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Abstract

Recently, the FCC has released a very wide unlicensed spectrum allocation from 3.1 to
10.6 GHz. The allowed emission in this spectrum is very low, so the use of this spec-
trum allocation limits itself to relatively short range applications. The fact that CMOS
technology now reaches speeds of tens of GHz, opens up a whole new area of interest-
ing possibilities to create cheap and wide band radio technology. One application here,
is short-range radar. Thanks to the wide spectrum allocation the radar is able to send
impulses rather than bursts of a carrier wave. This makes processing of the received
signal much easier than the matched filters which are required in the carrier wave burst
case.

In this master thesis we present two related sampling techniques for radar applica-
tions which use mostly digital circuitry and which can achieve high sampling rates. We
have called these circuits, which are partially based on the Suprathreshold Stochastic
Resonance (SSR) principle, swept threshold and stochastic resonance samplers. Al-
though the samplers are mostly digital, which makes them perfect for CMOS, they are
not clocked. We discover that for the case where the input signal contains much noise,
typical for radars, the crudeness of these simple samplers does actually not have a very
detrimental effect on the signal processing. A radar implementation in 90 nm CMOS
using these samplers is presented, which is shown to reach sampling rates of about
23 GHz.
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1. Introduction

The Federal Communications Commission (FCC) has just released a wide spectrum
allocation for unlicensed use. The spectrum stretches from 3.1–10.6 GHz, giving an
incredible bandwidth of 7.5 GHz. Thanks to advances in CMOS technology, we are
now able to create cheap solution is this technology that are able to reach the high
frequencies of the spectrum allocation band.

Possibilities for many new applications thus opens up. Communication, tracking,
Radio Frequency Identification (RFID) and radar are perhaps the main fields of in-
terest. In this master thesis we will present a UWB radar in CMOS at frequencies
approximating the 3.1–10.6 GHz band. The radar sampler is implemented using an
unconvential technique, where most of the signal processing is done using digital cir-
cuit elements, although unclocked. This sampling technique relates to Suprathreshold
Stochastic Resonance (SSR), which is a relatively newly identified phenomenon which
is currently being explored, sparked off by [Stoc 00].

1.1. Medical application for UWB impulse radar

One of the many possible applications for Ultra-WideBand Impulse Radio (UWB-IR)
radar is medical imaging. With pulse durations of about 150 ps, the length of the pulse
when propagating through vacuum is about 4.5 cm. When propagating through tissue,
the speed and thus the length of the pulse decreases, and when also taking into account
the fact that the pulse has to travel both to the object and back again, we end up with a
resolution which is probably adequate for many medical imaging purposes.

1.2. Outline of thesis

In chapter 2 we will describe the UWB spectrum allocation and possible pulses which
can be used within the constraints of the spectrum mask.
In chapter 3 we will describe some general radar background.
In chapter 4 we coin the term Continuous-Time Quantized Amplitude (CTQA), which
will be used to describe such signals and signal processing. We try to explore the prop-
erties of this signal processing domain.
In chapter 5 we describe a few different radar samplers and present simulations of the
sampling methods used in the radar which this master thesis revolves around.

1



1. Introduction

In chapter 6 we describe the radar circuit that has been implemented and present mea-
surements made on the circuit.
In chapter 7 we conclude our observations.
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2. UWB

The FCC has recently allocated a very wide unlicensed spectrum in the 3.1–10.6 GHz
range. Allowed power transmission in this range is -41.3 dBm/MHz EIRP. Effective
Isotropically Radiated Power (EIRP) means that the antenna must transmit at a power
level so that an observer some distance away which assumes the antenna is isotropic,
will think the antenna is transmitting at that given power. This specification means that
if you increase your antenna gain by for instance a factor 100, i.e. focus your transmitted
energy, you will also have to reduce the power by a factor 100. Otherwise, observers
located in your beam will think you just increased your transmission power 100-fold.
dBm is a logarithmic unit where 0 dBm = 1 mW.

The regulation also allows for some weaker signals to be transmitted above and be-
low the main spectrum mask. This makes it easier to create compliant signals, since the
cutoffs of the signals do not need to be so steep then. Different conditions apply for
handheld equipment and equipment to be used indoors.

One can use multiple wide band carrier based transmissions in order to fill the spec-
trum, but another way is to send pulses which fill the whole spectrum by them selves.
A pulse shape that works very well here is the Gaussian pulse [Siwi 04]. The wider the
pulse, the more narrow the bandwidth it uses. And the shorter the pulse, the wider the
bandwidth will be. Since the Gaussian pulse has a center frequency of 0 Hz, we will
have to multiply it with the desired center frequency to shift it up in the spectrum. The
center frequency in the 3.1–10.6 GHz range is 6.85 GHz. Several such pulses are shown
in figure 2.1 and 2.2. They are plotted together with the FCC emissions masks. When
multiplying the Gaussian pulse with the center frequency, a phase offset has to be cho-
sen. In the time domain plots, the phase is chosen so that the pulses are antisymmetric,
and in the frequency domain plots, curves from a range of different phases are plotted.
We see that for the short pulses, the emission levels in the lower frequencies is very
dependent on the phase.

We see from the plots that in order to meet the emission mask constraints, the pulse
has to consist of a few cycles. The monocycle pulse simply has a too wide spectrum.

When sending consecutive pulses from for instance a radar, we have to make sure
that this is not done in a periodic fashion. If, for instance, pulses are sent periodically
at a rate of 10 MHz, the resulting spectrum will consist of spikes at 10 MHz, 20 MHz,
and so on, with no energy in between. This means that the spikes will have quite
high power and they will thus potentially be able to cause interference to narrow band
equipment. By instead sending out the pulses at random intervals, we avoid the spikes

3



2. UWB

in the spectrum.
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Figure 2.1.: Time-domain plot of different Gaussian UWB pulses

-100

-90

-80

-70

-60

-50

-40

-30

-20

10001001010.1

E
IR

P
 p

o
w

e
r 

(d
B

m
/M

H
z
)

Frequency (GHz)

Monocycle

FC
C
 in

do
or

F
C

C
 h

a
n
d
h
e
ld

FCC indoor
FCC handheld

Constraint points

10 dB drop

−41.3 dBm/MHz

20 dB drop

10.6 GHz3.1 GHz

Center frequency: 6.85 GHz

7.5 GHz bandwidth

Sweep of center
frequency
phase

Figure 2.2.: FCC emission mask and spectrum of different Gaussian UWB pulses

5



2. UWB

6



3. Radar

3.1. History of radar

The history of radar starts about one hundred years ago. In 1887, Heinrich Hertz
started experimenting with radio waves [Hist], and already in 1904, the German in-
ventor Christian Hülsmeyer patented a simple form of radar which he called the tele-
mobiloscope. He demonstrated a range of 3km, but no one seemed to be interested in
his device. It wasn’t until around 1930 that radars were again being developed, this
time by at least eight countries who needed it as a warning system for aircraft attacks
[Thum]. During World War II, the British radar system Chain Home helped the Royal
Air Force fight the Luftwaffe [Hist], and since then, radar has become a crucial sensor
for both warfare, shipping, aviation, weather forecast, geological surveying and more.

3.2. UWB-IR radar

Conventional radar sends out pulses of a carrier wave and waits for reflections to re-
turn. When they do, the radar has to match the received signal with the one sent out.
By sending specific pulse patterns, for example barker code, the matching can be done
quite precisely, and the round trip time of the signal can therefore be measured with
good accuracy despite the pulse pattern being long. The advantage of doing this, is
that more energy can be sent out, resulting in a better Signal to Noise Ratio (SNR). Ei-
ther way, conventional radar systems have a more or less long template to match the
received signal with. The cost of this is that the systems can become complex.

A different approach which takes a step in the other direction, is UWB-IR radar sys-
tems. By sending out baseband pulses instead of pulses with a carrier frequency, the
task of recognizing the return signal becomes much easier. The ideal pulse would be a
unit impulse, but since that’s not possible, very short pulses will have to do. Still, both
transmission and reception of the signal becomes very simple, there’s no carrier wave
involved.

