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Several recent lines of evidence indicate that the polar night is key to understanding Arctic marine
ecosystems. First, the polar night is not a period void of biological activity even though primary produc-
tion is close to zero, but is rather characterized by a number of processes and interactions yet to be fully
understood, including unanticipated high levels of feeding and reproduction in a wide range of taxa and
habitats. Second, as more knowledge emerges, it is evident that a coupled physical and biological per-
spective of the ecosystem will redefine seasonality beyond the ‘‘calendar perspective”. Third, it appears
that many organisms may exhibit endogenous rhythms that trigger fitness-maximizing activities in
the absence of light-based cues. Indeed a common adaptation appears to be the ability to utilize the dark
season for reproduction. This and other processes are most likely adaptations to current environmental
conditions and community and trophic structures of the ecosystem, and may have implications for
how Arctic ecosystems can change under continued climatic warming.

� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Early studies in the Arctic suggested that ice-covered areas
were generally unproductive (Nansen, 1902). Evidence of human
settlements in the high Arctic over several thousand years, how-
ever, conflicted with these early observations and constituted a
paradox as to how human populations could subsist in regions
considered to be biological deserts. Further investigations revealed
significant productivity under ice-covered seas (Wheeler et al.,
1996), and the existence of productivity hot spots (e.g.
Falk-Petersen et al., 2014), demonstrating the significance of the
complex links between ice, ocean, and land in Arctic ecosystems.
During the last 20 years, national and international research efforts
in the Arctic have increased significantly, leading to the 4th
International Polar Year (IPY, 2007–2009, see http://www.ipy.
org/). Highlights of the IPY work include cataloguing marine biodi-
versity from bacteria to top predators, documenting the impor-
tance of sea ice cover for a variety of ecosystem processes,
studying the relationships between physical, chemical, and biotic
processes on small spatial scales, describing the oceanography of
previously poorly known areas, and investigating atmosphere–
ice–ocean feedback relationships (e.g. Bauerfeind et al., 2009;
Barber et al., 2010; Forest et al., 2011). In addition, there have been
significant developments in research infrastructure, including
novel remote sensing and in situ monitoring technologies and the
algorithms for interpreting their output (Pabi et al., 2008;
Schofield et al., 2010; Johnsen et al., 2011), enhanced oceano-
graphic mooring networks (Kahru and Brown, 1997), development
of international databases, and long-term monitoring facilities
(Johnsen et al., 1997, 2011; Meyer et al., 2014). Nevertheless,
observations of the properties and processes occurring during the
winter have been sparse and to a large degree opportunistic. With
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some exceptions, data have generally been restricted to fixed
observatories, which lack important spatial resolution, or from
freely drifting autonomous platforms, which compromises the
repeatability necessary to quantify interannual variability.

A classical paradigm in Arctic marine ecology holds that most
biological processes at high latitudes are reduced to a minimum
during the polar night due to low food availability and the reduc-
tion in light (Smetacek and Nicol, 2005; Piepenburg, 2005); in
effect a period of winter dormancy. Recent discoveries under the
extreme conditions of the Arctic winter challenge our understand-
ing of Arctic marine organisms and ecosystem processes. For
example, there is a long-held presumption that the polar night at
high latitudes represents total darkness, yet new data indicate that
Arctic organisms respond to light levels undetectable by the
human eye (Båtnes et al., 2013). Further, recent research reporting
active vertical migration of zooplankton (Berge et al., 2009) and
bioluminescence levels indicative of functional activity in several
zooplankton taxa (Berge et al., 2012a, 2014; Johnsen et al., 2014)
has challenged the assumption of winter dormancy. Also, changes
in the Arctic ocean–sea ice–atmosphere interface are leading to
rapid shifts in the structure, resilience and function of Arctic
ecosystems (Kortsch et al., 2012; Barber et al., 2015). Rapid decline
in sea ice extent and thickness, increased air and ocean tempera-
tures, increased water-column stratification, and multiple dynamic
physical and chemical changes significantly alter the patterns of
productivity at the base of marine food webs (Walsh, 2008). Such
changes are also anticipated to affect ecosystem structure and
productivity higher in the food web. Ultimately, Arctic marine
ecosystem structure and productivity within the next decades
should be substantially different from what we observe today. Pre-
dictions as to how Arctic marine ecosystems may change are
hindered by our inability to understand the year-round response
of the Arctic system. Therefore, challenging the prevailing view
of the polar night as devoid of biological activity is necessary for
developing a holistic pan-Arctic view of ecosystem structure and
function.

In addition, the current reduction of Arctic sea ice cover and
thickness (Comiso and Steffen, 2008; Barber et al., 2015) is likely
to have both direct and indirect impacts on marine organisms,
81°N, 13th January 2013

76°N, 19th January 2013

Fig. 1. Light levels as seen by the human eye during the polar night at 81� (upper left,
(lower right, Tromsø) North. All pictures were taken onboard the RV Helmer Hanssen at
their interactions and ultimately ecosystem processes (e.g.
Krause-Jensen et al., 2012; Ji et al., 2013). However, without a more
complete perception of Arctic ecosystem function, such impacts
will remain largely impossible to understand and predict. Research
into the polar-night biology of the Arctic has the potential for radically
altering our perception of the Arctic marine ecosystem, mechanisms
governing ecosystems processes, and how a continued warming of
the Arctic will affect ecosystem structure and function.

Here, we present a review of our current understanding of
polar-night biology and known coupling processes between phy-
sics and the biological components of Arctic marine ecosystems.
We include an overview of the physical characteristics of the polar
night (Sections 2 and 3), a historical review of scientific campaigns
during this time (Sections 4 and 5), and a description of those
ecosystem processes that have been studied during the polar night
(Sections 6–9).

2. A heterogeneous polar night

The light climate of a region is described by its intensity, spec-
tral composition and day-length (Kirk, 2011; Sakshaug et al., 2009;
Cohen et al., 2015). At latitudes above the polar circle, the sun will
stay above the horizon a minimum of one 24-h cycle during sum-
mer (polar day), and below the horizon for at least 24 h during
winter (polar night). As latitude increases these periods of polar
day or polar night get longer – at the two poles this reaches a max-
imum, with only one sunrise and one sunset over the entire year.
The polar night is, therefore, a highly heterogeneous light regime
depending upon the angle of the sun and the latitude in question
(Fig. 1). Moving from south to north, irradiance during the polar
night gradually declines necessitating a terminology to differenti-
ate between varying levels of darkness (see Figs. 1 and 2). Accord-
ingly, the nautical polar night (when the sun is more than 12� below
the horizon) covers the entire Arctic Ocean defined here as exclud-
ing the marginal shelf seas, whereas the surrounding shelf seas fall
within either the civil polar night (when the sun is between 6� and
12� below the horizon) or the civil twilight (when the sun is less
than 6� below the horizon) zones, depending on time of the year.
Consequently, it is vital to consider latitude when interpreting data
78°N, 15th January 2013

70°N, 20th January 2013

Rijpfjorden), 78� (upper right, Longyearbyen), 76� (lower left, Bear Island), and 70�
local sun noon within one week in January 2013. Photo: G Johnsen.



