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Abstract

Left ventricular (LV) volumes and ejection fraction (EF) are important parameters for
diagnosis, prognosis, and treatment planning in patients with heart disease. These parameters
are commonly measured by manual tracing in echocardiographic images, a procedure that
is time consuming, prone to inter- and intra-observer variability, and require highly trained
operators. This is particularly the case in three-dimensional (3D) echocardiography, where
the increased amount of data makes manual tracing impractical. Automated methods
for measuring LV volumes and EF can therefore improve efficiency and accuracy of
echocardiographic examinations, giving better diagnosis at a lower cost.

The main goal of this thesis was to improve the efficiency and quality of cardiac
measurements. More specifically, the goal was to develop rapid and accurate methods that
utilize expert knowledge for automated evaluation of cardiac function in echocardiography.

The thesis presents several methods for automated volume and EF measurements
in echocardiographic data. For two-dimensional (2D) echocardiography, an atlas based
segmentation algorithm is presented in paper A. This method utilizes manually traced
endocardial contours in a validated case database to control a snake optimized by dynamic
programming. The challenge with this approach is to find the most optimal case in
the database. More promising results are achieved in triplane echocardiography using a
multiview and multi-frame extension to the active appearance model (AAM) framework,
as demonstrated in paper B. The AAM generalizes better to new patient data and is based
on more robust optimization schemes than the atlas-based method. In triplane images, the
results of the AAM algorithm may be improved further by integrating a snake algorithm
into the AAM framework and by constraining the AAM to manually defined landmarks,
and this is shown in paper C. For 3D echocardiograms, a clinical semi-automated volume
measurement tool with expert selected points is validated in paper D. This tool compares
favorably to a reference measurement tool, with good agreement in measured volumes, and
with a significantly lower analysis time. Finally, in paper E, fully automated real-time
segmentation in 3D echocardiography is demonstrated using a 3D active shape model (ASM)
of the left ventricle in a Kalman filter framework. The main advantage of this approach is its
processing performance, allowing for real-time volume and EF estimates.

Statistical models such as AAMs and ASMs provide elegant frameworks for incorporating
expert knowledge into segmentation algorithms. Expert knowledge can also be utilized
directly through manual input to semi-automated methods, allowing for manual initialization
and correction of automatically determined volumes. The latter technique is particularly
suitable for clinical routine examinations, while the fully automated 3D ASM method
can extend the use of echocardiography to new clinical areas such as automated patient
monitoring.

In this thesis, different methods for utilizing expert knowledge in automated segmentation
algorithms for echocardiography have been developed and evaluated. Particularly in 3D
echocardiography, these contributions are expected to improve efficiency and quality of
cardiac measurements.
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Chapter 1

Introduction and rationale

The left ventricle of the heart is responsible for pumping blood through the body, and a
well functioning ventricle is essential for patient health and wellbeing. Heart diseases,
such as coronary artery disease, myocardial infarction, heart failure, and ischemia, are
often manifested through reduced contractility of the heart muscle, leading to lowered
pumping capacity, or ejection fraction (EF), and changes in ventricular volume [114, 115].
Left ventricular (LV) volumes and EF are therefore important measurements for diagnosis,
prognosis, and treatment of patients with heart disease [100, 102, 107], and reliable
determination of these parameters is of high clinical interest.

Echocardiography is an inexpensive and safe method for investigating the morphology
and function of the heart [114], and is therefore the primary tool to non-invasively assess
heart function in the clinic [45, 100]. The recommended method for measuring volumes and
EF using echocardiography is by manually tracing the boundary of the ventricular cavity at
end diastole and end systole in two orthogonal view-planes, and then computing the volume
by the biplane method of disks [56, 85, 86].

Three-dimensional (3D) echocardiography has recently been introduced as a routine
clinical tool [46, 72, 84]. This allows for acquiring multiple (typically three) view-planes
simultaneously [6], and acquisition of dense volumetric data. In triplane imaging, improved
accuracy of manually measured volumes and EF has been reported [63]. Dense volumetric
data provide much more information about the ventricle than the two-dimensional (2D)
modality, and the quality of extracted 2D images is improved by reducing foreshortening
[46], providing better visualization of wall function, and improving the accuracy of measured
volumes and EF [49, 60, 99].

The quality of echocardiographic images depends on many factors, such as speckle,
thermal noise, low contrast, shadows, dropouts, reverberations, anisotropic resolution, and
foreshortening. In addition, delineation of the endocardial boundary should by convention
treat papillary muscles as part of the chamber volume [56]. Since accurate assessment
of cardiac volumes and EF is a challenging task, this is usually done by highly trained
and experienced physicians. Manual assessment of cardiac volumes is, however, time
consuming and expensive, and can be prone to inter- and intra-observer variability [49]. In
3D echocardiography, manual tracing becomes impractical compared to 2D images, because
of the increased amount of data.

It is therefore a clinical need for automated methods that allows for rapid, reproducible,
and accurate measurements of cardiac volumes and EF in 2D, multiplane, and 3D
echocardiographic data. Such methods should be robust with respect to the highly varying
local image evidence in echocardiograms, and they should adhere to clinical conventions.
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1.1 Aim of study

The main goal of this thesis was to improve efficiency and quality of cardiac measurements.
More specifically, the goal was to develop rapid and accurate methods that utilize expert
knowledge for automated evaluation of cardiac function in echocardiography.

1.2 Summary of contributions

The focus of this thesis has been to develop automated tools for measuring left ventricular
volumes and EF in 2D, triplane, and 3D echocardiographic data. It has therefore been
important to establish methods that are able to automatically segment the endocardial
boundary in echocardiograms. Since an expert is able to do good segmentation even in
moderately difficult cases, particular focus has been on how to incorporate some of the
expert’s knowledge into the segmentation algorithms.

The main contributions in this thesis include:

* An atlas-based method for utilizing information from a case database of expert
annotated echocardiograms in a snake segmentation algorithm (Paper A).

An active appearance model-based method for semi-automated multi-frame segmenta-
tion of triplane echocardiograms, giving temporally and spatially consistent segmenta-
tion between frames and views (Paper B).

* A framework for combining active appearance models with other segmentation algo-
rithms such as dynamic programming-based snakes, which also permits incorporation
of manually defined landmarks into the segmentation algorithm (Paper C).

A clinical tool for semi-automated segmentation of 3D echocardiographic data, and for
extraction of training data for 3D active shape models (Paper D).

A method for fully automated real-time segmentation in 3D echocardiography using 3D
active shape models (Paper E).

1.3 Outline of the thesis

This thesis is organized as follows. Chapter 2 gives a brief introduction to heart anatomy
and function, echocardiography, historical perspectives, and an introduction to different types
of segmentation algorithms. Chapter 3 covers related work, and summarizes concepts that
are assumed to be known in the papers. Chapter 4 summarizes the individual papers, and
a discussion of the contributions is given in chapter 5. Chapter 6 concludes this thesis and
discusses possible directions for further work.



Chapter 2

Background

Automated interpretation of echocardiographic data is an interdisciplinary subject, requiring
clinical understanding of heart anatomy and function, knowledge of image segmentation
algorithms, as well as knowledge of the ultrasound image formation, processing, and display.
This chapter gives a brief introduction to these fields.

2.1 Cardiology

The heart is a muscular organ, located in the chest and protected by the rib cage. The main
purpose of the heart is to pump blood through the body. It consists of four main chambers,
the left atrium, the left ventricle, the right atrium, and the right ventricle, as shown in Fig.
2.1. The left side of the heart is responsible for pumping oxygenated blood from the lungs
throughout the body, i.e. the systemic circuit. The right side pumps de-oxygenated blood
from the body into the lungs. This is called the pulmonary circuit. Since the systemic circuit
has a higher blood resistance than the pulmonary circuit, the left part of the heart is larger and
stronger than the right part. For both systems, the atria handle inflow to the heart, and pump
blood into the corresponding ventricles. In turn, the ventricles pump blood out from the heart,
into the body or into the lungs.

The atria are separated from the ventricles by directional valves allowing blood to flow
from the atria into the ventricles, but not in the opposite direction. The mitral valve is located
between the left atrium and the left ventricle, while the tricuspid valve is located between the
right atrium and the right ventricle. These valves can hold the high ventricular blood pressure
because they are anchored by thin strings, or chordae, to papillary muscles, which are attached
to the inside of the ventricular wall. Reflux of blood back into the ventricles is prevented by
a separate set of directional valves. The pulmonary valve is located at the outflow tract of the
right ventricle, while the aortic valve is located at the outflow tract of the left ventricle.

The heart wall consists mainly of muscular tissue called the myocardium, which is
composed of specialized cardiac muscle cells bundled into muscle fibers. These fibers are
organized in multiple layers, each having different orientation. The interior of the heart
chambers has a folded structure called trabeculae. The endocardium is the innermost layer
of tissue that lines the chambers of the heart, and separates the myocardium from blood. This
layer mainly consists of endothelial cells and connective tissue. The outer lining of the heart
is called the epicardium and consists mainly of connective tissue. The epicardium forms the
inner part of the heart sac called the pericardium, which contains the heart and the roots of the
great vessels.
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Figure 2.1: A schematic cut through the heart, showing the main chambers, the valves, and the
connected blood vessels. From [117].

The pumping action of the heart causes the left ventricular blood volume to change during
a heartbeat, as shown in Fig. 2.2. During the systolic contraction, blood is ejected from the
ventricle through the aortic valve, and the ventricular volume is reduced. The mitral valve is
closed, preventing blood-flow into the atrium. At beginning of diastole, the ventricle relaxes,
and the reduced ventricular pressure allows blood to flow from the atrium into the ventricle
through the mitral valve. This is known as rapid filling. Diastasis occurs when the pressure
gradient over the mitral valve has been equalized, and volume is relatively constant. The
duration of the heartbeat varies from stroke to stroke, mainly caused by different duration of
this stage. In late diastole, the atrium contracts, causing the ventricle to become completely
filled.

2.2 Measuring cardiac function

Cardiac function can be measured in several ways, but left ventricular volumes, stroke volume,
and EF are among the most commonly used parameters [60, 109]. Stroke volume (SV) is the
difference between the end diastolic volume (EDV) and the end systolic volume (ESV), and
is a measure of how much blood the heart pumps in each stroke. Ejection fraction (EF) is the
ratio of stroke volume to end diastolic volume, measuring the percentage of the end diastolic
volume being emptied in each stroke. EF is a good indicator of general heart state and a useful
predictor of clinical outcome [60, 102, 107], as cardiac diseases often leads to reduced heart
contractility [53]. SV and EF are often called global parameters, since they only take the total
volume of the left ventricle into account. Global parameters can therefore be used to express
the general state of the heart, but they cannot be used alone to predict which part of the cardiac
muscle is affected.

In a population of healthy adults, the EDV measured by 2D echocardiography is on
average 127 ml in men and 98 ml in women, and the ESV is on average 50 ml in men and 42
ml in women, with an EF of approximately 60% for both sexes [116].
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Figure 2.2: This figure shows a left ventricular time-volume curve for one cardiac cycle measured in
3D ultrasound using deformable model segmentation.

Ventricular volumes and EF are assessed by measuring the volume enclosed by the
endocardium and the mitral annulus. Clinical recommendations state that papillary muscles
should be regarded as part of the blood volume [56]. In clinical routine, volumes are measured
either by eyeballing, or by manual tracing in one or multiple views. Different protocols for
volume computations from manual tracing exist, but the most common way is to use the bi-
plane method of disks (MOD) [85, 86], where the endocardial boundary is traced manually
in two nearly orthogonal images, whereby a stack of ellipses are fitted to the traced contours.
Volumes and EF have also been measured in a single view using the area-length formula,
V =842%/(37L) [86] where A is the area enclosed by the traced contour, while L is the length
from the base to the ventricular apex.

2.3 Echocardiography

2.3.1 Ultrasound and interaction with tissue

Ultrasound is mechanical pressure waves with frequencies inaudible for the human ear. In
medical applications, the typical frequency range is 2-10 MHz, similar to electromagnetic
radio frequency (RF) waves. In soft tissue, the speed of sound is approximately as in water;
¢ =1540 m/s, giving wavelengths A in the range of 0.15-0.75 mm. Ultrasound wave pulses
are typically generated using an ultrasound transducer consisting of piezo-electric crystals
that vibrate when exposed to a high frequency electric potential. As a transmitted ultrasound
pulse traverses through the body, it interacts with the tissue, causing scattering, reflection, and
absorption of the wave energy. Absorption is caused by the conversion of kinematic wave
energy to heat, and is frequency dependent. Scattering occurs when the ultrasound wave
interacts with objects of size less than the wavelength, whereas reflections occur at tissue
interfaces. Scattering and reflection causes a fraction of the transmitted energy to be echoed
back to the transducer. These echoes can be measured as electric signals generated by the
same piezo-electric crystals used to transmit the pulse. The time from the pulse is transmitted,
to the echo is received is proportional to the depth of the scatterers or tissue interfaces. From
Huygens’ principle, the wave front generated by a piezo-electric crystal can be treated as
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Figure 2.3: Steering and focusing of the ultrasound beam is done by applying small individual delays
to the signal passed to each element, thereby shaping and directing the wavefront propagating from the
transducer. Similarly, delays are applied to the received signal from each element to obtain a receive
focus and steering. Figure (a), shows a transducer consisting of a linear array of elements. This type
of transducer can produce 2D images by steering and focusing the beam in a single plane. Figure
(b) shows a 2D matrix transducer. By controlling each of the elements of the 2D matrix transducer
individually, the ultrasound beam can be steered in both the azimuth and the elevation plane to produce
3D images. Adapted from [15].

spherical waves transmitted from an infinite number of infinitesimal point sources that are
superimposed. Since every crystal has a certain size, or aperture, the resulting wave front is
directive and can be thought of as a beam. In its focus point, the width Dr of a focused beam
can be computed from:

2
Dp =5 F =Fil,

(assuming -3dB beam width), where A is the wavelength, F is the distance to the focus point,
D is the aperture diameter, and Fy is the F-number of the imaging system. A larger aperture
gives a more focused beam. The attenuation compensated amplitude of the received signal at
a time 7 after the wave pulse was transmitted, is primarily a function of impedance gradients
of the tissue in a limited spatial volume at depth r = ¢7/2, with a radial resolution determined
by the length, or bandwidth, of the transmitted pulse, and lateral resolution determined by
the aperture and frequency. The combination of radial and lateral resolution determines the
system’s acoustic point spread function.

2.3.2 Transducer types

Ultrasound enables us to do spatially localized measurements of tissue properties, which
is the fundamental condition for ultrasound imaging. In medical imaging, an ultrasound
image is a meaningful visualization of localized measurements of tissue properties, where
an important criteria is to display as detailed and precise information as possible, with high
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Figure 2.4: A conventional 2D echocardiogram (left), triplane echocardiogram (middle) and 3D
echocardiogram (right).

spatial resolution and signal to noise ratio (SNR). The design of the transducer is therefore
important. Improved lateral resolution can be achieved by an increased aperture, or by
focusing the ultrasound beam, either by curving the transducer surface, or by using a phased
array of multiple piezo-electric crystals.

Delaying the transmit signal to the central elements gives coherent oscillations in the
focus. An electronically controlled phased array can also permit dynamic receive focus depth
to match the depth of the origin of the echo, by rapidly decreasing the processing delay of the
central elements.

Depending on the clinical application, different types of transducers can be used, including
single element transducers, annular arrays, phased arrays, linear arrays, or matrix transducers,
each using different focusing techniques [5]. For trans-thoracic echocardiography, the most
commonly used transducer types are the phased array transducers and matrix transducers.
Phased array transducers have a fixed focus in the elevation plane, but in the azimuth plane,
the ultrasound beams are steered by gradually increasing the delay of the signal to each
transducer element individually, allowing the formation of 2D images, as shown in Fig.
2.3. Multiplane images can be produced using 2D phased array transducers by mechanically
rotating the transducer [104], whereas 3D data can be acquired by mechanically sweeping
the transducer, while recording its position and orientation using a position sensor [36, 73].
Matrix transducers allow for steering in both the azimuth and elevation plane, and are thus
capable of producing 2D, multiplane, and 3D data directly. Examples of 2D, triplane, and 3D
images are given in Fig. 2.4.

2.3.3 Ultrasound processing chain

In a modern ultrasound scanner, the analog electric signal from each of the transducer’s
elements are converted to digital representations by a receiver. To produce images, these
signals have to be processed through a series of steps as shown in Fig. 2.5.

Focusing and steering of the received signals are done by the beam former by applying
small delays on each signal, before summation. Due to attenuation of ultrasound energy
by the tissue, the reflected signal from deep structures will have smaller amplitudes than
reflections from shallow structures. When displaying an ultrasound image, it is desirable to
have comparable intensities from different depths, and attenuation compensation is therefore
applied, usually assuming a simplified attenuation model with exponential decay, even if
different tissue types contributes with varying attenuation.



8 Chapter 2. Background

Beam Attenuation |l Envelope Log Scan

Transducen Receiver former comp detection compress conversion

- Display

Figure 2.5: Building blocks of the ultrasound processing chain.

Information about tissue properties in the received RF signal is mainly encoded in the
signal’s amplitude. The signal amplitude is therefore extracted by envelope detection. In a
digital system, the detected amplitude has a high dynamic range, typically encoded as 16 bit
integer values. If this signal was mapped directly to pixel intensities, usually in the range 0-
255, signal from weak scatterers would be suppressed, and only specular reflections would be
visible on the screen. Log compression is therefore used to achieve a non-linear compression
of the dynamic range. Log compression is typically on the form

y=log(ax+b) ,

where the output signal y is a compressed version of the input signal x, with compress gain a
and compress offset b.

In general, the beam layout used during image acquisition does not match the bitmap
shown by the display unit. The detected and log-compressed signal must therefore be
transformed geometrically to match the coordinate system of the display, through a process
known as scan conversion. For linear array transducers, this is merely re-sampling and
interpolation of the beams, whereas for fan geometries, the coordinates are mapped through a
polar coordinate transform.

2.3.4 Challenges for segmentation

Based upon the physical principles of ultrasound imaging, the images produced by
echocardiography have several limitations that will have impact on segmentation algorithms:

1. The relationship between image intensity and physical properties of the tissue is highly
complex. Whereas other imaging modalities such as X-ray have a relatively simple
Lambert-Beer relationship between signal strength and physical tissue properties, the
pixel intensity in an ultrasound image is a result of both reflection and interference
patterns. Different types of tissue are therefore often distinguished by subtle variation
in speckle patterns rather than intensity changes. This has also impact on the intensity
distribution in ultrasound images, giving a highly non-Gaussian density [16, 106].

2. When imaging through the thorax, the transducer array must be small enough to fit
between the ribs. Compared to abdominal ultrasound images, the small aperture of
echocardiographic transducers gives broader ultrasound beams, resulting in relatively
low resolution. Shadowing caused by ribs can further reduce the effective aperture, and
in turn, the image resolution. Fat absorbs acoustic energy, causing a low signal to noise
ratio in obese persons, in turn, giving low quality images with poor contrast.

3. The ultrasound image is highly anisotropic, particularly because the radial resolution is
usually higher than the lateral resolution. Also, transducers have a fixed transmit focus
within a single frame, making the lateral resolution depth dependent. Additionally,
the angle dependency of the effective aperture causes lower image resolution at the
extremes of the imaged sector.
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Figure 2.6: The fibrous structure of the epicardium can in many cases show up clearer than the
endocardium, making accurate tracing of the endocardial border (red dashed line) difficult (a). Also,
papillary muscles are distinct structures that by convention should be included in the volume of the
chamber. Foreshortening occurs when the image plane is oblique to the ventricular main axis (b). The
result is a smaller apparent chamber volume (c).

4. Shadows occur when ultrasound energy is completely absorbed or reflected, causing
parts of the imaged object to disappear, a phenomenon known as dropouts. This effect
is typically caused by the lungs and ribs or insufficient transducer-skin contact, causing
parts of the heart to be invisible in the images.

5. Artifacts occur when reflections from shallow structures are reflected again by the
transducer surface and back into the tissue, giving rise to reverberations that can
appear as artificial structures in the image. Similar effects can also arise from grating
lobes that are caused by the limited aperture of the phased array transducer used in
echocardiography.

6. The intensity of the back-scattered signal depends on transducer orientation relative
to the myocardial muscle fiber direction. The back-scattered signal intensity is low
when the ultrasound beam is parallel to the fiber direction. Also, the definition of
the endocardium can vary between regions in the image, as the blood/tissue interface
is often almost tangential to the ultrasound beam direction. The folded structure of
the trabeculae also gives lower reflection of acoustic energy. As illustrated by Fig.
2.6(a), the epicardium is often depicted more clearly than the endocardium in ultrasound
images because of its fibrous structure giving more reflected ultrasound energy.

7. The temporal resolution of ultrasound imagery is limited by the speed of sound.
Especially for 3D echocardiography, this can have impact on the effective frame rate.
A too low frame rate causes under-sampling of the LV contraction pattern. In addition,
de-correlation of speckle can impair algorithms that rely on matching image data from
different frames.

Additionally, several challenges are imposed by clinical and physiological factors. The
most important factors being:

1. Foreshortening occurs when the imaging plane slices through the heart in an oblique
angle. In echocardiography, this is a particularly challenging problem compared to
other imaging modalities, because of the dependency upon a few thoracic windows.
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Foreshortening causes reduction in the apparent ventricular length, and the area of the
imaged cavity is reduced, as illustrated in Fig. 2.6(b-c)

2. Papillary muscles are often prominent features in the echocardiograms, with acoustic
properties similar to myocardium. For volume measurements, papillary muscles are
by convention usually treated as part of the LV cavity [56, 86] as illustrated by Fig.
2.6(a). Consequently, a contour or surface used for volume measurements should not
necessarily be co-located with blood-tissue transitions. The intensity transition from
blood to myocardium is often lower than the transition from myocardium to epicardium,
and the endocardial boundary is therefore not even co-located with the strongest image
gradients.

All of these factors have impact on measurements of cardiac parameters. Low contrast,
speckle, dropouts, and reverberation make it difficult, even for an expert, to accurately trace
the endocardial boundary. Low image resolution and foreshortening have direct impact on the
measured volumes.

2.4 A historical perspective

The development of medical ultrasound for diagnostic purposes began in the late forties, with
the Austrian Dussik brothers [28, 29] and the British John J. Wild [108]. Using an ultrasound
radar simulator operating at 15 MHz, Wild was able to measure the thickness of dog intestines
in 1949 by plotting the amplitude of the received signal as a function of time, a technique
known as A-mode imaging. The first M-mode images of the heart, where reflected amplitude
is plotted as a function of depth and time, were published in 1954 [30], and this modality was
quickly adopted to clinical use.