Since UWB-IR is a baseband signal, it will interfere with a wide spectrum of frequen-
cies. This puts some constraints on the transmission power one can use in the radar
systems without causing trouble for other devices. As a consequence, UWB-IR radars
become low-power and therefore short-range. In return however, it is possible to create
such radars that are high resolution.
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4. Continuous-time quantized amplitude
signal processing

The increasingly fine-pitched CMOS technology is usually not a good candidate for
analog designs [Anne 99, Merc 04]. It is, however, excellent for digital circuits, now
reaching speeds of several gigahertz in commodity CPU’s. Its widespread use helps
keep prices down and push for even further development, making it a very interest-
ing technology. But although the digital circuits are very high performance, there is
still some processing power, even of a somewhat analog quality, left to be harnessed
from the technology. This is not widely done and we will therefore try to describe the
technique in this chapter.

4.1. Signal representation

The quality of the technology which traditional digital design does not exploit, is the
timing of a digital signals propagating through logical gates. Take for instance the
basic circuit in CMOS technology, the inverter. It can be used as an analog amplifier,
a logical inverter of a digital signal, a buffer to handle fan-out and it can also be used
for other creative uses such as for instance multilevel logic. But when we are using
it to process digital signals, i.e. quantized amplitude, which is what it does best, we
can let the timing of the rising and falling edges of our signals represent analog data.
That is, we let the very time at which a raising edge occurs, the exact width of the
pulse, or some measurement like that, be our quantity of interest (figure 4.1). Even
with quantized amplitude, this way of representing information theoretically allows
for infinite analog precision. This is actually exactly how information is coded with for
instance Pulse-Width Modulation (PWM) and Pulse-Position Modulation (PPM), and

Time
Quantized Continuous

Amplitude Quantized Digital CTQA
Continuous Analog sampled-data (switch-cap. . . ) Analog

Table 4.1.: Signal processing domains
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Figure 4.1.: Clocked digital / CTQA signal representation

our signal representation thus bears great resemblance to these modulation schemes,
but our signals do no not need to be as periodic and systematic as PWM and PPM
signals usually are.

As a simple example of this kind of signal representation, consider a pulse with a
width of 1 to 2 ns. It could for instance hold an analog value represented by the width
of the pulse. Without phase noise in the system, this analog value would have infinite
precision. When sending such a signal through an inverter, the inverter will only add a
constant, tiny delay to the time of the transition events, and thus, the information repre-
sented by the timing of these events is preserved, only a bit skewed in time. There will
of course be introduced noise to the transition timings when the signal goes through
the inverter, and in this signal processing domain, our source of noise is therefore the
phase noise of the inverter. We will call this signal representation and signal process-
ing domain Continuous-Time Quantized Amplitude (CTQA). Table 4.1 shows how it
relates to other signal processing domains in terms of quantized/continuous time and
amplitude. An interesting observation to make is that CTQA also relates to the coding
of signals in the nervous system. Here, the signals are transmitted as nerve impulses,
which is a coding scheme very similar to CTQA with constant pulse width.
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Delay Logic

Sampler

Figure 4.2.: Examples of basic CTQA circuits

4.2. Signal processing operations

The signal processing operations that are available for this kind of signal representation
will probably be limited compared to what is available in amplitude-based domains.
We will now present some basic operations and circuits, though.

Delay element (Figure 4.2.) A simple cascade of two inverters will delay the signal by
two gate delays. If only the relative timing between signals A and B is interesting,
delaying B will have the same effect as advancing A, so we have both positive
and negative delays available. Also, by delaying A by the minimum buffer delay
T, and B by a slightly slower buffer with delay 1.1T, we get a relative delay of
0.1T, much smaller than the minimum buffer delay, thus enabling the use of very
small delays. This must not be confused with the minimum available pulse width,
though, which is only determined by the speed of the technology.

Sampler (Figure 4.2.) A transmission gate can act as basic digital signal sampler, but
more elaborate designs may be required for real applications. The sampler can for
instance be made to sample an input signal on the rising edge of a trigger signal.
The output of the sampler is of lower frequency than the original input signal,
and can now be processed by slower, conventional digital circuitry.

Logic (Figure 4.2.) Inverting, and-ing, or-ing, and so forth should be quite simple.
Alone, this would correspond to simple combinational logic, where the output
is updated as soon as the input is changed. Combined with delays, however, a
circuit can for instance detect patterns in time across several input lines. See the
monocycle pulse detector example below.

Pulse shaping (Figure 4.3.) Stretching pulses, shortening pulses, turning edges into
pulses with constant widths, constraining pulses to maximum and minimum
widths, and so forth.
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Figure 4.3.: Examples of CTQA pulse shapers
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Figure 4.4.: Example circuit using CTQA: Sampled delay line

Example: Sampled delay line (Figure 4.4.) A basic but useful circuit for this signal
processing domain is the delay line, consisting of a cascade of inverters. When
sending a rising or falling edge into this structure, it propagates down the line
at the rate of the gate delay. After some time, the opposite edge can be sent in,
even if the first edge is still propagating. This means that the delay line holds a
history of edges and it thus forms a sort of memory. A way of getting an actual
practical use of this processing domain, is to sample the delay line at one or more
points in its spatial structure. By sampling more than one point, we can extract
interesting information by looking at the samples relative to each other, and by
also sampling at a very specific time, each sample contains information about
the value of the input signal at a specific time in the history of the signal before
the sampling was triggered. This example has been taken from the RAKE receiver
in [Limb 05]. A similar, but slightly different, topology has been used in the circuit
implementation described later in this thesis.

Example: Monocycle pulse detector (Figure 4.5.) This circuit uses a delay element
and an AND gate to detect a pattern consisting of a pulse on one input line fol-
lowed by a pulse on another input line a constant period of time later. With its
thresholder front end, this circuit is able to detect the analog monocycle pulse
shape. This example has been taken from the UWB impulse radio receiver front
end in [Meis 05].

What we have now is a set of extremely simple circuits in a very fast technology
that is able to transfer, process and to some extent sample a sort of analog values, thus
giving the previously purely digital logical gates in the technology analog capabilities
while still only using quantized amplitude. We are also turning the gate delay, which is
the performance-limiting factor in traditional digital designs, into an analog memory.

13



4. Continuous-time quantized amplitude signal processing
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Figure 4.5.: Example circuit using CTQA: Monocycle pulse detector

Operations such as analog addition, multiplication and so forth on the analog values
represented by the transition timings of the signals, for instance addition of two pulse
widths, is probably much more difficult. And when it comes to processing of multi-bit
digital values, CTQA could possibly be used to create for instance some sort of serial
adders or similar circuits. But whether that is feasible for, say, 32 bit, and without us-
ing clocks, like in traditional serial adders, is another question. So the CTQA signal
processing domain may or may not be able to replace parts of or the entire traditional
analog and digital signal processing domains. But as we have described it in this chap-
ter, CTQA is a domain of its own, with its own particular properties and its own set of
possibilities for signal processing.

4.3. Advantages

Simple As shown in figure 4.2 and 4.3, basic CTQA circuits are very simple and based
on digital design. A consequence of the simple, digital circuit architecture, is
that they consume very little power, only a little bit caused by leakage currents,
when there are no signal transitions. This is in contrast to analog designs which
often have some sort of bias currents or other leakage currents constantly running.
So in a CTQA system where there are few transitions in the signals, the power
consumption could be extremely low, even though the system is capable of high
speed processing of analog values, represented by the transition timings of the
signal, as soon as any transition is made.