Fig. 2. Differences in light regimes according to the angle of the sun; Civil twilight at latitudes between the polar circle and 72�N, civil polar night at latitudes between 72�
and 78�N, nautical polar night at latitudes above 78�N. Moving from south to north, both the duration of the polar night as well as the level of solar radiation change.
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from the Arctic polar night as the light climate, and hence potential
external cues for marine organisms, will be grossly different in var-
ious regions of the Arctic, even during the darkest part of the polar
night. In particular, the physical characteristics of the polar night in
the Arctic Ocean are very different from the surrounding shelf seas
such that it is not adequate to simply presume that processes and
responses observed under the different light regimes further south
can be simply translated to the Arctic Ocean.
3. Polar night vs winter

We can also distinguish between the terms ‘‘winter” and ‘‘polar
night”. Arguably, ‘‘winter” is often used in relation to temperature,
whereas ‘‘polar night” is defined by the light regime and the angle
of the sun (see above). In this review, we concern ourselves primar-
ily to the latter term, although it is impossible not also to consider
the former in many cases. Rijpfjorden on the northern coast of
Svalbard (Norway) provides an excellent example on the impor-
tance of distinguishing between ‘‘winter” and ‘‘polar night”
(Fig. 3); the fjord freezes in early February and the water column
has a temperature of �1.8 �C (arguably a ‘‘winter” condition)
between February and early July. However, during the darkest part
of the polar night water temperatures are well above freezing point
(Fig. 3). Further, pelagic algae blooms often occur while tempera-
tures are at a minimum (see also Hodal et al., 2012) and close to
the freezing point, hence demonstrating the relative importance
of light rather than temperature as a regulating factor for primary
production.

Limiting our review to a period defined by available incident
light, however, does not recognize that there may be large differ-
ences in available light depending on regional patterns in the
attenuation of light by snow, clouds, ice cover, and by the water
itself and its constituents such as phytoplankton, colored dissolved
organic matter (cDOM) and total suspended matter (e.g. Sakshaug
et al., 2009; Barber et al., 2015). In areas characterized by thick
snow and ice cover during winter, the water column beneath is
often regarded as ‘‘dark” and the polar night might therefore be
defined temporally and/or spatially beyond the limits of a solar
angle alone (Sejr et al., 2009). This phenomenon is highly relevant
for the timing of reproduction in the pan-arctic copepod Calanus
glacialis (Daase et al., 2013), and is likely to play a major role in
the timing of other ecological processes as well (Leu et al., 2015).
However, based on both the spectral sensitivity of ambient
irradiance and extreme low thresholds for detecting light intensity
by key Arctic zooplankton (Båtnes et al., 2013), irradiance levels
when the sun emerges above the horizon but beneath a thick ice
and snow cover, may still be sufficient to resemble an early spring
(rather than a polar night) situation. Since the winter–spring
transition is the main subject of a detailed review by Leu et al.
(2015), we will not focus on work carried out later in the winter
when there is a distinct diurnal pattern in irradiance
(e.g. Kosobokova, 1978, 2003; Sazhin et al., 2004; Lege _zyńska
et al., 2012).
4. The early history of winter exploration in the Arctic

The Arctic Ocean has long held a fascination for explorers and
geographers. Early expeditions were mostly focused on physical
studies such as mapping the depth of the ocean, its hydrography.
The first major scientific expedition was Nansen’s Fram expedition
of 1893–1896. Nansen allowed his ship to freeze into the sea ice
north of eastern Siberia, from where it drifted across a previously
uncharted Arctic area before finally escaping the ice into the Fram
Strait three years later. A great deal of significant information was
gathered during this expedition, although relatively little concern-
ing the polar night. Later, several explorers attempted various
expeditions into the Arctic, including Admiral Peary in 1909, Ste-
fansson in 1914, Storkerson in 1918, and Amundsen in the early
1920s. Then, in 1937, the former Soviet Union established their
first Severnyi Poljus (SP, =North Pole) drift ice stations, and



Fig. 3. Modified from Leu et al. (2011). Case study from Rijpfjorden on Svalbard, Norway at 80�N. The winter, defined by an ice cover and water temperatures at �1.8 �C, does
not coincide with the polar night. At this latitude, the polar night lasts from medio November to medio February, while water temperatures reached �1.8 �C throughout the
water column only the last days of January.
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between 1937 and 1991, no fewer than 31 ice drift stations were
established. During the first 20–25 years, Russian scientists
described the topography of the polar basin, the main patterns of
the oceanographic current system, meteorology, and how the air
pressure system influenced the dynamics of the Transpolar ice
drift. Regular marine biological investigations only started in mid
70s (Melnikov, 1997; Proshutinsky et al., 1999; Ugryumov and
Korovin, 2005). Biological studies from the Russian drift stations
summarized by Melnikov (1997) show that concentrations of
ATP (adenosine triphosphate) were generally two orders of magni-
tude lower under winter sea ice compared to summer values. Ice-
associated diatoms were found to form resting spores in ice,
assumed to be an adaptation against sinking to the bottom. Living
microplankton cells with functional chloroplasts were found to
survive in darkness and under low temperatures, however most
of microplankters were able to switch to heterotrophy during polar
night indicating that these cells are mixotrophic. A total of 21 dia-
tom species were collected with plankton nets just below the ice.
Large strands of the Arctic diatom Melosira arctica, with a length
of more than two meters were detected primarily under the mul-
tiyear ice (see picture on page 73 in Melnikov, 1997). During the
drift of Fram (Nansen, 1902), Nansen and his colleagues established
that zooplankton of Atlantic origin was present in the central Arctic
Ocean. Russian scientists confirmed these findings and identified
18 species during winter, compared to 22 species in summer. It
was also noted that ice fauna (amphipods) were abundant in both
winter and summer under the ice cover, the most abundant being
Gammarus wilkitzkii, Apherusa glacialis, Onisimus nanseni and O.
glacialis.
Table 1
Large Arctic research programs involving biological studies during the polar night.

Leading
country

Region Period Program

Russia Central Arctic Mid 70s-present SP
United States Central Arctic 1957–1979 T-3
Poland Hornsund, Svalbard Late 70s-present Polish Po

Canada/US Canada Basin October 1997–October
1998

SHEBA/JO

Canada Beaufort Sea September 2003–August
2004

CASES

Canada Beaufort Sea October 2007–August 2008 CFL
Norway Svalbard fjords March 2007–August 2008 ARCTOS-
Norway Svalbard and Greenland

Sea
2012–2013 CircA, Cle

ARCTOS
Norway Kongsfjorden (Svalbard) 2013–2015 Marine N
In 1950, the U.S. initiated their programme of observations in
the Arctic Ocean with seismic studies on the pack ice of the
Beaufort Sea just north of Barter Island, Alaska. During this
program three ‘‘ice islands” were discovered, and in 1952, the
Fletcher Ice Island T-3 was established. From 1957 it was used as
a year-round scientific base. The Fletcher Ice Island T-3 was in
many ways the western equivalent to the Russian SP program,
but the T-3 was last visited in 1979. Echosounders installed on
T-3, first a 12 kHz system in 1963, followed in 1967 by a 100 kHz
system (Hunkins et al., 1971), provided a new and valuable oppor-
tunity to gain insight into the biology of the Arctic Ocean. For the
first time, deep scattering layers were documented in the Arctic
Ocean. Such deep scattering layers are a common feature of
the world’s oceans, and are commonly seen at depths ranging
between 200 and 600 m, often exhibiting a diel pattern of
migration (Ringelberg, 2010). In the Arctic, however, this scattering
layer appeared shallower in the water column at depths between
25 and 200 m and only during the summer months. Interestingly,
as it was a well-established ‘‘fact” at this time that the polar night
did not host any biological processes, neither echograms nor any
information regarding the presence of acoustic scatterers in the
water column during the polar night were mentioned (Hunkins
et al., 1971).

