
UNIVERSITY OF OSLO

Department of Informatics

Speci�cation and

Analysis of Priced

Systems in

Priced-Timed Maude

Master thesis

Leon Bendiksen

February 1, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30823841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This thesis investigates the suitability of extending the rewriting-logic-based Maude framework,
in particular Real-Time Maude, to support the formal modeling and analysis of untimed and
timed priced systems. The �rst contribution of this thesis is to de�ne priced and priced-timed

rewrite theories, show the soundness of these de�nitions, and prove that priced-time rewrite
theories contain as a proper subset the set of priced-timed automata (PTA). Since all priced
systems that I have encountered have been real-time systems, I focus on priced real-time (priced-
timed) systems. The second main contribution of the thesis is the development of a tool,
Priced-Timed Maude, supporting the speci�cation and analysis of useful subclasses of priced
and priced-timed rewrite theories. In particular, Priced-Timed Maude supports the speci�cation
of the large and important class of ��at� object-oriented priced-timed systems, for which I have
developed useful and intuitive speci�cation techniques. This thesis then applies Priced-Timed
Maude to three larger systems, two of which can be considered benchmarks for priced-timed
systems and are often encountered in the literature, and one which has been inspired by a
�regular� problem found in optimization literature. I have also modeled and analyzed one of
these systems using the only well known formal tool for priced-timed systems that I have found,
the PTA toolUppaal CORA, and have compared the performance of these Priced-Timed Maude
and Uppaal CORA speci�cations. Unsurprisingly, Uppaal CORA outperforms Priced-Timed
Maude when analyzing this problem. This is natural, since the PTA model is quite restrictive.
On the other hand, Priced-Timed Maude is more general and expressive, and lets us model
more complex systems with advanced data types and communication features in an elegant and
intuitive style. Furthermore, Priced-Timed Maude supports a wide range of formal analysis
methods, including: rewriting for simulation, search for reachability analysis, linear temporal

logic model checking, and �nding cost- and time-optimal solutions.

2

Acknowledgements

Great appreciation is extended to the following:

My supervisor Peter C. Ölveczky for applying his expertise, giving good advice, and his red and
blue pens.

To Ryel Alviola for the semi-intelligible mumblings, giving helpful feedback, and for coining the
phrase `with tears in his eyes'.

To my mom and Gaia for providing me with the means to survive on a diet of pizza, pick-me-up
Coke, and other healthy foodstu�.

To my good friends Roy and kaimt for moral support and assistance in consuming large amounts
of pizza and pick-me-up Coke.

3

4

Contents

1 Introduction 9

2 Rewriting Logic, Maude, and Real-Time Maude 11

2.1 Rewriting Logic . 11

2.2 Speci�cation of Rewrite Theories in Maude . 12

2.3 Object-Oriented Speci�cation in Maude . 14

2.4 Maude Analysis . 15

2.4.1 Reduction . 15

2.4.2 Rewriting . 16

2.4.3 Search . 16

2.4.4 Model Checking . 16

2.5 Meta-Programming in Maude . 17

2.6 Real-Time Maude . 18

2.7 Real-Time Maude Analysis . 18

2.7.1 Time Sampling Strategies . 19

2.7.2 Timed Rewriting . 19

2.7.3 Timed Search . 19

2.7.4 Searching for Earliest and Latest Solutions 19

2.7.5 Timed Model Checking . 20

3 Priced and Priced-Timed Rewrite Theories 21

3.1 Cost Domain . 21

3.2 Priced Rewrite Theories . 22

3.3 Priced-Timed Rewrite Theories . 24

5

4 Specifying Priced-Timed Rewrite Theories in Priced-Timed Maude 27

4.1 Cost Domains . 27

4.2 Representing the System State . 29

4.3 Priced-Timed Modules . 30

4.3.1 Priced Rules . 31

4.3.2 Flat Systems . 31

4.4 Object-oriented Tick Rules and Built-in Functions 32

4.5 Simple Examples of Priced-Timed Maude Speci�cations 33

4.5.1 Priced Thermostat . 34

4.5.2 Concurrent Priced-timed Lights . 35

5 Analysis in Priced-Timed Maude 37

5.1 Executing Priced-Timed Maude Speci�cations . 37

5.2 Priced-Timed Rewriting . 38

5.3 Priced-Timed Search . 39

5.4 Search for Optimal Solutions . 40

5.4.1 Find Cheapest . 40

5.4.2 Priced Find Earliest . 41

5.5 Temporal Logic Model Checking . 42

6 Semantics of Priced-Timed Maude 45

6.1 Overview of the Priced-Timed Maude Semantics 45

6.1.1 Parsing an Storing Priced-Timed Maude Modules 46

6.1.2 Semantics of Priced-Timed Maude Commands 47

6.1.3 Representation of States . 47

6.1.4 Priced Rules . 47

6.2 Transformations for Command Executions . 48

6.2.1 Module Transformation: pricifyMod . 48

6.2.2 Module Transformation: costlimitMod 51

6.2.3 Module Transformation: pricifyProperties 53

6.2.4 Transforming the Initial Term: pricifyInit 53

6.2.5 Transforming Search Patterns: pricifyPattern 53

6.3 Commands and Algorithms . 54

6.3.1 Priced-timed Rewriting: ptrew and ptfrew 54

6.3.2 Priced-Timed Search: ptsearch . 55

6.3.3 Find Cheapest . 56

6

6.3.4 Binary Find Cheapest . 57

6.3.5 Priced Find Earliest . 58

6.3.6 Timed Model Checking . 59

6.4 De�ning the Syntax of Priced-Timed Maude . 59

7 Case Studies 61

7.1 The Airplane Landing Problem . 62

7.1.1 The Problem . 62

7.1.2 Examples . 62

7.1.3 Modeling ALP in Priced-Timed Maude 63

7.1.4 ALP Analysis in Priced-Timed Maude . 69

7.2 Energy Task Graph Scheduling . 72

7.2.1 Energy Task Graphs and Examples . 72

7.2.2 Modeling ETGS In Priced-Timed Maude 75

7.2.3 ETGS Execution And Analysis . 80

7.3 Subway Passenger Routing . 82

7.3.1 Passenger Routing in A Subway System 82

7.3.2 A Subway Network Example . 82

7.3.3 Modeling Passengers, Trains and Stations in Priced-Timed Maude 83

8 Comparing Uppaal CORA with Priced-Timed Maude 97

8.1 A Short Overview of Priced-Timed Automata . 97

8.1.1 Priced-Timed Automata . 97

8.1.2 Runs, Optimal Runs, and the Mincost Reachability Problem 98

8.2 Priced-Timed Automata as Priced-Timed Rewrite Theories 99

8.3 A Short Overview of Uppaal CORA . 100

8.3.1 Extensions to PTA . 101

8.3.2 Uppaal CORA Speci�cations . 102

8.3.3 Solving Minimum Cost Reachability Using Uppaal CORA 104

8.4 Example: Modeling ETGS in Uppaal CORA . 104

8.4.1 Global Declarations . 105

8.4.2 The Processor Template . 106

8.4.3 The Task Template . 107

8.4.4 System Declarations and Initial State . 108

8.5 Performance Comparison Between Uppaal CORA vs Priced-Timed Maude: En-
ergy Task Graph Scheduling . 109

7

9 Concluding Remarks 113

A Code for Running Examples 117

A.1 Example Priced-Timed Maude Speci�cations . 117

A.2 Example Priced-Timed Maude Analysis . 118

A.3 Case Study Speci�cation and Analysis . 119

A.3.1 ALP . 119

A.3.2 ETGS . 121

A.3.3 SPR . 123

A.4 Example Listings: Uppaal CORA Speci�cations 128

A.4.1 Two Processors, Ten Tasks, and a Bus . 128

A.4.2 Three Processors, Ten Tasks, and a Bus 130

A.4.3 Four Processors, Ten Tasks, and a Bus . 131

B Priced-Timed Maude Implementation Listings 135

8

Chapter 1

Introduction

Real-Time Maude [1, 2] is a timed extension of the rewriting logic tool Maude [3] that has
been successfully applied to a wide range of advanced applications (see, e.g., [4, 5, 6, 7, 8, 9]).
Real-Time Maude distinguishes itself from other formal tools for real-time systems because of its
expressiveness, generality, and support for object-oriented speci�cation. In fact, all the advanced
applications it has been applied to have been modeled as object-oriented systems. However, in
some real-time systems (and in some untimed systems) cost is an important dimension, whether
it be the cost of instantaneous transitions or the cost accumulating at a certain rate over time.
Cost in a system can, for instance, be the power consumed by a processor while it is working
on a certain task, or the power consumed when turning on a light bulb. One formal tool that
supports the speci�cation and analysis of priced real-time (priced-timed) systems is Uppaal
CORA [10], which is a priced extension of the timed automaton tool Uppaal [11]. However,
this tool does not support object-oriented speci�cation, the speci�cation of advanced functions
and data types, etc.

This thesis investigates the suitability of using Real-Time Maude for the speci�cation and analy-
sis of priced-timed systems. In particular, it investigates the suitability of modeling such systems
as object-oriented systems. To this end, we de�ne a theory for modeling priced and priced-timed
systems as priced and priced-timed rewrite theories. As part of the investigation, a tool, Priced-
Timed Maude, has been developed to support the speci�cation and analysis of priced and priced-
timed rewrite theories. Speci�cally, Chapter 3 de�nes the concepts of priced and priced-timed
rewrite theories and proves that these models are sound by showing that equivalent rewrite proofs
have the same cost. Despite the fact that we have shown priced rewrite theories to be sound,
as a result of implementation-speci�c issues, the current prototype of Priced-Timed Maude only
supports �at and �at object-oriented systems. However, all the advanced problems Real-Time
Maude have been applied to have been speci�ed as �at object-oriented systems. Therefore, these
classes cover large and important classes of priced-timed systems. The class of systems that can
be speci�ed using these techniques exceeds what can be speci�ed in Uppaal CORA. Chapter 4
gives an example of a system, a priced thermostat, that cannot be speci�ed in Uppaal CORA.

Chapter 4 introduces the Priced-Timed Maude speci�cation language. It gives general speci-
�cation techniques for object-oriented speci�cation of priced-timed systems. The speci�cation
techniques extend those used for the advanced applications of Real-Time Maude.

Chapter 5 presents the new commands provided by Priced-Timed Maude. In addition to extend-
ing Real-Time Maude commands with support for priced-timed systems, Priced-Timed Maude
also provides commands to obtain the cheapest cost for reaching a state.

9

In Chapter 6 the semantics of Priced-Timed Maude is de�ned in Real-Time Maude. Priced-
Timed Maude commands are implemented by transforming the module and the command into
a pair consisting of a Real-Time Maude module and Real-Time Maude command. Because
Maude is re�ective, Priced-Timed Maude modules and terms can be meta-represented as terms
in Maude, and can be manipulated by Maude functions. Priced-Timed Maude is therefore
developed in Maude as an extension of Real-Time Maude.

Chapter 7 presents three larger case studies:

� The �rst problem is the airplane landing problem (ALP) [12]. In this problem, aircraft
landings are scheduled within a given time window onto a set of runways. If an aircraft is
assigned a landing time that deviates from a given target time, then it has to accelerate or
hold in the air. This leads to more fuel consumption than planned, and an additional cost
is incurred. Therefore, the objective is to minimize this cost. This problem was chosen
because ALP is often cited in papers discussing priced-timed systems (e.g., [13, 14]).

� The second problem is energy task graph scheduling (ETGS) [13]. In this problem, we are
given a set of interdependant tasks, a set of processors, and a bus. The tasks require a
given time to run on each processor and to broadcast on the bus. The processors and
bus consume power at a given rate while processing/broadcasting and a di�erent rate of
power while idle. The objective is to �nd the most energy-e�cient schedule for completing
all the tasks within a given deadline. This example was chosen because of its practical
applications and is the one cited in [13]. It is also used in Chapter 8 when comparing
Priced-Timed Maude's version of the speci�cation to Uppaal CORA's.

� The last problem is a subway passenger routing (SPR) problem. This problem deals with
routing passengers who want to travel within a subway network. Each train uses a set
amount of power based on how many cars are attached to it. The objective is to minimize
the trains' total power consumption, while at the same time making sure all passengers
reach their destinations. This problem is presented mainly to illustrate how more complex
systems, that seem hard or impossible to model using traditional automata-based tools for
analyzing priced-timed systems, can be modeled and analyzed in Priced-Timed Maude.

These examples are all implemented as object-oriented Priced-Timed Maude speci�cations.

Chapter 8 compares priced-timed automata with priced-timed rewrite theories and shows that
priced-timed rewrite theories are more expressive, since any priced-timed automaton can be
expressed as a priced-timed rewrite theory, while the converse is not true. Thereafter, I model
the ETGS example in Uppaal CORA, and run a performance comparison between the two. Not
surprisingly, Uppaal CORA outperforms Priced-Timed Maude by a great margin as this is an
example that can easily be modeled in Uppaal CORA, which is �ne-tuned for this kind of
problem.

Finally, Chapter 9 gives some concluding remarks.

10

Chapter 2

Rewriting Logic, Maude, and

Real-Time Maude

This chapter presents some background on rewriting logic [15], Maude [3], and Real-Time Maude
[1, 2]. Rewriting logic uses membership equational logic [16] to model the static parts of a system
and rewrite rules to model its dynamic parts. Maude is a high performance tool supporting the
speci�cation and analysis of rewriting logic theories. Maude has been shown to be an intuitive
and powerful tool for specifying and analyzing dynamic systems [17]. In particular, it has proven
itself useful in modeling distributed systems in an object-oriented style. Real-Time Maude is
a timed extension of Maude that has been successfully applied to a wide range of advanced
applications (see, e.g., [4, 5, 6, 7, 8, 9]). Priced-Timed Maude extends Real-Time Maude and is
implemented in Maude.

2.1 Rewriting Logic

An equational speci�cation (Ω, E) contains a signature Ω that declares function symbols, sorts,
and subsorts, and a set of equations E that de�ne the non-constructor functions in Ω. In this
thesis, we use only order-sorted equational speci�cation [18], where the signature is (S,≤,Σ),
with S is a set of sorts, ≤ the subsort operator, and Σ a set of function symbols. In order-sorted
signatures, the sorts may be related to each other with the subsort operator. Intuitively, S ≤ S′

means that S is a subsort of S′, so that each term of sort S is also a term of sort S′.

A rewrite theory is a tuple R = (Ω, E, L,R) where (Ω, E) is an equational speci�cation, L a set
of labels, and R is a set of conditional and unconditional rewrite rules. For conditional rewrite
rules we write

l : t −→ t′ if cond

where the label l ∈ L, and is understood as the term t rewritten to the term t′ by the rule l
and is applied only if the condition cond holds. Such a rule models a local state change from an
instance of t to the corresponding instance of t′. For unconditional rewrite rules we write

l : t −→ t′

11

Rewrite rules de�ne dynamic transitions in a system and may only be applied from left to right.
For R a rewrite theory, R ` t −→ u means that u is reachable from t (in zero or more steps).
This provability relation is de�ned as follows (from [19]):

De�nition 2.1.1 (Deduction rules of rewriting logic) Given a rewriting logic speci�cation

R = (Ω, E, L,R) (which we for simplicity assume is one-sorted and has only unconditional rules),

the sequent

R ` t −→ u

holds if and only if t −→ u can be obtained by �nite application of the following rules of deduction:

Re�exivity: For each term t in TΩ(X)
t −→ t

holds.

Equality: If t −→ t′ holds, and E ` t = u and E ` t′ = u′ both hold, then

u −→ u′

holds.

Congruence: For each function symbol f in Ω, if t1 −→ u1, . . . , and tn −→ un all hold, then

f(t1, . . . , tn) −→ f(u1, . . . , un)

holds.

Replacement: For each rewrite rule l : t(x1, . . . , xn) −→ u(x1, . . . , xn) in R, if t1 −→ u1, . . . ,

and tn −→ un all hold, then

t(t1/x1, . . . , tn/xn) −→ u(u1/x1, . . . , un/xn)

holds. (here ti/xi means that each xi is simultaneously replaced by ti.)

Transitivity: If t1 −→ t2 and t2 −→ t3 both hold, then

t1 −→ t3

holds.

It is important to note that rewrite rules are modulo the equations of E according to the
Equality rule of this de�nition.

2.2 Speci�cation of Rewrite Theories in Maude

Maude [3] is a tool and speci�cation language for membership equational logic and rewriting
logic. In Maude, sorts are declared using the sort or sorts keyword using the following syntax:

sorts s1 . . . sn .

12

For instance, sorts Nat Int . de�nes two new sorts Nat and Int. Subsorts are declared using
the subsort keyword, which is used with the syntax:

subsort s1 . . . sn < si . . . sj .

Variables in Maude do not represent memory locations like in programming languages such
as Java; instead, they are mathematical so that equations and rules are implicitly universally
quanti�ed with regard to the variables. Each variable has a name and a sort and can either be
declared using the syntax:

var name : sort .

or explicitly name:sort. For instance, X:Nat is a variable of sort Nat.

Function symbols are declared using the op or ops keywords. Underscores can be used to indicate
the position of arguments. Operators are de�ned with syntax:

op opName : s1 . . . sn -> sr [[Atts]] .

where s1 . . . sn are the sorts of the arguments of the function (a function with 0 arguments is a
constant); sr is the range of the function; and `[Atts]' is optional and declares extra properties
for the operator such as assoc, denoting associativity; comm, denoting commutativity; and id,
specifying an identity element. All matching is performed modulo such attributes. For instance,

op zero : -> Nat .

op _+_ : Nat Nat -> Nat [assoc comm id: zero] .

op dbl : Nat -> Nat .

de�nes the constant zero, the associative and commutative operator _+_ with zero as identify,
and the operator dbl.

Equations are used to de�ne functions in Maude. They can be either conditional or uncondi-
tional, and are written with syntax

ceq t = u if cond .

for conditional equations and

eq t = u .

for unconditional equations. For instance, to de�ne the function dbl that doubles its argument,
we could give the equation

eq dbl(X:Nat) = X:Nat + X:Nat .

(assuming that the _+_ operator i de�ned). The equations in Maude should be terminating and
con�uent.

A conditional rewrite rule

13

l : t −→ t′ if cond

is written with syntax:

crl [l] : t => t′ if cond .

As mentioned, rewrite rules are used to rewrite terms between canonical forms. The left-hand
side of all rewrite rules must be the canonical form of a term, as Maude automatically reduces
all terms to this form before applying the rules to them.

To write comments in Maude we use *** or ��- for one line comments, while multi-line comments
are encapsulated in ***(...) or ��-(...).

Equational speci�cations are de�ned using the functional module type in Maude and are written
with syntax:

fmod MODULENAME is

BODY
endfm

Inclusion of modules is performed by using the keyword including or protecting followed by
the name of the module to import. The BODY of a functional module represents an equational
speci�cation and contains: a list of imported modules, a set of declared sorts, a list of subsort
declarations, a set of operator declarations, a set of membership axioms, and a set of equations.
Rewrite theories are de�ned using system modules with the syntax:

mod MODULENAME is

BODY
endm

In addition to what a functional module contains, the BODY of a system module may also
contain a set of rewrite rules.

2.3 Object-Oriented Speci�cation in Maude

For object-oriented speci�cations the module type omod with syntax omod MODULENAME
is BODY endom is used. Classes are declared with the keyword class followed by a class
name and a set of attributes:

class ClassName | attribute1 : s1, . . . , attributen : sn .

For instance, we can declare a switch for light switches with a status and a light bulb as follows:

class LightSwitch | status : Status, bulb : Nat .

Subclasses can be declared using the keyword subclass. A subclass inherits all the attributes
and rules of its superclass(es). The following syntax is used to declare a subclass:

14

subclass SubClass < SuperClass .

When instantiating objects, the sort Oid is used to assign unique identi�ers to each of them.
Objects are represented as terms of the form

< O : ClassName | attribute1 : value1, . . . , attributen : valuen>

where O is a term of sort Oid. When attributes are not a�ected by a rule, they may be omitted. For
instance, if we have the following class

class TwoAtt | att1 : Nat, att2 : Nat .

and we want to specify a rule adding the number 5 to att2, we may use the following rule:

rl [add-five] : < O:Oid : TwoAtt | att2 : N:Nat >

=>

< O:Oid : TwoAtt | att2 : N:Nat + 5 > .

Maude also has built-in support for messages. Messages are used to pass information between objects in
a con�guration. Messages can be de�ned much in the same way as operators using the following syntax:

msg msgType : s1 . . . sn -> Msg .

where msgType is the name of the type of the message and s1 . . . sn are the sorts of the parameters for
the message.

The state of a distributed system can be regarded as a multiset of objects and messages. In Maude such
multisets are terms of the following sort Configuration, where the multiset is a union de�ned by the
juxtaposition of objects and messages (syntax):

sorts Object Msg Configuration .

subsort Object Msg < Configuration .

op none : -> Configuration [ctor] .

op __ : Configuration Configuration -> Configuration [ctor config assoc comm id: none] .

2.4 Maude Analysis

Maude provides commands to analyze rewrite theories, such as equational reduction to compute the E-
normal form of a term, rewriting to simulate one behavior of the system, search for reachability analysis,
and temporal logic model checking. As already mentioned, Maude assumes that the underlying equational
speci�cation is con�uent and terminating.

2.4.1 Reduction

The command red uses the syntax

red t .

and reduces the given term t to its canonical (or E-normal) form using the equations in a speci�cation.

15

2.4.2 Rewriting

The rewriting commands rew and frew are used to simulate one possible behavior of the system by
applying the rules in the speci�cation successively to the initial state. This is useful for prototyping and
simulation purposes. The rewriting commands use the following syntax:

rew [[n]] init .

frew [[n]] init .

where init is a term denoting the initial state. The `[n]' is optional and n gives an upper limit on how
many rewrite steps to perform.

2.4.3 Search

Search uses a breadth-�rst strategy to explore all possible behaviors from a given initial state:

search [[n]] init =>* searchPattern [such that cond] .

searches for states reachable from init that match the pattern searchPattern and satisfy the optional
condition cond on the pattern. The `[n]' part is optional with n the upper bound on the number of
solutions to display. The arrow =>* means the command searches for states that can be reached in zero
or more rewrite steps. The arrow =>! is used to search for states that are deadlocked, i.e., may not be
rewritten further.

2.4.4 Model Checking

Maude provides a high performance linear temporal logic (LTL) model checker that checks whether a
temporal logic formula constructed from atomic propositions and temporal logic operators such as ~

(negation), /\ (conjunction), \/ (disjunction), <> (eventually), [] (always), and U (until) holds for all
behaviors from a given initial state. Parametric atomic propositions are de�ned as function symbols of
the sort Prop:

op prop : s1 . . . sn -> Prop .

The actual proposition is de�ned with equations by the following syntax:

eq pattern |= prop(. . .) = b .

where b is a boolean. If t |= prop evaluates to true, then prop holds in the state t.

In Maude, we invoke the model checker by giving the command

red modelCheck(init,formula) .

The model checker returns true if the formula holds for all behaviors. If the formula does not hold for
all behaviors, a counter-example is returned. Of course, LTL model checking only terminates if the set
of states reachable from the initial state is �nite.

16

2.5 Meta-Programming in Maude

Maude modules and terms can be meta-represented as terms. We use this fact in Chapter 6 to transform
speci�cations and terms.

Terms in Maude are meta-represented by terms of the sort Term. Constants and variables are meta-
represented as the sorts Constant and Variable that are subsorts of the sort Term and Qid. Quoted
identi�ers are strings that start with the symbol ', e.g., 'abc. Constants are represented as 'name.sort ,
while a variable name:sort is represented as 'name:sort. For instance, the term 'a.MySort is the meta-
representation of the constant a of sort MySort and the term 'X:MySort is the meta-representation of the
variable X of sort MySort. Variables are always declared explicitly in this form in meta-representations
of rules and equations.

The following meta-operators show how term lists and operator symbols in a term are represented on
the meta-level in Maude:

subsort Term < TermList .

op _,_ : TermList TermList -> TermList [ctor assoc ...] .

op _[_] : Qid TermList -> Term [ctor] .

i.e., operator symbols are represented as a quoted identi�er followed by a term list. For instance, the
term f(X:MySort, Y:MySort) is meta-represented as 'f['X:MysSort, 'Y:Mysort].

The operators

op eq_=_[_]. : Term Term AttrSet -> Equation [...] .

op ceq_=_if_[_]. : Term Term EqCondition AttrSet -> Equation [...] .

are used when meta-representing equations. The �rst term represents the left-hand side and the second
term represents the right-hand side of the equation. For instance, the equation

eq dbl(X:Nat) = X:Nat + X:Nat .

is meta-represented by the term eq 'dbl['X:Nat] = '_+_['X:Nat, 'X:Nat] [none].

Rules are meta-represented in a very similar manner using the following 2 operators:

op rl_=>_[_]. : Term Term AttrSet -> Rule [...] .

op crl_=>_if_[_]. : Term Term Condition AttrSet -> Rule [...] .

Finally, modules are meta-represented by the two sorts Module and FModule de�ned as follows:

sorts FModule Module .

subsort FModule < Module .

op fmod_is_sorts_.____endfm : Header ImportList SortSet SubsortDeclSet OpDeclSet

MembAxSet EquationSet -> FModule [...] .

op mod_is_sorts_._____endm : Header ImportList SortSet SubsortDeclSet OpDeclSet

MembAxSet EquationSet RuleSet -> Module [...] .

From the above we see that modules are represented in the expected way with its name, followed by a
list of imported modules, a set of sorts, a list of subsort declarations, a list of operator symbols, a set of
membership axioms, and a set of equations de�ning functional modules, i.e., equational speci�cations.
In addition, system modules that represent rewrite theories also have a set of rules.

All the parts of modules are represented as meta-terms and can therefore be manipulated by Maude,
e.g., the rules of a module may be manipulated and changed.

17

2.6 Real-Time Maude

Real-Time Maude [1, 2] is a tool that extends Maude with support for speci�cation and analysis of
real-time rewrite theories [20]. The tool has been implemented using Maude's meta-programming and
re�ection capabilities. Real-Time Maude has been successfully used to analyze and specify many state-
of-the-art systems such as scheduling algorithms [7], wireless sensor network protocols [4, 5], network
protocols [6, 8], cryptographic protocols [21], and real-time resource-sharing protocols [9]. All these
systems have been modeled in Real-Time Maude using an object-oriented style.

A Real-Time Maude module speci�es a real-time rewrite theory (Σ, E, IR, TR), where:

� (Σ, E) is an equational speci�cation with a signature Σ and E a set of equations. The theory
(Σ, E) must contain a speci�cation of a sort Time modeling the time domain.

� IR is a set of labeled instantaneous (or `regular') rewrite rules.

� TR is a set of tick rules that model time elapse in the system. Tick rules have the form

crl [tick] : {S} −→ {S′} in time τ if cond

where τ is a term denoting the duration of the transition, S and S′ are terms of the sort System,
and {_} is an operator (of sort GlobalSystem) encapsulating the global state. This form ensures
that time advances uniformly in all parts of the system.

The sort Time represents a time domain that can be speci�ed by the user [20]. However, for conve-
nience Real-Time Maude provides some useful built-in time domains that can be imported into a spec-
i�cation. In this thesis we use two of them: POSRAT-TIME-DOMAIN, the positive rational numbers and
NAT-TIME-DOMAIN-WITH-INF, the natural numbers plus a special in�nity value de�ned by the constant
INF. This value is sometimes used when timers are set to be inactive.

Terms of the sort GlobalSystem are used to represent the states in Real-Time Maude and should always
have the form {S} where S represents the whole state of the system.

Real-Time Maude extends Maude's object model to support the speci�cation of object-oriented real-time
systems. Object-oriented tick rules should generally have the form

crl [tick] : {S} => {delta(S, R)} in time R if R <= mte(S) [nonexec] .

where the function mte determines the most amount of time that can elapse in the system before some
critical event must take place, e.g., application of instantaneous rules. The function delta de�nes
the e�ect of time elapse on a system. These functions typically distribute over the elements in the
con�guration S representing the state of the system.

2.7 Real-Time Maude Analysis

Real-Time Maude not only provides analysis commands similar to those provided by Maude, but it also
provides support for the analysis of real-time rewrite theories. Typically, this entails extending existing
Maude commands with support for additional time limits. In addition, some new commands such as
find earliest and find latest that can be used to �nd a state matching a pattern in the shortest or
longest duration are provided.

18

2.7.1 Time Sampling Strategies

To cover the entire time domain (which can be either discrete or dense), tick rules typically have the
form {t} => {t′} in time X if X<=u∧ cond, for X a variable not occurring in t. To execute such rules,
Real-Time Maude o�ers a choice of heuristic-based time sampling strategies, so that only some moments
in time are visited. The choice of such strategies includes:

� Advancing time by a �xed amount ∆ in each application of a tick rule.

� The maximal strategy, that advances time to the next moment when some action must be taken.
That is, time is advanced by u time units in the above tick rule. This corresponds to event-driven
simulation.

2.7.2 Timed Rewriting

For timed rewriting we use the trew and tfrew commands. These commands provide timed rewriting
capabilities and use the syntax:

(tfrew [[n]] init in time E T .)

(tfrew [[n]] init with no time limit.)

where E is either < or <= and T is the time bound. The rewrite command applies rewrite rules until the
time bound or the bound n on the number of rewrite steps is reached, or no rewrite rule can be applied.

2.7.3 Timed Search

Real-Time Maude's timed search command tsearch extends the Maude search command with support
for timed systems. This command analyzes all possible behaviors relative to the selected time sampling
strategy to �nd states that match a pattern and condition and are reachable from an initial state within
a given duration. The tsearch command uses the following syntax:

(tsearch [[n]] init =>* pattern [such that cond] in time E T .)

2.7.4 Searching for Earliest and Latest Solutions

Real-Time Maude provides two new time-speci�c search commands: find earliest and find latest.
The command find earliest obtains the shortest duration that a state can be reached in while matching
a pattern that satis�es a condition. The command uses syntax:

(find earliest init =>* pattern [such that cond] .)

The command find latest, on the other hand, obtains the longest duration possible to reach a state
that matches a pattern and uses this syntax

(find latest init =>* pattern [such that cond] in time E T .)

(find latest init =>* pattern [such that cond] with no time limit.)

19

2.7.5 Timed Model Checking

Real-Time Maude extends Maude's linear temporal logic model checker so that a time bound can be
given to make the state space of a speci�cation �nite. There are two versions of the model checker: timed
and untimed. The timed model checker supports a time limit and uses syntax:

(mc initState |=t formula in time E T .)

20

Chapter 3

Priced and Priced-Timed Rewrite

Theories

A priced rewrite theory extends an ordinary rewrite theory by assigning a cost expression to each rewrite
rule. Since priced systems are often also timed systems, the de�nition of priced rewrite theories is
further naturally extended to priced-timed rewrite theories, which add cost to real-time rewrite theories
[20]. Priced-timed rewrite theories form the theoretical foundation of Priced-Timed Maude.

Section 3.1, de�nes the cost domain abstractly. Section 3.2 de�nes priced rewrite theories. Section 3.3
de�nes priced-timed rewrite theories as a combination of real-time and priced rewrite theories, thereby
allowing us to assign both a cost and duration expression to each rule.

3.1 Cost Domain

Cost is de�ned abstractly as a commutative monoid:

De�nition 3.1.1 The cost domain is de�ned abstractly as a commutative monoid (Cost, 0, +, <) with
strict total order < with least element 0.

In Maude, this abstract domain can be represented by the following equational theory :

fth COST is

sort Cost .

op 0 : -> Cost .

op _+_ : Cost Cost -> Cost [assoc comm id: 0] .

ops _<_ _<=_ : Cost Cost -> Bool .

vars x, y, z : Cost .

ceq y = z if x + y == x + z .

eq x < x = false .

ceq x < z = true if x < y and y < z .

eq (x <= y) = (x < y) or (x == y) .

eq x < 0 = false .

endfth

Example 3.1.2 It is easy to see that the natural numbers (N, 0,+ <) satisfy the axioms of above theory
COST.

21

3.2 Priced Rewrite Theories

A priced rewrite theory is a a rewrite theory where each rewrite rule is assigned an associated cost
expression. Rules where this associated cost always equals 0 are ordinary rewrite rules while the ones
with nonzero cost are called priced rules.

De�nition 3.2.1 A priced rewrite theory Rϕ,κ is a tuple (R, ϕ, κ) with R = (Σ, E, L,R) a generalized
rewrite theory, such that

� ϕ is an equational theory morphism1.

ϕ : COST → (Σ, E).

That is, the speci�cation (Σ, E) satis�es the requirements of the abstract theory COST, so that
ϕ(Cost) is the concrete sort for the cost in (Σ, E) and where the function ϕ(_+_) satis�es the
equations for + in COST, and so on.

� κ is the function that assigns a term c(x1, ..., xn) of sort ϕ(Cost) to each labeled rule l : t(x1, ..., xn) −→
t(x1, ..., xn).

Notation: We often write just Cost, 0, and + instead of ϕ(Cost), ϕ(0), and ϕ(_+_). Furthermore, we
use the following notation for priced rules:

l : t
κ(l)−−→ t′ if cond

where κ(l) is the cost incurred by executing the rule l. If κ(l) equals ϕ(0) we usually write

l : t −→ t′ if cond.

The total cost of a (composite) rewrite (proof) α : t −→ t′ is de�ned as the sum of the cost of each
rewrite step in α:

De�nition 3.2.2 Given a composite rewrite α : t −→ t′ in the theory Rϕ,κ, the total cost κ∗(α) is
de�ned inductively by these rules:

� Identity: For each [t] ∈ TΣ,E, κ
∗([t]) = 0

� Σ-structure: For each f ∈ Σn, n ∈ N, κ∗(f(α1, . . . , αn)) = κ∗(α1) + . . . +κ∗(αn)

� Replacement: For each rewrite rule l ∈ (L,R), κ∗(γ(α1, . . . , αn)) = κ∗(γ) +κ∗(α1) + . . . +κ∗(αn)

� Composition: κ∗(α;β) = κ∗(α) +κ∗(β)

In [15], Meseguer de�nes the notion of proof equivalence between rewrite proofs. We show that the
de�nition of cost is well-de�ned in the sense that equivalent rewrite proofs have the same cost:

Theorem 3.2.3 Given a priced rewrite theory Rϕ,κ, then κ∗(α) = κ∗(β) if the proofs α and β are
equivalent proofs according to the de�nition of proof equivalence given in [15].

Proof

The proof is by induction on the structure proof of the proof equivalence α = β:

1An equational morphism [20] φ : (Σ, E)→ (Σ′, E′) maps sorts and operators in (Σ, E) to sorts and terms in
(Σ′, E′) in a consistent way. See [20] for a formal de�nition of equational theory morphism.

22

1. Category:
(a) Associativity. For all α, β, and δ, must prove κ∗((α;β); δ) = κ∗(α; (β; δ))

Left-hand side:
κ∗((α;β); δ)

m [Composition]
κ∗(α;β) +κ∗(δ)

m [Composition]
(κ∗(α) +κ∗(β)) +κ∗(δ)

m [Associativity and commutativity
of +]

κ∗(α) +κ∗(β) +κ∗(δ)

Right-hand side:
κ∗(α; (β; δ))

m [Composition]
κ∗(α) +κ∗(β; δ)

m [Composition]
κ∗(α) + (κ∗(β) +κ∗(δ))

m [Associativity and
commutativity of +]

κ∗(α) +κ∗(β) +κ∗(δ)

The left-hand and right-hand sides are equal.

(b) Identities: Must prove κ∗(α; t) = κ∗(t′;α)

Left-hand side:
κ∗(α; t)

m [Composition]
κ∗(α) +κ∗(t)

m [Identity]
κ∗(α) + 0

m [0 is the identity wrt + in
the monoid de�ning cost]

κ∗(α)

Right-hand side:
κ∗(t′;α)

m [Composition]
κ∗(t′) +κ∗(α)

m [Identity]
0 +κ∗(α)

m [0 is the identity wrt + in
the monoid de�ning cost]

κ∗(α)

2. Functoriality:
(a) Preservation of composition.
for all α1, . . . , αn and β1, . . . , βn, κ∗(f(α1;β1, . . . , αn;βn)) = κ∗(f(α1, . . . , αn); f(β1, . . . , βn))

Left-hand side:
κ∗(f(α1;β1, . . . , αn;βn))

m [Σ-structure]
κ∗(α1;β1) + . . . +κ∗(αn;βn)

m [Composition]
κ∗(α1) +κ∗(β1) + . . . +κ∗(αn) +κ∗(βn)

Right-hand side:
κ∗(f(α1, . . . , αn); f(β1, . . . , βn))

m [Composition]
κ∗(f(α1, . . . , αn)) +κ∗(f(β1, . . . , βn))

m [Σ-structure]
κ∗(α1) + . . . +κ∗(αn) +κ∗(β1) + . . . +κ∗(βn)

m [Using associativity and commutativity
of +]

κ∗(α1) +κ∗(β1) + . . . +κ∗(αn) +κ∗(βn)

We see that the left-hand and right-hand sides are the same.

(b) Preservation of identities:
Must prove κ∗(f([t1], . . . , [tn])) = κ∗([f(t1, . . . , tn)])

23

Left-hand side:
κ∗(f([t1], . . . , [tn])) = κ∗(t1) + . . . +κ∗(tn)

m [Identity]
0 + . . . + 0

m [0 is the
identity of +]

0

Right-hand side:
κ∗([f(t1, . . . , tn)])

m [Identity]
0

We see that the left and right-hand sides are equal.

3. Axioms in E: Must prove that for t(x1, ..., xn) = t′(x1, ..., xn) an axiom in E, for all α1, ..., αn,
κ∗(t(α1, ..., αn)) = κ∗(t′(α1, ..., αn))

Left-hand side:
κ∗(t(α1, ..., αn))

m [Σ-structure]
κ∗(α1) + . . . +κ∗(αn)

Left-hand side:
κ∗(t′(α1, ..., αn))

m [Σ-structure]
κ∗(α1) + . . . +κ∗(αn)

Again the left and right hand sides are equal and the assumption holds.

4. Exchange:
For each rewrite rule l ∈ R, κ∗(γ(α1, . . . , αn)) = κ∗(γ(t1, . . . , tn); t′(α1, . . . , αn))

Left-hand side:
κ∗(γ(α1, . . . , αn))

m [Replacement]
κ∗(γ) +κ∗(α1) + . . . +κ∗(αn)

Right-hand side:
κ∗(γ(t1, . . . , tn); t′(α1, . . . , αn))

m [Replacement]
κ∗(γ) +κ∗(t1) + . . . +κ∗(tn) +κ∗(t′) +κ∗(α1) + . . . +κ∗(αn)

m [Identity]
κ∗(γ) + 0 + . . . + 0 + 0 +κ∗(α1) + . . . +κ∗(αn)

m [0 is the
identity of +]

κ∗(γ) +κ∗(α1) + . . . +κ∗(αn)

Again, the left-hand and right-hand side of the proof are the same. �

3.3 Priced-Timed Rewrite Theories

A priced-timed rewrite theory combines the notions of real-time rewrite theory and priced rewrite theory.
This can be done in a straightforward manner as the notions of cost and time are disjoint concepts.
Priced-timed rewrite theories enable the speci�cation of priced tick rules � rules with both a duration
and a cost. The following de�nition shows how a priced-timed rewrite theory is the combination of
real-time and priced rewrite theory:

De�nition 3.3.1 A priced-timed rewrite theory Rϕ,κ,φ,τ is a tuple (R, ϕ, κ, φ, τ) such that (R, ϕ, κ) is
a priced rewrite theory and (R, φ, τ) is a real-time rewrite theory.

For priced tick rules we use the following notation:

24

l : {t}
κ(l),τ(l)−−−−−→ {t′} if cond

where κ(l) is the cost expression of the rule and τ(l) is the associated duration expression.

25

26

Chapter 4

Specifying Priced-Timed Rewrite

Theories in Priced-Timed Maude

Priced-Timed Maude extends Real-Time Maude [1, 2] to support the formal speci�cation and analysis of
a useful subclass of priced and priced-timed rewrite theories. This chapter gives an overview of Priced-
Timed Maude concepts and speci�cation techniques for �at object-oriented and �at �normal� systems.

This chapter also explains how cost domains are de�ned, how the state of a system should be represented,
how Priced-Timed Maude speci�cations di�er from Real-Time Maude speci�cations, and how to specify
priced rules. The speci�cation techniques given in this chapter only work with �at systems, this is de�ned
more precisely in Section 4.3.2.

The tool itself and some examples can be obtained at the following url:
http://home.ifi.uio.no/lobendik/PTM/

4.1 Cost Domains

The cost domain is user-speci�able as a data type that satis�es the abstract theory COST in De�nition
3.1.1. For convenience, two built-in domains are supplied by Priced-Timed Maude: by importing the
module NAT-COST-DOMAIN, the sort Cost is the natural numbers, while importing POSRAT-COST-DOMAIN

de�nes the cost domain to be the positive rational numbers.

Before looking at the speci�cs of a built-in cost domain, we introduce the modules that de�ne the
abstract skeleton of the cost domain. The following module COST de�nes the basic sort Cost that is used
to represent cost along with some operators on it:

fmod COST is

First we de�ne sorts for cost and non-zero costs. The sort CostInf adds an in�nity value infcost:

sorts Cost NzCost CostInf .

subsort NzCost < Cost < CostInf .

op infcost : -> CostInf [ctor] .

The rest of the module de�nes the basic comparison operators _cheaper than_ and _cheaper than

or eq_, and the _pluss_ operator. The constant free represents a zero valued Cost, i.e., the identity
element of the cost domain.

27

op _pluss_ : Cost Cost -> Cost [assoc comm prec 33 gather (E e) id: free] .

op free : -> Cost .

op _cheaper than_ : Cost Cost -> Bool [prec 37] .

op _cheaper than or eq_ : Cost Cost -> Bool [prec 37] .

vars C C' : Cost .

eq C cheaper than or eq C' = (C cheaper than C') or (C == C') .

eq C cheaper than infcost = true .

eq infcost cheaper than C = false .

endfm

The next module de�nes the operation of dividing any Cost by two; this is needed when performing
a binary search for the cheapest possible state. We return to this when discussing the binary find

cheapest command.

fmod DIVIDE-COST is

including COST .

op div2 : Cost -> Cost .

eq div2(free) = free .

endfm

Borrowing heavily from the de�nition of Time in Real-Time Maude [2], the following module de�nes
linear cost:

fmod LCOST is

including COST .

ops minCost maxCost : Cost Cost -> Cost [assoc comm] .

vars C C' : Cost .

ceq maxCost(C, C') = C if C' cheaper than or eq C .

ceq minCost(C, C') = C' if C' cheaper than or eq C .

endfm

Finally, all the modules making up the abstract aspects of Cost into one single module ABSTRACT-COST.
This is simply done for convenience and for general overview, so that only one module needs to be
included when a new cost domain is de�ned.

fmod ABSTRACT-COST is

including LCOST .

including DIVIDE-COST .

endfm

Priced-Timed Maude implicitly de�nes the equational theory morphism ϕ described in Section 3.2 by
mapping the �abstract� sort Cost in the theory COST to the sort Cost in the module COST, 0 to free, _+_
to _pluss_, and < to _cheaper than_. The user can then de�ne his desired cost domain by de�ning
the domain of the sort Cost and the functions free, _pluss_ and _cheaper than_. This is done for the
natural numbers in the built-in module NAT-COST-DOMAIN shown below:

28

fmod NAT-COST-DOMAIN is

including ABSTRACT-COST .

protecting NAT .

After importing the natural numbers, we de�ne the members of the domain and how the abstract
operators are de�ned on this speci�c domain. That is, we de�ne all natural numbers to be members of
the cost domain, while only non-zero natural numbers are considered non-zero cost:

subsort Nat < Cost .

subsort NzNat < NzCost .

vars N N' : Nat .

We de�ne the identity element (named free) to be the number 0.

eq free = 0 .

The following de�nes that adding two cost elements is the same as adding two natural numbers:

eq N pluss N' = N + N' .

Finally, we de�ne the comparison operator _cheaper than_ for this domain and how division by 2 is
to be handled. The division-by-2 operator is used only in conjunction with the binary find cheapest

command that is covered in the next chapter.

eq N cheaper than N' = N < N' .

eq div2(N) = N quo 2 .

endfm

After importing the above module, we may use the regular operators <, _+_, and 0 on the members of
the domain instead of _cheaper than_, _pluss_, and free.

4.2 Representing the System State

A new sort SystemState is introduced in Priced-Timed Maude. The state of the system should always
be of this sort; i.e., this sort should represent the whole system. The sort SystemState is a subsort of the
Real-Time Maude sort System. The module PRICED-SYSTEM de�nes these sorts and subsort relationships:

fmod PRICED-SYSTEM is

including UNTIMED-PRELUDE .

protecting COST .

sorts SystemState PricedSystem .

subsort SystemState PricedSystem < System .

...

endfm

Furthermore, all initial terms must be of the form {S} where S is the initial system state, making it a
Real-Time Maude term of sort GlobalSystem.

29

4.3 Priced-Timed Modules

A Priced-Timed Maude speci�cation de�nes an executable priced-timed rewrite theory. Therefore, a
Priced-Timed Maude module is essentially a Real-Time Maude speci�cation which includes a de�nition
of a cost domain and where some rules are priced rules. Priced rules are (instantaneous or tick) rules
equipped with cost expressions. Two new module types are provided in Priced-Timed Maude to de�ne
priced rewrite theories: ordinary priced-timed modules and object-oriented priced-timed modules. The
syntax of an ordinary priced-time module is:

ptmod NAME is

BODY
endptm

where BODY contains a list of imported modules, sort, and subsort declarations, similar to regular
Maude modules. In fact, when a ptmod is used in a speci�cation, the module PRICED-TIMED-SYSTEM

shown below is automatically imported into the speci�cation. This module contains �skeleton� de�-
nitions of both Time (imported from TIMED-PRELUDE) and Cost (from PRICED-SYSTEM) together with
important sorts such as the Real-Time Maude sort GlobalSystem and the Priced-Timed Maude sort
PricedTimedSystem. The speci�cs of what is imported is discussed further in Chapter 6.

The module PRICED-TIMED-SYSTEMmakes a speci�cation priced-timed by importing the module PRICED-SYSTEM
along with the skeleton de�ning Time and timed systems from Real-Time Maude's TIMED-PRELUDE:

fmod PRICED-TIMED-SYSTEM is

including PRICED-SYSTEM .

including TIMED-PRELUDE .

sort PricedTimedSystem .

subsort ClockedSystem < PricedTimedSystem .

op _with cost_ : ClockedSystem Cost -> PricedTimedSystem [prec 95 gather (E e)] .

endfm

An object-oriented priced-timed module is essentially an object-oriented Real-Timed Maude module with
the addition of a cost domain and priced rewrite rules. Object-oriented priced-timed modules are written
with the following syntax:

ptomod NAME is

BODY
endptom

When a ptomod is used in a speci�cation, the module PRICED-TIMED-OO-SYSTEM is automatically im-
ported, which in turn imports the Real-Time Maude module TIMED-OO-PRELUDE that de�nes the skeleton
of an object-oriented Real-Time Maude module. In addition, the module PRICED-OO-SYSTEM is imported
and states the crucial subsort declaration:

subsort Configuration < SystemState .

This declaration means that the sort Configuration is the state of the system and the whole state of
the system. Furthermore, the module PRICED-TIMED-OO-SYSTEM de�nes the skeletons of the functions
used in object-oriented tick rules; this is covered in Section 4.4.

30

4.3.1 Priced Rules

A priced rule

l : t
κ(l)−−→ t′ if cond

is written with syntax

crl [l] : t => t′ with cost κ(l) if cond .

in Priced-Timed Maude. The terms t and t′ are of sort SystemState and the term κ(l) of sort Cost. A
priced tick rule

l : {t}
κ(l),τ(l)−−−−−→ {t′} if cond

is written with syntax

crl [l]: {t} => {t′} in time τ(l) with cost κ(l) if cond .

4.3.2 Flat Systems

As previously stated, the current prototype of Priced-Timed Maude only works with �at systems. This
limitation is purely due to implementation concerns and not theoretical ones. Future versions of the tool
should be able to overcome this constraint.

The reasons for the �at system requirement are:

1. Limited implementation time; supporting non-�at systems are too complex to implement inside
our time frame.

2. All useful examples encountered so far have been �at systems.

However, these speci�cation techniques are still useful as �at systems include a large and interesting
class of systems: �at object-oriented systems.

The following de�nition tells us what is considered a �at Priced-Timed Maude speci�cation:

De�nition 4.3.1 (Flat Systems) The priced rules of a Priced-Timed Maude systems must have the
form

crl [l] : t => t′ with cost κ(l) if cond .

for the system to be considered �at all the priced rules must be able to be rewritten as

crl [l] : {t} => {t′} with cost κ(l) if cond .

or for object oriented systems

crl [l] : {C t} => {C t′} with cost κ(l) if cond .,

where t is a term of the sort SystemState and the operator {_} is de�ned as:

31

op {_} : System -> GlobalSystem [format (g o g so)] .

and C is a variable of sort Configuration that in conjunction with t represent the whole system.

That is, the term {t} represents the whole system, or the term {C t} represents the whole system. Priced
tick rules are already on this form. This ensures �at application of priced rules and priced tick rules.

Generally, this means that for object-oriented priced-timed speci�cations where we want to apply priced
rules to speci�c objects, these objects must reside in the outer con�guration encapsulated by the {_}

operator.

4.4 Object-oriented Tick Rules and Built-in Functions

When we work with an object-oriented priced-timed module, Priced-Timed Maude automatically imports
skeletons of the functions mte, delta, and rate. We recall mte and delta from Real-Time Maude, while
rate is a new function. The function mte computes the most amount of time that can elapse in an
application of the function and delta de�nes how the elapse of time a�ects the system. The function
rate de�nes the cost of waiting one time unit. The skeletons of these functions are automatically
imported so that the user does not need to deal with declaration of their operators and basic equations.
Consequently, the user only needs to give equations de�ning behavior of the functions for the objects
used in the speci�c system.

As previously mentioned, the following functional module is imported into a speci�cation when it is
object-oriented:

mod PRICED-TIMED-OO-SYSTEM is

The included modules de�ne a skeleton for the time domain as well as some essential sorts needed by
the functions delta,, mte, and rate.

including LTIME-INF .

including PRICED-OO-SYSTEM .

including TIMED-OO-PRELUDE .

including PRICED-TIMED-SYSTEM .

var R : Time .

vars NeC NeC' : NEConfiguration .

var C : Cost .

The basic skeletons of all three functions are designed to take the whole Configuration representing the
system as an argument, then split this down to distinct objects. The following de�nes the basic skeleton
of the function delta:

op delta : PricedSystem Time

-> PricedSystem [frozen (1)] .

eq delta(NeC with cost C, R) = delta(NeC, R) with cost C .

eq delta(NeC NeC', R) = delta(NeC, R) delta(NeC', R) .

eq delta(none, R) = none .

The equations de�ning delta for each class in the speci�cation must then be given by the user and
should have the following form:

32

eq delta(< O : Class | Atts >, R) = < O : Class | f(Atts,R) > .

where Atts is the object's set of attributes, R is a variable of sort Time, and f is some function that alter
these in some way. Typically, f increases or decreases clocks and timers in the set of attributes by the
value of R.

The following de�nes the basic skeleton for the function:

op mte : PricedSystem -> TimeInf [frozen (1)] .

eq mte(NeC with cost C) = mte(NeC) .

eq mte(NeC NeC') = minimum(mte(NeC), mte(NeC')) .

eq mte(none) = INF .

The equations de�ning the function mte for the di�erent classes in the system should also be supplied
by the user and have the form:

eq mte(< O : Class | Atts >) = g(Atts) .

The function g extracts the most allowable time to pass from the object. Typically, this is the time until
the next timer expires.

A rate function is commonly used in priced-timed systems to determine the rate of cost incurred per
time unit. The following de�nes the skeleton of the rate function:

op rate : PricedSystem -> Cost [frozen (1)] .

eq rate(NeC with cost C) = rate(NeC) .

eq rate(NeC NeC') =

rate(NeC) pluss rate(NeC') .

eq rate(none) = free .

endm

The rate function is usually based on the attributes of an object. An equation of the following form is
used when a rate for a class is de�ned:

eq rate(< O : Class | Atts >) = h(Atts) .

Tick rules in an object-oriented system typically have the form:

crl [tick]: {S} => {delta(S,T)} in time T with cost rate(S) * T if T <= mte(S) .

Sometimes we may refer to the above rule as the standard Priced-Timed Maude object-oriented tick rule.

4.5 Simple Examples of Priced-Timed Maude Speci�cations

This section presents some examples to illustrate how to specify a system in Priced-Timed Maude.