No clock Clock distribution consumes a huge amount of power in high speed digital
circuits, and when synchronous global clocks are used, the peak current drawn
by the circuit can become larger ([Gonz 05, table 1]). For instance, in [Maho 05],
the 90 nm Itanium® processor code-named Montecito is said to use “<25 W” on
clock distribution. In a simple digital design, this huge amount of power is even
consumed when there is no actual processing being done. The clock is continu-
ously distributed to the entire chip. Needless to say, all this is an enormous waste
of energy on distributing a signal that does not really carry any useful informa-
tion. CTQA circuits, however, do not require a clock. They might have some sort
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of a clock, but many solutions probably will not require any. And in those circuits
that have one, the clock does not necessarily need to be at the speed at which the
signal processing is done. The delay line architecture in [Limb 05], for instance,
is used to sample a quantized-amplitude signal at a 1 GHz sampling rate using
a 20 MHz clock. This reduction or absence of clock requirements gives CTQA a
much nicer power profile than traditional digital circuits. Peak currents are re-
duced, there is no huge, constant, power consumption even when the circuit is
idle, and energy is not wasted on distributing a signal that does not contain any
real information.

High speed Since basic CTQA circuits might consist of only short delays and com-
binatorial logic, they are very fast and yield their results immediately, just like
combinatorial logic and analog circuits does. This is in contrast to clocked digital
circuits, where the result is not yielded until a given period of time has elapsed
to allow all of the circuits in the system to settle first. And since interesting op-
erations can be done with very simple CTQA circuits, we may be able to avoid
complex and slow traditional circuit topologies.

Low power As mentioned above, the fact that CTQA circuits are simple, based on dig-
ital circuits and not clocked, makes them low power. And, as mentioned, when
there is no transitions, the circuits do not use any current at all, except of course
some small leakage currents.

Compact memory cells The delayline is essentially a memory element which can hold
the analog values represented by the transition timings of the signal, and which
has very compact memory cells. Writing to and reading from the memory is of
course very simple, but the memory behaves more like a continuously shifting
shift register than a traditional long-term memory. This does however fit very
well with the CTQA signal processing domain.

Perfect for CMOS As mentioned in the beginning of the chapter, CTQA goes very
well together with CMOS. This is because CMOS primarily is a digital technol-
ogy and not very well suited for analog circuits. Since CTQA is based on digital
circuits and not analog ones, but still is able to do some sort of signal processing
on the analog values represented by the transition timings of the signal, this is a
good match of technology and circuit topology. Also, since CMOS is cheap and
quite fast, CMOS and CTQA becomes a very interesting combination.

Unique capabilities As shown in the examples in section 4.2, CTQA is for instance able
to detect patterns across time and to sample signals at intervals corresponding
to only two inverter gate delays. Both of these tasks can be done with clocked
digital circuitry too, but the circuits would probably be much bigger and also

15



4. Continuous-time quantized amplitude signal processing

considerably slower. This shows that CTQA has a unique set of capabilities that
neither clocked digital nor analog circuits possess.

4.4. Challenges

Limited functionality CTQA is maybe not a general signal processing domain which
can be a complete replacement for either analog nor digital signal processing. If
this is so, it means it is only good for solving a limited set of problems.

Phase noise In analog designs, the SNR is given by

SNR = 20 log10 (VRMS headroom/VRMS noise) ,

where we define

VRMS headroom = AHeadroom/
√

2 = VHeadroom/2
√

2,

where VHeadroom is the voltage span available for signal swing. For CTQA with
for instance a PWM-based signal coding, the SNR will be given by

SNR = 20 log10

(
∆TRMS modulation/∆TRMS phase noise

)
,

where we define

∆TRMS modulation = ∆TModulation/2
√

2,

where ∆TModulation is the difference in width between the shortest and longest pos-
sible pulse in the coding. ∆TRMS phase noise is the standard deviation of the phase
noise introduced by the circuits which the signal travels through. In this case,
with PWM coding, it is

∆TRMS phase noise =
√

2∆TRMS phase noise inverter,

since the phase noise added to the pulse width gets contributions from both the
rising and falling edge of the pulse.

So by choosing a big ∆TModulation, the SNR increases, but since the pulse width
then also increases, the rate at which pulses can be sent into the system will then of
course be reduced, causing lower throughput, which corresponds to a reduction
in bandwidth. This means that the fundamental limitation to the SNR in a CTQA
system will be the phase noise introduced by the circuits.
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Mismatch Like phase noise deteriorates the signal, so will device mismatch. One de-
vice might be faster than another when they were expected to have the same
speed, causing a relative skew between two signal. Depending on the circuit, that
could affect the signal processing. It might, however, be possible to compensate
this with some sort of tuning of the circuits. But if that is not possible, the de-
vice mismatch will add a constant distortion to the signal, effectively lowering
the SNR of the system.

Minimum pulse width When sending transitions of a signal into a circuit with increas-
ing speed, i.e. with shorter and shorter delay between one edge and the next, one
might start to experience some interaction between the edges. If, for instance, a
rising edge through a buffer is almost done pulling the output signal up, and is
at, say, 95% when the falling edge comes, then the falling edge will be transmitted
faster through the buffer than normal because it is now a shorter way to go down
to 50%. So in this way, signal transitions that are close enough may start interfere
with each other. And if a short pulse is sent through for instance a delay line,
the edges might travel towards each other because of this kind of pulse interac-
tion, causing the pulse to become shorter and shorter until it finally disappears.
A second problem that could contribute to this, is mismatch between the travel-
speed of a raising and a falling edge through the delay line. If the first NMOS, the
second PMOS, third NMOS and so forth, which are the transistors which trans-
mits a rising edge, are either faster or slower than the opposite set of transistors,
there will be a difference in travel-speed between rising and falling edges, which
could potentially cause already short pulses to be swallowed by the delay line.
Because of all this, one should never use pulses below a given minimum width if
one wants to be guaranteed that the pulse will travel through the circuit.

4.5. Summary

In this chapter we have tried to explore a signal processing domain which has tradi-
tionally not been used very much. The signals in this domain have quantized ampli-
tude, like traditional digital logic, but are not clocked, i.e. they are continuous in time.
We have called this signal processing domain Continuous-Time Quantized Amplitude
(CTQA).

CTQA circuits have a unique set of properties and capabilities, and are maybe not
capable of being general replacements for either analog nor digital circuits. For the
tasks they are able to perform, however, they can be much faster, use less power and
be much smaller than traditional digital or analog circuits. And because basic CTQA
circuits are based on simple digital logic, CTQA is very well suited for cheap and fast
modern fine-pitch CMOS. In fact, CTQA should be able to get more processing power
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out of CMOS than clocked digital circuits do, but again, the tasks it is able to perform
are probably somewhat limited.
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5. Sampling methods

The task of a sampler
When the impulse radar sends out a pulse at time t = 0, the energy is emitted by the
antenna, then propagates through space, hits one or more targets in sequence, then scat-
ters back to the receiver antenna. This means that the signal we receive is a sequence
of echoes of the transmitted pulse with varying amplitudes. A range of different effects
could complicate the matter, but this remains the essence of the radar. When the an-
tenna has received the backscattered energy and converted it to a voltage signal on a
transmission line, the task of a general radar receiver circuit is to sample this signal at
a sufficiently high sampling rate.

Sampling rate
Since we operate at baseband throughout the system in our impulse radar, i.e. we do
not use a carrier frequency, the sampling frequency has to be at least twice that of the
frequency of our pulse in order to get a correct, full readout of the signal. That being
said, it might however be that we are not really interested in the full readout. Maybe
we just want one or a few samples at given points of time, or maybe we create a front
end in front of the sampler which somehow stretches a received pulse in length so that
we can sample at lower frequencies. For the remainder of this chapter, however, we
will assume that a full readout is required.

In order to get a full readout of our signal which has frequency content in the 3.1–
10.6 GHz range with center frequency of 6.85 GHz, we have to sample with about
21 GHz. This is quite a lot to demand from and AD converter, and presents our first
problem. In this chapter we will show how the strobed sampler can help us out here.

Noise
Our second problem is noise. The farther away the target is, the weaker the returned
echo will be. Since the noise received at the antenna and created by the receiver system
itself will be the same, this means our signal to noise ratio will get lower as the target
moves away from the radar. In order to compensate this, we have to integrate the
energy from several received pulses. In this chapter, we will present several topologies
for doing that.