Starting from the late 1970s, overwintering expeditions were
carried out annually at the Hornsund station at 77�N on Svalbard,
Norway (Table 1). Szaniawska and Wolowicz (1986) demonstrated
that the caloric value of coastal amphipods from Hornsund varied
little from winter to summer, supporting the concept of active
metabolism and foraging in winter. Later, Weslawski et al. (1991)
Sampling
platform

References

Drift ice Melnikov (1997)
Drift ice Hunkins et al. (1971) and Dawson (1978)

lar Station Vessel Szaniawska and Wolowicz (1986) and
Weslawski et al. (1991)

IS Drift ice Perovich et al. (1999) and Melnikov and
Kolosova (2001)

Fast ice, ice breaker Fortier and Cochran (2008)

Drift ice, ice breaker Barber et al. (2010)
IPY Fast ice, vessel Søreide et al. (2010) and Leu et al. (2011)
opatra II, Vessel Lønne et al. (2015)

ight Vessel, land based Berge et al. (in press)
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showed a decrease in zooplankton biomass of 90% between
summer and winter, reflecting a seasonal vertical migration of zoo-
plankton down to depths during winter. A number of seabirds
were also observed at sea in Hornsund during the winter months,
including black guillemots, fulmars and glaucous gulls (Weslawski
et al., 1991).
5. Recent campaigns including the IPY

With the dramatic impact of climate warming on the Arctic sea
ice cover (ACIA, 2005; Stroeve et al., 2011), a more comprehensive
understanding of how the Arctic marine ecosystems function as a
whole became crucial to predict their response to the fast disap-
pearance of summer sea ice and changes in oceanic and atmo-
spheric forcing (Barber et al., 2010, 2015). Toward that goal, new
national and international research networks were established that
could integrate their observations within single large projects.
These projects set out to investigate various compartments of a
given ecosystem, from bacteria to apex predators, and from
short-term atmospheric forcing to paleoceanographic records
within Arctic sediments. Three of these projects involved overwin-
tering expeditions focused in the western Arctic at the margin of
the Canada Basin: (1) the Surface Heat Budget of the Arctic
Ocean/Joint Ocean Ice Study (SHEBA/JOIS), (2) the Canadian Arctic
Shelf Exchange Study (CASES), and (3) the Circumpolar Flaw Lead
System Study (CFL) (Table 1).

The SHEBA/JOIS project froze an icebreaker into the pack ice
between October 1997 and October 1998 to study the permanently
ice-covered waters above the Canada Basin and adjacent areas
from 75�N, 142�W to 80�N, 162�W (Perovich et al., 1999). The
SHEBA project focused on issues of climate and heat budgets, par-
ticularly the feedback processes that govern the thermodynamics
of the ice pack (Macdonald et al., 1999; Perovich et al., 1999,
2002, 2003; Shimada et al., 2001; Stern and Moritz, 2002;
Holland, 2003; Lindsay, 2003; Kadko and Swart, 2004); and the
JOIS studies were centered on biological and geochemical aspects
of the sea-ice/upper ocean system (Melnikov and Kolosova, 2001;
Melnikov et al., 2002; Macdonald et al., 2002; Ashjian et al.,
2003; Sherr et al., 2003; Sherr and Sherr, 2003; Stern and
Macdonald, 2005). The Beaufort Gyre entrained the ice station over
several oceanographic and ecological regimes across the Canada
basin, Northwind Ridge, Chukchi shelf and slope, and finally the
Mendeleev abyssal plains (Table 1). Sampling during the polar
night period was carried out in the Beaufort Sea across the deep
Canada Basin (Perovich et al., 1999; Ashjian et al., 2003), a region
that has experienced dramatic sea-ice decrease, enhanced water
column stratification and acidification during the past years
(Shimada et al., 2006; McLaughlin et al., 2009; Yamamoto-Kawai
et al., 2011).

The CASES and CFL programs used the research icebreaker CCGS
Amundsen as a platform to conduct field programs in the south-
eastern Beaufort Sea from September 2003 to early August 2004
and from October 2007 to early August 2008, respectively. The
study region comprising the Mackenzie shelf, the more oceanic
Mackenzie slope, Amundsen Gulf and McClure Strait, and shal-
lower embayments such as Franklin Bay (Table 1) is complex,
influenced both by the Beaufort Gyre and the large Mackenzie
River freshwater and sediment discharge (Carmack and
Macdonald, 2002). The CASES 2003–2004 sampling during the per-
iod of the polar night took place at an overwintering station
(70.05�N, 126.30�W) in the landfast ice of Franklin Bay (Benoit
et al., 2010), whereas fieldwork at the same period during the
CFL 2007–2008 was carried out when the ship remained mobile
in the unconsolidated ice cover of Amundsen Gulf further offshore
(70.47–71.18�N, 121.46–124.38�W) (Geoffroy et al., 2011).
In addition, and in parallel with the Canadian IPY projects, Nor-
wegian ARCTOS IPY projects carried out on Svalbard were to a large
extent aimed at understanding the ecology of key Arctic organisms,
both from an evolutionary (life-history and behavioral adapta-
tions) and physiological (short term acclimation) perspective.
These endeavors encompassed the polar night (December–
January) and were among the very first to achieve a full seasonal
perspective on high-Arctic ecology (Nygård et al., 2010; Wallace
et al., 2010; Grigor et al., 2014). However, none of these campaigns
included subprojects that were specifically aimed at the polar
night. The Russian Arctic and Antarctic Research Institute today
carries out the most consistent year-around investigations, with
their drifting SP stations in the Arctic Ocean. Unfortunately, little
information on biological or oceanographic data during the polar
night has been made public from these endeavors.

Studies stemming from the IPY programs provided a wealth of
new information on the connections and seasonal dynamics of
key compartments of the marine ecosystems of the western Arctic
Ocean. For instance, some results from these overwintering
programs challenge the longstanding paradigm that the pelagic
marine food webs remain dormant for the largest portion of the
long winter season beneath the sea-ice cover (Darnis et al., 2012;
Lønne et al., 2015; Berge et al., in press). In fact they reveal rela-
tively high winter activity at several trophic levels, observations
that will be detailed in the following sections. In short, despite
the lack of primary production in winter, bacterioplankton and
heterotrophic alveolates keep a baseline level of production suffi-
cient to compensate for mortality (Sherr et al., 2003; Garneau
et al., 2008; Sala et al., 2008; Terrado et al., 2009; Forest et al.,
2011). Such an active winter microbial food web had also been
reported in Svalbard (Rokkan Iversen and Seuthe, 2011). At a
higher trophic level, Benoit et al. (2010) and Geoffroy et al.
(2011) described the initiation of a small, albeit clear, diel vertical
migration (DVM) by polar cod (Boreogadus saida) as early as
December in the depths of the south eastern Beaufort Sea, a
pattern that strengthens over the winter season as the day-night
contrast increases. Geoffroy et al. (2011) also reported a vertical
movement of a large number of polar cod at the end of January,
presumably following their zooplankton prey that had likely been
transported upward by an anticyclonic eddy affecting the Amund-
sen Gulf. This observation suggests that polar cod is actively
feeding during the polar night.

