
 Detecting and recording change (necessary for recompilation, etc.)

A sophisticated maintenance tool should also support activities such as reverse engi-
neering (Bachman 1988) and automatic documentation. Thereis a significant amount of
“legacy systems” (Brodie 1992) which will still be operational for many years to come.
In order to satisfy new requirements, such code is continuously being modified causing
deterioration of its structure (Lehman & Belady 1985). One approach to help solve this
problem is reverse engineering which is to generate an abstract version of a concrete
program and then re-implement the abstract version. Typically, COBOL programs are
being re-implemented in COBOL itself or in a more up-to-date programming language
(Griswold & Notkin 1992).

A severe problem in the software application industry is obsolete or missing
documentation. The major reason for thisis that documentation is normally not updated
in accordance with modifications to the software. For some sorts of documentation this
problem may be alleviated by tools that provide automatic documentation based on static
analysis of source code. Such tools may typically generate call graphs, control and data
flow charts, cross-reference information, metrics reports, etc.

3.3 The Thesaurus Tool

The Thesaurus tool was built by the author to support software maintenance at the
implementation level (Sjaberg et al. 1993, Sgberg et al. 1994a). The term thesaurus
generally denotes “a ‘treasury’ or ‘storehouse’ of knowledge, as a dictionary,
encyclopaddia, or the like” (Oxford 1961). (The term is not used in the more popular
meaning denoting a dictionary of synonyms.) In this context the “knowledge” is
information about names and identifiers such as where they are defined and used, what
kinds they are, in which contexts they occur, etc. The information captures all the

software written in all the languages of an application. Information about extensional
datain adatabase is aso included.

The thesaurus is a meta-database that focuses on names which are central to system
builders' thinking and thus influence the way software is organised. Meaningful names
are important for problem solving, understanding of semantic structure and retention
(Barnard et al. 1982, Weiser & Shneiderman 1987, Anand 1988). The choice of names
for identifiersis crucia for the readability of programs and is particularly important when
trying to administer and manage change. The meanings attached to names are relatively
stable when dealing with concepts at an abstract level (even though the detailed semantics
and interpretation may vary between people and between contexts). This contrasts with
al changesin physical software implementations. Therefore, there is potential for tools
that help manage the evolution while preserving the use of names. A focus on names
may encourage people to be more conscious of what the names are supposed to refer to,
though the semantic relation between names and what they refer to isaclassical, largely
unresolved problem (Nelson 1992). Choosing names carefully would also prevent name
ambiguity.

The comprehensiveness of the thesaurusisin contrast to most commercially available
tools which focus either on the source code only (source code analysers) or on database-
specific information (data dictionaries). A few data dictionary tools also include source
code information, but relationships between names and identifiers in the software written
in the various languages are not recorded automatically. All the contents of the thesaurus
are automatically maintained. The whole application system is analysed, and the
thesaurus updated, regularly at times specified by the user, for example daily at 02:00. A
full analysis and update can also be initiated at any time.

The author has built two thesaurus tools. The HM S thesaurus tool was devel oped for
a health management system (HMS) in an industrial (C, C*t*, X Window System and
relational database) environment (Saberg 1993a). Another thesaurus tool was thereafter
built in the research context of the strongly typed, persistent programming language
Napier88 (Morrison et al. 1989). (The concept of persistence tackles the mismatch
between database systems and programming languages (Atkinson 1978); a uniform
model for representations and operations on persistent and transient data is provided.)
Some of the features of the thesaurus tools are:

* structure and dependency visualisation,
* impact analysis, and

» automatic build management, including smart recompilation. (In large application
systems, recompilations represent a significant part of the maintenance costs and may
thus be a hindrance for required system evolution.)

Moreover, well-structured software is a requirement for easy maintenance in the future
(Lehman and Belady 1985, Gibson & Senn 1989). To ensure correctness and prevent

deteriorating structure, a set of application independent constraints to which each suite of
application software should adhere, have been defined (Sjgberg 1993b). Another
thesaurus-based tool automatically verifies these constraints.