Note that we do not consider radar clutter to be noise in this context. One can not in-
tegrate away that noise. We will call the signal without any noise, but potentially with
unwanted clutter the “ideal signal” or “ideal Vin”. The noise will be assumed to be ad-
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Figure 5.1.: Signal swing used in analysis

ditive white Gaussian noise, according to the Additive White Gaussian Noise (AWGN)
channel model. This means that the actual received signal will be ideal Vin(t) + N(t),
where N(t) is the noise signal, which has a Gaussian, i.e. normally distributed, Proba-
bility Density Function (PDF) with mean µ = 0 and standard deviation σN . N(t) must
be considered to be a “stochastic function”, to put a name on it. Each time the radar
receives its sequence of echoes, said to start at t = 0 each time, the ideal Vin(t) will be
the same, but N(t) will be different each time, which results in that Vin(t), the actually
received signal, will also be different each time, and also a “stochastic function”. As a
convention for further analysis, we will assume that the ideal Vin has a range of 0–1 V.
The appearance of the signal is illustrated in figure 5.1.

Chapter overview
In the remainder of this chapter we will present the principle of the strobed sampler and
a few samplers using this principle. We will perform system-level simulations on three
of the samplers and compare them to each other. And in addition to the simulations,
we will also try to find analytical expressions for the performance of the samplers.

5.1. Strobed sampler

The idea of the strobed sampler is to sample at only a single point in time, τ (figure 5.2).
This may not sound very interesting, but by repeating the process while sweeping τ
or by using parallel structures with different τ, one can effectively get a sampling fre-
quency as high as one wants. The bandwidth of the part of system before the sampler
switch will of course be a limiting factor to how high frequencies can be sampled. Also,
the sampler switch will not be infinitely fast, so some averaging over a time span of the
signal will occur when the sampling is made. This again reduces how high frequen-
cies can be sampled. Furthermore, jitter in the τ delay can also reduce the maximum
feasible sampling frequency.

So in a strobed sampler, the only part of the input signal we are interested in, is Vin(τ).
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Because of noise, this becomes a stochastic variable, i.e. it varies from one sampling
to the next. The sampled signal will therefore have a Gaussian PDF with a given σN
(figure 5.3).

Averaging sampler
If the noise, σN , is too great for a given application, it can be reduced by averaging mul-
tiple samples. This means that we need to receive the same ideal Vin multiple times so
that we can sample Vin(τ) multiple times. The actual Vin and Vin(τ) will of course vary
because of noise, but that is exactly the point. By somehow averaging several Vin(τ)
samples, the noise will be reduced. The more samples are averaged, the weaker the
noise becomes. Since this is an attempt to recover the ideal Vin(τ), we will call the out-
put from the averaging sampler Vin recovered(τ). The remaining noise in Vin recovered(τ),
we will call σN recovered. So the the essence of the averaging sampler is to average multi-
ple samples to reduce the noise to an acceptable level (figure 5.4). The other samplers
in this chapter are strobed samplers with different averaging strategies.
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5.2. Theoretical analog average sampler

As a reference point for the other averaging samplers, we will use a theoretical analog
average sampler. It might be possible to implement this sampler in a circuit, but here
we will only concern ourselves with its mathematical representation.

The analog average sampler works by simply taking an arithmetic average of several
samples (figure 5.5):

Vin recovered(τ) =
1
n ∑

n
Vin(τ), (5.1)

where Vin(τ) is a stochastic variable evaluating to different values at each of the n sam-
plings. Since the noise of Vin(τ) is normally distributed, it is reduced by the square root
of the number of samplings, n:

σN recovered =
σN√

n
(5.2)

This means we can get arbitrarily low σN recovered by choosing n large enough. By for
instance averaging over n = 100 samples, the noise is reduced to σN recovered = σN/10.
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The analog average sampler is possibly the best averaging sampler available, but
there might perhaps be room for some improvements like for instance rejecting extreme
samples.

5.3. MIR

The Micropower Impulse Radar (MIR) from [McEw 94] has a strobed sampler circuit
which can be implemented using discrete components. An approximate functional
equivalent of the sampler is show in figure 5.6. As we can see, it is quite similar to
the theoretical analog average sampler in that it averages the analog values of several
samples. The difference, though, is that the averaging is weighted, i.e. the most recent
samples are more heavily weighted in the average than the older ones. Also, when the
ideal Vin(τ) changes rapidly by a large value, there will be a given settle time before the
output has stabilized to the new value.

A simplified schematic of the actual MIR circuit is shown in figure 5.7. It works by
sampling the input from the antenna using a diode which gets pulled down at t = τ.
To look at the details of its operation, consider first R1. This resistor creates together
with C1 a high pass filter or AC-coupling with a cut-off below 1 MHz, meaning the
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antenna signal goes straight through C1, unaffected by R1. So for the high frequency
input signals from the antenna in the GHz range, the right part of the circuit can be
considered to be non-existent. When t = τ, a gate pulse pulls the diode down, causing
it to start to conduct. This will charge the capacitor C1 for a short while, i.e. the duration
of the gate pulse. Eventually, C1 will hold the voltage Vin(τ), the antenna voltage at
the time the gate pulse is triggered, minus the voltage above the diode, which will be
the lowest voltage of the gate pulse plus the diode threshold voltage. So, clearly, the
capacitor C1 will become charged with a voltage which is proportional to Vin(τ). But
since the diode can only pull the charge one direction, R1 and R2 are used to pull the
charge of C1 the other way. This way, the C1 voltage will always follow Vin(τ) as it goes
up and down over time. Note that RT, the antenna or transmission line impedance and
the diode will be the the R in the RC time constant which determines the charging of
C1.

If we look at frequencies in the kHz range, the gate pulse and diode becomes merely
ignorable glitches and can be ignored. The antenna signal will hopefully be about 0 at
these frequencies, so the antenna can also be ignored. Thus we end up with only C1
in series with RT and R1 connected to the output. R1 and C2 forms a low pass filter of
about 1.5 kHz, and so, only frequencies below this cut-off will appear on the output.
The signal on the output will then simply be the low pass filtered voltage of C1, which
in turn is proportional to Vin(τ), and we thus have an averaging strobed sampler. One
thing to note here, is that the diode used might introduce non-linearities because of its
exponential characteristic.

5.4. Thresholded sampler

A basic thresholded sampler is shown in figure 5.8. The input signal Vin is thresholded
with a threshold VT, resulting in a Continuous-Time Quantized Amplitude (CTQA)
signal. CTQA signal processing is described in chapter 4. Next, the quantized signal is
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sampled at time t = τ by a simple D-flip-flop. Much information is of course thrown
away here when we threshold the signal, but much of the circuit can now use simple
digital logic, so the tradeoff could be reasonable in some cases.

A problem with the thresholded sampler, is that quantized pulses shorter than a
given minimum width might not survive through the buffers and logic of the system.
This represents a non-linearity in the sampler system, since the sampled bit might not
actually correctly reflect whether Vin(τ) was above or below the threshold. The sur-
rounding signal values, before and after t = τ, will then be the deciding factors. We
will ignore this effect in our further analysis of thresholded samplers in this chapter
since the effect is highly non-linear and could complicate analysis considerably.

A practical circuit might need a slightly more sophisticated quantized sampler than
a simple D-flip-flop, since the digital value could be in the middle of a transition at the
exact time it gets sampled. A regular D-flip-flop might not handle that very well.

5.4.1. Swept threshold sampler

We have called this sampler the swept threshold sampler. It is much like ramp-compare
or flash Analog to Digital Converters (ADCs), but besides its operating regions which
resemble this ADCs, we will also explore its performance in cases of large amounts of
noise, which constitute additional regions of operation.