Computerized estimation of LV volumes and EF was first reported twenty years later by
Ledley and Wilson [57]. They used regional thresholding along with a simple contour finding
algorithm to extract the blood/tissue interface from digitized M-mode images, whereby the
LV volumes could be computed using an ellipsoid approximation.

2D images of the heart were first reconstructed from M-mode images, and the first real-
time scanner that gained popularity was developed by Bom in 1971 [10]. Ten years later,
in 1980-1981, Skorton et al. [91, 92] presented one of the earliest automated segmentation
algorithms for this modality, based upon a combination of histogram thresholding and
Sobel edge detection. During the early 80s, several approaches towards segmentation
algorithms for 2D echocardiography were presented based upon similar techniques, using
combinations of image smoothing, thresholding, and edge operators along with simple
heuristic boundary search algorithms [1, 18, 111, 112]. Later in the 80s, advances were
made towards the utilization of temporal information in sequences of 2D echocardiograms,
by introducing optical flow [61]. The first step towards “modern” segmentation techniques
in echocardiography was reported in 1988 by Klinger et al. [54]. They used simulated
annealing and a Markov random field to adapt what we today recognize as an active contour,
or deformable model, to the image data. Image features, shape smoothness, contour area, and
temporal behavior were modeled as separate elements that each contributed to the deformation
of the contour. This technique showed many resemblances to the “Snake” active contour
presented by Kass et al. [52] the same year, where the shape of an evolving contour was
modeled through its internal and external energies.

During the 90s and 00s, the contributions to automated segmentation of 2D echocardiogra-
phy were too numerous for a thorough review in this brief introduction, but some contributions
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where particularly noticeable. Chalana et al. [17] used an extension to the snake algorithm
to simultaneously track the endocardial and epicardial borders. In addition to using classical
edge detection algorithms, Kucera and Martin [55] used a finite element model with region
based external forces, which deformed the contour by maximizing the difference between im-
age data inside and outside the contour, according to a statistical model of image intensities.
Jacob et al. [47, 48] formulated contour detection and tracking in a Kalman filter framework,
where a kinematic model describes the temporal behavior of the contour, which was modeled
by a shape space model, trained on contours extracted manually from previously seen images.
The problem was formulated in a Bayesian framework, and the Kalman filter was used to track
the contour through the cardiac cycle. Bosch et al. [12, 97] proposed to use active appearance
motion models (AAMMs) for time-continuous segmentation of 2D echocardiograms. Spatial
and temporal shape properties of the endocardial wall, as well as texture information in the
echocardiograms, were modeled using an active appearance model trained on a database of
segmented training images.

The earliest approaches to 3D echocardiography were based upon reconstruction from
2D images, and were reported already in 1974 [26]. Development in matrix transducer
technology later allowed for simultaneous acquisition of two orthogonal imaging planes [93],
and later real-time volumetric imaging [88]. Automated segmentation algorithms for 3D
echocardiograms were presented in the late 80s by Tamura [101], by segmentation in multiple
2D images using a radial search algorithm. Song et al. [94] formulated the surface detection
problem in a Bayesian framework, to combine image evidence with prior knowledge of LV
shape. They used a convex combination of manually delineated surfaces from a database
of shapes to represent the LV surface. Synthetic images where generated from the surface
representation using the distance transform, and matched to the data. The Nelder-Mead
simplex algorithm was used for the optimization. Angelini et al. [4] used snakes driven by
an expanding balloon force in multiple short axis views extracted from the 3D data set. A
finite difference approximation scheme was used for optimization. Pre-processing of image
data was done using multidimensional space-frequency analysis with brushlet functions and
nonlinear denoising enhancement to reduce the impact of speckle, and a gradient operator was
used to extract image energies. Montagnat et al. [70] formulated the surface representation
using simplex meshes, extending the basic 3D formulation to four dimensions (4D) by
introducing temporal constraints. 4D anisotropic diffusion was applied to the image data
to reduce speckle, and external forces were generated as a combination of gradient forces and
regional edge evidence. Corsi et al. [25] used a 3D level set method on each frame in the 4D
image sequence. Based upon a traditional inflation speed function, they proposed a new term
to the level set equation tailored to echocardiography, reducing leakage of the surface through
“holes” caused by missing data. A Laplacian of Gaussian filter was used for pre-processing,
and image force extraction. Initialization was done manually to get an initial surface close to
the true endocardial boundary. Van Stralen et al. [98] introduced a semi-automatic endocardial
border detection method for 4D echocardiography. Data were acquired using a fast rotating
phased array transducer, and segmentation was done in the rotated 2D images. Edge templates
were extracted from manually traced contours in four views. The interpolated edge templates
were used for tracking in both time and space. Dynamic programming was used for contour
detection, and internal surface properties were modeled through continuity constraints during
optimization. Orderud [77] used a Kalman filter based approach, where the LV surface was
modeled using a rigid ellipsoid model. The Kalman filter was used to estimate the ellipsoid
pose, including position, orientation, and scale, and the transition criterion [83] was used to
extract contour position estimates. This is the first report on real-time segmentation in 4D
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Figure 2.7: Segmentation algorithms based upon deformable models are characterized by three
hallmark criteria (a), including the geometric representation, external constraints, and optimization
scheme. They are further classified by their geometric representation (b) (adapted from [71]).

ultrasound. The method was later improved [78] by allowing for local deformations through
a quadratic spline-based surface representation coupled with a global pose transform, giving
higher regional accuracy than the rigid ellipsoid model. Following this approach, Hansegérd et
al. applied this Kalman filter framework to active shape models (ASMs) [42]. The ASM was
trained on LV surfaces traced using a semi-automated clinical segmentation tool (4DLVQ),
resulting in a shape space of physiologically realistic LV shapes, while retaining real-time
performance.

The advances within automated analysis of echocardiograms has been numerous, and
several reviews exist [34, 39, 64, 74, 90]. For historical reviews of the development of
echocardiography, see [31, 32, 51, 82, 89, 105].

2.5 Deformable model segmentation

As illustrated by the previous sections, a wide variety of segmentation algorithms for
echocardiography has been studied. Many of these methods are based upon, or have strong
resemblance with, a particular class of segmentation algorithms known as deformable models.
Deformable models are mathematically defined contours or surfaces that are fitted to the
target image under the influence of internal and external constraints. A brief overview of
different types of deformable models, and their application to echocardiography, is given in
the following sections. The references found in these sections are not meant to constitute an
exhaustive list of techniques, but they are included to illustrate the similarities and differences
between different deformable models.

Segmentation algorithms based upon deformable models can be characterized by three
hallmark criteria, shown in Fig. 2.7(a). First, different types of deformable models are
classified by their geometrical representation. The geometrical representation usually dictates
a set of shape constraints that describe its ability to represent different structures. Second,
different deformable models use different types of optimization strategies to fit the model to
the derived external constraints, while complying with the internal constraints. Third, the
segmentation algorithms are associated with a set of external constraints, determining how
image features are translated into shape changes. These external constraints can often be
interchanged between different types of deformable models, but restrictions may be dictated
by the surface representation and optimization scheme.
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2.5.1 Geometric representations

Already when it comes to choice of surface representation, a great number of formulations
have been proposed. A simple categorization of the different types is given in Fig. 2.7(b).
The most striking difference between different approaches is whether the model is defined
continuously over the contour or surface, or discretely in a finite number of points [71].
Typical examples of discrete models include triangulated meshes [98], simplex meshes
[38, 71], discrete contours or snakes [52], and point distribution models [23, 24, 48].
When it comes to continuous models, it is natural to separate between implicit and explicit
representation. Implicit models, such as level sets [25, 79, 110], describe the contour or
surface embedded in a higher dimensional function. Explicit models have a direct geometric
formulation, and include for instance spline models [33], deformable templates [66], or
superquadrics [14, 103].

All deformable models have some kind of internal constraints, allowing apriori knowledge
of the target object’s shape to be taken into account. These constraints enforce some degree
of smoothness or continuity to the model, for instance by counteracting stretching or bending.
The term shape space is often used to describe the space of all possible shapes that can be
represented given the geometric representation. Internal constraints enforce the model to lie
within a subset of all possible shapes, hopefully giving a subset of shapes that are better
suited for the segmentation problem at hand. In the snake formulation, the internal constraints
restrict the shape space to a sub-space of smooth models, and have curvature preserving
properties (see section 3.1). Variations over this theme are widely used, for instance in
level-set based segmentation [25] and simplex meshes [70]. Point distribution models are
a special type of geometric representation, by representing the shape by an average shape
with deformation modes superimposed, giving a linear shape space (see section 3.2). In
this formulation, internal constraints can be formulated by restricting the maximum allowed
amount that is added of each deformation mode. Internal constraints can also include some
sort of regularization towards a template shape [48].

2.5.2 Optimization techniques

It is common to formulate the deformation process as the minimization of an energy
functional, often denoted by the symbol E. This energy represents the total quality of the
geometry, its distance to a reference shape or state, and its quality of fit to the external
constraints. Another way of formulating the deformation process is to introduce a law
of motion for the deformable model, and internal and external constraints are therefore
formulated as forces acting upon the model. The optimization technique is highly dependent
on the choice of geometric representation, but a few basic approaches are more common than
others. For snakes, Kass et al. [52] used an iterative gradient descent technique solved using
finite differences, and the contour could be trapped in local minima. Amini et al. [2] used
dynamic programming to obtain a globally optimal solution. This approach has later been
used in several works [83, 98]. Level-set methods involve various optimization schemes,
most commonly finite differences [25] or fast marching [110]. Active shape models can be
solved directly or iteratively using a least squares fit. If a motion model is incorporated, the
Kalman filter can give a similar closed form solution [9, 48]. For simplex mesh fitting, a law
of motion is commonly applied and solved iteratively using finite differences [38, 71]. Active
appearance model fitting is done using a gradient descent technique, but with precomputed
“gradient matrices” trained on a training set to reduce the computational complexity.
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2.5.3 Enforcing temporal continuity

In segmentation of echocardiography, temporal continuity is an important aspect. Some
features are not visible in still images, but emerge in image sequences. There are several
ways to enforce temporally consistent segmentation. The simplest method is by initializing
the segmentation by the result in the previous frame [68]. In off-line processing, where
all image frames are known beforehand, temporal constraints can be applied through the
external constraints, by enforcing for instance first- or second order temporal continuity
[35], by regularization the displacement of mesh nodes against a model of the ventricular
contraction pattern [38], or by introducing regularization trajectories [70]. Active appearance
models can also be extended by incorporating the ventricle’s contraction pattern in a phase-
normalized heartbeat into the model, giving temporal 2D segmentation [12]. Here, temporal
continuity is modeled through an average contraction pattern with different contraction
variations superimposed, giving a smooth temporal behavior. In 2D echocardiography,
temporal continuity can be achieved using a 3D segmentation approach, where time is treated
similarly to spatial dimensions, making phase normalization unnecessary [69]. Temporal
continuity can also be achieved using a motion model [9, 48] giving stochastic control of
the temporal behavior of a parametric model such as the point distribution model.

2.5.4 External constraints

Deformable models are influenced by external constraints that drive the model deformation
towards image features, for instance strong edges. Usually, the choice of external constraints
is highly application specific, but for echocardiographic data most approaches can be
categorized into four main groups.

Force fields. A common method is to pre-compute a 2D or 3D force field that is valid for the
full image domain. Since this force field is defined everywhere in the image, the forces
acting on a point on the deformable model can be looked up directly from this force
field. Kass et al. [52] used a simple gradient operator to produce an edge magnitude
image, also known as a potential surface [67]. The forces acting on the contour were
computed by taking the gradient of this potential surface. Another way of computing
the force field is by taking the gradient of the smoothed edge map produced by an
edge detector such as the Canny detector [35]. A similar approach is to use optical
flow [61, 67], where the force field represents estimates of motion present in image
sequences. In noisy and anisotropic ultrasound data, multi-scale implementations are
often used [17, 52] to avoid being trapped in local minima. The computation of the force
field can be computationally expensive, but in an iterative optimization scheme such as
for snakes or level sets [25], the cost can still be justified, since the force computations
are done only once for the entire image domain.

Pixel profiles. A different approach is to search for edges or other image features along pixel
profiles sampled across the deformable surface or contour. These profiles can either
be sampled along the contour or surface normal [66], radially relative to a defined
center of gravity [87], or using other geometries [41]. Several different approaches
towards feature extraction along such profiles have been proposed. Setarehdan et al.
used fuzzy multi-scale edge detection using wavelets [87]. Mignotte et al. [65] searched
for points that maximized the differences between the average pixel intensity between
the outer and inner part of the profile. Rabben et al. [83] used a similar approach, but
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also minimized the standard deviation of pixel values inside and outside the selected
point. Blake et al. [8] used normal displacements as a method to map extracted pixel
profiles onto a parametric contour, using assimilated wavelet-based features. For active
shape model segmentation, the Mahalanobis distance between extracted contours and a
statistical edge model is often used [22], but because of the high intensity variations and
speckle noise found in echocardiographic images, this approach has had limited use in
this modality.

Regional constraints. The third approach of computing external constraints, suitable for
closed contours or surfaces, is to evaluate properties of image regions within and outside
of the deformable model. The external constraint is formulated to produce boundaries
that give a best possibly separation of homogeneous regions with respect to for instance
intensity distribution [55, 66]. Angelini et al. formulated this in a Mumford-Shah level
set framework [3].

Template matching. In the active appearance model, external constraints are formulated as
template matching. Changes to the model parameters are computed from the pixel
difference between the image and a template generated by the model [19].

2.5.5 Hybrid models

Each type of deformable model has different strengths and weaknesses. Several authors have
therefore proposed hybrid models, combining aspects of different approaches, in an effort
to overcome typical shortcomings of the “standard” algorithms in a particular segmentation
problem. Often, hybrid methods involve initializing a method » with outputs from a method
a, such as in Oost et al. [76], where segmentation by active appearance models was combined
with a dynamic programming-based snake to improve the final segmentation accuracy of X-
ray angiography. Another approach is to switch back and forth between two methods such
as in Mitchell et al. [69], where two approaches, active shape models and active appearance
models, were combined to help avoid local minima and to improve segmentation results of
cMRI data. Hansegard et al. [42] proposed to combine active appearance models with the
snake algorithm in a fully integrated manner, such that for each iteration, the new output of
the snake algorithm was used to correct the active appearance model (paper C). The output
from the active appearance model was in turn used as an initial contour for the snake.
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Background for papers

The characteristics of echocardiograms put special design requirements on an automated
segmentation algorithm. Additional requirements arise since the ultimate goal of the method
is to be used in a clinical setting. An automated volume measurement algorithm should be:

Accurate. The method should produce accurate contours, and be able to follow weak edges.
The accuracy of volumes derived from the detected contour or surface must agree well
with the true LV volume.

Interactive and compliant with clinical conventions. The algorithm must produce physio-
logically realistic contours or surfaces that the user will agree upon. Given different
individual and institutional conventions for interpretation of echocardiograms, this can
be challenging. Therefore, the method should allow for manual interaction to adjust the
results according to the clinician’s judgment.

Efficient. A standard echocardiographic examination is usually performed in 10 to 30
minutes, and because of the increasing cost of modern healthcare, this time should
ideally be shortened. A clinical volume measurement method should therefore be fast
and easy to use, taking no longer than 2-3 minutes for analysis of one patient, including
manual initialization and interaction. Otherwise, the clinician will stick to manual
tracing or even eyeballing.

Repeatable. The method must be repeatable. This means that the method should give
comparable results each time the analysis is repeated, even if this is done by a different
clinician. In addition, it should give reproducible results in different images of the same
patient. This restricts the amount of manual interaction that can be permitted.

Robust. The method should handle the various challenges related to echocardiography. It
should be insensitive towards spatial intensity variations and reverberations. It should
be able to handle non-Gaussian pixel distributions and low contrast between blood and
tissue. Further, the method must handle varying image resolution, and missing wall
evidence in parts of the image. For time sequences, the method should be invariant
to frame-rate, and it must not be affected by valve motions and intensity changes over
time, as well as changes in speckle pattern.

In summary, the algorithm should provide accurate, rapid, robust, repeatable, and clinically

acceptable results in data with relatively poor image quality. From chapter 2, it is obvious
that the number of different algorithms available for segmentation of echocardiograms is
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Figure 3.1: Extraction of edge profiles for segmentation by dynamic programming.

huge. This thesis focuses on three main techniques, which are believed to adhere to the above
requirements.

Snakes solved by dynamic programming are well known within the field of image analysis.
Their main advantage is that the dynamic programming algorithm efficiently provides optimal
solutions given the chosen constraints, and they can easily be controlled by manual interaction.
Active shape models and active appearance models were chosen mainly because they produce
physiologically realistic shapes, and they generalize well to new data. Active appearance
models were of particular interest, since they do not rely on finding the strongest edges in the
image, but use a texture matching technique that permits incorporation of clinical conventions.
The subsequent sections give brief introductions to the different segmentation algorithms used
throughout this thesis.

3.1 Dynamic programming

Active contour models, also called snakes, introduced by Kass et al. [52], are among the
most popular segmentation algorithms for medical imagery, and this work is cited in most
works involving deformable models. Snakes are based upon an energy-minimizing contour,
guided by external energies Eext derived from image features. Smoothness of the contour is
controlled by internal energies Ej ., making the contour able to resist bending. Parametrically,
the geometry of the snake can be described by a 2D curve v(s) = (x(s),y(s))”, and the total
energy of the snake can be written as

Eopue = /0 ' Eane (v(5)) + Eox (¥(5)) ds . 3.1

This equation is usually discretized and solved in an iterative gradient descent fashion. An
alternative, introduced by Amini et al. [2], is to use dynamic programming [7] as a rapid
way of finding a globally optimal solution to (3.1). Dynamic programming is based upon
the principle of optimality, stating that in an optimal sequence of choices, each sub-sequence
must also be optimal.

In boundary detection, this is done by first sampling edge features from candidate points
along search profiles across a pre-defined initial contour, as shown in Fig. 3.1. The edge
evidence value at each candidate point along each search profile is represented by nodes with
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cost x;" in a graph, where k = 1...n is the candidate point index in a single candidate profile,
and m = 1...M is the search profile index. The number of layers M in the graph equals the
number of search profiles, and the number of states n in each layer represents the number of
candidate points extracted along each profile.

Each graph node is assigned a cost value depending on its edge evidence, such that a
candidate point with a strong edge has a low cost. In addition, the partial paths between
nodes in neighboring layers are assigned partial path costs g” (i, k) representing the cost of a
transition from node x]" to node xZ”l depending on some smoothness criterion. Typically, the
cost of a large state jump is high, whereas a low cost is associated with staying in the same
state when moving between two layers. The optimal path through this graph can be found
using the following algorithm [96]:

1. Specify initial costs C(xil) of all nodes in the first graph layer, i = 1,...,n and partial
path costs g"(i,k),m=1,..., M —1

2. Repeat step 3 for all graph layersm =1,...,.M — 1.
3. Repeat step 4 for all states k = 1,...,n in graph layer m.
4. Let the cost of choosing node k in the next graph layer m + 1 be expressed as

Cox™)=_ min  [COE+g"@R)]

where w is a search window width. Set pointer from node x,’f“back to node x**; where
* denotes the optimal predecessor.

5. Find an optimal node ka * in the last graph layer M and obtain an optimal path by
backtracking through the pointers from ka * to x}*.

Using this algorithm, Eqp ke =C (ka *) represents the minimum total snake energy. External
energies are encoded in the node costs, whereas internal constraints are encoded in the partial
path costs.

The dynamic programming based snake was used in combination with other segmentation
techniques by Hansegard et al. [41, 42] (papers A and C).

3.2 Active shape models

Statistical models include a family of models that are trained on a set of observations of the
object of interest. The model’s ability to represent new shapes or appearances depends on the
variability of the examples in the training sets.

Point distribution models (PDMs) introduced by Cootes and Taylor [23] have become very
popular for modeling the shape of objects where some degree of similarity is found between
objects of the same class. PDMs capture the average shape and shape variations found in
a training set, and are parameterized such that each model parameter represents orthogonal
deformation modes.

Training is usually done by manual or automated annotation in images of the object
class of interest. The resulting annotations are normalized using Procrustes alignment [37]
to remove trivial pose variations, including scale, rotation and position, giving the normalized
shapes x; = (vI, v ,--- vI)T. Here, v; = (x;,y;)T in 2D images, and v; = (x;,y;,z;)" in 3D
images. After estimating the average shape X, PCA [80] is applied to the shape vectors to
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Figure 3.2: The figure shows both the average shape, and the three first deformation modes (mean +
3 standard deviations) of an LV point distribution model trained on echocardiograms from 21 patients.
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obtain the matrix Py containing the corresponding eigenvectors. Any shape X in the training
set can be reconstructed through the average shape and a linear combination of deformation
modes as:

x=X+Pb; . (3.2)

The eigenvectors P now represent orthogonal deformation modes around the average shape,
and the relative contribution of each eigenvector in each training set is determined by
the corresponding eigenvalue A;. A compact shape description is obtained by discarding
eigenvectors with little contribution to the shape variation in the training set. New shapes can
be generated from this model by selecting a parameter vector by, and computing the resulting
shape using (3.2). Typically, the elements of by are restricted to lie within some proportion
of the corresponding eigenvalue to ensure statistically plausible shapes. An example showing
the variation of the three first deformation modes of a 3D PDM is given in Fig. 3.2.

Active shape models extend point distribution models with an update scheme to optimize
the model parameters together with the parameters of a global pose transform to achieve best
possible fit to the target image. In the 2D case, the segmentation algorithm uses the following
iterative scheme [23]:

1. Create an instance X (b, p) of the shape model with parameters by and pose parameters
p in the image frame by applying a pose transform Tp.

2. Perform edge detection in pixel profiles sampled from the image along the contour
normals at each of the model points to suggest new node positions X 4 dX.

3. Compute the incremental changes dx in the local model coordinate system by applying
the inverse pose transform.

4. Compute the update to the model parameters from db = P! dx.

This update scheme is equivalent to a weighted least squares algorithm, and can be used to
obtain good fit in a few iterations [23].
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Note that the terms active shape model and point distribution model are often interchanged
in the literature, as it is in the papers of this thesis.