In recent years, several larger projects have carried out surveys
in the fjords of Svalbard during the polar night. These projects have
both been ship based (Lønne et al., 2015) and more restricted to
the fjords on the western coast of Svalbard (Cohen et al., 2015;
Berge et al., in press). In particular, Kongsfjorden at 79�N has been
thoroughly examined, and remains the only location at which a
larger co-ordinated ecosystem-scale survey has been conducted
during the polar night (Berge et al., in press).
6. Microbial plankton communities

Microbial planktonic communities play a fundamental role in
mediating fluxes of nutrients and carbon in marine ecosystems
(Azam et al., 1983; Arrigo, 2005; Sakshaug et al., 2009), and these
processes received considerable attention, particularly during the
recently completed CASES and CFL projects, and the Pro Mare
programme in the Barents Sea 1984–1989 (Sakshaug et al.,
1991). While protozoa, such as flagellates and ciliates, consume
large fractions of photosynthetically produced particulate organic
matter (Calbet and Landry, 2004), heterotrophic bacteria convert
the dissolved fraction of primary production into particulate
biomass. Consequently, the biomass of phytoplankton and hetero-
trophic plankton is positively correlated in the world’s ocean
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(Gasol et al., 1997). This relationship disappears, however, (linear
regression; n = 29; p = 0.417) in the limited data available from
the polar night (summarized in Table 2). This demonstrates that
during the polar night all heterotrophic activity must ultimately
be based on biogenic carbon produced during the previous light
season.

Despite the lack of photosynthetic activity during the darkest
period of the year, virtually all taxonomic groups of Arctic microbes
are sustained (e.g.Weslawski et al., 1999; Sherr et al., 2003; Terrado
et al., 2009; Niemi et al., 2011; Rokkan Iversen and Seuthe, 2011),
including chloroplast-bearing protists, such as diatoms and various
flagellates. The low abundance of chloroplast-bearing plankton
(20–630 cells l�1; Table 2) is reflected in the very lowconcentrations
of chlorophyll a reported from the upper water column during the
Arctic winter (0.01–0.06 lg l�1; Table 2). Many Arctic phototrophic
plankters are able topersist duringunfavorable conditions as resting
stages such as spores or cysts (Garrison, 1984; Smetacek, 1985;
KrempandAnderson, 2000), and diatoms are known for their poten-
tial to survive long periods of darkness (Antia and Cheng, 1970;
Smayda and Mitchell-Innes, 1974; Palmisano and Sullivan, 1982;
Sakshaug et al., 2009; Quillfeldt et al., 2009). The survival strategies
of the various plastidic flagellates of Arctic waters throughout the
dark period, however, are largely unknown.

The chloroplast-bearing flagellates Micromonas pusilla and
Phaeocystis pouchetiimay dominate the photosynthetic community
during the Arctic spring and summer (Throndsen and Kristiansen,
1991; Booth and Horner, 1997; Not et al., 2005; Schoemann
et al., 2005; Pettersen et al., 2011; Hegseth and Tverberg, 2013),
and both are known to persist in Arctic waters throughout winter
(Terrado et al., 2011; Lovejoy et al., 2007; Sherr et al., 2003; Rokkan
Iversen and Seuthe, 2011). Both species have been identified from
RNA extracted from sea water samples in Svalbard waters during
the polar night (Vader et al., 2014), demonstrating the presence
of active cells, not only dormant stages, during the polar night. This
notion is further supported by the observation of exponential
growth in a Micromonas population from winter to early spring
in Franklin Bay (Lovejoy et al., 2007). As photosynthetic growth
is unlikely during the polar night, a change to heterotrophy seems
likely, and bacterivory has been suggested for Micromonas (Unrein
et al., 2007; Sanders and Gast, 2012).

Small (<5 lm) heterotrophic flagellates are believed to cover
their daily carbon demand exclusively by bacterivory, with grazing
rates of 0.23–0.37 � 108 bacteria l�1 d�1 in December and January
(Vaqué et al., 2008). These bacterial losses seem to be balanced
by low but persistent bacterial activity and growth during winter
(Sherr et al., 2003; Alonso-Saez et al., 2008; Belzile et al., 2008;
Table 2
Stock sizes of different microbial plankton groups in the Arctic during the polar night (Nove
(abundance: cells ⁄ 103 l�1; biomass: lg C l�1), prokaryotes. (abundance: cells ⁄ 108 l�1; b
production (BP; ng C l�1 d�1). The contribution of pico-sized plastidic protists is given as p

Area Chl a Plastidic protists % Pico Heterotrophic protist

Abundance
Franklin Bay 0.06 ± 0.02

0.05 ± 0.01 103 ± 17 398 ± 94

Beaufort Sea 0.04 ± 0.003

Arctic Ocean 631 ± 134 46 275 ± 21

Kongsfjorden 0.01 ± 0.004 20 ± 3 17 96 ± 12

Biomass
Franklin Bay 0.05 ± 0.01 0.7 ± 0.4 2.2 ± 0.8

Arctic Ocean 0.5 ± 0.1 26 2.1 ± 0.2

Kongsfjorden 0.01 ± 0.004 1.1 ± 0.4 0.1 3.2 ± 0.4
Garneau et al., 2008; Vaqué et al., 2008; Forest et al., 2011). At
the same time, Nikrad et al. (2012) have found the proportion of
highly active bacteria to decrease substantially from summer to
winter, which suggests an overall decrease in bacterial growth in
Arctic waters during winter. Indeed, growth rates as low as
0.004 ± 0.003 d�1 have been reported for the bacterial community
in the central Arctic Ocean during winter (Sherr and Sherr, 2003).
Consequently, bacterial production in Arctic surface waters during
the polar night are 10–80 fold lower than those from the produc-
tive season (e.g. Sherr and Sherr, 2003; Garneau et al., 2008;
Rokkan Iversen and Seuthe, 2011), ranging on average from 16 to
166 ng C l�1 d�1 (Table 2).

The polar-night production must be based on carbon remaining
in the system from the previous growing season, or allochthonous
carbon sources from river and land run-off. Either way, the growth
substrate for bacteria is likely to be refractory and less bioavailable
during the winter than during the light season of the year, suggest-
ing that bacterial growth is likely to be substrate-limited in the
Arctic during the darkest period of the winter (Garneau et al.,
2008; Thingstad, 2009). This notion is supported by the reanalysis
of published bacterial biomass and production values from Frank-
lin Bay and the central Arctic Ocean (Fig. 4). The log-transformed
data show a significant relationship between bacterial biomass
and production with slopes of <0.4 (Sherr and Sherr, 2003; Sherr
et al., 2003; Garneau et al., 2008), indicating an existing albeit
weak substrate limitation of bacterial communities during winter
(Billen et al., 1990; Ducklow, 1992).