The ramp-compare ADC works by comparing the input signal with a ramp. When
the two signals cross, a comparator triggers, and if we know the value of the ramp at
this exact time, we also know the value of the input signal. By using a ramp with a
known slope we can get the amplitude using a clock. A second approach is to create
the ramp using a DAC. In both cases, we know the ramp amplitude and thus the input
signal amplitude when the comparator triggers.

A flash ADC works by using for instance 255 different comparators to compare the
input signal to 255 different threshold levels. The result of this is a thermometer coding
output, i.e. one end of the string of the 255 output bits will be a sequence of ones, and
the other end of the string will be zeros. This can then be decoded to an 8-bit digital
value.

When there is no noise in the system, the swept threshold sampler works like a seri-
alized flash ADC. Instead of using a massively parallel structure, we instead sweep the
threshold over time and perform the comparison with the input signal multiple times.
Each time a comparison is made, we increment a counter if the comparator output was
1. This should be functionally equivalent to the flash ADC, but it means we have to
repeat the sampling for instance 255 times. This is the price we pay for a smaller circuit.

By combining this serialized flash ADC architecture with strobed sampling, we get
the system shown in figure 5.9.

When there is noise in the system, though, some erroneous thresholdings might occur
with the thresholds which are near to the input signal amplitude. Some thresholdings
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Figure 5.9.: Swept threshold sampler

that should have been 0, could become 1, and opposite. This will somewhat even each
other out, but the total counter value will still contain noise because of this. Also when
the noise is strong, even larger than the signal, we will be able to recover the input
signal. The output signal will of course be very noisy, but by simply averaging multiple
of these output signals, we can reduce the noise in the final recovered signal. This, of
course, is the same as just increasing the number of steps in the first place. So the more
steps, the more the noise gets reduced. The process of sampling a noisy signal is shown
in figure 5.10.

Some aspects of the behavior of a noisy multiple-threshold system like this is de-
scribed in [Stoc 00], and there, the term Suprathreshold Stochastic Resonance (SSR) is
coined. Stochastic resonance is a term usually used to describe how a weak signal can
be helped through a non-linear system, for instance a thresholder, by adding noise. The
purpose of the noise here is to occasionally push the input signal over the threshold,
which it could not cross by itself. The term Suprathreshold Stochastic Resonance is
meant to describe the case where the signal is not weak anymore, but where stochastic
resonance phenomena are still observed.

Non-linearity compensation

When the input signal is at rail, i.e. 0 or 1 using our convention, the expected number
of counts is not 0 or n, the number of steps, as expected. For instance when the signal
is 0, we could get erroneous ones from the comparator, but we could not get erroneous
zeros, since all comparator outputs are supposed to be zero anyway. This means that
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expected counter value will have a tendency towards n/2 when the input signal ap-
proaches rail. By creating a translation map from counter value to recovered signal
value, this is easily compensated. This does however require that we know σN .

The same applies for extremely noisy signals, where none of the thresholds will have
a zero probability of producing an erroneous comparison. This means that we will
seldom get a counter value of either 0 or n. The counter values will rather be concen-
trated around n/2. Again, a translation map made using knowledge about σN fixes the
problem.

5.4.2. Stochastic resonance sampler

In what we have called the stochastic resonance sampler, the threshold is permanently
set to the DC of the signal, which is 0.5 with our convention (figure 5.11). This is does
at first seem like a simple 1-bit sampler, but if there is a lot of noise in the signal, on the
order of the signal itself, this sampler starts to display some very interesting character-
istics. If the signal, Vin(τ), is for instance 1.5 standard deviations, σN , over DC, i.e. 0.5,
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and σN = 0.1, the signal will be 0.5 + 1.5 · 0.1 = 0.65, and the probability of the thresh-
older giving a 1, will be 93%. This percentage is given by the area of the PDF which is
above 0.5 (figure 5.12). If we perform for instance 1000 samplings, we should expect to
get counter value of about 930.

By sampling this way and mapping the counter value to standard deviations, we get
information about how many standard deviations the signal is above or below 0.5. If
we also know σN , we can calculate the absolute value of the input signal. There will of
course be noise in this recovered signal.

This kind of sampler is analyzed in [Stoc 00] in terms of information transmission
through the system. We will, however, perform simulations later in this chapter where
we look at the noise levels in the input signal and the recovered signal, rather than
information transmission. This is probably more relevant for radar applications.

5.4.3. Hybrid

If there is noise in a swept threshold sampler which is greater than the threshold steps
∆VT, and a reduction in the noise of the recovered signal is desired, one would usually
just increase the number of threshold steps and thus reduce also ∆VT. This will require
a more advanced DAC to set the threshold levels, so one might want to avoid this. By
instead increasing the number of samplings per threshold level, one will essentially be
using stochastic resonance sampling at each of the threshold levels, and should thus be
able to reduce the noise of the recovered signal. A different way to look at it, is to say
that we simply perform a normal set of samplings to get Vin recovered(τ), but that we then
repeat this process several times and then average the result. This will reduce the noise
in the recovered signal, σN recovered.

This is a bit similar to dither, a technique used in normal ADCs, where noise is added
to the input signal. By repeated sampling of the same signal, we can then recover
amplitudes lower than the original quantization error of the ADC.

5.5. Simulations

Simulations have been performed on the analog average, swept threshold and stochas-
tic resonance samplers in order to characterize them and to compare their performance.
Our value of interest is the noise in the recovered signal, σN recovered. The lower it is, the
better the signal to noise ratio is. Two parameters determine its strength. The first
is obviously the noise σN in the input signal Vin(τ). The second is n, the number of
samples we average over. The higher n is, the lower σN recovered becomes. However,
increasing n means sending out more pulses from the radar, and that costs energy, fills
up our spectrum allocation and takes time, so we want to get a good σN recovered with as
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few samplings as possible. The sampling method determines how high n must be to
achieve a given σN recovered.

The conditions of the simulation are as follows:

• We want to sample Vin(τ) for a given τ, which is kept constant.

• The ideal Vin(τ) lies between 0 and 1.

• Vin(τ) has Gaussian noise with standard deviation σN .

• n samplings are performed. For the swept threshold sampler this also means n
threshold levels.

• A value Vin recovered(τ) is the result of the samplings.

• When the sampling process is repeated, Vin recovered(τ) will attain different values
each time. The standard deviation of this noise in Vin recovered(τ) will be called
σN recovered, and is our value of interest.

• Vin recovered(τ) may not always be normally distributed.

• σN recovered is calculated as the RMS error of the Vin recovered(τ) PDF. If this value
varies with the ideal Vin(τ), the largest value is used.

• We will sweep both σN and n to properly characterize the samplers.

5.5.1. Sampler PDFs

When we are sampling a signal Vin(τ) we need to find the PDF of Vin recovered(τ) in order
to analyze the performance of the sampler. To find this PDF, we first choose a value for
n, σN and the ideal Vin(τ). We then calculate the PDF of Vin recovered(τ). This will be
different from one sampling method to another. The ideal PDF would be a single spike
at the value of the ideal Vin(τ). But because of the noise in the input signal, the PDF
will be blurred out. And in the swept threshold and stochastic resonance samplers,
quantization effects will create scattered, separate spikes rather than a continuous PDF.

By sweeping the ideal Vin(τ), we get a series of PDFs. To display all these simultane-
ously, we can map the probabilities to gray scales and display the PDFs as a 2D picture
(figure 5.13), where each vertical column represents a single PDF. Here, white means
a zero probability of a given value of Vin recovered(τ) occurring, and black means a 100%
probability. As expected, when the ideal Vin(τ) is near 0, the PDF will be concentrated
near Vin recovered(τ) = 0, and when Vin(τ) is near 1, the PDF will be concentrated near
Vin recovered(τ) = 1. If there is much noise in Vin recovered(τ), this will be visible as a ver-
tical blur in each column, which of course will just look like a general blur of the line
which goes from (0, 0) to (1, 1).
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Figure 5.13.: How to read sampler PDFs

Also shown in figure 5.13, is the counter PDF. This is essentially the same as the
Vin recovered(τ) PDF, but before the compensation for the sometimes non-linear response
of the counter value to the ideal Vin(τ) value.