When introducing atool that automatically checks the quality of software, one should
ask: Who should use the tool? How should the working process be organised to benefit
as much as possible from the tool? How should the project management motivate and
encourage active use of the tool? It is particularly important that inexperienced and
immature programmers find bugs and inconsistencies by themselves before the software
is released. The only purpose of the tool should be to improve the quality of the
software; a negative attitude may be created if it isfelt that the tool is used for individual
monitoring purposes, e.g. by the project management.

The present tools focus on the implementation phase (initial construction and
maintenance). There is a trade-off between automation and to what extent also other
phases of the life cycle can be supported. If design structures, data model specifications,
etc. become more well-structured, thesauri may extend their scope of information and
form abasis for tools supporting other phases of the life cycle aswell.

4 Change Statistics

In order to more accurately identify the requirements of methods and tools for change
management, relevant information about the extent and kind of change should be
provided. For example, Lehman has proposed five “laws’ concerning software
evolution (Lehman and Belady 1985), which are based on long experience and
guantitative studies of severa systems, mostly operating systems. Thefirst two follow:

* A program must continuously undergo change in order to reflect change in its
environment. If not, the program will become less and less useful.

* Asalarge program is continuously changed, its complexity increases, which reflects
deteriorating structure, unless work is done to maintain or reduceit.

Changes to data models and database schemata are a kind of change that is particularly
serious concerning the impact on the rest of the system (Section 2.2). Asastep further in
the direction of quantifying such change, the HMS thesaurus tool (Section 3.3) was
instructed to collect change measurements in a large health management system over a
period of 18 months, both during initial construction and after the system became
operationa (§e@berg 1993a). The results were:

* 140% increase in the number of relations
* 270% increase in the number of relations
* every relation was changed

» more additions than deletions, but till a significant number of deletions

The extent of schema evolution and the considerable consequential changes to code
confirm the need for supporting tools.

Another study reports the evolution of the data models in seven traditional
applications: “Sales and payments’, “Property inventory”, etc. (Marche 1993).
Approximately 60% of the entity attributes changed during the period of investigation (6
to 80 months depending on the application).

The studies of Marche and the author are the only examples of data model or database
schema evolution measurements found in the literature. 1n spite of the changes reported
these studies, it is often claimed that there is less need for change in traditional systems
since they are ssimpler and their functionality and behaviour better understood (Banerjee et
al. 1987). However, it could aso be the case that the traditional systems are so rigid, and
the consequences of change so extensive, that due to lack of appropriate methods and
tools, user requested change is simply rejected. An example is the Norwegian census
database —a CODASY L network database containing 5 gigabytes of data about 5 million
persons. In spite of changed user needs, the schema has not been changed during the last
decade due to extreme costs — typically measured in units of person-years; any (minor)
schema change would imply database reorganisation and application code modification,
the needed work amounting to at least half a person-year per minor schema change
(Glgersen 1993).

To acquire more general knowledge about the extent and form of change, applications
systems in various application domains should be measured. One may then be able to
identify properties related to change consequences that are independent of application
domain, datamodel and implemented system.

4.1 Automatic Measurement Collection
It may be impractical to collect change data manually in alarge, real-world application
system. There are two reasons for automating the process:

* Rdiability Inlarge systemswith frequent changes manual collection is error-prone.

» Economy Itisvery hard to persuade people on a project to spend time and effort on
keeping track of the change history.

Thelatter isone mgor reason for the lack of measurementsin this area.

Automating the process requires simple detection of change. For example, it may be
hard for atool to distinguish between a rename and a deletion followed by an addition.
Moreover, it is often semantically difficult to tell what kind of change has occurred. For
example, assuming atype Person has been renamed to Patient and at the same had severa
attributes removed and added. Has Person been changed, or has Person been removed
and a new type Patient been created? The more sophisticated categories of change we
create, the harder is automation.