3.2.1 Kalman filter-based active shape models

ASMs can be fitted to measured image features using the least squares algorithm presented
above. However, in image sequences of a moving object, independent segmentation in
subsequent frames can lead to inconsistent temporal behavior and poor segmentation accuracy.
One solution to this problem is to introduce a motion model [9] describing the temporal
dynamics of the pose and shape parameters, or states t; = (bsT,pT), of the statistical model.
This motion model takes the form:

tir1 = At + Aoty +Bowy .

Here, the predicted model state t in the next frame k + 1 is represented by a weighted sum of
the current and previous states at times k and k — 1 respectively, and a noise term wy, that allows
prediction error to be incorporated in the model. The matrices A; and A, can be adjusted to
control properties such as damping and inertia, while the matrix B controls the uncertainty
added by the prediction.

Edge detection is performed in extracted pixel profiles perpendicular to the predicted
contour, similarly as for the basic ASM search, and suggested updates to the model’s state
parameters are computed to give best possible fit to the edge measurements. In addition, each
edge measurement is associated with a measurement error that represents the uncertainty of
the estimated edge position.

The states of the ASM can now be propagated through time as a multivariate Gaussian
distribution using a Kalman filter [48, 50] that takes both the uncertainties of the motion
model’s prediction and the edge detection uncertainties into account. As for the basic active
shape model, this gives a weighted least squares solution, but the motion model is used to
regularize the temporal behavior of the model. The main advantage of this technique is that
temporal consistency is obtained in a closed form solution, eliminating the need for iterative
refinement. This approach was used by Hansegard et al. [40] for real-time and fully automatic
volume measurements in 3D echocardiography using a 3D ASM (paper E).

Besides tracking of ASMs, this technique can also be used with other types of deformable
models [8]. Orderud presented studies where the extended Kalman filter was used to segment
and track the left ventricle in volumetric ultrasound data in real time using a rigid ellipsoid
model [77], and using a spline based model [78].

3.3 Active appearance models

Active appearance models (AAMs) [19] extend the ASM by including a statistical image
texture model in addition to a PDM. The texture model can generate new unseen images of
the target object as the mean texture with a linear combination of texture variation modes
superimposed.

In the same way as the shape of the object is represented by a coordinate vector x, the
object’s texture is represented by a normalized texture vector g, sampled from the training
image. PCA is then applied to the entire cohort of texture vectors, to obtain a texture model
with variation modes P, formed by the eigenvectors of the covariance matrix of the texture
vectors, the average texture g, and texture parameters by:
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g = g+Pb, . (3.3)

This texture model can be combined with the PDM in (3.2) by a third PCA on the concatenated
shape and texture parameters, leading to the equations for generation of new shapes x and
textures g:

X+ Qsc
g+Qc . (3.4)

Here Q, and Qj denote the basis vectors for texture and shape of the combined model, and ¢
are the model parameters controlling both shape and texture at the same time.

Application of AAMs to segmentation of image data is done using the following
optimization strategy. The difference between the generated model texture g,, given by (3.4)
and the normalized image texture g, is expressed by the residual vector r(p) = g; — gn-
Assuming linearity, the quality of the model fit is improved by modifying p according to

srl or - or’
op=— (3p 5p> Sp r(p) , (3.5)
or

where - is precomputed during model training by applying perturbations to the model
P . . . .

parameters and measuring the effect on the residuals. The classical fitting scheme for the

basic AAM is an iterative procedure where model parameters are updated for each iteration

using (3.5) according to the following algorithm [19]:

1. Sample the texture under the current shape X using the image normalization function
Tu, g = Tuil (gim)~

2. Evaluate the residual vector r(p) = g; — g, and the current error, E = |r|?.
3. Compute the predicted displacements according to (3.5).
4. Update the model parameters p — p + k8p, where initially k = 1.

5. Calculate the new points, X’ and model frame texture g;n.

6. Sample the image at the new points to obtain g;-m.

!

7. Calculate the new error vector, r’ = Tu71 (&im) — g;n.

8. If |r’|2 < E then accept the new estimate, otherwise, try at k = 0.5, k = 0.25, etc.

This procedure is repeated until no improvement is made to the error, and convergence is
assumed. This scheme has been proven to work well in many applications, although different
extensions have been proposed [20, 27]

Major extensions to the basic AAM include the multiview AAM [58, 75, 76, 113], where
multiple view planes of the heart are modeled simultaneously. Bosch et al. [12, 13] introduced
the active appearance motion model, AAMM, where the temporal behavior of the left ventricle
is incorporated in a single model. Hansegard et al [42, 43] combined these models into a
multiview and multi-frame model for segmentation of triplane echocardiograms (papers B
and C).



Chapter 4

Summary of papers

4.1 Paper A

Knowledge based extraction of the left ventricular endocardial boundary from 2D
echocardiograms

J. Hansegard, E. Steen, S. I. Rabben, A. H. Torp, H. Torp, S. Frigstad, and Bjgrn Olstad
Published in Proc. IEEE Ultrasonics Symposium

Volume 3, 2004

The goal of the work resulting in this paper was to automatically detect the endocardial
boundary of the left ventricle in 2D echocardiograms by incorporating knowledge of LV shape
and intensity signature into the detection algorithm. The main contribution of this paper
was a method where expert knowledge from a manually segmented case database could be
integrated into a snake algorithm [52]. In traditional snake algorithms, detection is initialized
by a single initial shape, and edge features are extracted directly from the patient image using
some kind of edge model, such as the maximum gradient. To incorporate expert knowledge
into this algorithm, multiple segmentations were performed taking initial shape and edge
templates from each database case, or atlas. Candidate pixel profiles were extracted from the
patient image and matched against corresponding edge templates computed from each atlas.
The internal energy term of the snake was designed to preserve the curvature of the atlas
shape, while the external energy favored high correlation coefficient between the candidate
profiles and the edge templates. All database cases were mapped to the patient image using
this technique. After segmentation, the endocardial contours were extracted, and the snake
energies represented the goodness of fit for each atlas. The atlas with the lowest snake energy
was assumed to provide the best shape, giving the best segmentation result.

This framework was evaluated on 19 patients by comparing automatically detected
contours against manually determined contours using the derived EDV, ESV, EF, and the
pairwise point distances at ED and ES respectively. The strength of this method was its ability
to utilize expert knowledge directly in the snake algorithm. Good results were achieved in
some cases, but the lowest total snake energy did not provide a sufficiently robust selection
criterion.

4.2 PaperB

Detection of the myocardial boundary in the left ventricle from simultaneously acquired
triplane ultrasound images using multi view active appearance motion models
J. Hansegard, S. Urheim, E. Steen, H. Torp, B. Olstad, S. Malm and S. I. Rabben

23
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Published in Proc. IEEE Ultrasonics Symposium
Volume 4, 2005

In this paper, we presented an algorithm for detecting the LV myocardial boundary
from simultaneously acquired triplane echocardiograms. In triplane echocardiograms, LV
shapes, textures, and contraction patterns are highly correlated between the three planes. By
utilizing this correlation in a detection algorithm, we expected improved results compared
to independent contour detection in the three image planes. The main contribution of
this paper was a multiview extension of the active appearance motion models (AAMMs)
[12, 97], capable of utilizing the correlation between multiple planes and frames inherent
in echocardiographic recordings, to do spatially and temporally consistent segmentation. The
AAM framework provided an elegant way of combining expert information about the LV
shape and contraction pattern from multiple views into a single model.

The multiview AAMM was built using manually traced triplane echocardiograms from
20 participants. A spatial band-pass filter was used for speckle removal and normalization of
the ultrasound images. The shapes and image textures extracted from the training sets from
three planes and three frames, at ED, ES, and mid-systole, were combined using PCA, to
form a compact model that included the major modes of variation of LV shapes, textures, and
contraction patterns. This model was evaluated using a leave one out strategy, by comparing
automatically determined ED and ES volumes and EF against volumes determined by manual
tracing.

The results from the experiments were promising, with strong correlation and relatively
small bias in volumes compared to manual tracing. The EF measurements were, however,
not satisfactory, mainly caused by a “too normal” contraction pattern due to a relatively small
training database.

4.3 Paper C

Constrained active appearance models for segmentation of triplane echocardiograms
J. Hansegard, S. Urheim, K. Lunde and S. I. Rabben

Published in IEEE Trans. Med. Imaging

Volume 26, Issue 10, 2007

This paper presented multiview and multi-frame active appearance models for segmen-
tation of the left ventricle in triplane echocardiograms, and is a continuation of the work in
paper B!. The paper’s main contribution was a general way of integrating local edge detector
based segmentation algorithms and manual interaction into the AAM framework. The method
was based upon a constrained AAM algorithm, previously presented by Cootes [21]. The po-
tential of this method was demonstrated by coupling the multiview AAMM with a snake [52]
optimized using dynamic programming [2], with the gradient criterion [83] as local edge de-
tector. For each iteration of the AAM, each point on the AAM shape was constrained towards
the output of the snake, with a weight dependent on the local edge evidence estimated us-
ing the gradient criterion. Manual constraints were incorporated similarly, but with a higher
weight, since manually defined landmarks were assumed highly accurate. Normalization of
the ultrasound images was performed by mapping the skewed ultrasound histogram to a Gaus-
sian distribution according to the method of Bosch et al. [12].

"Paper B was included as part of this thesis since the experience acquired during this work had several
implications for the choices made in paper C.



4.4 Paper D 25

We showed that combining the AAM with a dynamic programming based snake algorithm,
gave more accurate and reproducible volume and EF measurements than the two methods
alone. Constraining the model to manually defined landmarks further improved the
results. We also demonstrated that volumes and EF estimates improved by using triplane
echocardiograms compared to single plane data. The effect of “under-training” was still
present, albeit in a lesser extent than for the unconstrained multiview AAMM.

4.4 PaperD

Semi-automated quantification of left ventricular volumes and ejection fraction by real-
time three-dimensional echocardiography
J. Hansegard, S. Urheim, K. Lunde, S. Malm and S. I. Rabben
Submitted for publication

In this paper, we presented an evaluation of a clinical semi-automated volume
quantification tool (4DLVQ) for 3D echocardiography. The main contribution of the
work leading to this paper was a deformable model based segmentation algorithm? that
provided accurate and repeatable estimates of LV volumes, while providing simple but
powerful editing capabilities for manual correction of the detected surface. To avoid
foreshortening during initialization of the model, manual image alignment was applied to
extract the clinically correct apical views. Initialization of the deformable model was done
by selecting three landmarks in three apical views at ED and ES. By disabling temporal
forces, pure 3D segmentation was run in these two frames to provide immediate feedback
to the user. Editing the detected surfaces was done manually by adding landmarks that
pulled the deformable model towards the corresponding position. Temporal forces were then
enabled to allow full 4D segmentation, giving volume estimates for each frame within the
cardiac cycle. The 4DLVQ tool was integrated as a part of the EchoPAC workstation (GE
Vingmed Ultrasound, Horten, Norway). Evaluation was done in volumetric echocardiograms
from 35 patients by comparing the LV volumes and EF obtained using 4DLVQ against a
commercially available volume measurement tool (TomTec LV-Analysis, TomTec Imaging
Systems, Unterschleissheim, Germany). We demonstrated that 4DLVQ produced repeatable
estimates of LV volumes and EF, with good agreement to the TomTec tool. However, since
4DLVQ required a less accurate initialization, higher repeatability was demonstrated, with a
significantly shorter analysis time. We therefore concluded that 4DLVQ could serve well as a
clinical analysis tool.

4.5 Paper E

Real-time active shape models for segmentation of 3D cardiac ultrasound
J. Hansegard, F. Orderud and S. 1. Rabben
Published in: 12th International Conference on Computer Analysis of Images and Patterns,
(CAIP 2007), Lecture notes in Computer Science
Volume 4673, 2007

The goal of the work leading to this paper was to develop a fully automated method for
robust and accurate LV surface detection in 3D echocardiograms. The main contribution of
the paper was a 3D extension to the active shape model (ASM) [23, 24] that was coupled with

2An overview of the segmentation algorithm is given in the paper, but due to the proprietary nature of the
algorithm, details have been omitted.
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a second order motion model [9] to ensure better temporal behavior than with the standard
ASM. Optimization was done using an extended Kalman filter [48] for efficient segmentation
in volumetric data. Training of the 3D ASM was done using LV shapes extracted by the semi-
automated segmentation tool developed in Paper D. These shapes also served as manual
reference for evaluation of the proposed method. A transition criterion [83] was used for edge
detection. Evaluation in 21 patients demonstrated high robustness, with relatively low bias in
EDV, ESV, and EF, and narrow limits of agreements compared to the reference. The method
permitted fully automated segmentation, without the need for user interaction, potentially
improving the reproducibility compared to semi-automated methods. We did, however,
observe that the model had a tendency to get confused by papillary muscles. A nice property
of this approach was its efficiency, allowing real-time segmentation, without problems related
to foreshortening. In addition, the robustness was excellent, giving successful segmentation,
with reasonably good accuracy, in all test data sets.



Chapter 5

Discussion

Paper A was written before 3D ultrasound was released as a commercial product, and
it is therefore focused on 2D segmentation. Atlas based techniques had become popular
for many segmentation tasks within medical imaging [81, 62], providing a simple way of
incorporating expert knowledge into segmentation algorithms. However, during the work on
paper A, it became clear that our hybrid multiple atlas and snake algorithm lacked ability to
generalize between cases, and a good match in edge signatures did not correlate well with
shape similarity, and the minimum total snake energy was not suitable for selecting the best
atlas. In addition, matching the patient image against a huge set of atlases would become
highly computationally expensive. Since this was purely a 2D method, foreshortening would
inevitably prohibit accurate volume measurements, and temporal information was not utilized
to improve the segmentation. Further work should therefore be based upon a technique
that generalized better between different database cases, and which provided a more robust
optimization scheme.

When beginning the work of paper B, 3D echocardiography had recently been
commercialized, making real-time triplane imaging available, where foreshortening was
expected to constitute less problems. This required an algorithm for coupled view
segmentation. Based on previous experiences using multiple atlases, I realized that shape
and image information had to be condensed into one model, which allowed for generalization
between example cases. Active appearance models [19] had been shown to give robust
segmentation in sequences of 2D ultrasound images [12], and multiple view segmentation
was demonstrated in CT cardiac imagery [58, 75, 76]. The AAM provided an elegant
way combining information from multiple cases, thereby generalizing better than individual
atlases. Paper B presented a multi view and multi frame active appearance model that modeled
multiple views and frames of a cardiac cycle simultaneously. This approach demonstrated
good segmentation results, but it did have some problems. Unfortunately, foreshortening
was a problem also in triplane imagery, and expert physicians used tracing conventions that
compensated for this issue. Compared to previous work [12], adding multiple views caused
“under-training” of the model, and it tended to fail due to imaging artifacts and the lack of
clear edge evidence in many of the ultrasound recordings. Additionally, the local accuracy in
good data was in some cases lower than what could be obtained with traditional deformable
model techniques.

It was clear that manual interaction would be needed for a clinically usable method.
Cootes had previously presented an algorithm for constraining the AAM to known landmarks
[21]. This algorithm was well suited to manually control the AAM, but it also gave an
opportunity to incorporate other local segmentation algorithms into the AAM framework.
Paper C, presented a multi-view and multi-frame AAM for triplane echocardiograms, where
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the AAM could be constrained to manually defined landmarks, and also landmarks determined
by a dynamic programming based snake algorithm. As a result, segmentation accuracy and
robustness was significantly improved compared to the method presented in paper B. One of
the challenges with our triplane segmentation algorithm was that the pose in each view was
treated independently, with only a weak coupling between the views. We speculated if a 3D
shape model would improve the results in cases with severe foreshortening.

By the time paper C was finished, real-time 3D echocardiography had developed into
a clinical imaging modality, but clinical tools for volume measurements in 3D ultrasound
data were lacking. It was therefore decided to extend my work on statistical models to
handle volumetric data. In order to construct such models, a relatively large number of pre-
segmented volumetric data sets were needed. Doing this manually would be a highly time-
consuming task, and a semi-automated segmentation tool was therefore required. At the same
time, GE Vingmed Ultrasound decided to develop their own tool for volume quantification
of the left ventricle and I got the offer to participate in development of the segmentation
algorithm. This way, I got first hand access to a clinical segmentation tool for building
statistical models for volumetric data. Previous experience had shown that manual interaction
to initialize and correct the segmentation was critical in a clinical tool. We therefore developed
an interactive 4D LV quantification tool (4DLVQ) capable of doing segmentation in sequences
of 3D volumes. A validation study of this tool was performed in paper D.

The next step was now to investigate the potential of statistical models for segmentation
of volumetric data. Active appearance models did indeed provide big advantages compared
to our initial atlas-based approach. Unfortunately, the texture models did not always
give sufficient degrees of freedom to match the high intensity variations found between
ultrasound images. Also, the optimization scheme was not robust enough for fully automated
segmentation in all cases. The computational performance of AAMs was reasonable for
triplane segmentation, but 3D AAMs were expected to be too computationally expensive
for an efficient clinical tool. Orderud had successfully demonstrated that segmentation of
3D echocardiography could be performed in real-time using a deformable spline model
in a Kalman filter-based framework [78]. This spline model did, however, not restrict
deformations to physiologically realistic shapes. Looking into Orderud’s work, I realized
that the spline model could easily be exchanged by a different type of surface representation,
namely the active shape model (ASM) [23]. Using training shapes extracted using the 4DLVQ
tool, a 3D ASM of the left ventricle was constructed and fed into the Kalman filter framework.
The results of this work were presented in paper E, where robust and fully automated
segmentation was achieved in volumetric data. Compared to the work of Orderud et al. [78],
the 3D ASM improved LV volume and EF estimates, and produced more physiologically
realistic surfaces.

5.1 Relations to algorithmic design re-
quirements

In the introduction of chapter 3, five design requirements for a clinical segmentation algorithm
were defined. In summary, the algorithm should: 1) produce accurate contours, follow weak
edges, and give accurate volume measurements, 2) comply with clinical conventions, produce
physiologically realistic contours, and allow for interaction. Further it should 3) be efficient
and fast and easy to use, as well as 4) repeatable and 5) robust in poor image quality data. In
this section, the proposed methods are discussed in relation to these requirements.
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Paper A. The main strengths of the hybrid atlas and snake algorithm presented in paper
A were twofold. First, it produced shapes that were highly constrained to actual heart shapes,
making the results physiologically realistic. Second, since the database edge signatures
were derived from manually traced contours, the method was not restricted to detecting the
strongest edges in the images directly, but was rather matching database signatures against
the target image. This technique was developed in an effort to make the model follow weak
edges along the endocardial wall instead of the often more prominent epicardium. Clinical
conventions and information about papillary muscles were also handled by this technique.
Potentially, these factors could provide accurate and realistic shapes that the user would agree
upon. User interaction was permitted during initialization of the model, and due to the
dynamic programming based snake framework, it would be possible to incorporate manual
correction of the detected contour into the algorithm. However, a database that included a
sufficiently large number of pathologies and imaging situations would make execution time
too long for efficient clinical use. Even if the repeatability of this technique was not studied,
small changes in initialization between repetitions can cause different selection of database
cases, potentially introducing relatively large differences in repeated measurements. The
method did also have shortcomings related to robustness towards challenges in ultrasound
images, such as reverberations and regional intensity variations. To ensure that all possible
imaging situations were covered, the database would become impractically large.

Paper B. The multiview AAM introduced in paper B produced physiologically realistic
shapes since the contours were computed from a shape space trained on manually traced
ventricles. The texture matching technique also provided a framework that could follow
the weak edges of the endocardial border, and for incorporating clinical and institutional
conventions, since for instance papillary muscles were integrated into the texture model. The
local accuracy of the detected contours was unfortunately low even in images with strong
edge evidence. This might have been related to “under-training” of the model, but our
impression was that the standard AAM convergence scheme was not sufficiently robust to
handle the different image artifacts, poor contrast, and low signal to noise ratio sufficiently
well. Regionally varying signal from different locations in the image tended to affect the
algorithm more than the texture difference between the cavity and the myocardium. The
pose transform estimates were particularly impaired by poor convergence, and the model had
therefore a tendency to end up in local minima. Various alternative convergence schemes
were evaluated [20, 27], but none were found to be noticeable better than the standard AAM
optimization algorithm. The method was relatively robust towards dropouts, since multiple
views were used to guide the model. Dropouts in one image plane could therefore be corrected
by utilizing image information from other views, both because a weak coupling of the pose
transform in each view was employed, and because of the strong shape prior inherent with
such models. We did not study the repeatability of this technique, but poor convergence can
potentially cause relatively large variations in detected volumes and EF between repeated
measurements, as small changes to the initialization of the model can result in contours from
different local minima. We speculated if a multi scale technique would reduce the dependency
on manual initialization to avoid local minima, thereby improving repeatability, convergence
radius, and robustness of this algorithm.

Paper C. Constraining the AAM to manually defined landmarks, allowing for interactive
segmentation, solved many of the challenges with the standard AAM presented in Paper B.
By manually restricting some points of the model, the problems related to the convergence
of the pose transform could almost completely be eliminated, producing more accurate and
repeatable results. The effects of “under-training” were less prominent since a larger range of
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the model parameters could effectively be utilized. Further development of this technique
would be to allow for manually editing the detected contour by adding more manually
defined landmarks, but care must then be taken to avoid over-constraining the model. Snakes
based upon dynamic programming have several advantages such as high performance while
obtaining globally optimal solutions given a set of shape constraints. This makes them
relatively robust and potentially also repeatable. Modeling of local shape constraints such
as smoothness is relatively simple, but it can be difficult to restrict the global shape of the
snake to a subspace of physiologically realistic shapes. Several limitations of the snake and
the AAM algorithms were overcome by combining these techniques as presented in paper C.
This hybrid approach preserved the AAM’s ability to produce physiologically realistic shapes,
and the snake algorithm improved the local accuracy of the detected contour by driving the
AAM towards strong edges. Of particular interest was the framework’s ability to dynamically
tune the relative contribution of the edges detected by the snake in regions with poor edge
evidence. As a result, the proposed method produced accurate contours, with derived volumes
and EF that agreed well with manual tracing. Both the AAM and the snake have favorable
computational complexity, and this technique is expected to provide sufficient performance
for efficient clinical use.