Arctic prokaryotic communities seem to adapt to the low con-
centration and complex composition of the dissolved organic car-
bon pool during winter by diversification. For example, Archaea
increase in abundance in Arctic surface waters during winter
(Alonso-Saez et al., 2008), most likely because they are better
adapted to utilizing more refractory carbon sources than bacteria
(Wells and Deming, 2003; Alonso-Saez et al., 2008). The number
of polymeric substrates used by Arctic prokaryotes is hence higher
during winter than during summer (Sala et al., 2008). Recent work
further demonstrates that Arctic prokaryotic communities expand
their metabolic pathways to exploit the carbon sources available in
the absence of photosynthetic production. For example, Thaumar-
chaeota were found to degrade urea and to use its carbon to grow
throughout the Arctic winter (Alonso-Saez et al., 2012), while psy-
chrophilic strains of bacteria seem to directly assimilate CO2 under
dark winter conditions (Alonso-Saez et al., 2010). The relative
importance of these metabolic pathways for total prokaryotic pro-
duction during winter is not yet known. However, the observed
diversity and constancy in Arctic microbial plankton communities
mber–January), given as mean ± standard error of plastidic and heterotrophic protists
iomass: ng C l�1), concentration of chlorophyll a (Chl a; lg l�1), as well as bacterial
ercentage of the total plastidic protist stock.

s Prokaryotes BP References

2.3 ± 0.3 32 ± 4 Garneau et al. (2008)
2.5 ± 0.3 52 ± 18 Vaqué et al. (2008)

5.2 ± 0.3 Nikrad et al. (2012)

1.7 ± 0.1 16 ± 2 Sherr and Sherr (2003) and Sherr et al. (2003)

1.8 ± 0.6 166 ± 40 Rokkan Iversen and Seuthe (2011) and Seuthe
et al. (2011)

1.4 ± 0.1 52 ± 18 Vaqué et al. (2008)

3.4 ± 0.2 16 ± 2 Sherr and Sherr (2003) and Sherr et al. (2003)

3.4 ± 0.1 166 ± 40 Rokkan Iversen and Seuthe (2011) and Seuthe
et al. (2011)



Fig. 4. Photo of bioluminescent organisms in sea ice along the shoreline in
Adventfjorden February 2010. Photo: unknown.
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throughout the polar night demonstrates that marine systems can
sustain a baseline level of heterotrophy despite the absence of pho-
tosynthesis for a relatively long time span, such as the polar night.

7. Ice associated communities

Sea ice algae are primary producers and are therefore neither
particularly active nor abundant during the polar night. However,
for their vernal bloom to occur there must be a seeding population
that is assumed to be trapped in the ice during its formation and
survives in a state that allows viability as soon as growth condi-
tions are favorable in late winter/early spring (for details see Leu
et al., 2015; Quillfeldt et al., 2009). However, very little is known
about the taxonomic composition of winter microbial communi-
ties in sea ice, and even less about their physiological activity. Near
Barrow, Alaska, substantial amounts of dissolved and particulate
organic matter were recorded prior to the algal spring bloom,
and also in depth strata that presumably were not affected by algal
activity (Juhl et al., 2011). These pools may serve as a basis for
heterotrophic microbial communities. The general process of algal
colonization of sea ice has previously been described by Syvertsen
(1991). During the CASES study, Rozanska et al. (2008) followed
the gradual development of a sea ice protist community during
the autumn ice formation period. In CFL, Niemi et al. (2011)
described for the very first time the taxonomic composition of a
protist community in Arctic sea ice during the dark winter period.
The community was characterized by very low chl a concentra-
tions (max. 0.27 lg l�1), and low protist abundances (max.
4 � 103 cells l�1), but was similar to spring ice assemblages with
respect to species richness. Potential survival strategies of Arctic
sea ice algae during the dark winter period were tested experimen-
tally by Zhang et al. (1998). Only very few species formed resting
spores, while heterotrophy (including mixotrophy) and energy
storage seemed to be more important strategies to survive the dark
winter months.

Prior to the US T-3 campaign in the 1950s, the collective scien-
tific knowledge centered around ice associated communities are
best summarized by the late Dr. J.L. Barnard in his 1959 mono-
graph of the Amphipoda collected during the T-3 drift campaign:
‘‘The sampling area consists of a deep body of water covered with
ice, far from a land mass, essentially a pelagic environment covered
with a solid umbrella, offering a restricted amount of ‘‘inhos-
pitable” living surface” (Barnard, 1959). Interestingly, all of the
macrozooplankton species that have later been considered as obli-
gate ice associated taxa (Arndt and Swadling, 2006; Macnaughton
et al., 2007) were found and identified during the T-3 expedition
(Barnard, 1959), but all were considered as being strictly pelagic.
It was not until the pioneering work of Melnikov (see Melnikov,
1997) and Gulliksen (e.g. Lønne and Gulliksen, 1991) that their
association with sea ice became established. Since then, it has been
well-known that the Arctic sea ice is host to a high number of mar-
ine invertebrates, with more than 1000 different species recorded
(Bluhm et al., 2011). The sympagic macrofauna is commonly
divided into two groups, the autochtonous and allochthonous spe-
cies (Lønne and Gulliksen, 1991; Arndt and Swadling, 2006). The
former consists of the species that are believed to live their entire
life connected to the sea ice, whereas the latter consists of species
that are connected to the sea ice only during parts of their life
cycle. Although classified as autochthonous, there is evidence that
at least several of the species in this group are in fact not totally
dependent on multiyear sea ice in order to fulfill their lifecycle
(Berge et al., 2012b).

Since there are few direct observations or records of ice associ-
ated organisms taken from the Arctic sea ice during the nautical
polar night, their association with sea ice throughout the year
has remained an assumption, rather than a fact. Recently, a new
hypothesis regarding the adaptations and evolution of Apherusa
glacialis has been proposed (Berge et al., 2012b), suggesting deep
vertical migrations of at least one ice-obligate amphipod species
during the polar night. Berge et al. (2012a,b) suggested that these
migrations may have fitness benefits because of northward water
mass movement at depth. Currently, the T-3 (Barnard, 1959),
Russian drift stations (Melnikov, 1997) and Berge et al. (2012b)
are the only available reports of ice associated fauna during the
high Arctic polar night.
8. Zooplankton