33

4.5.1 Priced Thermostat

With today's prohibitive energy prices, it is useful to determine the cost of keeping a target temperature
in our living rooms. By slightly modifying the thermostat speci�cation from [20], we now have a tool to
help achieve this.

When we add the power consumption cost to the rules of the thermostat speci�cation, it works in this
manner: we want to model a thermostat that keeps the temperature in a room between 62 and 72 degrees
by turning on and o� a heater. When the heater is o�, the room temperature decreases by one degree
every minute. Conversely, at 62 degrees the heater should be turned on, consuming 50 watt-minutes
of power. While in this state, the heater consumer power at a rate of 100 watts and the temperature
increases by a rate of two degrees per minute.

The following Priced-Timed Maude module models the new thermostat:

(ptmod PRICED-THERMOSTAT is

We import the appropriate value domains: the positive rational numbers for both time and cost:

protecting POSRAT-TIME-DOMAIN .

protecting POSRAT-COST-DOMAIN .

The following tells Priced-Timed Maude that the thermostat is the whole system:

sort Status Thermostat .

subsort Thermostat < SystemState .

The following operators de�ne the thermostat as a pair of a status and a temperature represented as a
positive rational number:

ops on off : -> Status [ctor] .

op _`,_ : Status PosRat -> Thermostat [ctor] .

It is typical for several kinds of electrical equipment, that do not hold an initial charge (as opposed to
a piece of equipment on standby), to consume some power when turned on. The rule turn-on switches
the thermostat on at 62 degrees, consuming 50 watt-minutes of power:

rl [turn-on] : off , 62 => on , 62 with cost 50 .

While turn-off switches the thermostat o� at 74 degrees:

rl [turn-off] : on , 74 => off , 74 .

The tick rule tick-on makes sure power is consumed at a rate of 100 power units per time unit and the
temperature is increased by 2 degrees per minute when the heater is on, while at the same time making
sure time does not advance past a point where the thermostat should be turned o�:

vars R R' : Time .

var T : PosRat .

crl [tick-on] :

{(on, T)} => {(on, T + (2 * R'))} in time R' with cost R' * 100

if R' <= ((74 - T) / 2) [nonexec] .

34

The tick rule tick-off ensures the temperature falls by the appropriate amount when the heater is off,
while making sure time does not advance beyond a moment the thermostat should be turned on:

crl [tick-off] :

{(off, T)} => {(off, T - R')} in time R' if R' <= (T - 62) [nonexec] .

endptm)

4.5.2 Concurrent Priced-timed Lights

In this example we model a system with timed light switches each activated by a sensor. Each light
switch is connected to a light bulb with a given wattage. When a switch is turned on, power equal to
the wattage of the bulb running for one time unit is consumed and a timer is set to count down �ve
time units. While a light switch is turned on, power is consumed at a rate equal to the wattage of the
�tted bulb while the timer is counted down until it reaches zero when it is turned o�. A switch that is
o� consumes no power. A switch may stay o� inde�nitely.

The following object-oriented Priced-Timed Maude module models the system described above:

(ptomod PRICED-TIMED-OO-LIGHT-SWITCH is

protecting NAT-TIME-DOMAIN-WITH-INF .

protecting NAT-COST-DOMAIN .

The class used to represent the switch itself contains attributes for the status (on/off) of the lights, the
wattage of the bulb used and the timer:

sort Status .

ops on off : -> Status [ctor] .

class Switch | status : Status, wattage : Cost, timer : TimeInf .

var O : Oid .

var W : Cost .

var Ti : TimeInf .

vars T R : Time .

var S : SystemState .

The rule turn-off turns the switch o� when the timer reaches 0 by setting its status to off and the
timer to INF:

rl [turn-off] : < O : Switch | status : on, timer : 0 >

=>

< O : Switch | status : off, timer : INF > .

When the rule turn-on is executed, cost equal to the wattage of the bulb is incurred and timer of the
switch is set to 5 and its status is set to on:

rl [turn-on] : < O : Switch | status : off, wattage : W, timer : INF >

=>

< O : Switch | status : on, timer : 5 > with cost W .

The function mte returns the state of the timer attribute as this is the next moment in time we cannot
tick past, but have to turn the Switch o�:

35

eq mte(< O : Switch | status : on, timer : Ti >) = Ti .

eq mte(< O : Switch | status : off >) = INF .

The function delta decreases the timer attribute by the appropriate amount simulating the �ow of time
if a switch is on. When a switch is o� it is una�ected by the �ow of time.

eq delta(< O : Switch | status : on, timer : Ti >, R) =

< O : Switch | timer : Ti monus R > .

eq delta(< O : Switch | status : off >, R) =

< O : Switch | > .

The function rate reads the wattage of the light bulb used if the switch is on. Obviously switches that
are o� do not consume any power:

eq rate(< O : Switch | status : on, wattage : W >) = W .

eq rate(< O : Switch | status : off >) = 0 .

The rule tick is the standard Priced-Timed Maude object-oriented tick rule:

crl [tick] : {S} => {delta(S, R)} in time R with cost (rate(S) * R)

if R <= mte(S) [nonexec] .

endptom)

The following module de�nes 2 initial states init1 and init2. The initial state init1 has one switch
named Driveway with one 40-watt bulb. The second initial state init2 has 2 lights. In addition to the
aforementioned driveway light, it also has a switch named Garden with a 25-watt bulb:

(ptomod TEST-TWO-LIGHTS is

protecting PRICED-TIMED-OO-LIGHT-SWITCH .

protecting STRING .

subsort String < Oid .

ops init1 init2 : -> GlobalSystem .

ops driveway garden : -> Configuration .

eq driveway = < "Driveway" : Switch | status : off, wattage : 40, timer : INF > .

eq garden = < "Garden" : Switch | status : off, wattage : 25, timer : INF > .

eq init1 = {driveway} .

eq init2 = {driveway garden} .

endptom)

36

Chapter 5

Analysis in Priced-Timed Maude

This chapter gives an overview of Priced-Timed Maude's analysis capabilities and how they di�er from
their Real-Time Maude counterparts.

Priced-Timed Maude provides the following analysis methods for priced-timed speci�cations:

� Rewriting : priced-timed rewriting can be used to simulate one behavior of a system from an initial
state within a time limit, cost limit, and/or number of rewrite steps.

� Search: priced-timed search extends the timed search provided by Real-Time Maude with an
additional cost limit to restrict the search space.

� Search for optimal solutions: although not primarily designed as an optimization tool, Priced-
Timed Maude provides additional search capabilities to obtain the cheapest cost or the shortest
duration needed to reach a state.

� Linear temporal model checking is used to check temporal logic properties for all possible behaviors
from a given initial state. Real-Time Maude's model checker is extended by Priced-Timed Maude
to analyze priced-timed speci�cations, but not to check cost properties.

Priced-Timed Maude extends Real-Time Maude's methods/commands for priced-timed systems; e.g.,
in their use of the selected time sampling strategy. Although the Real-Timed Maude versions of these
commands could in some cases be used, they are not guaranteed to work with Priced-Timed Maude
speci�cations. In most cases the Priced-Timed Maude versions of these commands have to make theory
transformations on the speci�cations and initial terms to translate them into Real-Time Maude spec-
i�cations and initial terms. The reason for this is that Real-Time Maude does not �understand� the
concept of cost and priced rules. In addition, most Priced-Timed Maude counterparts of Real-Time
Maude commands incorporate additional limits on cost.

Although Priced-Timed Maude supports speci�cation and analysis of priced systems without time in-
volved, this chapter discusses only the commands that are used to analyze priced-timed systems. This
is because we did not encounter any useful examples that could be speci�ed as priced systems. In
addition, the priced-timed versions of the commands are mostly extended versions of the non-timed ver-
sions. Therefore, only the priced-timed versions are discussed to avoid repeating the description of each
command.

5.1 Executing Priced-Timed Maude Speci�cations

To start Priced-Timed Maude, the �le priced-timed-maude.maude needs to be executed by the Maude
interpreter.

37

The following sections describe the di�erent analysis commands provided by Priced-Timed Maude. All
examples using the PRICED-THERMOSTAT speci�cation are assumed to use default time increase 1/5 and
those using the PRICED-TIMED-OO-LIGHT-SWITCH speci�cation are assumed to use default time increase
1 unless stated otherwise.

5.2 Priced-Timed Rewriting

Priced-Timed Maude's priced rewrite commands extend the timed rewriting capabilities provided by
Real-Time Maude to priced-timed systems. This entails adding an optional cost limit to the rewrite
sequence. Priced-Timed Maude makes sure that the total cost in the system does not exceed the given
limit during the rewrite sequence. For instance, in our thermostat example, we might be interested in
knowing if keeping our living room warm will raise our electricity bill beyond a certain level.

Two strategies for priced-timed rewriting are provided: ptrew and ptfrew. The ptfrew command is an
extension of the tfrew Real-Time Maude command and ptrew is an extension of the trew command.
The syntax of both commands is similar, therefore, only the syntax for ptfrew is shown:

(ptfrew [[n]] initialState in time E T with cost E C .)

For rewriting with no time limit, but a cost limit we use:

(ptfrew [[n]] initialState with no time limit with cost E C .)

For rewriting with a time limit, but with no cost limit we use:

(ptfrew [[n]] initialState in time E T with no cost limit.)

Finally, for rewriting with no cost or time limit we use:

(ptfrew [[n]] initialState with no limits.)

The `[n]' part is optional, with n giving an upper limit on the number of rewrite steps, initialState is
some initial term of sort GlobalSystem, T is a term of sort Time, C is a term of sort Cost, and E is
either < or <=.

Example 5.2.1 We simulate the behavior of a driveway light using the module
PRICED-TIMED-OO-LIGHT-SWITCH by using the rewrite commands on the initial state init1 given in the
module TEST-TWO-LIGHTS in Section 4.5.2. This is the initial state containing only the light switch
named Driveway with a 40-watt bulb installed.

We simulate the behavior of the system for 15 minutes with the following command:

Maude> (ptfrew init1 in time <= 15 with no cost limit.)

Result PricedTimedSystem :

{< "Driveway" : Switch | status : on, timer : 2, wattage : 40 >}

in time 15 with cost 640

We see that the light consumed 640 power units in 15 minutes.

38

Example 5.2.2 In this example we simulate the thermostat system in the module
PRICED-THERMOSTAT. If we are on a tight budget, we might want to know how long our thermostat can be
on before the power bill becomes too expensive. We now want to know how long the thermostat can be on
in a day if we want it to consume no more than 6000 watt-minutes. As the thermostat is a deterministic
system, we can simply perform a rewrite up until the given cost limit to determine this:

Maude> (ptfrew {off, 62} with no time limit with cost <= 6000 .)

Result PricedTimedSystem :

{on,64} in time 163 with cost 6000

That is, keeping the room temperature between 62 and 74 degrees for 2 hours and 43 minutes consumes
6000 watt-minutes.

5.3 Priced-Timed Search

Priced-Timed Maude extends Real-Time Maude's search capabilities with the ability to analyze priced-
timed speci�cations and add cost limits to restrict the state space to be searched. Searching with a
cost limit may be useful when a budget must be satis�ed. Internally, priced search is implemented by a
transforming a priced-timed speci�cation into a Real-Time Maude speci�cation and passing it along to
Real-Time Maude's search function which then performs the search.

The most basic extension of the timed search command is the priced-timed search command ptsearch.
There are 4 versions of this command: search with time and cost limit, only time limit, only cost limit,
and neither time nor cost limit. The following shows the syntax for the 4 versions. For a search with
time and cost limits we use:

(ptsearch [[n]] initialState =>* searchPattern [such that cond]
in time E T with cost E C .)

For a search with no time limit but a cost limit we use:

(ptsearch [[n]] initialState =>* searchPattern [such that cond]
with no time limit with cost E C .)

For a search with a time limit but no cost limit we use:

(ptsearch [[n]] initialState =>* searchPattern [such that cond]
in time E T with no cost limit.)

For a search without time and cost limit we use:

(ptsearch [[n]] initialState =>* searchPattern [such that cond]
with no limits .)

Again, `[n]' is optional with n the upper bound on the number of solutions to display. The initial state
initialState is a ground term of sort GlobalSystem. searchPattern is a normal Maude search pattern
that may contain variables. [such that cond] is optional and the cond part may be conditions on the
variables in searchPattern. T is a term of sort Time and C is a term of sort Cost.

Once the desired number of matches satisfying both the pattern and the conditions is found (or there are
no more matches), the found solutions with the appropriate substitutions are displayed. The following
two substitutions will always be displayed: TIME_ELAPSED denoting the amount of time lapsed to reach
the solution and TOTAL_COST_INCURRED denoting the cost of reaching the solution.

39

Example 5.3.1 We can use the search command to check if it is possible that the thermostat will ever
be o� at a temperature below 62 degrees when it starts o� at 62 degrees with no cost or time limit:

Maude> (ptsearch [1] {off, 62} =>* {off, P:PosRat} such that P:PostRat < 62

with no limits.)

No more solutions

Unsurprisingly, this is not possible.

Example 5.3.2 If we want to know if the room temperature reaches 68 degrees in 5 minutes we could
search for the following:

Maude>(ptsearch [1] {off, 62} =>* {S:Status, 68} in time <= 5 with no cost limit.)

Solution 1

S:Status --> on ; TIME_ELAPSED:Time --> 3 ; TOTAL_COST_INCURRED:Cost --> 350

No more solutions

Example 5.3.3 Similarly, we can check if it is possible that our driveway lights can turn themselves o�
in 2 minutes if they have just been activated

Maude> (ptsearch [1] {< "Driveway" : Switch | status : on, wattage : 40,

timer : 5 >}

=>*

{< "Driveway" : Switch | status : off >}

in time <= 2 with no cost limit.)

No more solutions

This search has no solutions as one might expect.

5.4 Search for Optimal Solutions

In addition to basic priced-timed search, Priced-Timed Maude provides a new command to �nd the
cheapest state matching a search pattern, condition, and time limit. Furthermore, the Real-Time Maude
command to �nd the earliest state matching a pattern and a condition is extended to accept a cost limit
and to work properly with priced-timed systems.

5.4.1 Find Cheapest

Priced-Timed Maude provides the user with a way to �nd the cheapest possible state matching a pattern
within a time limit. This can be useful when we need to �nd the cheapest way to achieve something like,
for instance, the cheapest schedule within a certain time limit or the cheapest way to keep our home at
a certain temperature.

Two commands are provided for this purpose: find cheapest and binary find cheapest. They di�er
only internally in the way they obtain the result. Both start out by trying to �nd a state that matches the
pattern and criteria, then incrementally searches for better solutions until the cheapest one is obtained.
The binary version uses a binary search algorithm and the �normal� version uses a lazier algorithm (as

40

explained in Chapter 6). The find cheapest commands are useful for smaller problems, but for larger
problems execution time quickly becomes a factor. This is because multiple searches are performed
sequentially to obtain the optimal solution in the implementation of the commands.

Termination of both versions of this command is not guaranteed unless the cost domain is well-founded.
Moreover, for binary find cheapest to work, the module DIVIDE-COST that de�nes division of cost
by 2 needs to be imported as part of the speci�cation's cost domain. Like the ptsearch command, the
find cheapest commands employ the built-in Priced-Timed Maude search capabilities.

The two commands use similar syntax as follows (add binary in front of find for the binary version):

(find cheapest initialState =>* searchPattern [such that cond] in time E T .)

(find cheapest initialState =>* searchPattern [such that cond] with no time limit .)

Example 5.4.1 We can use the find cheapest command to obtain the least possible power consumption
needed to reach 70 degrees from a state where the thermostat is at 62 degrees and o�:

Maude> (find cheapest {off, 62} =>* {S:Status, 70} with no time limit .)

Solution

S:Status --> on ; TIME_ELAPSED:Time --> 4 ; TOTAL_COST_INCURRED:Cost --> 450

This shows that the cheapest cost at which the desired state is reachable is in 4 minutes and has cost 450
power units.

Example 5.4.2 Likewise we �nd the cheapest way our driveway lights can turn themselves o� from just
being activated:

Maude> (find cheapest {< "Driveway" : Switch | status : on, wattage : 40,

timer : 5 >}

=>*

{< "Driveway" : Switch | status : off >}

with no time limit .)

Solution

CLASS_OF_"Driveway":Switch --> Switch ;

REMAINING_ATTRIBUTES_OF_"Driveway":AttributeSet --> timer : INF, wattage : 40 ;

TIME_ELAPSED:Time --> 5 ; TOTAL_COST_INCURRED:Cost --> 200

Unsurprisingly, the cheapest state in which the lights have been turned o� is after 5 minutes, consuming
200 power units.

5.4.2 Priced Find Earliest

In some cases it might be useful to �nd a state that matches some criteria and can be reached in the
shortest amount of time. For instance, what is the least amount of time it takes to heat the living
room from 62 to 70 degrees? The Real-Time Maude command find earliest accomplishes this. The
command has been adapted for Priced-Timed Maude to accept an optional price limit and can be used
with priced-timed speci�cations via the command priced find earliest.

This command starts by �nding a state that matches the criteria, then tries to �nd earlier solutions,
when there are no earlier solutions to be found the last to be found is displayed. The two versions of
priced find earliest has the following syntax:

41

(priced find earliest initialState =>* searchPattern [such that cond]
with no cost limit .)

(priced find earliest initialState =>* searchPattern [such that cond]
with cost ./ C .)

Example 5.4.3 Using the priced find earliest command we can easily verify that the earliest our
lights can be turned o� if they have just been turned on is after 5 minutes

Maude> (priced find earliest {< "Driveway" : Switch | status : on, wattage : 40,

timer : 5 >}

=>*

{< "Driveway" : Switch | status : off >}

with no cost limit.)

Result: {< "Driveway" : Switch | status : off, wattage : 40, timer : INF >}

in time 5 with cost 200

Example 5.4.4 We can also verify that the cheapest way of reaching 70 degrees from 62 and o� is also
the earliest:

Maude> (priced find earliest {off, 62} =>* {S:Status, 70}

with no cost limit.)

Result: {on,70} in time 4 with cost 450

5.5 Temporal Logic Model Checking

Priced-Timed Maude provides access to Real-Time Maude's temporal logic model checker to check tem-
poral logic properties for a Priced-Timed Maude speci�cation.

There are no di�erences from the Real-Time Maude model checker apart from the ability to model check
Priced-Timed Maude systems. This means that an atomic proposition p for the whole system state
holds whether there is a cost present in the system or not. That is, cost is ignored when checking if an
atomic proposition holds. To use the model checker, the command pmc is used with similar syntax as
the Real-Time Maude model checker invoked by the command mc:

(pmc initialState |=t formula with no time limit .)

or

(pmc initialState |=t formula in time E T .)

The formula is a temporal logical formula built from atomic propositions, the normal logical operators,
and the temporal logical operators [], <>, U, etc.

The untimed model checker is invoked with the following syntax:

(pmc initialState |=u formula .)

When declaring atomic propositions for the priced model checker, the module PRICED-MODEL-CHECKER

needs to be imported. This makes sure that propositions hold whether or not they are associated with
a cost.

42

Example 5.5.1 In this example we declare some atomic propositions for the priced thermostat. The
following module imports the priced thermostat and the priced model checker and declares 3 atomic
propositions:

(ptmod MODEL-CHECK-THERMOSTAT is

protecting PRICED-MODEL-CHECKER .

protecting PRICED-THERMOSTAT .

ops therm-on therm-off : -> Prop [ctor] .

op temp-is : PosRat -> Prop [ctor] .

vars T T' : PosRat .

var S : Status .

The proposition therm-off is true when the heater is o�, therm-on is true when the heater is on, and
the �nal proposition temp-is(T ′) when the temperature T of the thermometer is the same as T ′.

eq {off, T} |= therm-off = true .

eq {on, T} |= therm-on = true .

eq {S, T} |= temp-is(T') = (T == T') .

endptm)

Example 5.5.2 We test the assumption that the heater will eventually be turned on after the thermostat
has reached 62 degrees with the heater o�:

Maude> (pmc {off, 62} |=u <> therm-on .)

Result Bool:

true

Example 5.5.3 We test the assumption that when the heater is turned on at 62 degrees, it will not be
turned o� until the room temperature reaches 72 degrees:

Maude> (pmc {on, 62} |=u therm-on U therm-is(72) .)

Result Bool:

true

Model checking of cost properties was not found to be particularly useful and was therefore not imple-
mented. The model checker is not used in the rest of this thesis, therefore, this topic will not be discussed
further.

43

44

Chapter 6

Semantics of Priced-Timed Maude

This chapter presents the semantics of Priced-Timed Maude by showing how a Priced-Timed Maude
module is represented in Real-Time Maude and by showing how Priced-Timed Maude commands are
translated into Real-Time Maude commands. One of the main goals of Priced-Timed Maude is to support
the speci�cation and analysis of priced and priced-timed systems. Initially, support for both kinds of
systems was planned. However, because I have not seen any interesting untimed priced systems, the
priced-timed aspects have been favored. Some support for regular priced systems still remains; however,
priced-timed systems is the focus of this chapter.

Priced-Timed Maude has been implemented in Maude as an extension of Real-Time Maude using Maude's
powerful re�ective and meta-programming capabilities. One design goal for Priced-Timed Maude is to
extend Real-Time Maude rather than to alter it. This goal is met by de�ning a Real-Time Maude
semantics of Priced-Timed Maude commands, so that the Priced-Timed Maude commands are executed
by transforming the Priced-Timed Maude module and command into a pair of a Real-Time Maude
module and command:

Priced-Timed Maude

⇓ Transformation de�ned in Maude

Real-Time Maude

In fact, all of Priced-Timed Maude is implemented by de�ning transformations in Maude that translate
Priced-Timed Maude speci�cations, terms, and commands into Real-Time Maude representations of
these.

6.1 Overview of the Priced-Timed Maude Semantics

The implementation of Priced-Timed Maude relies on the fact that Priced-Timed Maude modules and
terms can be meta-represented as terms in Maude. Therefore, these can be manipulated and transformed
by Maude functions.

In Priced-Timed Maude, we work with modules on three distinct levels: user input, database, and
execution. User input corresponding to a Priced-Timed Maude module M is �rst parsed according to
the grammar in Section 6.4, and is stored in Real-Time Maude's module database as a Real-Time Maude
module MRTM. When a command is executed, MRTM is transformed to a di�erent Real-Time Maude
module M ′

RTM
, depending on the command to be executed.

Section 6.1.1 explains how Priced-Timed Maude modules are translated from user input to Real-Time
Maude modules in Real-Time Maude's module database. To make parsing of user input as simple as
possible, this �rst translation is essentially the �identity translation� from Priced-Timed Maude into

45

Real-Time Maude, and is achieved by just turning the language construct with cost in a Priced-Timed
Maude rule into a function symbol with cost in the Real-Time Maude representation.

Section 6.1.2 discusses the main idea behind command execution in Priced-Timed Maude, which involves
a series of transformations. Speci�cally, Priced-Timed Maude commands and modules (stored as Real-
Time Maude modules in the database) are transformed into Real-Time Maude commands and modules.
As mentioned, this involves a somewhat di�erent module transformation than in the �rst step. Section
6.1.3 explains how during command execution, a �state� in Priced-Timed Maude is represented in Real-
Time Maude as a term {S with cost C}, where S is the state and C is the cost accumulated to reach
that state. Section 6.1.4 discusses how priced rules are handled during command execution. This is done
by translating them from the form t => t′ with cost c, into a Real-Time Maude rule having the form
{t with cost OLDCOST} => {t′ with cost OLDCOST pluss c}, where OLDCOST is a new variable and
the cost of the left-hand side state. In object-oriented speci�cations, the above priced rule is transformed
into a rule

{t C:Configuration with cost OLDCOST}

=>

{t C:Configuration with cost OLDCOST pluss c} .

6.1.1 Parsing an Storing Priced-Timed Maude Modules

A di�erent representation than the user input is used for storing a module in the Real-Time Maude
database. This representation, is in fact �the identity� transformation from Priced-Timed Maude to
Real-Time Maude, and is achieved by importing certain operators and sorts into the module while
parsing it according to the grammar in Section 6.4,. Speci�cally, priced rules

crl S => S′ with cost C .

are transformed by importing the following:

sorts SystemState PricedSystem .

subsorts SystemState PricedSystem < System .

op _with cost_ : SystemState Cost -> PricedSystem [prec 95 gather (E e)] .

The rule is otherwise �unchanged.� This transforms the syntactic construct with cost in the priced rules
into the function symbol _with cost_ in the Real-Time Maude database representation of the priced
rule. Priced tick rules

crl {S} => {S′} in time T with cost C if cond .

are transformed in a similar manner by importing the following into the module:

sort PricedTimedSystem .

subsort ClockedSystem < PricedTimedSystem .

op _with cost_ : ClockedSystem Cost -> PricedTimedSystem [prec 95 gather (E e)] .

Again, the syntactic construct with cost in the priced rules is transformed into the function symbol
with cost in the Real-Time Maude database representation of the priced rule.

However, when commands are executed priced and priced tick rules are transformed further. The reason
for this �intermediate� representation of a Priced-Timed Maude module in Real-Time Maude database
is that this makes the task of parsing user input as simple as possible as the Real-Time Maude imple-
mentation of user input parsing is simply reused.

46

6.1.2 Semantics of Priced-Timed Maude Commands

Command execution in Priced-Timed Maude uses the same idea as Real-Time Maude's command execu-
tion. The main idea is to transform a Priced-Timed Maude module1 and command to Real-Time Maude
module and command:

(commandPTM(t0, Args),moduleRTM)
⇓ α

(commandRTM(γ(t0), Args), λ(moduleRTM))

The transformation α is a Maude function procPriceTimedCommand that performs a series of transforma-
tions2. This series transforms the arguments and Priced-Timed Maude command into proper Real-Time
Maude arguments and a Real-Time Maude command. All the transformations are discussed in Section
6.2.

6.1.3 Representation of States

As mentioned, when a command is executed, the representation of the module is changed. In addition,
the representation of the state is changed to a Real-Time Maude state. The state of a Real-Time Maude
system is represented as a GlobalSystem term {S} where S is a term of the sort System. When executing
a command in Priced-Timed Maude the state of a system is also represented as a GlobalSystem term,
but of the form {S with cost C}, where the operator _with cost_ is now de�ned to take the system
state S as its �rst argument and the global cost C as its second:

op _with cost_ : SystemState Cost -> PricedSystem [prec 95 gather (E e)] .

The following subsort declaration makes this possible:

subsorts SystemState PricedSystem < System .

As mentioned in Section 6.1.1, this _with cost_ operator and the appropriate sort, and subsort decla-
rations are automatically imported into the module during the parsing process.

6.1.4 Priced Rules

At the command execution stage, Priced-Timed Maude deals with modules stored in the Real-Time
Maude database. When encountering a priced rule t => t′ with cost c it is (further) transformed into
a rule having the form
{t with cost OLDCOST} => {t′ with cost OLDCOST pluss c}. This means that after the translation
each application of a priced rule simply `deposits' the cost of performing the rule into the state of the
system.

A priced instantaneous rule

crl [l] : {S} => {S′} with cost C if cond .

1A Priced-Timed Maude module stored in the Real-Time Maude database. We use moduleRTM to represent
this module.

2All but the last step of this series of transformations is almost identical to those of the function
procTimedCommand, which handles parsing and transformation of user input in Real-Time Maude. This is dis-
cussed in [22]. Also note that procPriceTimedCommand actually transforms a 4-tuple: a Priced-Timed Maude
command and module along with a timed database and a tick mode. The timed database and tick mode parts
are handled exactly like in Real-Time Maude and are therefore not discussed here.

47

now has the Real-Time Maude representation

crl [l] : {S with cost OLDCOST:Cost}

=>

{S′ with cost OLDCOST:Cost pluss C} if cond .

The new Cost variable OLDCOST is inserted into both sides so that the left-hand side represents a complete
state of the form {S with cost C}. This variable also has to be added to the right-hand side as the
cost increases with the rule. In addition, if a speci�cation is object-oriented, a variable C:Configuration
is added to both sides so that the {_} captures the whole system state in both sides of the rule. When
priced rules are applied to the term representing the state, a new Cost term is added to the state's with
cost element and the global cost is increased. It is essential for the system to be �at in order for cost
to be added up correctly. This means that all priced rules must add to the same with cost term in the
system. If with cost terms are allowed to exist on di�erent levels in the system, there is not one de�nite
global cost but many local ones. This can be remedied by, for instance, making a function that scans
the system between rule applications and collects with cost terms from the di�erent levels. However,
implementing such a solution would be too time consuming for this thesis.

A priced tick rule

crl [tick] : {S} => {S} in time T with cost C with cond .

is now transformed into the Real-Time Maude tick rule

crl [tick] : {S with cost OLDCOST:Cost}

=>

{S′ with cost OLDCOST:Cost pluss C} in time T if cond .

�Normal� Priced-Timed Maude tick rules are translated in the same manner, by inserting the Cost

variable OLDCOST in both sides of the rule. This is done to ensure the whole state of the system is
represented in both sides.

6.2 Transformations for Command Executions

When executing the commands, initial terms and search patterns need to be transformed to be on the
same form as the Real-Time Maude representation of the state, to ensure search patterns are reachable
from initial terms and initial terms match priced rules. In addition, modules need to be transformed
so that all priced rules have the correct form, and if a cost limit is given, all priced rules need extra
conditions to satisfy this limit. Finally, atomic propositions should hold whether they contain a with

cost term or not, this is tackled by the �nal module transformation.

6.2.1 Module Transformation: pricifyMod

The transformation pricifyMod is used on modules to transform all priced rules to a standard form.
Speci�cally, a priced rule

(1) crl [label] : t => t′ with cost C if cond .

is transformed to

48

(2a) crl [label] : {C:Configuration t with cost OLDCOST:Cost }

=>

{C:Configuration t′ with cost C pluss OLDCOST:Cost} if cond .

if the system is object-oriented; otherwise it is transformed to

(2b) crl [label] : {t with cost OLDCOST:Cost }

=>

{t′ with cost C pluss OLDCOST:Cost} if cond .

The variables C and OLDCOST are new variables3. The variable C is inserted only if the system is object-
oriented to ensure the whole system is encapsulated by {_}. A priced tick rule

(3) crl [tick] : {S} => {S′} in time T with cost C .

it is transformed to

(4) crl [tick] : {S with cost OLDCOST:Cost }

=>

{S′ with cost C pluss OLDCOST:Cost} in time T if cond .

for both object-oriented and non-object-oriented modules.

In what follows, I present the Maude de�nition of the transformation for conditional rules.

The function withCostTerm determines whether a term contains a with cost term. This function
searches for the _with cost_ operator, when one is found it makes sure that it forms a proper PricedSystem
or PricedTimedSystem term:

op withCostTerm : Module Term -> Bool .

op withCostTerm : TermList -> Bool .

eq withCostTerm(M, T) =

withCostTerm(T) and

(leastSort(M, T) == 'PricedSystem or leastSort(M, T) == 'PricedTimedSystem) .

eq withCostTerm(F[TL])

= if F == '_with`cost_ then true else withCostTerm(TL) fi .

ceq withCostTerm((T, TL)) = withCostTerm(T) or withCostTerm(TL)

if TL =/= empty .

eq withCostTerm(T) = false [owise] .

The function pricedRule determines whether a rule is a priced rule or not:

op pricedRule : Rule -> Bool .

eq pricedRule(crl LHS => RHS if COND [AS] .) = pricedRule(rl LHS => RHS [AS] .) .

eq pricedRule(rl LHS => RHS [AS] .) = withCostTerm(RHS) .

The function costPart extracts the cost part of a term T. For instance, if we have a term
t with cost C where C is the cost expression of the term, only the cost expression is extracted:

3If variables by these exact names already exist in the rule, variables with names C or OLDCOST su�xed by _N
where N is a natural number is inserted instead.

49

op costPart : NoTerm -> NoTerm .

op costPart : Module Term -> Term .

eq costPart(M, T) = costPart(getTerm(metaReduce(M, T))) .

op costPart : Term -> Term .

eq costPart('_in`time_[T, T']) = costPart(T) .

eq costPart('`{_`}[T]) = costPart(T) .

eq costPart('_with`cost_[T,T']) = T' .

eq costPart(NTerm) = 'infcost.CostInf .

The following shows the auxiliary function newCostVar used by the transformation, this function is
based on the Real-Time Maude function myNewVar. This function searches through a term to make sure
a variable with a given name can be added safely, before returning the full name of the variable:

op newCostVar : Term Qid Nat -> Variable .

ceq newCostVar(T, Q) = if Q' in vars(T) then newCostVar(T, Q, 1) else Q' fi

if Q' := conc(Q, ':Cost) .

ceq newCostVar(T, Q, N) = if Q' in vars(T) then newCostVar(T, Q, N + 1) else Q' fi

if Q' := conc(index(conc(Q, '#), N), ':Cost) .

The last auxiliary function I show is pricifyTerm. This function adds a term with cost OLDCOST:Cost

to a term. In addition, the term is encapsulated in the {_} operator if this is not done already. Further-
more, if the sort SystemState is a subsort of the sort Configuration, i.e., the system is object-oriented,
and the term was not encapsulated in {_}, then a variable C:Configutation is also added into the term.
This means that, e.g., left-hand sides of priced instantaneous rules t are rewritten to {C:Configuration

t with cost OLDCOST:Cost} while those of a priced tick rule with the form {S} are rewritten to {S
with cost OLDCOST:Cost}.

op pricifyTerm : Bool Term Module -> Term .

eq pricifyTerm(true, T, M) = makePriced(T, newCostVar(T, 'OLDCOST)) .

ceq pricifyTerm(false, T, M)

= if OO then

if withCostTerm(T) then

makePriced(makePriced('`{_`}['__[Q',stripCost(T)]], Q), costPart(T))

else

makePriced('`{_`}['__[Q',T]], Q)

fi

else

makePriced('`{_`}[T], Q)

fi

if Q := newCostVar(T, 'OLDCOST)

/\ OO := subsortOf('Configuration, 'SystemState, M)

/\ Q' := if OO then newConfVar(T, 'C) else 'none fi [owise] .

The function pricifyMod starts by extracting the rule set RLS from the module before passing it to the
function pricifyRls:

op pricifyMod : Module -> Module .

eq pricifyMod(FM:FModule) = FM:FModule .

eq pricifyMod(mod H is IL sorts SS . SSDS OPDS MAS EQS RLS endm)

= (mod H is IL sorts SS . SSDS OPDS MAS EQS

pricifyRls(RLS, mod H is IL sorts SS . SSDS OPDS MAS EQS RLS endm) endm) .

50

The function pricifyRls examines each rule RL to determine whether it is a priced rule, tick rule or
neither. Only priced rules and tick rules are passed on to the function pricifyRule that does the actual
transformation:

op pricifyRls : RuleSet Module -> RuleSet .

eq pricifyRls(RL RLS, M) = if pricedRule(RL) or tickRule(RL) then

pricifyRule(RL, M) else RL fi

pricifyRls(RLS, M) .

eq pricifyRls(none, M) = none .

The following code uses pricifyTerm to rewrite both sides of instantaneous rules of the form shown as
(1) to the form (2a) if the speci�cation is object-oriented, otherwise (2b):

ceq pricifyRule(crl LHS => '_with`cost_[RHS,T] if COND [AS] ., M) =

(crl pricifyTerm(false, LHS, M)

=>

pricifyTerm(false, '_with`cost_[RHS,T], M) if COND [AS] .)

if not globalSystemTerm(LHS) .

The following code uses the function pricifyTerm to rewrite each tick rule of the form (3) to the form
(4):

eq pricifyRule(crl '`{_`}[LHS]

=> '_with`cost_['_in`time_['`{_`}[RHS],T],T'] if COND [AS] ., M) =

(crl pricifyTerm(true, '`{_`}[LHS], M)

=>

pricifyTerm(true, '_in`time_['`{_`}['_with`cost_[RHS,T']],T], M)

if COND [AS] .) .

The following example illustrates exactly what e�ect the pricifyMod transformation has on a module.

Example 6.2.1 After performing the pricifyMod transformation on the module
PRICED-TIMED-OO-LIGHT-SWITCH from Section 4.5.2 the priced rules in this module look as follows:

rl [turn-on] : {C:Configuration < O : Switch | wattage : W, timer : INF,

status : off >

with cost OLDCOST:Cost}

=>

{C:Configuration < O : Switch | timer : 5, status : on >

with cost W pluss OLDCOST:Cost} .

crl [tick] : {S with cost OLDCOST:Cost}

=>

{delta(S, R) with cost ((rate(S) * R) pluss OLDCOST:Cost)}

in time R if R <= mte(S) [nonexec] .

6.2.2 Module Transformation: costlimitMod

When commands with a cost limit are executed, the module is transformed so that no states with cost
exceeding this limit are explored. This is accomplished by the transformation costlimitMod, which
ensures that priced rules are not executed if this would make the global cost in the system exceed a given
cost limit. The transformation adds a condition that requires that the cost part of the right-hand side

51

of all priced rules not to exceed the given limit. This transformation assumes pricifyMod has already
been performed on the module.

Two auxiliary functions cheaperCond and cheaperEqCond are de�ned to help generate new cost bound
conditions in the right-hand side of the rules. The �rst term T is the left-hand side and T' is the
right-hand side of the comparison operator:

ops cheaperCond cheaperEqCond : Term Term -> Condition .

eq cheaperCond(T,T') = 'true.Bool = '_cheaper`than_[T,T'] .

eq cheaperEqCond(T,T')

= 'true.Bool = '_or_['_cheaper`than_[T,T'],'_==_[T,T']] .

The transformation is initiated by the function costLimitMod that extracts the rule set RLS from the
module:

op costLimitMod : Module Bool Term -> Module .

eq costLimitMod(FM:FModule, B, T) = FM:FModule .

eq costLimitMod(mod H is IL sorts SS . SSDS OPDS MAS EQS RLS endm, B, T)

= (mod H is IL sorts SS . SSDS OPDS MAS EQS costLimitRls(RLS, B, T) endm) .

The function costLimitRls examines each rule RL in the rule set and uses the function pricedRule to
determine whether the rule is a priced rule or not. Only priced rules are a�ected by the transformation:

op costLimitRls : RuleSet Bool Term -> RuleSet .

eq costLimitRls(RL RLS, B, T) = if pricedRule(RL) then

costLimitRule(RL, B, T) else RL fi

costLimitRls(RLS, B, T) .

eq costLimitRls(none, B, T) = none .

When a priced rule is encountered, an additional condition COND' is appended to the existing condition
COND. If the boolean B is true, the condition C cheaper than T (where C is the cost part of the right-
hand side) is added using cheaperCond. Otherwise, the condition
C cheaper than or eq T is added using cheaperEqCond:

op costLimitRule : Rule Bool Term -> Rule .

ceq costLimitRule(crl LHS => RHS if COND [AS] ., B, T)

= (crl LHS => RHS if COND /\ COND' [AS] .)

if COND' := if B then cheaperCond(costPart(RHS), T)

else cheaperEqCond(costPart(RHS), T) fi .

The function transforms unconditional rules in the same way, making them conditional and adding the
appropriate condition:

ceq costLimitRule(rl LHS => RHS [AS] ., B, T)

= (crl LHS => RHS if COND [AS] .)

if COND := if B then cheaperCond(costPart(RHS), T)

else cheaperEqCond(costPart(RHS), T) fi .

52

6.2.3 Module Transformation: pricifyProperties

For temporal logic model checking, if an atomic proposition p is de�ned by the user so that
{s} |= p is true, then {s with cost c} |= p must also hold for the internal representation for any
cost c. That is achieved by adding the following conditional equation to the de�nition of the satisfaction
relation:

ceq {S:SystemState with cost C:Cost} |= P:Prop = true.Bool

if {S:SystemState} |= P:Prop = true.Bool .

The following function pricifyProperties inserts this equation into a speci�cation:

op pricifyProperties : Module -> Module .

eq pricifyProperties(mod H is IL sorts SS . SSDS OPDS MAS EQS RLS endm) =

(mod H is IL sorts SS . SSDS OPDS MAS

(EQS (ceq '_|=_['`{_`}['_with`cost_['S:SystemState, 'C:Cost]],

'P:Prop] = 'true.Bool

if '_|=_['`{_`}['S:SystemState], 'P:Prop] = 'true.Bool [none] .))

RLS endm) .

6.2.4 Transforming the Initial Term: pricifyInit

The initial state {S} given by the user must be transformed to a Real-Time Maude initial state {S
with cost free} when executing a command. This transformation is done by the following function
pricifyInit:

op pricifyInit : Term -> Term .

eq pricifyInit(T) = makePriced(T, 'free.Cost) .

The transformation uses only one auxiliary function makePriced. This function adds a given cost to a
term, if the term has no _with cost_ operator present, one is inserted:

op makePriced : Term Term -> Term .

eq makePriced('_in`time_[T, T'], T'')

= '_in`time_[makePriced(T, T''), T'] .

eq makePriced('`{_`}[T], T') = '`{_`}[makePriced(T, T')] .

eq makePriced('_with`cost_[T,T''], T')

= '_with`cost_[T, '_pluss_[T'',T']] .

eq makePriced(T, T') = '_with`cost_[T,T'] [owise] .

6.2.5 Transforming Search Patterns: pricifyPattern

A transformation called pricifyPattern adds new cost variable TOTAL_COST_INCURRED into search
patterns, i.e., search patterns on the form {S′} are rewritten to
{S′ with cost TOTAL_COST_INCURRED:Cost}. This ensures that a search pattern matches a system
with a with cost term and that the convenient TOTAL_COST_INCURRED substitution is displayed.

The transformation uses the makePriced function in conjunction with the newCostVar function to add
a new variable TOTAL_COST_INCURRED:Cost:

op pricifyPattern : Term -> Term .

eq pricifyPattern(T) = makePriced(T, newCostVar(T,'TOTAL_COST_INCURRED)) .

53

6.3 Commands and Algorithms

This section discusses how each command is transformed into a Real-Time Maude command and how
the transformations described in Section 6.2 are used. In general, all Priced-Timed Maude commands
transform the module with pricifyMod and with costlimitMod if a price limit is given. Furthermore,
all commands use pricifyInit to add a zero-value cost to the initial term. Additionally, all the search
commands use the pricifyPattern transformation on the search pattern. Finally, the transformed
module and terms are passed to a Real-Time Maude meta-function that executes the command.

6.3.1 Priced-timed Rewriting: ptrew and ptfrew

When executing the command ptrew with a cost limit, the following transformation takes place:

(ptrew(INITIALSTATE, CHEAPER, COSTBOUND, Args),moduleRTM)
⇓ procPriceTimedCommand

(trew((pricifyInit(INITIALSTATE), Args)),
costlimitMod(pricifyMod(moduleRTM), CHEAPER, COSTBOUND))

We see that the command ptrew transforms to the Real-Time Maude command trew. The module is
transformed, �rst with pricifyMod, then cost limits according to the terms CHEAPER and COSTLIMIT

are added to each priced rule using the costlimitMod transformation. Furthermore, the initial state
INITIALSTATE is transformed using the pricifyInit transformation. Other arguments such as time
limit and the tick mode are una�ected and are represented by Args.

The functions pricedTimedMetaRewrite and pricedTimedMetaFRewrite are found in the module PRICED-TIMED-REWRITE.
Both commands transform their module and arguments locally then pass these to timedMetaRewrite

and timedMetaFRewrite:

op pricedTimedMetaRewrite : Module Term Bound ComparisonOp Term

TickMode Bool Term -> ResultPair .

The following arguments are used for ptrew with a cost limit: M is the module to rewrite in; INITIALSTATE
represents the initial state; BOUND is the bound on the number of rewrite steps; COMP is the comparison
operator on the time limit; TIMEBOUND is the time limit; TM is the tick mode; CHEAPER is a boolean
signifying whether cost should be cheaper than or cheaper than or equal to the cost limit; and COSTBOUND

is the cost limit.

This version of the command takes a cost limit in addition to the time and rewrite step limit. Therefore,
the module M is �rst transformed using pricifyMod then costlimitMod with the appropriate limit. In
addition, with cost free is added into the initial term before sending the job to Real-Time Maude
meta-rewrite function:

eq pricedTimedMetaRewrite(M, INITIALSTATE, BOUND, COMP, TIMEBOUND, TM, CHEAPER,

COSTBOUND)

= timedMetaRewrite(costLimitMod(pricifyMod(M), CHEAPER, COSTBOUND),

pricifyInit(INITIALSTATE), BOUND, COMP, TIMEBOUND, TM) .

The next version of the priced-timed rewrite function does not use a price limit. Therefore, the
costlimitMod transformation is not applied to the module before the job is sent to the appropriate
Real-Time Maude meta-rewrite function:

54

op pricedTimedMetaRewrite : Module Term Bound ComparisonOp Term TickMode -> ResultPair .

eq pricedTimedMetaRewrite(M, INITIALSTATE, BOUND, COMP, TIMEBOUND, TM)

= timedMetaRewrite(pricifyMod(M), pricifyInit(INITIALSTATE), BOUND, COMP,

TIMEBOUND, TM) .

The code for pricedTimedMetaRewrite and pricedTimedMetaFRewrite is almost the same, with the
di�erence being pricedTimedMetaRewrite uses timedMetaRewrite.

6.3.2 Priced-Timed Search: ptsearch

When executing the command ptsearch with a cost limit, the following transformation takes place:

(ptsearch(INITIALSTATE, SEARCHPATTERN, CHEAPER, COSTBOUND, Args),moduleRTM)
⇓ procPriceTimedCommand

tsearch(pricifyInit(INITIALSTATE), pricifyPattern(SEARCHPATTERN), Args),
costlimitMod(pricifyMod(moduleRTM), CHEAPER, COSTBOUND))

Priced-timed search is de�ned by the function pricedTimedSearch in the module
PRICED-TIMED-SEARCH. This function performs all necessary transformations on the module, initial term,
and search pattern. The function pricedTimedSearch e�ectively transforms a call to ptsearch into a
call to the function timedMetaSearch that implements Real-Time Maude's tsearch command. The
following shows the code for the priced-timed search command:

op pricedTimedSearch : Module Term Term Condition Qid Bound

Nat ComparisonOp Term TickMode Bool Term

-> ResultTriple? .

The argument SEARCHPATTERN represents the search pattern; COND is the condition on the search pat-
tern; Q is the arrow (*, !, etc); D is the minimum depth; and N the number of solutions to �nd. The
following version of the priced-timed search has a time limit so both the pricifyMod and costlimitMod

transformations are performed:

eq pricedTimedSearch(M, INITIALSTATE, SEARCHPATTERN,

COND, Q, D, N, COMP, TIMEBOUND, TM, CHEAPER, COSTBOUND)

= timedMetaSearch(costLimitMod(pricifyMod(M), CHEAPER, COSTBOUND),

pricifyInit(INITIALSTATE), pricifyPattern(SEARCHPATTERN),

COND, Q, D, N, COMP, TIMEBOUND, TM) .

The second version of the command has no price limit, therefore, the costlimitMod transformation is
not performed:

op pricedTimedSearch : Module Term Term Condition Qid Bound

Nat ComparisonOp Term TickMode -> ResultTriple? .

eq pricedTimedSearch(M, INITIALSTATE, SEARCHPATTERN,

COND, Q, D, N, COMP, TIMEBOUND, TM)

= timedMetaSearch(pricifyMod(M), pricifyInit(INITIALSTATE),

pricifyPattern(SEARCHPATTERN),

COND, Q, D, N, COMP, TIMEBOUND, TM) .

endfm

55

6.3.3 Find Cheapest

For each iteration of the find cheapest command a call to ptsearch is made with a stricter cost limit.
The second step of the following transformations is taking place for each iteration:

(find cheapest((INITIALSTATE, SEARCHPATTERN, CHEAPER, COSTBOUND, Args),moduleRTM)
⇓ procPriceTimedCommand

(ptsearch(INITIALSTATE, SEARCHPATTERN, CHEAPER, COSTBOUND, Args),moduleRTM)
⇓pricedTimedSearch

(tsearch(pricifyInit(INITIALSTATE), pricifyPattern(SEARCHPATTERN), Args),
costlimitMod(pricifyMod(moduleRTM), CHEAPER, COSTBOUND))

The code for the find cheapest command is de�ned by the function findCheapest found in the module
FIND-CHEAPEST. All transformations of the module, initial term, and search pattern are performed by
pricedTimedSearch. The algorithm employed by the function findCheapest obtains an initial solution
by using pricedTimedSearch then stores this solution and, thereafter, uses pricedTimedSearch with
a cost limit cheaper than the cost of the current solution. This is repeated until there are no more
solutions. Therefore, the current solution is the optimal one.

More complex algorithms for computing the cheapest states such as linear programming combined with
branch and bound were considered, but due to the �exibility of Maude's rewrite rules, too many properties
about a speci�cation are undecidable. Therefore, a branch and bound algorithm would end up having
bad bounding functions and search a large part of the state space. We opt to use Real-Time Maude's
built-in meta-search because of the aforementioned reason and the fact that during tests of di�erent
implementations, the built-in meta-search proved itself as more e�cient.

op findCheapest : Module Term Term Condition Qid Bound

ComparisonOp Term TickMode -> ResultTriple? .

op findCheapest : Module Term Term Condition Qid Bound

ComparisonOp Term TickMode Term ResultTriple?

-> ResultTriple? .

The initial solution is obtained by sending the arguments provided to the find cheapest command to
the function pricedTimedSearch and storing the result in THIS_SEARCH. If the �rst result was not a
failure, findCheapest is called again. This time with a cost limit set to cheaper than the cost of the
current result:

ceq findCheapest(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP, TIMEBOUND, TM)

= if THIS_SEARCH =/= failure then

findCheapest(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP, TIMEBOUND, TM,

costPart(getTerm(THIS_SEARCH)), THIS_SEARCH)

else

failure

fi

if THIS_SEARCH :=

pricedTimedSearch(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D,

0, COMP, TIMEBOUND, TM, true, 'infcost.CostInf) .

The findCheapest function calls itself repeatedly passing its arguments to the pricedTimedSearch

function as long as it �nds cheaper solutions. Once there are no more solutions, the solution stored in
PREV_SEARCH, the optimal solution is returned:

56

ceq findCheapest(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP,

TIMEBOUND, TM, COSTBOUND, PREV_SEARCH)

= if THIS_SEARCH =/= failure then

findCheapest(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP, TIMEBOUND, TM,

costPart(getTerm(THIS_SEARCH)), THIS_SEARCH)

else

PREV_SEARCH

fi

if THIS_SEARCH :=

pricedTimedSearch(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D,

0, COMP, TIMEBOUND, TM, true, COSTBOUND) .

6.3.4 Binary Find Cheapest

For each iteration in the binary find cheapest command a call to ptsearch is made:

(binary find cheapest(INITIALSTATE, SEARCHPATTERN,
CHEAPER, COSTBOUND, Args),moduleRTM)

⇓ procPriceTimedCommand

(ptsearch(INITIALSTATE, SEARCHPATTERN, CHEAPER, COSTBOUND, Args),moduleRTM)
⇓pricedTimedSearch

(tsearch(pricifyInit(INITIALSTATE), pricifyPattern(SEARCHPATTERN), Args),
costlimitMod(pricifyMod(moduleRTM), CHEAPER, COSTBOUND))

The binary version of the find cheapest command uses the function findCheapestBin that is located
in the module FIND-CHEAPEST-BINARY. This function is similar to findCheapest except in how it applies
the costlimitMod transformation in a binary search fashion to obtain the next better solution. An initial
solution is obtained by performing a ptsearch with no cost limit for a matching state. Once a solution
is found, it is stored and a new search is made for a solution with half or less cost than the previous
one. If a solution is not found, the algorithm tries to �nd a solution between half the cost of the current
best and the current best. This is repeated in a standard binary search pattern, until there are no more
states to search and an optimal solution is found.

The function metaDiv2 is used to divide a meta cost terms by 2. This is the only function that uses the
div2 operator de�ned as part of the cost domain:

op metaDiv2 : Module Term -> Term .

eq metaDiv2(M, T) = getTerm(metaReduce(M,'div2[T])) .

The function metaAdd is used to add two meta costs, while metaAvg is used to take the average of two
given meta costs:

ops metaAdd metaAvg : Module Term Term -> Term .

eq metaAdd(M, T, T') = getTerm(metaReduce(M,'_pluss_[T,T'])) .

eq metaAvg(M, T, T') = metaDiv2(M, metaAdd(M, T, T')) .

op findCheapestBin : Module Term Term Condition Qid Bound

ComparisonOp Term TickMode -> ResultTriple? .

op findCheapestBin : Module Term Term Condition Qid Bound

ComparisonOp Term TickMode Term ResultTriple? -> ResultTriple? .