Paper D. The 4DLVQ tool presented in paper D proved to be well suited as a clinical tool.
By proper tuning of the internal shape constraints of the model, we obtained a model that
produced physiologically realistic shapes, even if no explicit shape information was encoded
in the model, such as with the AAM. By analyzing the statistics of the pixel intensity in
regions around the deformable model, we were able to create an edge detector that preferred
the endocardial border to the often more prominent epicardial border. The model therefore
Jfollowed weak edges well, while retaining a nice shape in locations with dropout. Utilization
of 3D data was a key factor to improve segmentation results, since missing information in
parts of the volume could be compensated for by utilizing edge evidence in nearby locations,
and foreshortening could be avoided completely by manually aligning the views before
initialization of the model. Volumes and EF derived from the detected surfaces agreed well
with a different commercially available segmentation tool, and 4DLVQ proved an efficient
clinical tool. Evaluation of repeatability demonstrated that the technique produced consistent
results for repeated measurements even with manual initialization and editing. Robustness
towards image artifacts was high, but manual correction was often needed to compensate for
papillary muscles.

Paper E. The 3D ASM segmentation algorithm presented in paper E did, similarly to
the AAM, utilize a trained PCA-model to restrict its shapes to a space of physiologically
realistic surfaces. Importantly, volumes and EF estimated by the 3D ASM agreed well with
4DLVQ, and the regional accuracy of the method was good, but due to the strong shape prior,
the local accuracy seemed lower than for the 4DLVQ tool. The presented technique did not
incorporate statistical knowledge of image texture, but was using a simple transition edge
detector. It was therefore occasionally confused by papillary muscles and large dropouts.
This can turn out as a challenge for its use as a routine volume measurement tool in the clinic,
since there is currently no way of correcting the result in cases where the model fails. The
robustness of the 3D ASM was however excellent, and since it is a fully automated tool the
reproducibility and ease of use is expected to be high compared to manual or semi-automated
techniques. The main advantage of this approach was its unsurpassed efficiency, providing
real-time measurements of LV volumes and EF.
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5.2 Achievement of goals

The main goal of this thesis was to develop automated methods that utilize expert knowledge
for improving the quality of cardiac measurements in echocardiography. The goal did not put
any restrictions on the type of measurements, but I decided to focus on automated assessment
of LV volumes and EF, since they are among the most important parameters for prognosis
and diagnosis of patients with cardiac disease. Experience had shown that automated volume
measurement methods often failed in difficult ultrasound data, while an expert could still
perform reasonably good measurements. It was therefore natural to try to incorporate some
of the expert’s knowledge into the automated methods.

One might argue that virtually all segmentation algorithms do to some extent incorporate
expert knowledge. In the basic snake algorithm, or in level-set based methods, this knowledge
is formulated as smoothness constraints of the evolving deformable model, and knowledge
of edge features are modeled in the edge detector. Thresholding techniques or region-
based segmentation techniques involve incorporation of some kind of knowledge about
intensity distributions. However, to incorporate explicit clinical knowledge into an automated
segmentation algorithm has not received too much research interest. This is perhaps due to
a desire to find a general-purpose segmentation algorithm that can be used across modalities,
and for any type of images. Atlas based techniques, on the other hand, use a strategy where
clinical knowledge is used directly, by matching validated images onto new patient images,
assuming that the clinical decisions made in the matched atlas are still valid for the new
patient. Due to the large amount of variation in both shape and intensity distribution between
patients, multiple atlases were used, assuming that at least one of the atlases should match the
patient image well. Active appearance models and active shape models can be thought of as
generalized atlases. They are trained on validated cases, but information from multiple cases is
condensed into a single model. In my experience, this is a far better method for incorporating
expert knowledge into a segmentation algorithm than pure atlas-based methods, because
AAMs and ASMs have the ability to generalize between cases. I believe that statistical models
can improve the accuracy and reproducibility of cardiac measurements, and the results of
paper C are highly promising. Still, further evaluation of the techniques is required.

During the work on this thesis, it was clear that encoding expert knowledge into the
segmentation algorithms could improve volume and EF estimates. However, in images with
poor quality the automated algorithms could still fail. In these cases, it should be possible
to utilize the physician’s knowledge directly by allowing for manual input to correct the
automatically detected contour or surface. Constraining three or more nodes on a LV model
vastly reduces the degrees of freedom of the segmentation problem, giving significantly
improved results. In accurate and efficient clinical volume measurement tools, manual
interaction is therefore a necessary part of the workflow.

3D echocardiography is gaining popularity as a clinical tool for cardiac diagnosis, and
has the potential of significantly improving clinical decision-making [44]. However, manual
tracing in volumetric data is highly impractical in clinical practice. Few commercially
available volume measurement tools exist, and there is a clinical need for simpler and
more effective tools to fully utilize this potential. It was therefore important to develop
automated volume measurement algorithms for volumetric ultrasound data. This thesis
presents contributions to the field of active appearance models that potentially can make
this technique suitable for semi-automated analysis of triplane ultrasound data in the clinic,
improving repeatability and efficiency of echocardiographic quantification. The 4DLVQ tool
proved to be a rapid and accurate method for volume quantification in 3D echocardiography.
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Its efficient workflow for both initialization and editing of the detected surface resulted in
short analysis times, potentially making 4DLVQ suitable for on-line use on the ultrasound
scanner during cardiac examinations. 3D ASMs have the potential of instantly displaying
LV volume and EF measurements on the screen, even before the physician has had the
time to do eyeballing. This fully automated method still require improvements to replace
semi-automated methods for clinical routine examinations, but with improvements to for
instance the edge detector, this approach will have many interesting clinical applications. The
technique can be used for simplifying acquisition by providing automatically aligned views in
3D or triplane echocardiography, automated scanner setup, segmentation optimized rendering,
automated ROI extraction for colorflow processing, automated extraction of specific cardiac
views, or renderings. The method can also be used for initialization of other segmentation
algorithms.

In conclusion, I expect that the results in this thesis will contribute to improved efficiency
and quality of routine cardiac examinations, giving better evaluation of cardiac function at a
lower cost.
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Conclusion

This thesis has focused on how expert knowledge and manual interaction can be incorporated
into automated methods to improve evaluation of cardiac function in echocardiography.

Several extensions to existing segmentation algorithms for automated assessment of LV
volumes and EF have been presented, including atlas-based methods, statistical models, and
classical deformable models. A hybrid snake and atlas based segmentation algorithm was
used for segmentation of 2D echocardiograms. In this algorithm, expert knowledge was
incorporated by controlling the snake using shapes and textures from similar examples in a
validated case database. More promising results were achieved in triplane echocardiography
using a multiview and multi-frame extension to the active appearance model framework. This
approach utilized a statistical model that was trained on manually traced contours. Further
improvements were achieved by constraining the model to manually defined landmarks, and
by integrating a snake algorithm into the AAM framework. For 3D echocardiograms, a
clinical semi-automated volume measurement tool has been validated. In this tool, expert
knowledge was incorporated by allowing the user to manually edit the detected surface.
Finally, fully automated real-time segmentation in 3D echocardiography was presented using
a 3D active shape model of the left ventricle in a Kalman filter framework.

The most promising results were obtained by automated segmentation in 3D data,
as the increased amount of information in these images, compared to conventional 2D
echocardiography, can be used to compensate for several of the typical challenges of
echocardiographic data. This modality is believed to dominate development of new
segmentation strategies because 3D echocardiography provides more accurate volume
measurements than 2D techniques, and because manual quantification in this modality
becomes impractical.

Automated segmentation algorithms for volume measurements in echocardiography must
produce contours that agree well with the true endocardial border, but perhaps more important
is that the method produces results that the physician trust. As a rule of thumb, a clinical
tool for reliable volume measurements has to allow for manual interaction to correct the
segmentation. In some situations, such as intra-operative monitoring, this is not feasible,
and robust fully automated methods should therefore be pursued.

Different methods for utilizing expert knowledge in automated segmentation algorithms
for echocardiography have been developed and evaluated in this thesis. Particularly in 3D
echocardiography, these contributions are expected to improve efficiency and quality of
cardiac measurements.
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6.1 Future work

The two most promising contributions of this thesis are the 4DLVQ tool and the 3D
active shape model. Both techniques were used to measure LV volumes and EF in
3D echocardiograms. We have performed preliminary studies using the 3D ASM for
segmentation in triplane data with encouraging results. By using a true 3D shape model
for segmentation of triplane echocardiograms, challenges related to foreshortening can be
reduced.

Our main focus has been on automated assessment of left ventricular volume, but
automated quantification of the right ventricle and the atria are currently becoming active
research areas. Further topics will also involve simultaneous multi chamber segmentation,
improved anatomical models including for example the aortic outlet tract, and more accurate
models that include valve motion. Our framework for controlling the active appearance
models with external constraints could provide a useful tool for combining traditional image
segmentation with other external constraints such as velocity fields extracted either by Doppler
techniques or speckle tracking.

Further development in scanner front end processing capabilities and probe design will
improve image quality, frame-rate, and field of view of volumetric echocardiography. These
factors will in turn improve the accuracy of automated segmentation algorithms, and allow for
new clinical applications. Simultaneous segmentation of the endocardial and epicardial border
for LV mass computation is an old research area that may play a more important role as image
quality improves. Stress echocardiography is an area that will benefit from improved frame
rate, where real-time segmentation techniques, for instance using statistical models, may play
an important role. Improved image quality will also make automated quantification methods
for 2D imagery more feasible.

Fully automated segmentation algorithms open up for several new interesting clinical
applications. Such techniques allow for intra-operative monitoring, automated acquisition
setup, real-time feedback during cardiac interventions, and new visualization techniques.
Fully automated algorithms can also be used for training of clinical personnel by providing
automated annotation, or by advising on scanning techniques.

Another interesting field is automated diagnosis from automatically interpreted cardiac
data. Several attempts have been made to classify pathologies based upon ventricular shape
parameters [11, 59, 95]. Further work should also focus on automated diagnostic support to
simplify the clinical decision process, by presenting examples of similar pathologies fetched
from an annotated case database to the user during scanning.

The field of medical imaging is moving forward rapidly. Echocardiography has had
the advantage of safe and rapid acquisition of high resolution 3D images, and since it is
a cheap and portable technique, it has been able to compete with other modalities such
as magnetic resonance imaging and computed tomography. However, these modalities are
continuously developing, and we must endeavor to improve 3D echocardiography as a clinical
tool, for instance by providing new and better automated quantification tools. 3D imaging is
currently reserved for high-end ultrasound scanners, but the trend goes towards smaller and
more compact scanners for widespread use also in primary care. Soon, portable, or even
hand-held scanners may come with 3D imaging capabilities, and more, less experienced
operators will use ultrasound as a diagnostic tool. Simplifying 3D echocardiography is
therefore an important challenge. The work in this thesis is a step in this direction, making
3D echocardiography a more useful clinical tool.
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Abstract

Extraction of the endocardial boundary of the left ventricle is a key challenge in cardiac
ultrasound imaging. The cardiac anatomy may be difficult to determine automatically without
incorporating knowledge of both wall shape and intensity signature into the detection algorithm.
The aim of this study is to establish a framework for knowledge based extraction of the left
ventricular endocardial boundary. The method is based upon the Snake algorithm, where internal
and external energy terms are combined into a Snake energy. Instead of using the patient image
directly for calculation of the external energy, we propose to use the correlation between geomet-
rically normalized images from the patient and from the database. The ventricular shapes from
the database cases are used to compute the internal energy term.

One boundary is detected for each case, hence a selection criterion is required. The total
Snake energy is evaluated for this purpose and compared to manual selection of the best case.

As a preliminary verification of the framework, the ventricular end diastolic and end systolic
areas and the ventricular ejection fraction where calculated from the detected boundaries for a
set of patient cases, using both manual and automatic database case selection. Using manual case
selection, the results are encouraging, but the total Snake energy did not provide a sufficiently
robust selection criterion.

The strength of the proposed method is its ability to utilize expert knowledge directly for
extraction of the endocardial boundary from ultrasound data. Using manual selection of the best
case, the calculated parameters from detected boundaries were in good agreement with manual
delineation. Further work is required to find a robust selection criterion.

I. INTRODUCTION

Automatic delineation of the endocardial boundary is a key challenge in cardiac ultrasound
imaging. Several clinically important parameters, such as ventricular ejection fraction (EF),
stroke volume and cardiac output can be computed based on this boundary.

For extraction of the endocardial boundary, three common approaches include pixel seg-
mentation techniques, Snakes, and case based methods such as Active Appearance Models.

Image segmentation techniques using for example thresholding are attractive due to their
simplicity [1], [2]. These methods usually utilizes a local pixel neighbourhood to classify
pixels into the classes ’blood’ or ’tissue.” However, due to cardiac ultrasound characteristica
such as noise, reverberations, and drop outs, methods based entirely on pixel information
within local neighbourhoods tend to fail.

Snakes [3], [4] are popular as edge detectors in echocardiography since apriori knowledge
about boundary shape and cross boundary intensity signatures is easily incorporated as
energy functions. These energy functions include external forces caused by pixel properties,
while internal forces constraint the contour shape. Usually the same internal and external
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Figure 1. (a) Database boundary signatures are generated by sampling the pixel values along lines across the manually
outlined endocardial boundary. Each line n reflects the intensity profile in a neighborhood around the boundary. These
signatures are the basis for a geometrically normalized boundary signature image, which is used as template for boundary
detection. (b) Since the actual endocardial boundary is not known in the patient case, a reference boundary is established
as a spline through three manually outlined landmarks, including the two atrioventricular points (AV1 and AV2) and the
apex (AP). The pixel values along candidate lines are sampled normal to the reference boundary, and a candidate image is
established. Note that pixels outside the image sector appear in white. These pixels are not used for boundary detection.
The distance d from the boundary is measured in millimeters.

energy functions are used for the whole image and also for all patient cases. This is a
limitation in cardiac boundary detection since the cross boundary signature may vary at
different locations in the image, and the ventricular shape may vary significantly from case
to case due to individual and pathological variations.

Case based methods include, amongst others, Active Shape Models and Active Appear-
ance Models [5]-[7]. Such models are trained on a set of known cases, which allows the
model to adapt to the characteristics of each new case, as long as the model was trained
on a similar example.

The aim of this study is to establish an improved Snake algorithm which combines some
aspects of the traditional Snake approach and case based methods. This is done by modifying
the Snake algorithm to utilize database cases as templates for ventricular cross-boundary
pixel signatures and ventricular shape. Since one boundary will be detected for each database
case, a selection criterion for the case giving the best boundary detection is required. A sub
goal is therefore to evaluate if the total Snake energy can be used as a selection criterion.

II. METHOD

We propose a method where the examples in a case database are used as templates for
detection of the left ventricular endocardial boundary.

Instead of using traditional gradient or transition criterions to evaluate the boundary
strength in a patient image, we use the pixel signatures in a small neighborhood across
the database case’s boundary as templates. For each database boundary signature, we have
corresponding candidate lines spanning from the cavity into the myocardium of the patient
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Figure 2. (a) An external energy image is computed by the line wise correlation coefficient when shifting the database
boundary signature incrementally along the patient case candidate line. The correlation at each displacement of the
boundary signature is recorded for all geometrically corresponding pairs of candidate lines and boundary signatures. (b)
The resulting correlation sequences can be interpreted as a correlation image. The optimum horizontal traverse with respect
to the combined energy function is included.

case. We search for probable boundary locations along these candidate lines by evaluating
the correlation between the database boundary signatures and the candidate line pixel values
in the patient cases.

Shape and boundary energy terms are combined using appropriate weight functions, and
dynamic programming is used to find the globally optimal boundary location.

Each database case results in one detected boundary. A selection criterion is finally used
to pick the database case that provides best boundary detection. The corresponding boundary
is used as the detected ventricular boundary.

A. Preprocessing

Spatiotemporal filtering of the tissue data is applied to reduce the amount of speckle and
noise in the images. This is implemented as an edge preserving median filter which operates
on time sequences of tissue data.

B. Geometrical normalization of database and patient cases

The endocardial boundary is manually outlined in all the database cases. Cross boundary
signatures are generated by first establishing sampling lines as illustrated in figure la. The
cross boundary intensity profiles form geometrically normalized boundary images which
are stored in the case database. The actual boundary is located along the horizontal center
axis of the boundary images.

Geometric normalization of the patient case is performed on-line, based on the manually
identified atrioventricular (AV) plane and apex point (AP). A spline through the landmarks
serves as reference boundary for anatomical normalization of the patient tissue data, as
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Table I
ERROR IN ESTIMATED PARAMETERS

Computer to observer distance

Parameter Manual selection  Automatic selection
ES area(cm?) -0.70 +1.4 -0.069+ 3.1*
ED area (cm?) -0.0744+2.6 0.56 + 4.0*
EF(%) -39 £8.0 -39 +16.0
ES Point error (mm) 34 1093 41 £ 1.5
ED Point error (mm) 32 +0.76 37 £13

* (p < 0.05) vs. manual SD. The means were not significantly
different (p < 0.05)

illustrated in figure 1b. Pixel values are sampled along candidate lines normal to the reference
boundary, resulting in a geometrically normalized candidate image.

C. Boundary detection

Boundary detection in the geometrically normalized patient case is formulated as an
energy minimization problem, where the total energy is composed of external and internal
energies of the boundary. The total energy of the problem is expressed as:

Etoral = ZEext + ZEint ()

The external energies E,,s are calculated as the correlation between corresponding columns
in the candidate image and boundary signature image, as illustrated in figure 2. The value of
the correlation image at a certain line n and displacement d gives us the correlation between
the corresponding patient case candidate line and database boundary signature when the
boundary signature is shifted incrementally along the candidate line. Therefore, the position
of a correlation maximum indicates a high probability of a boundary at the specified distance
from the reference boundary. Hence, boundary detection is now reduced to find a horizontal
traverse of the correlation image that gives high probability of a boundary and at the same
time a physiologically probable boundary shape. The correlation image can be written as a
function R(d,n), where d corresponds to the displacement, and n represents one of the N
pairs of candidate lines and boundary signatures. The total energy of a horizontal traverse
of the correlation image is formulated as:

N-1
ZEext = Z R(dmn) )
n=0
where {d, } represents a horizontal traverse.

We see that the sliding correlation coefficient estimate may result in several maxima for
one pair of candidate lines and boundary signatures. Therefore, we need a shape criteria that
ensures a physiologically probable boundary. Parallelism between the detected boundary and
the manually outlined database boundary is used for this purpose. The database boundary
can be expressed by its distance from the reference boundary {d,‘fb } and the internal energy
term can be expressed as:

N—-1
Y = Y [ —dy) = (@ —ait)| 3
n=1

The traverse {d;,’p t} of the correlation image which is optimal with respect to our energy

function in (1) is found efficiently by dynamic programming [4], [8], and results in a minimal
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Figure 3. These plots illustrates the average point distance between the detected boundary and the manually outlined
boundary as a function of Snake energy. In pane a, the correlation is high, and the minimum snake energy is a good
selection criterion. However, the correlation between point distance and Snake energy is typically as illustrated in pane
b, and the proposed selection criterion will fail.

total energy E,p;. The detected boundary is calculated from the reference boundary and the
optimal traverse {d""}.

Each database case results in one detected boundary for the patient case, and a selection
criterion is finally applied to select one. We have evaluated the minimum total boundary
energy E,,; against manual selection of the best database boundary.

III. RESULTS

A database containing two-chamber apical views was established using a Vivid 7 ultra-
sound scanner (GE Vingmed Ultrasound, Horten, Norway). In total 19 cases was recorded
and evaluated leaving one out between each experiment. For each case, the boundary was
evaluated for both end systole (ES) and end diastole (ED) defined by maximum long axis
shortening and mitral valve closing respectively. Figure 4a shows the patient case and the
detected boundary at ED, along with the corresponding database case. Figure 4b shows the
result of unfavourable case selection.

Each detected boundary was compared to manual delineation, calculating the average
boundary point to point distance and ventricular area at ES and ED. For EF calculation, the
long axis length was defined as the distance from the center of the AV plane to its distal
point of the endocardial boundary. The differences between parameters estimated from the
detected boundaries and manually outlined boundaries resulted in a computer to observer
distance (COD) for each parameter. The COD mean and standard deviations are included
in table I for both automatic case selection and for manual selection of the best case. The
variance in the estimated areas is larger for automatic selection than for manual selection
(p < 0.05, f-test). The means were not significantly different (p < 0.05, t-test).

To evaluate the potential of the total Snake energy as a selection criterion, the average
point to point distance between the manually outlined and the detected boundaries were
computed as a function of total Snake energy. The results for two patient cases are shown
in figure 3. In pane a, the correlation between point to point distance and Snake energy
is high. For this patient case, the Snake energy is a good selection criterion. However, the
correlation is usually lower, and a typical example is shown in pane b, where the proposed
selection criterion is suboptimal.

IV. DISCUSSION

We have developed a framework for knowledge based detection of the left ventricular
endocardial boundary, which enables use of template cases within the Snake algorithm.
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Figure 4. Pane a shows an example of successful boundary detection in a patient case. The detected boundary is shown
in green. A manually delineated boundary for the patient case is included in orange for comparison. The corresponding
database case with the manually delineated boundary is also included. Pane b shows a case where boundary detection
failed due to incorrect case selection.

One of the major potential of this approach is the ability to incorporate expert knowledge
into the boundary detector. Due to noise, reverberations, and drop outs in cardiac ultrasound
images, the strongest gradient in an image does not necessarily correspond directly to a tissue
boundary. Using database cases as examples, our method can overcome such problems.

The Snake energy based selection criterion has been shown to fail in many cases even
if some of the database cases resulted in good boundary detection. This is illustrated in
figure 3 and confirmed by the higher variance in estimated areas when using automatic case
selection compared to manual case selection (table I). In many cardiac ultrasound images,
the signal from the endocardium is very low compared to the signal from the epicardium.
If such a case is used as a database template for a patient case with strong signal from the
endocardium, the epicardial boundary signature from the database case might correlate well
with the endocardial boundary signature of the patient case. Consequently, the epicardium
will be detected instead of the endocardium. As long as the shape criterion is not violated,
the total Snake energy can be very low for such cases due to high correlation, and the
selection criterion fails.

Another limitation of the proposed method is its dependency on a diverse image database.
An artifact or pathology that is not present in the database will not necessarily be handled
satisfactory. Performance issues will inevitably arise for large databases since all database
cases must be evaluated for each patient case.