Figure 5.14 shows PDFs for a range of both n and σN for both the swept threshold and
the stochastic resonance samplers, both the counter PDF and the Vin recovered(τ) PDF.
Figure 5.15 and 5.16 group these same PDFs by sampler, then counter / Vin recovered(τ).

In figure 5.15 (swept threshold) we see how increased σN causes more blurred PDFs
and how increased n reduces this blurring again, thus reducing σN recovered. For σN =
0.32 we see how we get non-linearities near 0 and 1, as described in section 5.4.1. We
also see how this is compensated in the Vin recovered(τ) PDF. For σN = 1 and 3.2 we see
the second problem described in section 5.4.1, where the counter hardly ever reaches 0
or max. Again, this gets compensated. For n = 10 we can clearly see the quantization
effect.

In figure 5.16 (stochastic resonance) the PDFs are quite different. For low noise cases,
the usable Vin(τ) signal swing becomes very small, and if one goes beyond this, the
counter goes to 0 or max, which translates to 0 or 1 for Vin recovered(τ). This is quite
logical, as there simply is not enough noise to make Vin(τ) cross the threshold when
it is far away from the threshold VT = 0.5. So for certain values of the ideal Vin(τ),
the stochastic resonance sampler performs very poorly when there is little noise. When
σN = 0.1 or 0.32, we see that the counter PDFs look like the cumulative normal distri-
bution function. Actually, this is true for all values of σN , but it is only at this “zoom
level” that we can see the whole shape clearly. At σN = 0.32 and above we see that the
noise is strong enough to allow for a full signal swing of the ideal Vin(τ) from 0 to 1.
The translation from counter value to Vin recovered(τ) value is necessary to compensate
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the non-linear response of the counter value to the ideal Vin(τ) value. We can also ob-
serve, as expected, that an increase in n reduces the spread of the PDF, but also that it
expands the usable signal swing region in low noise cases.

In figure 5.14 we can observe that when there is very much noise, with σN = 1 or
3.2, the two samplers have very similar PDFs. This suggests that the swept threshold
sampler, which has its threshold levels quite close together compared to the noise PDF
when there is much noise, might start to behave like the stochastic resonance sampler,
which has its threshold levels completely squeezed together, when there is much noise.
We will therefore refer to the high noise case as the stochastic resonance region of the
swept threshold sampler.

5.5.2. Finding the RMS error

To calculate the RMS error we take the square root of the sum of the squares of the
possible Vin recovered(τ) amplitude deviations from the ideal response weighted by their
respective probabilities of occurring:

RMSerror =
√

∑
V=0 to 1 (small steps)

P(Vin recovered(τ) = V)︸ ︷︷ ︸
Probability of deviation

· (V −Vin ideal(τ)︸ ︷︷ ︸
Deviation

)2 (5.3)

This essentially calculates the standard deviation of the PDF, but using the ideal Vin(τ)
instead of the actual mean of the PDF when calculating the errors or deviations. This
ensures that PDFs with incorrect means get a high RMS error. If Vin recovered(τ) has an
offset, it does not help if the regular standard deviation of the PDF is low, so this should
be a good measure for the noise in the recovered signal, or maybe more correctly, noise
+ distortion.

We have now calculated the RMS error for a given PDF, but there are of course mul-
tiple PDFs for a given combination of n and σN , so all these should be calculated. This
is shown in figure 5.17 and 5.18. Only the shape of the variations of the RMS error is
shown, the graphs are not to scale, but they all go from 0 up to some RMS value. The
dashed line shows a minimum RMS error calculated from the quantization levels. This
is necessary because the RMS error is only sampled for a few discrete values of the
ideal Vin(τ), which could mean we miss the maximum error. The calculated dashed
line alleviates this problem to a certain extent, but does not fix it completely.

In figure 5.17 (swept threshold) we can see for the low noise n = 10 cases that the
RMS error goes up and down as the ideal Vin(τ) goes in and out of sync with the thresh-
old levels. In the other cases, the RMS error is relatively uniform across the ideal Vin(τ)
range.

In figure 5.18 (stochastic resonance) we can observe for the low noise cases how the
RMS error skyrockets as we go out of the usable operating region. This indicates, as
expected, that the low noise cases have very bad worst-case RMS errors.
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5.5.3. Noise in the recovered signal

We now have the RMS error of the recovered signal Vin recovered(τ) as a function of n,
σN and the ideal Vin(τ) (figure 5.17 and 5.18). To evaluate the performance of sampler,
however, we are not really interested in the variation of the RMS error over the range
of the ideal Vin(τ). A good measurement for the performance of the sampler would
simply be the maximum of RMS error over this range. This is what we will now use
to evaluate the different samplers, and we will call this value σN recovered, since it is the
worst case standard deviation of Vin recovered(τ). As mentioned earlier, it is not exactly
the standard deviation, but it is close enough, so we will call it that.

3D plots
σN recovered is plotted against n and σN in figure 5.19–5.22. The four figures show the
three samplers first plotted individually and then together. The axes of all the plots are
the same. In addition to the simulated data, which ranges from n = 1 to n = 10′000,
extrapolated data points are also shown for n = 108. These data points have been made
by extrapolating from the data points for n = 3′000 and n = 10′000. In figure 5.19
(swept threshold), one can see that there are several distinct regions of the surface.
Unfortunately, the data point for n = 108 and σN = 10−4 is extrapolated from two
data points near the interface between two regions. Because of this, the data point is
probably a bit erroneous.

The reason for the high density of data points for σN between about 0.1 and 0.3, is
that this is required in order to reveal the details of the stochastic resonance plot in this
particular region.

Observations that can be made from the swept threshold plot (figure 5.19) is first of all
that σN recovered increases when σN increases, and that an increase in n causes a decrease
in σN recovered. We can also identify at least three regions of operation. First, in the low n,
low σN area, we are only limited by the quantization error caused by the low n. As n or
σN increases, the quantization error catches up with the regular noise, and other effects
thus take over as the noise source. The second operating region, is the rightmost part of
the plot, is the main operating region of the swept threshold sampler, where the noise
is greater than the quantization error and gets averaged with increasing n. In the upper
left corner we see a limitation effect on σN recovered. The noise can not get any worse than
1, which means that for instance an ideal Vin(τ) = 0 gets read out as a 1 with a 100%
probability. It can not get any worse than this. The limitation effect probably occurs a
little lower than this, though.

In the stochastic resonance plot (figure 5.20), we see, as we already know, that we
require a minimum level of noise before the sampler behaves properly. Beyond a given
noise level, however, the performance starts to deteriorate again. Also in this plot we
see a limitation effect on σN recovered in the upper left corner.

In the analog average plot (figure 5.21), we simply see the plain surface created by
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the noise formula σN recovered = σN/
√

n.
In the plot with all samplers (figure 5.22), we make a remarkable discovery. The

swept threshold and stochastic resonance samplers seem to perform almost as well as
the analog average sampler when the noise is about σN = 1 and stronger. That means
that these relatively simple circuits are almost as good as the mathematically perhaps
ideal sampler when there is much noise. A truly surprising result!

Plots of σN-slices
Figure 5.23–5.26 shows plots of slices from the 3D plots. Several values of σN have been
chosen and the 3D plots have been sliced at these values. The resulting 2D plots have
then been superimposed.

Figure 5.23 (swept threshold) shows how the swept threshold sampler follows the
quantization error limit (also plotted in the graph) when n and σN are small. The for-
mula for the quantization error is:

QE =
1

2(n + 1)
(5.4)

Figure 5.24 (stochastic resonance) is a bit hard to read and does not really tell us much
new information.