57

The initial call to the findCheapestBin function runs in the same way as the findCheapest function
apart from one thing � the cost limit COSTLIMIT that is being passed to the next iteration of the function
is half the value of the cost of the current solution:

ceq findCheapestBin(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP, TIMEBOUND, TM)

= if THIS_SEARCH =/= failure then

findCheapestBin(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP,

TIMEBOUND, TM,

metaAvg(M, costPart(getTerm(THIS_SEARCH)), 'free.Cost),

THIS_SEARCH)

else

failure

fi

if THIS_SEARCH := pricedTimedSearch(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D,

0, COMP, TIMEBOUND, TM, true, 'infcost.CostInf) .

Subsequent calls to findCheapestBin proceed by using the metaAdd and metaAvg functions to search
for better solutions in a binary search fashion:

ceq findCheapestBin(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP,

TIMEBOUND, TM, COSTBOUND, PREV_SEARCH)

= if THIS_SEARCH =/= failure then

findCheapestBin(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP,

TIMEBOUND, TM,

metaAvg(M, costPart(getTerm(THIS_SEARCH)), 'free.Cost),

THIS_SEARCH)

else

if CURRENT == COSTBOUND then

PREV_SEARCH

else

findCheapestBin(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP,

TIMEBOUND, TM, CURRENT, PREV_SEARCH)

fi

fi

if CURRENT := metaAvg(M, costPart(getTerm(PREV_SEARCH)), COSTBOUND)

/\

THIS_SEARCH := pricedTimedSearch(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D,

0, COMP, TIMEBOUND, TM, true, COSTBOUND) .

endfm

6.3.5 Priced Find Earliest

When the priced find earliest command is called with a price limit, the following transformation
takes place:

(priced find earliest(INITIALSTATE, SEARCHPATTERN,
CHEAPER, COSTBOUND, Args),moduleRTM)

⇓ procPriceTimedCommand

(find earliest(pricifyInit(INITIALSTATE), pricifyPattern(SEARCHPATTERN), Args),
costlimitMod(pricifyMod(moduleRTM), CHEAPER, COSTBOUND))

There is no code for this command as the transformed input is simply sent to the Real-Time Maude
function findEarliest by part of the preprocessor and the result is displayed on screen.

58

6.3.6 Timed Model Checking

When the pmc command is called, the following transformation takes place:

(pmc(INITIALSTATE, Args),moduleRTM)
⇓ procPriceTimedCommand

(mc(pricifyInit(INITIALSTATE), Args), pricifyProperties(pricifyMod(moduleRTM)))

No speci�c model checking code apart from the function pricifyProperties is added by Priced-Timed
Maude. After this transformation, the model checker is invoked with the transformed module and initial
state.

6.4 De�ning the Syntax of Priced-Timed Maude

This section shows how the user-level syntax of modules and commands is de�ned in Priced-Timed
Maude. Parsing issues are not covered in this thesis as methods identical to Real-Time Maude's are used
when parsing user input and preprocessing commands; this is discussed in [22].

Module syntax is speci�ed the same way as in Real-Time Maude. User-level syntax for Priced-Timed
Maude's modules is given in the following module, which extends the module
REAL-TIME-MAUDE-SYNTAX that de�nes the user-level syntax of Real-Time Maude:

fmod PRICED-MODULE-SYNTAX is

including REAL-TIME-MAUDE-SYNTAX .

op pmod_is_endpm : @Interface@ @SDeclList@ -> @Module@ .

op pomod_is_endpom : @Interface@ @SDeclList@ -> @Module@ .

op ptmod_is_endptm : @Interface@ @SDeclList@ -> @Module@ .

op ptomod_is_endptom : @Interface@ @ODeclList@ -> @Module@ .

endfm

The user-level syntax for Priced-Timed Maude commands is de�ned as follows. Because of numerous
instances of similar code, only parts are shown, the omitted ones are denoted by �...�. The complete
list is found in Appendix B:

The following shows how the meta-level syntax of some the Priced-Timed Maude commands are de�ned:

...

op ptsearch_=>*_in time <_with cost <_. : @Bubble@ @Bubble@ @Bubble@ @Bubble@

-> @Command@ .

op ptsearch_=>*_in time <_with cost <=_. : @Bubble@ @Bubble@ @Bubble@ @Bubble@

-> @Command@ .

op ptsearch_=>*_in time <=_with cost <_. : @Bubble@ @Bubble@ @Bubble@ @Bubble@

-> @Command@ .

op ptsearch_=>*_in time <=_with cost <=_. : @Bubble@ @Bubble@ @Bubble@ @Bubble@

-> @Command@ .

op ptsearch_=>!_in time <_with cost <_. : @Bubble@ @Bubble@ @Bubble@ @Bubble@

-> @Command@ .

op ptsearch_=>*_with no time limit with cost <_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .

op ptsearch_=>!_with no time limit with cost <_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .

59

op ptsearch_=>*_in time <_with no cost limit. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .

op ptsearch_=>*_in time <=_with no cost limit. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .

op ptsearch_=>!_in time <_with no cost limit. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .

op ptsearch_=>*_with no limits . : @Bubble@ @Bubble@ -> @Command@ .

op ptsearch_=>!_with no limits . : @Bubble@ @Bubble@ -> @Command@ .

...

op find cheapest_=>*_in time <_. : @Bubble@ @Bubble@ @Bubble@ -> @Command@ .

op find cheapest_=>*_in time <=_. : @Bubble@ @Bubble@ @Bubble@ -> @Command@ .

op find cheapest_=>*_with no time limit. : @Bubble@ @Bubble@ -> @Command@ .

op binary find cheapest_=>*_in time <_. : @Bubble@ @Bubble@ @Bubble@ -> @Command@ .

...

op ptfrew_in time <=_with cost <_. : @Bubble@ @Bubble@ @Bubble@ -> @Command@ .

op ptfrew_in time <=_with cost <=_. : @Bubble@ @Bubble@ @Bubble@ -> @Command@ .

op ptfrew_in time <=_with no cost limit. : @Bubble@ @Bubble@ -> @Command@ .

op ptfrew_with no time limit with cost <_. : @Bubble@ @Bubble@ -> @Command@ .

op ptfrew_with no limits. : @Bubble@ -> @Command@ .

...

op ptrew_in time <=_with cost <_. : @Bubble@ @Bubble@ @Bubble@ -> @Command@ .

...

op priced find earliest_=>*_with no cost limit. : @Bubble@ @Bubble@ -> @Command@ .

op priced find earliest_=>*_with cost <=_. : @Bubble@ @Bubble@ @Bubble@ -> @Command@ .

op priced find earliest_=>*_with cost <_. : @Bubble@ @Bubble@ @Bubble@ -> @Command@ .

...

The sort @Bubble@ is used for the commands' arguments. We recall the syntax of the ptsearch command
given in the previous chapter:

(ptsearch [[n]] initialState =>* searchPattern [such that cond]
in time E T with cost E C .)

Two parameters precede the =>; one of these is optional but both are represented by the same @Bubble@.
When parsing the command, a function resolving these bubbles determine what part of the arguments
are present and resolve abbreviations (such as initial states de�ned as constants) to terms. Also note
that the operators < and <= are part of the actual command rather than parameters, this is to minimize
the amount of parsing needed later on. The same applies to the arrows =>* and =>!.

Example 6.4.1 Section 4.5.2 introduced the module PRICED-TIMED-OO-LIGHT-SWITCH and an initial
state init1 with one switch in the module TEST-TWO-LIGHTS. The following is a search in that system

(ptsearch [1] init1 =>* {< "Driveway" : Switch | timer : 4 >} in time <= 1

with cost <= 50 .)

where the �rst bubble is `[1] init1'; the second bubble is
`{< "Driveway" : Switch | timer : 4 >}'; third bubble is the time limit 1; and the fourth bubble
is the cost limit 50. Here we see that the �rst bubble does not represent one but two parameters, both the
amount of solutions wanted and the initial state, which in this case is the operator init1 that needs to
be resolved by the bubble solve function.

60

Chapter 7

Case Studies

In this chapter, we look at 3 priced-timed systems: the airplane landing problem (ALP) [12], energy
task graph scheduling (ETGS) [13], and the subway passenger routing (SPR) problem and show how to
model and analyze them using Priced-Timed Maude. The �rst two systems are common benchmarks
and are modeled using Priced-Timed Automata (PTA) [13] using the tool Uppaal CORA [10] in the
article [13] and on the tool's webpage. The �rst 2 systems are provided to show how Uppaal CORA and
Priced-Timed Maude di�er in speci�cation style and performance (both aspects are extensively discussed
in Chapter 8). The last system is given to illustrate the �exibility of modeling priced-timed systems using
Priced-Timed Maude.

61

7.1 The Airplane Landing Problem

In the airplane landing problem (ALP) [12], aircraft landings are scheduled within a given time window
onto a set of runways. If an aircraft is assigned a landing time that deviates from a given target time,
then it has to accelerate or hold in the air. This leads to using more fuel than planned, and additional
cost is incurred. The objective is to minimize this cost.

This problem was chosen because ALP is a often cited in papers discussing priced-timed systems.

7.1.1 The Problem

The task is to assign landing times to a set of aircraft, given a set of runways, while minimizing the
number of planes deviating from their original, or target schedules.

Each plane is given an earliest, target, and latest landing time. Any cost incurred in the system is due
to deviation from its target landing time. In addition, the aircraft are further classi�ed according type,
e.g. Boeing 747 or Airbus A320. The reason for this classi�cation is that di�erent plane sizes generate
di�erent amounts of turbulence wake when landing. This is relevant to landing separation times.

When a plane comes within range of the airport, the air tra�c control tower will assign it a landing time
and an available runway before it runs out of fuel. When determining landing schedules, we have to take
into account that only one plane may land on a particular runway on any given time and appropriate
time gaps have to be provided between landing aircraft due to the turbulence wake created as a plane
taxies down. The required separation time depends on the type of aircraft involved. For instance, a 747
can both create and handle more turbulence than a smaller plane, such as a four-seater, single-engine
Cessna.

Before a landing time can be assigned, a plane is assumed to arrive at the target time, �ying at a cruising
speed that has been determined as the most fuel e�cient for that aircraft. Therefore, a landing based
on its target time will not add any cost to the system. However, if a plane is assigned a landing time
earlier than its estimated target time, it must increase its speed, thereby consuming more fuel. This is
refereed to as a plane's early rate. The increase in fuel consumption will be at its maximum (cost is
equal to the value of the early rate) if the plane is assigned the earliest possible landing time but will
decrease linearly towards 0 for landing times closer to its target time If a plane is assigned a landing
time past its target time, it must stay in the air longer than expected. This also leads to an increased
fuel consumption, referred to as the plane's late rate. The plane will add cost to the system that is equal
to this rate per time unit. In addition to the early and late fuel consumption rates, there is a one-time
penalty associated with a plane landing late.

This type of problem occurs on a large scale at busy airports where making optimal use of a bottleneck
resources the runways is crucial for the airport's safe and smooth operation.

7.1.2 Examples

The following example de�nes an initial state with 3 planes and a runway:

Example 7.1.1 We de�ne an initial state with 3 planes denoted p1, p2, and p3:

� p1 is a small plane that is set to land at time 9, no earlier than 5, but no later than 12. Further,
it has an early rate of 15, late rate of 2 and a one time late penalty of 3.

� p2 is another small plane that has a target and earliest landing time of 5 and a latest landing time
10. Moreover, this plane has an early rate of 25, late rate of 5 and a late penalty of 10.

� p3 is a medium-sized plane that is set to land at time 7, no earlier than 5, and no later than 15.
In addition, it has an early rate of 20, a late rate of 3 and a late penalty of 5.

62

Furthermore, all three planes have earliest landing time 5. Finally, we have an empty runway rw1 for
these planes to land on.

From this initial setup we can generate many schedules, but we will consider only 2 of them: the earliest
and the cheapest.

The earliest schedule is obtained in the following example:

Example 7.1.2 While it is possible for these 3 planes to be grounded in 7 time units, this may not be
the cheapest way to do so. Consider the following 2 schedules: �rst a schedule denoted S1: p1 lands at
time 5 with an added cost of 15 because the plane had to accelerate to its maximum airspeed. Now p2

may land at time 6 due to the fact that a small-sized plane can land 1 time unit after another small
plane. This will incur a cost of 5 + 10 = 15, one unit of time at the late rate plus the one time late
penalty. Finally, p3 may land at time 7: as medium-sized planes have to wait 1 time unit to land after
a small-sized aircraft. This is the plane's target landing time, therefore, no extra cost is incurred. The
total cost of this schedule is 30.

Our �nal example shows us that the earliest schedule is not necessarily the cheapest:

Example 7.1.3 The second schedule S2 will assign all the planes to land on their target times as follows:

p2 lands at time 5 with no added cost. Likewise, p3 lands at time 7. and �nally p1 lands at time 9, also
on target. This schedule �nishes landing all the planes by time 9 at no cost since all the aircraft landed
on their target times and stayed at their advised, cruise speeds.

7.1.3 Modeling ALP in Priced-Timed Maude

This section provides a method for modeling the ALP problem using Priced-Timed Maude. First we
need a representation of planes, which we model with instances of the class Plane, with the following
attributes:

� type: the type of a plane, for this example, we will rely on a generic type: small, big, and medium.

� earliest: the earliest possible landing time.

� target: the time a plane can land without incurring any extra cost.

� latest: the latest possible time a plane can land before it runs out of fuel and a disaster occurs.

� early: a cost associated when a plane increases airspeed in order to land earlier than its target
time. The full value of the attribute will be incurred if the plane has to land at its earliest time
(after which it deceases linearly until it reaches 0 at the target time).

� late: the rate at which cost is incurred when a plane has to land beyond its target time.

� latePenalty: a one-time penalty incurred for landing beyond its target time.

� landAt: identi�es the runway the plane has been assigned to. This starts out empty with the
special value noOid. When a plane has this value as its landAt attribute we will refer to it as
unassigned. Otherwise. it is referred to as assigned.

� landingTime: this is the time that has been assigned for the plane to land. This starts out the
same as target, as it is the assumed landing time.

� clock: the internal clock of a plane. This starts out at 0.

� rate: this is the current rate at which a plane generates cost when it is assigned to an early
landing. This rate is based on the time of assignment, earliest landing time, target landing time,
and the early rate. For instance, a plane with earliest landing time 2 and target 6 that is being
informed at time 3 that it is to land at time 4 will have to accelerate more than if the plane was
informed of the same landing time at time 2.

63

For the class Runway, that models runways, we only need 3 attributes:

� landed: a list of pairs of the form (Oid, Time) where Oid identi�es a plane and Time indicates
the time a plane lands.

� type: signi�es the type of the previously assigned planes, i.e. if a plane of type big is assigned a
landing time, this attribute becomes big so that the system can determine how much separation
time is needed for the next assignment. This starts out as the special value None which represents
an empty runway (, i.e., no planes have been cleared for landing).

� prevStart: the time assigned to the previous (last) plane's landing.

We will use the following strategy for solving the problem:

� At system start, all planes are assumed to land on target time.

� An aircraft may be assigned a landing time and a runway number during any period from the time
the system starts until its latest landing time.

� When assigning a landing time and runway to an aircraft we will either assign the plane to its
target time or we will assign it to the runway's next free time slot. When assigning a plane to
the next free slot it may coincide with the plane's target time, it may be earlier than the plane's
target, or it may be later.

� When a plane is assigned a time earlier than its target an early rate is calculated. This rate
may be di�erent according to when the plane was informed of the assigned landing time.

� A plane assigned to its target time will never incur cost.

� A plane assigned to a time after its target time will incur cost according to its late rate once
time is past its target time.

Clearly, this covers all of a plane's possible landing scenarios.

� When planes have been assigned to a landing time and runway they will continue to cruise at a
certain altitude until their designated landing time when they will have to land immediately.

The following object-oriented Priced-Timed Maude speci�cation models the airplane landing problem:

(omod DEF-OID is

sort DefOid .

op noOid : -> DefOid [ctor] .

subsort Oid < DefOid .

endom)

The included module DEF-OID de�nes the sort DefOid that is used for the noOid value for unassigned
planes.

(tomod OID-TIME is

sort OidTimePair .

op _`,_ : Oid Time -> OidTimePair [ctor] .

endtom)

(view OidTime from TRIV to OID-TIME is

sort Elt to OidTimePair .

endv)

The module OID-TIME-LIST provides us with a datatype for sets of the sort OidTimePair which has the
form (Oid, Time) and is used in the landed attribute of runway to log landings.

64

(tomod OID-TIME-LIST is

protecting LIST{OidTime} * (sort List{OidTime} to OidTimeList,

sort NeList{OidTime} to NeOidTimeList) .

endtom)

(ptomod ALP is

protecting DEF-OID .

protecting OID-TIME-LIST .

protecting POSRAT-COST-DOMAIN .

protecting NAT-TIME-DOMAIN-WITH-INF .

POSRAT-COST-DOMAIN and NAT-TIME-DOMAIN-WITH-INF set cost to run over the positive rational numbers
and time to run over the natural numbers, respectively. Cost needs to be positive, rational numbers in
this system because of the early rate. This is calculated based on the plane's assigned landing time
relative to its earliest landing time and can easily become a rational number.

sorts PlaneType PlaneTypeNone .

subsort PlaneType < PlaneTypeNone .

ops big small medium : -> PlaneType [ctor] .

op None : -> PlaneTypeNone [ctor] .

class Plane | type : PlaneType, landingTime : TimeInf,

landAt : DefOid, earliest : Time, target : Time,

latest : Time, early : Cost, late : Cost,

latePenalty : Cost, clock : Time, rate : Cost .

class Runway | landed : OidTimeList, type : PlaneTypeNone,

prevStart : Time .

var P RW : Oid .

var OTL : OidTimeList .

vars C C1 ER : Cost .

var TI : TimeInf .

var R T L E Lt Ta : Time .

var PT : PlaneType .

var PTN : PlaneTypeNone .

var SSt : SystemState .

The function sep de�nes the separation times as seen below. The �rst argument to the function is the
type of the previously assigned plane and the second argument is the type of the plane that is being
assigned, i.e., separation between a small and a big plane is 3 time units, while separation between a big
and a small plane is 1 etc.

op sep : PlaneType PlaneTypeNone -> Nat .

eq sep(PT, None) = 0 .

eq sep(small, big) = 3 .

eq sep(medium, big) = 2 .

eq sep(big, big) = 1 .

eq sep(small, medium) = 2 .

eq sep(medium, medium) = 1 .

eq sep(big, medium) = 1 .

eq sep(PT, small) = 1 .

65

The rule assignToNextFree tries to assign a landing time to a plane based on the next free time slot,
this may be earlier or later than the plane's target time. Because planes may �y around freely and
unassigned up until their latest possible landing time.

crl [assignToNextFree] :

< P : Plane | type : PT, earliest : E, landAt : noOid, latest : Lt,

clock : R, late : LR, early : ER, target : Ta >

< RW : Runway | type : PTN, prevStart : T >

=>

< P : Plane | landAt : RW, landingTime : L, rate : C >

< RW : Runway | type : PT, prevStart : L >

If a plane is assigned to the current time and this time is early some cost must be added to the system
due to acceleration to land on time.

with cost (if L == R and L =/= E then

totEarlyCost(Ta, L, E, ER)

else

0

fi)

if L :=

if R >= (T + sep(PT, PTN)) then

R

else

T + sep(PT, PTN)

fi

It may be necessary to adjust the rate of a plane at assignment time. If a plane is assigned earlier than
target and the current time is between target and earliest the rate of the plane must be adjusted to take
this into account.

/\

C := (if R < Ta and R >= E and L < Ta then

--- accelerated rate equals total cost from earliness

--- / the time interval left to accelerate

(totEarlyCost(Ta, L, E, ER) / (Ta monus R))

else

0

fi)

/\ L >= E /\ L <= Lt .

The rule assignToTarget tries to match a runway to an unassigned plane so the latter may be able to
land on its target time. This may be achieved if the previous landing time assigned on the runway plus
the necessary separation time is earlier or equal to the said plane's target time. In the case separation
time plus previous landing time is earlier than the target landing time of a plane, this rule is used to
"pad" the new previous landing so that it matches this plane's target time, where assignToNextFree

would add the separation time to the current previous landing and might not hit a plane's target time,
this rule will always match the plane's target time.

From this we see that the two rules assignToTarget and assignToNextFree , in conjunction with the
fact that a plane may continue �ying unassigned up until its latest landing time, makes this method
complete in covering all possible landing scenarios.

66

crl [assignToTarget] :

< P : Plane | type : PT, latePenalty : C, earliest : E,

landAt : noOid, latest : Lt, target : Ta,

clock : R >

< RW : Runway | type : PTN, prevStart : T >

=>

< P : Plane | landAt : RW, landingTime : Ta >

< RW : Runway | type : PT, prevStart : Ta >

if Ta >= (T + sep(PT, PTN)) .

Landing is completed by the rule planeLanding when a plane's clock reaches its assigned landing time.
At this point the plane taxies down (at no further time-lapse) at the correct runway indicated by the
plane's landAt attribute. During landing procedures, whether a plane lands on its earliest possible
landing time, or if the landing time is past its target time will be determined. In the �rst case, the full
cost of accelerating is incurred - i.e. the whole value of early. While in the second case, the one-time
late penalty is incurred. When a plane has satisfactorily completed all landing sequences, its name and
time of landing is added to the runway's landing log, and the plane object is discarded as it is no longer
needed.

rl [planeLanding] :

< P : Plane | landAt : RW, landingTime : L, clock : L,

earliest : E, target : Ta, early : C, latePenalty : C1 >

< RW : Runway | landed : OTL >

=>

< RW : Runway | landed : (OTL (P, L)) >

with cost

(if Ta < L then C1 else free fi

pluss

if L == E and Ta =/= E then C else free fi) .

Time �ow is handled by the tick rule tick and the functions delta, mte, and rate. The tick rule uses
mte to �gure out how much time may elapse in the system. The function rate de�nes the current rate
of cost per time unit so that it can be multiplied by the number of units advanced. Finally, delta is
used in exactly the same way as in Real-Time Maude [23] to model the �ow of time on the system.

crl [tick] :

{SSt} => {delta(SSt, R)} in time R with cost (rate(SSt) * R)

if R <= mte(SSt) [nonexec] .

--- Runways do not generate cost or affect time

eq delta(< RW : Runway | >, R:Time)

=

< RW : Runway | > .

eq mte(< RW : Runway | >) = INF .

eq rate(< RW : Runway | >) = 0 .

The function mte is set up so the system cannot advance past a point in time where the rate of a plane
may change. The rate may change at the earliest and the target landing time depending on the assigned
landing time.

Unassigned planes are assumed to land on target until time passes this time. Planes may stay unassigned
up until their latest landing time. However. time must be stopped at a plane's target time to change to
the late rate.

67

eq mte(< P : Plane | landAt : noOid, earliest : E, target : Ta,

clock : R, latest : L >) = if R < Ta then

Ta monus R

else

L monus R

fi .

--- any assigned plane before earliest

ceq mte(< P : Plane | landAt : RW, clock : R, landingTime : L, earliest : E >)

= E monus R

if R < E .

--- landing time

eq mte(< P : Plane | landAt : RW, clock : L, landingTime : L >) = 0 .

--- landing on target

eq mte(< P : Plane | landAt : RW, clock : R, target : T, landingTime : T >) = T monus R .

--- early before target

ceq mte(< P : Plane | landAt : RW, clock : R, target : T, landingTime : L, earliest : E >)

= L monus R

if E < T /\ R < T /\ R >= E .

--- late between earliest and target

ceq mte(< P : Plane | landAt : RW, clock : R, target : T, landingTime : L, earliest : E >)

= T monus R

if L > T /\ R >= E /\ R < T .

--- late between target and landing time

ceq mte(< P : Plane | landAt : RW, clock : R, target : T, landingTime : L >)

= L monus T

if L > T /\ R >= T .

The function delta updates the clock on each plane.

eq delta(< P : Plane | clock : L >, R)

=

< P : Plane | clock : L plus R > .

The rate function calculates the rate of a plane based on its assigned landing time and the current time.
The rate of all planes is 0 until their earliest possible landing time is reached. The plane uses the late
rate when its time goes beyond the target time. Early planes have a rate calculated proportionally to
how close their assigned landing time is to the earliest landing time. Planes that are assigned to land on
target will never incur any cost, therefore, their rate is always 0.

eq delta(< P : Plane | clock : L >, R)

=

< P : Plane | clock : L plus R > .

--- If time is before earliest there's no rate

ceq rate(< P : Plane | earliest : E, clock : R >) = 0

if R < E .

68

--- If plane is scheduled to be on target there's no rate

ceq rate(< P : Plane | clock : R, landingTime : L, target : L >) = 0 if R < L .

--- if target time has been reached the rate is late

ceq rate(< P : Plane | late : C, target : Ta, clock : R >) = C

if R >= Ta .

The closer a plane is assigned to its earliest landing time the higher the rate in the interval between
earliest and target. If a rate has already been set at the time of assignment a new rate will not be
calculated.

ceq rate(< P : Plane | landAt : RW, earliest : E, early : ER,

target : Ta, landingTime : L, clock : R, rate : C >)

= if C == 0 then

--- cost per time unit equals the total early cost divided by the

--- interval between target and landing

(totEarlyCost(Ta, L, E, ER) / (Ta monus L))

else

C

fi

if R >= E and L < Ta and R =/= Ta .

The function totEarlyCost computes the total cost a plane will incur in the system due to an early
landing.

op totEarlyCost : Time Time Time Cost -> Cost .

eq totEarlyCost(Ta, L, E, ER) = ((Ta monus L) / (Ta monus E)) * ER .

endptom)

7.1.4 ALP Analysis in Priced-Timed Maude

We now want to use our ALP speci�cation to determine optimal landing schedules. We can use Priced-
Timed Maude to �nd a state with the cheapest possible cost and read the schedule out of the runway.

De�ning an Initial State

The following Priced-Timed Maude module de�nes the 3 planes and the runway of in Example 7.1.1:

(ptomod ALP-TEST is

protecting ALP .

protecting STRING .

subsort String < Oid .

op plane : Oid PlaneType Time Time Time Cost Cost Cost -> Configuration .

op runway : Oid -> Configuration .

op init1 : -> GlobalSystem .

vars E T L : Time .

vars C1 C2 C3 : Cost .

var PT : PlaneType .

var O : Oid .

69

eq plane(O, PT, E, T, L, C1, C2, C3) =

< O : Plane | type : PT, landAt : noOid, landingTime : T,

clock : 0, early : C1, late : C2, latePenalty : C3,

earliest : E, target : T, latest : L, rate : 0 > .

The function plane is used to eliminate repeating values that are the same for all planes, as well as,
simplifying the task of instantiating a new plane. We can instantiate a new plane by using the plane

function giving: a name, type, earliest landing time, target landing time, latest landing time, early rate,
late rate, and a late penalty.

eq runway(O) = < O : Runway | landed : nil, type : None, prevStart : 0 > .

--- 3 planes and one runway

eq init1 = {plane("p1", small, 5, 9, 12, 15, 2,3)

plane("p2", small, 5, 5, 10, 25, 5, 10)

plane("p3", medium, 5, 7, 15, 20, 3, 5)

runway("rw1")} .

endptom)

Determining Earliest and Cheapest Schedule using Priced-Timed Maude

By using the Priced-Timed Maude command, priced find earliest, we con�rm that S1 of Example
7.1.2 is the earliest schedule:

Maude> (priced find earliest init1 =>* {< "rw1" : Runway | >} with no cost limit.)

Result: {< "rw1" : Runway | landed :(("p1",5)("p2",6)("p3",7)),prevStart : 7,

type : big >} in time 7 with cost 30

Likewise, by using the command find cheapest we con�rm that S2 is the optimal schedule with regard
to cost:

Maude> (find cheapest init1 =>* {< "rw1" : Runway | >} with no time limit .)

Solution

ATTRIBUTES_OF_"rw1":AttributeSet -->

landed :(("p2",5)("p3",7)("p1",9)),

prevStart : 9,type : small ;

CLASS_OF_"rw1":Runway --> Runway ;

TIME_ELAPSED:Time --> 9 ; TOTAL_COST_INCURRED:Cost --> 0

Clearly, S2 is an optimal schedule with regard to cost, while S1 is optimal with regard to time.

De�ning more Planes and Runways

We can easily de�ne initial states with more planes and runways by adding another constant of sort
GlobaleSystem to ALP-TEST by doing the following:

ops init1 init2 : -> GlobalSystem .

We can also de�ne a new initial state init2 with 6 planes and 3 runways like the following:

70

eq init2 = plane("p1", small, 3, 4, 7, 15, 2,3)

plane("p2", medium, 0, 2, 10, 20, 3, 5)

plane("p3", big, 2, 4, 5, 25, 5, 10)

plane("p4", medium, 2, 4, 7, 15, 3, 7)

plane("p5", medium, 1, 2, 6, 15, 3, 5)

plane("p6", big, 2, 5, 7, 25, 7, 10)

runway("rw3")

runway("rw2")

runway("rw1") .

We are now free to use all the same tools provided by Priced-Time Maude as we were on the previous ini-
tial state init1. For instance, we may now use the optimal priced timed search command find cheapest

to �nd an optimal schedule which in this case should be reachable in time 4 with cost 0.

71

7.2 Energy Task Graph Scheduling

The second problem is energy task graph scheduling (ETGS) [13]. In this problem we are given a set
of interdependant tasks, a set of processors, and a bus. The tasks require a given time to run on each
processor and to broadcast on the bus. The processors and bus consume power at a given rater while
processing/broadcasting, and a di�erent rate of power while idle. The objective is to �nd the most energy
e�cient schedule for completing all the tasks within a given deadline.

This example was chosen because of its practical applications and it is the one cited in [13] along with
speci�cation techniques for Uppaal CORA [10] an automata based priced-timed tool. This gives us
the opportunity for comparison between the speci�cation languages and performance of Priced-Timed
Maude and Uppaal CORA [10] in Chapter 8.

7.2.1 Energy Task Graphs and Examples

Task graphs are used to solve problems where there are constraints on the ordering of a set of tasks and
resources may be limited.

Example 7.2.1 Consider the project of building a house. Some of the tasks may include building a
foundation, building walls, putting in doors and windows, and installing pipes. The resources may include
specialist manpower such as plumbers, carpenters, and masons. All tasks would depend on the foundation
being laid down �rst, while putting up the walls and laying pipes may be done in parallel provided there
is enough personnel.

A more specialized version of the task graph is the energy task graph that arises when dealing with
scheduling problems on embedded systems. On some embedded systems. battery life is often short, and
speed might not always be the most important factor to solving a problem, but running the system for
as long as possible within certain performance parameters. Take for instance a portable media device
such as an mp3 player: It is not important to play the mp3s as quickly as possible, merely to play at
a given quality and avoid any stuttering, i.e., play at a given preset speed while ensuring the longest
possible battery life.

An energy task graph is used to describe a system with an ordering of interdependant tasks, a bus and
a set of processors. In addition, the tasks have given running times on the di�erent processors and time
required to broadcast on the bus. The energy part of the energy task graph is the idle and processing
power consumption of the di�erent processors and the bus.

De�nition 7.2.2 (Energy task graph) (from [13]) An energy task graph is a tuple (T, P, pre, δ, κ, π, τ, d)
and a bus where

� T = {t1, ..., tn} is a set of tasks.

� P = {p1, ..., pm} is a set of processors. In addition, there's an element bus that can be considered
a special processor that is used to broadcast the result of tasks to all processors.

� pre : T → 2T determines the set of predecessors of each task.

� δ : T × P → N is the execution time for tasks on processors.

� κ : T → N is the transfer for each task; that is the time required to broadcast the result of a task
on the bus.

� π : P ∪ {bus} → N is the energy consumption rate per time unit for active processors/bus.

� τ : P ∪ {bus} → N is the energy consumption for processors/bus when idle.

� d is the deadline.

72

We will use the following shorthand notation for some of the above terms:

� prei for pre(ti).

� δi,j for δ(ti, pj).

� κi for κ(ti).

� {π, τ}i or πi, τi for π(ti) and τ(ti).

� {π, τ}bus or πbus, τbus for π(bus), and τ(bus).

� Let {π, τ} denote the set {{π, τ}1, ..., {π, τ}k, {π, τ}bus}.

Example 7.2.3 An energy task graph E with 3 tasks, 2 processors and a bus E = (T, P, pre, δ, κ, π, τ, d)
can be given as follows:

1. T = {t1, t2, t3}

2. P = {p1, p2},

3. pre1 = {∅}

4. pre2 = {∅}

5. pre3 = {t1, t2}

6. δ = {δ1,1 = 1, δ3,1 = 5, δ2,2 = 2, δ3,2 = 4}

7. κ = {κ1 = 7, κ2 = 5}

8. {π, τ} = {{5, 1}1, {4, 1}2, {11, 1}bus}

9. d = 12

We see that t3 depends on the results of t1 and t2. t1 can run only on p1 and uses 1 millisecond (ms)
on p1, while broadcasting the result on the bus takes 7 ms. t2 may only be run on p2 and uses 2 ms,
broadcasting the result of t2 on the bus takes 5 ms. t3 may run on either processor, requires 5 ms to
process on p1 or 4 on p2. The bus consumes 11 units of power per time unit while broadcasting and 1
while idle. p1 uses 5 units of power while active and 1 while idle. p2 consumes 4 units of power while
active and 1 while idle.

Feasible Schedules and Notation

To solve the problem of �nding an optimal schedule we �rst need to know what schedules are feasible.
The reference [13] gives a de�nition of this; the following is an informal recap of the main points:

(1) Tasks can only execute on allowed processors and the result cannot be broadcast until execution
is terminated.

(2a) When a task depends on the result of another task, these are either executed on the same machine
or the result of the earlier task has to be broadcast.

(2b) No task can begin executing until the results of all dependant tasks are available.

(2cd) Each processor/bus can only execute/transfer one task/result at any given time and such opera-
tions cannot be preempted.

(3) The schedule S must meet the deadline d, all tasks must be completed at time less than or equal
to d.

73

Example 7.2.4 A feasible schedule S1 for the ETGS E is that t1 started processing on p1 at time 0, t2
on p2 at time 0 then broadcast the result of t1 at time 1, �nally t3 started processing on p2 at time 8.
From this we see that S1 meets the deadline with t3 starting at 8 and requiring 5 units of time to process
it will be done at time 12. A second schedule S2 starts t1 and t2 on p1 and p2 in the same manner, but
instead of broadcasting the result of t1 we wait for t2 to �nish running on p2, the result of t2 is broadcast
at time 2. S2 then runs t3 on p1 at time 7 and �nishes t3 at time 12.

It is easy to see that S1 and S2 are both feasible schedules as they �nish all tasks within the given deadline.
However, only one of them is optimal with regard to power consumption. This will be discussed in greater
detail in the next section.

Cost of Schedules and Optimal Schedules

We now know what a feasible schedule looks like, but to determine an optimal schedule we �rst need to
know how to determine the cost of a schedule. Intuitively, this is easy: The cost of a schedule S must
certainly be the cost accumulated through the schedule by all components while processing and idling.

First, we need to de�ne the processing time for the processors and bus:

De�nition 7.2.5 The processing time of a given processor pk denoted proc(pk) is the sum of the execu-
tion times of the tasks that ran on it during a schedule; likewise, the processing time of the bus proc(bus)
is the sum of the broadcast times of tasks that were broadcast.

Example 7.2.6 For the schedule S1 proc(p1) = δ1,1 = 1, proc(p2) = δ2,2 + δ3,1 = 6 and proc(bus) =
κ1 = 7 For S2 proc(p1) = δ1,1 + δ3,1 = 6, proc(p2) = δ2,2 = 2 and proc(bus) = κ2 = 5

It is easy to see that the idle time of a processor or bus is the running time of the schedule minus
the processing time. For simplicity, let's assume that the running time of a schedule is the deadline d;
therefore, idle(pk) = d− proc(pk).

Example 7.2.7 Now we want to �gure out the idle times of the di�erent components of S1 and S2: For
S1: idle(p1) = 12 − 1 = 11, idle(p2) = 12 − 6 = 6 and idle(bus) = 12 − 7 = 5. For S2: idle(p1) =
12− 6 = 6, idle(p2) = 12− 2 = 10 and idle(bus) = 12− 5 = 7.

It is now easy to de�ne the cost of each component during a schedule:

De�nition 7.2.8 The cost accumulated by a component during a schedule is the amount of power it
consumes during the schedule while idle plus the power consumed while active i.e. cost(pi) = πi ·proc(pi)+
τi · idle(pi) in the same way cost(bus) = πbus · proc(bus) + τbus · idle(bus)

Example 7.2.9 Computing the cost for each component of S1 and S2: The cost of S1's components:
cost(p1) = π1·proc(p1)+τ1·idle(p1) = 5·1+1·11 = 16, cost(p2) = 24+6 = 30 and cost(bus) = 77+5 = 82.
For S2 cost(p1) = 30 + 6 = 36, cost(p2) = 8 + 10 = 18 and cost(bus) = 55 + 7 = 62.

Now we are ready to de�ne the cost of a schedule

De�nition 7.2.10 (Cost of a schedule) The cost of a schedule S is the sum of the cost of all its compo-
nents:

� Cost(S) =
∑

pk∈P

(πk · proc(pk) + τk · idle(pk)) + πbus · proc(bus) + τbus · idle(bus)

74

Example 7.2.11 The cost of S1 and S2:

� Cost(S1) = 16 + 30 + 82 = 128

� Cost(S2) = 36 + 18 + 62 = 116

In addition to what has already been de�ned, we also want to keep track of the rate, the power con-
sumption per time unit at any given time in the system. The rate is the sum of power consumption of all
units at any given moment. This information helps us get an overview of the current power consumption
of the system at any given moment in time.

Example 7.2.12 The following two diagrams show both schedules, each broken down by activities and
rate: �rst S1:

time p1 p2 bus rate duration cost
0 t1 t2 idle 10 1 10
1 idle t2 t1 16 1 16
2 idle idle t1 13 6 78
8 idle t3 idle 6 4 32
12 128

and then S2:

time p1 p2 bus rate duration cost
0 t1 t2 idle 10 1 10
1 idle t2 idle 6 1 6
2 idle idle t2 13 5 65
7 t3 idle idle 7 5 35
12 116

The column headings in the tables denote the current activity of p1, p2, p3, and the bus, respectively;
as well as, the time an action starts, rate and duration thereof; its concurrent action; and the total cost
during that period. For instance, row 3 of the �rst table states that at time 2, p1 and p2 are idle while
the bus is broadcasting the result of t1. This has a rate of 13 mW/ms and lasts for 6 ms for a total of
78 mW consumed. The total duration and cost of the schedule is given in the last row and is 12 ms and
128 mW for S1 and 12 ms and 116 mW for S2.

Finally, we de�ne optimal schedules in the following way:

De�nition 7.2.13 (Optimal schedule for the ETGS problem) An optimal schedule in the ETGS problem
is a schedule S∗ such that cost(S∗) ≤ cost(s) for all schedules S∗, s ∈ S such that the set S includes only
those feasible schedules where all tasks are �nished.

Using this de�nition we can easily determine that S2 is an optimal schedule, as any other order of actions
than S1 or S2 would contain redundant actions such as broadcasting t1 or t2 while t3 is being processed.

7.2.2 Modeling ETGS In Priced-Timed Maude

We can specify an ETGS problem in Priced-Timed Maude by de�ning a class for tasks: one class for
processors and one for buses. Since buses and processors will share most attributes, these can both be
subclasses of a common superclass. The class ProcDevice, which is the superclass for processors and
buses, needs the following attributes:

� currentTask: which task is currently being processed/broadcast.

75

� activeRate: the rate at which power is consumed when the device is busy.

� idleRate: the rate at which a processor/bus consumes power while idle.

� timer: keeps track of the remaining running/broadcast time of the current task. This has value
INF while the device is idle.

The class Processor, which is a normal processor, will need just one extra attribute knownRes. This
should be a set of Oids for the tasks that the processor has the results for.

The class Bus that models a bus needs one additional attribute connectedTo, a set with the Oids of the
processors a bus is connected to.

The tasks can be modeled by a class Task with these attributes:

� dependsOn: a set containing Oids of all the tasks a task depends on;

� procTime: a set of pairs of the form (Oid, Time) where the Oid refers to a processor and the
Time is the required time for executing on that processor;

� bcastTime: the amount of time required to broadcast the result of the task on a bus;

� status: this should be a status with one of these values: unprocessed, processing, or done.

Furthermore, the rules of the system must satisfy the requirements of the de�nition of feasible schedules
given in Section 7.2.1 (Feasible Schedules and Notation). Note that a deadline is not explicitly given in
the Priced-Timed Maude speci�cation as this will be dealt with when executing the speci�cation.

The following Priced-Timed Maude speci�cation models the ETGS problem:

The imported module OID-SET provides us with a sort OidSet, which is a set of Oids. In addition to
normal set operators, the module also de�nes the subset operator that calculates whether a set is a
subset of another and returns true or false based on this.

(omod OID-SET is

protecting DEF-OID .

protecting SET{Oid} * (sort Set{Oid} to OidSet,

sort NeSet{Oid} to NeOidSet) .

vars OS OS' : OidSet .

op _subset_ : OidSet OidSet -> Bool .

eq OS subset (OS, OS') = true .

eq OS subset OS' = false [owise] .

endom)

The imported module OID-SET de�nes the basic message type we need for broadcasting a result on the
bus. The �rst Oid represents the task that the result is being broadcast for, while the second represents
the receiver (a processor).

(omod MESSAGES is

sort MsgType .

op bcast : -> MsgType [ctor] .

msg msg_from_to_ : MsgType Oid Oid -> Msg .

endom)

MESSAGES-MULT1 provides us with the means to dispatch broadcast messages, e.g., sending the result of
a task on a bus to all the processors that are connected to the bus.

76

(omod MESSAGES-MULT1 is

protecting MESSAGES .

protecting OID-SET .

op multimsg_from_to_ : MsgType Oid OidSet -> Configuration .

var MT : MsgType .

vars O O' : Oid .

var OS : OidSet .

--- Make a message for every Oid in the set

eq multimsg MT from O to empty = none .

eq multimsg MT from O to (O', OS) =

(msg MT from O to O') (multimsg MT from O to OS) .

endom)

(tomod OID-TIME is

sort OidTimePair .

op _`,_ : Oid Time -> OidTimePair [ctor] .

endtom)

(view OidTime from TRIV to OID-TIME is

sort Elt to OidTimePair .

endv)

Lastly, the module OID-TIME-SET provides us with sets that consist of pairs of the form Oid, Time),
i.e., the previously described sort needed for specifying the running time of a task on a processor.

(tomod OID-TIME-SET is

protecting SET{OidTime} * (sort Set{OidTime} to OidTimeSet,

sort NeSet{OidTime} to NeOidTimeSet) .

endtom)

(ptomod ETGS is

protecting OID-TIME-SET .

protecting MESSAGES-MULT1 .

protecting NAT-COST-DOMAIN .

protecting NAT-TIME-DOMAIN-WITH-INF .

The modules NAT-COST-DOMAIN and NAT-TIME-DOMAIN-WITH-INF set cost and time to run over the
natural numbers.

The sort TaskState is used to indicate the state of a task as unprocessed, processing, or done.

sort TaskState .

ops unprocessed processing done : -> TaskState [ctor] .

class ProcDevice | currentTask : DefOid,

activeRate : Cost,

idleRate : Cost,

timer : TimeInf .

class Task | dependsOn : OidSet,

procTimes : OidTimeSet,

77

bcastTime : Time,

status : TaskState .

class Processor | knownRes : OidSet .

subclass Processor < ProcDevice .

A Bus is a special processing device that connects processors. It can be used in a similar way to a
processor to broadcast the result of a task �nished on one its connected processors to all of its connected
processors.

class Bus | connectedTo : OidSet .

subclass Bus < ProcDevice .

var R : Time .

var TI : TimeInf .

var SSt : SystemState .

vars T P B : Oid .

var C : Cost .

var OS OS' : OidSet .

The rule startTaskOnProcessor: this rule will start an unprocessed task on a free processor for as long
as it has an entry specifying its running time on this processor. The task's status is set to processing

and the processor is set busy by indicating the task's Oid in the currentTask attribute. In addition,
the timer of the processor is set to the running time of the task. This prevents any other tasks from
running on the same processor as well as preventing this task from running on any other processors as
a task needs to have the unprocessed status to be initiated. Furthermore, a task cannot start running
on a processor unless the results it depends on exist in the knownRes set of the processor.

crl [startTaskOnProcessor] :

< T:Oid : Task | status : unprocessed,

procTimes : ((P:Oid, R:Time),

OTS:OidTimeSet),

dependsOn : OS:OidSet >

< P : Processor | timer : INF, knownRes : OS':OidSet >

=>

< T : Task | status : processing >

< P : Processor | currentTask : T, timer : R >

if (OS:OidSet subset OS':OidSet) .

The rule finishTaskOnProcessor makes sure that when a task is done running on a processor, the
result is known by that processor. After which, the processor is set back to idle and the task's status is
done.

rl [finishTaskOnProcessor] :

< T : Task | status : processing >

< P : Processor | currentTask : T, timer : 0, knownRes : OS >

=>

< T : Task | status : done >

< P : Processor | currentTask : noOid, knownRes : (OS:OidSet, T),

timer : INF > .

The rule startBroadcast starts a broadcast on a bus with a task, this requires the task to have the
status done and the bus to be free. When a broadcast is started, the bus' timer is set using the bcastTime
of the task and the Oid of the task as the currently broadcasting task on the bus. Tasks that have been
broadcast are discarded as they are no longer needed for anything.

78

rl [startBroadcast] :

< T : Task | status : done, bcastTime : R >

< B : Bus | timer : INF >

=>

< B : Bus | currentTask : T,

timer : R > .

finishBroadcast sends out a message to all connected processors once a bus' timer is 0, then sets the
bus back to idle status.

rl [finishBroadcast] :

< B : Bus | currentTask : T, timer : 0,

connectedTo : OS >

=>

< B : Bus | currentTask : noOid, timer : INF >

multimsg bcast from T to OS .

The receiveBroadcast rule, on the other hand, deals with a processor receiving a broadcast. When a
broadcast message with a result is received, the receiving processor updates its knownRes with the new
result.

rl [receiveBroadcast] :

(msg bcast from T to P)

< P : Processor | knownRes : OS >

=>

< P : Processor | knownRes : (OS, T) > .

Lastly, we have a fairly standard tick rule, [tick], that models the elapse of time on the system.

crl [tick] :

{SSt} => {delta(SSt, R)} in time R with cost (rate(SSt) * R)

if R <= mte(SSt) [nonexec] .

The function mte determines the maximum amount of time that can elapse. While a message is in the
system no time may elapse; otherwise, it is dependant on the time left on running tasks on any processor
or bus.

eq mte(M:Msg) = 0 .

eq mte(< T : Task | >) = INF .

eq mte(< P : ProcDevice | timer : TI >) = TI .

The function delta works in the same manner as in Real-Time Maude [2], updating all the timers
according to the time elapsed. The rate function extracts an energy consumption rate from all the
components in the system and adds them up to one global rate that can be multiplied by the time
elapsed.

eq delta(< T : Task | >, R)

=

< T : Task | > .

--- Processors and buses are affected by time.

--- A processor or bus' timer counts down during the elapse of time.

eq delta(< P : ProcDevice | timer : TI >, R)

=

< P : ProcDevice | timer : (TI monus R) > .

79

Only processors and buses have a rate, the rate function extracts the idle or active rate from these
according to what state they are currently in. If a bus/processor's timer equals INF the idle rate is used,
otherwise the active rate is used.

eq rate(< P : ProcDevice | idleRate : C, timer : INF >) = C .

eq rate(< P : ProcDevice | activeRate : C, timer : R >) = C .

eq rate(< T : Task | >) = 0 .

endptom)

7.2.3 ETGS Execution And Analysis

In this section the ETGS problem given in Example 7.2.3 is analyzed using Priced-Timed Maude.

The following module de�nes an initial state with 3 tasks, 2 processors, and a bus as described in Example
7.2.3:

(ptomod ETGS-TEST is

protecting NAT .

protecting ETGS .

protecting STRING .

subsort String < Oid .

op init : -> GlobalSystem .

eq init = {< "t1" : Task | dependsOn : empty, procTimes : ("p1", 1),

bcastTime : 7, status : unprocessed >

< "t2" : Task | dependsOn : empty, procTimes : ("p2", 2),

bcastTime : 5, status : unprocessed >

< "t3" : Task | dependsOn : ("t1", "t2"),

procTimes : (("p1", 5), ("p2", 4)),

bcastTime : 0, status : unprocessed >

< "p1" : Processor | currentTask : noOid, timer : INF,

knownRes : empty, activeRate : 5,

idleRate : 1 >

< "p2" : Processor | currentTask : noOid, timer : INF,

knownRes : empty, activeRate : 4,

idleRate : 1 >

< "bus" : Bus | currentTask : noOid, timer : INF,

connectedTo : ("p1", "p2"),

activeRate : 11, idleRate : 1 >} .

endptom)

For this system we wish to �nd an optimal schedule starting from the initial state init to a state where
all tasks are �nished within 12 ms.

Using Priced-Timed Maude to �nd An Optimal Schedule

We now use the Priced-Timed Maude command find cheapest to verify that the second schedule is in
fact the optimal one for a 12 ms deadline by executing the following:

Maude> (find cheapest init =>* {S:SystemState < "t3" : Task | status : done >} in time <= 12 .)

80

Solution

CLASS_OF_"t3":Task --> Task ;

REMAINING_ATTRIBUTES_OF_"t3":AttributeSet -->

bcastTime : 0, dependsOn :("t1", "t2"), procTimes :("p1",5, "p2",4);

S:SystemState -->

< "bus" : Bus | activeRate : 11, connectedTo :("p1","p2"), currentTask : noOid,

idleRate : 1, timer : INF >

< "p1" : Processor | activeRate : 5,currentTask : noOid, idleRate : 1,

knownRes :("t1", "t2", "t3"), timer : INF >

< "p2" : Processor | activeRate : 4, currentTask : noOid, idleRate : 1,

knownRes : "t2", timer : INF >

< "t1" : Task | bcastTime : 7, dependsOn : empty, procTimes : "p1",1, status : done > ;

TIME_ELAPSED:Time --> 12 ; TOTAL_COST_INCURRED:Cost --> 116

This con�rms that the schedule S2 is an optimal schedule. Note that we only need to search for any
state where t3 is done since it relies on the fact that the other tasks are already done. It is also notable
that we would have arrived at the same result if we searched for this term with no time limit, since this
is the optimal result for a state where all tasks are �nished.

81

7.3 Subway Passenger Routing

Finally, the subway passenger routing (SPR) problem routing passengers who want to travel within a
subway network. Each train uses a set amount of power based on how many cars are attached to it.
The objective is to minimize the trains' total power consumption, while at the same time making sure
all passengers reach their destinations.

This problem is presented mainly to illustrate how more complex datatypes than traditional automata
based tools for analyzing priced-timed systems can be used in Priced-Timed Maude. Also, it is to
illustrate how complex conditions on rules and equations can be when using Priced-Timed Maude,
enabling us to specify any number of arbitrary functions as conditions.

7.3.1 Passenger Routing in A Subway System

This problem is inspired by and loosely based on the challenge of routing railway stock in which the
minimum amount of cars needed to service a given schedule has to be determined based on the speci�c
expectation of passenger load on a German subway network. This problem, is Application 4.5 in [24].

For this particular situation, the following are given: a subway map, subway trains assigned to speci�c
routes within that map, and schedules that determine the �ux of passengers for each station during a
given day. The map provides a grid display of the connectivity of the di�erent stations and the relative
travel times between them.

The route assigned to each subway train represents its (directed) path along the map. When a train
reaches the end of its route, it turns around and travels the same way, albeit in reverse. Furthermore,
each train consumes a certain amount of power - this �gure is based on the number of cars attached to
the train.

Each station has a predetermined schedule of passenger arrivals from outside the system. This deter-
mination comes as a result of regular surveys conducted to ascertain tra�c patterns. (The passengers
that arrive at each station are assumed to know their next destinations.) In addition, at certain stations
called service stations, the trains will be allowed to detach cars to save power or attach more cars to
make room for more passenger in order to save time.

Finally, commuters should be able to get to their destination by the most direct route possible. This
means not boarding a train going in the wrong direction. If a passenger does this then he has to pass by
the station where he boarded after the train turns at its end station.

The objective is to determine the most e�ective method of transporting all the commuters to their
respective destinations in the most energy or time-e�cient manner.

7.3.2 A Subway Network Example

st5

st1
2

st2
3

st3

1

4

3
st4

st6

Figure 7.1: A map of a subway with 6 stations; the traveling times between the stations are
denoted on the edges between them.