V. CONCLUSION

We have established a framework that enables the Snake algorithm to utilize example
cases from a database for endocardial boundary detection. Visual selection of database case
gave good boundary detection, while the total Snake energy is not sufficiently robust as a
case selection criterion.
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Abstract

We report a new algorithm for detecting the LV myocardial boundary from simultaneously
acquired triplane US image sequences using Multi View Active Appearance Motion Models.
Coupled boundary detection in three planes can potentially increase the accuracy of LV volume
measurements, and also increase the robustness of the boundary detection over traditional methods.
A database of triplane image sequences from full cardiac cycles, including the standard A4CH,
A2CH, and ALAX views were established from 20 volunteers, including 12 healthy persons and 8
persons suffering from heart disease. For each dataset the LV myocardial boundary was manually
outlined, and the ED and ES frames were determined visually for phase normalization of the
cycles. The evaluation of the MVAAMM was performed using a leave one out approach. The mean
point distance between manually and automatically determined contours were 4.1+£1.9 mm, the
volume error was 7.0+14 ml, and fractional volume error was 8.5£16 %. Volume detection using
the automatic method showed excellent correlation to the manual method (R?=0.87). Common
ultrasound artefacts such as dropouts were handled well by the MVAAMM since the detection in
the three image planes were coupled. The views with the largest point distance had one or more
foreshortened views. A larger training database may improve the performance in such cases.

I. INTRODUCTION

Automatic detection of the myocardial boundary of the left ventricle (LV) is a key
challenge in cardiac ultrasound (US) imaging, since several clinically important parameters
such as ejection fraction (EF), stroke volume and cardiac output can be computed from this
boundary.

A. Motivation

The latest generation of three dimensional (3D) cardiac US scanners are capable of
recording multiple imaging planes simultaneously. Thus, the three apical views, including
the apical four chamber (A4CH), two chamber (A2CH), and long axis (ALAX) views can
be acquired at the same time. This is called triplane acquisition, and is illustrated in figure
1. Using triplane images, the accuracy of the estimated volume is expected improve over
traditional single plane methods. It is therefore a need for automatic methods for detection
of the myocardial boundary in triplane recordings.

B-1
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Figure 1. The 3D acquisition configuration for triplane recordings results in three different imaging planes which can
be tuned to each patient case, resulting in the standard apical four chamber, two chamber, and long axis views. Examples
of detected contours using the Multi View Active Appearance Motion Model are shown as white lines.

B. Background

The Active Appearance Model (AAM) was introduced by Cootes and Taylor [1] as a
generalization to Active Shape Models introduced earlier [2]. This is a generative deformable
model that performs well for segmentation of noisy data. The AAMs combine knowledge
of object shape and texture from a segmented image database, using principal component
analysis (PCA) to extract the major components of variation in the training data. This
method was extended by Bosch et al to include motion patterns of the heartbeat into the
model [3], resulting in a method called Active Appearance Motion Models (AAMM). This
model performed better than the classic AAM for cardiac US data. Multi View Active
Appearance Models (MVAAMSs) [4] are another extension to the AAM framework, which
can do coupled boundary detection in multiple views, but only in single frames.

C. Contribution

We propose a new algorithm for time continuous detection of the LV myocardial boundary
in simultaneously acquired triplane US image sequences. This algorithm is a combination
of the AAMM and the MVAAM, resulting in a Multi View Active Appearance Motion
Model (MVAAMM). The MVAAMM incorporates an expert’s knowledge of the spatial
correlation between imaging planes and temporal correlation between image frames from
different parts of the cardiac cycle. Since the algorithm has knowledge of this correlation, we
obtain probable ventricular shapes even if data is missing in parts of the dataset, for example
caused by drop outs. In the rest of this report we will describe this model, and give an idea
of its performance based on experiments on a small dataset of triplane echocardiograms.

II. METHOD

The MVAAMM is a deformable model trained on data segmented manually by an expert.
The LV myocardial boundary of a new patient is extracted by fitting the model to the triplane
echocardiograms. The steps involved in training and fitting the model are explained in the
following sections.

A. Preprocessing

The myocardial boundaries were outlined manually in the triplane data sets by an expert,
resulting in contours enclosing the US signal from the ventricular cavity. The MVAAMM
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depends upon texture patches which include signal from the myocardium, and a contour
inflation method was developed to grow the contours outwards a specified distance. First,
the contour was converted to an implicit contour, resulting in a bitmap of the curve. The
inflated contours were then found from the distance maps generated using a morphological
distance transform. The same approach was used for deflation of detected contours.

For removal of speckle noise, the ultrasound images were filtered using a difference
of Gaussians bandpass filter, where the lower 3 dB pass frequency was on average 0.047
mm~!, while the upper 3 dB pass frequency was on average 0.11 mm~!. These frequen-
cies corresponds to structures of 21 mm and 9.1 mm respectively. The 30 dB band stop
frequencies were 0.0084 mm~! and 0.21 mm~!, corresponding to 12 cm and 4.8 mm.

B. MVAAMM formulation

Building the MVAAMM consists of three steps. First we build a model for the ventricular
shapes. Then we build a similar model for the textures within the shapes. The third step is
to combine these two models into a model of appearance.

1) Modeling the ventricular shapes: Given a manually segmented US dataset of V views
and F frames, the myocardial boundary in each view and frame can be defined by N
landmarks. The first and last landmark are true anatomical landmarks, corresponding to
the atrioventricular (AV) plane, while the remaining landmarks are distributed uniformly
along the boundary. Each landmark can be identified uniquely by their spatial x, y, and z
coordinates along with time ¢, but for convenience we adopt an image centric coordinate
system, where each landmark is defined by two spatial coordinates x and y. For the case
with a single frame f and a single view v, we concatenate the coordinates of the landmarks
in this frame and view into a shape vector:

T
Xpp = (X1,Y1,%2,Y2,- -, XN, IN)

We describe the ventricular shapes for all frames and views by a shape vector:

_ (T T T T T T \T
X = (X1, Xy, X]05 0, X0, o, X py oo XyR)

The frame number refer to the normalized cardiac cycle, where f = fgp corresponds to the
end diastolic (ED) frame, while f = fgg corresponds to the end systolic (ES) frame. The
remaining F' —2 frames are uniformly distributed between these time events. From a cardiac
US database of S manually segmented cases, we obtain S ventricular shapes. Normalization
of the shapes to unit size and zero mean combined by alignment using Procrustes’ method
gives us the shape vectors {x;},i = 1,...S. Now, the mean shape X and shape covariance
matrix C can be estimated,

1
i d C=——
lx, an Gy

4

i
I

(xi —X)(x;—%)"

vl —
I agf3
[N pgf3

4

and PCA gives us the shape eigenvector matrix Py along with the eigenvalues, or shape
coefficients, by of the training set.

The aligned and normalized database cases can now be approximated by a sum of the
mean shape X, and a linear combination of the eigenvectors P using the shape coefficients
as weights x ~ X+ P;b;.



Figure 2. The detected contours at ED (left) and ES (right) is shown along with a volume model generated from the
contours.

2) Modeling the ventricular textures: A model of the textures in the training set is created
using the same principles as for the shapes, by rearranging the pixel values within the shapes
into a texture vector. This is done by first defining a common reference texture geometry,
in our case we chose the mean ventricular shape. The texture patches within the expanded
manually defined contours were warped onto this reference frame using thin plate splines
[5]. This results in one texture vector g; for each case i in the database. If the number of
pixels in the reference coordinate system for view v and frame f is n, r, and the pixel value
number j in this view and frame has a intensity g; ;, ¢, the texture vectors can be expressed
as: Vo F T .

gi= ({gi,j,v,f}:f;ffW;17f=1) ;=18

The texture vectors are normalized using the non linear normalization method described
by Bosch et al [3], followed by the standard AAM normalization procedure [1].

As for the shapes, we use PCA to obtain the texture eigenvectors P, and the associated
coefficients by of the training set. The textures in the training set can now be approximated
by a sum of the mean texture and a linear combination of the eigenvectors g ~ g+ Pgb,.
Then we form a combined shape and texture vector from the coefficients:

Wb
b — s S)
(%
where W is a weight matrix. A third PCA is applied to these vectors, obtaining b = P.c

where P, is the eigenvectors, and c¢ is the coefficients of appearance. P, can be split in two
parts, one representing shapes, and one representing textures:

_ P
r=(r.)

New textures and shapes can be generated by choosing the elements in the appearance
coefficient vector:
x=X+PW,Pyc, g=g+P,P.e

C. MVAAMM matching

Boundary detection in a target patient dataset is done by finding the parameters ¢ of the
MVAAMM and pose transformation p that minimizes the squared sum of pixel difference
r(c,p) between the model texture and the patient texture sampled under the model shape.
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Figure 3. The automatically detected boundaries are compared to the manually determined boundaries in this scatter plot
(a). The dotted line shows the line of identity, while the solid line shows the linear regression line. The Bland-Altmann
plot (b) indicates a small bias in the data, and a t-test reveals that this bias is statistically significant (P < 0.05).

We use the standard AAM matching algorithm, where the model is fitted iteratively to
the target triplane data set, starting with the average model and manually defined initial
pose. r(c,p) is calculated for each iteration, and the required change in parameters is found
from 8¢ = —Rgr(c,p) where R, is precalculated on the training set as described in [1].
This matching is performed on all views and frames simultaneously. For pose estimation,
the MVAAMM matching algorithm differs slightly from the AAM search. In the AAM
formulation, pose and model parameters are coupled, but for triplane recordings this is not
suitable, due to operator dependent variations in probe orientation relative to the cardiac
long axis. Therefore, the pose is estimated separately for each view v using the equation
opy, = —R,,r(c,p,), where we have separate R;, for each view.

When the model has converged, the detected contours are deflated using the technique de-
scribed previously, and a dynamic 3D surface model is generated using spline interpolation.
The ventricular volumes are computed from this model.

III. EXPERIMENTS AND RESULTS

The automatic boundary detector was evaluated on a database of triplane echocardiograms
from 20 volunteers, including 12 healthy persons, and 8 persons suffering from heart disease.
Patients with asynchronies were excluded from the study. The ventricular wall was outlined
manually in the three planes at ED, ES and mid systole (MS) resulting in 9 contours and
texture patches from each dataset. Variations within the training set is of critical importance
when training the models, and we used a leave-one-out technique for training and evaluation.
We trained 20 models from the database, and one dataset was left out from each model.
The model was then evaluated on the dataset that was left out.

Detection was initialized in the first frame by manually identifying three landmarks,
including the mitral valve plane and the LV apex in the first frame of each image plane.
The mean ventricular shape was rotated, scaled, and placed in the image frame to match
the landmarks. As an initial guess of the texture, we used the mean texture.

The detected myocardial boundaries were compared to the manually outlined boundaries
using average point distance, calculated as the mean of the euclidean distances between
pairs of corresponding landmarks. We also computed the error of the automatically de-
termined volumes (V4,,) compared to volumes from manual segmentation (Vyunuar) as
Verr = Vanual — Vauro- The fractional error (Voerr = 1 — Vauro /Vitanuar) describes the error
relative to the magnitude of the measurement.
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Table I
MVAAMM-RESULTS

Results (mean +stddev)

Mean Point Distance (mm) 4.1+1.9
Error (VManual’VAmo) 7.0+14*
Volume fractional error (1-Va,o/Vitanuat) (%) 85+ 16

Volume regression (Y=Vauro, X=Vatanuar) (ml)  y=1.0x—11
Volume correlation coefficient (R2) 0.87

* Significantly different from 0 (p < 0.05)

The mean landmark distance between manually and automatically determined contours
were 4.1 mm, with a standard deviation of 1.9 mm. The volumes from automatically detected
boundaries are compared to the volumes from the manually determined boundaries in figure
3(a), which includes data from ED, ES, and MS from the 20 leave-one-out experiments. As
we see of the scatter plot, there is a high correlation between the manually and automatically
determined volumes (R? = 0.87). The automatic method underestimates the volume by 7
ml with a standard deviation of 14 ml as shown in the Bland-Altmann plot in figure 3(b).
The error relative to manually determined volumes is 8.5% £ 16%. An example of detected
contours at ED and ES is shown in figure 2, and the results are summarized in table I.

We observed that dropouts were handled remarkably well compared to other edge de-
tectors, according to our experience. We also observed that the data sets with the highest
point distance between manually and automatically determined contours corresponded to
recordings with foreshortening in one or more of the views. The results are slightly less
accurate than, but comparable to, the ones obtained by Bosch et al [3]. This is expected,
since we have trained our models on a smaller number of datasets, giving fewer variational
modes in the models. The correlation between EFs derived from manually and automatically
determined contours is poor (R?> = 0.29). A relatively small variation in the training set is
probably one reason, as is the MVAAMM’s tendency to favor a too normal contraction
pattern [3]. These challenges will be topics for further studies of the algorithm.

IV. DISCUSSION

We have developed a multi view active appearance motion model for detection of the
LV myocardial boundary in simultaneously acquired triplane ultrasound echocardiograms.
The model performs detection in all planes and multiple frames simultaneously. We have
tested the model on a small database of triplane echocardiograms with encouraging results,
comparable to AAMMs trained on a larger data set.

Since the three planes are coupled during detection, drop outs are handled remarkably
well. Foreshortening of the views is suspected to contribute to the bias of the estimated
volumes. A larger training database with a larger variation of both anatomy and artefacts
will probably improve the performance of the algorithm.
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Abstract

This paper presents multiview and multiframe active appearance models (AAMs) for left
ventricular segmentation in triplane echocardiograms. We describe a general way of integrating
local edge detector based segmentation algorithms into the AAM framework. The feasibility of this
approach is evaluated by comparing an AAM constrained by a dynamic programming (DP) based
snake with an unconstrained AAM, and an AAM constrained by manually defined landmarks.

A leave-one-out validation scheme was used for training and testing of the methods. Evaluation
was done in 36 patients suffering from various heart diseases, using manually determined volumes
and ejection fractions (EF) as reference. The segmentation was initialized by manual selection
of the mitral annulus and apex in three imaging planes. The differences, in volume, between
manual segmentation and the best automatic method (DP-constrained AAM) were —3.1+£20 ml
(mean+SD) at end-diastole and 0.61 £ 13 ml at end-systole. The difference in EF was —1.3 +
6.3 %, comparable to the inter-observer variability.

We show that (1) constraining the model to manually defined landmarks improves volume
and EF estimates compared to unconstrained AAMs, (2) further improvement is achieved using
a DP-constrained AAM, and (3) segmentation in triplane echocardiograms gives higher accuracy
than single plane data.

I. INTRODUCTION

EFT ventricular (LV) volumes and ejection fraction (EF) are important clinical mea-

sures in diagnosis and prognosis of patients with heart diseases. Conventionally, LV
volumes are measured manually in two-dimensional (2D) echocardiography, using the disk
summation method on one or two apical views [1], [2].

Triplane imaging is a new ultrasound (US) modality allowing simultaneous acquisition
of three apical planes rotated about the long axis of the left ventricle as shown in Fig. 1.
Potentially, the triplane modality will give more accurate volume measurements since all
planes are recorded simultaneously and the geometric relations between the image planes
are known. As for 2D echocardiography, volumes in triplane data are measured manually,
a time-consuming task prone to inter- and intra-observer variability [3]. Hence, there is a
need for automated extraction of the myocardial boundary from triplane echocardiograms.

Automatic segmentation of echocardiograms is a challenging task for several reasons. US
image quality is affected by speckle noise, shadows from the lungs and ribs, and energy
absorption in subcutaneous fat [4]. Further, foreshortening occurs when the imaging plane is
not slicing through the true ventricular apex, causing underestimated volumes. Additionally,
papillary muscles are distinct structures within the cavity that the echocardiographer may
want to exclude [5], and the mitral valve, when open during diastole, may be misinterpreted
as a part of the wall by a naive segmentation approach. An experienced echocardiographer
is able to do good volume measurements despite these challenges because he or she has
developed strategies for compensating for the different sources of errors.

Traditionally, automatic segmentation of US images has been based upon active contour
models, also called “Snakes”, introduced by Kass et al. [6], where the contour is fitted to an
object by minimizing its internal and external energy. Amini et al. [7] showed that dynamic

C-1
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muscle

Mitral valve/
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Figure 1. Triplane echocardiography allows simultaneous acquisition of three apical planes, including the standard apical
four chamber (A4CH), two-chamber (A2CH), and the long axis (ALAX) views.

programming is a well-suited optimization strategy for active contours. A disadvantage of
these methods is that expert knowledge cannot be modeled directly.

The active shape model (ASM) introduced by Cootes and Taylor [8], [9] incorporates
expert knowledge in a global shape model. Later the same authors introduced the active
appearance model (AAM) where knowledge of the object’s texture is also included [10],
[11]. Due to the robustness of AAMs to noisy data, these models are particularly suitable
for segmentation in US data. To model the temporal behavior of the left ventricle in
2D echocardiography, Bosch et al. [12] introduced the active appearance motion model
(AAMM), where data from the entire cardiac cycle is combined into a single model.
Segmentation of multiview data from cardiac magnetic resonance imaging (MRI) was
presented in [13] and [14], where a multiview AAM utilized spatial correlation between
multiple imaging planes. Combined multiview and multiframe AAMs were presented in [15],
[16], and [17]. A third extension to the basic AAM is the constrained active appearance
model (CAAM) [18], where the model is constrained to known contour points.

Initialization of the AAM can have significant impact on the final result, especially if
the model is initialized far from the object of interest [19]. The texture matching technique
used for AAMs is well suited for producing contours with nice global properties, but our
experience is that in echocardiograms with poor image quality, the local accuracy is lower
than what can be obtained by active contours optimized by dynamic programming (DP). A
related problem specific for the AAMM is its tendency to prefer a “too-normal” contraction
pattern [20] causing poor EF measurements.

These limitations were addressed in [19] by using manual initialization, and by using
DP to improve the local quality of the AAM segmentation. However, the AAM was not
constrained by the manually defined landmarks, and DP was applied as a post-processing
step, not as an integrated part of the AAM segmentation algorithm.

Contributions

In this paper, we describe a general method for integrating segmentation algorithms based
on local image evidence with the AAM framework. Further, we demonstrate the use of
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multiview AAMMs for time continuous segmentation of triplane echocardiograms, and we
present a method for constraining the multiview AAMM to manually defined landmarks by
using the CAAM algorithm.

II. BACKGROUND

A. Basic active appearance models

The AAM is described in detail in [11], [21], and [20], but to make this text self-contained,
we describe the basic steps here.
In a 2D image, an object’s shape can be modeled as a coordinate vector

T
X = (X1,¥1,X2,Y2, - - X, ¥n)

of 2n elements, while its texture vector g is found by warping the object’s intensities onto
a fixed reference frame. The shapes from all training sets are aligned using Procrustes
alignment [22] to remove pose differences, while the texture vectors are normalized to zero
mean and unit variance [10]. A statistical model for shape and texture can be written in the
form

x = X+Psby
g = g"‘Pgbg (1)

where X and g are the mean shape and texture, P, and P, are basis vectors for shape and
texture, and by and b, are the shape and texture model parameters. The basis vectors are
obtained by applying principal component analysis (PCA) to the shape and texture vectors
of a training set. These models are combined by a third PCA on the concatenated shape

and texture parameters
b ( Wh ) B ( WP (x %) )
b, Pl (g—8)

where W is a suitable weight matrix for combining vectors of different quantities. The
resulting AAM can be written as

x = X+Qsc
g = g+Qc 2

where Q, and Q, denote the basis vectors for texture and shape of the combined model,
and c are the model parameters controlling both shape and texture at the same time. This
model will produce points in the normalized model frame, but a suitable transformation
Ti(x) with parameters t transforms these points into the image frame X. Commonly, 7; is
a similarity transform with four parameters describing rotation, scale, and translation.

The model parameters ¢ and pose parameters t define the position of the model points
in the image frame X, and can be combined to a single parameter vector p’ = (¢’ |t!)
using concatenation. During matching, pixels in this region of the image g;,,, are sampled
and projected into the texture model frame gs = Ty (gin). In the standard AAM formulation,
the transform 7y shifts and scales the texture intensities. The difference between the model
texture g, given by (2) and the normalized image texture g is expressed by the residual
vector r(p) = g — g, and its sum of squares E(p) =r’r is used as a measure of the model
fit. Assuming linearity, £ is minimized by modifying p according to

5p = —Rr(p) 3)
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where R is the pseudo inverse of the Jacobian of r(p) with respect to the model parameters
p estimated from the training data by numerical differentiation:

-1
[ or T §r or’ @
~\op dp) Sp
Assuming a fixed Jacobian throughout the search, the Jacobian can be precomputed during
model training by applying perturbations to the model parameters and measuring the effect
on the residuals.

The classical fitting scheme for the basic AAM is an iterative procedure [10] where model
parameters are updated for each iteration using (3).

B. Independent active appearance models

Independent AAMs [23] are slightly different from the basic AAM in that the shape and
texture are modeled separately using (1) rather than using a combined model. Therefore,
training of independent AAMs is done by applying perturbations to the pose parameters
t, shape parameters by, and texture parameters b, separately, and we obtain three pseudo
inverses, R;, Ry, and R,. They are used during matching to compute updates to the shape,
texture, and pose parameters separately using (3).

C. Constrained active appearance models (CAAMs)

The CAAM, originally described in [18] allows contour points to be constrained to known
positions with given variances.

We assume that the texture residuals r are uniform Gaussian with variance 6> and that the
model parameters are Gaussian with diagonal covariance Sf,. Since we know the positions
of some contour points, we can construct a landmark vector Xy of the same length as the
shape vector x, where unknown points are set to zero. To this landmark vector, we associate
a diagonal covariance matrix Sx”> where unknown contour points have infinite variance, and
known points are assigned a variance representing the confidence of the constraint. We can
then compute the distances d from Xj to the corresponding model points X as a function
of the model configuration from d(p) = X — Xp. Using a maximum a-posteriori (MAP)
formulation, it can be shown [18] that a measure of the quality of fit of the model is

E=0r"r+p'S,'p+d"S5'd

and we obtain the update step of the CAAM by solving

ASp=-—a (5)
where
or’s sd” __ 5d
A = o208 s 400 sl oo
5p op P Top X 5p
or’ sd”
- &2 1 <!
a = o, i r(p) +S, p+6—p Sgd . (6)
Here both pose transformation and shape changes are folded into the vector p = (¢! |t7)7,
and the Jacobian of the distances gg can be decomposed as ‘Sd (‘;‘ci 5t) The Jacoblans
% of the residual and gd can be assumed constant and are therefore precomputed during

training. The change in distance as a function of perturbations to model pose ‘;‘ti is computed

for each iteration of the model update sequence.
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The matrix Sx> can be regarded as a weight matrix where low values indicate high
confidence. Infinite values mean that no restrictions are put on the corresponding points.
Too low values can potentially over-constrain the model resulting in poor segmentation;
also, the number of constraints will have impact on the resulting segmentation.