Figure 5.25 (analog average) is not so interesting either.
Figure 5.26 (all three samplers) shows for σN = 1 how all the three samplers have

the same response to an increase in n, and that the swept threshold and stochastic res-
onance samplers only perform slightly worse than the analog average sampler at this
noise level. We also see how the analog average sampler is not error-limited like the
other samplers. This is simply because Vin recovered(τ) in this sampler does not get con-
strained to [0, 1].

Plots of n-slices
Figure 5.27–5.30 shows n-slices from the 3D plots.

Figure 5.27 (swept threshold) shows clearly the quantization error limited operating
region in the upper left area of the graph. The leftmost data points on the extrapolated
graph are, as mentioned earlier, erroneous, and it can clearly be seen here that they are
indeed irregular.

Figure 5.28 (stochastic resonance) shows how the stochastic resonance sampler per-
forms best when the noise is about σN = 0.3.

Figure 5.29 (analog average) is again not very interesting.
Figure 5.30 (all three samplers) shows again how the three samplers behave very

similarly for σN = 1 or higher. Error limiting and lack thereof for the analog average
sampler is also again seen. A new observation is the change in operating region in
the swept threshold sampler when σN ≥ 1. This is as earlier described the stochastic
resonance operating region of the swept threshold sampler, where the threshold lev-
els become so close to each other compared to the noise PDF that they behave like the
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stochastic resonance sampler, where the threshold levels are completely squeezed to-
gether.

Minimum required n
An interesting perspective on the data from the simulation, is to ask how high n must be
in order to achieve a given σN recovered. This information can be extracted by essentially
finding the crossing line between a chosen σN recovered-plane in the 3D plot and each of
the sampler surfaces. The result is shown in figure 5.31. Again we see the good perfor-
mance of the swept threshold and stochastic resonance samplers for σN = 1 or higher.
Figure 5.32 shows a comparison between the samplers. A ratio-line of 1.56 is plotted in.
This is the convergence limit, which will be shown later. In high noise cases, it seems
swept threshold and stochastic resonance samplers only need somewhere between 1.5
and 2 times the number of samplings which the analog average sampler would need in
order to achieve the same σN recovered.
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Figure 5.19.: 3D plot of σN recovered for the swept threshold sampler
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Figure 5.20.: 3D plot of σN recovered for the stochastic resonance sampler
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Figure 5.21.: 3D plot of σN recovered for the analog average sampler

σ N
 r

ec
ov

er
ed

 (
m

ax
 R

M
S

 e
rr

or
 o

f V
in

 r
ec

ov
er

ed
(τ

))

1081071061051041000100101

n

        1

        0.1

        0.01

        0.001

        10-4

σN

1

0.1

0.01

0.001

10-4

10-5

10-6

10-7

10-8

Figure 5.22.: 3D plot of σN recovered with all three samplers
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Figure 5.26.: Cross sections of 3D plot (σN-slices) with all three samplers
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Figure 5.30.: Cross sections of 3D plot (n-slices) with all three samplers
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5.6. Analytic results

The following Octave functions produce the results shown in figure 5.33 to 5.39. Due
to time constraints, further elaboration are not included.

function ANrms = analytic_ST(n, sigma_N)
comp = analytic_ST_components(n, sigma_N);
ANrms = max(max(comp.QE, comp.ST), comp.SR);
ANrms = min(ANrms, comp.QEmax);

function comp = analytic_ST_components(n, sigma_N)
k = 0.1 / (normal_cdf(0.1) - 0.5);
comp.QE = ones(length(sigma_N), 1) * (0.5 ./ (n+1));
comp.ST = sqrt( 1.5*0.5*sigma_N’ * (1 ./ (n+1)) );
comp.SR = k * sigma_N’ * (1 ./ (2 * sqrt(n)));
comp.QEmax = ones(length(sigma_N), length(n)) * 0.5;
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Figure 5.33.: 3D plot of estimated σN recovered for the swept threshold sampler
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Figure 5.36.: Cross sections of estimated σN recovered 3D plot (σN-slices)
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Figure 5.38.: Cross sections of estimated σN recovered 3D plot (n-slices)
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6. Implementation

A radar using the swept threshold / stochastic resonance sampler described in sec-
tion 5.4 has been implemented in 90 nm CMOS. In this chapter we will describe the
implemented circuit and measurements made of the circuit.

6.1. Circuit

A block diagram of the circuit is shown in figure 6.1. As the basic swept threshold /
stochastic resonance sampler, this circuit also sends a radar pulse, then waits a given
time τ, and then samples the thresholded input signal. The most significant additions,
is that we are now using an LNA to amplify the signal before the thresholder and that
we are taking 64 samples per sent pulse rather than just one. By using an LNA, the
demands on the thresholder in terms of noise factor is reduced, and the thresholder can
be designed without that being a difficult constraint to be dealt with. And by taking 64
samples per transmitted pulse, we get much more information from each pulse, which
saves us both time and energy compared to acquiring the 64 samples one by one. The
extra circuitry required to do this is not very big, we essentially just need a digital
sampler and a counter for each new sample to be taken.

There are also other features of interest in the circuit. The first is the pulse generator,
which is tunable, that is, it is capable of transmitting four slightly different pulses. Sec-
ondly, the initial delay, τ, is digitally tunable with 12 configuration bits. Also, the digital
buffer which sends the thresholded signal to the 64×sampler has a override function-
ality for debugging. Furthermore, this buffer is only enabled when a signal is about to
be sampled, thus conserving energy. Most digital interfacing is done through a serial
digital interface, based on Serial Peripheral Interface Bus (SPI). This conserves the pin
count drastically.

The LNA was made by Kjetil Meisal, and the work was sponsored by Novelda, so its
design will not be covered in this master thesis. The thresholder was created together
with Claus Limbodal, also this work sponsored by Novelda, and will be discussed in
this chapter. The pulse generator was created by Håvard Moen, and is described in
[Moen 06].

The total radar sampler circuit consists of 30 schematic cells, so it is a bit complex, but
luckily most of the cells are purely digital, thus reducing the complexity somewhat. An
overview of the schematic cells is shown in figure 6.2. This does not include the pulse
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Figure 6.1.: Block diagram of circuit
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6.1. Circuit

Figure 6.2.: The radar sampler circuit consists of 30 schematic cells, mostly digital
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Figure 6.3.: Programmable delay

generator, thresholder or LNA.

6.1.1. Serial digital interface

The serial digital interface is described in the data sheet in appendix A. Its purpose is
to provide registers and signaling wires to control the rest of the radar sampler circuit.

6.1.2. Pulse generator

The pulse generator has two configuration bit inputs which allows selection of different
pulses to be transmitted. This is covered in [Moen 06]. The input bits are pins on the
chip, i.e. they are not controlled by the serial digital interface. The output is single
ended and can be connected to for instance a 50 Ω coaxial cable.

6.1.3. Programmable initial delay

The programmable initial delay, τ, is controlled by two 6-bit registers in the serial digital
interface. Each register controls a multiplexer which taps a delay line, thus allowing us
to choose how many unit delays of that delay line we want. We can cascade two such
tapped delay lines, one with short delays and one with longer delays, where the long
delays are equal to about half the maximum delay of the first delay line (figure 6.3).
This way, we are able to create a programmable delay with high precision and wide
range. We effectively get 11 bits of freedom, allowing a selectable delay from 0 to about
2000 unit delays.
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Figure 6.4.: Common source amplifier

6.1.4. LNA

The LNA has differential input and single ended output. Input impedance is 50 Ω in
the 3.1–10.6 GHz range. Created by Kjetil Meisal, so not described in detail here.

6.1.5. Thresholder

The thresholder is implemented as a high gain amplifier with a constant operating point
at about Vdd/2 and with a level shifter in front, as in [Meis 05]. The threshold level is
set by the level shifter. In this implementation, we have chosen to use a common source
amplifier instead of an inverter based solution as in the paper, though.

