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Introduction

The number e is one of the most indispensable numbers in mathematics. This
number is also referred to as Euler’s number or Napier’s constant. Classically
the number e can be defined as (see [1, 5, 7–9], and and references therein)

e = lim
n→∞

(
1 +

1
n

)n

, (1)

Note that we could also define the number e through the limit

e = lim
n→∞

(
1 +

1
n

)n+0.5

. (2)

Let us see the motivation behind the above result. The reader can observe
that the limit (2) is modestly different than the classical limit (1). Let us
approximate e from these two limits using n = 1000. From the classical limit,
we get e ≈ 2.71692393; which is accurate only to 3 decimal places. From the
new limit (2), we get e ≈ 2.71828205; which is e accurate to 6 decimal places.
Thus, the new limit appears to be a big improvement over the classical result.

It is well known that for any value of n > 1 (see [1]),

e >

(
1 +

1
n

)n

.

In this work, we present three proofs of the inequality:

e <

(
1 +

1
n

)n+0.5

.

For deriving the inequality, we use the Taylor series expansion and the Hermite
Hadamard inequality. Let us now present our first proof through the Taylor
series expansion.
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Proof through the Taylor series expansion

Proof : The Taylor series expansion of the function ln(1 + x) around the point
x = 0 is given by the following alternating series (see [4, 6] or calculus book)

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
− x5

5
+ · · · ; −1 < x ≤ 1.

(3)

Let us replace x by 1/n in the above series, and multiply both the sides by n:

n ln

„
1 +

1

n

«
= 1− 1

2 n
+

1

3 n2
− 1

4 n3
− 1

5 n4
+ · · · .

Replacing n by 2 n and −2 n in the above series gives the following two series:

2n ln

„
1 +

1

2n

«
= 1− 1

4 n
+

1

12 n2
− 1

32 n3
+

1

80 n4
+ · · · ;

−2n ln

„
1− 1

2n

«
= 1 +

1

4 n
+

1

12 n2
+

1

32 n3
+

1

80 n4
+ · · · .

Adding the above two series we get:

2n

»
ln

„
1 +

1

2n

«
− ln

„
1− 1

2n

«–
= 2 +

1

6n2
+

1

40n4
+ · · · ;

2n ln

„
2n + 1

2n− 1

«
= 2 +

1

6n2
+

1

40n4
+ · · · .

Next we divide both sides by 2:

ln

„
2n + 1

2n− 1

«n

= 1 +
1

12n2
+

1

80n4
+ · · · .

Now replacing n by n + 0.5 gives the following series:

ln

„
2n + 2

2n

«n+0.5

= 1 +
1

12(n + 0.5)2
+

1

80(n + 0.5)4
+ · · · .

Therefore

ln

„
1 +

1

n

«n+0.5

> 1;

So

e <

„
1 +

1

n

«n+0.5

. (4)

Now let us prove the above inequality through the Hermite Hadamard inequality
[2].
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Proof through the Hermite Hadamard inequality

If a function f is differentiable in the interval [a, b] and its derivative is an
increasing function on (a,b); then for all x1, x2 ∈ [a, b] such that x1 6= x2; the
following inequality holds [2, 3]:

f

(
x1 + x2

2

)
<

1
x2 − x1

∫ x2

x1

f(x) dx.

The above inequality is referred to as the Hermite Hadamard inequality.

Figure 1: Graph of f(x) = 1/x. The shaded area is equal to ln(1 + 1/n).

Proof : Let us consider the function f(x) = 1/x on the interval [n, n + 1]. Figure
1 shows the graph. It may be seen that the derivative f ′(x) = −1/x2 is an
increasing function in the interval (n, n + 1). Thus, the Hermite Hadamard
inequality holds. Applying the Hermite Hadamard inequality to the function
for x1 = n and x2 = n + 1 we get:

f

„
n + n + 1

2

«
<

1

n + 1− n

Z n+1

n

f(x) dx; (5)

2

2n + 1
< ln

„
1 +

1

n

«
;

1

n + 0.5
< ln

„
1 +

1

n

«
;

1 < ln

„
1 +

1

n

«n+0.5

;

e <

„
1 +

1

n

«n+0.5

.
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The Third Proof

For n > 0, we define function F(n) by the equation (1 + 1/n)n+F(n) = e.
Solving this equation for F(n), we find that

F(n) =
1

ln (1 + 1/n)
− n. (6)

Now let us first show that F(n) is a monotonically increasing function. That is;
for all n ≥ 1, F ′(n) > 0. The derivative of this function is

F ′(n) =
1

(ln (1 + 1/n))2 n2 (1 + 1/n)
− 1. (7)

To show the positivity of F ′(n), let us consider the following functions:

f(x) = ln(1 + x);

g(x) =
x√

1 + x
.

The difference between the first derivatives of the above two functions is

g′(x)− f ′(x) =
1
2

x + 2− 2
√

1 + x

(1 + x)3/2
.

Since (x + 2) > 2
√

1 + x for all x > 1.

g′(x)− f ′(x) > 0;

and therefore

ln(1 + x) <
x√

1 + x
.

Now substituting x = 1/n in the above inequality and squaring both the sides
will show that

1
n2 (1 + 1/n) (ln (1 + 1/n))2

> 1.

From equation (7) and the above inequality, we see that F ′(n) > 0.

Therefore the function (6) is strictly increasing. To show that the function is
bounded from above, let us find the limit

lim
n→∞

1

ln
(

1 +
1
n

) − n = lim
n→∞

1− n ln
(

1 +
1
n

)
ln
(

1 +
1
n

) . (8)
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Substituting the power series of ln(1 + 1/n) = 1/n− 1/2 n2 + 1/3 n3 − · · · ;

lim
n→∞

1− n ln
(

1 +
1
n

)
ln
(

1 +
1
n

) = lim
n→∞

1− n [1/n− 1/2 n2 + 1/3 n3 − · · · ]
[1/n− 1/2 n2 + 1/3 n3 − · · · ]

;

= 0.5.

Since the function F(n) is strictly increasing function, and limn→∞ F(n) = 0.5,
we can conclude that F(n) < 0.5, and therefore

e =
(

1 +
1
n

)n+F(n)

<

(
1 +

1
n

)n+0.5

.

The facts

e =
(

1 +
1
n

)n+Fn

and lim
n→∞

F(n)= 0.5;

suggests that, among approximations of the form e ≈ (1 + 1/n)n+a, the best
approximations for large n is achieved by using a = 0.5. Furthermore, if a < 0.5,
then for sufficiently large n we will have F(n) > a, and therefore(

1 +
1
n

)n+a

<

(
1 +

1
n

)n+F(n)

= e.
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