In the health management study reported in the previous section, the automatic change
data collection was made complicated by the significant change to also other parts of the
system structure and to the development environments. Due to changes to directory
structures and file naming conventions, changes to the support software (e.g. operating
system, DBMS, version control systems), etc., tools collecting change statistics need to
be subject to the same change control mechanisms as the rest of the system under study.
Completely automated collection of change data seems thus impossible. Therefore, in
order to collect reliable measurements of a real-world system, the application
development people on the site must have the time and interest in co-operating with the
experiment. One problem is to convince them that the data collection is worth the
investment.

5 Conclusions

Adapting large, long-lived information systems to their changing circumstances and
reguirements, remedying errors and improving existing functions are the technologically
most challenging issues for software engineers responsible for the implementation of
such systems. Methods and tools for systems development should have an inherent
understanding of the nature of evolution in large information systems. Hence, they
should provide adequate means for managing change, including necessary consequential
change.

Thesauri that collect and correlate information about all names used in the whole
processing environment of an application system form a useful platform for software
development environments. This approach has proved computationally feasible and
extremely useful both in an open, industrial environment and in a closed, research
environment. The focus on names is justified by the observation that within a context
(e.g. an application) people tend to use the names to have a consistent intended meaning.
Thus names are interesting markers when trying to administer and manage change.

A whole class of tools could utilise the thesaurus information to support change and
build management, incremental schema design, visualisation, schema evolution, etc. can
be envisaged in a software engineering environment. Future research will emphasise
change management. Supporting tools can operate at two levels (Atkinson et al. 1993).
First, informative systems like the thesaurus interfaces and parts of EnvMake provide
application developers and maintainers with data about the existing system, its present
representation and some of its dependencies. Second, more challenging to build are
automatic systems that directly implement some of the steps necessary to deal with the
conseguences of change. Further work on automation requires more knowledge about
which changes should be propagated and which absorbed. Notations to describe
propagation requirements should be devel oped.

For reliability and efficiency reasons, the information required by change management
tools should be automatically maintained. (Information that relies on manual update is
usually out of date.) A consequence of this requirement, at least at present, is that most
of the thesaurus information relates to the implementation and operational phases since
information related to earlier phases is harder to collect and analyse automatically.
Ultimately, however, information related to all phases of the life cycle should be
collected, e.g. the analysis tool could scan design structures.

To turn informatics into a more exact science, more measurements should be obtained
provided they are relevant. Claimed problems and proposed solutions should be
quantified. The reported study of the evolution in alarge health management system is
one step further in this direction. Other areas aso need quantification. For example, asa
supplement to anecdotal description of user experiences, attempts should be made to
quantify the potential benefits of new and enhanced methods and tools (Basili & Reiter
1981, Law & Naeem 1992). This may be achieved by measuring and analysing
application systems before and after the methods have been adhered to and the supporting
tools applied (S gberg et al. 1994b).

Identifying what is interesting to measure and carrying out experiments yielding
reliable results are non-trivial tasks. For example, many human propertiesthat are crucial
for change management in large-scale information systems (people’s efficiency, skill in
management, ability to communicate, etc.) are difficult to measure. We are certain,
however, that much more than is the case at present could and should be measured within
the fields of information systems and software engineering.

Acknowledgements

Numerous stimulating discussions with Malcolm Atkinson and Ray Welland were
essential for the ideas and work reported in this paper. The author was supported by the
Research Council of Norway.

References

Anand, N. (1988). “Clarify Function!”. ACM SIGPLAN Notices, Vol. 23, No. 6, pp. 69-79.

Atkinson, M.P. (1978). “Programming Languages and Databases’. In: Fourth International Conference
on Very Large Data Bases, Berlin, West Germany, 13th—15th September 1978, IEEE and ACM,
pp. 408-419.

Atkinson, M.P., Sjgberg, D.I.K. and Morrison, R. (1993). “Managing Change in Persistent Object
Systems”. In: First JSSST International Symposium on Object Technologies for Advanced
Software, Kanazawa, Japan, 4th—6th November 1993, Lecture Notes in Computer Science 742,
Springer-Verlag, pp. 315-338.