ITII. SEGMENTATION METHOD

In this section, we present our multiview AAMM for time continuous segmentation of
triplane echocardiograms. We describe methods for constraining this model to manually de-
fined landmarks, and we show how segmentation algorithms based on local image evidence
can be integrated with the AAM algorithm.

A. Multiview AAMMs

First we build a shape motion vector per view by concatenating shapes from all F' frames
xn = (xT|xT|...|xE)T. After pose alignment, the shape motion vectors from all N views are
concatenated to give one multiview shape motion vector for each training set

Xym = (XrTn,1|XZ1,2| e ‘X;,N)T .

Applying PCA on the combined shapes results in a basis for the shape model according to
(1). This shape model differs from the basic AAM in that all frames and views are modeled
simultaneously, controlled by a single parameter vector.

In triplane echocardiography, all views are acquired simultaneously from a single point
of view. The LV poses in each of the three image planes are therefore strongly related,
but since the LV is often shifted and rotated relative to the probe axis, this relationship is
non-trivial. We are therefore using separate similarity transforms 7;(x) for each view, each
governed by four parameters, giving a total of 12 pose parameters for a multiview AAMM
with three views. A weak coupling of the pose between each view is enforced by weighting
the rotation, scale, and vertical position towards the mean over the views after each iteration
of the AAM fitting scheme. Pose variations through the cardiac cycle are included in the
model, and the same pose transforms are used for each frame.

Construction of the texture model is similar to the shape model. First, the image patches
are warped onto the average shape of the corresponding frame and view. The texture vectors
are then concatenated for each view separately to obtain a texture motion vector g,, and
the resulting texture motion vectors from each view are combined into a single multiview

texture motion vector
T

8vm = (gra,l |gr{1,2| cee ‘gz,N)
Ultrasound imagery has highly non-Gaussian histograms giving the texture vectors roughly
inversely exponential or chi-square pixel distributions [20]. Therefore, the standard AAM
normalization procedure results in highly skewed intensity histograms. PCA assumes that
each element of the texture vectors are approximately Gaussian over the training set.
Therefore, Bosch et al. [20] introduced a non-linear normalization procedure for US data.
This was done by establishing an empirical pixel distribution from all of the range nor-
malized texture vectors. Each texture vector was then mapped to the standardized normal
distribution separately. In our experiments, this procedure is employed prior to the standard
AAM normalization, and PCA is finally used to create a texture model, which combines
information from all frames and views.
For algorithms based upon the CAAM framework, a third PCA was applied resulting in
a single multiframe and multiview model of texture and shape. For unconstrained AAMMs,
we used the independent AAM formulation.
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Optimum perturbations for estimating the Jacobians were found experimentally, with two
perturbations for each parameter. For independent AAMs, perturbations of both shape and
texture parameters were 0.5 standard deviations (SDs) of the total variation of the model
parameters in the training set. Pose parameter perturbations were +10% in scale, +-6 degrees
in rotation, and 2 pixels in horizontal and vertical translation for each view separately.

In our experiments, the multiview AAMM included three views and six frames. The
shape within a single frame and view consisted of 40 points, resulting in combined shape
vectors consisting of 720 points. The corresponding texture vectors had approximately 43000
elements. For single plane models, the combined shape vectors consisted of 240 points, and
the texture vectors had approximately 15000 elements.

B. Landmark constrained AAMMs

The extension of CAAMs to multiple views and frames is straightforward. Assume that
we have constructed landmark vectors Xo; with associated diagonal covariance matrices
for all frames and views in the data set. If some frames or views have no corresponding
landmarks, all elements of the landmark vector are zero, while the diagonal elements of the
covariance matrix are infinity. For each view separately, we can now construct new landmark
motion vectors by concatenating vectors from all F frames: X, = (X{ 1X{,! -, X0 ).
These vectors are in turn concatenated into a multiview landmark motion vector Xg =

(Xg i |Xg’m‘2\ ). ¢} m.n)- Construction of the diagonal covariance Sx?mv follows the same
pattern. The multiview landmark motion vectors, shape vectors, and texture vectors can be
plugged directly into (6), and optimum parameter updates are found by solving (5) as for
the standard CAAM.

Training of the CAAM is similar to the standard AAM approach, but in addition to
computing the Jacobian of the texture residuals, we estimate % by perturbing each parameter
40.5 SDs of the variation within the training set.

Assuming that manually defined landmarks are accurate, the values of the associated
weight matrix S%(.mv should be kept as low as possible without over-constraining the model.
In a pilot study, we found experimentally that a SD of 0.01 pixels gave contours in good
agreement with the manually defined landmarks without over-constraining the model. This
parameter depends on the image resolution, which in our data was 1.440.18 pixels/mm
(mean £SD). In a more advanced implementation, prior knowledge of inter- and intra-
observer variability can easily be incorporated in the algorithm.

C. Integrating local segmentation algorithms with AAMs

The CAAM framework is not restricted only to manually defined landmarks, since seg-
mentation algorithms based on local image evidence can be used to extract edge information
with associated edge confidence. In its simplest form, a local edge detector finds the
strongest edges Xo independently along normals of the AAM shape using for example
a gradient criterion, and the confidences of all edges are assumed equal. The solution to
the CAAM is found iteratively from (5), applying the edge detector after each iteration
to obtain new edge positions. In echocardiography, local edge evidence may vary highly
at different locations, and the contribution of the local edge detector to the segmentation
should therefore reflect the confidence of the measured edge positions. This is accomplished
through the covariance matrix Sx?, causing the edge detector to dominate locally if edge
evidence is strong, otherwise segmentation is controlled by the texture residuals. Due to
speckle noise, a simple edge detector based upon independent point measurements will
give highly noisy edge estimates in US images. We are therefore using DP to obtain more
globally correct edge measurements.
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DP constrained multiview AAMMs can be implemented using the following iterative

scheme:

1) Use DP to find an optimum contour in each frame and view separately given an initial
shape, resulting in a landmark vector X, and edge energy E associated with each
point along the contour.

2) Based on the energies, we express the confidence S;(l = wppIM(Ey) at each point
of X using a function M() which maps energies to variances. Here, wpp is an
experimentally determined weight factor. The mapping function can for example be
a constant, giving equal confidence in all points obtained from the DP algorithm, or
a linear mapping to the range [0, 1].

3) The landmark vectors and diagonal covariance matrices from all frames and views
are combined, and optimal parameter updates are obtained by solving (5).

4) Repeat from 1 until convergence.

In our experiments, we chose a linear mapping function. The weight wpp = 100 was
determined experimentally to give a good trade-off between global and local accuracy, by
matching the energies from the DP algorithm to the contribution from the texture residuals.

D. Dynamic programming optimized active contours

After each iteration of the CAAM update algorithm, the detected contour T;(x) is used as
an initial contour for a dynamic programming based active contour. This initial contour can
be written as a sequence of points (i, is,...,i,) where each vector i; represents the point’s
x and y coordinates. For each initial point, m candidate points {pil,piz, ...,pI"} are sampled
with spacing d along the associated contour normal. Using dynamic programming, we
determine the active contour (p1,p2,...,Px), Where each point p; on the contour is selected
from the corresponding candidate points to minimize the total contour energy expressed as

n

Etot (pn) =Weury Z Ecurv(pifl 7pi)
i=2
n

n
+Waist Z Edist (pt) + Wgrad Z Egrad(piv l) .
i=1 i=1

The first term is a smoothness constraint where

. . 2
Ecurv(Pi-1,Pi) = (D(pi, 1) — D(Pi-1,ii-1))
is the change in distance from the initial contour, and D() represents the Euclidean distance
between two points. The second term
(4,-7‘" 2 )2 .
Egis(pi) =e\ * / |D(p;.ii)|

is a weighted distance from the initial contour, preventing the active contour from diverging
too much from the AAM contour. The exponential weight ensures that the contour is close

to the initial contour in a region of size s around the apex. E,.q4(p;,!) is the gradient at a
candidate point along the contour normal averaged over a window of size /.

IV. CLINICAL EVALUATION
A. Data material

Apical triplane echocardiograms from 39 adult patients selected from the Department of
Cardiology, Rikshospitalet-Radiumhospitalet University Hospital (old myocardial infarction,
valve disease, dilated cardiomyopathy, pulmonary hypertension, heart transplant, and struc-
turally normal hearts), were recorded using a Vivid 7 scanner (GE Vingmed Ultrasound,
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Norway) equipped with a 2D phased array transducer (3V). The three imaging planes were
aligned to the apical four-chamber (A4CH), apical two-chamber (A2CH), and the apical
long axis (ALAX) views respectively (Fig. 1). Patients with arrhythmia were not included.
Three data sets were excluded due to poor image quality and considerable out-of-plane
motion during the cardiac cycle, making manual tracing impossible.

For the remaining 36 data sets, observer 1 (SU) traced the myocardial boundary manually
in all three planes at end-diastole (ED) and end-systole (ES) using an online triplane volume
tool (GE Vingmed Ultrasound, Norway). Volumes and EF were computed using a spline-
based geometry model [3] and used as a manual reference. The analysis was repeated by a
second independent observer (KL) for evaluation of inter-observer variability.

B. Model training

The clinical tool used by observer 1 and observer 2 did not permit storing of traced
contours. For model training, the myocardial boundary was therefore traced manually in
each view by a third observer (JH) and validated by observer 1. If observer 1 did not agree,
the contour was re-traced accordingly. This was done for six frames, including ED, ES, two
systolic frames, and two diastolic frames in each view, giving a total of 18 contours for
triplane echocardiograms.

The timing of the ED and ES frames were determined manually, primarily by finding the
aortic valve opening (AVO) and aortic valve closing (AVC), secondarily by visual identifi-
cation of the largest and smallest LV volumes. The intermediate frames were determined by
linear interpolation. Spatial coherence between corresponding points from different shapes
was obtained by equidistant resampling to 40 points.

Before texture sampling, the width and height of all shapes were increased by 35% and
10% respectively, to ensure inclusion of signal from the myocardial tissue without producing
shapes that were too large to fit within the imaged sector. The endocardial boundary was
recovered from the segmented shapes by a corresponding shrink factor. For performance
reasons, the images were resampled to 100 x 100 pixels. This was a limitation in our
prototype AAM framework, and should not be regarded as a general limitation of the AAM
formulation.

We used a leave-one-out approach to train 36 different models, where different data sets
were left out from each model for evaluation. All models were generated retaining 96%
shape variance and 90% texture variance. The same approach was used to train single plane
AAMMs, but only the A4CH view was included.

C. Experiments

To compare the different segmentation algorithms, we performed segmentation using the
following approaches:

1) Unconstrained multiview AAMM.

2) Multiview AAMM constrained by 18 manually defined landmarks (LM-CAAMM).

3) Multiview AAMM constrained by both manually defined landmarks and landmarks

obtained by DP (DP-CAAMM).

4) Same as 3, but only including the A4CH view.
The manually defined landmarks were extracted from the contours traced by observer 3 to
avoid contribution of initialization inaccuracies when comparing the methods. The landmarks
included two points identifying the atrio-ventricular (AV) plane and one point identifying
the LV apex in each view at ED and ES, giving six landmarks for each view. This procedure
resulted in a total of 18 landmarks for triplane experiments and six landmarks for single
plane experiments. All models were initialized to mean texture and shape, while the model
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Table 1
SUCCESS RATES AND DIFFERENCES BETWEEN SEMI-AUTOMATIC SEGMENTATION AND MANUAL REFERENCE
(MEAN£SD)
Method EDV ESV EF Landmark distance  Success rate
- [ml] [ml] (%] [mm] (%]
Unconstrained AAMM —7.34£20 —2.54227 —1.5+11F 4.3£3.5 83
LM-CAAMM —3.3424 —4.9+18 0.66+8.9 2.7+1.9 100
DP-CAAMM —3.14£20 0.61+13 —1346.3 34423 100
Single plane DP-CAAMM  —8.4+357 164237 —42° %117 2.842.0 100
Only DP —18*+20 —9.6"+18 —13+74 0.80+2.3 100
Inter-observer 13*+19 9.9+15 —1.7£6.3 - 100

f Bias significantly different from 0 (p < 0.05).
T SD significantly different from inter-observer variability (p < 0.05).

pose was initialized by first fitting a custom-made 2D spline model to the three landmarks
of each ED view. This model was evaluated at 40 locations, and the initial AAMM pose
was found by aligning the AAMM to the spline model using Procrustes analysis. To ensure
comparable initialization for all methods, unconstrained multiview AAMMs were initialized
using the same approach.

For each of the above experiments, leave-one-out models were evaluated on the left-out
data sets. For triplane data sets, end-diastolic volume (EDV) and end-systolic volume (ESV)
were computed using a spline-based geometry model [3] and compared to the manually
defined standard established by observer 1. EF was computed as EF = (EDV —ESV)/EDV -
100%. For single plane data sets, EDV and ESV were computed directly from the detected
contours using the area length formula V = 8A2/(37L) where A is the area of the closed
contour, and L is the distance from the AV plane to the apex. The accuracy of the single
plane model versus the triplane model was assessed using the pairwise distance from the
points on the detected A4CH contours to the training shapes averaged over six frames.

D. Statistical analysis

The bias (mean difference) of the algorithms was evaluated by comparing automatically
determined EDV, ESV, and EF to the manual reference (two-tailed t-test assuming equal
means), while the SD of each method was compared to the inter-observer variability (two-
tailed F-test assuming equal SD).

To find the best method, the bias of each algorithm were compared in a pair-wise manner
(two-tailed paired t-test on the mean assuming equal means and possibly unequal variances,
and two-tailed paired F-test on the SD assuming equal SD). A p-value less than 0.05 was
considered significant for all tests.

As a criterion for successful segmentation, we adopted the criterion of Bosch et al. [20],
where an average point distance < 8mm (inter-observer variability + 3 SD) was regarded
successful. This criterion was used to remove obvious convergence failure from further
statistical analysis.

V. RESULTS

Experiments were carried out on triplane echocardiograms using unconstrained multiview
AAMMs, landmark constrained multiview AAMMs (LM-CAAMM), and for multiview
AAMMs constrained by both landmarks and DP (DP-CAAMM). We also evaluated the
DP-CAAMM trained on single plane data showing the A4CH view for comparing triplane
and single plane segmentation. The DP-CAAMM algorithm was chosen since it gave the
best segmentation in both single plane and triplane data. Separate experiments were carried
out using only DP for comparison with the DP-CAAMM.
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Figure 2. Comparison of the different triplane algorithms (dashed lines) with manually traced contours (dotted lines.)
Segmentation has been performed on six frames and three views simultaneously, and all images show the ED frame of
the A4CH view. (a) Unconstrained multiview AAMM. White circles indicate manually defined landmarks. (b) Manually
constrained multiview LM-CAAMM. (c) DP constrained multiview DP-CAAMM. (d) DP algorithm alone.

A. Constrained versus unconstrained AAMs

The unconstrained multiview AAMM had a success rate of 83% (30 of 36 patients)
(Table I row 1). As illustrated in Fig. 2(a), the agreement between the manually defined
landmarks and the unconstrained multiview AAMM were generally low. After exclusion of
convergence failures, this distance was on average 4.3 +3.5 mm (Table I row 1). Compared
to observer 1, the unconstrained multiview AAMM had no significant bias in EDV, ESV,
or EF estimates (Table I row 1). However, the SD of both ESV and EF estimates were
significantly higher than the inter-observer variability (p = 0.03 and p < 0.01 respectively)
(Table I row 6). Fig. 4(f) indicates a relatively low correlation coefficient of automatically
determined EFs compared to the manual reference, even if correlation coefficients of EDV
and ESV were high (Fig. 4(a)).

The multiview LM-CAAMM offered a success rate of 100% (36 of 36 patients) (Table
I row 2). As illustrated in Fig. 2(b), constraining the model improves the agreement with
the manually traced contours, and the average distance between automatically and manually
defined landmarks was reduced to 2.7+ 1.9 mm (Table I row 2). There is no significant
bias in EDV, ESV, or EF, while the SD in EF is significantly higher than the inter-observer
variability (p = 0.04) (Table I row 6). Compared to the unconstrained AAMM, the LM-
CAAMM has higher correlation coefficients for EF (Fig. 4(f) and 4(g)).

B. AAMs constrained by dynamic programming

The DP-CAAMM had a success rate of 100% (Table I row 3), and as illustrated by Fig.
2(b) and 2(c), the accuracy of the contour is generally higher than for the LM-CAAMM.
There is no significant bias in EDV, ESV, or EF (Table I, row 3), and compared to the
inter-observer variability (Table I row 6), the SD of the DP-CAAMM is not significantly
different for EDV, ESV, or EF.

Compared to the LM-CAAMMs, the SD of EF measurements is significantly lower (p =
0.04). Further, the correlation coefficients for EDV, ESV, and EF are higher than for any
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Figure 3. Examples showing typical results from automatic segmentation in triplane data sets using a DP-CAAMM (dashed
line) compared to manual tracing (dotted line). The figure only shows the ED and ES frames, but segmentation was done
in six frames and three views simultaneously. The algorithm handles typical clinical challenges such as foreshortening
(indicated by white arrow in (a)) and dropout (indicated by white arrow in (b)) well.

of the other methods (Fig. 4(c) and 4(h)). The average distance between the automatically
and manually defined landmarks was 3.4+2.3 mm (Table I row 3), which is slightly higher
than for the LM-CAAMM.

For evaluation of the DP-CAAMM, it was necessary to evaluate the performance of DP
alone. The DP algorithm alone performed well in cases with strong edges, but the temporal
behavior was generally poor, and dropouts were not handled well. The bias was significant
for both EDV (p < 0.01) and ESV (p < 0.01) (Table I, row 5.) The bias and SD of the EF
estimates were similar to DP-CAAMM, but DP-CAAMM has a slightly better correlation
coefficient to the manual reference (0.93/0.94 for EDV and ESV respectively for DP versus
0.95/0.97 for DP-CAAMM.) Volumes estimated by the DP-CAAMM have significantly less
bias for both ESV (p < 0.01) and EDV (p < 0.01) than DP alone (Table I, row 3 and 5).

Fig. 3(a) shows an example of a typical multiview and multiframe segmentation using
the DP-CAAMM technique, where the model has been constrained by manually defined
landmarks. The images suffer from foreshortening, especially in ES, but the model still
performed well. Fig. 3(b) illustrates how the model behaves in cases with dropouts.

C. Single plane versus triplane

The EDV and ESV based on the single plane model have no significant bias compared
to the manual reference (Table I, row 4), but there is a significant bias in EF (p = 0.03). In
addition, the SD of the EDV, ESV, and EF estimates are significantly higher than for both
the triplane algorithm and the inter-observer variability with p < 0.01 in all cases (Table I,
row 4 and 6). The average point distance for single plane AAMMs was 3.74+2.7 mm, while
for the A4CH contour of the triplane AAMMs the distance was slightly lower, 3.6 £2.4 mm.

Figures 4(d) and 4(i) show low correlation coefficients between the single plane estimates
and the manual reference for EDV, ESV, and EF.
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Figure 4. Comparison of automatically and manually determined volumes and EF. Solid lines represent the regression
equations, and dotted lines indicate the unit line y = x. Results for the unconstrained multiview AAMM versus manual
reference are shown in (a) and (f), the multiview LM-CAAMM is shown in (b) and (g), while the multiview DP-CAAMM
is shown in (c) and (h). The results for the single plane DP-CAAMM are shown in (d) and (i). Figures (e) and (j) show
observer 2 versus the reference.

VI. DISCUSSION

In this paper we introduced: (1) multiview AAMMs for improved volume and EF es-
timates in triplane echocardiographic data, (2) the use of CAAMs for further improved
accuracy and robustness by constraining the model to manually defined landmarks, and (3)
a method for integration of local edge detector based segmentation algorithms with the AAM
framework, effectively combining the local segmentation power of DP based segmentation
algorithms with the global properties of AAMs.

To our knowledge, this is the first report on semi-automatic segmentation of simultane-
ously acquired triplane echocardiograms. In addition, we have not seen any earlier reports
where the CAAM-framework is used for cardiac segmentation. We believe that combining
local segmentation methods with the AAM is a promising solution for segmentation of data
with highly varying local image evidence.

A. Clinical applicability

We observed that the multiview LM-CAAMM was handling many of the challenges of
cardiac US. Papillary muscles were successfully excluded according to recommendations[5],
and the model was able to compensate for foreshortening. Information from multiple frames
was successfully exploited to give improved temporal behavior.

In clinical practice, efficiency and minimum user interaction is of high priority. Previous
work [20] has focused on efficiency by implementing fully automatic segmentation algo-
rithms requiring minimum user interaction. Our impression is that more weight must be
put on robustness and manual interaction by allowing the model to be guided by manually
defined landmarks.

B. Triplane versus single plane segmentation

Triplane echocardiograms give higher accuracy of volume and EF estimates than sin-
gle plane echocardiograms with similar image quality using the DP-CAAMM algorithm.
Volumes estimated from three planes require fewer geometric assumptions about the LV
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anatomy than the area-length formula. Further, the quadratic relationship between area and
volume causes small errors in the single plane contour to give large errors in the volume
estimates.

The average point distance was only slightly better for the A4CH contours extracted
from the triplane segmentation than for the single plane segmentations. We speculate if this
is a result of “under-training” due to a relatively small training set. By adding additional
spatial deformation modes, a larger training set is required to span the higher dimensional
shape and texture space. The “under-training” is however not necessarily a disadvantage,
since a strong prior can give a more robust model in poor data. We also believe that the
multiview AAMM would have given better results if the model’s 2D pose in each view
were derived from a common three-dimensional (3D) pose. This leads to fewer independent
pose variables, allowing only physically possible combinations over the views. However,
the LV is generally not aligned with the probe. Therefore, the asymmetry of the ventricular
shape makes extraction of 3D pose from 2D views a non-trivial task. This issue requires
further attention.