82

To clarify the point of a passenger not boarding a train in the wrong direction, consider Figure 7.1, which
shows the layout and travel times in a subway network with 6 stations denoted st1 to st6. A station A
is reachable from a station B if there is a directed path connecting them. In the map in Figure 7.1 any
station is reachable from any other station but, normally, a passenger would not board a train heading in
the opposite direction of his desired destination. Consider the routes shown in Figure 7.2 : 1a, covering
st1 through st4 and 1b, covering st4 to st1.

a)

st1 // st2 // st3 // st4

b) st5

st1 // st2 // st3

OO

��

// st4

st6

c)

st4 // st3 // st2 // st1

d) st5

st1 st2oo st3oo

OO

��

st4oo

st6

Figure 7.2: a) A route 1a goes from st1 to st4. b) The layout of the subway with regard to
accessibility/transfers from route 1a. c) The route 1b simply traversing 1a backwards. d) The
layout as seen from 1b.

Example 7.3.1 Now let us consider a passenger with destination st4 who is waiting for a train at the
station st2. It is clearly counterproductive for this passenger to step onto a train traveling route 1a as
this would not take him closer to his destination. Instead, he may wish to board a train servicing the
route 1b that would take him to st4 via st3.

Example 7.3.1 illustrates that when determining the reachability of one station from another, we need to
consider this problem from the perspective of a traveling train and take into account that train's route.
Figure 7.2 d shows how the subway layout is seen as a directed graph relative to route 1b in terms of
its reachability to stations. In determining reachability in a directed graph like this one, a station A is
reachable from a station B only if there is a directed path from B to A. Put simply, if we can get from
B to A by following the direction of the edges, A is reachable from B. From hereon, when the word path
is mentioned in connection with reachability, it refers to a directed path like we just described.

Example 7.3.2 By examining Figure 7.2 part d, we easily determine that there is no path from st2 to
st4 when traveling on a train servicing route 1b. On the other hand, a train servicing route 1a contains
a path from st2 to st4. If, in this example, the passenger wanted to go from st2 to st5 or st6 instead.
he would have to get o� at st3 and wait for a train that services the routes 2a and 2b as shown in Figure
7.3 a and c.

7.3.3 Modeling Passengers, Trains and Stations in Priced-Timed Maude

Passengers need to be modeled along with their destination. However, since it is not interesting nor
practical to model passengers as separate and distinct objects with distinct identities, they will be

83

c)

st5 // st3 // st6

b) st5

st1 st2oo st3

OO

oo // st4

st6

OO

a)

st6 // st3 // st5

b) st5

��

st1 st2oo st3

��

oo // st4

st6

Figure 7.3: a) A route 2a goes from st5 to st6. b) The layout of the subway in terms of
accessibility/transfers from route 2a. c) The route 2b simply traversing 2a backwards. d) The
layout as seen from 2b.

modeled with a sort PassengerGroup which would represent a group of 1 or more passengers going to
the same destination. Terms of the PassengerGroup sort has the form

Nz going to S

where Nz is a non-zero natural number and S is the name of a station. For instance, the term
1 going to "Anaheim" is one passenger going to the station named Anaheim. Since stations and trains
clearly need to accommodate several groups of passengers that may wish to travel to di�erent locations,
we need sets of PassengerGroup terms called a PassengerSet.

To model passengers that arrive at a station from outside the system at a certain time, we will need
a new sort PassengerSchedule which represents a list of passengers coming in at a given time. The
entries of this list be of a sort PassengerScheduleEntry that has the form

(PS, T)

where PS is a PassengerSet signifying the amount of boarding passengers and their destinations, while T
is of sort Time and indicates when these passengers will be arriving. The terms of the PassengerSchedule
sort have the form of a list of PassengerScheduleEntry entries giving the speci�c time sets of passenger
arrivals. Note that this list should be sorted from the earliest arrivals to the latest ones.

We model stations by declaring a class Station with the following attributes:

� trains: a set of Oids identifying the trains that are currently at the station.

� passengers: a set representing all the passengers currently at the station.

� passengerSchedule: a list that indicates when di�erent passenger groups come into the station.

� clock: the current time.

84

Consequently, a class SeStation which is a subclass of Station is needed to model the service stations
where cars may be attached and detached. For this class, an extra attribute cars that keeps track of
the station's inventory of unattached cars is vital.

Trains will be modeled by a class Train with these attributes:

� cars: the number of subway cars this train consists of.

� route: a list of stations that make up a route for this train.

� visited: a list of stations visited by the train. (Generally, when a station in the route is visited,
it is removed from the route and put here instead.)

� status: a status indicating the train's current activity, such as traveling to station A
or arrived at station A.

� timer: time left of the train's current task, for instance as the train trudges on its route from A
to B, and the timer indicates a 0, this means the said train has actually arrived at station B.

� passengers: a set of passengers currently in the train.

� activeLO: the subway map as a directed graph as viewed from the train's current orientation.

� passiveLO: a subway map as seen from the train when it switches directions.

The following Priced-Timed Maude speci�cation implements the classes and sorts and model the problem
as described:

The module GRAPH de�nes very simple directed graphs and how to calculate reachability by �nding a
directed path in them.

fmod GRAPH is

sorts Node Edge Graph .

subsort Edge < Graph .

op _->_ : Node Node -> Edge [ctor prec 40].

op nil : -> Graph [ctor].

op _;_ : Graph Graph -> Graph [ctor assoc comm id: nil].

var M N O : Node .

var G : Graph .

op reachable : Graph Node Node -> Bool .

eq reachable(M -> N ; G, M, N) = true .

ceq reachable(M -> O ; G, M, N) = true

if reachable(G, O, N) = true .

eq reachable(G, M, N) = false [owise].

endfm

The module OID-LIST de�nes a datatype for lists of Oids.

(omod OID-LIST is

protecting DEF-OID .

protecting LIST{Oid} * (sort List{Oid} to OidList,

sort NeList{Oid} to NeOidList) .

endom)

The module SUBWAY-LAYOUT de�nes a subway layout as a graph and provides a function to determine
reachability within the layout.

85

(fmod SUBWAY-LAYOUT is

protecting GRAPH .

protecting OID-LIST .

subsort Oid < Node .

var G : Graph .

vars St St' : Oid .

var OL : OidList .

op _reachable`from_in_ : Oid OidList Graph -> Bool .

--- It is clearly sufficient to check the first entry of the route.

--- All the entries after the first are reachable from the first.

--- Thus by transitivity any stations reachable from any stations

--- after the first are reachable from the first.

eq St reachable from St' OL in G =

reachable(G, St':Oid, St:Oid) .

eq St reachable from nil in G = false .

endfm)

The module PASSENGER de�nes the sort PassengerGroup as described above and represents a group of
one or more passengers going to the same location.

(omod PASSENGER is

sort PassengerGroup .

op _going`to_ : NzNat Oid -> PassengerGroup [ctor] .

endom)

(view PassengerGroup from TRIV to PASSENGER is

sort Elt to PassengerGroup .

endv)

Sets of terms of sort PassengerSet are provided by PASSENGER-SET.

(omod PASSENGER-SET is

protecting SET{PassengerGroup} *

(sort Set{PassengerGroup} to PassengerSet,

sort NeSet{PassengerGroup} to NePassengerSet) .

vars PS PS' : PassengerSet .

vars Mz Nz : NzNat .

vars O O' : Oid .

The sumpas operator sums up the total amount of passengers in a set regardless of their destinations.
This is used for calculating how many passengers are on a train.

op sumpas : PassengerSet -> Nat .

eq sumpas(((Mz going to O), (Nz going to O'), PS)) =

Mz + Nz + sumpas(PS) .

eq sumpas(Mz going to O) = Mz .

eq sumpas(empty) = 0 .

86

This module also de�nes simple operations such as addition and subtraction on these sets. If several
groups in the same set are going to the same station, they simply merge and are summed into one group
of passengers � e.g., if we have 2 passengers going to st1 and 1 passenger going to st1 we end up with
3 passengers going to st1.

eq Nz going to O, Mz going to O = (Nz + Mz) going to O .

Removing passengers from a group works in a similar manner: e.g., if we have 3 passengers going to
st1 and 2 to st2 and we wish to remove passengers going to st1, then we can execute the following:
remove (1 going to st1) from ((3 going to st1),(1 going to st2))

op remove_from_ : PassengerSet PassengerSet -> PassengerSet .

eq remove empty from PS = PS .

eq (remove ((Mz going to O),PS) from ((Nz going to O), PS')) =

if Nz == Mz then

empty

else

(sd(Nz, Mz) going to O)

fi

,(remove PS from PS') .

endom)

The module STATION-SCHEDULE-ENTRY de�nes the sort StationScheduleEntry which is a pair of a set
of passengers and a time when they will arrive at a station.

(tomod STATION-SCHEDULE-ENTRY is

protecting PASSENGER-SET .

sort StationScheduleEntry .

op ps : Time PassengerSet -> StationScheduleEntry [ctor] .

endtom)

(view StationScheduleEntry from TRIV to STATION-SCHEDULE-ENTRY is

sort Elt to StationScheduleEntry .

endv)

The module STATION-SCHEDULE extends the functionality of having one set of passengers arrive at a
given time to allow us to have a list of these entries, i.e., di�erent sets of passengers arriving at di�erent
times. This is a list of terms of the sort StationSchedulEntry.

(tomod STATION-SCHEDULE is

protecting LIST{StationScheduleEntry} *

(sort List{StationScheduleEntry} to StationSchedule,

sort NeList{StationScheduleEntry} to NeStationSchedule) .

endtom)

The following module SUBWAY-FUNCTIONS introduces 2 help functions: pickup and dropoff. These are
used when a train picks up or drops o� passengers at a station.

(fmod SUBWAY-FUNCTIONS is

protecting NAT .

protecting OID-LIST .

87

protecting SUBWAY-LAYOUT .

protecting STATION-SCHEDULE .

vars M N : Nat .

vars Mz Nz : NzNat .

vars O O' : Oid .

var OL : OidList .

vars PS PS' : PassengerSet .

var G : Graph .

The function dropoff is in charge of dropping o� passengers at a station and assumes the following
arguments:

� An Oid, the name of the current station.

� An OidSet, the remainder of the train's given route.

� A PassengerSet, the passengers in the train.

� A Graph, the layout of the subway from the train's point of view.

The function will drop o� all passengers that are going to the current station plus all the passengers
going to stations unreachable from the route in the supplied subway layout.

op dropoff : Oid OidList PassengerSet Graph -> PassengerSet .

eq dropoff(O, OL, ((Nz going to O), PS), G) =

(Nz going to O), dropoff(O, OL, PS, G) .

ceq dropoff(O, OL, ((Nz going to O'), PS), G) =

if not (O' reachable from OL in G or (occurs(O',OL))) then

(Nz going to O')

else

empty

fi

, dropoff(O, OL, PS, G)

if O =/= O' .

eq dropoff(O, OL, empty, G) = empty .

The function pickup takes the following arguments:

� A Nat, the number of passengers to be picked up (this may be 0).

� An OidSet, that represents the remainder of the train's route.

� A PassengerSet the passengers on the station.

� A Graph which represents the layout of the subway as seen from the train that calls the pickup
function.

Based on the provided information, the function extracts a subset as close to the given size but not larger
than the actual set of passengers at the station. Only passengers that have reachable destinations based
on the route's layout will be picked for this subset.

op pickup : Nat OidList PassengerSet Graph -> PassengerSet .

eq pickup(Mz, OL, ((Nz going to O), PS), G) =

if (O reachable from OL in G) or (occurs(O,OL)) then

88

if Mz <= Nz then

(Mz going to O)

else

(Nz going to O), pickup(sd(Mz, Nz), OL, PS, G)

fi

else

pickup(Mz, OL, PS, G)

fi .

eq pickup(Mz, OL, empty, G) = empty .

eq pickup(0, OL, PS, G) = empty .

endfm)

The following module contains the de�nitions needed to model trains and stations. In addition, all the
rewrite rules needed to model the problem are found here.

(ptomod SUBWAY is

protecting SUBWAY-FUNCTIONS .

protecting OID-SET .

protecting OID-LIST .

protecting NAT-COST-DOMAIN .

protecting NAT-TIME-DOMAIN-WITH-INF .

The included modules NAT-COST-DOMAIN and NAT-TIME-DOMAIN-WITH-INF set cost and time to run over
the natural numbers.

We start by de�ning the di�erent statuses a subway train may have.

sorts StationAction TrainStatus .

ops attached detached boarded arrived : -> StationAction [ctor] .

op _at`station_ : StationAction Oid -> TrainStatus .

op traveling`to_ : Oid -> TrainStatus .

class Train | cars : NzNat, route : OidList, visited : OidList,

status : TrainStatus, passengers : PassengerSet,

activeLO : Graph, passiveLO : Graph,

timer : TimeInf .

class Station | trains : OidSet,

passengerSchedule : StationSchedule,

passengers : PassengerSet,

clock : Time .

class SeStation | cars : Nat .

subclass SeStation < Station .

op traveltime : Oid Oid -> Time [comm] .

op carcap : -> Nat .

ops attachcost detachcost movingcost : -> Cost .

op cars : Nat -> Nat .

op carcost : -> Cost .

ops allowAttach allowDetach : -> Bool .

vars St St' Tr : Oid .

89

vars Ro Vi : OidList .

var OS : OidSet .

vars R Cl : Time .

var Ti : TimeInf .

vars M N : Nat .

vars Mz Nz Ca : NzNat .

vars PS PS' PS'' ON OFF STAY : PassengerSet .

var SA : StationAction .

var PSc : StationSchedule .

vars AL PL : Graph .

var PrS : PricedSystem .

var SSt : SystemState .

When a train is done traveling from station A to station B, the rule arriveAtStation changes the
train's status from traveling to B to arrived at station B and puts the train's Oid in the set of
trains present at the station. In addition, the current station is removed from the route of the train and
added to the start of the train's visited list.

rl [arriveAtStation] :

< Tr : Train | status : traveling to St, timer : 0,

visited : Vi >

< St : Station | trains : OS >

=>

< Tr : Train | status : arrived at station St,

visited : St Vi >

< St : Station | trains : (OS, Tr) > .

After a train has arrived at a service station one or more (or none) cars may be attached by applying the
rule attachCart. This will attach an extra car provided the station has 1 or more detached cars available.
Attaching cars takes no time but incurs a user-speci�able cost given as the constant attachcost.

crl [attachCart] :

< Tr : Train | status : SA at station St, cars : Ca >

< St : SeStation | cars : Nz >

=>

< Tr : Train | status : attached at station St,

cars : (Ca + 1) >

< St : SeStation | cars : (Nz monus 1) >

with cost attachcost

if allowAttach and

(SA == arrived or SA == attached) .

Now all passengers that wish to disembark at this particular station do so using the function dropoff,
while, at the same time, as many passengers that need to board and for whom the train has room for do
so through the utilization of the function pickup. The amount of passengers that can be picked up is
determined by a train's current capacity: this equals the number of cars multiplied by a user speci�able
constant carcap. This procedure takes no time, neither does it incur any cost.

crl [LoadUnloadPassengers] :

< Tr : Train | status : SA at station St, cars : Ca,

passengers : PS, route : Ro, activeLO : AL >

< St : Station | passengers : PS' >

90

=>

< Tr : Train | status : boarded at station St,

passengers : (STAY, ON) >

< St : Station | passengers : ((remove ON from PS'), OFF) >

if ((SA == arrived) or (SA == attached) or (SA == detached))

/\ (OFF := dropoff(St, Ro, PS, AL)) /\ STAY := (remove OFF from PS)

/\ (ON := pickup(((Ca * carcap) monus sumpas(STAY)), Ro, PS', AL)) .

After boarding is completed and if this is a service station one or more cars may be detached to save
power. Provided, there are empty cars and the train consists of at least 2 cars. Detaching cars does not
take time, but a user speci�able cost given by the constant detachcost is incurred.

crl [detachCart] :

< Tr : Train | status : SA at station St, cars : Ca,

passengers : PS >

< St : SeStation | cars : N >

=>

< Tr : Train | status : detached at station St,

cars : (Ca monus 1) >

< St : SeStation | cars : (N + 1) >

with cost detachcost

if allowDetach and Ca >= 2 and (cars(sumpas(PS)) < Ca)

and (SA == boarded or SA == detached) .

Now that the train is set to pull out from a station, the rule [trainDepart] makes sure that the said
train starts traveling towards the next station in its route. Assuming the next station in this train's route
is C, C is removed from the train's route, then the status traveling to C is set in the train's status
attribute. Furthermore, the departing train's timer is set using the appropriate travel time between the
current station and the next.

crl [trainDepart] :

< Tr : Train | status : SA at station St, route : St' Ro >

< St : Station | trains : (OS, Tr) >

=>

< Tr : Train | status : traveling to St',

timer : traveltime(St,St'), route : Ro >

< St : Station | trains : OS >

if SA == boarded or SA == detached .

The rule tick is a fairly standard Priced-Timed Maude tick rule, using mte to determine how much time
can pass, delta to make time pass in the system, and rate to determine the cost per time unit elapsed.

crl [tick] :

{SSt} => {delta(SSt, R)} in time R with cost (rate(SSt) * R)

if R <= mte(SSt) [nonexec] .

The function delta updates clocks for stations (stations are otherwise una�ected by the �ow of time).
mte ensures that time does not lapse past any moment passengers are scheduled to arrive.

eq delta(< St : Station | clock : Cl >, R)

=

< St : Station | clock : Cl + R > .

91

For trains, mte is set up to prevent trains from overshooting their destination by reading out the timer
of each train. When time passes delta, updates the timer on every train. The rate of a train is the
number of cars multiplied by a user speci�able constant movingcost

eq mte(< St : Station | passengerSchedule : nil >) = INF .

eq mte(< St : Station | clock : R, passengerSchedule : ps(Cl, PS) PSc >) = Cl monus R .

eq rate(< St : Station | >) = 0 .

--- Trains are affected by the elapse of time.

--- The rate dependant on the number of cars

eq mte(< Tr : Train | timer : Ti >) = Ti .

eq delta(< Tr : Train | timer : Ti >, R)

=

< Tr : Train | timer : (Ti monus R) > .

eq rate(< Tr : Train | cars : Ca >) = Ca * movingcost .

When passengers are due to arrive at a station they are automatically removed from the passengerSchedule
attribute and moved into the station.

eq < St : Station | clock : Cl, passengers : PS,

passengerSchedule : ps(Cl,PS') PSc >

=

< St : Station | clock : Cl, passengers : (PS, PS'),

passengerSchedule : PSc > .

The function cars determines how many cars are needed for a given amount of passengers.

eq cars(N) = N quo carcap +

if N rem carcap =/= 0 then 1 else 0 fi .

When a train has reached the end of its route (i.e. the route attribute is nil), the route and visited lists
are switched, therefore making the train travel its previous route in reverse order.

eq < Tr : Train | status : SA at station St, visited : St Vi,

route : nil, activeLO : AL, passiveLO : PL > =

< Tr : Train | visited : St, route : Vi, activeLO : PL,

passiveLO : AL > .

Finally, when passengers arrive at their destination station, they are removed from the system.

eq < St : Station | passengers : ((Nz going to St), PS) >

=

< St : Station | passengers : PS > .

endptom)

Subway Execution and Analysis

We now show how to obtain the earliest and least power consuming state in which all passengers have
reached their destination for the subway network depicted in Figure 7.1. Two trains will be servicing
the routes covering all the stations. A �rst train denoted t1 will cover st1, st2, st3 and st4, i.e., route
1a/b shown in Figure 7.2 while a second train t2 will cover the stations st5, st3 and st6, i.e., route
2a/b shown in 7.3.

92

De�ning an Initial State

The following module de�nes the subway map, travel times, routes, and the relative layouts shown in
�gures 7.1, 7.2, and 7.3. In addition, a suitable initial state with two trains, traveling towards the end
stations and some passengers scheduled to arrive at station st2 is de�ned:

(ptomod SUBWAY-TEST is

protecting SUBWAY .

protecting STRING .

subsort String < Oid .

ops t1 t2 : -> Configuration .

ops st1 st2 st3 st4 st5 st6 : -> Configuration .

ops s1 s2 s3 s4 s5 s6 : -> Oid .

ops init1 : -> GlobalSystem .

eq s1 = "st1" .

eq s2 = "st2" .

eq s3 = "st3" .

eq s4 = "st4" .

eq s5 = "st5" .

eq s6 = "st6" .

The equations for traveltime de�ne the time needed for travel between pairs of stations as shown in
Figure 7.1.

eq traveltime("st1", "st2") = 2 .

eq traveltime("st2", "st3") = 3 .

eq traveltime("st3", "st4") = 3 .

eq traveltime("st3", "st5") = 1 .

eq traveltime("st3", "st6") = 4 .

The graph rout1a represents the graph seen in Figure 7.2 part a. Likewise, route1b represents the route
seen in the same �gure except part c. The graph l1uc is the part of the subway map that is not covered
by either of the two routes. When we combine the graphs rout1a and l1uc we get the relative layout
seen in as Figure 7.2 part b. On the other hand combining rout1b and l1uc gives us the layout seen as
part d of the same �gure. The other graphs combine in a similar manner and all relate to Figure 7.2.

ops route1a route1b route2a route2b l1uc l2uc : -> Graph .

eq route1a = s1 -> s2 ; s2 -> s3 ; s3 -> s4 .

eq route1b = s4 -> s3 ; s3 -> s2 ; s2 -> s1 .

eq l1uc = s3 -> s5 ; s3 -> s6 .

eq route2a = s5 -> s3 ; s3 -> s6 .

eq route2b = s6 -> s3 ; s3 -> s5 .

eq l2uc = s3 -> s4 ; s3 -> s2 ; s2 -> s1 .

The following equations de�ne the user speci�able parts of the system such as the capacity of each car,
the power cost of moving each car, etc.

eq carcap = 10 . --- passenger capacity of each car

eq attachcost = 5 . --- cost of attaching new car

93

eq detachcost = 4 . --- cost of detaching a car

eq movingcost = 3 . --- cost of movement per car

eq allowAttach = false . --- disallow attaching new cars

eq allowDetach = false . --- disallow detaching cars

eq t1 = < "t1" : Train | cars : 3,

route : s2 s3 s4,

visited : nil,

status : traveling to s1,

timer : 0,

passengers : empty,

activeLO : route1a ; l1uc,

passiveLO : route1b ; l1uc > .

eq t2 = < "t2" : Train | cars : 3,

route : s3 s6,

visited : nil,

status : traveling to s5,

timer : 0,

passengers : empty,

activeLO : route2a ; l2uc,

passiveLO : route2b ; l2uc > .

eq st1 = < s1 : Station | trains : empty,

passengers : empty,

passengerSchedule : nil,

clock : 0 > .

eq st2 = < s2 : Station | trains : empty,

passengers : empty,

passengerSchedule :

ps(2,(11 going to s1,

1 going to s3,

1 going to s5,

2 going to s6))

ps(7,(2 going to s1,

5 going to s3,

7 going to s4,

4 going to s5)),

clock : 0 > .

eq st3 = < s3 : SeStation | trains : empty,

cars : 1,

passengers : empty,

passengerSchedule : nil,

clock : 0 > .

eq st4 = < s4 : Station | trains : empty,

passengers : empty,

passengerSchedule : nil,

clock : 0 > .

94

eq st5 = < s5 : Station | trains : empty,

passengers : empty,

passengerSchedule : nil,

clock : 0 > .

eq st6 = < s6 : Station | trains : empty,

passengers : 1 going to s1,

passengerSchedule : nil,

clock : 0 > .

eq init1 = t1 t2 st1 st2 st3 st4 st5 st6 .

endptom)

We see from the module above that both trains are traveling towards the �rst station in their route.
Furthermore, only the stations st2 and st6 will have any passengers. The station st6 starts o� with a
passenger that wants to go to st1. On the other hand, the station st2 does not start with any passengers,
but some are scheduled to arrive at time 2 and 7.

Finding Earliest and Cheapest Solutions

We may want to know the earliest time at which all passengers have arrived at their respective destina-
tions. The command priced find earliest can be used for this task:

Maude> (priced find earliest init1 =>*

{< "t1" : Train | passengers : empty >

< "t2" : Train | passengers : empty >

< "st1" : Station | passengers : empty >

< "st2" : Station | passengers : empty >

< "st3" : Station | passengers : empty >

< "st4" : Station | passengers : empty >

< "st5" : Station | passengers : empty >

< "st6" : Station | passengers : empty >} with not cost limit.)

Result:

{...} in time 28 with cost 504

This shows us that the earliest a state satisfying these conditions can be reached is at time 28.

Next we calculate the optimal amount of power consumed for bringing all passengers to their destinations
by running the following search command:

Maude> (find cheapest init1 =>*

{< "t1" : Train | passengers : empty >

< "t2" : Train | passengers : empty >

< "st1" : Station | passengers : empty >

< "st2" : Station | passengers : empty >

< "st3" : Station | passengers : empty >

< "st4" : Station | passengers : empty >

< "st5" : Station | passengers : empty >

< "st6" : Station | passengers : empty >} with no time limit .)

Solution

....

TIME_ELAPSED:Time --> 28 ; TOTAL_COST_INCURRED:Cost --> 504

95

This shows us that the cheapest state when all passengers have reached their destinations is also the
earliest state at time 28 with 504 units of power consumed.

Do Passengers Travel in The Right Direction?

We now go back to Example 7.3.1, where a lone commuter is waiting at station st2 for a train to take
him to st4. We now wish to determine the possibility of him getting lost on the way to his planned
destination and determine if he can end up disembarking at any other station than st2 or st4. for this
situation, we de�ne a suitable initial state where this passenger is the only one there is. For convenience,
we list only the changes to the original initial state given the foregoing parameters and switch out the
de�nition of station st2 with the following:

eq st2 = < s2 : Station | trains : empty,

passengers : 1 going to "st4",

passengerSchedule : nil,

clock : 0 > .

Since this system is non terminating, or has a �nite state space, we have to settle with checking whether
the passenger can end up at st4 within some reasonable time limit (in this instance, time 30). By
performing the following timed search command, we can compute if this is possible:

Maude> (ptsearch [1] init1 =>*

{S:SystemState

< O:Oid : Station | passengers : 1 going to "st4" >}

such that

O:Oid =/= "st2" and O:Oid =/= "st4"

in time <= 30 with no cost limit.)

No solution

This tells us that in time 30, our passenger will not veer o� his intended course.

96

Chapter 8

Comparing Uppaal CORA with

Priced-Timed Maude

Price-timed systems are often speci�ed and analyzed using priced-timed automata (PTA) [13]. The tool
Uppaal CORA [10] uses PTAs to model and analyze such systems. Uppaal CORA is a priced extension
of the timed automaton (TA) [25] analysis tool Uppaal [11].

Section 8.1 gives an introduction to priced-timed automata with some simple examples. Section 8.2 shows
how to specify PTA as priced-timed rewrite theories. Section 8.3 gives a short overview of Uppaal
CORA. Section 8.4 gives an example of how to specify the ETGS examples given as a Priced-Time
Maude speci�cation in Section 7.2. Finally, Section 8.5 gives a comparison between Uppaal CORA and
Priced-Timed Maude running a set of ETGS speci�cations on both.

8.1 A Short Overview of Priced-Timed Automata

This section de�nes some basics of PTAs and gives a simple PTA example.

8.1.1 Priced-Timed Automata

The PTA formalism is a fairly straightforward extension of timed automata (TA), where costs have been
added to locations (delay cost) and edges (switch cost). In other words, a PTA can be seen as a graph
with an associated set of clocks, where there is a cost associated with staying at a node in the graph
over time and a cost associated with following an edge. Edges may be associated with conditions on the
clocks and trigger clock resets.

De�nition 8.1.1 (Priced-timed automata [13]) Let X be a �nite set of clocks; β(X) the set of linear
constraints over X of the form xi ./ n, where xi ∈ X, n ∈ N and ./ ∈ {<,≤,=,≥, >}; and β∗(X) ⊆ β(X)
such that ./ ∈ {<,≤}. Then a PTA over the set of clocks X is a 6-tuple A = (L, l0, Act, E, I,P) where:

� L is a �nite set of locations.

� l0 ∈ L is the initial location.

� Act is a �nite set of actions.

� E ⊆ L×β(X)×Act×2X×L is a set of edges. An edge (l, g, a, λ, l′) intuitively denotes a transition
from l to l′ using action a; this transition also resets the clocks in λ to 0 and can only be taken if
the guard g holds.

� I : L→ β∗(X) assigns invariants to locations.

97

� P : (L ∪ E) → N assigns costs to locations and edges.

A state is de�ned as a tuple (l, u) where l is a location and u is a clock valuation. A special state is the
initial state (l0, u0) where the PTA is in the initial location with all clocks set to zero. Transitions in a
PTA can either follow an edge or wait at the current location for some time:

De�nition 8.1.2 (Transitions) There are two possible types of transitions in a PTA: delay transitions
and switch transitions. A delay transition is de�ned as waiting for some time d in a location l. The cost
associated with waiting is the location cost multiplied by the time d spent waiting. A delay transition is
de�ned as follows:

(1) (l, u)
d,p−→ (l, u+ d) if (∀0 ≤ d′ ≤ d), u+ d′ satis�es I(l) and the cost p = d · P(l)

where u+ d′ = (x1 + d′, . . . , xn + d′), i.e., adding the elapsed time d′ to all clocks. Switch is the action of
going from a location l to a location l′ (where l and l′ may be the same location) by following an edge; this
can only be done if the constraints (guards) of the edge are satis�ed. This will trigger whatever actions
are associated with that edge, such as clock resets. The cost p of an edge transition is simply the cost
associated with the edge. An edge transition is de�ned as follows:

(2) (l, u)
a,p−→ (l′, u′) if e = (l, g, a, r, l′) ∈ E, u ∈ g, u′ = u[r → 0] and cost p = P(e)

Notation: Looking at Figure 8.1 it is easy to sort out all the components. But to be able to avoid
descriptions like the edge that goes from a to b and location a of PTA A some notation is needed:

� When talking about an edge going from a location l to a location l′ we may refer to this edge as
el,l′ . If an edge goes from a numbered location sn to another numbered location sm we may also
refer to this edge as en,m. Likewise, if the action of an edge is not given explicitly, we write el,l′

as the action.

� When referring to a component of a PTA, we use PTA-name.c to refer to one of its components
c, much like when referring to a member of objects in for instance java. For instance, the edge e0.1

of A in Example 8.1.3 would be A.e0,1 likewise the location s0 of the same PTA A.s0. When no
ambiguity exists, we can drop the 'PTA-name.' part.

Example 8.1.3 (PTA A) Figure 8.1 shows the PTA A with clocks x and y with locations {s0, s1, s2},
initial location s0, and edges e0,1, e0,2 , and e2,1. Location e0 is the initial location and has rate 2, s1
has cost rate 2 while s2 has cost rate 1 and has an invariant y ≤ 4. The edge e0,1 costs 5 to take, resets
clock y, and cannot be taken unless clock x is greater than 3.

8.1.2 Runs, Optimal Runs, and the Mincost Reachability Problem

This section introduces the concept of a run of a PTA. A run can be seen as a sequence of transitions
from the initial state (l0, u0). The cost of a run is the sum of the cost of the transitions.

Example 8.1.4 (Run) A run in the PTA in Figure 8.1 could go as follows: (s0, (0, 0))
4,8−→ (s0, (4, 4))

e0,1,5−→
(s1, (4, 0)). The cost of the run is 8 + 5 = 13.

A minimum cost run is the cheapest possible run from the initial state to a goal state. A goal state is
simply a state that satis�es some properties that we can de�ne ourselves. In the following example, we
de�ne the goal state to be any state where s1 is the location part of the state:

Example 8.1.5 (Optimal run) The PTA A may have many optimal runs, one obvious optimal run

from s0 to s1 is (s0, (0, 0))
2,4−→ (s0, (2, 2))

e0,2,1−→ (s2, (0, 2))
e2,1,2−→ (s1, (0, 2)). The cost of this run is 7.

98

WVUTPQRSONMLHIJKs0
x > 3
y := 0
cost := 5

��?
??

??
??

??
??

??
??

??
??

y ≥ 2
x := 0

cost := 1
��

cost' := 2

_^]\XYZ[s2
y ≤ 4

cost' := 1
x < 3
cost := 2

//_^]\XYZ[s1
cost' := 2

Figure 8.1: The PTA A from Example 8.1.3

8.2 Priced-Timed Automata as Priced-Timed Rewrite Theories

This section shows that any PTA can be translated into a priced-timed rewrite theory. Therefore, PTAs
can be seen as a special case of priced-timed rewrite theories. The translation extends the translation of
timed automata into real-time rewrite theories given in [20].

In the rest of this section we will assume that the set of clocks in X are ordered as x1, . . . , xn. A
PTA A = (L, l0, Act, E, I,P) over a set of clocks X as described in De�nition 8.1.1 is represented by a
priced-timed rewrite theory ψPTA(A) = ((ΣA, EA, LA, RA), ϕA, κA, φA, τA) as follows:

� (ΣA, EA) contains an equational axiomatization of the time domain and cost domain1. Fur-
thermore, the signature ΣA contains a sort Location with a constant l of sort Location for each
l ∈ L, a sort PTAState with a (n + 1)-ary operator _,_,...,_ : Location Time ... Time →
PTAState, and a subsort declaration PTAState < SystemState.

� The set LA of labels is the set Act of actions and one label for each delay transition tickl for each
l ∈ L.

� For each e = (l, g, a, r, l′) in E there is a rewrite rule:

[a] : {l, x1, . . . , xn}
P(el,l′)−−−−−→ {l′, t1, . . . , tn} if g(X)

where ti = 0 if xi ∈ r (the PTA's clock reset function) otherwise ti = xi.

� In addition, RA contains a tick rule

[tickl] : {l, x1, . . . , xn}
yr,P(l)∗yr−−−−−−−→ {l, x1 + yr, . . . , xn + yr} if I(l(X))

for each location l in A.

Any state (l, u) in A is represented as a tuple {l, U} in ψPTA(A) where U is an n-tuple u1, . . . , un of
time values of sort Time.

Example 8.2.1 (Translating a PTA) The PTA of Figure 8.1 can be represented by the following
priced-timed rewrite theory ψPTA(A): A set of locations: s0, s1, and s2. The initial state is {s0, 0, 0}.
The next 3 rewrite rules represent the edges:

1As R+ cannot be de�ned as a computable data type, we must use other time and cost domains such as Q+

or N+ that have �nite axiomatizations.

99

[e0,1] : {s0, x, y}
5−→ {s1, x, 0} if x > 3

[e0,2] : {s0, x, y}
1−→ {s2, 0, y} if y ≥ 2

[e2,1] : {s2, x, y}
2−→ {s1, x, y} if x < 3

The following 3 rewrite rules represent waiting in each of the locations of the PTA:

[ticks0] : {s0, x, y}
z,2−→ {s0, x+ z, y + z}

[ricks1] : {s1, x, y}
z,2−→ {s1, x+ z, y + z}

[ticks2] : {s1, x, y}
z,1−→ {s2, x+ z, y + z}

Translating the PTA A into Priced-Timed Maude is now trivial:

(ptmod PTA-A is

protecting POSRAT-TIME-DOMAIN .

protecting POSRAT-COST-DOMAIN .

sort Location PTAState .

subsort PTAState < SystemState .

ops s0 s1 s2 : -> Location .

op _,_,_ : Location Time Time -> PTAState .

vars X Y R : Time .

crl [e01] : {s0, X, Y} => {s1, X, 0} with cost 5 if X > 3 .

crl [e02] : {s0, X, Y} => {s2, 0, Y} with cost 1 if Y <= 2 .

crl [e21] : {s2, X, Y} => {s1, X, Y} with cost 2 if X < 3 .

rl [tick-s0] : {s0, X, Y} => {s0, X + R, Y + R} in time R with cost R * 2 .

rl [tick-s1] : {s1, X, Y} => {s1, X + R, Y + R} in time R with cost R * 2 .

rl [tick-s2] : {s2, X, Y} => {s2, X + R, Y + R} in time R with cost R .

endptm)

It is easy to see that α is a run in a PTA A if and only if ψPTA(α)2 is a run in ψPTA(A). A proof sketch
for this is given in [20] for timed automata and real-time rewrite theories and can be easily extended
our case. This means that priced-timed rewrite theories are not at least as expressive as priced-time
automata.

8.3 A Short Overview of Uppaal CORA

The tool Uppaal CORA [10] is an extension of Uppaal that supports PTA with some extensions.
Section 8.3.1 discusses the extensions Uppaal CORA makes to PTA, while Section 8.3.2 gives a short
overview of Uppaal CORA speci�cations. Section 8.4 gives an Uppaal CORA speci�cation of the
ETGS problem presented in Section 7.2.1.

2The corresponding sequence of transitions in the translation ψPTA(A) of the PTA A.

100

8.3.1 Extensions to PTA

This section gives an overview of some useful extensions that Uppaal CORA adds to the PTA model.
There are two extensions of particular interest to us: binary synchronization channels and shared vari-
ables. These extensions are implied in [13], in particular when discussing making networks of PTAs to
model the ETGS problem.

Shared variables are places to store data, for instance, an integer or an array of integers. These variables
may be used for the following purposes:

� Invariants on locations may evaluate any variable.

� Constraints (guards) on the edges may also include evaluating variables.

� Actions on edges are extended to allow assignment of variables.

For instance, we can have a variable n and require n to be 5 in addition to some time constraint for a
speci�c edge to be taken. Variables are limited to types prede�ned by Uppaal CORA, such as integers
or characters. Arrays of shared variables may also be declared.

Binary synchronization channels are used as signals that trigger a transition for networked PTA. The
label of a signal followed by ! is used to raise a signal while edges waiting on a signal use the label
followed by ?. The following shows how this is done with a synchronization channel named signal:

� An edge transition with signal? will wait for signal to be raised. This can be seen as a constraint
that can only be met by some other automata doing a signal!.

� An edge transition with signal! will raise the channel signal. This will in turn force one edge
containing signal? to be taken. Note that this is something that happens simultaneously, i.e., in
one step in the PTA.

To be able to talk meaningfully about a networked PTA, we need some notation:

� A network AN is the product of all its components i.e.: AN = A1 × . . . × An. In particular, a
location l in AN is an element of A1.L× . . .×An.L.

� In addition, the transitions from de�nition 8.1.2 need to be extended to consider transitions taken
by the whole network from one state to the next. Consider the transition (li, ui)

ai,pi−→ (lj , uj). The
locations li and lj need to be in the product of the locations; ai is an ordered vector of the actions
taken in each of the PTAs of AN ; pi should be the total cost of these actions; and ui, uj are
valuations on the union of all the clocks of AN .

Example 8.3.1 Consider the network AN = A1 ×A2 consisting of the 2 PTAs in Figure 8.2, with the
initial location l0 = {A1.s0,A2.s0}. Here A1 is set up to start A2 then wait for the latter to �nish before
terminating itself. A2, on the other hand, is set up to wait for A1 to initiate it, run for 5 time units and
tell A1 that it is done.

1. A1.e0,1 raises the signal on that tells A2 when it is not already active.

2. A1.e1,2 waits for the signal off to be raised by A2.

3. A2.e0,1 may be triggered by the signal on from A1, when this happens the variable active is set to
1.

4. A2.e1,0 can be taken when only after 5 units of time has passed, it raises the signal off and sets
active to 0.

Example 8.3.2 (A run in AN) A typical run α in AN would consist of A1 taking edge e0,1 at A1.c
= 0, forcing the edge A2.e0,1 to be taken, then waiting for 5 time units on A2 to switch o� at A1.c = 5
for an accumulated cost of 26.

101

WVUTPQRSONMLHIJKs0

on! active==0

��

WVUTPQRSONMLHIJKs0
%

on?, c := 0,
active := 1, cost := 1

�

LL

off!, c == 5,
active := 0

$

_^]\XYZ[s1

off?

��

_^]\XYZ[s1
cost' == 5

_^]\XYZ[s2

Figure 8.2: The network of 2 PTAs A1 (left) and A2 (right) described in Example 8.3.1, A1

switches A2 and waits for A2 to �nish.

8.3.2 Uppaal CORA Speci�cations

This section covers the parts of Uppaal CORA's speci�cation language needed to read and understand
the example of the ETGS problem in the next section. This is in no way meant as a thorough introduction
to Uppaal CORA's speci�cation language.

Uppaal CORA provides the user with a graphical interface to specify PTAs with the extensions given
in the previous section. In our example, we will be using only 3 of the speci�cation options: global
declarations, templates, and system declarations.

Global Declarations

Global declarations are just what they sound like: constants and variables available to the whole system.
We mainly use this section to declare constants for better readability of the speci�cation and some arrays
to organize data related to our tasks and processors.

A constant is declared in a straightforward way:

const datatype name = value;

where datatype is one of the built-in Uppaal datatypes such as bool or int. Variables are declared
similarly without the equality sign and the const keyword.

Arrays are declared in the same way constants and variables are declared with additional size of each
dimension given like the following:

datatype name[size1]...[sizen];

102

Name: P, Parameters: const int sw, const int wt

WVUTPQRSONMLHIJKs0
cost' == 1 x ≥ 3

cost+ = sw

//_^]\XYZ[s1
cost' == wt

Figure 8.3: A template with the parameters sw and wt.

Templates

The template part of Uppaal CORA is where PTAs are speci�ed, i.e., the graphs representing them
consist of locations, with invariants and rates; and edges with clock resets, variable and cost assignments
and guards. Templates are like classes and are parametrized PTAs. We use these to avoid building a new
PTA for every task and processor. When building a template, a name and parameters must be chosen.
The parameters are declarations of local constants that are used in invariants, guards, assignments, and
synchronization in the template.

Guards are conjunctions and disjunctions of boolean expressions of the form a ./ b, where a is a clock
or a variable, b is a value, and ./ is one of the comparison operators: <, ≤, ==, ≥, > or 6=. Multiple
boolean expressions may be linked with the logical operators and and or. No guard may refer to the
global cost or time.

Assignments may be clock resets that set any number of clocks to a non-negative integer including 0 as
well as assign values to any number of variables or a speci�c cost for traversing an edge. Assignments
are of the form x ?= a where x is a variable, a clock or cost and a is some constant and ? may be

� +, :, − or ∗ for variables.

� : for clocks.

� + for cost.

Multiple assignments can be accomplished by separating them with commas.

Synchronization may be done using binary synchronization channels on edges as described in the previous
section. Uppaal CORA supports synchronization on pairs of channels only, i.e., one chan! signal may
trigger only one edge with a corresponding chan? even though there may be more edges waiting for the
same signal.

Invariants are conjunctions of expressions to be evaluated on each location, like guards on edges. In
addition, invariants are used to assign a rate to a location with an expression of the following form: cost′

== c. The same operators and expressions used to build guards are used to build invariants. A location
that does not satisfy its invariant is de�ned not to exist. This fact is used in 2 ways: �rst, when de�ning
a rate of a location it is done as an invariant on the �rst order derivate of cost ensuring that locations
exist with this rate; second, as time limits on reaching a location, if a location has an invariant of a clock
it cannot be reached when the invariant is not satis�ed as it does not exist.

Even though both cost and time runs over R+, all guards, invariants, and assignments of a clock must
be an integer expression. Furthermore, assignment of rate on locations and cost on edges must also be
integer expressions.

Figure 8.3 shows a template where the switch cost of the edge and the delay cost of the second location
is parametrized. In the next section, we will explain how to instantiate a template.

103

System Declarations

System declarations are used to instantiate templates and de�ne an initial state. This is similar to de�n-
ing initial states in Priced-Timed Maude. When instantiating a template, we write: instanceName =

templateName(param1, . . . , paramn) We can make an instance test_P of Figure 8.3 with the declara-
tion test_P = P(1, 3).

The following declaration is used to de�ne an initial state:

system instanceName1, . . . , instanceNamen;

8.3.3 Solving Minimum Cost Reachability Using Uppaal CORA

Uppaal CORA solves the minimum cost reachability problem by internally reducing a PTA to priced
zones [10]. Priced zones can be used to reduce an unlimited set of states to a set of states within a
limited set of time constraints that share the same linear expression for rate. Linear programs can now
be solved to determine which is the cheapest way to traverse a zone. This helps reduce an automaton
with an unlimited set of states into a new automaton with a limited set of states. This new automaton
is a quotient automaton with the priced zones as locations.

Uppaal CORA uses a branching and bounding3 algorithm to determine the best path through the
quotient automata from the starting location to a goal location, which satis�es some desired criteria.

An estimate of the running time of the resulting algorithm solving the minimum cost reachability problem
for the PTA A with the quotient automaton Q is as follows: n(Z)∗c2 where n(Z) is the number of priced
zones, i.e., locations in Q, the size of this number depends on how A can be reduced to zones but is
generally a linear function of the clock constraints and locations of A. The variable c is the number of
clock constraints on each priced zone in A. For each priced zone a linear program has to be solved over
the clock constraints to �nd the cheapest possible way to traverse a zone. The simplex algorithm is used
for solving these linear programs, this algorithm has running time of O(2n) (often in practical examples
it has been shown to run in O(n ∗ log(n))). This estimate is based on the algorithm presented in [10].

8.4 Example: Modeling ETGS in Uppaal CORA

To contrast how the ETGS problem is modeled using Priced-Timed Maude and Uppaal CORA, this
section shows how the ETGS problem may be modeled using Uppaal CORA. The speci�cations and
techniques used for further testing are based on the PTA speci�cation techniques given in [13]. The
techniques from [13] are modi�ed with regard to making the templates for tasks more �exible so that
each task does not need its own template. We use the ETGS from Example 7.2.3, with three tasks, two
processors, and one bus.

We de�ne one template for processors and one for tasks. Each processor and the bus4 are instantiated
with the processor template using their distinct properties as arguments. Each of the tasks, on the other
hand, is instantiated with the task template with the individual task's data as arguments. In order to
accomplish this, we store all the information relevant to processor power consumption in two arrays that
are named pi and tau. Task execution and broadcast times are stored in a third array called delta.
The speci�cation contains the following elements:

� 2 PTA templates: one for tasks and one for processors.

3Branch and bound [26] is a general algorithm for �nding optimal solutions of various optimization problems.
It consists of a systematic enumeration of all candidate solutions, where branches of the search tree that contain
fruitless candidates are eliminated, by using upper and lower estimated bounds of the quantity being optimized.
The e�ciency of a branch and bound algorithm depends heavily on the bounding function.

4The bus works exactly like a processor, but with di�erent name for broadcast time, i.e. κ for broadcast time
instead of δ for running time.

104

� A vector act of 3 booleans keeping track of the active status of the bus and the two processors.

� A vector d of 3 keeping track of the current remaining run time for a task on a processor or bus
(this cannot be stored with each processor).

� Vectors pi and tau of 3 integers each, keeping track of the idle and active rates of the bus and the
processors.

� A 3 by 3 array res keeping track of which processor knows the result of what task.

� A 3 by 3 array delta keeping track of the running times of each task on each processor and the
bus.

� A 3 by 2 array pre holding the predecessor information for each task.

� An array pbus containing the signals for each processor and the bus.

Note that all the above arrays and vectors need to be global as otherwise networked PTAs may not
manipulate them. This means that almost all data is stored in global variables and nothing is passed
between PTAs in a way one would expect it to be in an object-oriented system.

8.4.1 Global Declarations

The following Uppaal CORA speci�cation models the ETGS problem in Example 7.2.3: We start by
declaring some constants that state how many tasks and processors are running in the system. These
will be used when declaring the di�erent arrays later on.

const int tasks = 3;

const int procs = 2;

The next constants are used to make the speci�cation more readable: they give the subscripts of the
bus, the processors, and the di�erent tasks in the arrays relevant to them, e.g., typing arrayName[p1]

is the same as typing arrayName[1].

const int bus = 0; const int t1 = 0;

const int p1 = 1; const int t2 = 1;

const int p2 = 2; const int t3 = 2;

The act array keeps track of which processors are currently active, the element with subscript 0 of this
array is the bus.

bool act[procs + 1];

The d array keeps track of remaining execution times on the di�erent processors. The element with
subscript 0 of this array is the bus and denotes remaining broadcast time for the task currently being
broadcast on the bus.

int d[procs + 1];

The res array keeps track of which processors know the result of which tasks, e.g., res[p1][t1] :=

true means the processor p1 knows the result of task t1.

bool res[procs + 1][tasks];

105

The next array pbus is that of synchronization channels. These signals are used to activate processors
and the bus that a task is done processing or broadcasting from a processor or bus.

chan pbus[procs + 1];

The next two arrays pi and tau give the active and idle rates of the bus and the processors, e.g., tau[bus]
equals 11, this tells us the active rate of the bus is 11.

const int pi[procs + 1] = 11,5,4;

const int tau[procs + 1] = 1,1,1;

The array delta holds information about running time for each task on each processor, the �rst column
denotes broadcast times, the second running times on p1, and the third denotes running times on p2.
The constant na means the task cannot run on the relevant processor, e.g., from the array we see thatt1
cannot be run on p2. In the code below we use comments that start with // and comment out the rest
of the line to make the code more readable.

const int na = -1;

const int delta[tasks][procs +1] = {{ 7, 1, na}, //t1

{ 5, na, 2}, //t2

{ 6, 5, 4}}; //t3

The array pre gives the dependencies of a task, e.g., task t1 depends on the results of no other tasks
while the task t3 depends on the result of both t1 and t2.

const int none = -1;

const int pre[tasks][2] = {{none, none}, //t1

{none, none}, //t2

{ t1, t2}}; //t3

We de�ne a global clock systemClock. This clock is used to make sure the deadline on a schedule is
satis�ed.

clock systemClock;

Finally, the global deadline for a feasible schedule is given as the constant dl.

const in dl = 12;

8.4.2 The Processor Template

The processor/bus automaton template is shown in Figure . The top part shows the name and the
parameters for this template. The parameters are to be used as follows:

� p is the identi�er for this processor, i.e., bus, p1, or p2.

� tau is the idle rate of the processor, this is looked up in the array tau on instantiation of the
template, e.g., for the bus this is tau[bus].

� pi this is the active rate of the processor.

106

Name: processor

Parameters: const int p, const int tau,
const int pi

WVUTPQRSONMLHIJKs0
%

pbus[p]?
c := 0,

act[p] := true
�

LL

pbus[p]!
c == d[p],
act[p] := false

$

cost′==tau

_^]\XYZ[s1
cost′==pi

c≤d[p]

Figure 8.4: Template for processor/bus automata.

In addition to the parameters of the template, a local clock c is declared. If we want to use this template
to instantiate our bus we can use the following declaration: proc_bus = processor(bus, tau[bus],

pi[bus]), the resulting PTA proc_bus will now have the properties of the bus with active rate 11 and
idle rate 1.

We will now look at how exactly this automata works. The automaton consists of 2 locations: the initial
location s0 the idle an state of the processor and s1 the active state of the processor. In addition, there
are two edges: e0,1 activates the processor and starts processing the current task and e1,0 deactivates
the processor when the current task is �nished.

The processor may stay in the idle state inde�nitely and incur cost at a rate equal to the tau parameter.
However, when a task raises the processors synchronization signal, this activates the processor and makes
it traverse the edge e0,1. For instance, some task may raise the signal pbus[p1]!, forcing the automaton
representing p1 to take the edge e0,1.

When the edge e0,1 is traversed, the internal clock c is set to 0 and the appropriate record in the act

array is set to true, �agging the processor as active. For example, if p1 is activated, its clock is set to 0
and act[p1] := true.

From here the automaton switches to the location s1, its active state. Once the automaton is in this
state, it must stay there until its internal clock reaches the running time of the task that started it.
At the same time, cost is incurred at the rate given by the parameter pi. For instance, if this is the
automaton representing p1 and it was started by task1 it would have to stay in the active state for
delta[t1][p1] (1) time units while adding 5 cost to the system every time unit.

Once the automaton is done with running its current task, it switches to the edge e1,0 where the act

record for the processor is set to falseindicating the processor is inactive. Furthermore, a signal is sent
back to the task that started the processor to indicate that the processing is complete. For instance, if
p1 is done processing the task t1, the signal pbus[p1]! is raised and act[p1] is set to false.

Finally, the automaton reverts to the idle state, s0 where it may stay until it is signaled to start again.

8.4.3 The Task Template

The task template is named task2 and is shown in Figure 8.5. The parameters for a task automaton
are as follows:

� task: this is the name of the task, i.e., t1, t2, or t3.

� pre1 and pre2 are names of tasks the task depends on, e.g., task t3 depends on t1 and t2. If a
task depends on 1 or 0 other tasks, one or both of these will be the value none.

107

� delta1 and delta2 is the running time on p1 and p2, e.g., the task t1 has running time 1 on p1

and cannot run on p2, therefore, delta1 for t1 is 1 and delta2 is na. delta1 and delta2 are
looked up in the array delta upon instantiation, i.e., t1's delta1 and delta2 are delta[t1][p1]
and delta[t1][p2].