In polar seas, zooplankton have evolved several special adapta-
tions to survive long periods of continuous darkness with insuffi-
cient food supply (Hagen and Auel, 2001; Conover and Huntley,
1991). Diapause, a state of reduced metabolism, combined with
build-up of large lipid reserves, are major features of polar life
cycles (Hagen, 1999; Varpe et al., 2009). Our knowledge about
the physiological state and behavior of zooplankton during the
overwintering period is, however, very restricted (but see
Conover and Huntley, 1991; Conover and Siferd, 1993). There is a
need for studies of polar-night physiology and energy use com-
bined with knowledge of behavior and life cycle stages. This will
improve our understanding of the trade-offs inherent in the annual
routines of polar zooplankton (Varpe, 2012) as well as the role of
the polar night in shaping the schedule of activities at other times
of the year. How strongly zooplankton reduce their metabolism
during winter is poorly known even for the well- studied genus
Calanus spp. (Darnis and Fortier, 2012), which comprise most
(50–90%) of the mesozooplankton biomass in Arctic seas
(Blachowiak-Samolyk et al., 2008; Kosobokova et al., 2011). For
overwintering zooplankton, very few ‘‘in situ” measurements of
metabolism are available. One recent study (Berge et al., in press)
from Svalbard, reports on metabolism levels above those measured
during spring and summer. Other existing studies on ‘‘winter” zoo-
plankton metabolism are mainly from the winter–spring transition
or fall (Hirche, 1989; Auel et al., 2003; Seuthe et al., 2007). Each
year, the large herbivorous copepod Calanus spp. performs sea-
sonal vertical migrations of several hundred meters, overwintering
at depth in diapause for up to 10 months (Dawson, 1978; Hirche,
1997; Kosobokova, 1999; Ashjian et al., 2003; Darnis and Fortier,
2012). Active carbon transport by these large and lipid-rich zoo-
plankton migrants is significant and may equal the gravitational
particulate organic carbon (POC) fluxes in winter (Darnis and
Fortier, 2012). The omnivorous copepod Metridia longa and the
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smaller omnivores/detritivores copepods Oithona similis, Triconia
borealis, Pseudocalanus spp., and Microcalanus pygmaeus are
believed to remain active year-round and not perform extensive
vertical migrations (Lischka and Hagen, 2005; Darnis and Fortier,
2012; Ashjian et al., 2003). These small omnivorous/detritivorous
copepods, that numerically dominate Arctic zooplankton, con-
tribute substantially to recycling organic carbon in the surface
layer and to the attenuation of the vertical POC flux (Hopcroft
et al., 2005). Predominance of small fecal pellets in the vertical
POC flux in fall and winter (Forest et al., 2008; Lalande et al.,
2009) suggests that these small copepods also are active and
important carbon recyclers during the dark season.

Recent polar-night research has demonstrated that marine zoo-
plankton species are not necessarily quiescent during the polar
night. Some populations are found to undergo diel vertical migra-
tion (DVM) during the darkest months (Berge et al., 2009, 2012a, in
press). A great deal of scientific attention has focused on DVM and
the environmental signals responsible for its synchronization (for
overview see e.g. Ringelberg, 2010). It is generally accepted that
the ultimate reason for DVM is to avoid predation during the day-
time, though the majority of experimental evidence comes from
freshwater zooplankton species (Ringelberg and Van Gool, 2003).
Zooplankton will move away from sunlight at dawn and follow
isolumes during their downward migrations with peak photobe-
havioral responses demonstrated experimentally at wavelengths
corresponding to those available during twilight in coastal water
(Cohen and Forward, 2002). In nearly all animals and plants a light
sensitive molecular machine exists called the circadian clock that
provides a ‘‘time-sense” or an ability to anticipate future events.
To date the only demonstration that a circadian clock exists in zoo-
plankton is that of the krill Euphausia superba (Teschke et al., 2011).
However, observations in the Arctic of upward migrations often
pre-empting dusk (Berge et al., 2014), also provide evidence that
at least part of this otherwise light-driven process include endoge-
nous factors.

Marine organisms live in an environment influenced by not just
the day/night solar cycle but also the lunar cycle which can influ-
ence both illumination and tidal movements. Under the extreme
low-light conditions of the nautical polar night, the moon will for
long periods of time be the dominating source of ambient light.
It is well known that many marine species are able to synchronize
their swimming patterns or spawning activities to the semi-lunar
cycle (�15 days), which is coincident with full or newmoon phases
and maximum amplitude tides i.e. the spring/neap cycle (overview
in Naylor (2006)). It is therefore not inconceivable to propose that
any putative zooplankton clock will probably be able to entrain to
lunar-day cycles at a time when the light of the moon masks the
near absent solar signal.

The most extensive observations of DVM in the polar night have
come from moored instrumentation, particularly the backscatter
measured by Acoustic Doppler Current Profilers (ADCP). The strong
seasonal variation in DVM in the Arctic was demonstrated using
ADCP data by Wallace et al. (2010). Berge et al. (2009) demon-
strated clearly that parts of the Arctic zooplankton community
retain a diel vertical migration even during the darkest part of
the polar night. Falk-Petersen and Hopkins (1981) demonstrated
a distinct DVM in two krill species Thysanoessa inermis and T.
raschii, but it should be noted that this study was carried out inside
the civil twilight zone at 70�N. ADCPs have been deployed at sev-
eral locations throughout the Arctic over a number of years such
that patterns of zooplankton behavior (e.g. DVM) may in the future
be compared and contrasted between the European and American
sides of the Arctic Ocean. The next challenge in Arctic DVM studies
is to provide a pan-Arctic view on this important process and how
is modulated by the structure of zooplankton communities and
physical drivers (Berge et al., 2014).
Another indirect measure of DVM has come from observations
of bioluminescence during the polar night. Bioluminescence is a
characteristic feature of all the world’s oceans, but has been docu-
mented to be of special importance in the abyssal zone (Haddock
et al., 2010). As such, it is a phenomenon likely to be dominant
and persistent in dark environments such as the polar night. Doc-
umented bioluminescent taxa found in the Arctic include dinoflag-
ellates, the copepod Metridia longa, the ctenophores Mertensia
ovum and Beröe cucumis, and the krill species Meganyctiphanes
norvegica (Berge et al., 2012a; Johnsen et al., 2014). Observations
of a distinct and diurnal pattern of depth-varying bioluminescence
in the upper 50 m of the water column during the darkest part of
the polar night at 79�N have been interpreted as further evidence
of DVM (Berge et al., 2012a; Johnsen et al., 2014). Bioluminescence
has been observed in connection with sea ice (Fig. 4), often along
edges of floes or in the intertidal where mechanical disturbance
triggers a bioluminescent response in organisms (J. Berge, pers
obs), but detailed studies of this phenomenon have not been
performed.
9. Benthic communities

Benthic communities have rarely been studied during the polar
night, with the lack of adequate data highlighted as one of the main
gaps in knowledge in a review of Arctic marine benthos
(Piepenburg, 2005). Nevertheless, the studies that do exist indicate
that the polar night period is important for many elements of the
Arctic benthos, including being a key period for invertebrate activ-
ity and reproductive processes, kelp growth, and elemental cycling
processes in Arctic sediments (Berge et al., in press). Continuous
growth throughout the year has been documented for both the
bivalve Chlamys islandica (Berge et al., in press) and the amphipod
Onisimus litoralis (Nygård et al., 2010), the latter without any sea-
sonal change in total energy content, thus suggesting year-round
feeding at significant levels. This species is part of a guild of scav-
enging amphipods active throughout the year and common in Arc-
tic shelf waters, although different taxa appear to specialize on
different prey items (Nygård et al., 2012). Such high levels of activ-
ity imply high levels of nutrient regeneration during the polar
night at a time when benthic nutrients are easily mixed to surface
waters due to lack of water-column stratification. Description and
quantification of the activities of these and other hyperbenthic
organisms, e.g. krill, which are associated with near-bottomwaters
during winter, could be revealing as their roles in benthic-pelagic
transfer and elemental cycling during this period are virtually
unknown.