C. Constraining the active appearance model

Constraining the multiview AAMM improved segmentation robustness and accuracy,
increasing the success rate from 83% to 100% compared to the unconstrained AAMM.
Manually constrained multiview AAMMs also produced contours agreeing better with the
manually defined landmarks. This was especially the case for the LV apex, where image
noise and foreshortening caused poor segmentation using the unconstrained model. The
model’s ability to follow user defined landmarks is of high clinical importance. First,
since the landmarks are selected by an expert they are usually good approximations of the
true landmarks, and should be used as guidance for the model. Secondly, a segmentation
method producing contours disagreeing with manually defined landmarks will gain little
user confidence. Initializing the model manually is a time consuming task, but analysis
time is not necessarily increased since the number of failures are reduced and accuracy
is improved. Our framework is not limited only to manually defined landmarks, and fully
automated segmentation can potentially be achieved using an automated landmark detection
algorithm [24]. Also, the definition of ED and ES should be automated to reduce analysis
time.

In our experiments, all models were constrained by landmarks extracted from the contours
traced by observer 3. In a clinical setting, the accuracy of these landmarks is subject to
inter- and intra-observer variability. It remains to be shown if knowledge of inter- and
intra-observer variability can be utilized to improve segmentation in cases where manually
defined landmarks are inaccurate.

As shown in Fig. 4(g), the manually constrained multiview AAMM has a tendency to
estimate a “too-normal” EF despite the constraints. This is related to the “under-training”
issue discussed in section VI-B.

D. Active appearance models constrained by DP

We have provided a general way of integrating segmentation algorithms based on local
image evidence into the AAM framework. This framework accepts integration with a wide
range of segmentation algorithms, including for example direct measurements of strongest
edges, Kalman filter based algorithms [25], or even ASMs. We used the DP algorithm,
which has been widely used for segmentation of echocardiograms.

Our study shows that the DP constrained multiview AAMM gives the best estimates of
LV volumes and EF, and the method produces contours in good agreement with manually
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Figure 5. An example of segmentation (dashed line) using the DP-CAAMM where the DP-algorithm is weighted too
high, forcing the detected contour to follow a papillary muscle instead of the myocardial boundary (dotted line).

traced contours with respect to both global shape and local accuracy. Both volume and EF
estimates are dramatically improved compared to the multiview AAMM only constrained
by manually defined landmarks.

Our approach, with a DP algorithm fully integrated with a constrained AAM, combines
the local segmentation accuracy of the DP algorithm with the global properties of the AAM.
By weighting the contribution of the DP algorithm depending on local edge evidence, the
DP algorithm dominates when wall evidence is strong; otherwise, deformation is controlled
by the AAM. When integrating the DP algorithm with the AAM framework, a confidence
measure must be associated with the DP generated contour. Improper confidence measures
can give unwanted consequences as shown in Fig. 5, where the DP algorithm has too
high weight causing the segmented contour to follow the papillary muscle instead of the
myocardial boundary.

A pertinent question is if the combination of AAM and DP can be reduced to an ASM,
which does not have an inherent texture model. In a pilot study, we found that the texture
model was necessary for tracking the AV-plane and for the shape of the segmentation.

The idea of combining the AAM framework with other segmentation algorithms can be
extended to include strain measurements from speckle tracking or doppler imaging. This can
potentially give a more physiologically realistic LV model, which also describes torsion and
stretching of the myocardial tissue. The framework can also be used in coupled AAMs for
simultaneous segmentation of the epi- and endocardial boundaries. Further, the framework
can easily be extended to higher dimensions for use in 3D echocardiography.

E. Comparison with related work

Oost et al. [19] describe hybrid AAM/DP segmentation of X-ray LV angiograms where
a DP based active contour is initialized by the output from the AAM algorithm. They
do not feed the output from the DP algorithm back into the AAM, and the resulting
contours do not have to lie within the model shape space. They reported results from semi-
automatic segmentation where the model was initialized by three user defined landmarks,
but in contrast to our approach, the model was free to deform without being constrained by
the landmarks.

In [20], Bosch et al. report a low error between manually and automatically determined
area EF (0.66 +5.5%) using fully automatic AAMMSs. We are not able to reproduce these
results using unconstrained AAMMs. We speculate if the inferior image quality in triplane
compared to standard 2D echocardiograms is the reason. In the future, improved image
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quality in triplane echocardiography can make fully automatic segmentation techniques for
this modality more feasible.

F. Limitations

We used a leave-one-out approach for evaluation of the segmentation methods due to a
limited number of data sets. This technique can lead to over-fitting of parameters to the
available data set, but since test data were never included in the training set, our results
should give a good impression of how the algorithms perform.

The AAMMs were constrained by landmarks extracted from the training shapes traced
by observer 3. These shapes were validated by observer 1, and the segmented volumes are
expected to agree better with observer 1 than observer 2. Comparison with intra-observer
variability would therefore have been a stricter criterion than the inter-observer evaluation
used in our study.

Patients with arrhythmia were not included in our study, because this would require
a much larger population of patients to model the pathological LV contraction patterns
correctly. A similar argument applies to the exclusion of recordings with severe out-of-
plane motion. This is an inherent challenge with AAMs, because care must be taken when
assembling the training sets to ensure a balanced composition of a wide range of pathologies
and imaging situations.

Triplane echocardiography has been shown to give accurate LV volume measurements
[3], but MRI is still accepted as the gold standard, and would have provided a better ground
truth for our evaluation. These limitations should be addressed in a larger scale clinical
evaluation.

VII. CONCLUSION

We have developed a landmark and DP constrained multiview and multiframe active
appearance model for segmentation of the left ventricle in simultaneously acquired triplane
echocardiograms. Evaluation in 36 patients shows that (1) constraining the model to man-
ually defined landmarks improves volume and EF estimates, (2) further improvement is
achieved using the DP-algorithm to constrain the multiview AAMM, and (3) segmentation
in triplane echocardiograms give superior results compared to single plane data.
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Abstract. Recent studies have shown that real-time three-dimensional (3D) echocardiography (RT3DE)
gives more accurate and reproducible left ventricular (LV) volume and ejection fraction (EF) measurements
than traditional two-dimensional methods. We have developed a new semi-automated tool (4DLVQ) for vol-
ume measurements in RT3DE, and we sought to evaluate the accuracy and repeatability of this method.

LV end-diastolic volumes (EDV), end-systolic volumes (ESV), and EF measured using 4DLVQ were com-
pared with a commercially available semi-automated analysis tool (TomTec 4D LV-Analysis ver. 2.2) in 35
patients. Repeated measurements were performed to investigate inter- and intra-observer variability.
Average analysis time of the new tool was 141s, significantly shorter than 261s using TomTec (p < 0.001).
Bland Altman analysis revealed high agreement of measured EDV, ESV, and EF compared to TomTec (p =
NS), with bias and 95% limits of agreement of 2.1 £21 ml, —0.88 £ 17 ml, and 1.6 & 11% for EDV, ESV, and
EF respectively. Intra-observer variability of 4DLVQ vs. TomTec was 7.5 +6.2 ml vs. 7.7 =7.3 ml for EDV,
5.5+5.6 ml vs. 5.0+5.9 ml for ESV, and 3.0 £2.7% vs. 2.1 +2.0% for EF (p = NS). The inter-observer
variability of 4DLVQ vs. TomTec was 9.0 £5.9 ml vs. 17£6.3 for EDV (p < 0.05), 5.0+3.6 ml vs. 12+7.7
for ESV (p < 0.05), and 2.7 +2.8% vs. 3.0+ 2.1 for EF (p = NS).

In conclusion, the new analysis tool gives rapid and reproducible measurements of LV volumes and EF, with
good agreement compared to another RT3DE volume quantification tool.

Introduction

Left ventricular (LV) volumes and ejection fraction (EF) are important parameters for di-
agnosis and prognosis of patients with heart disease (Mandinov et al, 2000; Taylor et al,
1980; White et al, 1987). Traditionally, LV volumes are measured by manual tracing in two
sequentially acquired two-dimensional (2D) echocardiograms, using the biplane method of
disks (MOD) (Gottdiener et al, 2004; Schiller et al, 1989). The spatial under-sampling of
the ventricle, inherent with such 2D techniques, requires geometric assumptions about the LV
shape. Foreshortening, occurring when the image plane is oblique to the ventricular main axis,
also introduces errors in MOD measurements in 2D echocardiography (Gutiérrez-Chico et al,
2005; Jenkins et al, 2004).

Real-time three-dimensional (3D) echocardiography (RT3DE) (also known as four-di-
mensional (4D) echocardiography) is gaining popularity as a routine clinical tool (Monaghan,
2006), and has a significant potential of improving clinical decision-making (Hare et al, 2008).
Of particular interest is the improved accuracy and repeatability of volume and EF measure-
ments, compared to conventional 2D techniques (Gopal et al, 1995; Gutiérrez-Chico et al,
2005; Sugeng et al, 2006; Jacobs et al, 2006). However, manual analysis of 3D data is time-
consuming and impractical. Thus, clinical use of volume measurements from RT3DE requires
simple and efficient automated analysis tools.

Currently, two commercially available volume measurement tools for RT3DE exist on
the market; QLAB (Philips, Andover, MA, USA), and TomTec’s 4D LV-Analysis software
(TomTec Imaging Systems, Unterschleissheim, Germany). Different versions of the TomTec
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tool have been verified against cardiac magnetic resonance imaging (cMRI) in several studies
(Chan et al, 2006; Jenkins et al, 2004; Kiihl et al, 2004; Soliman et al, 2007), showing excellent
agreement of measured LV volumes and EF.

One of the challenges with the TomTec analysis tool is that it requires manual tracing
of the endocardial border in three apical planes for initialization and manual correction of
the detected surface (Chukwu et al, 2007). The tool is therefore relatively difficult and time-
consuming to use, especially for non-expert users, since the exact position of the endocardial
border can be difficult to determine in many situations.

We present a new semi-automated tool for 4D LV volume quantification (4DLVQ) in
RT3DE. This tool provides a simple user interface and an efficient workflow by eliminating
the need for manual tracing, making the tool simpler to use for non-expert users.

The objective of this study was to evaluate the agreement of LV volumes and EF measured
by 4DLVQ compared to TomTec, to evaluate the repeatability of these parameters, and to
determine the potential of 4DLVQ as a clinical tool.

Materials and methods

Volume quantification tool

A volume quantification tool was developed for rapid semi-automated detection of the LV en-
docardial border in RT3DE, based upon a 3D energy minimizing deformable model (McIner-
ney and Terzopoulos, 1996). The deformable model is evolved using an iterative deformation
scheme, under the influence of internal and image derived forces, temporal forces, and user
defined landmark forces.

The model’s internal forces ensure second order shape continuity of the detected object
by counteracting stretching and bending of the surface. In clinical data, a large variation of
LV shapes is expected due to different pathologies and individual variations between patients.
We have therefore avoided encoding explicit a priori information about the LV shape into the
shape constraints.

Image forces are derived from the volumetric data using a local edge detector, utilizing a
combination of gradient and transition information (Rabben et al, 2000). These image forces
pull the surface towards image edges within a region around the deformable model. To ensure
consistent surface detection from frame to frame, and to give a smooth time-volume curve,
temporal forces constrain the model to second-order temporal continuity. By disabling tem-
poral forces, the deformable model can be used for surface detection in single frames. This
mode was used for initial surface detection at end-diastole (ED) and end-systole (ES).

User input is facilitated by generating spring-like forces that pull the deformable model
towards the spatial location of user-defined landmarks (Kass et al, 1988).

The relative weights of the image and model forces were tuned manually on more than
100 training data sets to obtain a good trade-off between accuracy and robustness in different
imaging situations and for various pathologies.

After completed surface detection, LV volumes were derived from the triangulated sur-
faces by summation of all triangular patches using the divergence theorem (Goldman, 2004).

Patient selection

Evaluation was done in two data sets from previous studies with a total of 56 patients (77%
men, age 23-76) submitted to echocardiography at St. Olavs hospital, Trondheim, Norway,
((Malm et al, 2006), n = 20, exclusion criteria: atrial fibrillation, severe extra-cardiac disease),
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and Rikshospitalet-Radiumhospitalet University Hospital, Oslo, Norway, ((Hansegard et al,
2007b), n = 36, exclusion criteria: arrhythmia). All patients gave informed written consent to
participation, and the studies conformed to the declaration of Helsinki, with approval from the
regional committees of medical ethics.

Apical volumetric imaging was performed by experienced operators using a Vivid 7 scan-
ner (GE Vingmed Ultrasound, Horten, Norway) and a 3D transducer (3V). Electrocardiogram
(ECG) gated sub-volumes were acquired from four consecutive cardiac cycles during breath-
hold, with the participants in the left lateral recumbent position. The sub-volumes were auto-
matically stitched to a sequence of full 3D volumes covering the entire LV, and stored digitally
for analysis.

In 20 (36%) of the 56 patients, less than 70% of the myocardium was visualized, caused
by a too narrow imaging sector, shadows, or dropouts. Stitching artefacts were found in one
additional patient (2%). These factors would prohibit reliable volume measurements (Tighe
et al, 2007), and the total of 21 patients (38%), were therefore excluded from further analysis.
Of note in this study, was that patients were not pre-selected from 2D or 3D image quality.

Analysis

Analysis was performed by an expert operator using a customized EchoPAC workstation (GE
Vingmed Ultrasound, Horten, Norway) with the 4DLVQ software integrated. When entering
the tool, the user was presented with a quad-screen, showing cine loops of three apical views
with 60° inter-plane spacing, and one short axis (SAX) view. If required, the apical views were
manually corrected to show the standard apical four-chamber (A4CH), apical two-chamber
(A2CH), and apical long axis (ALAX) views, thereby eliminating foreshortening. When this
anatomical alignment step was complete, the ED frame was automatically detected from the
ECG and, if necessary, manually corrected by visually determining the maximum cavity area.

While displaying the ED frame, surface detection was initialized by manually selecting
two points identifying the mitral annulus and one point identifying the LV apex in each of the
three apical views shown in Fig. 1(a). After the total of nine landmarks had been defined at
ED, non-temporal 3D surface detection was immediately performed to extract the endocardial
border and to compute the EDV. The time required for a full 3D surface detection was less
than one second in all cases. Cross-sections of the detected 3D surface were displayed in three
apical views and three SAX views distributed between the LV apex and base, as shown in Fig.
1(a), to allow visual verification of the detected surface. A fourth user controlled SAX plane
was used to further inspect the surface detection result. If necessary, the displayed LV surface
could, at this time, be edited by manually adding new landmark points using the trackball. An
interactive workflow was achieved by automatically repeating 3D surface detection after each
new landmark until a satisfactory result was obtained. An overview of the tool workflow is
given in Fig. 2(a).

The above procedure was repeated for the ES frame. End systole was detected automat-
ically from the ECG and corrected manually, primarily to agree with aortic valve closing,
secondarily by visually determining the minimal cavity area.

When surface detection was complete for both ED and ES, preliminary measurements of
EDV, ESV, and EF were presented to the user. Our experience was, however, that ED and ES
could be more robustly determined from a full time-volume curve. Full 4D surface detection
was therefore performed to detect LV surfaces for each frame in the entire cardiac cycle. This
typically required less than 10 seconds, depending on the frame- and heart rate. This allowed
a full time-volume curve to be computed, and the maximum and minimum volumes were
presented on the screen as EDV and ESV respectively along with the derived EF, as shown in



D-4 Paper D

[28/06/2005 13:51:42

]
T LVEDV(4D) 112 ml

LVESV(4D) 42 ml

EF(4D)

SV(4D)

CO(4D) 3.67 /min

HR 53 BPM|

Fig. 1. An example of LV surface detection at ED using 4DLVQ is shown in (a). The standard apical views (top left, top
middle, bottom left) were obtained by manual alignment. Each small circle in the apical views indicates a manually defined
landmark used for initialization of surface detection. One SAX view (middle, bottom) was dynamically updated to reflect
the trackball position, in order to facilitate precise landmark positioning and verification of the 3D surface detection. If
necessary, additional landmarks could be added to leave papillary muscles within measured cavity volume. Three extra SAX
views distributed between apex and base (right) were used to further verify the detected surface. The complete 4D surface
detection at ES with time-volume curve is shown in (b).
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Fig. 2. Comparison of workflow for 4DLVQ (a) and TomTec (b). With 4DLVQ, each view is aligned to the standard apical
view. Initialization is done at ED using 3 clicks in each apical view. 3D surface detection is automatically triggered, and if
necessary the detected 3D surface is edited manually by adding landmarks. This is an interactive procedure where the 3D
surface detection is repeated after each new landmark. Once completed with ED, the same procedure is repeated for ES.
When both ED and ES are finished, a full 4D surface detection is performed to obtain EDV, ESV, and EF along with a
time-volume curve. At this stage it is possible to edit the surfaces if improvements are required. With TomTec, initialization
is done by accurate tracing at both ED and ES in each view after alignment to the standard apical views. 4D surface detection
is done directly after initialization, and correction is done to the resulting surfaces if required.

Fig. 1(b). If required, the LV surfaces computed during this step could also be edited further. In
these cases, non-temporal 3D surface detection was performed after each additional manually
defined landmark as for ED and ES. A full 4D surface detection was then manually triggered
once again, to update the time-volume curve. When a satisfactory result was obtained, EDV,
ESV, and EF was recorded for analysis.

Separate analysis was done using an EchoPAC workstation with a TomTec 4D LV-Analysis
plug-in ver. 2.2. An overview of the TomTec workflow is given in Fig. 2(b). The apical views
were aligned to the standard A4CH, A2CH, and ALAX views, similarly as for the 4DLVQ
tool, to eliminate foreshortening. Initialization of the TomTec surface detection algorithm was
done by manually tracing the endocardial border using a spline-based annotation tool in the
three apical views. Contrary to 4DLVQ, manual tracing was completed at both ED and ES in
each apical view before continuing to the next view. Manual editing of the LV surface after
surface detection could be avoided by tracing the endocardial border as accurately as possible
during initialization (Chukwu et al, 2007). While tracing, a cine-loop of the corresponding
view displayed the traced endocardial border to ensure temporal consistency between ED and
ES. After tracing in the A4CH, A2CH, and the ALAX views, 4D LV surface detection was
performed. Two manually adjustable apical planes were used to validate the automatically de-
tected surfaces. The tool allowed for manually editing the LV surfaces, but due to the accurate
initialization procedure, this was not used. EDV, ESV, and EF measurements were derived
from the automatically detected LV surfaces, and recorded for analysis. These values were
used as reference values for evaluation of 4DLVQ.

For both methods, the analysis time was measured from the start of analysis of volumetric
data until the volume and EF measurements were displayed on the screen. The analysis time
was reported as average time =+ standard deviation (SD).
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Table 1. Population mean and range of EDV, ESV, and EF measured by 4DLVQ and TomTec.

EDV [ml] ESV [ml] EF [%]
4DLVQ 137 (88-243) 76 (39-180) 47 (13-65)
TomTec 135 (86-273) 77 (41-182) 45 (12-63)

Repeatability

Intra-observer variability for 4DLVQ and TomTec was assessed in all 35 patients by the pri-
mary operator after at least 14 days. A second expert operator assessed inter-observer variabil-
ity in 10 randomly selected patients. Both operators were blinded to previous measurements.

To compare repeatability with other studies, we adopted the method of Jacobs et al (2006)
and Sugeng et al (2006). First, the absolute difference between two repeated measurements
was computed for each patient as shown in Eq. (1). The absolute differences were reported as
mean + SD over all patients. Secondly, % variability was defined as the absolute difference
between two single measurements, normalized by the average of the two measurements in
the same patient as shown in Eq. (2). The % variability was reported as mean + SD over all
patients.

Abs. variability = |meas. 2 — meas. 1| (1)
|meas. 2 — meas. 1|
avg of meas. 1 and 2

% variability = -100% 2)

Statistical analysis

The relationship between 4DLVQ and the TomTec reference values was analyzed by linear
regression and Bland Altman analysis (Bland and Altman, 1986). The latter was used to eval-
uate the agreement between the two methods (two-tailed t-test on the differences with a null
hypothesis of zero difference and p < 0.05 regarded as significant). The agreement between
the two methods was reported as the mean difference (bias) and the corresponding 95% limits
of agreement. For comparison with other studies, Pearson’s correlation coefficient between
the two methods was also reported.

Agreement between inter- and intra-observer variability of the two methods was computed
from the absolute differences between repeated measurements (Mann-Whitney U test with
p < 0.05 regarded as a significant).

Analysis time was compared using a Mann-Whitney U test with p < 0.05 regarded as
significant.

Results

Semi-automated analysis was feasible in all 35 data sets. A full 4D analysis using 4DLVQ
required 141+ 37 s including image alignment, initialization, and manual correction of the
detected surfaces. This was significantly quicker than for TomTec (p < 0.001), which required
261 + 63 s. The maximum time required for the two tools was 266 and 392 seconds respec-
tively. The 4DLVQ tool required on average three additional manually defined landmarks to
correct the initially detected surfaces.

TomTec and 4DLVQ yielded similar results for population mean and range for EDV, ESV,
and EF (Table 1). Fig. 3(a-c) shows the agreement between 4DLVQ and TomTec. The mean



Semi-Automated Quantification of LV Volumes and EF D-7

z 50 g 50 < 20
= > = ===
S o25b o, — — — — 2 25 3 10 °
g ® o £ o—see o — — — — = P
e S S : g S X
Qe £ o -° V| S A
o o . <4 W " o -
5 s, . 5 .o ‘e > LI
***** — = - -, = = = = - = « 2 .
g s . g 25 80— —— % ~— -
> > Py
a 1%}
@ .50 m s Y/ S
0 70 140 210 280 350 0 50 100 150 200 250 0 25 50 75
Average EDV (4DLVQ, TomTec) [ml] Average ESV (4DLVQ, TomTec) [ml] Average EF (4DLVQ, TomTec) [%]
(2) (b) (©
350 y=0.87x+20 /’ 250 y=094x+4.1 /’ & y=092x+54 //
= 280} '™ 0.98 , = 200} '™ 0.98 _ r=0.90 ow
£ g S
= 50
g 210 g 150 o
S = )
& 140 £ 100 a
E a o 25
2 70 £ 50 -
[ —— [ — o—-"
0 70 140 210 280 350 0 50 100 150 200 250 0 25 50 75
EDV TomTec [ml] ESV TomTec [ml] EF TomTec [%]

(d) (e) ®

Fig. 3. Bland Altman analysis of EDV, ESV, and EF measured by 4DLVQ compared to TomTec is shown in (a), (b), and (c)
respectively. Average difference (solid) is shown along with 95% limits of agreement (dashed). EDV, ESV, and EF measured
by 4DLVQ is plotted against TomTec in (d), (e), and (f) along with unit line (dashed), regression line (solid), and Pearson’s
correlation coefficient r.

differences and 95% limits of agreement for EDV were 2.1 +21 ml, —0.88 4= 17 ml for ESV,
and 1.6 = 11% for EF. The differences between the two tools were not statistically signifi-
cant for EDV, ESV, or EF. The small bias and narrow 95% limits of agreements are strong
indications that 4DLVQ gives results that are highly comparable with TomTec.