� kappa: this is the time required to broadcast the task on the bus.

This template is built for up to 2 processors (indicated by the name task2) and check on up to 2
predecessors. It has 6 locations and 6 edges: s0 is the initial location where a task is waiting to start
processing.

The edges e0,1a and e0,1b initiate processing either on p1 or p2 if the task is able to run on the appropriate
processor. This means that this particular processor is not already active and there is a running time
associated with it. In addition, said processor must know the results of relevant predecessors of the task.

Locations s1a and s1b are the locations where a task is being processed on p1 and p2, respectively. When
a task is �nished processing either of the two processors, the result is set in that processor's result element
in the res array.

Location s2 is the done state. This state must be reached within the global deadline dl to meet a
schedule's deadline. From here the task may be broadcast whenever the bus is free. The edge e2,3

initiates a broadcast on the bus when it is not already busy. In location s3, the task waits for the bus to
�nish broadcasting. When the bus is done broadcasting, the edge e3,4 sets the result as known in both
processor p1 and p2. The task then switches to its �nal state s4 where it will stay inde�nitely.

8.4.4 System Declarations and Initial State

We instantiate the 6 di�erent PTAs using the two templates: First, we instantiate the PTA for task t1:

task_t1 = task2(t1, pre[t1][0], pre[t1][1], delta[t1][p1], delta[t1][p2], delta[t1][bus]);

This line says that the name of the PTA will be task_t1, the template used will be the template
task2. Moreover, the parameters that are passed to the template tell us that the name of the task
is t1, predecessors are found in pre[t1][0] and 1, running times delta1 and delta2 are found in
delta[t1][p1] and delta[t1][p2], and the broadcast time kappa is found in delta[t1][bus]. The
rest of the task PTAs are instantiated in the same manner.

task_t2 = task2(t2, pre[t2][0], pre[t2][1], delta[t2][p1], delta[t2][p2], delta[t2][bus]);

task_t3 = task2(t3, pre[t3][0], pre[t3][1], delta[t3][p1], delta[t3][p2], delta[t3][bus]);

The PTAs for the bus and the two processors are instantiated in a similar manner. The following says
that the bus is a PTA named proc_bus using the template processor with the name bus with active
rate tau[bus] and idle rate pi[bus]. This is done analogously for the 2 processors.

proc_bus = processor(bus,tau[bus],pi[bus]);

proc_p1 = processor(p1,tau[p1],pi[p1]);

proc_p2 = processor(p2,tau[p2],pi[p2]);

Finally, we must specify what PTAs are used in the running system. The following declares that the
system will be made up of the 6 PTAs we just instantiated:

system proc_bus, proc_p1, proc_p2, task_t1, task_t2, task_t3;

108

8.5 Performance Comparison Between Uppaal CORA vs Priced-

Timed Maude: Energy Task Graph Scheduling

In this section, we show the results of executing a series of tests using the ETGS speci�cation from
Chapter 7 and Uppaal CORA speci�cation of the same problem set.

The tests include measuring how fast both applications can obtain the optimal schedule for problems
using their built-in capabilities for this. In addition, we used the regular search command in Price-Timed
Maude to obtain a feasible schedule for each of the con�gurations. The con�guration used are as follows:
3, 5, 7, 9 and 10 tasks while using 2, 3, and 4 processors in addition to the bus.

All Uppaal CORA tests were made using the command line tool verifyta supplied with Uppaal

CORA. The option -E was used to obtain the optimal schedules. The feasible schedules were obtained
using default settings (breadth �rst search, default space reduction and no trace printing). For both
cases average running times were obtained using a python script that ran each test for 5 iterations then
calculated the average. All Priced-Timed Maude tests were done by using the command find cheapest

with appropriate time bounds to obtain the optimal schedules and ptsearch with the appropriate time
bound to obtain feasible schedules. Times were obtained by recording the rewrite time from Maude
during 5 runs and computing the average. All tests were run on an Intel Core 2 Duo 2.2 GHz with 2 GB
of memory.

The following table shows the results in number of seconds:

App P Method 3 5 7 9 10
CORA 2 Optimal 0.1 0.1 0.1 0.1 1.0

Feasible 0.1 0.1 0.1 0.4 0.7
PTM 2 Optimal 1.1 3.5 8.9 185.2 289.1

Feasible 0.4 1.7 4.7 103.9 168.6
CORA 3 Optimal 0.1 0.1 0.2 0.2 0.3

Feasible 0.1 0.1 0.1 0.4 0.6
PTM 3 Optimal 1.5 5.5 17.0 360.4 521.5

Feasible 0.5 3.1 9.6 210.0 339.7
CORA 4 Optimal 0.2 0.2 0.3 0.8 1.0

Feasible 0.1 0.1 0.1 0.4 0.6
PTM 4 Optimal 7.6 15.3 94.8 �� ��

Feasible 1.5 10.7 38.5 �� ��

The entries in the column named `App' denote whether Priced-Timed Maude or Uppaal CORA was
used. The second column says how many processors were used in the speci�cation. The third column
says whether a normal search for a feasible schedule or a search for an optimal schedule was performed.
The headings of columns 4 to 6 denote how many tasks were used in the speci�cation. For instance,
we can see that the entry in row 3, column 4 was a search for an optimal solution using Priced-Timed
Maude, the speci�cation contained 2 processors and 3 tasks and the running time was 1.1 seconds. The
entries marked '��' failed to terminate in a reasonable amount of time due to memory usage, resulting
in a swapping to disk situation.

As seen, Uppaal CORA solves this set of problems signi�cantly faster than Priced-Timed Maude. The
reduction of PTA into priced zones in Uppaal CORA is based in a large part on the time constraints
speci�ed in the model. The maximum amount of time constraints at any given time in the Uppaal
CORA speci�cation of these ETGS test cases will never exceed the number of processors plus one (for
the bus), therefore, they will be reduced to a relatively small quotient automaton that can be solved
e�ciently.

Priced-Timed Maude, on the other hand, does not employ any such reduction techniques. The running
time of the algorithm could, in the worst case scenario, be O(nx) where n is dependent upon the number
of rules and processors and x is dependent on the number of tasks and the time sampling strategy. The
current implementation of the find cheapest command executes ptsearch successively and does not

109

employ any reduction methods, therefore, running ptsearch to obtain a feasible solution is naturally
faster.

This behavior is as expected, Uppaal CORA is founded on the relatively simple PTA model relying on
automata theory that has successfully been analyzed using linear programming. Priced-Timed Maude, on
the other hand, is a programming language supporting richer and more �exible speci�cation techniques,
like user-de�nable data types, object-oriented speci�cation, and advanced communication features. In
Section 8.2 we show that any PTA can be translated to Priced-Time Maude, while the opposite is not true.
The priced thermostat from Section 4.5.1 is a simple example of a Priced-Timed Maude speci�cation that
can not be represented as a PTA as Uppaal CORA does not allow speci�cation of a rate on variables
in locations apart from on the global cost.

110

Name: task2

Parameters: const int task, const int pre1, const int pre2,
const int delta1, const int delta2, const int kappa

WVUTPQRSONMLHIJKs0

pbus[p1]!