Bachman, C. (1988). “A CASE for Reverse Engineering”. Datamation, Vol. 34, No. 13, pp. 49-56.

Banerjeg, J., Kim, W., Kim, H.—J. and Korth, H.F. (1987). “Semantics and Implementation of Schema
Evolution in Object-Oriented Databases”. In: ACM SIGMOD 1987 Conference on the
Management of Data, San Francisco, CA, 27th-29th May 1987, pp. 311-322.

Banker, R.D., Datar, S.M., Kemerer, C.F. and Zweig, D. (1993). “Software Complexity and
Maintenance Costs’. Communications of the ACM, Val. 36, No. 11, pp. 81-94.

Barnard, P., Hammond, N.V., MacLean, A. and Morton, J. (1982). “Learning and Remembering
Interactive Commands’. In: Conference on Human Factors in Computer Systems, ACM
Washington, CD 1982.

Basili, V.R. & Reiter, R.W. (1981). “A Controlled Experiment Quantitatively Comparing Software
Development Approaches’. |[EEE Transactions on Software Engineering, Vol. SE-7, No. 3, pp.
299-320.

Bjerknes, G. (1992). “Dialectical Reflection in Information Systems Development” . Scandinavian Journal
of Information Systems, Vol. 4, pp. 55-77.

Boehm, B.W. (1988). “A Spiral Model of Software Development and Enhancement”. IEEE Computer,
Voal. 21, No. 5.

Brodie, M. (1992). “The Promise of Distributed Computing and the Challenges of Legacy Systems,
Invited paper”. In: Tenth British National Conference on Databases, Aberdeen, Scotland, 6th—8th
July 1992, Lecture Notes in Computer Science 618, Springer-Verlag, pp. 1-28.

Brooks, F.P. (1975). The Mythical Man-Month. Addison Wesley.

Braa, K., Bratteteig, T. and @grim, L. (1992). “Redesign Process in System Development”. In: 15th
IRIS Larkollen, Norway, August 1992, pp. 112-126.

Budde, R., Kautz, K., Kuhlenkamp, K. and Zillighoven, H. (1992). Prototyping. An Approach to
Evolutionary System Development. Berlin, Springer-Verlag.

Chapin, N. (1988). “Software Maintenance Life Cycle, Proceedings’. In: Conference on Software
Maintenance, Phoenix, AR, USA, 24th-27th October 1988, IEEE Computer Society Press, pp.
6-13.

Chikofsky, E. & Cross, J. (1990). “Reverse Engineering and Design Recovery: A Taxonomy”. |EEE
Software, Vol. 7, No. 1, pp. 13-17.

Collofello, J.S. & Buck, J.J. (1987). “ Software Quality Assurance for Maintenance”. |IEEE Software,
September 1987, pp. 46-51.

Ferraby, L. (1991). Change Control During Computer Systems Development. Prentice-Hall (UK).

Gibson, V.R. & Senn, J.A. (1989). “System Structure and Software Maintenance Performance”.
Communications of the ACM, Vol. 32, No. 3, pp. 347-358.

Glgersen, R. (1993). Private Communication. Statistics Norway, Oslo, Norway.

Griswold, W.G. & Notkin, D. (1992). “Computer-Aided vs. Manual Program Restructuring”. ACM
Software Engineering Notes, Vol. 17, No. 1, pp. 33-41.

Humphrey, W.S. (1990). Managing the Software Process. Reading, Massachusetts, Addison-Wesley.

IBM (1992). The Information Management Library: Problem, Change, and Configuration Management,
User's Guide. SC34-4328-00, IBM.

Law, D. & Naeem, T. (1992). “DESMET — Determining an Evaluation Methodology for Software
Methods and Tools’. In: CASE, Current Practice, Future Prospects. Spurr, K. and Layzells, P.
(editors), J. Wiley & Sons, Chichester, England, pp. 167-181.