Fig. 3(d-f) shows the relationship between EDV, ESV, and EF measured by 4DLVQ and
TomTec. As expected when comparing measurements which both are subject to some mea-
surement error, linear regression gave slopes that were less than unity for all parameters (0.87,
0.94, and 0.92 for EDV, ESV, and EF respectively). The zero intercepts were 20 ml for EDV,
4.1 ml for ESV, and 5.4 % for EF. The correlation coefficients of parameters measured by
4DLVQ and TomTec were 0.98, 0.98, and 0.90 for EDV, ESV, and EF respectively.

The results from the inter- and intra-observer analysis of 4DLVQ and TomTec are shown
in Table 2. This analysis reveals low intra-observer variability for both methods. An important
observation is that the inter-observer variability was significantly better with 4DLVQ than
with TomTec for both EDV and ESV.

Discussion

We have evaluated a new semi-automated method for rapid quantification of LV volumes and
EF in volumetric echocardiograms, and compared this to a reference volume quantification
tool (TomTec) in 35 patients.

Conventional 2D methods for assessment of LV volumes and EF, such as the biplane MOD
have several well-known shortcomings. First, the sparse sampling of the LV requires geomet-
ric modeling with inherent assumptions of the ventricular shape. Due to between-subject and
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Table 2. Inter- and intra-observer variability for TomTec and 4DLVQ.

Inter-observer Intra-observer
Abs. % Abs. %

EDV

4DLVQ [ml] 9.0+£5.9 59+3.7 7.5+6.2 5.8+4.5
TomTec [ml] 17 +6.3 11+£45 7.7+£7.3 55+£5.2
ESV

4DLVQ [ml] 5.0+3.6 5.6+£4.0 55£5.6 8.0£7.6
TomTec [ml] 12¥+7.7 15£8.8 50+£5.9 6.0+7.3
EF

4DLVQ [%] 2.7+2.8 59+5.8 3.0+2.7 7.1+6.5
TomTec [%] 3.0+2.1 8.5+6.5 2.1£2.0 49+4.4

*Significantly different from 4DLVQ (p < 0.05). EDV, end-diastolic volume; ESV, end-
systolic volume; EF, ejection fraction. Abs. values are population mean & SD of absolute
differences between repeated measurements. % values are population mean + SD of abso-
lute differences of repeated measurements normalized by the average of the two repeated
measurements.

pathological variations, these models can only serve as approximations of the true ventricular
shape. Second, the 2D methods can be highly affected by foreshortening because it can be
difficult to acquire 2D echocardiograms that are properly aligned with the LV main axis.

In contrast to 2D methods, our 3D deformable model-based volume quantification method
eliminated the need for geometric assumptions of the LV shape. Since the displayed views
were manually aligned to the true anatomical LV main axis, foreshortening was also com-
pletely avoided. These factors make automated 4D quantification better suited for accurate
and reproducible measurements of ventricular volumes and EF than manual 2D methods.
Also, an automated method can provide time-volume curves from a full cardiac cycle, giving
more accurate EF estimates. The time-volume curve can potentially also be used to improve
echocardiographic diagnosis, by providing information about timing of cardiac events, and
filling rates in diastolic function analysis.

Analysis time was significantly shorter with 4DLVQ than with TomTec. This difference
was mainly due to the simplified 4DLVQ initialization procedure, requiring only nine easily
located landmarks at ED and ES, instead of triplane tracing used for the TomTec analysis.
Because of this simplified initialization, a few additional manually defined landmarks were
often required to include papillary muscles in the LV volume, but since this was done inter-
actively with immediate visual feedback, the overhead was minimal. One might argue that
the TomTec analysis time could be reduced by a less accurate initialization, but it has been
shown that accurate initialization is required to avoid time-consuming manual editing of the
detected LV surface (Chukwu et al, 2007). Soliman et al (2007) reported a TomTec analy-
sis time of 360 &+ 120 seconds, confirming that our results are representable with respect to
TomTec analysis time.

We have shown that EDV, ESV, and EF assessed by 4DLVQ compares well to measure-
ments performed by TomTec, with small bias, narrow 95% limits of agreement, and high
repeatability. Since the agreement between the two methods was high for EDV, ESV, and EF,
we conclude that that 4DLVQ performs at least as well as TomTec in clinically realistic data,
even with a lower analysis time.

Several studies have presented repeatability assessment for various versions of TomTec.
Soliman et al. (2007) reported inter-observer variability of 6.4 7.8 ml, 7.8 £9.7 ml, and
7.1 +6.9%, and intra-observer variability of 4.7+ 3.2 ml, 6.1 £5.8 ml, and 6.6 + 7.4% for
EDV, ESV, and EF respectively. Our results demonstrated similar intra-observer variability,
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but higher inter-observer variability with TomTec. We speculate if the discrepancy in inter-
observer variability can be explained by the manual initialization procedure provided by
TomTec. Slight differences in tracing conventions caused a bias between the observers of
approximately 9 ml at ED and ES. This bias corresponds to a systematic tracing error of less
than 1 mm for typical chamber sizes, but the impact on the variability parameters used in this
study is evident. These differences in tracing conventions are not evident with 4DLVQ, which
require less user input during initialization.

Differences between the workflows provided by TomTec and 4DLVQ are illustrated in
Fig. 2. With 4DLVQ, initialization of all views is completed at ED before continuing to ES.
TomTec uses a different strategy, where manual initialization is completed at both ED and ES
in each view before proceeding with the next view. The traced contours are shown in a cine-
loop preview display during tracing, providing additional information to ensure consistent
contours between ED and ES. It has been claimed that manual editing in TomTec only has
local impact on the detected surfaces (Soliman et al, 2007). We experienced in several cases
that manually editing the surface caused it to “slip” from the endocardial border outside of
the edited area, even in cases with strong edge evidence. Also, TomTec does not provide
immediately updated surface detection during editing, whereas 4DLVQ provided immediate
feedback, giving better control over the detected surface.

The clinical feasibility of RT3DE relies on simple and efficient analysis tools, ideally
integrated as a part of the scanner software to facilitate on-line analysis during examinations.
This puts strong constraints on the performance and ease of use of the tool, also with respect
to manual correction of automatically detected surfaces. The presented volume quantification
tool was implemented as an off-line analysis tool for use on the EchoPAC workstation. We
have shown that a full 4D analysis can be done in less than 3 minutes, also in patients where
manual correction was needed. This indicates that the tool is well suited for on-line analysis.

All in all, 4DLVQ seems to be a reliable clinical tool, which provides rapid and repro-
ducible measurements of LV volumes and EF with good agreement compared to TomTec.
It has a simple workflow that makes it easy to use for non-expert users. Recent develop-
ment within the field of automated landmark detection in RT3DE (van Stralen et al, 2008)
may be utilized to completely eliminate the need for manual initialization. Also, promising
results have been presented using fully automated real-time 4D surface detection methods
(Hansegérd et al, 2007a; Orderud et al, 2007). In patients with poor acoustic properties, semi-
automated methods are still preferred, since they allow for manual correction of the auto-
matically determined LV volumes. But in the future, fully automated methods will improve
efficiency and repeatability of echocardiography examinations.

It has been shown that the accuracy of LV volumes and EF is highly correlated to the
amount of myocardium that is visualized in the RT3DE recording (Tighe et al, 2007). We de-
fined an image quality threshold of 70% myocardium visibility, causing exclusion of 36% of
the patients. Of note for this study was that patients were not pre-selected for image quality.
The need for combining sub-volumes from four cardiac cycles caused exclusion of one pa-
tient due to inability to hold breath throughout the acquisition. Future improvements to probe
design and front-end processing capabilities are expected to give increased field of view, and
less need for ECG gating, while improving image contrast and signal to noise ratio. These
factors will improve feasibility and accuracy of automated assessment of LV function.

Accurate EF measurements are of high clinical importance. cMRI is currently accepted as
the gold standard for LV quantification, and several studies have shown that TomTec compares
well with cMRI, giving good agreement in measured EF, but with slightly under estimated
volumes (Chan et al, 2006; Jenkins et al, 2004; Kiihl et al, 2004; Soliman et al, 2007). This
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bias is explained by differences in how the two modalities visualize trabeculae and valves, and
also partial volume effects in cMRI (Barbier et al, 2007). Since 4DLVQ provides volume and
EF measurements that agree well with TomTec, it is reasonable to believe that 4DLVQ will
give similar results in a comparison with cMRI. The next natural step is therefore to compare
4DLVQ against cMRI.

Conclusion

We have presented a new volume quantification tool for automated EDV, ESV, and EF mea-
surements in volumetric echocardiograms. The tool compared well to a commercially avail-
able analysis tool (TomTec 4D LV-Analysis), with high repeatability, and a significantly shorter
analysis time. This is an important step towards wide spread use of RT3DE in clinical routine.

This study was supported by the Norwegian Research Council and GE Vingmed Ultra-
sound.
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Abstract. We present a fully automatic real-time algorithm for robust and accurate left ventricular segmenta-
tion in three-dimensional (3D) cardiac ultrasound. Segmentation is performed in a sequential state estimation
fashion using an extended Kalman filter to recursively predict and update the parameters of a 3D Active Shape
Model (ASM) in real-time. The ASM was trained by tracing the left ventricle in 31 patients, and provided a
compact and physiological realistic shape space. The feasibility of the proposed algorithm was evaluated in
21 patients, and compared to manually verified segmentations from a custom-made semi-automatic segmen-
tation algorithm. Successful segmentation was achieved in all cases. The limits of agreement (mean41.96SD)
for the point-to-surface distance were 2.2+1.1 mm. For volumes, the correlation coefficient was 0.95 and the
limits of agreement were 3.4+20 ml. Real-time segmentation of 25 frames per second was achieved with a
CPU load of 22%.

1 Introduction

Left ventricular (LV) volumes and ejection fraction (EF) are among the most important param-
eters in diagnosis and prognosis of heart diseases. Recently, real-time three-dimensional (3D)
echocardiography was introduced. Segmentation of the LV in 3D echocardiographic data has
become feasible, but due to poor image quality, commercially available tools are based upon
a semi-automatic approach [1,2]. Furthermore, most reported methods are using iterative and
computationally expensive fitting schemes. These factors make real-time segmentation in 3D
cardiac ultrasound challenging.

Prior work by Blake et al. [3,4] and Jacob et al. [5,6], have shown that a state estimation
approach is well suited for real-time segmentation in 2D imagery. They used a Kalman filter,
which requires only a single iteration, to track the parameters of a trained deformable model
based on principal component analysis (PCA), also known as Active Shape Models (ASMs)
[7]. ASMs can be trained on manually traced LV contours, resulting in a sub-space of phys-
iologically probable shapes, effectively exploiting expert knowledge of the LV anatomy and
function. For segmentation of 3D cardiac data, Van Assen et al. [8] introduced the 3D ASM.
However, there are to our knowledge no reports of real-time implementations of 3D ASMs.

Based on the work in [3,4,5,6], real-time LV segmentation of 3D cardiac ultrasound was
recently introduced by Orderud [9]. He used an extended Kalman filter for robust tracking of
a rigid ellipsoid LV model. Later this framework has been extended to use a flexible spline-
based LV model coupled with a global pose transform to improve local segmentation accuracy
[10]. However, expert knowledge of LV anatomy could not be modeled directly.

To utilize expert knowledge of LV anatomy during segmentation, we propose to use a
3D ASM for real-time segmentation of 3D echocardiograms, by extending the framework
described in Orderud [9]. The 3D ASM, trained on LV shapes traced by an expert, gives a
compact deformable model which is restricted to physiologically realistic shapes. This model
is fitted to the target data in real-time using a Kalman filter. The feasibility of the algorithm is
demonstrated in 21 patients, where we achieve real-time segmentation of the LV shape, and
instantaneous measurements of LV volumes and EF.
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2 Shape Model

A set of 496 triangulated LV training meshes were obtained from 31 patients using a custom-
made segmentation tool (GE Vingmed Ultrasound, Norway). The training tool provides man-
ual editing capabilities. When necessary, the user hence did manual editing of the segmenta-
tion to make it equivalent to manual tracing.

Building the ASM requires pair-wise point correspondence between shapes from differ-
ent patients [7,8]. We developed a reparametrization algorithm for converting triangulated
LV training shapes into quadrilateral meshes. This algorithm produced meshes with 15 lon-
gitudinal and 20 circumferential segments, with vertices approximately identifying unique
anatomical positions. The meshes were aligned separately to remove trivial pose variations,
such as scaling, translation and rotation.

From the aligned training set, the mean vertex position q; was computed, and PCA was
applied on the vertex distribution to obtain the Nx most dominant eigenvectors. In normalized
coordinates, the ASM can be written on the form

q(x) =q;+Aix , )]

where the position of a vertex q; is expressed as a linear combination of the associated sub-
space of the Ny most dominating eigenvectors combined into the 3 x Ny deformation matrix
A;. Here, x is the local state vector of the ASM. The expression for the ASM can be optimized
assuming that the deformation at vertex q; is primarily directed along the corresponding sur-
face normal n; of the average mesh. This is done by projecting the deformation matrix A;
onto the surface normal, giving an Nx-dimensional vector of projected deformation modes
Ail =n! A;. The optimized expression for the ASM can now be written on the form

ai(x) =G +m (Af x) , 2
reducing the number of multiplications by a factor of three.

Due to the quadrilateral mesh structure of the ASM, a continuous surface is obtained us-
ing a linear tensor product spline interpolant. An arbitrary point on the ASM in normalized
coordinates can be expressed as p;(x|) = Tl|(u,v) where (u,v) represents the parametric posi-
tion on the surface, and the local transformation T} includes the deformation and interpolation
applied to the mean mesh. By coupling this model with a global pose transformation Ty with
parameters X, including translation, rotation, and scaling, we obtain a surface

p(x) = Tg(Pl(Xl)vxg) 3)

in real-world coordinates, with a composite state vector X' = [xg, X |. An illustration show-
ing the steps required to generate the ASM is shown in Fig. 1. In our experiments we used 20
eigenvectors, describing 98% of the total variation within the training set.

,,,,,, p(x) p(x)

' (-]I'/I-l[ q,(xl)
! LT T,

.

Fig. 1. A point p(x) on the ASM is generated by first applying a local transformation T described by the ASM state vector
x] on the mean shape, followed by a global pose transformation Ty to obtain a shape in real-world coordinates.
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3 Tracking Algorithm

The tracking algorithm extends prior work by Orderud [9,10], to enable usage of 3D ASMs in
the Kalman filter for real-time segmentation. This is accomplished by using the ASM shape
parameters X, directly, in addition to the global pose parameters Xg, in the Kalman filter state
vector.

3.1 Motion Model

Modeling of motion in addition to position can be accomplished in the prediction stage of the
Kalman filter by augmenting the state vector to contain the last two successive state estimates.
A motion model which predicts the state X at timestep k + 1, is then expressed as

Xpr1 —Xo = A1 (Rx —X0) + A2 (Rk—1 —X0) 4

where X; is the estimated state from timestep k. Tuning of properties, like damping and regu-
larization towards the mean state X for all deformation parameters, can then be accomplished
by adjusting the coefficients in matrices A| and Aj;. Prediction uncertainty can similarly be
adjusted by manipulating the process noise covariance matrix Bg used in the associated co-
variance update equation. The latter will then restrict the change rate of parameter values.

3.2 Measurement Processing

Edge-detection is based on normal displacement measurements v; [4], which are calculated by
measuring the radial distance between detected edge-points pgps ; and the contour surface p;
along selected search normals n;. These displacements are coupled with associated measure-
ment noise r; to weight the importance of each edge, based on a measure of edge confidence.
Measurement vectors are calculated by taking the normal projection of the composite state-
space Jacobian for the contour points

Wl =nl Ty (p1,Xg)i ITg(p1,Xg);i

! ! 0Xg x| ’
which is the concatenation of a global and a local state-space Jacobi matrix. The global Ja-
cobian is trivially the state-space derivative of the global pose transformation, while the local

Jacobian has to be derived, using the chain-rule for multivariate calculus, to propagate surface
points on the spline through mesh vertices, and finally to the ASM shape parameters:

aTg(plaxg) _ Z aTg(pth) <8T1(Xl)n 'ﬁk) AL 6)
x| neEX,y,z 8[)1’” jEL.N, aqj !

(&)

Here, dTg(p1,Xg)/dp; is the spatial derivative of the global transformation, and dTy(x;)/dq;
is the spatial mesh vertex derivative of the spline interpolant.

3.3 Measurement Assimilation and State Update

All measurements are assimilated in information space prior to the state update step. Assump-
tion of independent measurements leads to very efficient processing, allowing summation of
all measurement information into an information vector and matrix of dimensions invariant to
the number of measurements:

H'R 'v=Yhr v 7
H'R'H=Yhyr 'hn! . ®)
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The updated state estimate X at timestep k can then by computed by using the information
filter formula for measurement update [11], and the updated error covariance matrix P is
calculated directly in information space:

=% +PH'R v )
P '=P'+H'R'H . (10)

Using this form, we avoid inversion of matrices with dimensions larger than the state dimen-
sion.

4 Evaluation

4.1 Data Material

For evaluation of the proposed algorithm, apical 3D echocardiograms of one cardiac cycle
from 21 adult patients (11 diagnosed with heart disease) were recorded using a Vivid 7 scanner
(GE Vingmed Ultrasound, Norway) with a 3D transducer (3V). In all patients, meshes corre-
sponding to the endocardial boundary were determined using a custom-made semi-automatic
segmentation tool (GE Vingmed Ultrasound, Norway). The segmentations were, if needed,
manually adjusted by an expert to serve as independent references equivalent to manual trac-
ing.

4.2 Experimental Setup and Analysis

Edge measurements were done perpendicular to the mesh surface within a distance of £1.5
cm to the surface at approximately 450 locations, using a simple edge model based on the
transition criterion [12]. The ASM was initialized to the mean shape, and positioned in the
middle of the volume in the first frame. Segmentation was performed on the evaluation set by
running the algorithm for a couple of heartbeats, to give the ASM enough time to lock on to
the LV.

The accuracy of the ASM was assessed using the mean of absolute point-to-mesh dis-
tances between the ASM and the reference, averaged over one cardiac cycle. Volume differ-
ences (bias) between the ASM and the reference were calculated for each frame. End-diastolic
volume (EDV), end-systolic volume (ESV), and EF ((EDV —ESV)/EDV - 100%) were com-
pared to the manually verified reference (two-tailed t-test assuming zero difference), with
95% limits of agreement (1.96 standard deviations (SD)). EDV and ESV were computed as
the maximum and minimum volume within the cardiac cycle respectively.

5 Results

We observed that common challenges with 3D cardiac ultrasound, such as drop-outs, shadows,
and speckle noise were handled remarkably well, and segmentation was successful in all of
the 21 patients. Some examples are shown in Fig. 2(b-d).

Table 1. Segmentation results showing ASM versus reference.

Volume [ml] EDV [ml] ESV [ml] EF [%]
Difference (mean=+1.96SD) 3.4%420 -5.9%421 6.2*+19 -7.74+12
Correlation coeff. (r) 0.95 091 0.91 0.74

* Significantly different from 0, p<0.05.
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Fig. 2. LV volumes obtained by the ASM (Vagspm) in all 21 patients is compared to the reference (V;¢¢) and shown with the
identity line (dashed) in (a). In (b-d), the end-diastolic segmentation (yellow) in three patients is compared to the reference
(red) and shown along with the volume curve for one cardiac cycle.

The limits of agreement (mean+41.96SD) for the point-to-surface distance were 2.2+1.1
mm, indicating good overall agreement between the ASM and the reference. From Tab. 1,
column 2, we see that the limits of agreement for volumes were 3.4£20 ml, with a strong cor-
relation (r=0.95). The volume correspondence between the ASM and the reference is shown
in Fig. 2(a).

We also found a strong EDV correlation (r=0.91), with a bias and 95% limits of agreement
of -5.9£21 ml (Tab. 1, column 3). The correlation in ESV was 0.91, with limits of agreement
of 6.2£19 ml, (Tab. 1, column 4), while the correlation in EF was 0.74, with limits of agree-
ment of -7.74+12% (Tab. 1, column 5).

The CPU load required to maintain real-time segmentation at 25 frames per second (fps)
was approximately 22% on a 2.16 GHz Intel Core 2 Duo processor.

6 Discussion

We have presented a fully automatic real-time algorithm for robust and accurate LV segmen-
tation in 3D cardiac ultrasound. This was achieved by combining a 3D ASM with a Kalman
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filter based tracking algorithm. The feasibility of the algorithm was demonstrated in 21 pa-
tients.

Computational performance was excellent with a CPU load of 22% at 25 fps. Compared
to traditional ASM update schemes, the Kalman filter gives good segmentation in a single
iteration, allowing real-time implementations.

Contours detected by the ASM showed good overall agreement with the reference shapes,
both with respect to point-to-mesh distances and volumes. There was a significant bias in es-
timated EDV, ESV, and EF, but with relatively narrow 95% limits of agreement. We speculate
if the bias is primarily caused by the simple edge detector used, and better results are ex-
pected using a more advanced edge detector. Robustness was high in the evaluation set, with
successful segmentation in all patients.

Since no user-interaction is required, the algorithm provides rapid analysis of LV function,
and it can potentially provide higher reproducibility than semi-automatic methods. Adding
means of manual corrections when segmentation fails will be subject for further studies.

The algorithm was evaluated on a population with varying image quality, but for eval-
uation of clinical applicability, the algorithm must be tested on a larger population. Also, an
inherent challenge when using ASMs for clinical applications, is that care must be taken when
assembling the training set to ensure inclusion of a sufficiently wide range of pathologies.

Traditional applications where our algorithm fits well includes rapid analysis of LV vol-
umes, EF, and regional function. With real-time segmentation, we expect new applications to
emerge, such as patient monitoring, and automated operator guidance.

7 Conclusion

We have developed a fully automatic algorithm for real-time segmentation of the left ventricle
in 3D cardiac ultrasound. Initial evaluation in 21 patients is very promising, suggesting that
this method is applicable in a clinical setting.

Acknowledgment: The authors would like to thank Brage Amundsen at the Norwegian Uni-
versity of Science and Technology (NTNU) for providing the 3D echocardiography datasets.
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