View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by NORA - Norwegian Open Research Archives

n+0.5

Three proofs of the inequality e < { 1 4+ —
n

Sanjay K. Khattri

Introduction

The number e is one of the most indispensable numbers in mathematics. This
number is also referred to as Euler’s number or Napier’s constant. Classically
the number e can be defined as (see [1, 5, 7-9], and and references therein)

1 n
=1 1+ — 1
o= Jm (1) o)
Note that we could also define the number e through the limit
1 n+0.5
e= lim (1 + —) . (2)
n—oo n

Let us see the motivation behind the above result. The reader can observe
that the limit (2) is modestly different than the classical limit (1). Let us
approximate e from these two limits using n = 1000. From the classical limit,
we get e & 2.71692393; which is accurate only to 3 decimal places. From the
new limit (2), we get e =~ 2.71828205; which is e accurate to 6 decimal places.
Thus, the new limit appears to be a big improvement over the classical result.

It is well known that for any value of n > 1 (see [1]),

1 n
e><1+—> .
n

In this work, we present three proofs of the inequality:

1 n+0.5
e < <1 + —> .
n

For deriving the inequality, we use the Taylor series expansion and the Hermite
Hadamard inequality. Let us now present our first proof through the Taylor
series expansion.
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Proof through the Taylor series expansion

Proof: The Taylor series expansion of the function In(1 4 x) around the point
x = 0 is given by the following alternating series (see [4, 6] or calculus book)

ln(1+x):a:—x—+ ————— 4+ 1<z <1

Let us replace « by 1/n in the above series, and multiply both the sides by n:

nln 1+l _1_L+L_L_L+
n) 2n  3n2  4n3 5nt ’

Replacing n by 2n and —2n in the above series gives the following two series:
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Adding the above two series we get:
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Next we divide both sides by 2:
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Now replacing n by n + 0.5 gives the following series:
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Therefore
1 n+0.5
In (1 + 7) > 1;
n
So

e<(1+i)m“5 ()

Now let us prove the above inequality through the Hermite Hadamard inequality
[2].



Proof through the Hermite Hadamard inequality

If a function f is differentiable in the interval [a,b] and its derivative is an
increasing function on (a,b); then for all z1,29 € [a,b] such that 1 # x2; the
following inequality holds [2, 3]:

f (x“;“) < mixl / " fa) da.

The above inequality is referred to as the Hermite Hadamard inequality.
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Figure 1: Graph of f(x) = 1/z. The shaded area is equal to In(1 + /n).

Proof: Let us consider the function f(x) = 1/x on the interval [n,n + 1]. Figure
1 shows the graph. It may be seen that the derivative f'(z) = —1/«2 is an
increasing function in the interval (n,n + 1). Thus, the Hermite Hadamard
inequality holds. Applying the Hermite Hadamard inequality to the function
for xt1 =n and z2 = n + 1 we get:

r() < [ @ 5)
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The Third Proof

n+F(n) _

For n > 0, we define function F(n) by the equation (1+ 1/n) e.
Solving this equation for F(n), we find that
1
Fln)= —— —n. 6
)= ar) " (6)

Now let us first show that F(n) is a monotonically increasing function. That is;
for all n > 1, F'(n) > 0. The derivative of this function is

1
Fl(n) = 5 -1 (7)
(In (14 %/n))"n? (1 + Y/n)
To show the positivity of F'(n), let us consider the following functions:
f(x) =In(1 + z);

g(z) = ——

Vitz

The difference between the first derivatives of the above two functions is

71x+2—2\/1+m
2 (142

g'(x) = f'(x)

Since (x +2) > 21+ x for all z > 1.
g' (@) = f'(x) > 0;

and therefore

X

Vitz

Now substituting = 1/n in the above inequality and squaring both the sides
will show that

In(1+2) <

1

5 > 1.
n? (1+1/n) (In(1+1/n))

From equation (7) and the above inequality, we see that F'(n) > 0.

Therefore the function (6) is strictly increasing. To show that the function is
bounded from above, let us find the limit

1 l—nln<1+71l). .

1n<1+> ln(1+>
n n




Substituting the power series of In(1 4 1/n) = 1/n — 1/2n2 4+ 1/3p3 — - +;

1
l—-nln(1+=
. nn( +n> . 1_”[1/n—1/2n2+1/3n3—...]
= 1 = Jm Un — Uan? + /353 ;
n—oo 1n(1+) n—oo [7z—/2n+/3n_..,]
n

=0.5.

Since the function F(n) is strictly increasing function, and lim,, ., F(n) = 0.5,
we can conclude that F(n) < 0.5, and therefore

1 n+F(n) 1 n+0.5
e:<1+) <<1+) |
n n

1 n+Fn
e= (1 + ) and lim F(n)= 0.5;
n

n—oo

The facts

suggests that, among approximations of the form e ~ (1 + 1/n)"+a, the best
approximations for large n is achieved by using a = 0.5. Furthermore, if a < 0.5,
then for sufficiently large n we will have F(n) > a, and therefore

1 n+a 1 n+F(n)
<1+) <<1+> =e.
n n
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