Lehman, M.M. & Belady, L. (1985). Program Evolution, Processes of Software Change. A.P.I.C.
Studies in Data Processing No. 27, London, Academic Press.

Lerner, B.S. & Habermann, A.N. (1990). “Beyond Schema Evolution to Database Reorganisation”. In:
Conference on Object-Oriented Programming Systems, Languages and Applications, 1990, pp.
67-76.

Lientz, B.P. & Swanson, E.B. (1981). “Problems in Application Software Maintenance”.
Communications of the ACM, Vol. 24, No. 11, pp. 763—-769.

Lientz, B.P., Swanson, E.B. and Tompkins, G.E. (1978). “Characteristics of Application Software
Maintenance”. Communications of the ACM, Vol. 21, No. 6, pp. 466-471.

Marche, S. (1993). “Measuring the Stability of Data Models’. European Journal on Information
Systems, Vol. 2, No. 1, pp. 3747.

Monk, S. & Sommerville, 1. (1993). “ Schema Evolution in OODBs Using Class Versioning”. SSGMOD
Record, Vol. 22, No. 3, pp. 16-22.

Morrison, R., Brown, F., Connor, R. and Dearle, A. (1989). The Napier88 Reference Manual. Technical
Report PPRR-77-89, Universities of Glasgow and St Andrews.

Nelson, R.J. (1992). Naming and Reference. The Problems of Philosophy, Routledge, London.
Oxford (1961). The Oxford English Dictionary. Oxford University Press, London.

Pfleeger, S.L. (1987). Software Engineering — The Production of Quality Software. Macmillan.
Putnam, L.H. (1982). “ Software Cost Estimating and Life Cycle Control”. IEEE Catalog.

Royce, W.W. (1970). “Managing the Development of Large Software Systems’. In: IEEE WESCON,
1970.

Sjaberg, D.1.K. (1993a). “Quantifying Schema Evolution”. Information and Software Technology, Vol.
35, No. 1, pp. 35-44.

Sjgberg, D.I.K. (1993b). Thesaurus-Based Methodologies and Tools for Maintaining Persistent
Application Systems. Ph.D. Thesis, Department of Computing Science, University of Glasgow.

Sjaberg, D.1.K., Atkinson, M.P., Lopes, J. and Trinder, P. (1993). “Building an Integrated Persistent
Application”. In: Fourth International Workshop on Database Programming Languages — Object
Models and Languages, Manhattan, New Y ork City, USA, 30th August — 1st September 1993,
Springer-Verlag and British Computer Society, pp. 359-375.

Sjaberg, D.1.K., Atkinson, M.P. and Welland, R. (19944). “Thesaurus-Based Software Environments’.
In: Workshop on Research Issuesin the Intersection between Software Engineering and Databases,
16th International Conference on Software Engineering, Sorrento, Italy, 16th—17th May 1994.

Sjaberg, D.1.K., Cutts, Q., Welland, R. and Atkinson, M.P. (1994b). “Analysing Persistent Language
Applications”. In: Sixth International Workshop on Persistent Object Systems, Tarascon,
Provence, France, 5th — 9th September 1994.

Skarra, A.H. & Zdonik, S.B. (1987). “Type Evolution in an Object-Oriented Database’. In: Research
Directions in Object-Oriented Programming. Shriver, B.S. and Wegner, P. (editors), MITP,
Cambridge, MA, Computer Systems, pp. 393-415.

Swanson, E.B. (1976). “The Dimensions of Maintenance’. In: Second International Conference on
Software Engineering, 13-15 October, San Francisco, California, Long Beach, CA, 1976, IEEE
Computer Society. |IEEE Catalog No 76CH1125-4 C, pp. 492-497.

Weiser, M. & Shneiderman, B. (1987). “Human Factors of Computer Programming”. In: Handbook of
Human Factors. Salvendys, G. (editor), John Wiley & Sons, pp. 1398-1415.

Zelkowitz, M.V. (1978). “Perspectives on Software Engineering”. ACM Computing Surveys, Vol. 10,
No. 2, pp. 197-216.