delta1 6= na∧
(pre1 == none ∨ res[p1][pre1])∧
(pre2 == none ∨ res[p1][pre2])∧

act[p1] == false
d[p1] := delta1

~~~~
~~

~~
~~

~~
~~

~~
~~

~~
~

pbus[p2]!

delta2 6= na∧
(pre1 == none ∨ res[p2][pre1])∧
(pre2 == none ∨ res[p2][pre2])∧

act[p2] == false
d[p2] := delta2

  
@@

@@
@@

@@
@@

@@
@@

@@
@@

@

_^]\XYZ[s1a

pbus[p1]?

res[p1][task]:=true

��?
??

??
??

??
??

??
??

??
??

?
_^]\XYZ[s1b

pbus[p2]?

res[p2][task]:=true

����
��

��
��

��
��

��
��

��
��

_^]\XYZ[s2

d[bus] := kappa

pbus[bus]!
act[bus]==false

��

systemClock≤dl

_^]\XYZ[s3

res[p1][task] := true
res[p2][task] := true

pbus[bus]?

��

_^]\XYZ[s4

Figure 8.5: Template for the task automata.

111



112



Chapter 9

Concluding Remarks

This thesis has investigated the suitability of using Priced-Timed Maude for the speci�cation and analysis
of priced-timed systems. In particular, it has investigated the suitability of modeling such systems in
an object-oriented style. I have done this by de�ning two theoretical models: priced and priced-timed
rewrite theories. In addition, a tool, Priced-Timed Maude, has been developed to specify and analyze
such theories. Priced-Timed Maude has been built in Maude as an extension of Real-Time Maude.

The results of the investigation have been partially positive. I have developed intuitive speci�cation
techniques for the speci�cation of priced-timed systems that extend the corresponding techniques in
Real-Time Maude. In particular, Priced-Timed Maude supports the large and important class of ��at�
object-oriented priced-timed systems. The main value of Priced-Timed Maude lies in its ability for
intuitive speci�cation and analysis of such �at object-oriented systems. Priced-timed rewrite theories
have, unsurprisingly, been shown to be more expressive than priced-timed automata (PTA) by giving a
translation from priced-timed automata into priced-timed rewrite theories, and by giving one example
that cannot be modeled using PTAs but that has been modeled in Priced-Timed Maude.

Priced-Timed Maude has successfully been applied to some larger case studies. The tool was used
to model the airplane landing problem (ALP) and to obtain an optimal solution for a system with
two airplanes and a runway. The energy task graph scheduling (ETGS) problem was modeled and, in
addition, an optimal schedule was obtained for a system with three tasks, two processors, and a bus.
The subway passenger routing (SPR) problem was modeled using a subway network with two internal
routes, two trains, and some passengers. Among other things, we determined that a passenger cannot
end up farther from the destination than he started if he follows the rules of the system. In addition to
specifying and analyzing these systems in Priced-Timed Maude, I have modeled and analyzed one of the
examples, ETGS, in Uppaal CORA for a comparison of performance and speci�cation language.

When comparing the performance for the ETGS problem in Priced-Timed Maude and Uppaal CORA,
Priced-Timed Maude was slower by a large margin. This is expected, as Priced-Timed Maude is a
more general tool than Uppaal CORA and can be used to specify and analyze a much larger class of
systems. Furthermore, Uppaal CORA is based on PTA that has an established theory for reducing the
state space of an automaton using priced zones, thereby reducing the problem to a linear programming
problem within each zone. As of now, there exists no �reduction� theory for priced-timed rewrite theories.

The current prototype of the tool may only be used to specify and analyze �at and �at object-oriented
systems even though priced-timed rewrite theories have no such restriction. This is an implementation
issue and a calculated tradeo� as time was limited for implementing the tool during this thesis. Never-
theless, �at and �at object-oriented priced-timed systems represent large enough classes of systems to
justify this choice, both because all examples of priced systems encountered so far have been possible
to model within these restrictions and because all major Real-Time Maude applications [4, 5, 6, 7, 8, 9]
have been modeled as �at object-oriented systems.

113



Future Work

I would like to see better performance of the tool when solving general reachability problems as well
as optimization problems. The solution to this may be to develop a reduction theory for priced-timed
rewrite theories in combination with tweaking the implementation of the tool. Developing reduction
theory for the general case may not be possible. In this case, developing speci�cation techniques and
reduction theory for speci�c classes of priced-timed rewrite theories and solving these more e�ciently
may be preferable.

Finally, allowing non-�at systems to be speci�ed and analyzed by Priced-Timed Maude should be im-
plemented. Although all interesting systems we have seen so far have been able to �t nicely into the �at
object-oriented class, some systems that do not �t intuitively into this class may be encountered in the
future.

114



Bibliography

[1] P. C. Ölveczky and J. Meseguer. The Real-Time Maude tool. In C. R. Ramakrishnan and J. Rehof,
editors, TACAS'08, Lecture Notes in Computer Science. Springer, 2008. To appear.

[2] P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude. Higher-Order
and Symbolic Computation, 20(1-2):161�196, 2007.

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott. All About
Maude - A High-Performance Logical Framework, volume 4350 of Lecture Notes in Computer Sci-
ence. Springer, 2007.

[4] P. C. Ölveczky and S. Thorvaldsen. Formal modeling and analysis of the OGDC wireless sensor
network algorithm in Real-Time Maude. In M. M. Bonsangue and E. B. Johnsen, editors, Formal
Methods for Open Object-Based Distributed Systems (FMOODS'07), volume 4468 of Lecture Notes
in Computer Science, pages 122�140. Springer, 2007.

[5] M. Katelman, J. Meseguer, and J. Hou. Formal modeling, analysis, and debugging of a wireless
sensor network protocol with Real-Time Maude and statistical model checking. Technical report,
Dept. of Computer Science, University of Illinois at Urbana-Champaign, 2008. In preparation.

[6] P. C. Ölveczky, J. Meseguer, and C. L. Talcott. Speci�cation and analysis of the AER/NCA active
network protocol suite in Real-Time Maude. Formal Methods in System Design, 29(3):253�293,
2006.

[7] P. C. Ölveczky and M. Caccamo. Formal simulation and analysis of the CASH scheduling algorithm
in Real-Time Maude. In L. Baresi and R. Heckel, editors, Fundamental Approaches to Software En-
gineering (FASE'06), volume 3922 of Lecture Notes in Computer Science, pages 357�372. Springer,
2006.

[8] E. Lien. Formal modelling and analysis of the NORM multicast protocol using Real-Time Maude.
Master's thesis, Department of Linguistics, University of Oslo, 2004.

[9] P. C. Ölveczky, P. Prabhakar, and X. Liu. Formal modeling and analysis of real-time resource-
sharing protocols in Real-Time Maude. In IPDPS'08. IEEE, 2008.

[10] Gerd Behrmann. Uppaal CORA home page: http://www.cs.auc.dk/~behrmann/cora/index.

html, 2006.

[11] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer, 1(1-2):134�152, 1997.

[12] M. Wen, J. Larsen, and J. Clausen. An exact algorithm for aircraft landing problem. Technical
report, Informatics and Mathematical Modelling, Technical University of Denmark, 2005.

[13] J. I. Rasmussen, K. G. Larsen, and K. Subramani. On using priced timed automata to achieve
optimal scheduling. Form. Methods Syst. Des., 29(1):97�114, 2006.

[14] Kim Guldstrand Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas Hune, Paul
Pettersson, and Judi Romijn. As cheap as possible: E�cient cost-optimal reachability for priced
timed automata. In CAV '01: Proceedings of the 13th International Conference on Computer Aided
Veri�cation, volume 2102 of Lecture Notes in Computer Science, pages 493�505, London, UK, 2001.
Springer.

115



[15] J. Meseguer. Conditional rewriting logic as a uni�ed model of concurrency. Theoretical Computer
Science, 96:73�155, 1992.

[16] J. Meseguer. Membership algebra as a logical framework for equational speci�cation. In F. Parisi-
Presicce, editor, Proc. WADT'97, volume 1376 of Lecture Notes in Computer Science, pages 18�61.
Springer, 1998.

[17] N. Martí-Oliet and J. Meseguer. Rewriting logic: Roadmap and bibliography. Theoretical Computer
Science, 285, 2002.

[18] U. Waldman. Semantics of order-sorted speci�cations. Theoretical Computer Science, 94:1�35, 1992.

[19] P. C. Ölveczky. Formal modeling and analysis of distributed systems in Maude. Course book for
INF3230, Dept. of Informatics, University of Oslo, 2008.

[20] P. C. Ölveczky and J. Meseguer. Speci�cation of real-time and hybrid systems in rewriting logic.
Theoretical Computer Science, 285:359�405, 2002.

[21] P. C. Ölveczky and M. Grimeland. Formal analysis of time-dependent cryptographic protocols in
Real-Time Maude. In 21st International Parallel and Distributed Processing Symposium (IPDPS
2007). IEEE Computer Society Press, 2007.

[22] F. Durán and P. C. Ölveczky. A guide to extending Full Maude illustrated with the implementation
of Real-Time Maude. In Seventh International Workshop on Rewriting Logic and its Applications
(WRLA'08), 2008. To appear.

[23] P. C. Ölveczky. Real-Time Maude 2.3 Manual, 2007. http://www.ifi.uio.no/RealTimeMaude/.

[24] Alexander Schrijver. A Course in Combinatorial Optimization. Schrijver, Alexander, 2006.

[25] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183�235,
1994.

[26] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations Research,
14(4):699�719, 1966.

116



Appendix A

Code for Running Examples

This appendix lists all example code used in this thesis.

A.1 Example Priced-Timed Maude Speci�cations

This section lists all code for the example speci�cations given in Chapter 4.

(ptmod PRICED-THERMOSTAT is

protecting POSRAT-TIME-DOMAIN .
protecting POSRAT-COST-DOMAIN .

sort Status Thermostat .
subsort Thermostat < SystemState .

ops on off : -> Status [ctor] .
op _`,_ : Status PosRat -> Thermostat [ctor] .

rl [turn-on] : off , 62 => on , 62 with cost 50 .
rl [turn-off] : on , 74 => off , 74 .

vars R R' : Time .
var T : PosRat .

crl [tick-on] :
{(on, T)} => {(on, T + (2 * R'))} in time R' with cost R' * 100

if R' <= ((74 - T) / 2) [nonexec] .

crl [tick-off] :
{(off, T)} => {(off, T - R')} in time R' if R' <= (T - 62) [nonexec] .

endptm)

(ptmod MODEL-CHECK-THERMOSTAT is
protecting PRICED-MODEL-CHECKER .
protecting PRICED-THERMOSTAT .

ops therm-on therm-off : -> Prop [ctor] .
op temp-is : PosRat -> Prop [ctor] .

vars T T' : PosRat .
var S : Status .

eq {off, T} |= therm-off = true .
eq {on, T} |= therm-on = true .
eq {S, T} |= temp-is(T') = (T == T') .

endptm)

(ptomod PRICED-TIMED-OO-LIGHT-SWITCH is
protecting NAT-TIME-DOMAIN-WITH-INF .
protecting NAT-COST-DOMAIN .

sort Status .
ops on off : -> Status [ctor] .

class Switch | status : Status, wattage : Cost, timer : TimeInf .

var O : Oid .
var W : Cost .

117



var Ti : TimeInf .
vars T R : Time .
var S : SystemState .

rl [turn-off] : < O : Switch | status : on, timer : 0 >
=>
< O : Switch | status : off, timer : INF > .

rl [turn-on] : < O : Switch | status : off, wattage : W, timer : INF >
=>
< O : Switch | status : on, timer : 5 > with cost W .

eq mte(< O : Switch | status : on, timer : Ti >) = Ti .
eq mte(< O : Switch | status : off >) = INF .

eq delta(< O : Switch | status : on, timer : Ti >, R) =
< O : Switch | timer : Ti monus R > .

eq delta(< O : Switch | status : off >, R) =
< O : Switch | > .

eq rate(< O : Switch | status : on, wattage : W >) = W .
eq rate(< O : Switch | status : off >) = 0 .

crl [tick] : {S} => {delta(S, R)} in time R with cost (rate(S) * R)
if R <= mte(S) [nonexec] .

endptom)

(ptomod TEST-TWO-LIGHTS is
protecting PRICED-TIMED-OO-LIGHT-SWITCH .
protecting STRING .

subsort String < Oid .

ops init1 init2 : -> GlobalSystem .
ops driveway garden : -> Configuration .

eq driveway = < "Driveway" : Switch | status : off, wattage : 40, timer : INF > .
eq garden = < "Garden" : Switch | status : off, wattage : 25, timer : INF > .
eq init1 = {driveway} .
eq init2 = {driveway garden} .

endptom)

A.2 Example Priced-Timed Maude Analysis

This section lists all the analysis and results from Chapter 5.

(ptfrew init1 in time <= 15 with no cost limit.)

Result PricedTimedSystem :
{< "Driveway" : Switch | status : on, timer : 2, wattage : 40 >} in time 15 with cost 640

(ptfrew {off, 62} with no time limit with cost <= 6000 .)

Result PricedTimedSystem :
{on,64} in time 163 with cost 6000

(ptsearch [1] {off, 62} =>* {off, P:PosRat} such that P:PostRat < 62 with no limits.)

No more solutions

(ptsearch [1] {off, 62} =>* {S:Status, 68} in time <= 5 with no cost limit.)

Solution 1
S:Status --> on ; TIME_ELAPSED:Time --> 3 ; TOTAL_COST_INCURRED:Cost --> 350

No more solutions

(ptsearch [1] {< "Driveway" : Switch | status : on, wattage : 40, timer : 5 >}
=>*
{< "Driveway" : Switch | status : off >} in time <= 2 with no cost limit.)

No more solutions

(find cheapest {off, 62} =>* {S:Status, 70} with no time limit .)

Solution
S:Status --> on ; TIME_ELAPSED:Time --> 4 ; TOTAL_COST_INCURRED:Cost --> 450

118



(find cheapest {< "Driveway" : Switch | status : on, wattage : 40, timer : 5 >}
=>*
{< "Driveway" : Switch | status : off >} with no time limit .)

Solution
CLASS_OF_"Driveway":Switch --> Switch ;
REMAINING_ATTRIBUTES_OF_"Driveway":AttributeSet --> timer : INF, wattage : 40 ;
TIME_ELAPSED:Time --> 5 ; TOTAL_COST_INCURRED:Cost --> 200

(priced find earliest {< "Driveway" : Switch | status : on, wattage : 40, timer : 5 >}
=>*
{< "Driveway" : Switch | status : off >} with no cost limit.)

Result: {< "Driveway" : Switch | status : off, wattage : 40, timer : INF >} in time 5 with cost 200

(priced find earliest {off, 62} =>* {S:Status, 70} with no cost limit.)

Result: {on,70} in time 4 with cost 450

(pmc {off, 62} |=u <> therm-on .)

Result Bool:
true

(pmc {on, 62} |=u therm-on U therm-is(72) .)

Result Bool:
true

A.3 Case Study Speci�cation and Analysis

This section lists all the code and analysis results for each of the case studies in Chapter 7.

A.3.1 ALP

sorts PlaneType PlaneTypeNone .
subsort PlaneType < PlaneTypeNone .

ops big small medium : -> PlaneType [ctor] .
op None : -> PlaneTypeNone [ctor] .

class Plane | type : PlaneType, landingTime : TimeInf,
landAt : DefOid, earliest : Time, target : Time,
latest : Time, early : Cost, late : Cost,
latePenalty : Cost, clock : Time, rate : Cost .

class Runway | landed : OidTimeList, type : PlaneTypeNone,
prevStart : Time .

var P RW : Oid .
var OTL : OidTimeList .
vars C C1 ER : Cost .
var TI : TimeInf .
var R T L E Lt Ta : Time .
var PT : PlaneType .
var PTN : PlaneTypeNone .
var SSt : SystemState .

op sep : PlaneType PlaneTypeNone -> Nat .

eq sep(PT, None) = 0 .
eq sep(small, big) = 3 .
eq sep(medium, big) = 2 .
eq sep(big, big) = 1 .
eq sep(small, medium) = 2 .
eq sep(medium, medium) = 1 .
eq sep(big, medium) = 1 .
eq sep(PT, small) = 1 .

crl [assignToNextFree] :
< P : Plane | type : PT, earliest : E, landAt : noOid, latest : Lt,

clock : R, late : LR, early : ER, target : Ta >
< RW : Runway | type : PTN, prevStart : T >
=>
< P : Plane | landAt : RW, landingTime : L, rate : C >
< RW : Runway | type : PT, prevStart : L >

with cost (if L == R and L =/= E then
totEarlyCost(Ta, L, E, ER)

else

119



0
fi)

if L :=
if R >= (T + sep(PT, PTN)) then

R
else

T + sep(PT, PTN)
fi

/\
C := (if R < Ta and R >= E and L < Ta then

--- accelerated rate equals total cost from earliness
--- / the time interval left to accelerate
(totEarlyCost(Ta, L, E, ER) / (Ta monus R))

else
0

fi)
/\ L >= E /\ L <= Lt .

crl [assignToTarget] :
< P : Plane | type : PT, latePenalty : C, earliest : E,

landAt : noOid, latest : Lt, target : Ta,
clock : R >

< RW : Runway | type : PTN, prevStart : T >
=>
< P : Plane | landAt : RW, landingTime : Ta >
< RW : Runway | type : PT, prevStart : Ta >

if Ta >= (T + sep(PT, PTN)) .

rl [planeLanding] :
< P : Plane | landAt : RW, landingTime : L, clock : L,

earliest : E, target : Ta, early : C, latePenalty : C1 >
< RW : Runway | landed : OTL >
=>
< RW : Runway | landed : (OTL (P, L)) >
with cost
(if Ta < L then C1 else free fi
pluss

if L == E and Ta =/= E then C else free fi) .

crl [tick] :
{SSt} => {delta(SSt, R)} in time R with cost (rate(SSt) * R)

if R <= mte(SSt) [nonexec] .

--- Runways do not generate cost or affect time
eq delta(< RW : Runway | >, R:Time)

=
< RW : Runway | > .

eq mte(< RW : Runway | >) = INF .
eq rate(< RW : Runway | >) = 0 .

eq mte(< P : Plane | landAt : noOid, earliest : E, target : Ta,
clock : R, latest : L >) = if R < Ta then

Ta monus R
else
L monus R

fi .

--- any assigned plane before earliest
ceq mte(< P : Plane | landAt : RW, clock : R, landingTime : L, earliest : E >)

= E monus R
if R < E .

--- landing time
eq mte(< P : Plane | landAt : RW, clock : L, landingTime : L >) = 0 .

--- landing on target
eq mte(< P : Plane | landAt : RW, clock : R, target : T, landingTime : T >) = T monus R .

--- early before target
ceq mte(< P : Plane | landAt : RW, clock : R, target : T, landingTime : L, earliest : E >)

= L monus R
if E < T /\ R < T /\ R >= E .

--- late between earliest and target
ceq mte(< P : Plane | landAt : RW, clock : R, target : T, landingTime : L, earliest : E >)

= T monus R
if L > T /\ R >= E /\ R < T .

--- late between target and landing time
ceq mte(< P : Plane | landAt : RW, clock : R, target : T, landingTime : L >)

= L monus T
if L > T /\ R >= T .

eq delta(< P : Plane | clock : L >, R)
=
< P : Plane | clock : L plus R > .

eq delta(< P : Plane | clock : L >, R)
=

120



< P : Plane | clock : L plus R > .

--- If time is before earliest there's no rate
ceq rate(< P : Plane | earliest : E, clock : R >) = 0
if R < E .

--- If plane is scheduled to be on target there's no rate
ceq rate(< P : Plane | clock : R, landingTime : L, target : L >) = 0 if R < L .

--- if target time has been reached the rate is late
ceq rate(< P : Plane | late : C, target : Ta, clock : R >) = C
if R >= Ta .

ceq rate(< P : Plane | landAt : RW, earliest : E, early : ER,
target : Ta, landingTime : L, clock : R, rate : C >)

= if C == 0 then
--- cost per time unit equals the total early cost divided by the
--- interval between target and landing
(totEarlyCost(Ta, L, E, ER) / (Ta monus L))
else
C
fi

if R >= E and L < Ta and R =/= Ta .

op totEarlyCost : Time Time Time Cost -> Cost .
eq totEarlyCost(Ta, L, E, ER) = ((Ta monus L) / (Ta monus E)) * ER .

endptom)

(ptomod ALP-TEST is
protecting ALP .
protecting STRING .

subsort String < Oid .

op plane : Oid PlaneType Time Time Time Cost Cost Cost -> Configuration .
op runway : Oid -> Configuration .
op init1 : -> GlobalSystem .

vars E T L : Time .
vars C1 C2 C3 : Cost .
var PT : PlaneType .
var O : Oid .

eq plane(O, PT, E, T, L, C1, C2, C3) =
< O : Plane | type : PT, landAt : noOid, landingTime : T,

clock : 0, early : C1, late : C2, latePenalty : C3,
earliest : E, target : T, latest : L, rate : 0 > .

eq runway(O) = < O : Runway | landed : nil, type : None, prevStart : 0 > .

--- 3 planes and one runway
eq init1 = {plane("p1", small, 5, 9, 12, 15, 2,3)

plane("p2", small, 5, 5, 10, 25, 5, 10)
plane("p3", medium, 5, 7, 15, 20, 3, 5)
runway("rw1")} .

endptom)

(priced find earliest init1 =>* {< "rw1" : Runway | >} with no cost limit.)

Result: {< "rw1" : Runway | landed :(("p1",5)("p2",6)("p3",7)),prevStart : 7,
type : big >} in time 7 with cost 30

(find cheapest init1 =>* {< "rw1" : Runway | >} with no time limit .)

Solution
ATTRIBUTES_OF_"rw1":AttributeSet -->
landed :(("p2",5)("p3",7)("p1",9)),
prevStart : 9,type : small ;

CLASS_OF_"rw1":Runway --> Runway ;
TIME_ELAPSED:Time --> 9 ; TOTAL_COST_INCURRED:Cost --> 0

A.3.2 ETGS

(omod OID-SET is
protecting DEF-OID .
protecting SET{Oid} * (sort Set{Oid} to OidSet,

sort NeSet{Oid} to NeOidSet) .

vars OS OS' : OidSet .

op _subset_ : OidSet OidSet -> Bool .
eq OS subset (OS, OS') = true .
eq OS subset OS' = false [owise] .

endom)

121



(omod MESSAGES is
sort MsgType .

op bcast : -> MsgType [ctor] .

msg msg_from_to_ : MsgType Oid Oid -> Msg .
endom)

(omod MESSAGES-MULT1 is
protecting MESSAGES .
protecting OID-SET .

op multimsg_from_to_ : MsgType Oid OidSet -> Configuration .

var MT : MsgType .
vars O O' : Oid .
var OS : OidSet .

--- Make a message for every Oid in the set
eq multimsg MT from O to empty = none .
eq multimsg MT from O to (O', OS) =

(msg MT from O to O') (multimsg MT from O to OS) .

endom)

(tomod OID-TIME is
sort OidTimePair .
op _`,_ : Oid Time -> OidTimePair [ctor] .

endtom)

(view OidTime from TRIV to OID-TIME is
sort Elt to OidTimePair .

endv)

(tomod OID-TIME-SET is
protecting SET{OidTime} * (sort Set{OidTime} to OidTimeSet,

sort NeSet{OidTime} to NeOidTimeSet) .
endtom)

(ptomod ETGS is
protecting OID-TIME-SET .
protecting MESSAGES-MULT1 .
protecting NAT-COST-DOMAIN .
protecting NAT-TIME-DOMAIN-WITH-INF .

sort TaskState .

ops unprocessed processing done : -> TaskState [ctor] .
class ProcDevice | currentTask : DefOid,

activeRate : Cost,
idleRate : Cost,
timer : TimeInf .

class Task | dependsOn : OidSet,
procTimes : OidTimeSet,
bcastTime : Time,
status : TaskState .

class Processor | knownRes : OidSet .
subclass Processor < ProcDevice .

class Bus | connectedTo : OidSet .
subclass Bus < ProcDevice .

var R : Time .
var TI : TimeInf .
var SSt : SystemState .
vars T P B : Oid .
var C : Cost .
var OS OS' : OidSet .

crl [startTaskOnProcessor] :
< T:Oid : Task | status : unprocessed,

procTimes : ((P:Oid, R:Time),
OTS:OidTimeSet),

dependsOn : OS:OidSet >
< P : Processor | timer : INF, knownRes : OS':OidSet >
=>
< T : Task | status : processing >
< P : Processor | currentTask : T, timer : R >

if (OS:OidSet subset OS':OidSet) .

rl [finishTaskOnProcessor] :
< T : Task | status : processing >
< P : Processor | currentTask : T, timer : 0, knownRes : OS >
=>
< T : Task | status : done >
< P : Processor | currentTask : noOid, knownRes : (OS:OidSet, T),

timer : INF > .

rl [startBroadcast] :
< T : Task | status : done, bcastTime : R >

122



< B : Bus | timer : INF >
=>
< B : Bus | currentTask : T,

timer : R > .

rl [finishBroadcast] :
< B : Bus | currentTask : T, timer : 0,

connectedTo : OS >
=>
< B : Bus | currentTask : noOid, timer : INF >
multimsg bcast from T to OS .

rl [receiveBroadcast] :
(msg bcast from T to P)
< P : Processor | knownRes : OS >
=>
< P : Processor | knownRes : (OS, T) > .

crl [tick] :
{SSt} => {delta(SSt, R)} in time R with cost (rate(SSt) * R)

if R <= mte(SSt) [nonexec] .

eq mte(M:Msg) = 0 .
eq mte(< T : Task | >) = INF .
eq mte(< P : ProcDevice | timer : TI >) = TI .

eq delta(< T : Task | >, R)
=
< T : Task | > .

--- Processors and buses are affected by time.
--- A processor or bus' timer counts down during the elapse of time.
eq delta(< P : ProcDevice | timer : TI >, R)

=
< P : ProcDevice | timer : (TI monus R) > .

eq rate(< P : ProcDevice | idleRate : C, timer : INF >) = C .
eq rate(< P : ProcDevice | activeRate : C, timer : R >) = C .
eq rate(< T : Task | >) = 0 .

endptom)

(ptomod ETGS-TEST is
protecting NAT .
protecting ETGS .
protecting STRING .

subsort String < Oid .

op init : -> GlobalSystem .

eq init = {< "t1" : Task | dependsOn : empty, procTimes : ("p1", 1),
bcastTime : 7, status : unprocessed >

< "t2" : Task | dependsOn : empty, procTimes : ("p2", 2),
bcastTime : 5, status : unprocessed >

< "t3" : Task | dependsOn : ("t1", "t2"),
procTimes : (("p1", 5), ("p2", 4)),
bcastTime : 0, status : unprocessed >

< "p1" : Processor | currentTask : noOid, timer : INF,
knownRes : empty, activeRate : 5,
idleRate : 1 >

< "p2" : Processor | currentTask : noOid, timer : INF,
knownRes : empty, activeRate : 4,
idleRate : 1 >

< "bus" : Bus | currentTask : noOid, timer : INF,
connectedTo : ("p1", "p2"),
activeRate : 11, idleRate : 1 >} .

endptom)

(find cheapest init =>* {S:SystemState < "t3" : Task | status : done >} in time <= 12 .)

Solution
CLASS_OF_"t3":Task --> Task ;

REMAINING_ATTRIBUTES_OF_"t3":AttributeSet -->
bcastTime : 0, dependsOn :("t1", "t2"), procTimes :("p1",5, "p2",4);

S:SystemState -->
< "bus" : Bus | activeRate : 11, connectedTo :("p1","p2"), currentTask : noOid,

idleRate : 1, timer : INF >
< "p1" : Processor | activeRate : 5,currentTask : noOid, idleRate : 1,

knownRes :("t1", "t2", "t3"), timer : INF >
< "p2" : Processor | activeRate : 4, currentTask : noOid, idleRate : 1,

knownRes : "t2", timer : INF >
< "t1" : Task | bcastTime : 7, dependsOn : empty, procTimes : "p1",1, status : done > ;
TIME_ELAPSED:Time --> 12 ; TOTAL_COST_INCURRED:Cost --> 116

A.3.3 SPR

fmod GRAPH is

123



sorts Node Edge Graph .
subsort Edge < Graph .

op _->_ : Node Node -> Edge [ctor prec 40].
op nil : -> Graph [ctor].
op _;_ : Graph Graph -> Graph [ctor assoc comm id: nil].

var M N O : Node .
var G : Graph .

op reachable : Graph Node Node -> Bool .
eq reachable(M -> N ; G, M, N) = true .
ceq reachable(M -> O ; G, M, N) = true
if reachable(G, O, N) = true .
eq reachable(G, M, N) = false [owise].

endfm

(omod OID-LIST is
protecting DEF-OID .
protecting LIST{Oid} * (sort List{Oid} to OidList,

sort NeList{Oid} to NeOidList) .
endom)

(fmod SUBWAY-LAYOUT is
protecting GRAPH .
protecting OID-LIST .

subsort Oid < Node .

var G : Graph .
vars St St' : Oid .
var OL : OidList .
op _reachable`from_in_ : Oid OidList Graph -> Bool .
--- It is clearly sufficient to check the first entry of the route.
--- All the entries after the first are reachable from the first.
--- Thus by transitivity any stations reachable from any stations
--- after the first are reachable from the first.
eq St reachable from St' OL in G =

reachable(G, St':Oid, St:Oid) .
eq St reachable from nil in G = false .

endfm)

(omod PASSENGER is
sort PassengerGroup .
op _going`to_ : NzNat Oid -> PassengerGroup [ctor] .

endom)

(view PassengerGroup from TRIV to PASSENGER is
sort Elt to PassengerGroup .

endv)

(omod PASSENGER-SET is
protecting SET{PassengerGroup} *

(sort Set{PassengerGroup} to PassengerSet,
sort NeSet{PassengerGroup} to NePassengerSet) .

vars PS PS' : PassengerSet .
vars Mz Nz : NzNat .
vars O O' : Oid .

op sumpas : PassengerSet -> Nat .
eq sumpas(((Mz going to O), (Nz going to O'), PS)) =

Mz + Nz + sumpas(PS) .
eq sumpas(Mz going to O) = Mz .
eq sumpas(empty) = 0 .

eq Nz going to O, Mz going to O = (Nz + Mz) going to O .

op remove_from_ : PassengerSet PassengerSet -> PassengerSet .
eq remove empty from PS = PS .
eq (remove ((Mz going to O),PS) from ((Nz going to O), PS')) =

if Nz == Mz then
empty

else
(sd(Nz, Mz) going to O)

fi
,(remove PS from PS') .

endom)

(tomod STATION-SCHEDULE-ENTRY is
protecting PASSENGER-SET .
sort StationScheduleEntry .
op ps : Time PassengerSet -> StationScheduleEntry [ctor] .

endtom)

(view StationScheduleEntry from TRIV to STATION-SCHEDULE-ENTRY is
sort Elt to StationScheduleEntry .

endv)

(tomod STATION-SCHEDULE is
protecting LIST{StationScheduleEntry} *

(sort List{StationScheduleEntry} to StationSchedule,
sort NeList{StationScheduleEntry} to NeStationSchedule) .

endtom)

124



(fmod SUBWAY-FUNCTIONS is
protecting NAT .
protecting OID-LIST .
protecting SUBWAY-LAYOUT .
protecting STATION-SCHEDULE .

vars M N : Nat .
vars Mz Nz : NzNat .
vars O O' : Oid .
var OL : OidList .
vars PS PS' : PassengerSet .
var G : Graph .

op dropoff : Oid OidList PassengerSet Graph -> PassengerSet .
eq dropoff(O, OL, ((Nz going to O), PS), G) =

(Nz going to O), dropoff(O, OL, PS, G) .
ceq dropoff(O, OL, ((Nz going to O'), PS), G) =

if not (O' reachable from OL in G or (occurs(O',OL))) then
(Nz going to O')

else
empty

fi
, dropoff(O, OL, PS, G)

if O =/= O' .
eq dropoff(O, OL, empty, G) = empty .

op pickup : Nat OidList PassengerSet Graph -> PassengerSet .
eq pickup(Mz, OL, ((Nz going to O), PS), G) =

if (O reachable from OL in G) or (occurs(O,OL)) then
if Mz <= Nz then
(Mz going to O)

else
(Nz going to O), pickup(sd(Mz, Nz), OL, PS, G)

fi
else
pickup(Mz, OL, PS, G)

fi .
eq pickup(Mz, OL, empty, G) = empty .
eq pickup(0, OL, PS, G) = empty .

endfm)

(ptomod SUBWAY is
protecting SUBWAY-FUNCTIONS .
protecting OID-SET .
protecting OID-LIST .
protecting NAT-COST-DOMAIN .
protecting NAT-TIME-DOMAIN-WITH-INF .

sorts StationAction TrainStatus .

ops attached detached boarded arrived : -> StationAction [ctor] .
op _at`station_ : StationAction Oid -> TrainStatus .
op traveling`to_ : Oid -> TrainStatus .

class Train | cars : NzNat, route : OidList, visited : OidList,
status : TrainStatus, passengers : PassengerSet,
activeLO : Graph, passiveLO : Graph,
timer : TimeInf .

class Station | trains : OidSet,
passengerSchedule : StationSchedule,
passengers : PassengerSet,
clock : Time .

class SeStation | cars : Nat .
subclass SeStation < Station .

op traveltime : Oid Oid -> Time [comm] .
op carcap : -> Nat .
ops attachcost detachcost movingcost : -> Cost .
op cars : Nat -> Nat .
op carcost : -> Cost .

ops allowAttach allowDetach : -> Bool .

vars St St' Tr : Oid .
vars Ro Vi : OidList .
var OS : OidSet .
vars R Cl : Time .
var Ti : TimeInf .
vars M N : Nat .
vars Mz Nz Ca : NzNat .
vars PS PS' PS'' ON OFF STAY : PassengerSet .
var SA : StationAction .
var PSc : StationSchedule .
vars AL PL : Graph .
var PrS : PricedSystem .
var SSt : SystemState .

rl [arriveAtStation] :
< Tr : Train | status : traveling to St, timer : 0,

visited : Vi >
< St : Station | trains : OS >
=>
< Tr : Train | status : arrived at station St,

125



visited : St Vi >
< St : Station | trains : (OS, Tr) > .

crl [attachCart] :
< Tr : Train | status : SA at station St, cars : Ca >
< St : SeStation | cars : Nz >
=>
< Tr : Train | status : attached at station St,

cars : (Ca + 1) >
< St : SeStation | cars : (Nz monus 1) >
with cost attachcost

if allowAttach and
(SA == arrived or SA == attached) .

crl [LoadUnloadPassengers] :
< Tr : Train | status : SA at station St, cars : Ca,

passengers : PS, route : Ro, activeLO : AL >
< St : Station | passengers : PS' >
=>
< Tr : Train | status : boarded at station St,

passengers : (STAY, ON) >
< St : Station | passengers : ((remove ON from PS'), OFF) >

if ((SA == arrived) or (SA == attached) or (SA == detached))
/\ (OFF := dropoff(St, Ro, PS, AL)) /\ STAY := (remove OFF from PS)
/\ (ON := pickup(((Ca * carcap) monus sumpas(STAY)), Ro, PS', AL)) .

crl [detachCart] :
< Tr : Train | status : SA at station St, cars : Ca,

passengers : PS >
< St : SeStation | cars : N >
=>
< Tr : Train | status : detached at station St,

cars : (Ca monus 1) >
< St : SeStation | cars : (N + 1) >
with cost detachcost

if allowDetach and Ca >= 2 and (cars(sumpas(PS)) < Ca)
and (SA == boarded or SA == detached) .

crl [trainDepart] :
< Tr : Train | status : SA at station St, route : St' Ro >
< St : Station | trains : (OS, Tr) >
=>
< Tr : Train | status : traveling to St',

timer : traveltime(St,St'), route : Ro >
< St : Station | trains : OS >

if SA == boarded or SA == detached .

crl [tick] :
{SSt} => {delta(SSt, R)} in time R with cost (rate(SSt) * R)

if R <= mte(SSt) [nonexec] .

eq delta(< St : Station | clock : Cl >, R)
=
< St : Station | clock : Cl + R > .

eq mte(< St : Station | passengerSchedule : nil >) = INF .
eq mte(< St : Station | clock : R, passengerSchedule : ps(Cl, PS) PSc >) = Cl monus R .
eq rate(< St : Station | >) = 0 .

--- Trains are affected by the elapse of time.
--- The rate dependant on the number of cars
eq mte(< Tr : Train | timer : Ti >) = Ti .
eq delta(< Tr : Train | timer : Ti >, R)

=
< Tr : Train | timer : (Ti monus R) > .

eq rate(< Tr : Train | cars : Ca >) = Ca * movingcost .

eq < St : Station | clock : Cl, passengers : PS,
passengerSchedule : ps(Cl,PS') PSc >

=
< St : Station | clock : Cl, passengers : (PS, PS'),

passengerSchedule : PSc > .

eq cars(N) = N quo carcap +
if N rem carcap =/= 0 then 1 else 0 fi .

eq < Tr : Train | status : SA at station St, visited : St Vi,
route : nil, activeLO : AL, passiveLO : PL > =

< Tr : Train | visited : St, route : Vi, activeLO : PL,
passiveLO : AL > .

eq < St : Station | passengers : ((Nz going to St), PS) >
=
< St : Station | passengers : PS > .

endptom)

(ptomod SUBWAY-TEST is
protecting SUBWAY .
protecting STRING .

subsort String < Oid .
ops t1 t2 : -> Configuration .

126



ops st1 st2 st3 st4 st5 st6 : -> Configuration .
ops s1 s2 s3 s4 s5 s6 : -> Oid .
ops init1 : -> GlobalSystem .

eq s1 = "st1" .
eq s2 = "st2" .
eq s3 = "st3" .
eq s4 = "st4" .
eq s5 = "st5" .
eq s6 = "st6" .

eq traveltime("st1", "st2") = 2 .
eq traveltime("st2", "st3") = 3 .
eq traveltime("st3", "st4") = 3 .
eq traveltime("st3", "st5") = 1 .
eq traveltime("st3", "st6") = 4 .

ops route1a route1b route2a route2b l1uc l2uc : -> Graph .
eq route1a = s1 -> s2 ; s2 -> s3 ; s3 -> s4 .
eq route1b = s4 -> s3 ; s3 -> s2 ; s2 -> s1 .
eq l1uc = s3 -> s5 ; s3 -> s6 .
eq route2a = s5 -> s3 ; s3 -> s6 .
eq route2b = s6 -> s3 ; s3 -> s5 .
eq l2uc = s3 -> s4 ; s3 -> s2 ; s2 -> s1 .

eq carcap = 10 . --- passenger capacity of each car
eq attachcost = 5 . --- cost of attaching new car
eq detachcost = 4 . --- cost of detaching a car
eq movingcost = 3 . --- cost of movement per car

eq allowAttach = false . --- disallow attaching new cars
eq allowDetach = false . --- disallow detaching cars

eq t1 = < "t1" : Train | cars : 3,
route : s2 s3 s4,
visited : nil,
status : traveling to s1,
timer : 0,
passengers : empty,
activeLO : route1a ; l1uc,
passiveLO : route1b ; l1uc > .

eq t2 = < "t2" : Train | cars : 3,
route : s3 s6,
visited : nil,
status : traveling to s5,
timer : 0,
passengers : empty,
activeLO : route2a ; l2uc,
passiveLO : route2b ; l2uc > .

eq st1 = < s1 : Station | trains : empty,
passengers : empty,
passengerSchedule : nil,
clock : 0 > .

eq st2 = < s2 : Station | trains : empty,
passengers : empty,
passengerSchedule :

ps(2,(11 going to s1,
1 going to s3,
1 going to s5,
2 going to s6))

ps(7,(2 going to s1,
5 going to s3,
7 going to s4,
4 going to s5)),

clock : 0 > .

eq st3 = < s3 : SeStation | trains : empty,
cars : 1,
passengers : empty,
passengerSchedule : nil,
clock : 0 > .

eq st4 = < s4 : Station | trains : empty,
passengers : empty,
passengerSchedule : nil,
clock : 0 > .

eq st5 = < s5 : Station | trains : empty,
passengers : empty,
passengerSchedule : nil,
clock : 0 > .

eq st6 = < s6 : Station | trains : empty,
passengers : 1 going to s1,
passengerSchedule : nil,
clock : 0 > .

eq init1 = t1 t2 st1 st2 st3 st4 st5 st6 .
endptom)

127



(priced find earliest init1 =>*
{< "t1" : Train | passengers : empty >
< "t2" : Train | passengers : empty >
< "st1" : Station | passengers : empty >
< "st2" : Station | passengers : empty >
< "st3" : Station | passengers : empty >
< "st4" : Station | passengers : empty >
< "st5" : Station | passengers : empty >

< "st6" : Station | passengers : empty >} with not cost limit.)

Result:
{...} in time 28 with cost 504

(find cheapest init1 =>*
{< "t1" : Train | passengers : empty >
< "t2" : Train | passengers : empty >
< "st1" : Station | passengers : empty >
< "st2" : Station | passengers : empty >
< "st3" : Station | passengers : empty >
< "st4" : Station | passengers : empty >
< "st5" : Station | passengers : empty >
< "st6" : Station | passengers : empty >} with no time limit .)

Solution
....
TIME_ELAPSED:Time --> 28 ; TOTAL_COST_INCURRED:Cost --> 504

(ptsearch [1] init1 =>*
{S:SystemState
< O:Oid : Station | passengers : 1 going to "st4" >}
such that
O:Oid =/= "st2" and O:Oid =/= "st4"
in time <= 30 with no cost limit.)

No solution

A.4 Example Listings: Uppaal CORA Speci�cations

This section lists three of the Uppaal CORA speci�cations used for testing in Chapter 8. One speci�-
cation for two, three, and four processors is listed.

A.4.1 Two Processors, Ten Tasks, and a Bus

This �rst speci�cation, models a system with two processors, ten tasks, and a bus. Önly the deadlines
and number of tasks need to be changed for it to identical to all the other speci�cations with the same
amount of processors.

<?xml version="1.0" encoding="utf-8"?><!DOCTYPE nta PUBLIC '-//Uppaal Team//DTD Flat System 1.1//EN' '
http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.dtd'><nta><declaration>//constants used to identify processors in the various arrays
const int bus = 0;
const int p1 = 1;
const int p2 = 2;

const int t1 = 0;
const int t2 = 1;
const int t3 = 2;
const int t4 = 3;
const int t5 = 4;
const int t6 = 5;
const int t7 = 6;
const int t8 = 7;
const int t9 = 8;
const int t10 = 9;

// Place global declarations here.
const int tasks = 10;
const int procs = 2;

//what processors or buses are active
bool act[procs + 1];

//remaining running/transmission time
int d[procs + 1];

//array to keep track of what results have been received
bool res[procs + 1][tasks];

chan pbus[procs + 1];

128



//array of active rates
const int pi[procs + 1] = {11,5,4};
//array of idle rates
const int tau[procs + 1] = {1,1,1};

//broadcast times (kappa), run times on p1, run times on p2
const int na = -1;
const int delta[tasks][procs +1] = {{ 7, 1, na}, //t1

{ 5, na, 2}, //t2
{ 6, 5, 4}, //t3
{ 5, 2, 4}, //t4
{ 6, 3, 2}, //t5
{ 4, 2, 5}, //t6
{ 2, 2, 1}, //t7
{ 3, 4, 3}, //t8
{ 4, 2, 4}, //t9
{ 3, 3, 1}}; //t10

const int none = -1;
const int pre[tasks][2] = {{none, none}, //t1

{none, none}, //t2
{ t1, t2}, //t3
{none, t2}, //t4
{ t3, t4}, //t5
{ t4, t5}, //t6
{ t6, none}, //t7
{ t7, none}, //t8
{none, t2}, //t9
{ t9, t8}}; //t10

clock systemClock;
const int dl = 24;</declaration><template><name>processor</name><parameter>
const int p, const int tau, const int pi</parameter><declaration>//internal clock for this processor
clock c;</declaration><location id="id0" x="-64" y="-32"><name x="-74" y="-62">active</name>
<label kind="invariant" x="-96" y="0">c &lt;= d[p] &amp;&amp;
cost' == pi</label></location><location id="id1" x="-64" y="-136"><name x="-74" y="-166">idle
</name><label kind="invariant" x="-96" y="-192">cost' == tau</label></location><init ref="id1"/>
<transition><source ref="id1"/><target ref="id0"/><label kind="synchronisation" x="0" y="-112">pbus[p]?</label>
<label kind="assignment" x="8" y="-80">c := 0,act[p] := true</label><nail x="-24" y="-120"/><nail x="-16" y="-48"/>
</transition><transition><source ref="id0"/><target ref="id1"/><label kind="guard" x="-176" y="-120">c == d[p]
</label><label kind="synchronisation" x="-168" y="-104">pbus[p]!
</label><label kind="assignment" x="-232" y="-64">act[p] := false</label><nail x="-112" y="-56"/><nail x="-112" y="-112"/>
</transition></template><template><name>task2
</name><parameter>const int task, const int pre1, const int pre2, const int delta1, const int delta2, const int kappa
</parameter><location id="id2" x="-232" y="24"></location><location id="id3" x="-240" y="-128"><name x="-192" y="-144">broadcasting
</name></location><location id="id4" x="-248" y="-384"><name x="-248" y="-424">done
</name><label kind="invariant" x="-312" y="-448">systemClock &lt;= dl
</label></location><location id="id5" x="-128" y="-384"><name x="-88" y="-392">processing_2</name>
</location><location id="id6" x="-368" y="-384"><name x="-480" y="-392">processing_1</name>
</location><location id="id7" x="-256" y="-560"><name x="-224" y="-600">unprocessed</name>
</location><init ref="id7"/><transition><source ref="id3"/><target ref="id2"/><label kind="synchronisation" x="-192" y="-72">pbus[bus]?
</label><label kind="assignment" x="-192" y="-48">res[p1][task] := true, res[p2][task] := true
</label></transition><transition><source ref="id4"/><target ref="id3"/><label kind="guard" x="-208" y="-256">not act[bus]
</label><label kind="synchronisation" x="-208" y="-240">pbus[bus]!
</label><label kind="assignment" x="-208" y="-216">d[bus] := kappa</label></transition><transition><source ref="id6"/><target ref="id4"/>
<label kind="synchronisation" x="-360" y="-336">pbus[p1]?</label><label kind="assignment" x="-384" y="-360">res[p1][task] := true
</label></transition><transition><source ref="id5"/><target ref="id4"/><label kind="synchronisation" x="-216" y="-336">pbus[p2]?
</label><label kind="assignment" x="-216" y="-360">res[p2][task] := true
</label></transition><transition><source ref="id7"/><target ref="id5"/><label kind="guard" x="-88" y="-648">delta2 != na
and
(pre1 == none or res[p2][pre1] == 1)
and
(pre2 == none or res[p2][pre2] == 1)
and
not act[p2]</label><label kind="synchronisation" x="-160" y="-520">pbus[p2]!
</label><label kind="assignment" x="-152" y="-488">d[p2] := delta2
</label></transition><transition><source ref="id7"/><target ref="id6"/><label kind="guard" x="-560" y="-648">delta1 != na
and
(pre1 == none or res[p1][pre1] == 1)
and
(pre2 == none or res[p1][pre2] == 1)
and
not act[p1]</label><label kind="synchronisation" x="-416" y="-504">pbus[p1]!
</label><label kind="assignment" x="-448" y="-480">d[p1] := delta1</label>
</transition></template><system>// Place template instantiations here.
task_t1 = task2(t1, pre[t1][0], pre[t1][1], delta[t1][p1], delta[t1][p2], delta[t1][bus]);
task_t2 = task2(t2, pre[t2][0], pre[t2][1], delta[t2][p1], delta[t2][p2], delta[t2][bus]);
task_t3 = task2(t3, pre[t3][0], pre[t3][1], delta[t3][p1], delta[t3][p2], delta[t3][bus]);
task_t4 = task2(t4, pre[t4][0], pre[t4][1], delta[t4][p1], delta[t4][p2], delta[t4][bus]);
task_t5 = task2(t5, pre[t5][0], pre[t5][1], delta[t5][p1], delta[t5][p2], delta[t5][bus]);
task_t6 = task2(t6, pre[t6][0], pre[t6][1], delta[t6][p1], delta[t6][p2], delta[t6][bus]);
task_t7 = task2(t7, pre[t7][0], pre[t7][1], delta[t7][p1], delta[t7][p2], delta[t7][bus]);
task_t8 = task2(t8, pre[t8][0], pre[t8][1], delta[t8][p1], delta[t8][p2], delta[t8][bus]);
task_t9 = task2(t9, pre[t9][0], pre[t9][1], delta[t9][p1], delta[t9][p2], delta[t9][bus]);
task_t10 = task2(t10, pre[t10][0], pre[t10][1], delta[t10][p1], delta[t10][p2], delta[t10][bus]);

proc_bus = processor(bus,tau[bus],pi[bus]);
proc_p1 = processor(p1,tau[p1],pi[p1]);
proc_p2 = processor(p2,tau[p2],pi[p2]);
// List one or more processes to be composed into a system.

system proc_bus, proc_p1, proc_p2, task_t1, task_t2, task_t3, task_t4, task_t5, task_t6, task_t7, task_t8, task_t9, task_t10;

</system></nta>

129



A.4.2 Three Processors, Ten Tasks, and a Bus

The second speci�cation, models a system with three processors, ten tasks, and a bus. Önly the deadlines
and number of tasks need to be changed for it to identical to all the other speci�cations with the same
amount of processors.

<?xml version="1.0" encoding="utf-8"?><!DOCTYPE nta PUBLIC '-//Uppaal Team//DTD Flat System 1.1//EN' '
http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.dtd'><nta><declaration>//constants used to identify processors in the various arrays
const int bus = 0;
const int p1 = 1;
const int p2 = 2;
const int p3 = 3;

const int t1 = 0;
const int t2 = 1;
const int t3 = 2;
const int t4 = 3;
const int t5 = 4;
const int t6 = 5;
const int t7 = 6;
const int t8 = 7;
const int t9 = 8;
const int t10 = 9;

// Place global declarations here.
const int tasks = 10;
const int procs = 3;

//what processors or buses are active
bool act[procs + 1];

//remaining running/transmission time
int d[procs + 1];

//array to keep track of what results have been received
bool res[procs + 1][tasks];

chan pbus[procs + 1];

//array of active rates
const int pi[procs + 1] = {11,5,4,4};
//array of idle rates
const int tau[procs + 1] = {1,1,1,1};

//array holding: {broadcast time, delta p1, delta p2, delta p4}
const int na = -1;
const int delta[tasks][procs +1] = {{7, 1, na, na}, //t1

{5, na, 2, na}, //t2
{6, 5, 4, 2}, //t3
{5, 2, 4, na}, //t4
{6, 3, 2, 2}, //t5
{4, 2, 3, na}, //t6
{2, 3, 1, 2}, //t7
{3, 4, 3, 4}, //t8
{4, 2, 4, na}, //t9
{3, 3, 1, 2}}; //t10

//array holding: {predecessor 1, predecessor 2}
const int none = -1;
const int pre[tasks][2] = {{none, none}, //t1

{none, none}, //t2
{ t1, t2}, //t3
{none, t2}, //t4
{ t3, t4}, //t5
{ t4, t5}, //t6
{ t6, none}, //t7
{ t7, none}, //t8
{none, t2}, //t9
{ t9, t8}}; //t10

clock systemClock;
const int dl = 24;

</declaration><template><name>processor</name><parameter> const int p, const int tau, const int pi
</parameter><declaration>//internal clock for this processor
clock c;</declaration><location id="id0" x="-64" y="-32"><name x="-74" y="-62">active
</name><label kind="invariant" x="-96" y="0">c &lt;= d[p] &amp;&amp;
cost' == pi</label></location><location id="id1" x="-64" y="-136"><name x="-74" y="-166">idle
</name><label kind="invariant" x="-96" y="-192">cost' == tau</label></location><init ref="id1"/>
<transition><source ref="id1"/><target ref="id0"/><label kind="synchronisation" x="0" y="-112">pbus[p]?
</label><label kind="assignment" x="8" y="-80">c := 0,
act[p] := true</label><nail x="-24" y="-120"/><nail x="-16" y="-48"/></transition><transition><source ref="id0"/><target ref="id1"/>
<label kind="guard" x="-176" y="-120">c == d[p]</label><label kind="synchronisation" x="-168" y="-104">pbus[p]!
</label><label kind="assignment" x="-232" y="-64">act[p] := false</label><nail x="-112" y="-56"/><nail x="-112" y="-112"/>
</transition></template><template><name>task3</name>
<parameter>const int task, const int pre1, const int pre2, const int delta1, const int delta2, const int delta3, const int kappa
</parameter><location id="id2" x="-248" y="-376"><name x="-224" y="-384">processing_3</name>
</location><location id="id3" x="-232" y="64"></location><location id="id4" x="-232" y="-80"><name x="-184" y="-96">broadcasting</name>
</location><location id="id5" x="-240" y="-224"><name x="-240" y="-264">done</name>
<label kind="invariant" x="-384" y="-232">systemClock &lt;= dl</label></location><location id="id6" x="184" y="-432">
<name x="224" y="-440">processing_2</name></location><location id="id7" x="-624" y="-432"><name x="-736" y="-440">processing_1

130



</name></location><location id="id8" x="-256" y="-640"><name x="-224" y="-680">unprocessed</name>
</location><init ref="id8"/><transition><source ref="id2"/><target ref="id5"/>
<label kind="synchronisation" x="-328" y="-336">pbus[p3]?</label><label kind="assignment" x="-368" y="-352">res[p3][task] := true</label>
</transition><transition><source ref="id8"/><target ref="id2"/><label kind="guard" x="-232" y="-536">delta3 != na
and
(pre1 == none or res[p3][pre1])
and
(pre2 == none or res[p3][pre2])
and
not act[p3]</label><label kind="synchronisation" x="-328" y="-520">pbus[p3]!</label><label kind="assignment" x="-352" y="-504">d[p3] := delta3
</label></transition><transition><source ref="id4"/><target ref="id3"/><label kind="synchronisation" x="-216" y="-32">pbus[bus]?
</label><label kind="assignment" x="-216" y="-16">res[p1][task] := true,
res[p2][task] := true,
res[p3][task] := true</label></transition><transition><source ref="id5"/><target ref="id4"/>
<label kind="guard" x="-216" y="-208">not act[bus]</label><label kind="synchronisation" x="-216" y="-184">pbus[bus]!
</label><label kind="assignment" x="-216" y="-160">d[bus] := kappa</label></transition><transition><source ref="id7"/><target ref="id5"/>
<label kind="synchronisation" x="-536" y="-336">pbus[p1]?</label><label kind="assignment" x="-592" y="-360">res[p1][task] := true</label>
</transition><transition><source ref="id6"/><target ref="id5"/><label kind="synchronisation" x="-48" y="-320">pbus[p2]?
</label><label kind="assignment" x="-16" y="-336">res[p2][task] := true</label></transition><transition><source ref="id8"/><target ref="id6"/>
<label kind="guard" x="56" y="-680">delta2 != na
and
(pre1 == none or res[p2][pre1])
and
(pre2 == none or res[p2][pre2])
and
not act[p2]</label><label kind="synchronisation" x="56" y="-576">pbus[p2]!</label><label kind="assignment" x="56" y="-560">d[p2] := delta2
</label></transition><transition><source ref="id8"/><target ref="id7"/><label kind="guard" x="-560" y="-680">delta1 != na
and
(pre1 == none or res[p1][pre1])
and
(pre2 == none or res[p1][pre2])
and
not act[p1]</label><label kind="synchronisation" x="-560" y="-576">pbus[p1]!
</label><label kind="assignment" x="-560" y="-560">d[p1] := delta1</label>
</transition></template><system>// Place template instantiations here.
task_t1 = task3(t1, pre[t1][0], pre[t1][1], delta[t1][p1], delta[t1][p2], delta[t1][p3], delta[t1][bus]);
task_t2 = task3(t2, pre[t2][0], pre[t2][1], delta[t2][p1], delta[t2][p2], delta[t2][p3], delta[t2][bus]);
task_t3 = task3(t3, pre[t3][0], pre[t3][1], delta[t3][p1], delta[t3][p2], delta[t3][p3], delta[t3][bus]);
task_t4 = task3(t4, pre[t4][0], pre[t4][1], delta[t4][p1], delta[t4][p2], delta[t4][p3], delta[t4][bus]);
task_t5 = task3(t5, pre[t5][0], pre[t5][1], delta[t5][p1], delta[t5][p2], delta[t5][p3], delta[t5][bus]);
task_t6 = task3(t6, pre[t6][0], pre[t6][1], delta[t6][p1], delta[t6][p2], delta[t6][p3], delta[t6][bus]);
task_t7 = task3(t7, pre[t7][0], pre[t7][1], delta[t7][p1], delta[t7][p2], delta[t7][p3], delta[t7][bus]);
task_t8 = task3(t8, pre[t8][0], pre[t8][1], delta[t8][p1], delta[t8][p2], delta[t8][p3], delta[t8][bus]);
task_t9 = task3(t9, pre[t9][0], pre[t9][1], delta[t9][p1], delta[t9][p2], delta[t9][p3], delta[t9][bus]);
task_t10 = task3(t10, pre[t10][0], pre[t10][1], delta[t10][p1], delta[t10][p2], delta[t10][p3], delta[t10][bus]);

proc_bus = processor(bus,tau[bus],pi[bus]);
proc_p1 = processor(p1,tau[p1],pi[p1]);
proc_p2 = processor(p2,tau[p2],pi[p2]);
proc_p3 = processor(p3,tau[p3],pi[p3]);
// List one or more processes to be composed into a system.

system proc_bus, proc_p1, proc_p2, proc_p3, task_t1, task_t2, task_t3, task_t4, task_t5, task_t6, task_t7, task_t8, task_t9, task_t10;

</system></nta>

A.4.3 Four Processors, Ten Tasks, and a Bus

The third speci�cation, models a system with four processors, ten tasks, and a bus. Önly the deadlines
and number of tasks need to be changed for it to identical to all the other speci�cations with the same
amount of processors.

<?xml version="1.0" encoding="utf-8"?><!DOCTYPE nta PUBLIC '-//Uppaal Team//DTD Flat System 1.1//EN' '
http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.dtd'><nta><declaration>//constants used to identify processors in the various arrays
const int bus = 0;
const int p1 = 1;
const int p2 = 2;
const int p3 = 3;
const int p4 = 4;

const int t1 = 0;
const int t2 = 1;
const int t3 = 2;
const int t4 = 3;
const int t5 = 4;
const int t6 = 5;
const int t7 = 6;
const int t8 = 7;
const int t9 = 8;
const int t10 = 9;

// Place global declarations here.
const int tasks = 10;
const int procs = 4;

//what processors or buses are active
bool act[procs + 1];

131



//remaining running/transmission time
int d[procs + 1];

//array to keep track of what results have been received
bool res[procs + 1][tasks];

chan pbus[procs + 1];

//array of active rates
const int pi[procs + 1] = {11,5,4,4,5};
//array of idle rates
const int tau[procs + 1] = {1,1,1,4,5};

//broadcast times (kappa), run times on p1, run times on p2
const int na = -1;
//array holding: {broadcast time, delta p1, delta p2, delta p4}
const int delta[tasks ][procs +1] = {{7, 1, na, na, na}, //t1

{5, na, 2, na, na}, //t2
{6, 5, 4, 2, na}, //t3

{5, 2, 4, na, na}, //t4
{6, 3, 2, 2, na}, //t5
{4, 2, 3, na, na}, //t6
{2, 3, 1, 2, na}, //t7
{3, 4, 3, 4, na}, //t8
{4, 2, 4, na, na}, //t9
{3, 3, 1, 2, na}}; //t10

const int none = -1;
//array holding: {predecessor 1, predecessor 2}
const int pre[tasks][2] = {{none, none}, //t1

{none, none}, //t2
{ t1, t2}, //t3
{none, t2}, //t4
{ t3, t4}, //t5
{ t4, t5}, //t6
{ t6, none}, //t7
{ t7, none}, //t8
{none, t2}, //t9
{ t9, t8}}; //t10

clock systemClock;
const int dl = 24;</declaration><template><name>processor</name><parameter> const int p, const int tau, const int pi
</parameter><declaration>//internal clock for this processor
clock c;</declaration><location id="id0" x="-64" y="-32"><name x="-74" y="-62">active
</name><label kind="invariant" x="-96" y="0">c &lt;= d[p] &amp;&amp;
cost' == pi</label></location><location id="id1" x="-64" y="-136"><name x="-74" y="-166">idle
</name><label kind="invariant" x="-96" y="-192">cost' == tau</label></location><init ref="id1"/>
<transition><source ref="id1"/><target ref="id0"/><label kind="synchronisation" x="0" y="-112">pbus[p]?
</label><label kind="assignment" x="8" y="-80">c := 0,
act[p] := true</label><nail x="-24" y="-120"/><nail x="-16" y="-48"/></transition><transition><source ref="id0"/>
<target ref="id1"/><label kind="guard" x="-176" y="-120">c == d[p]</label><label kind="synchronisation" x="-168" y="-104">pbus[p]!
</label><label kind="assignment" x="-232" y="-64">act[p] := false</label><nail x="-112" y="-56"/><nail x="-112" y="-112"/>
</transition></template><template><name>task4</name>
<parameter>const int task, const int pre1, const int pre2, const int delta1, const int delta2, const int delta3, const int delta4, const int kappa
</parameter><location id="id2" x="-168" y="-448"><name x="-152" y="-440">processing_4</name>
</location><location id="id3" x="-440" y="-440"><name x="-416" y="-448">processing_3</name>
</location><location id="id4" x="-232" y="64"></location><location id="id5" x="-232" y="-80"><name x="-184" y="-96">broadcasting
</name></location><location id="id6" x="-240" y="-224"><name x="-304" y="-224">done
</name><label kind="invariant" x="-512" y="-240">systemClock &lt;= dl</label>
</location><location id="id7" x="248" y="-640"><name x="288" y="-648">processing_2</name>
</location><location id="id8" x="-680" y="-632"><name x="-792" y="-640">processing_1</name>
</location><location id="id9" x="-256" y="-640"><name x="-224" y="-680">unprocessed</name>
</location><init ref="id9"/><transition><source ref="id2"/><target ref="id6"/>
<label kind="synchronisation" x="-168" y="-384">pbus[p4]?</label><label kind="assignment" x="-168" y="-400">res[p4][task] := true
</label></transition><transition><source ref="id9"/><target ref="id2"/><label kind="guard" x="-160" y="-640">delta4 != na
and