Environmental conditions during the polar night can have sig-
nificant consequences for recruitment success of intertidal and
subtidal benthic invertebrates. Temperatures during the previous
winter affect recruitment success in the barnacle, Balanus crenatus
(Yakovis et al., 2013), as well as explaining 37% of the survival of
infaunal bivalve spat during their first winter (Gerasimova and
Maximovich, 2013). Furthermore, freezing of sediments, and occa-
sional removal of the top several cm of sediment and associated
fauna strongly impact infaunal community structure in the White
Sea intertidal zone (Naumov, 2013). Whereas these studies con-
ducted during winter in theWhite Sea investigate the benthos dur-
ing a period of polar twilight due to the location of the study area
just above the Arctic Circle, they do provide insight into processes
that are most likely also important further north under conditions
of polar night.

Primary producers require both light and inorganic nutrients
(including traces of iron), but in the Arctic there is often a temporal
mismatch in the availability of these two resources. Phytoplankton
generally take advantage of the narrow time window in spring
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when both are present, resulting in the characteristic intense
spring bloom. Some macroalgae, belonging mainly to the kelp gen-
era Laminaria, Saccharina and Alaria, however, are able to store the
chemically bonded light energy as carbohydrates and sugar-
alcohols derived from summer/autumn photosynthetic periods,
but delay linear growth (lamina elongation) until winter periods
(Chapman and Lindley, 1980). In fact, as much as 90% of annual lin-
ear growth in kelp, and in Laminaria solidungula in particular,
occurs under ice cover during winter months (Dunton et al.,
1982). Winter kelp growth, thus, provides an enhanced food
resource and settlement substrate for benthic grazers and epi-
fauna. The expected future decline in ice cover in most areas of
the Arctic is predicted to increase the depth distribution, latitudi-
nal extent, and photosynthetic season for Arctic kelp growth
(Krause-Jensen et al., 2012; Clark et al., 2013). It is unclear,
however, whether the availability of inorganic nitrogen will be
sufficient to support this expected increase in winter growth, indi-
cating a need for further studies of seasonal patterns in seawater
chemistry, and its consequences for kelp growth.

In contrast to kelp, growth of many benthic fauna slows/stops
during winter due to low temperatures and low food availability.
This is recognizable as annual growth checks in e.g. bivalve shells
(e.g. Ambrose et al., 2012). Many benthic organisms, particularly
in deeper water, are long-lived and survive winter conditions, lead-
ing to little change in community structure, at least in soft-
sediment communities (e.g. Pawłowska et al., 2011). Community
activity (oxygen consumption), however, is at its annual minimum
during winter (Welch et al., 1997; Rysgaard et al., 1998; Renaud
et al., 2007), presumably due to reduced availability of sedimen-
tary food supplies (phytopigments). Rapid response to the arrival
of food has been found to increase community respiration rates
by a factor of >10 within days (Renaud et al., 2007), most likely
caused by deposition of ice algae and an increase in bioturbation
(Morata et al., 2011). Experimental studies show that deposition
of fresh organic matter even in the middle of winter leads to an
almost immediate response in oxygen consumption by sediment
communities (Morata et al., 2013). Studies of both oxic and suboxic
mineralization (e.g. denitrification) rates in Arctic sediments, espe-
cially during winter, have led to the conclusion that biogeochemi-
cal processes are limited more by labile carbon than by low
temperatures (e.g. Devol et al., 1997; Rysgaard et al., 1998). Taken
together, these results indicate that the low level of activity dis-
played by Arctic sedimentary communities is not caused by some
type of dormancy or temperature limitation, but instead by
winter-feeding on sedimentary material of low quality. Thus, the
paradigm of tight pelagic-benthic coupling in the Arctic is a good
predictor of spatial and temporal patterns in benthic community
structure and function. Changes in quality, quantity, and seasonal-
ity of food input to the benthos due to climate change (e.g. ACIA,
2005) may significantly change the nature of elemental cycling
by Arctic benthos, affecting nutrient regeneration and carbon bur-
ial levels.
Fig. 5. Time windows of reproduction for common high-latitude zooplankton
species. Darker colors within reproductive time windows indicate likely peaks in
reproduction, while dashed arrows are uncertain due to few observations. Green
arrows predominantly herbivorous copepods, orange omnivorous copepods and
blue carnivorous zooplankton. See text for references.
10. A reproductive high season

The polar night is important for various stages in the reproduc-
tion of many species of Arctic benthos. Ontogenesis of barnacle lar-
vae (Marfenin et al., 2013) and brooding of amphipod eggs (Nygård
et al., 2009) are continuous throughout winter until the release of
larvae/juveniles in spring. In an examination of the life history
characteristics of 63 amphipod species from Hornsund and Kongs-
fjorden, Weslawski and Legezynska (2002) found that most species
incubated their juveniles during the polar night and/or winter
months, whereas only three species incubated their offspring
in spring and summer (see Weslawski and Legezynska, 2002).
Planktonic larvae (meroplankton) of benthic species (cirripeds,
polychaetes) have been found to be present in the water column
from mid-winter in Kongsfjorden, Svalbard (Willis et al., 2006;
Walkusz et al., 2009). And in the first published year-round study
of larval settlement in a location above the Arctic Circle, Kuklinski
et al. (2013) documented recruitment of hard-bottom benthos
throughout the year, including the polar night. Recently, the first
documented records of egg-carrying females of the ice-associated
Apherusa glacialis were made in the middle of the polar night in
the Arctic Ocean (Berge et al., 2012b). Finally, the common amphi-
pod Pontoporeia femorata is only known from females and
immature males, with as-yet undescribed mature males believed
to occur during winter months (Brandt and Berge, 2007). This
indicates that the paradigm of synchronizing reproductive phases
to the spring phytoplankton bloom is not consistent across Arctic
benthic taxa (Berge et al., in press). Different stages in the repro-
ductive cycle may be timed to coincide with the peak in pelagic
food abundance in some organisms but may be completely decou-
pled in others. These findings suggest that alternative food sources
are exploited by many meroplankton taxa and recent recruits.
Clearly, further studies of reproductive dynamics of Arctic taxa,
and nutrition of their early life-stages are needed, but processes
taking place during the polar night are likely very important for
many taxa.

Zooplankton have evolved different reproductive strategies
(Fig. 5) which are closely related to their feeding strategy and
ability to store and save energy (Hagen and Auel, 2001;
Conover and Siferd, 1993). Small omnivorous copepods tend to
be active year round in the Arctic, and Oithona similis and Tricona
borealis are found to reproduce throughout the year, including the
polar night, although their reproduction peaks in summer
(Lischka and Hagen, 2005; Darnis et al., 2012). The opportunistic
feeder Pseudocanalus spp., which switches between herbivory
during the productive season to omnivory/carnivory in winter
(Lischka and Hagen, 2007), may also spawn in winter but at very
low rates (Hirche and Kosobokova, 2011; Darnis et al., 2012). The
predominantly herbivorous copepods of the genus Calanus spp.
are key zooplankters of high-latitude marine systems. They
remove substantial amounts of organic matter from surface to
depth by their yearly seasonal ontogenetic migration. The three
co-occurring C. finmarchicus, C. glacialis and C. hyperboreus are
all capable of building up large lipid storages by converting
low-energy carbohydrates and proteins in algae into high-energy
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wax ester lipids (Lee et al., 2006). However, only the largest of the
three, the Arctic C. hyperboreus, is capable of reproducing during
winter based on stored energy only (capital breeding) and, thus,
100% decoupled from the spring bloom (Hirche, 1997; Falk-
Petersen et al., 2009). Nevertheless, males of all three species
are present only during a short time-window and mainly during
the polar night, underlining that important reproductive pro-
cesses occur for all three species in winter (Niehoff et al., 2002;
pers. obs.). The intermediate of the three Calanus spp.–C. glacialis
– may start to reproduce in early February but reproduction
peaks first when algal food, either in form of ice algae or phyto-
plankton, starts to appear (Hirche and Kattner, 1993; Søreide
et al., 2010; Darnis et al., 2012). Another large Arctic copepod,
the omnivore Metridia longa, can prey intensively on the nutri-
tious C. hyperboreus eggs (Darnis et al., 2012), resulting in early
reproductive start in this species also. Other carnivorous zoo-
plankton such as Paraeuchaeta spp. have also been observed with
eggs in winter and the abundant chaetognath Parasagitta elegans,
a hermaphrodite, has been observed with gonads and sperm
during the polar night (Darnis et al., 2012; Grigor et al., 2014).