(pre1 == none or res[p4][pre1])
and
(pre2 == none or res[p4][pre2])
and
not act[p4]</label><label kind="synchronisation" x="-160" y="-528">pbus[p4]!
</label><label kind="assignment" x="-160" y="-504">d[p4] := delta4</label>
</transition><transition><source ref="id3"/><target ref="id6"/><label kind="synchronisation" x="-472" y="-384">pbus[p3]?
</label><label kind="assignment" x="-528" y="-408">res[p3][task] := true</label>
</transition><transition><source ref="id9"/><target ref="id3"/><label kind="guard" x="-576" y="-624">delta3 != na
and
(pre1 == none or res[p3][pre1])
and
(pre2 == none or res[p3][pre2])
and
not act[p3]</label><label kind="synchronisation" x="-512" y="-504">pbus[p3]!
</label><label kind="assignment" x="-528" y="-488">d[p3] := delta3</label>
</transition><transition><source ref="id5"/><target ref="id4"/><label kind="synchronisation" x="-216" y="-32">pbus[bus]?
</label><label kind="assignment" x="-216" y="-16">res[p1][task] := true,
res[p2][task] := true,
res[p3][task] := true,
res[p4][task] := true</label></transition><transition><source ref="id6"/><target ref="id5"/>
<label kind="guard" x="-216" y="-208">not act[bus]</label><label kind="synchronisation" x="-216" y="-184">pbus[bus]!
</label><label kind="assignment" x="-216" y="-160">d[bus] := kappa</label>
</transition><transition><source ref="id8"/><target ref="id6"/><label kind="synchronisation" x="-632" y="-336">pbus[p1]?
</label><label kind="assignment" x="-656" y="-376">res[p1][task] := true
</label><nail x="-568" y="-408"/><nail x="-520" y="-352"/><nail x="-472" y="-304"/>
</transition><transition><source ref="id7"/><target ref="id6"/><label kind="synchronisation" x="40" y="-320">pbus[p2]?

132



</label><label kind="assignment" x="32" y="-336">res[p2][task] := true</label><nail x="88" y="-376"/><nail x="-32" y="-296"/>
</transition><transition><source ref="id9"/><target ref="id7"/><label kind="guard" x="56" y="-792">delta2 != na
and
(pre1 == none or res[p2][pre1])
and
(pre2 == none or res[p2][pre2])
and
not act[p2]</label><label kind="synchronisation" x="64" y="-688">pbus[p2]!
</label><label kind="assignment" x="64" y="-672">d[p2] := delta2</label>
</transition><transition><source ref="id9"/><target ref="id8"/><label kind="guard" x="-560" y="-792">delta1 != na
and
(pre1 == none or res[p1][pre1])
and
(pre2 == none or res[p1][pre2])
and
not act[p1]</label><label kind="synchronisation" x="-560" y="-688">pbus[p1]!
</label><label kind="assignment" x="-568" y="-664">d[p1] := delta1</label></transition></template><system>

// Place template instantiations here.
task_t1 = task4(t1, pre[t1][0], pre[t1][1], delta[t1][p1], delta[t1][p2], delta[t1][p3], delta[t1][p4], delta[t1][bus]);
task_t2 = task4(t2, pre[t2][0], pre[t2][1], delta[t2][p1], delta[t2][p2], delta[t2][p3], delta[t2][p4], delta[t2][bus]);
task_t3 = task4(t3, pre[t3][0], pre[t3][1], delta[t3][p1], delta[t3][p2], delta[t3][p3], delta[t3][p4], delta[t3][bus]);
task_t4 = task4(t4, pre[t4][0], pre[t4][1], delta[t4][p1], delta[t4][p2], delta[t4][p3], delta[t4][p4], delta[t4][bus]);
task_t5 = task4(t5, pre[t5][0], pre[t5][1], delta[t5][p1], delta[t5][p2], delta[t5][p3], delta[t5][p4], delta[t5][bus]);
task_t6 = task4(t6, pre[t6][0], pre[t6][1], delta[t6][p1], delta[t6][p2], delta[t6][p3], delta[t6][p4], delta[t6][bus]);
task_t7 = task4(t7, pre[t7][0], pre[t7][1], delta[t7][p1], delta[t7][p2], delta[t7][p3], delta[t7][p4], delta[t7][bus]);
task_t8 = task4(t8, pre[t8][0], pre[t8][1], delta[t8][p1], delta[t8][p2], delta[t8][p3], delta[t8][p4], delta[t8][bus]);
task_t9 = task4(t9, pre[t9][0], pre[t9][1], delta[t9][p1], delta[t9][p2], delta[t9][p3], delta[t9][p4], delta[t9][bus]);
task_t10 = task4(t10, pre[t10][0], pre[t10][1], delta[t10][p1], delta[t10][p2], delta[t10][p3], delta[t10][p4], delta[t10][bus]);

proc_bus = processor(bus,tau[bus],pi[bus]);
proc_p1 = processor(p1,tau[p1],pi[p1]);
proc_p2 = processor(p2,tau[p2],pi[p2]);
proc_p3 = processor(p3,tau[p3],pi[p3]);
proc_p4 = processor(p4,tau[p4],pi[p4]);
// List one or more processes to be composed into a system.

system proc_bus, proc_p1, proc_p2, proc_p3, proc_p4, task_t1, task_t2, task_t3, task_t4, task_t5, task_t6, task_t7, task_t8, task_t9, task_t10;

</system></nta>

133



134



Appendix B

Priced-Timed Maude Implementation

Listings

*** the sorts System and GlobalSystem may also be
*** needed to contain priced untimed systems
fmod UNTIMED-PRELUDE is

sorts System GlobalSystem .
op {_} : System -> GlobalSystem [format (g o g so)] .

endfm

*** Modified by PRICED-timed-maude
*** TIMED-OO-PRELUDDE split in two
mod OO-PRELUDE is

including CONFIGURATION .
sorts EmptyConfiguration NEConfiguration MsgConfiguration

NEMsgConfiguration ObjectConfiguration NEObjectConfiguration .
subsorts EmptyConfiguration < MsgConfiguration ObjectConfiguration

< Configuration .
subsorts Msg < NEMsgConfiguration < MsgConfiguration NEConfiguration .
subsorts Object < NEObjectConfiguration <

ObjectConfiguration NEConfiguration .
subsort NEConfiguration < Configuration .

--- op none : -> EmptyConfiguration . --- crashes w/ none for Configuration
op __ : EmptyConfiguration EmptyConfiguration -> EmptyConfiguration [ditto] .
op __ : NEConfiguration NEConfiguration -> NEConfiguration [ditto] .
op __ : MsgConfiguration MsgConfiguration -> MsgConfiguration [ditto] .
op __ : NEMsgConfiguration NEMsgConfiguration -> NEMsgConfiguration [ditto] .
op __ : ObjectConfiguration ObjectConfiguration ->

ObjectConfiguration [ditto] .
op __ : NEObjectConfiguration NEObjectConfiguration ->

NEObjectConfiguration [ditto] .
endm

*** ************************************************
*** ************************************************
***
*** PRICED-TIMED MAUDE stuff
***
*** ************************************************
*** ************************************************
--- For now all cost related stuff is added here

--- method borrowed from Real-Time Maude
fmod COST is
sorts Cost NzCost CostInf .

subsort NzCost < Cost < CostInf .

op infcost : -> CostInf [ctor] .
--- operators that are used on nats and rats need to be renamed or
--- they weill conflict with rtms operators
op _pluss_ : Cost Cost -> Cost [assoc comm id:free prec 33 gather (E e)] .

op free : -> Cost .

op _cheaper than_ : Cost Cost -> Bool [prec 37] .
op _cheaper than or eq_ : Cost Cost -> Bool [prec 37] .

vars C C' : Cost .

eq C cheaper than or eq C' = (C cheaper than C') or (C == C') .

--- infcost is a special value indicating: no term matching our
--- query has been found
eq C cheaper than infcost = true .

135



eq infcost cheaper than C = false .
endfm

fmod DIVIDE-COST is
inc COST .
op div2 : Cost -> Cost .

eq div2(free) = free .
endfm

--- defines max and min for costs
--- not strictly a definition of linear
--- is this one needed?
--- maybe there's a way to separate out the overloading of
--- minimum, maximum, lt, gt, le, ge, pkus and monus from
--- real-time maude and share it, for instance in a
--- nat-rat-domain.maude or something
fmod LCOST is

including COST .

ops minCost maxCost : Cost Cost -> Cost [assoc comm] .

vars C C' : Cost .
ceq maxCost(C, C') = C if C' cheaper than or eq C .
ceq minCost(C, C') = C' if C' cheaper than or eq C .

endfm

fmod ABSTRACT-COST is
including LCOST .
including DIVIDE-COST .

endfm

--- costs represented by the domain of natural numbers
--- same techniques as for Time in Real-Time Maude
fmod NAT-COST-DOMAIN is
including ABSTRACT-COST .
protecting NAT .

subsort Nat < Cost .
subsort NzNat < NzCost .

vars N N' : Nat .

eq free = 0 .
eq N pluss N' = N + N' .
eq N cheaper than N' = N < N' .

eq div2(N) = N quo 2 .
endfm

--- the following defines the postive rational numbers as the cost
--- domain much like this is done for time in Real-Time Maude
fmod POSRAT-COST-DOMAIN is

including ABSTRACT-COST .
inc POSITIVE-RAT .

subsort NNegRat < Cost .
subsort PosRat < NzCost .

vars R R' : NNegRat .

eq free = 0 .
eq R pluss R' = R + R' .

eq R cheaper than R' = R < R' .

eq div2(R) = R / 2 .
endfm

fmod PRICED-SYSTEM is
including UNTIMED-PRELUDE .
protecting COST .
*** Do we need something like [_] to contain the PricedSystem?
sorts SystemState PricedSystem .
subsort SystemState PricedSystem < System .

op _with cost_ : PricedSystem Cost
-> PricedSystem [prec 95 gather (E e)] .

endfm

mod PRICED-OO-SYSTEM is
protecting PRICED-SYSTEM .
protecting OO-PRELUDE .

subsort Configuration < SystemState .
endm

--- This is simply an extension of PRICED-CONF
--- to make it work within timed-oo-systems
--- the sort System is not defined in Maude
--- or Full-Maude
fmod PRICED-TIMED-SYSTEM is
including PRICED-SYSTEM .
including TIMED-PRELUDE .

136



sort PricedTimedSystem .
subsort ClockedSystem < PricedTimedSystem .

--- To enable tick rules of the form
--- {t} => {t'} in time T with cost C
--- the following is needed
op _with cost_ : ClockedSystem Cost

-> PricedTimedSystem [prec 95 gather (E e)] .
endfm

fmod PRICED-MODEL-CHECKER is
including TIMED-MODEL-CHECKER .
including PRICED-SYSTEM .

endfm

mod PRICED-TIMED-OO-SYSTEM is
including LTIME-INF .
including PRICED-OO-SYSTEM .
including TIMED-OO-PRELUDE .
including PRICED-TIMED-SYSTEM .

var R : Time .
vars NeC NeC' : NEConfiguration .
var C : Cost .

op delta : PricedSystem Time
-> PricedSystem [frozen (1)] .

eq delta(NeC with cost C, R) = delta(NeC, R) with cost C .
eq delta(NeC NeC', R) = delta(NeC, R) delta(NeC', R) .
eq delta(none, R) = none .

op mte : PricedSystem -> TimeInf [frozen (1)] .
eq mte(NeC with cost C) = mte(NeC) .
eq mte(NeC NeC') =

minimum(mte(NeC), mte(NeC')) .
eq mte(none) = INF .

op rate : PricedSystem -> Cost [frozen (1)] .
eq rate(NeC with cost C) = rate(NeC) .
eq rate(NeC NeC') =

rate(NeC) pluss rate(NeC') .
eq rate(none) = free .

endm

*** This module is now included into in TIMED-MODULE-SYNTAX
fmod PRICED-MODULE-SYNTAX is

including VIEWS .

*** UnTimed Priced and Priced-OO modules and theories:
op pmod_is_endpm : @Interface@ @SDeclList@ -> @Module@ .
op pomod_is_endpom : @Interface@ @SDeclList@ -> @Module@ .

*** Priced-Timed modules and theories:
op ptmod_is_endptm : @Interface@ @SDeclList@ -> @Module@ .
op ptth_is_endptth : @Interface@ @SDeclList@ -> @Module@ .

*** Object-oriented priced-timed modules and theories:
op ptomod_is_endptom : @Interface@ @ODeclList@ -> @Module@ .
op ptoth_is_endptoth : @Interface@ @ODeclList@ -> @Module@ .

endfm

*** define user level PTM commands
*** imported into REAL-TIME-MAUDE-SYNTAX
fmod PTM-COMMAND-SYNTAX is

including COMMANDS .

*** PRICED-TIMED MAUDE commands
*** the priced timed search command, last bubble is cost limit
*** no limit can easily be implemented too
op ptsearch_=>*_in time <_with cost <_. : @Bubble@ @Bubble@

@Bubble@ @Bubble@
-> @Command@ .

op ptsearch_=>*_in time <_with cost <=_. : @Bubble@ @Bubble@
@Bubble@ @Bubble@
-> @Command@ .

op ptsearch_=>*_in time <=_with cost <_. : @Bubble@ @Bubble@
@Bubble@ @Bubble@
-> @Command@ .

op ptsearch_=>*_in time <=_with cost <=_. : @Bubble@ @Bubble@
@Bubble@ @Bubble@
-> @Command@ .

op ptsearch_=>!_in time <_with cost <_. : @Bubble@ @Bubble@
@Bubble@ @Bubble@
-> @Command@ .

op ptsearch_=>!_in time <_with cost <=_. : @Bubble@ @Bubble@
@Bubble@ @Bubble@
-> @Command@ .

op ptsearch_=>!_in time <=_with cost <_. : @Bubble@ @Bubble@
@Bubble@ @Bubble@
-> @Command@ .

op ptsearch_=>!_in time <=_with cost <=_. : @Bubble@ @Bubble@

137



@Bubble@ @Bubble@
-> @Command@ .

*** priced-timed search with just a cost limit
op ptsearch_=>*_with no time limit with cost <_. : @Bubble@

@Bubble@
@Bubble@
-> @Command@ .

op ptsearch_=>*_with no time limit with cost <=_. : @Bubble@
@Bubble@
@Bubble@
-> @Command@ .

op ptsearch_=>!_with no time limit with cost <_. : @Bubble@
@Bubble@
@Bubble@
-> @Command@ .

op ptsearch_=>!_with no time limit with cost <=_. : @Bubble@
@Bubble@
@Bubble@
-> @Command@ .

*** priced-timed search with just a time limit
*** can use parse path of find cheapest with time limit
op ptsearch_=>*_in time <_with no cost limit. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .
op ptsearch_=>*_in time <=_with no cost limit. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .

op ptsearch_=>!_in time <_with no cost limit. : @Bubble@ @Bubble@ @Bubble@
-> @Command@ .

op ptsearch_=>!_in time <=_with no cost limit. : @Bubble@ @Bubble@ @Bubble@
-> @Command@ .

*** and finally ptsearch with no limits
op ptsearch_=>*_with no limits . : @Bubble@ @Bubble@ -> @Command@ .
op ptsearch_=>!_with no limits . : @Bubble@ @Bubble@ -> @Command@ .

*** find cheapest, finds the cheapest solution in a given time
op find cheapest_=>*_in time <_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .
op find cheapest_=>*_in time <=_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .
*** find cheapest with no limits
op find cheapest_=>*_with no time limit. : @Bubble@ @Bubble@

-> @Command@ .

*** find cheapest, finds the cheapest solution in a given time
op binary find cheapest_=>*_in time <_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .
op binary find cheapest_=>*_in time <=_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .
*** find cheapest with no limits
op binary find cheapest_=>*_with no time limit . : @Bubble@ @Bubble@

-> @Command@ .

*** fair rew
op ptfrew_in time <=_with cost <_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .
op ptfrew_in time <=_with cost <=_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .
op ptfrew_in time <_with cost <_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .
op ptfrew_in time <_with cost <=_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .

*** without cost limit
op ptfrew_in time <=_with no cost limit. : @Bubble@ @Bubble@

-> @Command@ .
op ptfrew_in time <_with no cost limit. : @Bubble@ @Bubble@

-> @Command@ .

*** without time limit
op ptfrew_with no time limit with cost <_. : @Bubble@ @Bubble@

-> @Command@ .
op ptfrew_with no time limit with cost <=_. : @Bubble@ @Bubble@

-> @Command@ .

*** without time and cost limit
op ptfrew_with no limits. : @Bubble@ -> @Command@ .

*** unfair rew
op ptrew_in time <=_with cost <_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .
op ptrew_in time <=_with cost <=_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .
op ptrew_in time <_with cost <_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .
op ptrew_in time <_with cost <=_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .
*** without cost limit
op ptrew_in time <=_with no cost limit. : @Bubble@ @Bubble@

-> @Command@ .
op ptrew_in time <_with no cost limit. : @Bubble@ @Bubble@

-> @Command@ .
*** without time limit
op ptrew_with no time limit with cost <_. : @Bubble@ @Bubble@

-> @Command@ .

138



op ptrew_with no time limit with cost <=_. : @Bubble@ @Bubble@
-> @Command@ .

*** without time and cost limit
op ptrew_with no limits. : @Bubble@ -> @Command@ .

*** some simple untimed commands
*** TPL
op psearch_=>*_with cost <_. : @Bubble@ @Bubble@

@Bubble@ -> @Command@ .

op psearch_=>*_with cost <=_. : @Bubble@ @Bubble@
@Bubble@ -> @Command@ .

op priced find earliest_=>*_with no cost limit. : @Bubble@ @Bubble@ -> @Command@ .
op priced find earliest_=>*_with cost <=_. : @Bubble@ @Bubble@ @Bubble@ -> @Command@ .
op priced find earliest_=>*_with cost <_. : @Bubble@ @Bubble@ @Bubble@ -> @Command@ .

*** TL
op prew_with cost <_. : @Bubble@ @Bubble@ -> @Command@ .
op prew_with cost <=_. : @Bubble@ @Bubble@ -> @Command@ .
op pfrew_with cost <_. : @Bubble@ @Bubble@ -> @Command@ .
op pfrew_with cost <=_. : @Bubble@ @Bubble@ -> @Command@ .

*** TPL
op ut find cheapest_=>*_. : @Bubble@ @Bubble@

-> @Command@ .

*** The following are the Real-Time Maude model checking comamnds
*** simply modified to accept priced modules
*** this is done by applying the pricify transomformation
*** to them and adding a cost to the search pattern and initial term
op pcheck_|= <>_with no time limit . : @Bubble@ @Bubble@

-> @Command@ .
op pcheck_|= <>_in time <_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .
op pcheck_|= <>_in time <=_. : @Bubble@ @Bubble@ @Bubble@

-> @Command@ .

op pcheck_|=_until_with no time limit . : @Bubble@ @Bubble@
@Bubble@ -> @Command@ .

op pcheck_|=_until_in time <_. : @Bubble@ @Bubble@ @Bubble@
@Bubble@ -> @Command@ .

op pcheck_|=_until_in time <=_. : @Bubble@ @Bubble@ @Bubble@
@Bubble@ -> @Command@ .

op pcheck_|=_untilStable_with no time limit . : @Bubble@ @Bubble@
@Bubble@
-> @Command@ .

op pcheck_|=_untilStable_in time <_. : @Bubble@ @Bubble@ @Bubble@
@Bubble@ -> @Command@ .

op pcheck_|=_untilStable_in time <=_. : @Bubble@ @Bubble@ @Bubble@
@Bubble@ -> @Command@ .

op pmc_|=u_. : @Bubble@ @Bubble@ -> @Command@ .
op pmc_|=t_with no time limit . : @Bubble@ @Bubble@ -> @Command@ .
op pmc_|=t_in time <=_. : @Bubble@ @Bubble@ @Bubble@ -> @Command@ .
op pmc_|=t_in time <_. : @Bubble@ @Bubble@ @Bubble@ -> @Command@ .

endfm

*** Following module contains functions similar
*** to the ones found in GLOBALIZATION, but these
*** functions relate to cost.
fmod PRICIFY is
protecting GLOBALIZATION .

sort NoTerm .
subsort Term < NoTerm .

op NTerm : -> NoTerm [ctor] .

vars T T' T'' LHS RHS : Term .
var F : Qid .
vars TL TL' : TermList .
vars COND COND' : Condition .
var M : Module .
vars Q Q' Q'' Q''' : Qid .
var SDL : SubsortDeclSet .
var RL : Rule .
var AS : AttrSet .
var IL : ImportList .
var SS : SortSet .
var SSDS : SubsortDeclSet .
var OPDS : OpDeclSet .
var MAS : MembAxSet .
var EQS : EquationSet .
vars RLS RLS' : RuleSet .
var RULE : Rule .
var H : Header .
var N : Nat .
var OO : Bool .

*** Add a given cost to a term
op makePriced : Term Term -> Term .
eq makePriced('_in`time_[T, T'], T'')

139



= '_in`time_[makePriced(T, T''), T'] .
eq makePriced('`{_`}[T], T') = '`{_`}[makePriced(T, T')] .
eq makePriced('_with`cost_[T,T''], T')
= '_with`cost_[T, '_pluss_[T'',T']] .
eq makePriced(T, T') = '_with`cost_[T,T'] [owise] .

*** Another help function, it simply determines if there
*** is a 'with cost' in a term, much like
*** the function inTimeTerm.
*** Due to it's simplicity and elegance, the function
*** inTimeTerm has ben adapted for the purpose of finding
*** a 'with cost' term in this function
op withCostTerm : Module Term -> Bool .
op withCostTerm : TermList -> Bool .
eq withCostTerm(M, T) =

withCostTerm(T) and (leastSort(M, T) == 'PricedSystem
or leastSort(M, T) == 'PricedTimedSystem) .

*** we need an extra layer of checks to remove the in_time term
*** andd the {_} part
*** This may not be safe?
eq withCostTerm(F[TL])

= if F == '_with`cost_ then
true
else
withCostTerm(TL)

fi .

ceq withCostTerm((T, TL)) = withCostTerm(T) or withCostTerm(TL)
if TL =/= empty .

eq withCostTerm(T) = false [owise] .

*** Aux function that determines if a rule is a priced rule
op pricedRule : Rule -> Bool .
eq pricedRule(crl LHS => RHS if COND [AS] .) =

pricedRule(rl LHS => RHS [AS] .) .

eq pricedRule(rl LHS => RHS [AS] .)
= withCostTerm(RHS) .

*** This aux function figures out if one sort is a subsort of another
*** This is basically equal to finding the path in a graph
*** if there's a path between Q and Q',
*** then Q is a subsort of Q', othewise it isn't
*** There may be a more elegant method of doing this,
*** or this has already been done.
*** But the operator :: fails to parse
*** if the RHS is a non-existing sort.
op subsortOf : Qid Qid Module -> Bool .
op subsortOf : Qid Qid SubsortDeclSet -> Bool .
eq subsortOf(Q, Q', M) = subsortOf(Q, Q', getSubsorts(M)) .
eq subsortOf(Q, Q', subsort Q < Q' . SDL) = true .
ceq subsortOf(Q, Q', subsort Q < Q'' . SDL)

= subsortOf(Q'', Q', SDL) if Q' =/= Q'' .
eq subsortOf(Q, Q', none) = false .
eq subsortOf(Q, Q', subsort Q'' < Q''' . SDL) = false [owise] .

*** Extract the cost from a term
op costPart : NoTerm -> NoTerm .
op costPart : Module Term -> Term .
eq costPart(M, T) = costPart(getTerm(metaReduce(M, T))) .
op costPart : Term -> Term .
eq costPart('_in`time_[T, T']) = costPart(T) .
eq costPart('`{_`}[T]) = costPart(T) .
---- now the cost is 0 if T has leastsort =/= PricedSystem
eq costPart('_with`cost_[T,T']) = T' .
eq costPart(NTerm) = 'infcost.CostInf .

*** Now an aux function to make sure the whole systemis contained
*** on the left hand side (LHS) of a rule.
*** For tick rules we just need to add cost,
*** for instantanious priced rules we need to add a cost and
*** {_} to contain the whole system, if Configuration :: SystemState
*** we also need to add a variable of sort Configuration.
op pricifyTerm : Bool Term Module -> Term .

*** If we do not find {_}, we add one and the rest of the system,
*** and add a with cost term inside.
*** if we find a {_} at the top level of the term we simply add
*** a cost to it
eq pricifyTerm(true, T, M) = makePriced(T, newCostVar(T, 'OLDCOST)) .
ceq pricifyTerm(false, T, M)

= if OO then
if withCostTerm(T) then
makePriced(makePriced('`{_`}['__[Q',stripCost(T)]],

Q), costPart(T))
else
makePriced('`{_`}['__[Q',T]], Q)

fi
else
makePriced('`{_`}[T], Q)

fi

140



if Q := newCostVar(T, 'OLDCOST)
/\ OO := subsortOf('Configuration, 'SystemState, M)
/\ Q' := if OO then

newConfVar(T, 'C)
else
'none fi [owise] .

*** The first part of our transformation:
*** - All priced rules are transofrmed so that
*** they contain the whole system and the old price in the LHS
*** and transfer this to the RHS
op pricifyMod : Module -> Module .
eq pricifyMod(FM:FModule) = FM:FModule .
eq pricifyMod(mod H is IL sorts SS . SSDS OPDS MAS EQS RLS endm)
= (mod H is IL sorts SS . SSDS OPDS MAS EQS

pricifyRls(RLS, mod H is IL sorts SS . SSDS OPDS MAS
EQS RLS endm) endm) .

*** We now want to flatten all rules that are priced.
*** We do this by adding a with cost term in the
*** left hand side of the rule, aswell as making ure the
*** whole system state is preserved.
*** We must now make sure the rest of the system state
*** and the total cost is transferred into the new state by the
*** rule
op pricifyRls : RuleSet Module -> RuleSet .
eq pricifyRls(RL RLS, M) =

if pricedRule(RL) or tickRule(RL) then
pricifyRule(RL, M)

else
RL

fi
pricifyRls(RLS, M) .

eq pricifyRls(none, M) = none .

*** it is not enought to simply add cost, we also need
*** the {_} operator and the rest of the system for instantanous rules
*** tick for tick rules the cost of the system needs to be moved inside the {_}
op pricifyRule : Rule Module -> Rule .

*** Instantaneous rules
*** rl LHS => RHS with cost C .
*** =>
*** rl {LHS with cost OLDCOST:Cost} => {RHS with cost OLDCOST:Cost} .
ceq pricifyRule(rl LHS => '_with`cost_[RHS,T] [AS] ., M) =

(rl pricifyTerm(false, LHS, M)
=>
pricifyTerm(false, '_with`cost_[RHS,T], M) [AS] .)

if not globalSystemTerm(LHS) .

*** rl LHS => RHS with cost C if COND .
*** =>
*** rl {LHS with cost OLDCOST:Cost} => {RHS with cost OLDCOST:Cost} if COND .
ceq pricifyRule(crl LHS => '_with`cost_[RHS,T] if COND [AS] ., M) =

(crl pricifyTerm(false, LHS, M)
=>
pricifyTerm(false, '_with`cost_[RHS,T], M) if COND [AS] .)

if not globalSystemTerm(LHS) .

*** Tick rules
*** match patterns:
*** rl {LHS} => {RHS} in time T .
*** =>
*** rl {LHS with cost OLDCOST:Cost} => {RHS with cost OLDCOST:Cost} in time T .
eq pricifyRule(rl '`{_`}[LHS] => '_in`time_['`{_`}['R:SystemState],T] [AS] ., M) =

(rl pricifyTerm(true, '`{_`}[LHS], M)
=>
pricifyTerm(true, '_in`time_['`{_`}['R:SystemState],T], M) [AS] .) .

*** rl {LHS} => {RHS} in time T .
*** =>
*** rl {LHS with cost OLDCOST:Cost} => {RHS with cost OLDCOST:Cost } in time T .
eq pricifyRule(crl '`{_`}[LHS] => '_in`time_['`{_`}[RHS],T] if COND [AS] ., M) =

(crl pricifyTerm(true, '`{_`}[LHS], M)
=>
pricifyTerm(true, '_in`time_['`{_`}[RHS],T], M) if COND [AS] .) .

*** rl {LHS} => {RHS} in time T with cost C .
*** =>
*** rl {LHS with cost OLDCOST:Cost} => {RHS with cost OLDCOST:Cost pluss C} in time T .
eq pricifyRule(rl '`{_`}[LHS] => '_with`cost_['_in`time_['`{_`}[RHS],T],T'] [AS] ., M) =

(rl pricifyTerm(true, '`{_`}[LHS], M)
=>
pricifyTerm(true, '_in`time_['`{_`}['_with`cost_[RHS,T']],T], M) [AS] .) .

*** crl {LHS} => {RHS} in time T if COND .
*** =>
*** crl {LHS with cost OLDCOST:Cost} => {RHS with cost OLDCOST:Cost} in time T
*** if COND .
eq pricifyRule(crl '`{_`}[LHS] => '_in`time_['`{_`}[RHS],T] if COND [AS] ., M) =

(crl pricifyTerm(true, '`{_`}[LHS], M)
=>

pricifyTerm(true, '_in`time_['`{_`}[RHS],T], M) if COND [AS] .) .

141



*** crl {LHS} => {RHS} in time T with cost C .
*** =>
*** crl {LHS with cost OLDCOST:Cost} => {RHS with cost OLDCOST:Cost pluss C} in time T .
eq pricifyRule(crl '`{_`}[LHS] => '_with`cost_['_in`time_['`{_`}[RHS],T],T'] if COND [AS] ., M) =

(crl pricifyTerm(true, '`{_`}[LHS], M)
=>

pricifyTerm(true, '_in`time_['`{_`}['_with`cost_[RHS,T']],T], M) if COND [AS] .) .

*** Strip the with cost operator, thus the cost from a term
op stripCost : NoTerm -> NoTerm .
op stripCost : Term -> Term .
eq stripCost('_in`time_[T, T']) = '_in`time_[stripCost(T), T'] .
eq stripCost('`{_`}[T]) = '`{_`}[stripCost(T)] .
eq stripCost('_with`cost_[T,T'']) = T .
eq stripCost(NTerm) = NTerm .
eq stripCost(T) = T [owise] .

*** Determine if 1 cost smaller than another
op cheaper : Term Term -> Bool .
eq cheaper(T, T') = downTerm('_cheaper`than_[T,T'], true) .

*** Does exactly the same as myNewVar
*** determines the next free name of a Cost var in a rule or term
op newCostVar : Rule Qid -> Variable .
op newCostVar : Term Qid -> Variable .

op newCostVar : Rule Qid Nat -> Variable .
op newCostVar : Term Qid Nat -> Variable .

ceq newCostVar(RULE, Q)
= if Q' in vars(RULE) then

newCostVar(RULE, Q, 1)
else
'TIME_ELAPSED:Time

fi
if Q' := conc(Q, ':Cost) .

ceq newCostVar(RULE, Q, N)
= if Q' in vars(RULE) then

newCostVar(RULE, Q, N + 1)
else
Q'

fi
if Q' := conc(index(conc(Q, '#), N), ':Cost) .

ceq newCostVar(T, Q)
= if Q' in vars(T) then

newCostVar(T, Q, 1)
else
Q'

fi
if Q' := conc(Q, ':Cost) .

ceq newCostVar(T, Q, N)
= if Q' in vars(T) then

newCostVar(T, Q, N + 1)
else
Q'

fi
if Q' := conc(index(conc(Q, '#), N), ':Cost) .

*** Should make a more generic function
*** Does exactly the same as myNewVar
*** determines the next free name of a Cconfiguration var in a rule or term
op newConfVar : Rule Qid -> Variable .
op newConfVar : Term Qid -> Variable .

op newConfVar : Rule Qid Nat -> Variable .
op newConfVar : Term Qid Nat -> Variable .

ceq newConfVar(RULE, Q)
= if Q' in vars(RULE) then

newConfVar(RULE, Q, 1)
else
'TIME_ELAPSED:Time

fi
if Q' := conc(Q, ':Configuration) .

ceq newConfVar(RULE, Q, N)
= if Q' in vars(RULE) then

newConfVar(RULE, Q, N + 1)
else
Q'

fi
if Q' := conc(index(conc(Q, '#), N), ':Configuration) .

ceq newConfVar(T, Q)
= if Q' in vars(T) then

newConfVar(T, Q, 1)
else
Q'

fi
if Q' := conc(Q, ':Configuration) .

142



ceq newConfVar(T, Q, N)
= if Q' in vars(T) then

newConfVar(T, Q, N + 1)
else
Q'

fi
if Q' := conc(index(conc(Q, '#), N), ':Configuration) .

--- The term transformation \texttt{pricifyInit} injects a `\texttt{with cost free}' into an initial term
op pricifyInit : Term -> Term .
eq pricifyInit(T) = makePriced(T, 'free.Cost) .

--- The term transformation \texttt{pricifyPattern} injects a `\texttt{with cost TOTAL_COST_INCURRED:Cost}' into a search pattern
op pricifyPattern : Term -> Term .
eq pricifyPattern(T) = makePriced(T, newCostVar(T,'TOTAL_COST_INCURRED)) .

--- move 'with cost' from within {}
--- to behind the {}
op metaMoveCost : Term -> Term .
eq metaMoveCost('_in`time_['`{_`}['_with`cost_[T,T']],T'']) = '_with`cost_['_in`time_['`{_`}[T],T''],T'] .

endfm

*** Second part of the transformation:
*** - Add a given cost limit to all priced rules
fmod COST-LIMIT-TRANSFORMATION is

pr PRICIFY .

var B : Bool .
vars T T' LHS RHS : Term .
vars COND COND' : Condition .
var M : Module .
var SDL : SubsortDeclSet .
var RL : Rule .
var AS : AttrSet .
var IL : ImportList .
var SS : SortSet .
var SSDS : SubsortDeclSet .
var OPDS : OpDeclSet .
var MAS : MembAxSet .
var EQS : EquationSet .
vars RLS RLS' : RuleSet .
var RULE : Rule .
var H : Header .

*** Aux function that generates conditions to add to a rule
*** The first Term is the left side of the inequality
*** The second the right side
ops cheaperCond cheaperEqCond : Term Term -> Condition .
eq cheaperCond(T,T') = 'true.Bool = '_cheaper`than_[T,T'] .
eq cheaperEqCond(T,T')

= 'true.Bool = '_or_['_cheaper`than_[T,T'],'_==_[T,T']] .

*** Parameters:
*** - Mod
*** - true if <, false if <=
*** - the value of the cost limit
op costLimitMod : Module Bool Term -> Module .

eq costLimitMod(FM:FModule, B, T) = FM:FModule .
eq costLimitMod(mod H is IL sorts SS . SSDS OPDS MAS EQS RLS endm,

B, T)
= (mod H is IL sorts SS . SSDS OPDS MAS EQS

costLimitRls(RLS, B, T) endm) .

op costLimitRls : RuleSet Bool Term -> RuleSet .
eq costLimitRls(RL RLS, B, T)

=
if pricedRule(RL) then
costLimitRule(RL, B, T)

else
RL

fi
costLimitRls(RLS, B, T) .

eq costLimitRls(none, B, T) = none .

*** Now the actual transformation of each rule
op costLimitRule : Rule Bool Term -> Rule .
ceq costLimitRule(crl LHS => RHS if COND [AS] ., B, T) =

(crl LHS => RHS if COND /\ COND' [AS] .)
if COND' :=

if B then
cheaperCond(costPart(RHS), T)

else
cheaperEqCond(costPart(RHS), T)

fi .

ceq costLimitRule(rl LHS => RHS [AS] ., B, T) =
(crl LHS => RHS if COND [AS] .)
if COND :=

if B then
cheaperCond(costPart(RHS), T)

else

143



cheaperEqCond(costPart(RHS), T)
fi .

endfm

fmod PRICIFY-PROPS is
protecting TIMED-MODULE-TRANSFORMATIONS .

var IL : ImportList .
var SS : SortSet .
var SSDS : SubsortDeclSet .
var OPDS : OpDeclSet .
var MAS : MembAxSet .
var EQS : EquationSet .
var RLS : RuleSet .
var H : Header .

op pricifyProperties : Module -> Module .

eq pricifyProperties(mod H is IL sorts SS . SSDS OPDS MAS EQS RLS endm) =
(mod H is IL sorts SS . SSDS OPDS MAS
(EQS (ceq '_|=_['`{_`}['_with`cost_['S:SystemState, 'C:Cost]], 'P:Prop] = 'true.Bool
if '_|=_['`{_`}['S:SystemState], 'P:Prop] = 'true.Bool [none] . ))
RLS endm) .

eq pricifyProperties(fmod H is IL sorts SS . SSDS OPDS MAS EQS endfm) =
(fmod H is IL sorts SS . SSDS OPDS MAS
(EQS (ceq '_|=_['`{_`}['_with`cost_['S:SystemState, 'C:Cost]], 'P:Prop] = 'true.Bool
if '_|=_['`{_`}['S:SystemState], 'P:Prop] = 'true.Bool [none] . ))

endfm) .
endfm

fmod PRICED-MODULE-TRANSFORMATIONS is
protecting PRICIFY .
protecting COST-LIMIT-TRANSFORMATION .
protecting PRICIFY-PROPS .

endfm

fmod PRICED-TIMED-SEARCH is
pr PRICED-MODULE-TRANSFORMATIONS .
pr TIMED-META-SEARCH .

*** This is a simple search with a time and price bound
*** Typical: Can some state matching a pattern and condition
*** be found within x time and y cost.
var M : Module .
vars INITIALSTATE SEARCHPATTERN TIMEBOUND COSTBOUND : Term .
var CHEAPER : Bool .
var COND : Condition .
var R : ResultTriple? .
var R' : Substitution? .
var COMP : ComparisonOp .
var TM : TickMode .
var Q : Qid .
var D : Bound .
var N : Nat .
*** Parameters:
*** - Module,
*** - Term, initial state
*** - Term, search pattern
*** - Condition
*** - ComparisonOp, lt, le
*** - Term, time bound
*** - TickMode,
*** - Bool, true = cheaper than, false cheaper than eq
*** (This could possibly use comparisonop too)
*** - Term, cost bound
op pricedTimedSearch : Module Term Term Condition Qid Bound

Nat ComparisonOp Term TickMode Bool Term
-> ResultTriple? .

*** 1) add with cost 0 to INITIALSTATE
*** 2) add with cost TOTAL_COST_INCURRED:Cost to SEARCHPATTERN
*** 3) determine whether we are lookign for cheaper than or cheaper
*** than eq cost bound
*** 4) Transform M with costLimitMod
*** 5) Send all the stuff to TIMED-META-SEARCH
eq pricedTimedSearch(M, INITIALSTATE, SEARCHPATTERN,

COND, Q, D, N, COMP, TIMEBOUND, TM,CHEAPER,
COSTBOUND)

= timedMetaSearch(costLimitMod(pricifyMod(M),CHEAPER,COSTBOUND),
pricifyInit(INITIALSTATE),
pricifyPattern(SEARCHPATTERN),
COND, Q, D, N, COMP, TIMEBOUND, TM) .

*** this version has no cost limit
op pricedTimedSearch : Module Term Term Condition Qid Bound

Nat ComparisonOp Term TickMode
-> ResultTriple? .

eq pricedTimedSearch(M, INITIALSTATE, SEARCHPATTERN,
COND, Q, D, N, COMP, TIMEBOUND, TM)

= timedMetaSearch(pricifyMod(M), pricifyInit(INITIALSTATE), pricifyPattern(SEARCHPATTERN),
COND, Q, D, N, COMP, TIMEBOUND, TM) .

144



endfm

fmod PRICED-UNTIMED-SEARCH is
pr PRICED-MODULE-TRANSFORMATIONS .
pr EXPAND-OBJECT-PATTERN .

*** This is a simple search with a time and price bound
*** Typical: Can some state matching a pattern and condition
*** be found within x time and y cost.
var M : Module .
vars INITIALSTATE SEARCHPATTERN TIMEBOUND COSTBOUND : Term .
var CHEAPER : Bool .
var COND : Condition .
var R : ResultTriple? .
var R' : Substitution? .
var Q : Qid .
var D : Bound .

*** Parameters:
*** - Module,
*** - Term, initial state
*** - Term, search pattern
*** - Condition
*** - ComparisonOp, lt, le
*** - Term, time bound
*** - TickMode,
*** - Bool, true = cheaper than, false cheaper than eq
*** (This could possibly use comparisonop too)
*** - Term, cost bound
op pricedSearch : Module Term Term Condition Qid Bound

Bool Term
-> ResultTriple? .

*** 3) determine whether we are lookign for cheaper than or cheaper
*** than eq cost bound
*** 4) Transform M with costLimitMod
*** 5) Send all the stuff to TIMED-META-SEARCH
eq pricedSearch(M, INITIALSTATE, SEARCHPATTERN,

COND, Q, D, CHEAPER,
COSTBOUND)

= metaSearch(costLimitMod(pricifyMod(M),CHEAPER,COSTBOUND),
pricifyInit(INITIALSTATE),
expandObjectPattern(M, pricifyPattern(SEARCHPATTERN)),
COND, Q, D, 0) .

endfm

fmod FIND-CHEAPEST is
pr PRICED-TIMED-SEARCH .

var M : Module .
vars INITIALSTATE SEARCHPATTERN TIMEBOUND COSTBOUND : Term .
var D : Bound .
var CHEAPER : Bool .
var COND : Condition .
var R : ResultTriple? .
var R' : Substitution? .
var COMP : ComparisonOp .
var TM : TickMode .
vars THIS_SEARCH PREV_SEARCH : ResultTriple? .
var Q : Qid .

*** findCheapest takes the following arguments:
*** - Module
*** - Term, the initial term
*** - Term, the search pattern
*** - Condition, an odinary such that condition
*** - ComparisonOp, < or <=
*** - Term, timebound
*** - TickMode, current time sampling strat
op findCheapest : Module Term Term Condition Qid Bound

ComparisonOp Term TickMode -> ResultTriple? .

op findCheapest : Module Term Term Condition Qid Bound
ComparisonOp Term TickMode Term ResultTriple? -> ResultTriple? .

ceq findCheapest(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP,
TIMEBOUND, TM)

= if THIS_SEARCH =/= failure then
findCheapest(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP,

TIMEBOUND, TM,
costPart(getTerm(THIS_SEARCH)),
THIS_SEARCH)

else
failure

fi
if THIS_SEARCH :=

pricedTimedSearch(M, INITIALSTATE, SEARCHPATTERN,
COND, Q, D,
0, COMP, TIMEBOUND, TM, true, 'infcost.CostInf) .

ceq findCheapest(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP,
TIMEBOUND, TM, COSTBOUND, PREV_SEARCH)

145



= if THIS_SEARCH =/= failure then
findCheapest(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP,

TIMEBOUND, TM,
costPart(getTerm(THIS_SEARCH)),
THIS_SEARCH)

else
PREV_SEARCH
fi

if THIS_SEARCH :=
pricedTimedSearch(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D,

0, COMP, TIMEBOUND, TM, true, COSTBOUND) .

endfm

fmod UNTIMED-FIND-CHEAPEST is
pr PRICED-UNTIMED-SEARCH .

var M : Module .
vars INITIALSTATE SEARCHPATTERN TIMEBOUND COSTBOUND : Term .
var D : Bound .
var CHEAPER : Bool .
var COND : Condition .
var R : ResultTriple? .
vars THIS_SEARCH PREV_SEARCH : ResultTriple? .
var Q : Qid .

*** findCheapest takes the following arguments:
*** - Module
*** - Term, the initial term
*** - Term, the search pattern
*** - Condition, an odinary such that condition
op utFindCheapest : Module Term Term Condition Qid Bound

-> ResultTriple? .

op utFindCheapest : Module Term Term Condition Qid Bound
Term ResultTriple? -> ResultTriple? .

ceq utFindCheapest(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D)
= if THIS_SEARCH =/= failure then

utFindCheapest(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D,
costPart(getTerm(THIS_SEARCH)),
THIS_SEARCH)

else
failure

fi
if THIS_SEARCH :=

pricedSearch(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D,
true, 'infcost.CostInf) .

ceq utFindCheapest(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D,
COSTBOUND, PREV_SEARCH)

= if THIS_SEARCH =/= failure then
utFindCheapest(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D,

costPart(getTerm(THIS_SEARCH)),
THIS_SEARCH)

else
PREV_SEARCH
fi

if THIS_SEARCH :=
pricedSearch(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D,

true, COSTBOUND) .

endfm

*** this module provides a function
*** that finds the cheapest by using
*** a binary search technique
*** this may not work correctly
*** with rational numbers since there
*** is an infinite number of rats between two nats
fmod FIND-CHEAPEST-BINARY is

pr PRICED-TIMED-SEARCH .
pr FIND-CHEAPEST .

var M : Module .
vars T T' BEST CURRENT : Term .
vars INITIALSTATE SEARCHPATTERN TIMEBOUND COSTBOUND : Term .
var D : Bound .
var CHEAPER : Bool .
var COND : Condition .
var R : ResultTriple? .
vars THIS_SEARCH PREV_SEARCH : ResultTriple? .
var Q : Qid .
var COMP : ComparisonOp .
var TM : TickMode .

op metaDiv2 : Module Term -> Term .
eq metaDiv2(M, T) = getTerm(metaReduce(M,'div2[T])) .

ops metaAdd metaAvg : Module Term Term -> Term .
eq metaAdd(M, T, T') = getTerm(metaReduce(M,'_pluss_[T,T'])) .
eq metaAvg(M, T, T') = metaDiv2(M, metaAdd(M, T, T')) .

146



op findCheapestBin : Module Term Term Condition Qid Bound
ComparisonOp Term TickMode -> ResultTriple? .

***op findCheapestBin : Module Term Term Condition Qid Bound
*** ComparisonOp Term TickMode Term Term ResultTriple? -> ResultTriple? .

op findCheapestBin : Module Term Term Condition Qid Bound
ComparisonOp Term TickMode Term ResultTriple? -> ResultTriple? .

ceq findCheapestBin(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP,
TIMEBOUND, TM)

= if THIS_SEARCH =/= failure then
findCheapestBin(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP,

TIMEBOUND, TM,
metaAvg(M, costPart(getTerm(THIS_SEARCH)), 'free.Cost),
THIS_SEARCH)

else
failure

fi
if THIS_SEARCH :=

pricedTimedSearch(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D,
0, COMP, TIMEBOUND, TM, true, 'infcost.CostInf) .

ceq findCheapestBin(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP,
TIMEBOUND, TM, COSTBOUND, PREV_SEARCH)

= if THIS_SEARCH =/= failure then
*** we search between the value of this search and 0
findCheapestBin(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP,

TIMEBOUND, TM,
metaAvg(M, costPart(getTerm(THIS_SEARCH)), 'free.Cost),
THIS_SEARCH)

else
*** we search between the previous value and best known
*** if this ends up being best known we are done
if CURRENT == COSTBOUND then
PREV_SEARCH

else
findCheapestBin(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D, COMP,

TIMEBOUND, TM,
CURRENT,
PREV_SEARCH)

fi
fi

if CURRENT := metaAvg(M, costPart(getTerm(PREV_SEARCH)), COSTBOUND)
/\
THIS_SEARCH :=
pricedTimedSearch(M, INITIALSTATE, SEARCHPATTERN, COND, Q, D,

0, COMP, TIMEBOUND, TM, true, COSTBOUND) .

endfm

--- A priced rewrite may also be useful
fmod PRICED-TIMED-REWRITE is
pr PRICED-MODULE-TRANSFORMATIONS .
pr TIMED-META-REWRITE .

*** This is a simple search with a time and price bound
*** Typical: Can some state matching a pattern and condition
*** be found within x time and y cost.
var M : Module .
vars INITIALSTATE SEARCHPATTERN TIMEBOUND COSTBOUND : Term .
var BOUND : Bound .
var CHEAPER : Bool .
var COND : Condition .
var R : ResultTriple? .
var R' : Substitution? .
var COMP : ComparisonOp .
var TM : TickMode .
var N : Nat .

--- ptrew with cost limit
op pricedTimedMetaRewrite : Module Term Bound ComparisonOp Term

TickMode Bool Term -> ResultPair .

eq pricedTimedMetaRewrite(M, INITIALSTATE, BOUND, COMP,
TIMEBOUND,
TM, CHEAPER, COSTBOUND) =

timedMetaRewrite(costLimitMod(pricifyMod(M),CHEAPER,COSTBOUND),
pricifyInit(INITIALSTATE),
BOUND,COMP, TIMEBOUND, TM) .

--- ptfrew with cost limit
op pricedTimedMetaFRewrite : Module Term Bound Nat

ComparisonOp Term TickMode
Bool Term -> ResultPair .

eq pricedTimedMetaFRewrite(M, INITIALSTATE, BOUND, N, COMP,
TIMEBOUND,
TM, CHEAPER, COSTBOUND) =

timedMetaFRewrite(costLimitMod(pricifyMod(M),CHEAPER,COSTBOUND),
pricifyInit(INITIALSTATE),
BOUND, N, COMP, TIMEBOUND, TM) .

--- ptrew without cost limit

147



op pricedTimedMetaRewrite : Module Term Bound ComparisonOp Term
TickMode -> ResultPair .

eq pricedTimedMetaRewrite(M, INITIALSTATE, BOUND, COMP,
TIMEBOUND, TM) =

timedMetaRewrite(pricifyMod(M),
pricifyInit(INITIALSTATE),
BOUND,COMP, TIMEBOUND, TM) .

--- ptfrew without cost limit
op pricedTimedMetaFRewrite : Module Term Bound Nat

ComparisonOp Term TickMode
-> ResultPair .

eq pricedTimedMetaFRewrite(M, INITIALSTATE, BOUND, N, COMP,
TIMEBOUND, TM) =

timedMetaFRewrite(pricifyMod(M),
pricifyInit(INITIALSTATE),
BOUND, N, COMP, TIMEBOUND, TM) .

endfm

fmod PRICED-UNTIMED-REWRITE is
pr PRICED-MODULE-TRANSFORMATIONS .

op pricedMetaRewrite : Module Term Bound Bool Term -> ResultPair .
op pricedMetaFRewrite : Module Term Bound Nat

Bool Term -> ResultPair .
*** unfair and fair rewrite!

var M : Module .
vars T T' : Term .
var B : Bound .
var CHEAPER : Bool .
var N : Nat .

eq pricedMetaRewrite(M, T, B, CHEAPER, T') =
metaRewrite(

costLimitMod(pricifyMod(M),CHEAPER,T'),
pricifyInit(T),
B) .

eq pricedMetaFRewrite(M, T, B, N, CHEAPER, T') =
metaFrewrite(

costLimitMod(pricifyMod(M),CHEAPER,T'),
pricifyInit(T),
B, N) .

endfm

*** Hack!
fmod PRICED-UNIT-PROCESSING is

--- for now this is a somewhat hacky way of
--- adding priced modules
pr TIMED-UNIT-PROCESSING .

vars T T' T'' T''' : Term .
vars F F' : Qid .
var TL : TermList .
var TD : TimedData .

*** PRICED modules and theories
eq timedPreModuleToPreModule('ptomod_is_endptom[T, T']) =
'omod_is_endom[T, '__['including_.['token[''PRICED-TIMED-OO-SYSTEM.Qid]],

T']] .

eq timedPreModuleToPreModule('ptmod_is_endptm[T, T']) =
'mod_is_endm[T, '__['including_.['token[''PRICED-TIMED-SYSTEM.Qid]],

T']] .

eq timedPreModuleToPreModule('pomod_is_endpom[T, T']) =
'omod_is_endom[T, '__['including_.['token[''PRICED-OO-SYSTEM.Qid]],

T']] .

eq timedPreModuleToPreModule('pmod_is_endpm[T, T']) =
'mod_is_endm[T, '__['including_.['token[''PRICED-SYSTEM.Qid]],

T']] .

--- PRICED mods
ceq processTimedMetaLevel(F[T, T'], TD) =

F[T, processTimedMetaLevel(T', TD)]
if (F == 'ptomod_is_endptom)
or (F == 'ptmod_is_endptm)
or (F == 'pomod_is_endpom)
or (F == 'pmod_is_endpm) .

endfm

*** This module simply separates out the priced commands for easier
*** overview
fmod PTM-COMMAND-PROCESSING is

inc TIMED-COMMAND-PROCESSING .

148



*** PTM commands
pr FIND-CHEAPEST .
pr FIND-CHEAPEST-BINARY .
pr PRICED-TIMED-REWRITE .

*** untimed stuff do they go here?
pr PRICED-UNTIMED-REWRITE .
pr UNTIMED-FIND-CHEAPEST .

vars T T' T'' T''' T1 T2 T3 T4 T5 T6 PROPTERM TIMEBOUND
LIMIT LIMIT' TERM COSTLIMIT : Term .

var Q : Qid .
var ME : ModuleExpression .
var DB : Database .
vars B CHEAPER FAIR : Bool .
var ODS : OpDeclSet .
var TMB : [Tuple<Term|Module|OpDeclSet|Bound>] .
var TM : [Tuple<Term|Module|OpDeclSet>] .
var RP : [ResultPair] .
var RT : [ResultTriple] .
var TS : Termset .
var TL : TermList .
vars COMP COMP' : ComparisonOp .
vars M M' MOD : Module .
var QIL : QidList .
var D BOUND : Bound .
var VDS : OpDeclSet .
vars TiM SOLVEDTICKMODE : TickMode .
vars I J N : Nat .
vars COND COND' : Condition .
vars SEARCHPATTERN SEARCHPATTERN' : TermCondition .
var B? : [Bool] .
var R3? : ResultTriple? .

*** Parsing the input from pricedtimed execution

*** this function will only be used on qids containing
*** a cost limit
op ctComp : Qid -> Bool .
eq ctComp(Q)

= find(string(Q), "with`cost`<=", 0) == notFound .

*** For now this is basically the same as procTimedCommand,
*** but keeping timed and priced-timed stuff apart seems cleaner
op procPriceTimedCommand : Term ModuleExpression Database TickMode

-> QidList .

*** find cheapest init, pattern, timelimit
ceq procPriceTimedCommand(Q[T, T', T''], ME, DB, TiM) =

(if compiledModule(ME, DB) then
preprocessTimedCommandTPL(ME, getFlatModule(ME, DB), unbounded, getVars(ME, DB), DB, Q, T, T', T'',TiM)

else
preprocessTimedCommandTPL(
modExp(evalModExp(ME, DB)),
getFlatModule(modExp(evalModExp(ME,

DB)),
database(evalModExp(ME, DB))),

unbounded,
getVars(modExp(evalModExp(ME, DB)),database(evalModExp(ME,

DB))),
database(evalModExp(ME, DB)),
Q, T, T', T'', TiM)

fi)
if (find(string(Q), "in`time`<", 0) =/= notFound and

(find(string(Q), "find`cheapest", 0) =/= notFound)) or
--- added to catch ptsearch with not cost limit
((find(string(Q), "ptsearch", 0) =/= notFound) and
(find(string(Q), "with`no`cost`limit", 0) =/= notFound)) .

*** untimed priced search with cost limit
ceq procPriceTimedCommand(Q[T, T', T''], ME, DB, TiM) =

(if compiledModule(ME, DB) then
preprocessPricedTPB(ME, getFlatModule(ME, DB),
unbounded, getVars(ME, DB), DB, Q, T, T', T'')

else
preprocessPricedTPB(modExp(evalModExp(ME, DB)),
getFlatModule(modExp(evalModExp(ME,

DB)),
database(evalModExp(ME, DB))),

unbounded,
getVars(modExp(evalModExp(ME, DB)),database(evalModExp(ME,

DB))),
database(evalModExp(ME, DB)),
Q, T, T', T'')

fi)
if (find(string(Q), "with`cost", 0) =/= notFound and

(find(string(Q), "psearch", 0) =/= notFound)) .

*** priced timed search with time and cost limits
ceq procPriceTimedCommand(Q[T, T', T'', T'''], ME, DB, TiM) =

(if compiledModule(ME, DB) then
preprocessPTimedTPLB(ME, getFlatModule(ME, DB),

unbounded, getVars(ME, DB), DB,
Q, T, T', T'', T''', TiM)

else

149



preprocessPTimedTPLB(modExp(evalModExp(ME, DB)),
getFlatModule(modExp(
evalModExp(ME, DB)),
database(evalModExp(ME, DB))),
unbounded,
getVars(modExp(

evalModExp(ME,DB)),
database(evalModExp(ME,DB))),
database(evalModExp(ME, DB)),
Q, T, T', T'', T''', TiM)

fi)
if (find(string(Q), "in`time", 0) =/= notFound) and

(find(string(Q), "ptsearch", 0) =/= notFound) and
--- added to not catch with no cost limit
(find(string(Q), "with`cost", 0) =/= notFound) .

*** priced timed search with no time limit, but cost limit
ceq procPriceTimedCommand(Q[T, T', T''], ME, DB, TiM) =

(if compiledModule(ME, DB) then
preprocessPTimedTPB(ME, getFlatModule(ME, DB),

unbounded, getVars(ME, DB), DB,
Q, T, T', T'', TiM)

else
preprocessPTimedTPB(modExp(evalModExp(ME, DB)),

getFlatModule(modExp(
evalModExp(ME, DB)),
database(evalModExp(ME, DB))),
unbounded,
getVars(modExp(

evalModExp(ME,DB)),
database(evalModExp(ME,DB))),
database(evalModExp(ME, DB)),
Q, T, T', T'', TiM)

fi)
if ((find(string(Q), "with`no`time", 0) =/= notFound) and

(find(string(Q), "ptsearch", 0) =/= notFound)) or
((find(string(Q), "find`earliest", 0) =/= notFound) and
(find(string(Q), "with`cost`<", 0) =/= notFound)) .

*** ptfrew with time and cost limits
ceq procPriceTimedCommand(Q[T, T', T''], ME, DB, TiM) =

(if compiledModule(ME, DB) then
preprocessPTimedTLB(ME, getFlatModule(ME, DB),

unbounded, getVars(ME, DB), DB,
Q, T, T', T'', TiM)

else
preprocessPTimedTLB(modExp(evalModExp(ME, DB)),

getFlatModule(modExp(
evalModExp(ME, DB)),
database(evalModExp(ME, DB))),
unbounded,
getVars(modExp(

evalModExp(ME,DB)),
database(evalModExp(ME,DB))),
database(evalModExp(ME, DB)),
Q, T, T', T'', TiM)

fi)
if ((find(string(Q), "ptfrew_in`time", 0) =/= notFound) or

(find(string(Q), "ptrew_in`time", 0) =/= notFound)) and
(find(string(Q), "with`cost", 0) =/= notFound) .

*** ptfrew with no timelimit, but costlimit
ceq procPriceTimedCommand(Q[T, T'], ME, DB, TiM) =

(if compiledModule(ME, DB) then
preprocessPTimedTB(ME, getFlatModule(ME, DB),

unbounded, getVars(ME, DB), DB,
Q, T, T', TiM)

else
preprocessPTimedTB(modExp(evalModExp(ME, DB)),

getFlatModule(modExp(
evalModExp(ME, DB)),
database(evalModExp(ME, DB))),
unbounded,
getVars(modExp(

evalModExp(ME,DB)),
database(evalModExp(ME,DB))),
database(evalModExp(ME, DB)),
Q, T, T', TiM)

fi)
if ((find(string(Q), "ptfrew_with`no`time", 0) =/= notFound) or

(find(string(Q), "ptrew_with`no`time", 0) =/= notFound) or
(find(string(Q), "pfrew", 0) =/= notFound) or
(find(string(Q), "prew", 0) =/= notFound)) and
(find(string(Q), "with`cost", 0) =/= notFound) .

*** ptfrew with time limit and no cost limit
*** preprocessPTimedTL
ceq procPriceTimedCommand(Q[T, T'], ME, DB, TiM) =

(if compiledModule(ME, DB) then
preprocessPTimedTL(ME, getFlatModule(ME, DB),

unbounded, getVars(ME, DB), DB,
Q, T, T', TiM)

else
preprocessPTimedTL(modExp(evalModExp(ME, DB)),

getFlatModule(modExp(

150



evalModExp(ME, DB)),
database(evalModExp(ME, DB))),
unbounded,
getVars(modExp(

evalModExp(ME,DB)),
database(evalModExp(ME,DB))),
database(evalModExp(ME, DB)),
Q, T, T', TiM)

fi)
if ((find(string(Q), "ptfrew_in`time", 0) =/= notFound) or

(find(string(Q), "ptrew_in`time", 0) =/= notFound)) and
(find(string(Q), "with`no`cost", 0) =/= notFound) .

*** ptfrew with no time limit and no cost limit
*** preprocessPTimedT
ceq procPriceTimedCommand(Q[T], ME, DB, TiM) =

(if compiledModule(ME, DB) then
preprocessPTimedT(ME, getFlatModule(ME, DB),

unbounded, getVars(ME, DB), DB,
Q, T, TiM)

else
preprocessPTimedT(modExp(evalModExp(ME, DB)),

getFlatModule(modExp(
evalModExp(ME, DB)),
database(evalModExp(ME, DB))),
unbounded,
getVars(modExp(

evalModExp(ME,DB)),
database(evalModExp(ME,DB))),
database(evalModExp(ME, DB)),
Q, T, TiM)

fi)
if (find(string(Q), "ptfrew_with`no`limits", 0) =/= notFound) or

(find(string(Q), "ptrew_with`no`limits", 0) =/= notFound) .

*** find cheapest and ptsearch with no limits
ceq procPriceTimedCommand(Q[T, T'], ME, DB, TiM) =

(if compiledModule(ME, DB) then
preprocessPTimedTP(ME, getFlatModule(ME, DB),

unbounded, getVars(ME, DB), DB,
Q, T, T', TiM)

else
preprocessPTimedTP(modExp(evalModExp(ME, DB)),

getFlatModule(modExp(
evalModExp(ME, DB)),
database(evalModExp(ME, DB))),
unbounded,
getVars(modExp(evalModExp(ME,DB)),
database(evalModExp(ME,DB))),
database(evalModExp(ME, DB)),
Q, T, T', TiM)

fi)
if ((find(string(Q), "with`no`time", 0) =/= notFound) and

(find(string(Q), "find`cheapest", 0) =/= notFound)) or
((find(string(Q), "with`no`limits", 0) =/= notFound) and
(find(string(Q), "ptsearch", 0) =/= notFound)) or
(find(string(Q), "find`earliest_=>*_with`no`cost`limit", 0) =/= notFound) or
*** untimed stuff
(find(string(Q), "ut`find`cheapest", 0) =/= notFound) .

*** PREPROCESSING

*** this is essentially a slightly modified of
*** preprocessTimedCommandTPCLCL
op preprocessPTimedTP : ModuleExpression Module Bound

OpDeclSet Database Qid Term Term TickMode
-> QidList .

*** bad init term
ceq preprocessPTimedTP(ME, M, D, VDS, DB, Q, T1, T2, TiM) =

('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Command/module/initterm
'does 'not 'parse. '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ not solveBubblesRew(T1, M, B, D, VDS, DB) ::
Tuple<Term|Module|OpDeclSet|Bound> .

*** bad search pattern
ceq preprocessPTimedTP(ME, M, D, VDS, DB, Q, T1, T2, TiM) =

('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Search 'pattern
'does 'not 'parse 'in 'module
'\o eMetaPrettyPrint(getName(MOD)) '\s '\c '. '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,
VDS, DB)

/\ not searchPattern(TERM, T2, MOD, B, getVars(getName(MOD),
DB),

DB) :: TermCondition .

*** bad tick mode
ceq preprocessPTimedTP(ME, M, D, VDS, DB, Q,T1, T2, TiM) =

151



('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Tick 'mode 'amount
printTickAmount(TiM)
'does 'not 'parse 'in 'module
'\y eMetaPrettyPrint(getName(MOD)) '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B,
D, VDS, DB)

/\ searchPattern(TERM, T2, MOD, B,
getVars(getName(MOD), DB),
DB) :: TermCondition

/\ not solveTickMode(TiM, MOD, B,
getVars(getName(MOD), DB),
DB) :: TickMode .

eq preprocessPTimedTP(ME, unitError(QIL), D, VDS, DB, Q,
T1, T2, TiM) =

qidError(QIL) .

*** now for one that actually works!
ceq preprocessPTimedTP(ME, M, D, VDS, DB, Q, T1, T2, TiM) =

procParsedPTimedCommandTP(Q, MOD, TERM, BOUND,
getTerm(metaReduce(MOD,
termPart(SEARCHPATTERN))),
condPart(SEARCHPATTERN),
SOLVEDTICKMODE)

if B := included('META-MODULE, getImports(getTopModule(ME, DB)),
DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,
VDS, DB)

/\ SEARCHPATTERN := searchPattern(TERM, T2, MOD, B,
getVars(getName(MOD), DB), DB)

/\ SOLVEDTICKMODE := solveTickMode(TiM, MOD, B,
getVars(getName(MOD), DB), DB) .

*** for priced untimed search
*** preprocessTimedCommandTPCLCL
op preprocessPricedTPB : ModuleExpression Module Bound

OpDeclSet Database Qid Term Term Term -> QidList .

*** bad init term
ceq preprocessPricedTPB(ME, M, D, VDS, DB, Q, T1, T2,

T6) =
('\n '\r 'Error '\c 'in 'priced 'command: 'Command/module/initterm
'does 'not 'parse. '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ not solveBubblesRew(T1, M, B, D, VDS, DB) ::
Tuple<Term|Module|OpDeclSet|Bound> .

*** bad search pattern
ceq preprocessPricedTPB(ME, M, D, VDS, DB, Q, T1, T2,

T6) =
('\n '\r 'Error '\c 'in 'priced 'command: 'Search 'pattern
'does 'not 'parse 'in 'module
'\o eMetaPrettyPrint(getName(MOD)) '\s '\c '. '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,
VDS, DB)

/\ not searchPattern(TERM, T2, MOD, B, getVars(getName(MOD),
DB),

DB) :: TermCondition .

*** bad cost limit
ceq preprocessPricedTPB(ME, M, D, VDS, DB, Q, T1, T2, T6) =

('\n '\r 'Error '\c 'in 'priced 'command: 'Cost 'limit 'term
'does 'not 'parse 'in 'module
'\y eMetaPrettyPrint(getName(MOD)) '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,
VDS, DB)

/\ searchPattern(TERM, T2, MOD, B, getVars(getName(MOD), DB),
DB) :: TermCondition

/\ not
(solveBubbles(T6, MOD, B,

getVars(getName(MOD),DB), DB) :: Term) .

eq preprocessPricedTPB(ME, unitError(QIL), D, VDS, DB, Q,
T1, T2, T6) =

qidError(QIL) .

*** now for one that actually works!
ceq preprocessPricedTPB(ME, M, D, VDS, DB, Q, T1, T2, T6) =

procParsedPricedTPB(Q, MOD, TERM, BOUND,
getTerm(metaReduce(MOD,
termPart(SEARCHPATTERN))),
condPart(SEARCHPATTERN),
CHEAPER, COSTLIMIT)

if B := included('META-MODULE, getImports(getTopModule(ME, DB)), DB)