In a recent review of the fish species occurring in the Barents
Sea and Svalbard region (Wienerroither et al., 2011) it has been
reported that 20% of the species reproduce during the months of
December, January and February (Berge and Nahrgang, 2013).
Perhaps the most well-known and best example of this is the
polar cod, a species known to develop large gonads (>40% of
the body weight) in preparation for spawning in January–Febru-
ary (Rass, 1968; Hop et al., 1995; Nahrgang et al., 2014). The
reproductive strategy (including the extent of iteroparity vs
semelparity) of polar cod has long been a matter of discussions
(Nikolskii, 1950; Cohen, 1990; Sakurai et al., 1998; Hop et al.,
1995), and is in general based upon studies of polar cod from
captivity (Hop et al., 1995). Recent evidence suggests gender-
specific reproductive strategies with iteroparous females and a
male strategy closer to semelparity. However, these findings
seem only true for polar cod from waters influenced by Arctic
water masses, and did not hold true in regions of Atlantic influ-
ence (Nahrgang et al., 2014). Males enter gonadal maturation in
the early autumn and reach maximum gonad size two months
before females (Hop et al., 1995). The timing of reproduction is
suggested to be adapted to match the period with maximum
prey availability for the first feeding larvae (Fortier et al.,
2006). Eggs of polar cod have only seldom been observed in
the field (Rass, 1968) and have been mostly studied experimen-
tally after natural spawning or in vitro fertilization (Aronovich
et al., 1975; Graham and Hop, 1995; Sakurai et al., 1998). Polar
cod eggs are large (1.6–1.9 mm) and buoyant (Andriashev, 1954;
Aronovich et al., 1975; Andersen et al., 1994; Graham and Hop,
1995), and show normal embryonic development at between
�1.5 and 3 �C and 12 and 50 psu (Doroshev and Aronovich,
1974; Aronovich et al., 1975; Sakurai et al., 1998). Extensive
work has been carried out on the life history traits of polar
cod larvae in particular in relation to hatching time and survival
of first feeding larvae (Sekerak, 1982; Craig et al., 1982; Cannon
et al., 1991; Ponton and Fortier, 1992; Gilbert et al., 1992,
Ponton et al., 1993; Fortier et al., 1996, 2006; Michaud et al.,
1996). Fortier and co-workers hypothesized two possible strate-
gies: an early production of polar cod larvae (spring cohort) to
match the first feeding with the potential early production of
small cyclopoid nauplii, rather than the phytoplankton bloom
and calanoid nauplii following ice break up. This cohort would
suffer a high initial mortality but benefit from a substantially
longer pre-winter growth to maximize size and body reserves
for winter. A summer cohort on the contrary would have better
initial conditions but a reduced growth and, thus, decreased
overwintering chances (Fortier et al., 2006).
Kaartvedt (2008) hypothesized that the absence of large meso-
pelagic fish in the high Arctic is due to the polar-night light regime
that strongly reduces encounters with prey. Recent observations
on gut content of Atlantic and Arctic fishes from Svalbard (Berge
et al., in press) showed that gadoids (Atlantic cod, haddock and
polar cod) are able to capture prey during the polar night (also
pelagic prey). Hence, it may be the ability to reproduce, rather than
inability to feed during the polar night that is a key adaptation
allowing only a few fish species to colonize the Arctic Ocean and
adjacent shelf seas (Berge and Nahrgang, 2013). Accordingly, one
would also expect that there is a higher percentage of capital vs
income breeders (Varpe et al., 2009) among high Arctic fish spe-
cies. Furthermore, an improved understanding of the visual capac-
ity of Arctic fishes is needed to better understand their potential for
prey encounter under low-light conditions. Initial studies of optical
plasticity suggest that Arctic species, such as polar cod, may indeed
differ from their sub-Arctic counterparts (Jönsson et al., in
revision).

11. Outlook and important gaps in knowledge

The Arctic winter and polar night are emerging as key periods
during which many reproductive and other ecological important
processes occur (Berge et al., in press). Recent studies have
demonstrated unexpected levels of activity in the pelagic zone
during the polar night. These include diel vertical migration of
zooplankton (Berge et al., 2009) and nekton (Webster et al.,
2013), increased understanding of the microbial community
structure and function (Rokkan Iversen and Seuthe, 2011), pat-
terns of bioluminescence by pelagic organisms (Berge et al.,
2012a; Johnsen et al., 2014), foraging by predators believed to
rely at least in part on a visual search (Kraft et al., 2012;
Berge et al., in press), and the ability to detect extreme low light
levels in certain key zooplankton species (Båtnes et al., 2013;
Cohen et al., 2015). These recent discoveries, in addition to the
pioneering studies of Weslawski et al. (1991) and Melnikov (e.
g. 1997), are currently representing a dramatic shift in our
understanding of the marine system. We conclude, therefore,
that in order to achieve a thorough and comprehensive under-
standing of the marine Arctic, it is no longer possible to ignore
processes occurring during the polar night. For the benthic and
sympagic habitats, however, little knowledge exists. There are
also many types of cyclic activity in marine organisms that are
highly synchronized within populations. It seems likely that
marine zooplankton have a (circadian) biological clock entrained
by the day/night cycle and that this clock is adaptive in initiating
a migratory response even when external light cues are limited
at depth. However, during the polar night, when the strongest
source of illumination is no longer coming from the sun, moon-
light probably plays an important role in entraining migratory
behavior. Which species are implicated, and what the ultimate
drivers are at this time, remains to be discovered. As shipping
routes through the Northwest and Northeast Passage and the
expanding oil, gas, fishery and mineral industries are increas-
ingly active, the risk of environmental damage in the Arctic
increases. There is a growing demand for sound management,
decision-making, and governance guidelines that rely on a thor-
ough research-based understanding of the ecosystem, not just
snapshots from the bright part of the year. For example, we
now know that many species across most phyla and trophic
levels utilize the polar night for reproduction, hence increasing
their potential vulnerability particularly during this part of the
year. Knowledge of the patterns and processes that characterize
the entire marine habitat during the polar night is, therefore, one
of the most important gaps in knowledge preventing informed
management of the Arctic.
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