152



/\ CHEAPER := ctComp(Q)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,
VDS, DB)

/\ SEARCHPATTERN := searchPattern(TERM, T2, MOD, B,
getVars(getName(MOD), DB), DB)

/\ COSTLIMIT := solveBubbles(T6, MOD, B,
getVars(getName(MOD),DB), DB) .

*** this is essentially a slightly modified of
*** preprocessTimedCommandTPCLCL
op preprocessPTimedTPLB : ModuleExpression Module Bound

OpDeclSet Database Qid Term Term Term Term TickMode
-> QidList .

*** bad init term
ceq preprocessPTimedTPLB(ME, M, D, VDS, DB, Q, T1, T2, T4,

T6, TiM) =
('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Command/module/initterm
'does 'not 'parse. '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ not solveBubblesRew(T1, M, B, D, VDS, DB) ::
Tuple<Term|Module|OpDeclSet|Bound> .

*** bad search pattern
ceq preprocessPTimedTPLB(ME, M, D, VDS, DB, Q, T1, T2, T4,

T6, TiM) =
('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Search 'pattern
'does 'not 'parse 'in 'module
'\o eMetaPrettyPrint(getName(MOD)) '\s '\c '. '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,
VDS, DB)

/\ not searchPattern(TERM, T2, MOD, B, getVars(getName(MOD),
DB),

DB) :: TermCondition .

*** bad time limit
ceq preprocessPTimedTPLB(ME, M, D, VDS, DB, Q, T1, T2,

T4, T6, TiM) =
('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Time 'limit 'term
'does 'not 'parse 'in 'module
'\y eMetaPrettyPrint(getName(MOD)) '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,
VDS, DB)

/\ searchPattern(TERM, T2, MOD, B, getVars(getName(MOD), DB),
DB) :: TermCondition

/\ not
(solveBubbles(T4, MOD, B, getVars(getName(MOD), DB), DB) :: Term) .

*** bad cost limit
ceq preprocessPTimedTPLB(ME, M, D, VDS, DB, Q, T1, T2,

T4, T6, TiM) =
('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Cost 'limit 'term
'does 'not 'parse 'in 'module
'\y eMetaPrettyPrint(getName(MOD)) '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,
VDS, DB)

/\ searchPattern(TERM, T2, MOD, B, getVars(getName(MOD), DB),
DB) :: TermCondition

/\ not
(solveBubbles(T6, MOD, B,

getVars(getName(MOD),DB), DB) :: Term) .

*** bad tick mode
ceq preprocessPTimedTPLB(ME, M, D, VDS, DB, Q,T1, T2, T4, T6,

TiM) =
('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Tick 'mode 'amount
printTickAmount(TiM)
'does 'not 'parse 'in 'module
'\y eMetaPrettyPrint(getName(MOD)) '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B,
D, VDS, DB)

/\ searchPattern(TERM, T2, MOD, B,
getVars(getName(MOD), DB),
DB) :: TermCondition

/\ solveBubbles(T4, MOD, B,
getVars(getName(MOD), DB), DB) :: Term

/\ solveBubbles(T6, MOD, B,
getVars(getName(MOD), DB), DB) :: Term

/\ not solveTickMode(TiM, MOD, B,
getVars(getName(MOD), DB),
DB) :: TickMode .

eq preprocessPTimedTPLB(ME, unitError(QIL), D, VDS, DB, Q,
T1, T2, T4, T6, TiM) =

153



qidError(QIL) .

*** now for one that actually works!
ceq preprocessPTimedTPLB(ME, M, D, VDS, DB, Q, T1, T2, T4,

T6, TiM) =
procParsedPTimedCommandTPLB(Q, MOD, TERM, BOUND,

getTerm(metaReduce(MOD,
termPart(SEARCHPATTERN))),

condPart(SEARCHPATTERN),
COMP, LIMIT, CHEAPER, COSTLIMIT,
SOLVEDTICKMODE)

if B := included('META-MODULE, getImports(getTopModule(ME, DB)), DB)
/\ CHEAPER := ctComp(Q)
/\ COMP := commandToComp(Q)
/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,

VDS, DB)
/\ SEARCHPATTERN := searchPattern(TERM, T2, MOD, B,

getVars(getName(MOD), DB), DB)

/\ LIMIT := solveBubbles(T4, MOD, B,
getVars(getName(MOD), DB), DB)

/\ COSTLIMIT := solveBubbles(T6, MOD, B,
getVars(getName(MOD),DB), DB)

/\ SOLVEDTICKMODE := solveTickMode(TiM, MOD, B,
getVars(getName(MOD), DB), DB) .

*** preprocessPTimedTPB
*** used for: ptsearch with no time limit cheaper than (or eq)
*** preprocessTimedCommandTPCLCL
op preprocessPTimedTPB : ModuleExpression Module Bound

OpDeclSet Database Qid Term Term Term TickMode -> QidList .

*** bad init term
ceq preprocessPTimedTPB(ME, M, D, VDS, DB, Q, T1, T2, T6, TiM) =

('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Command/module/initterm
'does 'not 'parse. '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ not solveBubblesRew(T1, M, B, D, VDS, DB) ::
Tuple<Term|Module|OpDeclSet|Bound> .

*** bad search pattern
ceq preprocessPTimedTPB(ME, M, D, VDS, DB, Q, T1, T2, T6, TiM) =

('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Search 'pattern
'does 'not 'parse 'in 'module
'\o eMetaPrettyPrint(getName(MOD)) '\s '\c '. '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,
VDS, DB)

/\ not searchPattern(TERM, T2, MOD, B, getVars(getName(MOD),
DB),

DB) :: TermCondition .

*** bad cost limit
ceq preprocessPTimedTPB(ME, M, D, VDS, DB, Q, T1, T2, T6, TiM) =

('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Cost 'limit 'term
'does 'not 'parse 'in 'module
'\y eMetaPrettyPrint(getName(MOD)) '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,
VDS, DB)

/\ searchPattern(TERM, T2, MOD, B, getVars(getName(MOD), DB),
DB) :: TermCondition

/\ not
(solveBubbles(T6, MOD, B,

getVars(getName(MOD),DB), DB) :: Term) .

*** bad tick mode
ceq preprocessPTimedTPB(ME, M, D, VDS, DB, Q,T1, T2, T6, TiM) =

('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Tick 'mode 'amount
printTickAmount(TiM)
'does 'not 'parse 'in 'module
'\y eMetaPrettyPrint(getName(MOD)) '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B,
D, VDS, DB)

/\ searchPattern(TERM, T2, MOD, B,
getVars(getName(MOD), DB),
DB) :: TermCondition

/\ solveBubbles(T6, MOD, B,
getVars(getName(MOD), DB), DB) :: Term

/\ not solveTickMode(TiM, MOD, B,
getVars(getName(MOD), DB),
DB) :: TickMode .

eq preprocessPTimedTPB(ME, unitError(QIL), D, VDS, DB, Q,
T1, T2, T6, TiM) =

qidError(QIL) .

154



*** now for one that actually works!
ceq preprocessPTimedTPB(ME, M, D, VDS, DB, Q, T1, T2, T6, TiM) =

procParsedPTimedCommandTPB(Q, MOD, TERM, BOUND,
getTerm(metaReduce(MOD,
termPart(SEARCHPATTERN))),

condPart(SEARCHPATTERN),
CHEAPER, COSTLIMIT,
SOLVEDTICKMODE)

if B := included('META-MODULE, getImports(getTopModule(ME, DB)), DB)
/\ CHEAPER := ctComp(Q)
/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,

VDS, DB)
/\ SEARCHPATTERN := searchPattern(TERM, T2, MOD, B,

getVars(getName(MOD), DB), DB)
/\ COSTLIMIT := solveBubbles(T6, MOD, B,

getVars(getName(MOD),DB), DB)
/\ SOLVEDTICKMODE := solveTickMode(TiM, MOD, B,

getVars(getName(MOD), DB), DB) .

*** price-timed rewrites with term, timelimit, costlimit
*** this is essentially a slightly modified of
*** preprocessTimedCommandTPCLCL
op preprocessPTimedTLB : ModuleExpression Module Bound

OpDeclSet Database Qid Term Term Term TickMode -> QidList .

*** bad init term
ceq preprocessPTimedTLB(ME, M, D, VDS, DB, Q, T1, T4,

T6, TiM) =
('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Command/module/initterm
'does 'not 'parse. '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ not solveBubblesRew(T1, M, B, D, VDS, DB) ::
Tuple<Term|Module|OpDeclSet|Bound> .

*** bad time limit
ceq preprocessPTimedTLB(ME, M, D, VDS, DB, Q, T1,

T4, T6, TiM) =
('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Time 'limit 'term
'does 'not 'parse 'in 'module
'\y eMetaPrettyPrint(getName(MOD)) '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,
VDS, DB)

/\ not
(solveBubbles(T4, MOD, B, getVars(getName(MOD), DB), DB) :: Term) .

*** bad cost limit
ceq preprocessPTimedTLB(ME, M, D, VDS, DB, Q, T1,

T4, T6, TiM) =
('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Cost 'limit 'term
'does 'not 'parse 'in 'module
'\y eMetaPrettyPrint(getName(MOD)) '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,
VDS, DB)

/\ not
(solveBubbles(T6, MOD, B,

getVars(getName(MOD),DB), DB) :: Term) .

*** bad tick mode
ceq preprocessPTimedTLB(ME, M, D, VDS, DB, Q,T1, T4, T6,

TiM) =
('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Tick 'mode 'amount
printTickAmount(TiM)

'does 'not 'parse 'in 'module
'\y eMetaPrettyPrint(getName(MOD)) '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B,
D, VDS, DB)

/\ solveBubbles(T4, MOD, B,
getVars(getName(MOD), DB), DB) :: Term

/\ solveBubbles(T6, MOD, B,
getVars(getName(MOD), DB), DB) :: Term

/\ not solveTickMode(TiM, MOD, B,
getVars(getName(MOD), DB),
DB) :: TickMode .

eq preprocessPTimedTLB(ME, unitError(QIL), D, VDS, DB, Q,
T1, T4, T6, TiM) =

qidError(QIL) .

*** now for one that actually works!
ceq preprocessPTimedTLB(ME, M, D, VDS, DB, Q, T1, T4, T6, TiM) =

procParsedPTimedCommandTLB(Q, MOD, TERM, BOUND, COMP, LIMIT,
CHEAPER, COSTLIMIT, SOLVEDTICKMODE)

155



if B := included('META-MODULE, getImports(getTopModule(ME, DB)), DB)
/\ CHEAPER := ctComp(Q)
/\ COMP := commandToComp(Q)
/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D, VDS,

DB)
/\ LIMIT := solveBubbles(T4, MOD, B, getVars(getName(MOD), DB),

DB)
/\ COSTLIMIT := solveBubbles(T6, MOD, B,

getVars(getName(MOD),DB), DB)
/\ SOLVEDTICKMODE := solveTickMode(TiM, MOD, B,

getVars(getName(MOD), DB), DB) .

*** price-timed rewrites with term, no timelimit, but a costlimit
*** this is essentially a slightly modified of
*** preprocessTimedCommandTPCLCL
op preprocessPTimedTB : ModuleExpression Module Bound

OpDeclSet Database Qid Term Term TickMode -> QidList .

*** bad init term
ceq preprocessPTimedTB(ME, M, D, VDS, DB, Q, T1, T6, TiM) =

('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Command/module/initterm
'does 'not 'parse. '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ not solveBubblesRew(T1, M, B, D, VDS, DB) ::
Tuple<Term|Module|OpDeclSet|Bound> .

*** bad cost limit
ceq preprocessPTimedTB(ME, M, D, VDS, DB, Q, T1, T6, TiM) =

('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Cost 'limit 'term
'does 'not 'parse 'in 'module
'\y eMetaPrettyPrint(getName(MOD)) '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,
VDS, DB)

/\ not
(solveBubbles(T6, MOD, B,

getVars(getName(MOD),DB), DB) :: Term) .

*** bad tick mode
ceq preprocessPTimedTB(ME, M, D, VDS, DB, Q,T1, T6, TiM) =

('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Tick 'mode 'amount
printTickAmount(TiM)

'does 'not 'parse 'in 'module
'\y eMetaPrettyPrint(getName(MOD)) '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B,
D, VDS, DB)

/\ solveBubbles(T6, MOD, B,
getVars(getName(MOD), DB), DB) :: Term

/\ not solveTickMode(TiM, MOD, B,
getVars(getName(MOD), DB),
DB) :: TickMode .

eq preprocessPTimedTB(ME, unitError(QIL), D, VDS, DB, Q,
T1, T6, TiM) =

qidError(QIL) .

*** now for one that actually works!
ceq preprocessPTimedTB(ME, M, D, VDS, DB, Q, T1, T6, TiM) =

procParsedPTimedCommandTB(Q, MOD, TERM, BOUND,
CHEAPER, COSTLIMIT, SOLVEDTICKMODE)

if B := included('META-MODULE, getImports(getTopModule(ME, DB)), DB)
/\ CHEAPER := ctComp(Q)
/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D, VDS,

DB)
/\ COSTLIMIT := solveBubbles(T6, MOD, B,

getVars(getName(MOD),DB), DB)
/\ SOLVEDTICKMODE := solveTickMode(TiM, MOD, B,

getVars(getName(MOD), DB), DB) .

*** price-timed rewrites with term, timelimit
*** this is essentially a slightly modified of
*** preprocessTimedCommandTPCLCL
op preprocessPTimedTL : ModuleExpression Module Bound

OpDeclSet Database Qid Term Term TickMode -> QidList .

*** bad init term
ceq preprocessPTimedTL(ME, M, D, VDS, DB, Q, T1, T4,

TiM) =
('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Command/module/initterm
'does 'not 'parse. '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ not solveBubblesRew(T1, M, B, D, VDS, DB) ::
Tuple<Term|Module|OpDeclSet|Bound> .

*** bad time limit
ceq preprocessPTimedTL(ME, M, D, VDS, DB, Q, T1,

156



T4, TiM) =
('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Time 'limit 'term
'does 'not 'parse 'in 'module
'\y eMetaPrettyPrint(getName(MOD)) '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D,
VDS, DB)

/\ not
(solveBubbles(T4, MOD, B, getVars(getName(MOD), DB), DB) :: Term) .

*** bad tick mode
ceq preprocessPTimedTL(ME, M, D, VDS, DB, Q,T1, T4,

TiM) =
('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Tick 'mode 'amount
printTickAmount(TiM)

'does 'not 'parse 'in 'module
'\y eMetaPrettyPrint(getName(MOD)) '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B,
D, VDS, DB)

/\ solveBubbles(T4, MOD, B,
getVars(getName(MOD), DB), DB) :: Term

/\ not solveTickMode(TiM, MOD, B,
getVars(getName(MOD), DB),
DB) :: TickMode .

eq preprocessPTimedTL(ME, unitError(QIL), D, VDS, DB, Q,
T1, T4, TiM) =

qidError(QIL) .

*** now for one that actually works!
ceq preprocessPTimedTL(ME, M, D, VDS, DB, Q, T1, T4, TiM) =

procParsedPTimedCommandTL(Q, MOD, TERM, BOUND, COMP, LIMIT,
SOLVEDTICKMODE)

if B := included('META-MODULE, getImports(getTopModule(ME, DB)), DB)
/\ COMP := commandToComp(Q)
/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D, VDS,

DB)
/\ LIMIT := solveBubbles(T4, MOD, B, getVars(getName(MOD), DB),

DB)
/\ SOLVEDTICKMODE := solveTickMode(TiM, MOD, B,

getVars(getName(MOD), DB), DB) .

*** price-timed rewrites with term
*** this is essentially a slightly modified of
*** preprocessTimedCommandTPCLCL
op preprocessPTimedT : ModuleExpression Module Bound

OpDeclSet Database Qid Term TickMode -> QidList .

*** bad init term
ceq preprocessPTimedT(ME, M, D, VDS, DB, Q, T1, TiM) =

('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Command/module/initterm
'does 'not 'parse. '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ not solveBubblesRew(T1, M, B, D, VDS, DB) ::
Tuple<Term|Module|OpDeclSet|Bound> .

*** bad tick mode
ceq preprocessPTimedT(ME, M, D, VDS, DB, Q,T1, TiM) =

('\n '\r 'Error '\c 'in 'priced-timed 'command: 'Tick 'mode 'amount
printTickAmount(TiM)

'does 'not 'parse 'in 'module
'\y eMetaPrettyPrint(getName(MOD)) '\o '\n)

if B := included('META-MODULE,
getImports(getTopModule(ME, DB)), DB)

/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B,
D, VDS, DB)

/\ not solveTickMode(TiM, MOD, B,
getVars(getName(MOD), DB),
DB) :: TickMode .

eq preprocessPTimedT(ME, unitError(QIL), D, VDS, DB, Q,
T1, TiM) =

qidError(QIL) .

*** now for one that actually works!
ceq preprocessPTimedT(ME, M, D, VDS, DB, Q, T1, TiM) =

procParsedPTimedCommandT(Q, MOD, TERM, BOUND,
SOLVEDTICKMODE)

if B := included('META-MODULE, getImports(getTopModule(ME, DB)), DB)
/\ {TERM, MOD, ODS, BOUND} := solveBubblesRew(T1, M, B, D, VDS,

DB)
/\ SOLVEDTICKMODE := solveTickMode(TiM, MOD, B,

getVars(getName(MOD), DB), DB) .

*** THE ACTUAL CALLS aND RESULTS

*** procTimedSearch2 calles timedMetaSearch and does the job.
*** In this first version, timedMetaSearch does all the module

157



*** transformations. Therefore it can be slightly slow
*** if we are looking for many solutions. However, that is a trivial
*** improvement if needed.

***(
op procTimedSearch2 : Module Term Term Condition Qid Bound Nat

ComparisonOp Term Bound TickMode -> QidList .
*** procTimedSearch2(module, initterm, pattern, condition,
*** arrowkind, depthOfRewrites, solNo, limit,
*** noOfSolsSought, tickMode)

eq procTimedSearch2(MOD, TERM, T, COND, Q, D, N, COMP, LIMIT,
BOUND, SOLVEDTICKMODE) =

if
timedMetaSearch(MOD, TERM, T, COND, Q, D, N, COMP,

LIMIT, SOLVEDTICKMODE)
:: ResultTriple

then
('\n '\c 'Solution qid(string(N + 1, 10))
'\n '\o eMetaPrettyPrint(MOD, getSubstitution(timedMetaSearch(MOD,

TERM, T, COND, Q, D, N, COMP, LIMIT, SOLVEDTICKMODE)))
'\n
(if N + 1 < BOUND
then procTimedSearch2(MOD, TERM, T, COND, Q, D,

N + 1, COMP, LIMIT, BOUND, SOLVEDTICKMODE)
else nil fi)

)
else
(if N == 0 then '\n '\c 'No 'solution '\o '\n
else '\n '\c 'No 'more 'solutions '\o '\n fi)

fi .
)***

*** PTM priced-timed search with time and cost limit
*** Arguments:
*** - Module
*** - Initial state
*** - Search pattern
*** - Such that condition
*** - '* '+ etc for now only '* is used
*** - Bound, not used
*** - lt, le
*** - Time limit
*** - Tick mode
*** - Cheaper than if true
*** - Cost limit
*** Need sthing liek preprocessTimedCommandTPCLCL to squeeze all
*** the bubbles out
op procPricedTimedSearch : Module Term Term Condition Qid Bound Nat

ComparisonOp Term Bound TickMode Bool Term
-> QidList .

op procTimedSearch2 : Module Term Term Condition Qid Bound Nat
ComparisonOp Term Bound TickMode -> QidList .

ceq procPricedTimedSearch(MOD, TERM, T, COND, Q, D, N, COMP, LIMIT,
BOUND, SOLVEDTICKMODE, B, COSTLIMIT) =

if
R3? :: ResultTriple

then
('\n '\c 'Solution qid(string(N + 1, 10))
'\n '\o eMetaPrettyPrint(MOD, getSubstitution(R3?))
'\n
(if N + 1 < BOUND

then procPricedTimedSearch(MOD, TERM, T, COND, Q, D,
N + 1, COMP, LIMIT, BOUND, SOLVEDTICKMODE,
B, COSTLIMIT)

else nil fi))
else
'\n '\c 'No 'more 'solutions '\o '\n

fi
*** here we should metareduce the initial term, and add
*** a cost to both the initial and search terms
if R3? :=

pricedTimedSearch(MOD, TERM, T, COND,
Q, D, N, COMP,
LIMIT, SOLVEDTICKMODE,
B, getTerm(metaReduce(MOD, COSTLIMIT))) .

op procPricedTimedSearch : Module Term Term Condition Qid Bound Nat
ComparisonOp Term Bound TickMode
-> QidList .

ceq procPricedTimedSearch(MOD, TERM, T, COND, Q, D, N, COMP, LIMIT,
BOUND, SOLVEDTICKMODE) =

if
R3? :: ResultTriple

then
('\n '\c 'Solution qid(string(N + 1, 10))
'\n '\o eMetaPrettyPrint(MOD, getSubstitution(R3?))
'\n
(if N + 1 < BOUND

then procPricedTimedSearch(MOD, TERM, T, COND, Q, D,
N + 1, COMP, LIMIT, BOUND, SOLVEDTICKMODE)

else nil fi))
else
'\n '\c 'No 'more 'solutions '\o '\n

158



fi
*** here we should metareduce the initial term, and add
*** a cost to both the initial and search terms
if R3? :=

pricedTimedSearch(MOD, TERM, T,
COND, Q, D, N, COMP,

LIMIT, SOLVEDTICKMODE) .

*** ptsearch with time but no cost limit
*** this one simply just reuses the parses required for
*** an initial term, pattern and a time limit
*** passes the result of the parse on to procPricedTimedSearch with no cost limit
ceq procParsedTimedCommandTPL(Q, MOD, TERM, BOUND, T, COND, LIMIT, SOLVEDTICKMODE) =

('\n '\c 'Priced-timed 'search
(if BOUND =/= unbounded *** write [13] etc
then ('\s '`[ qid(string(BOUND, 10)) '`] '\s )
else nil fi) 'in '\o

eMetaPrettyPrint(getName(MOD)) '\s '\n '\t
eMetaPrettyPrint(MOD, TERM) qid("=>" + string(searchQid(Q))) '\s
eMetaPrettyPrint(MOD, T) '\n
'\c 'in 'time
(if COMP == lt then '<
else (if COMP == le then '<=

else (if COMP == gt then '> else '>= fi) fi) fi)
eMetaPrettyPrint(MOD, LIMIT) '\c
'with 'no 'cost 'limit '\c

'and 'with 'mode
printMode(SOLVEDTICKMODE, MOD) ': '\n '\o
*** Here comes the real call:
procPricedTimedSearch(MOD,getTerm(metaReduce(MOD, TERM)),

getTerm(metaReduce(MOD, T)), COND,
if searchQid(Q) == '1 then
'+ else searchQid(Q) fi,

if searchQid(Q) == '1 then
1 else unbounded fi,

0, COMP, LIMIT, BOUND, SOLVEDTICKMODE))
if
COMP := commandToComp(Q) /\
((find(string(Q), "ptsearch", 0) =/= notFound) and

(find(string(Q), "in`time", 0) =/= notFound) and
--- added to differentiate from no cost limit
(find(string(Q), "with`no`cost`limit", 0) =/= notFound)) .

*** PTM find cheapest with time limit
*** maybe some more preprocessing is needed
*** Arguments:
*** - Module
*** - Initial state
*** - Search pattern
*** - Such that condition
*** - '* '+ etc for now only '* is used
*** - Bound, not used
*** - lt, le
*** - Time limit
*** - Tick mode
op procFindCheapest : Module Term Term Condition Qid Bound

ComparisonOp Term TickMode -> QidList .

ceq procFindCheapest(MOD, TERM, T, COND, Q, D, COMP, LIMIT,
SOLVEDTICKMODE) =

if
R3? :: ResultTriple

then
('\n '\c 'Solution
'\n '\o eMetaPrettyPrint(MOD, getSubstitution(R3?))
'\n)

else
'\n '\c 'No 'solution '\o '\n

fi
*** here we should metareduce the initial term, and add
*** a cost to both the initial and search terms
if R3? :=

if (find(string(Q), "binary", 0) == notFound) then
findCheapest(MOD, getTerm(metaReduce(MOD, TERM)),

getTerm(metaReduce(MOD, T)),
COND, Q, D, COMP,
LIMIT, SOLVEDTICKMODE)

else
*** binary
findCheapestBin(MOD, getTerm(metaReduce(MOD, TERM)),

getTerm(metaReduce(MOD, T)),
COND, Q, D, COMP,
LIMIT, SOLVEDTICKMODE)

fi .

op procUtFindCheapest : Module Term Term Condition Qid Bound
-> QidList .

ceq procUtFindCheapest(MOD, TERM, T, COND, Q, D) =
if
R3? :: ResultTriple

then

159



('\n '\c 'Solution
'\n '\o eMetaPrettyPrint(MOD, getSubstitution(R3?))
'\n)

else
'\n '\c 'No 'solution '\o '\n

fi
*** here we should metareduce the initial term, and add
*** a cost to both the initial and search terms
if R3? := utFindCheapest(MOD, getTerm(metaReduce(MOD, TERM)),

getTerm(metaReduce(MOD, T)),
COND, Q, D) .

op procPricedSearch : Module Term Term Condition Qid Bound
Bool Term -> QidList .

ceq procPricedSearch(MOD, TERM, T, COND, Q, D, CHEAPER, COSTLIMIT) =
if
R3? :: ResultTriple

then
('\n '\c 'Solution
'\n '\o eMetaPrettyPrint(MOD, getSubstitution(R3?))
'\n)

else
'\n '\c 'No 'solution '\o '\n

fi
*** here we should metareduce the initial term, and add
*** a cost to both the initial and search terms
if R3? := pricedSearch(MOD, TERM,

T,
COND, Q, D, CHEAPER, COSTLIMIT) .

*** find cheapest with time limit
*** this one simply just reuses the parses required for
*** an initial term, pattern and a time limit
ceq procParsedTimedCommandTPL(Q, MOD, TERM, BOUND, T, COND, LIMIT,

SOLVEDTICKMODE) =

('\n '\c
if (find(string(Q), "binary", 0) == notFound) then
'Find

else
'Binary 'find

fi
'cheapest
(if BOUND =/= unbounded *** write [13] etc
then
('\s '`[ qid(string(BOUND, 10)) '`] '\s )

else nil fi)
'in '\o eMetaPrettyPrint(getName(MOD)) '\c '\s '\n '\t
eMetaPrettyPrint(MOD, TERM)
qid("=>" + string(searchQid(Q))) '\s
eMetaPrettyPrint(MOD, T) '\n '\c
'in 'time commandToCompSymb(Q)
eMetaPrettyPrint(MOD, LIMIT) 'and 'with 'mode
printMode(SOLVEDTICKMODE, MOD) ': '\n '\o
*** Here comes the real call:
procFindCheapest(MOD, TERM, T, COND,

if searchQid(Q) == '1 then
'+

else
searchQid(Q)

fi,
if searchQid(Q) == '1 then
1

else
unbounded

fi,
commandToComp(Q), LIMIT, SOLVEDTICKMODE))

if (find(string(Q), "find`cheapest_=>*_in`time`<", 0) =/= notFound) .
---(Q == 'find`cheapest_=>*_in`time`<=_.)
--- or (Q == 'find`cheapest_=>*_in`time`<_.) .

op procParsedPricedTPB : Qid Module Term Bound Term Condition
Bool Term -> QidList .

ceq procParsedPricedTPB(Q, MOD, TERM, BOUND, T, COND,
CHEAPER, COSTLIMIT) =

('\n '\c 'Priced 'Search
(if BOUND =/= unbounded *** write [13] etc
then
('\s '`[ qid(string(BOUND, 10)) '`] '\s )

else nil fi)
'in '\o eMetaPrettyPrint(getName(MOD)) '\c '\s '\n '\t
eMetaPrettyPrint(MOD, TERM)
qid("=>" + string(searchQid(Q))) '\s
eMetaPrettyPrint(MOD, T) '\n '\c
*** Here comes the real call:
procPricedSearch(MOD, getTerm(metaReduce(MOD, TERM)),

getTerm(metaReduce(MOD, T)), COND,
if searchQid(Q) == '1 then
'+
else
searchQid(Q)
fi,
if searchQid(Q) == '1 then

160



1
else
unbounded

fi, CHEAPER, COSTLIMIT))
if (find(string(Q), "psearch", 0) =/= notFound) .

op procParsedPTimedCommandTP : Qid Module Term Bound Term
Condition TickMode -> QidList .

*** Find earliest: no cost limit.
ceq procParsedPTimedCommandTP('priced`find`earliest_=>*_with`no`cost`limit., MOD, TERM, BOUND,

T, COND, SOLVEDTICKMODE) =
('\n '\c 'Priced 'find 'earliest '\s '\o
eMetaPrettyPrint(MOD, T) '\c 'in '\o
eMetaPrettyPrint(getName(MOD)) '\c 'such 'that '\s '\n '\t
'\o eMetaPrettyPrint(MOD, TERM) '=>* '\s
eMetaPrettyPrint(MOD, T) '\n
'\y 'with 'no 'cost 'limit
'\c 'with 'mode
printMode(SOLVEDTICKMODE, MOD) '\c ': '\n '\o
*** Here comes the real call:
(if RT :: ResultTriple then

('\c '\n 'Result: '\o '\t
eMetaPrettyPrint(MOD, metaMoveCost(getTerm(RT))) '\o '\n )

else (if RT == failure then
('\c '\n 'Result: 'state 'not 'reachable. '\o '\n)

else ('\n '\r 'Error: 'something 'went 'wrong. '\o '\n)
fi)

fi)
)

if RT := findEarliest(pricifyMod(MOD),
pricifyInit(getTerm(metaReduce(MOD, TERM))),

pricifyPattern(getTerm(metaReduce(MOD, T))),
COND, SOLVEDTICKMODE) .

*** find cheapest with no time limit
ceq procParsedPTimedCommandTP(Q, MOD, TERM, BOUND, T, COND,

SOLVEDTICKMODE) =

('\n '\c
if (find(string(Q), "binary", 0) == notFound) then
'Find

else
'Binary 'find

fi
'cheapest
(if BOUND =/= unbounded *** write [13] etc
then
('\s '`[ qid(string(BOUND, 10)) '`] '\s )

else nil fi)
'in '\o eMetaPrettyPrint(getName(MOD)) '\c '\s '\n '\t
eMetaPrettyPrint(MOD, TERM)
qid("=>" + string(searchQid(Q))) '\s
eMetaPrettyPrint(MOD, T) '\n '\c
'with 'no 'time 'limit 'time 'and 'with 'mode
printMode(SOLVEDTICKMODE, MOD) ': '\n '\o
*** Here comes the real call:
procFindCheapest(MOD, TERM, T, COND,

if searchQid(Q) == '1 then
'+
else
searchQid(Q)
fi,
if searchQid(Q) == '1 then
1
else
unbounded
fi,
ge, 'zero.Time, SOLVEDTICKMODE))

if (find(string(Q), "with`no", 0) =/= notFound) and
(find(string(Q), "find`cheapest", 0) =/= notFound) .

*** untimed find cheapest, could make a different parse path
*** considering it's not ptimed
ceq procParsedPTimedCommandTP(Q, MOD, TERM, BOUND, T, COND,

SOLVEDTICKMODE) =

('\n '\c 'Un-timed 'Find 'cheapest
(if BOUND =/= unbounded *** write [13] etc
then
('\s '`[ qid(string(BOUND, 10)) '`] '\s )

else nil fi)
'in '\o eMetaPrettyPrint(getName(MOD)) '\c '\s '\n '\t
eMetaPrettyPrint(MOD, TERM)
qid("=>" + string(searchQid(Q))) '\s
eMetaPrettyPrint(MOD, T) '\n '\c
*** Here comes the real call:
procUtFindCheapest(MOD, TERM, T, COND,

if searchQid(Q) == '1 then
'+

else
searchQid(Q)
fi,
if searchQid(Q) == '1 then
1

161



else
unbounded

fi))
if (find(string(Q), "ut`find`cheapest", 0) =/= notFound) .

*** ptsearch with no limits
ceq procParsedPTimedCommandTP(Q, MOD, TERM, BOUND, T, COND,

SOLVEDTICKMODE) =

('\n '\c 'Priced-timed 'search
(if BOUND =/= unbounded *** write [13] etc
then ('\s '`[ qid(string(BOUND, 10)) '`] '\s )
else nil fi) 'in '\o

eMetaPrettyPrint(getName(MOD)) '\s '\n '\t
eMetaPrettyPrint(MOD, TERM) qid("=>" + string(searchQid(Q))) '\s
eMetaPrettyPrint(MOD, T) '\n
'\c 'with 'no 'time 'or 'cost 'limit

'and 'with 'mode
printMode(SOLVEDTICKMODE, MOD) ': '\n '\o
*** Here comes the real call:
procPricedTimedSearch(MOD,

getTerm(metaReduce(MOD, TERM)),
getTerm(metaReduce(MOD, T)), COND,

if searchQid(Q) == '1 then
'+ else searchQid(Q) fi,

if searchQid(Q) == '1 then
1 else unbounded fi,

0, ge, 'zero.Time, BOUND, SOLVEDTICKMODE,
true, 'infcost.CostInf))

if ((find(string(Q), "with`no`limits", 0) =/= notFound) and
(find(string(Q), "ptsearch", 0) =/= notFound)) .

*** Process priced timed rewrites with time and cost limit
op procParsedPTimedCommandTLB : Qid Module Term Bound

ComparisonOp Term
Bool Term
TickMode -> QidList .

*** priced timed fair rewrites with time and cost limit
ceq procParsedPTimedCommandTLB(Q, MOD, TERM, BOUND, COMP, LIMIT,

CHEAPER, COSTLIMIT, SOLVEDTICKMODE) =
if RP :: ResultPair then
('\n '\c 'Priced-timed if FAIR then 'fair 'rewrite

else 'rewrite fi
(if BOUND =/= unbounded *** write [13] etc
then ('\s '`[ qid(string(BOUND, 10)) '`] )
else nil fi) '\o '\s '\s
eMetaPrettyPrint(MOD, TERM) '\c 'in '\o
eMetaPrettyPrint(getName(MOD)) '\c 'with 'mode
printMode(SOLVEDTICKMODE, MOD)
'in 'time
(if COMP == lt then

'<
else
'<=

fi) eMetaPrettyPrint(MOD, LIMIT) '\c
'with 'cost
(if CHEAPER then

'<
else
'<=

fi)
eMetaPrettyPrint(MOD, COSTLIMIT)
'\c '\n 'Result '\o
eMetaPrettyPrint(leastSort(MOD, metaMoveCost(getTerm(RP)))) '\c ': '\o '\n '\s '\s
eMetaPrettyPrint(MOD, metaMoveCost(getTerm(RP))) '\n)

else ('\r 'Error 'in 'timed 'rewrite. '\o '\n)
fi

if *** maybe move this to the preparser
((find(string(Q), "ptfrew_in`time", 0) =/= notFound) or
(find(string(Q), "ptrew_in`time", 0) =/= notFound))
/\ FAIR := (find(string(Q), "ptfrew", 0) =/= notFound)
/\ RP :=

if FAIR then
pricedTimedMetaFRewrite(MOD, getTerm(metaReduce(MOD, TERM)), BOUND, 1,

COMP, LIMIT, SOLVEDTICKMODE, CHEAPER, COSTLIMIT)
else
pricedTimedMetaRewrite(MOD, getTerm(metaReduce(MOD, TERM)), BOUND,

COMP, LIMIT, SOLVEDTICKMODE, CHEAPER, COSTLIMIT)
fi .

*** now for pt(f)rew with no time limit
op procParsedPTimedCommandTB : Qid Module Term Bound

Bool Term TickMode -> QidList .

*** pt(f)rew with no time limit
ceq procParsedPTimedCommandTB(Q, MOD, TERM, BOUND,

CHEAPER, COSTLIMIT, SOLVEDTICKMODE) =
if RP :: ResultPair then
('\n '\c 'Priced-timed if FAIR then 'fair 'rewrite

else 'rewrite fi

162



(if BOUND =/= unbounded *** write [13] etc
then ('\s '`[ qid(string(BOUND, 10)) '`] )
else nil fi) '\o '\s '\s
eMetaPrettyPrint(MOD, TERM) '\c 'in '\o
eMetaPrettyPrint(getName(MOD)) '\c 'with 'mode
printMode(SOLVEDTICKMODE, MOD)
'with 'no 'time 'limit 'and

'with 'cost
(if CHEAPER then

'<
else
'<=

fi)
eMetaPrettyPrint(MOD, COSTLIMIT)
'\c '\n 'Result '\o
eMetaPrettyPrint(leastSort(MOD, metaMoveCost(getTerm(RP)))) '\c ': '\o '\n '\s '\s
eMetaPrettyPrint(MOD, metaMoveCost(getTerm(RP))) '\n)

else ('\r 'Error 'in 'timed 'rewrite. '\o '\n)
fi

if *** maybe move this to the preparser
((find(string(Q), "ptfrew_with`no", 0) =/= notFound) or
(find(string(Q), "ptrew_with`no", 0) =/= notFound))
/\ FAIR := (find(string(Q), "ptfrew", 0) =/= notFound)
/\ RP :=

if FAIR then
pricedTimedMetaFRewrite(MOD, getTerm(metaReduce(MOD, TERM)), BOUND, 1,

ge, 'zero.Time, SOLVEDTICKMODE, CHEAPER, COSTLIMIT)
else
pricedTimedMetaRewrite(MOD, getTerm(metaReduce(MOD, TERM)), BOUND,

ge, 'zero.Time, SOLVEDTICKMODE, CHEAPER, COSTLIMIT)
fi .

*** Process priced timed rewrites with time limit
op procParsedPTimedCommandTL : Qid Module Term Bound

ComparisonOp Term
TickMode -> QidList .

*** priced timed fair rewrites with time limit
ceq procParsedPTimedCommandTL(Q, MOD, TERM, BOUND, COMP, LIMIT,

SOLVEDTICKMODE) =
if RP :: ResultPair then
('\n '\c 'Priced-timed if FAIR then 'fair 'rewrite

else 'rewrite fi
(if BOUND =/= unbounded *** write [13] etc
then ('\s '`[ qid(string(BOUND, 10)) '`] )
else nil fi) '\o '\s '\s
eMetaPrettyPrint(MOD, TERM) '\c 'in '\o
eMetaPrettyPrint(getName(MOD)) '\c 'with 'mode
printMode(SOLVEDTICKMODE, MOD)
'in 'time
(if COMP == lt then

'<
else
'<=

fi) eMetaPrettyPrint(MOD, LIMIT) '\c
'with 'no 'cost 'limit
'\c '\n 'Result '\o
eMetaPrettyPrint(leastSort(MOD, metaMoveCost(getTerm(RP)))) '\c ': '\o '\n '\s '\s
eMetaPrettyPrint(MOD, metaMoveCost(getTerm(RP))) '\n)

else ('\r 'Error 'in 'timed 'rewrite. '\o '\n)
fi

if *** maybe move this to the preparser
((find(string(Q), "ptfrew_in`time", 0) =/= notFound) or
(find(string(Q), "ptrew_in`time", 0) =/= notFound))

/\ FAIR := (find(string(Q), "ptfrew", 0) =/= notFound)
/\ RP :=

if FAIR then
pricedTimedMetaFRewrite(MOD, getTerm(metaReduce(MOD, TERM)), BOUND, 1,

COMP, LIMIT, SOLVEDTICKMODE)
else
pricedTimedMetaRewrite(MOD, getTerm(metaReduce(MOD, TERM)), BOUND,

COMP, LIMIT, SOLVEDTICKMODE)
fi .

*** now for pt(f)rew with no limits
op procParsedPTimedCommandT : Qid Module Term Bound TickMode -> QidList .

*** pt(f)rew with no time limit
ceq procParsedPTimedCommandT(Q, MOD, TERM, BOUND, SOLVEDTICKMODE) =

if RP :: ResultPair then
('\n '\c 'Priced-timed if FAIR then 'fair 'rewrite

else 'rewrite fi
(if BOUND =/= unbounded *** write [13] etc
then ('\s '`[ qid(string(BOUND, 10)) '`] )
else nil fi) '\o '\s '\s
eMetaPrettyPrint(MOD, TERM) '\c 'in '\o
eMetaPrettyPrint(getName(MOD)) '\c 'with 'mode
printMode(SOLVEDTICKMODE, MOD)
'with 'no 'limits
'\c '\n 'Result '\o

eMetaPrettyPrint(leastSort(MOD, metaMoveCost(getTerm(RP)))) '\c ': '\o '\n '\s '\s
eMetaPrettyPrint(MOD, metaMoveCost(getTerm(RP))) '\n)

163



else ('\r 'Error 'in 'timed 'rewrite. '\o '\n)
fi

if *** maybe move this to the preparser
((find(string(Q), "ptfrew_with`no", 0) =/= notFound) or
(find(string(Q), "ptrew_with`no", 0) =/= notFound))
/\ FAIR := (find(string(Q), "ptfrew", 0) =/= notFound)
/\ RP :=

if FAIR then
pricedTimedMetaFRewrite(MOD, getTerm(metaReduce(MOD, TERM)), BOUND, 1,

ge, 'zero.Time, SOLVEDTICKMODE)
else
pricedTimedMetaRewrite(MOD, getTerm(metaReduce(MOD, TERM)), BOUND,

ge, 'zero.Time, SOLVEDTICKMODE)
fi .

*** untimed priced rewrite
ceq procParsedPTimedCommandTB(Q, MOD, TERM, BOUND,

CHEAPER, COSTLIMIT, SOLVEDTICKMODE) =
if RP :: ResultPair then
('\n '\c 'Priced-timed if FAIR then 'fair 'rewrite

else 'rewrite fi
(if BOUND =/= unbounded *** write [13] etc
then ('\s '`[ qid(string(BOUND, 10)) '`] )
else nil fi) '\o '\s '\s
eMetaPrettyPrint(MOD, TERM) '\c 'with '\o
'cost

(if CHEAPER then
'<

else
'<=

fi)
eMetaPrettyPrint(MOD, COSTLIMIT)
'\c '\n 'Result '\o
eMetaPrettyPrint(getType(RP)) '\c ': '\o '\n '\s '\s
eMetaPrettyPrint(MOD, getTerm(RP)) '\n)

else ('\r 'Error 'in 'priced 'rewrite. '\o '\n)
fi

if *** maybe move this to the preparser
((find(string(Q), "pfrew", 0) =/= notFound) or
(find(string(Q), "prew", 0) =/= notFound))
/\ FAIR := (find(string(Q), "pfrew", 0) =/= notFound)
/\ RP :=

if FAIR then
pricedMetaFRewrite(MOD, getTerm(metaReduce(MOD, TERM)), BOUND, 1, CHEAPER,

COSTLIMIT)
else
pricedMetaRewrite(MOD, getTerm(metaReduce(MOD, TERM)), BOUND, CHEAPER, COSTLIMIT)

fi .

*** 'ptfrew_in`time`<=_cheaper`than_. or
*** 'ptfrew_in`time`<=_cheaper`than`or`eq_. or
*** 'ptfrew_in`time`<_cheaper`than_. or
*** 'ptfrew_in`time`<_cheaper`than`or`eq_. or
*** 'ptfrew_with`no`time`limit`cheaper`than_. or
*** 'ptfrew_with`no`time`limit`cheaper`than`or`eq_. or
*** 'ptrew_in`time`<=_cheaper`than_. or
*** 'ptrew_in`time`<=_cheaper`than`or`eq_. or
*** 'ptrew_in`time`<_cheaper`than_. or
*** 'ptrew_in`time`<_cheaper`than`or`eq_. or
*** 'ptrew_with`no`time`limit`cheaper`than_. or
*** 'ptrew_with`no`time`limit`cheaper`than`or`eq_. .
*** 'ptfrew_in`time`<=_cheaper`than_.
*** 'ptfrew_in`time`<=_cheaper`than`or`eq_.
*** 'ptfrew_in`time`<_cheaper`than_.
*** 'ptfrew_in`time`<_cheaper`than`or`eq_.

*** ptsearch with time and cost limit
op procParsedPTimedCommandTPLB : Qid Module Term Bound Term

Condition ComparisonOp Term
Bool Term
TickMode -> QidList .

ceq procParsedPTimedCommandTPLB(Q, MOD, TERM, BOUND, T, COND,
COMP, LIMIT, CHEAPER, COSTLIMIT, SOLVEDTICKMODE) =

('\n '\c 'Priced-timed 'search
(if BOUND =/= unbounded *** write [13] etc
then ('\s '`[ qid(string(BOUND, 10)) '`] '\s )
else nil fi) 'in '\o

eMetaPrettyPrint(getName(MOD)) '\s '\n '\t
eMetaPrettyPrint(MOD, TERM) qid("=>" + string(searchQid(Q))) '\s
eMetaPrettyPrint(MOD, T) '\n
'\c 'in 'time
(if COMP == lt then '<
else (if COMP == le then '<=

else (if COMP == gt then '> else '>= fi) fi) fi)
eMetaPrettyPrint(MOD, LIMIT) '\c
'with 'cost

(if CHEAPER then
'<

else
'<=

164



fi)
eMetaPrettyPrint(MOD, COSTLIMIT) '\c
'and 'with 'mode
printMode(SOLVEDTICKMODE, MOD) ': '\n '\o
*** Here comes the real call:
procPricedTimedSearch(MOD,

getTerm(metaReduce(MOD, TERM)),
getTerm(metaReduce(MOD, T)), COND,

if searchQid(Q) == '1 then
'+ else searchQid(Q) fi,

if searchQid(Q) == '1 then
1 else unbounded fi,

0, COMP, LIMIT, BOUND, SOLVEDTICKMODE, CHEAPER, COSTLIMIT))
if ((find(string(Q), "ptsearch", 0) =/= notFound) and

(find(string(Q), "in`time", 0) =/= notFound)) and
--- added to differentiate from no cost limit
(find(string(Q), "with`cost", 0) =/= notFound) .

*** ptsearch with no time limit, but cost limit
op procParsedPTimedCommandTPB : Qid Module Term Bound Term

Condition Bool Term
TickMode -> QidList .

ceq procParsedPTimedCommandTPB(Q, MOD, TERM, BOUND, T, COND,
CHEAPER, COSTLIMIT, SOLVEDTICKMODE) =

('\n '\c 'Priced-timed 'search
(if BOUND =/= unbounded *** write [13] etc
then ('\s '`[ qid(string(BOUND, 10)) '`] '\s )
else nil fi) 'in '\o

eMetaPrettyPrint(getName(MOD)) '\s '\n '\t
eMetaPrettyPrint(MOD, TERM) qid("=>" + string(searchQid(Q))) '\s
eMetaPrettyPrint(MOD, T) '\n
'\c 'with 'no 'time 'limit
'with 'cost

(if CHEAPER then
'<

else
'<=

fi)
eMetaPrettyPrint(MOD, COSTLIMIT) '\c
'and 'with 'mode
printMode(SOLVEDTICKMODE, MOD) ': '\n '\o
*** Here comes the real call:
procPricedTimedSearch(MOD,

getTerm(metaReduce(MOD, TERM)),
getTerm(metaReduce(MOD, T)), COND,

if searchQid(Q) == '1 then
'+ else searchQid(Q) fi,

if searchQid(Q) == '1 then
1 else unbounded fi,

0, ge, 'zero.Time, BOUND, SOLVEDTICKMODE, CHEAPER, COSTLIMIT))
if ((find(string(Q), "ptsearch", 0) =/= notFound) and

(find(string(Q), "with`no`time", 0) =/= notFound)) .

*** Find earliest: with cost limit.
ceq procParsedPTimedCommandTPB(Q, MOD, TERM, BOUND, T, COND,

CHEAPER, COSTLIMIT, SOLVEDTICKMODE) =
('\n '\c 'Priced 'find 'earliest '\s '\o

eMetaPrettyPrint(MOD, T) '\c 'in '\o
eMetaPrettyPrint(getName(MOD)) '\c 'such 'that '\s '\n '\t
'\o eMetaPrettyPrint(MOD, TERM) '=>* '\s
eMetaPrettyPrint(MOD, T) '\n
'\y 'with 'cost
(if CHEAPER then

'<
else

'<=
fi)

eMetaPrettyPrint(MOD, COSTLIMIT) '\c
'\c 'with 'mode
printMode(SOLVEDTICKMODE, MOD) '\c ': '\n '\o
*** Here comes the real call:
(if RT :: ResultTriple then

('\c '\n 'Result: '\o '\t
eMetaPrettyPrint(MOD, metaMoveCost(getTerm(RT))) '\o '\n )

else (if RT == failure then
('\c '\n 'Result: 'state 'not 'reachable. '\o '\n)

else ('\n '\r 'Error: 'something 'went 'wrong. '\o '\n)
fi)

fi)
)

if RT := findEarliest(costLimitMod(pricifyMod(MOD),CHEAPER,COSTLIMIT),
pricifyInit(getTerm(metaReduce(MOD, TERM))),

pricifyPattern(getTerm(metaReduce(MOD, T))),
COND, SOLVEDTICKMODE)

/\
((find(string(Q), "find`earliest", 0) =/= notFound) and
(find(string(Q), "with`cost`", 0) =/= notFound)) .

*** model checking commands
*** these are mainly unchanged from Real-Time Maude
*** all commands hav are prefixed with a p for priced
*** in addition for the last step the module is pricified,

165



*** initial term gets a with cost free added and any search pattern has a cost variable added
*** MOD ->
*** pricifyMod(MOD),
*** TERM ->
*** makePriced(getTerm(metaReduce(MOD, TERM)), getTerm(metaReduce(MOD,'free.Cost))),
*** T-> (?)
*** makePriced(getTerm(metaReduce(MOD,T)),newCostVar(T,'TOTAL_COST_INCURRED)),

*** All the preparsing can safely be done by the Real-Time Maude function

ceq procTimedCommand(Q[T, T', T''], ME, DB, TiM) =
(if compiledModule(ME, DB)
then preprocessTimedCommandTPP(ME, getFlatModule(ME, DB), unbounded,

getVars(ME, DB), DB, Q, T, T', T'',TiM)
else preprocessTimedCommandTPP(modExp(evalModExp(ME, DB)),

getFlatModule(modExp(evalModExp(ME, DB)),
database(evalModExp(ME, DB))),

unbounded,
getVars(modExp(evalModExp(ME, DB)),

database(evalModExp(ME, DB))),
database(evalModExp(ME, DB)),
Q, T, T', T'', TiM)

fi)
if (Q == 'pcheck_|=_until_with`no`time`limit`.) or

(Q == 'pcheck_|=_untilStable_with`no`time`limit`.) .

ceq procTimedCommand(Q[T, T', T'', T'''], ME, DB, TiM) =
(if compiledModule(ME, DB)
then preprocessTimedCommandTPPL(ME, getFlatModule(ME, DB), unbounded,

getVars(ME, DB), DB, Q, T, T', T'',
T''', TiM)

else preprocessTimedCommandTPPL(modExp(evalModExp(ME, DB)),
getFlatModule(modExp(evalModExp(ME, DB)),

database(evalModExp(ME, DB))),
unbounded,
getVars(modExp(evalModExp(ME, DB)),

database(evalModExp(ME, DB))),
database(evalModExp(ME, DB)),
Q, T, T', T'', T''', TiM)

fi)
if (Q == 'pcheck_|=_until_in`time`<_.) or

(Q == 'pcheck_|=_until_in`time`<=_.) or
(Q == 'pcheck_|=_untilStable_in`time`<_.) or
(Q == 'pcheck_|=_untilStable_in`time`<=_.) .

ceq procTimedCommand(Q[T, T'], ME, DB, TiM) =
(if compiledModule(ME, DB)
then preprocessTimedCommandTP(ME, getFlatModule(ME, DB), unbounded,

getVars(ME, DB), DB, Q, T, T', TiM)
else preprocessTimedCommandTP(modExp(evalModExp(ME, DB)),

getFlatModule(modExp(evalModExp(ME, DB)),
database(evalModExp(ME, DB))),

unbounded,
getVars(modExp(evalModExp(ME, DB)),

database(evalModExp(ME, DB))),
database(evalModExp(ME, DB)), Q, T, T', TiM)

fi)
if (Q == 'pmc_|=u_.) or

(Q == 'pmc_|=t_with`no`time`limit`.) .

ceq procPriceTimedCommand(Q[TL], ME, DB, TiM) = procTimedCommand(Q[TL], ME, DB, TiM)
if Q == 'pcheck_|=`<>_with`no`time`limit`. or

Q == 'pcheck_|=`<>_in`time`<_. or
Q == 'pcheck_|=`<>_in`time`<=_. or
Q == 'pcheck_|=_until_with`no`time`limit`. or
Q == 'pcheck_|=_until_in`time`<_. or
Q == 'pcheck_|=_until_in`time`<=_. or
Q == 'pcheck_|=_untilStable_with`no`time`limit`. or
Q == 'pcheck_|=_untilStable_in`time`<_. or
Q == 'pcheck_|=_untilStable_in`time`<=_. or
Q == 'pmc_|=u_. or
Q == 'pmc_|=t_with`no`time`limit`. or
Q == 'pmc_|=t_in`time`<_. or
Q == 'pmc_|=t_in`time`<=_. .

*** Homemade diamond check:
*** First, no time limit
ceq procParsedTimedCommandTP('pcheck_|=`<>_with`no`time`limit`., MOD,

TERM, BOUND,
T, COND, SOLVEDTICKMODE) =

('\n '\c 'Check '\s '\o eMetaPrettyPrint(MOD, TERM)
'\c '|= '\y '<> '\o '\s
eMetaPrettyPrint(MOD, T) '\c 'in '\o
eMetaPrettyPrint(getName(MOD)) '\c
'with 'no 'time 'limit 'with 'mode
printMode(SOLVEDTICKMODE, MOD) '\c ': '\n '\o
*** Here comes the real call:
(if TS :: Term then

('\c '\n 'Result: 'the 'property 'does 'not 'hold.
'Counterexample: '\n '\o '\t

eMetaPrettyPrint(MOD, TS) '\o '\n )
else (if TS == noterm then

166



('\c '\n 'Result: 'the 'property 'holds. '\o '\n)
else ('\r '\n 'Error: 'something 'went 'wrong. '\o '\n)
fi)

fi)
)

if TS := timedDiamond(pricifyProperties(pricifyMod(MOD)),
pricifyInit(getTerm(metaReduce(MOD, TERM))),

T,
COND, true, SOLVEDTICKMODE) .

*** Now with time constraints:
ceq procParsedTimedCommandTPL(Q, MOD, TERM, BOUND,

T, COND, LIMIT, SOLVEDTICKMODE) =
('\n '\c 'Check '\s '\o eMetaPrettyPrint(MOD, TERM) '\c '|=
'\y '<> '\o '\s
eMetaPrettyPrint(MOD, T) '\c 'in '\o
eMetaPrettyPrint(getName(MOD)) '\c
'in 'time commandToCompSymb(Q)
eMetaPrettyPrint(MOD, LIMIT) '\c
'with 'mode
printMode(SOLVEDTICKMODE, MOD) '\c ': '\n '\o
*** Here comes the real call:
(if TS :: Term then

('\c '\n 'Result: 'the 'property 'does 'not 'hold.
'Counterexample: '\n '\o '\t

eMetaPrettyPrint(MOD, TS) '\o '\n )
else (if TS == noterm then

('\c '\n 'Result: 'The 'property 'holds. '\o '\n)
else ('\r '\n 'Error: 'something 'went 'wrong. '\o '\n)
fi)

fi)
)

if (Q == 'pcheck_|=`<>_in`time`<_.) or
(Q == 'pcheck_|=`<>_in`time`<=_.)
/\ TS := timedDiamond(pricifyProperties(pricifyMod(MOD)),

pricifyInit(getTerm(metaReduce(MOD, TERM))),
T,
COND, true, commandToComp(Q),
LIMIT, SOLVEDTICKMODE) .

*** Homemade "until". This also exists with an untimed version which
*** I do not provide here!

*** First without time constraints:
ceq procParsedTimedCommandTPP('pcheck_|=_until_with`no`time`limit`., MOD,

TERM, BOUND, T, COND,
T', COND', SOLVEDTICKMODE) =

('\n '\c 'Check '\s '\o eMetaPrettyPrint(MOD, TERM)
'\c '|= '\s '\o eMetaPrettyPrint(MOD, T) '\y 'until '\o '\s
eMetaPrettyPrint(MOD, T') '\c 'in '\o
eMetaPrettyPrint(getName(MOD)) '\c
'with 'no 'time 'limit 'with 'mode
printMode(SOLVEDTICKMODE, MOD) '\c ': '\n '\o
*** Here comes the real call:
(if TS :: Term then

('\c '\n 'Result: 'the 'property 'does 'not 'hold.
'Counterexample: '\n '\o '\t

eMetaPrettyPrint(MOD, TS) '\o '\n )
else (if TS == noterm then

('\c '\n 'Result: 'The 'property 'holds. '\o '\n)
else ('\r '\n 'Error: 'something 'went 'wrong. '\o '\n)
fi)

fi)
)

if TS := timedUntil(pricifyProperties(pricifyMod(MOD)),
pricifyInit(getTerm(metaReduce(MOD, TERM))),
T,
COND, true, T', COND',
true, SOLVEDTICKMODE) .

*** Now with time constraints:
ceq procParsedTimedCommandTPPL(Q, MOD, TERM, BOUND, T, COND,

T', COND', LIMIT, SOLVEDTICKMODE) =
('\n '\c 'Check '\s '\o eMetaPrettyPrint(MOD, TERM)
'\c '|= '\s '\o eMetaPrettyPrint(MOD, T) '\y 'until '\o '\s
eMetaPrettyPrint(MOD, T') '\c 'in '\o
eMetaPrettyPrint(getName(MOD)) '\c
'in 'time commandToCompSymb(Q)
eMetaPrettyPrint(MOD, LIMIT) '\c
'with 'mode
printMode(SOLVEDTICKMODE, MOD) '\c ': '\n '\o
*** Here comes the real call:
(if TS :: Term then

('\c '\n 'Result: 'the 'property 'does 'not 'hold.
'Counterexample: '\n '\o '\t

eMetaPrettyPrint(MOD, TS) '\o '\n )
else (if TS == noterm then

('\c '\n 'Result: 'The 'property 'holds. '\o '\n)
else ('\r '\n 'Error: 'something 'went 'wrong. '\o '\n)
fi)

fi)
)

if (Q == 'pcheck_|=_until_in`time`<_.) or
(Q == 'pcheck_|=_until_in`time`<=_.)
/\ TS := timedUntil(pricifyProperties(pricifyMod(MOD)),

167



pricifyInit(getTerm(metaReduce(MOD, TERM))),
T,
COND, true, T', COND',
true, commandToComp(Q), LIMIT, SOLVEDTICKMODE) .

*** Timed untilstable:
*** First without time constraints:
ceq procParsedTimedCommandTPP('pcheck_|=_untilStable_with`no`time`limit`.,

MOD,
TERM, BOUND, T, COND,
T', COND', SOLVEDTICKMODE) =

('\n '\c 'Check '\s '\o eMetaPrettyPrint(MOD, TERM)
'\c '|= '\o '\s eMetaPrettyPrint(MOD, T) '\y 'untilStable
'\o '\s
eMetaPrettyPrint(MOD, T') '\c 'in '\o
eMetaPrettyPrint(getName(MOD)) '\c
'with 'no 'time 'limit 'with 'mode
printMode(SOLVEDTICKMODE, MOD) '\c ': '\n '\o
*** Here comes the real call:
(if TS :: Term then

('\c '\n 'Result: 'the 'property 'does 'not 'hold.
'Counterexample: '\n '\o '\t

eMetaPrettyPrint(MOD, TS) '\o '\n )
else (if TS == noterm then

('\c '\n 'Result: 'the 'property 'holds. '\o '\n)
else ('\r '\n 'Error: 'something 'went 'wrong. '\o '\n)
fi)

fi)
)

if TS := timedUntilStable(pricifyProperties(pricifyMod(MOD)),
pricifyInit(getTerm(metaReduce(MOD, TERM))),
T,
COND, true,
T', COND', true, SOLVEDTICKMODE) .

*** Now with time constraints:
ceq procParsedTimedCommandTPPL(Q, MOD, TERM, BOUND, T, COND,

T', COND', LIMIT, SOLVEDTICKMODE) =
('\n '\c 'Check '\o '\s eMetaPrettyPrint(MOD, TERM)
'\c '|= '\o '\s eMetaPrettyPrint(MOD,T) '\y 'untilStable
'\o '\s
eMetaPrettyPrint(MOD, T') '\c 'in '\o
eMetaPrettyPrint(getName(MOD)) '\c
'in 'time commandToCompSymb(Q)
eMetaPrettyPrint(MOD, LIMIT) '\c
'with 'mode
printMode(SOLVEDTICKMODE, MOD) '\c ': '\n '\o
*** Here comes the real call:
(if TS :: Term then

('\c '\n 'Result: 'the 'property 'does 'not 'hold.
'Counterexample: '\n '\o '\t

eMetaPrettyPrint(MOD, TS) '\o '\n )
else (if TS == noterm then

('\c '\n 'Result: 'the 'property 'holds. '\o '\n)
else ('\r '\n 'Error: 'something 'went 'wrong. '\o '\n)
fi)

fi)
)

if (Q == 'pcheck_|=_untilStable_in`time`<_.) or
(Q == 'pcheck_|=_untilStable_in`time`<=_.)
/\ TS := timedUntilStable(pricifyProperties(pricifyMod(MOD)),

pricifyInit(getTerm(metaReduce(MOD, TERM))),
T,
COND, true, T', COND', true,
commandToComp(Q), LIMIT, SOLVEDTICKMODE) .

*** Model checking! First mc_|=u_. Untimed model checking.
ceq procParsedTimedCommandTP('pmc_|=u_., MOD, TERM, BOUND,

T, nil, SOLVEDTICKMODE) =
if RP :: ResultPair then
('\n '\c 'Untimed 'model 'check '\s '\o

eMetaPrettyPrint(MOD, TERM)
'\c '\s '|=u '\o '\s eMetaPrettyPrint(MOD, T)
'\c '\s 'in '\o

eMetaPrettyPrint(getName(MOD)) '\c 'with 'mode
printMode(SOLVEDTICKMODE, MOD) '\c '\n

'\c '\n 'Result '\o
eMetaPrettyPrint(getType(RP)) '\c ': '\n '\o '\s '\s
eMetaPrettyPrint(MOD, getTerm(RP)) '\n '\o )

else ('\n '\r 'Untimed 'model 'checking: 'Something 'went
'wrong! '\o '\n)

fi
if RP := metaMC(pricifyProperties(pricifyMod(MOD)),

pricifyInit(getTerm(metaReduce(MOD, TERM))),
T,
'u, SOLVEDTICKMODE) .

ceq procParsedTimedCommandTP('pmc_|=u_., MOD, TERM, BOUND,
T, COND, SOLVEDTICKMODE) =

('\n '\r 'Error: 'No 'condition 'in
'temporal 'logic 'model 'checking! '\o '\n)

if COND =/= nil .

*** "Timed", maybe slightly misnamed, model checking.

168



*** Properties valied for GlobalSystems are valid at all times.

ceq procParsedTimedCommandTP('mc_|=t_with`no`time`limit`., MOD, TERM,
BOUND, T, nil, SOLVEDTICKMODE) =

if RP :: ResultPair then
('\n '\c 'Model 'check '\o

eMetaPrettyPrint(MOD, TERM) '\s
'\c '|=t '\o eMetaPrettyPrint(MOD, T)
'\c '\s 'in '\o
eMetaPrettyPrint(getName(MOD)) '\c 'with 'mode
printMode(SOLVEDTICKMODE, MOD) '\c '\n

'\c '\n 'Result '\o
eMetaPrettyPrint(getType(RP)) '\c ': '\n '\o '\s '\s
eMetaPrettyPrint(MOD, getTerm(RP)) '\o '\n)

else ('\n '\r 'Model 'checking: 'something 'went 'wrong! '\o '\n)
fi

if RP := metaMC(pricifyProperties(pricifyMod(MOD)),
pricifyInit(getTerm(metaReduce(MOD, TERM))),
T,

't, SOLVEDTICKMODE) .

ceq procParsedTimedCommandTP('pmc_|=t_with`no`time`limit`., MOD, TERM, BOUND,
T, COND, SOLVEDTICKMODE) =

('\n '\r 'Error: 'No 'condition 'in
'temporal 'logic 'model 'checking! '\o '\n)

if COND =/= nil .

*** Timed model checking with limit:
ceq procParsedTimedCommandTPL(Q, MOD, TERM, BOUND, T, nil,

LIMIT, SOLVEDTICKMODE) =
if RP :: ResultPair then
('\n '\c 'Model 'check '\o

eMetaPrettyPrint(MOD, TERM)
'\c '\s '|=t '\o eMetaPrettyPrint(MOD, T)
'\c 'in '\o

eMetaPrettyPrint(getName(MOD)) '\c '\s
'in 'time commandToCompSymb(Q)
eMetaPrettyPrint(MOD, LIMIT) '\c 'with 'mode

printMode(SOLVEDTICKMODE, MOD) '\c '\n
'\c '\n 'Result '\o
eMetaPrettyPrint(getType(RP)) '\c ': '\n '\o '\s '\s
eMetaPrettyPrint(MOD, getTerm(RP)) '\o '\n)

else ('\n '\r 'Model 'checking: 'something 'went 'wrong! '\n '\o)
fi

if (Q == 'pmc_|=t_in`time`<_.) or (Q == 'pmc_|=t_in`time`<=_.)
/\ RP := metaMC(pricifyProperties(pricifyMod(MOD)),

pricifyInit(getTerm(metaReduce(MOD, TERM))),
T,
commandToComp(Q), LIMIT, SOLVEDTICKMODE) .

ceq procParsedTimedCommandTPL(Q, MOD, TERM, BOUND, T, COND,
LIMIT, SOLVEDTICKMODE) =

('\n '\r 'Error: 'No 'condition 'in
'temporal 'logic 'model 'checking! '\o '\n)

if (Q == 'pmc_|=t_in`time`<_.) or (Q == 'pmc_|=t_in`time`<=_.)
/\ COND =/= nil .

endfm

mod PTM-TIMED-DATABASE-HANDLING is
--- PTM uses these rules to latch onto Real-Time Maude's time ddb handling code
pr TIMED-DATABASE-HANDLING .

pr PTM-COMMAND-PROCESSING .
pr PRICED-UNIT-PROCESSING .

var ATTS : AttributeSet .
var DATABASE : DatabaseClass .
var TIMEDDATABASE : TimedDatabaseClass .
var DB : Database .
vars F Q : Qid .
vars T T' T'' T''' : Term .
var TL : TermList .
var O : Oid .
var MN : ModuleName .
var TIMEDDATA : TimedData .
var ME : ModuleExpression .
var QIL : QidList .

--- PRICED mods
crl [databaseToTimedDatabase2] :

< O : DATABASE | input : (F[T, T']), ATTS >
=>
< O : TimedDatabase | input : (F[T, T']), ATTS,

timedData : initTimedData >
if ((F == 'ptomod_is_endptom)

or-else (F == 'ptmod_is_endptm)
or-else (F == 'pomod_is_endpom)
or-else (F == 'pmod_is_endpm))

and not (DATABASE :: TimedDatabaseClass) .

--- PRICED mods
--- make this new rule or tack on to existing
crl [readPTimedModule] :

< O : TIMEDDATABASE | db : DB, input : (F[T, T']),

169



output : nil, default : ME,
timedData : TIMEDDATA, ATTS >

=>
< O : TIMEDDATABASE | db : procModule(

timedPreModuleToPreModule(
processTimedMetaLevel(F[T, T'],

TIMEDDATA)),
DB),

input : nilTermList,
output :

('\n '\c 'Introduced 'timed 'module: '\o
header2Qid(parseHeader(T)) '\n),

default : parseHeader(T),
timedData : addModName(TIMEDDATA,

pureModName(T)),
ATTS >

if (F == 'ptomod_is_endptom)
or-else (F == 'ptmod_is_endptm)
or-else (F == 'pomod_is_endpom)
or-else (F == 'pmod_is_endpm) .

*** Split the rule TimedExecution to allow for priced execution
*** this separation may be a be artificial but is cleaner
crl [pricedExecution] :

< O : TIMEDDATABASE | db : DB,
input : (F[TL]),
output : QIL,
default : ME,
timedData : TIMEDDATA, ATTS >

=>
< O : TIMEDDATABASE | db : DB,

input : nilTermList,
output : procPriceTimedCommand(F[TL], ME,

DB, getTickMode(TIMEDDATA)),
default : ME,
timedData : TIMEDDATA, ATTS >

if --- PRICED stuff
F == 'binary`find`cheapest_=>*_in`time`<=_. or
F == 'binary`find`cheapest_=>*_in`time`<_. or
F == 'binary`find`cheapest_=>*_with`no`time`limit`. or
F == 'find`cheapest_=>*_in`time`<=_. or
F == 'find`cheapest_=>*_in`time`<_. or
F == 'find`cheapest_=>*_with`no`time`limit. or
F == 'priced`find`earliest_=>*_with`no`cost`limit. or *** add with cost limits
F == 'priced`find`earliest_=>*_with`cost`<=_. or
F == 'priced`find`earliest_=>*_with`cost`<_. or
F == 'ptsearch_=>*_in`time`<_with`cost`<_. or
F == 'ptsearch_=>*_in`time`<_with`cost`<=_. or
F == 'ptsearch_=>*_in`time`<=_with`cost`<_. or
F == 'ptsearch_=>*_in`time`<=_with`cost`<=_. or
F == 'ptsearch_=>*_in`time`<_with`cost`<_. or
F == 'ptsearch_=>!_in`time`<_with`cost`<=_. or
F == 'ptsearch_=>!_in`time`<=_with`cost`<_. or
F == 'ptsearch_=>!_in`time`<=_with`cost`<=_. or
--- ptsearch with no cost limit not fully implemented yet
F == 'ptsearch_=>*_in`time`<_with`no`cost`limit. or
F == 'ptsearch_=>*_in`time`<_with`no`cost`limit. or
F == 'ptsearch_=>*_in`time`<=_with`no`cost`limit. or
F == 'ptsearch_=>*_in`time`<=_with`no`cost`limit. or
F == 'ptsearch_=>*_in`time`<_with`no`cost`limit. or
F == 'ptsearch_=>!_in`time`<_with`no`cost`limit. or
F == 'ptsearch_=>!_in`time`<=_with`no`cost`limit. or
F == 'ptsearch_=>!_in`time`<=_with`no`cost`limit. or
F == 'ptsearch_=>*_with`no`time`limit`with`cost`<_. or
F == 'ptsearch_=>*_with`no`time`limit`with`cost`<=_. or
F == 'ptsearch_=>!_with`no`time`limit`with`cost`<_. or
F == 'ptsearch_=>!_with`no`time`limit`with`cost`<=_. or
F == 'ptsearch_=>*_with`no`limits`. or
F == 'ptsearch_=>!_with`no`limits`. or
F == 'ptfrew_in`time`<=_with`cost`<_. or
F == 'ptfrew_in`time`<=_with`cost`<=_. or
F == 'ptfrew_in`time`<_with`cost`<_. or
F == 'ptfrew_in`time`<_with`cost`<=_. or
F == 'ptfrew_in`time`<=_with`no`cost`limit. or
F == 'ptfrew_in`time`<_with`no`cost`limit. or
F == 'ptfrew_with`no`time`limit`with`cost`<_. or
F == 'ptfrew_with`no`time`limit`with`cost`<=_. or
F == 'ptfrew_with`no`limits. or
F == 'ptrew_in`time`<=_with`cost`<_. or
F == 'ptrew_in`time`<=_with`cost`<=_. or
F == 'ptrew_in`time`<_with`cost`<_. or
F == 'ptrew_in`time`<_with`cost`<=_. or
F == 'ptrew_in`time`<=_with`no`cost`limit. or
F == 'ptrew_in`time`<_with`no`cost`limit. or
F == 'ptrew_with`no`time`limit`with`cost`<_. or
F == 'ptrew_with`no`time`limit`with`cost`<=_. or
F == 'ptrew_with`no`limits. or
*** untimed stuff
F == 'pfrew_with`cost`<_. or
F == 'pfrew_with`cost`<=_. or
F == 'prew_with`cost`<_. or
F == 'prew_with`cost`<=_. or
F == 'psearch_=>*_with`cost`<_. or
F == 'psearch_=>*_with`cost`<=_. or

170



F == 'ut`find`cheapest_=>*_. or
*** timed model checking
F == 'pcheck_|=`<>_with`no`time`limit`. or
F == 'pcheck_|=`<>_in`time`<_. or
F == 'pcheck_|=`<>_in`time`<=_. or
F == 'pcheck_|=_until_with`no`time`limit`. or
F == 'pcheck_|=_until_in`time`<_. or
F == 'pcheck_|=_until_in`time`<=_. or
F == 'pcheck_|=_untilStable_with`no`time`limit`. or
F == 'pcheck_|=_untilStable_in`time`<_. or
F == 'pcheck_|=_untilStable_in`time`<=_. or
F == 'pmc_|=u_. or
F == 'pmc_|=t_with`no`time`limit`. or
F == 'pmc_|=t_in`time`<_. or
F == 'pmc_|=t_in`time`<=_. .

endm

In addition some text was appended to Real-Time Maude's banner:

mod REAL-TIME-MAUDE is

...

rl [init] :

init

=> [nil,

< o : Database |

db : initialDatabase,

input : nilTermList, output : nil,

default : 'CONVERSION >,

('\n '\t '\s '\s '\s '\s '\s string2qidList(banner) '\n

'\n '\t '\s '\! '\m 'Real-Time 'Maude '2.2 '\o '\c

'extension 'October '6 '`, '\s '2006 '\o '\n

'\n '\t '\s '\! '\g 'Priced-Timed 'Maude '1.0 '\o '\c

'extension 'February '1st '`, '\s '2008 '\o '\n)] .

...

endm

171