The level shifter works by pulling the right side of the capacitor in figure 6.1 to a
given voltage. If, for instance, the amplifier operating point is 0.5 V and its input is
pulled to 0.4 V by the transconductance amplifier, the input signal has to have a spike
of at least 0.1 V in order to cross the threshold. Thus, the threshold is in this case 0.1 V.
The input to the transconductance amplifier is set with a current being pulled from a
pin. This is in order to improve the signal quality. The level shifter also works as a high
pass filter with a cut-off frequency of about 1 GHz.

A typical configuration with a 5 kΩ resistor between the pin and a voltage source
VDAC has an approximate transfer function Vres = 1.118− 1.427VDAC between the in-
put voltage and the voltage over the internal 10 kΩ resistor. The transfer function is
relatively linear for VDAC ∈ [250, 650] mV. The Vres range will then be [190, 761] mV.
The actual threshold voltage is the difference between the resistor voltage and the op-
erating point of the thresholding element, VT = Vop −Vres. With Vop ≈ 0.5 V:

VT = −0.618 + 1.427VDAC

The common source amplifier used in this design is shown in figure 6.4. It consists of
eight cascaded common source amplifiers, each with a gain of about 2.5. This results in
a total gain of 2.58 ≈ 1500. The reason for choosing a cascade of several low-gain ampli-
fiers instead of a few high-gain amplifiers, is that we want a flat gain all the way from
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Common source amplifier

Gain
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Figure 6.5.: Frequency response of inverter and common source amplifier

DC to our highest frequency of interest. Since the gain bandwidth product is constant,
we can increase the bandwidth of an amplifier by reducing the gain (figure 6.5).

The reason for the flat gain being so important in an amplifier which is going to clip
anyway, is that lower frequency signals, including DC, could mask out interesting high
frequency signals. Assume for instance that we have an inverter with an operating
point of 500 mV, a low bandwidth, but a high gain. If the DC level of the input signal is
499 mV, the output could be for instance −1 mV · 5000 = −5 V, which would of course
clip. If a high frequency spike with an amplitude of 2 mV then occurs, which of course
crosses the threshold theoretically, it might be amplified to for instance 2 mV · 1000 =
2 V. The total output from the amplifier, the sum of the DC and the spike, will then be
−5 V + 2 V = −3 V, which still clips to ground. What this means, is that the DC signal
was so strongly amplified that it masked out the high frequency signal which was less
amplified. So to compensate this, we have to reduce the high gain of the low frequency
components, i.e. create a flat gain. This technique for increasing the bandwidth of an
amplifier is not new, but lesson to learn is that when creating a clipping amplifier, it
is easy to think that a little extra gain at any frequency could not hurt, since we are
clipping anyway. This is, however, as shown, wrong. Extra gain could cause masking.

With the first resistors in the cascade having a voltage drop of about Vdd/2 and
the last resistors having voltage drops of alternatingly 0 and Vdd, the average voltage
drop is Vdd/2. With Vdd= 1 V, this means that the common source amplifier cas-
cade consumes 8 · 0.5 V/8 kΩ = 0.5 mA statically, and probably nearly the same when
switching fast too. 0.5 mA might not be much in some applications, but for other, low
power applications, it could be a considerable power drain. This is, however, the price
we pay for using a class A amplifier. Note that an inverter amplifier would not be very
much better, since the first ones in the cascade here too would conduct a short circuit
current, i.e. the first inverters in the cascade would behave as class A amplifiers.
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6.1. Circuit

The RMS voltage of the thermal noise in the first resistor in the common source am-
plifier cascade will be:

vn =
√

4kBTR∆ f

vn =
√

4 · 1.38 · 10−23 · 290 · 8 k · 10 G
= 1.13 mV

To make the noise input referred, we have to divide with the gain: v′n = vn/2.5 =
1.13 mV/2.5 = 0.45 mV This is just a rough estimate of the noise, since the resistor is of
course connected in a circuit, which changes the conditions, but it gives us an idea of
the order of magnitude of the noise. And in addition to the thermal noise, there might
also be other forms of noise that contribute.

Since the thresholder is just a support element for the radar sampler which we in-
tended to test in this master thesis, we have not put very much work into it. There
might very well be better solutions available in terms of both power consumption and
noise.

6.1.6. Buffer

The buffer between the thresholder and 64× sampler is necessary in order to drive the
64 parallel samplers which are all connected to the same line. To allow for short pulses
to propagate through the circuits, the buffer, and the rest of the system too, tries to use
only a factor two fan-out. This means the buffer consists of several steps, doubling the
total transistor width with each step.

The buffer has a signal override feature which can be used to override the input from
the thresholder. This can be used for debugging purposes.

The buffer is only enabled when a signal is about to be sampled, starting a short
while before the sampling sequence starts, and ending right after it is done. This is in
order to try to save power. In case of failure of this system, the buffer can be forced to
be enabled at all times.

6.1.7. 64× sampler

The 64× sampler consists of a delay line, with 64 taps, and 64 samplers, each connected
to a 16 bit counter. All the 64 samplers have the same input, namely the output from the
buffer after the thresholder. When a radar pulse is sent out, the initial delay element
τ, is triggered, and after a while, its output activates. This in turn triggers the 64-
tap delay line in the 64× sampler. When each of the taps on the delay line triggers,
the corresponding sampler samples the digital signal from the buffer. This means the
sample rate is determined by the unit delay in the delay line, i.e. how long it takes from
one tap triggers until the next triggers.
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τ τ τ

Signal

Sample

To counter

Figure 6.6.: Sampler

The 64 samplers are principally just simple digital samplers and could be for instance
D-flip-flops. But since the input signal can be so rapidly changing, it might be that
it is in the middle of a transition when the sampler is supposed to acquire its value.
Because of this, we use a slightly more elaborate design (figure 6.6). When the sample
signal goes high, the first transmission gate stops conducting, and the voltage of the
input signal is thus stored on the capacitor. After a short delay, a feedback transmission
gate starts to conduct, which ensures that the charge on the capacitor settles on either
0 or Vdd. So far, we essentially have a sample-threshold-and-hold circuit. It should be
much less susceptible than a regular D-flip-flop to problems caused by samplings being
made in the middle of input signal transitions. After the settle-feedback step, the signal
should be purely digital, without any metastability which could propagate further into
the system. A short time after this, a one shot pulse is generated and AND-ed with
the sampled digital signal. If a “1” was sampled, a one-shot pulses is thus sent to the
counter, incrementing it by one. If a “0” was sampled, no pulse is sent to the counter,
and so, in that case, it does not get incremented.

The counters can be reset and the counter values can be read out with the serial
digital interface. The 64 · 16 counter bits can be read out in sequence through a mux
which is controlled by a counter which in turn can be stepped through by the serial
digital interface.

6.1.8. Layout

Since the circuit is mostly digital, it is not as susceptible to interference as analog de-
signs, but basic precautions have still been taken in the form of guard rings around the
different sub-circuits. In particular, delay lines are enclosed in their own guard rings,
since these have a somewhat analog nature. That is, interference could cause jitter in
the delays.

The layout of the entire system is shown in figure 6.7, and a photomicrograph of the
die is shown in figure 6.8. The total die size is about 1.2× 1.2 mm.

62



6.1. Circuit

Pulse generator

Serial digital interface
Other projects

Progammable initial delay

Thresholder LNA

Delay line

64× sampler

A single sampler and counter

Figure 6.7.: Layout
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Figure 6.8.: Photomicrograph of chip die

6.2. Measurements

The measurement setup is shown in figure 6.9. Note that the antennas are differential,
but are being fed with single ended coaxial cables. This is not a correct combination,
but has been sufficient for our measurements.

The measurements were done using a USB to digital IO converter connected to a
computer. The IO pins on this converter were used to interface to the serial digital in-
terface of the radar chip. The radar was powered by the USB bus through the converter
module.

The measurements made with swept threshold and stochastic resonance sampling
are very simple, and do not map the counter values back to Vin recovered with a transfer
function.

6.2.1. LNA

The LNA turned out to be oscillating, so it could not be used. Instead, the LNAout
pin, originally intended for measurement of the LNA, was used as input instead. To
make the LNA quiet, one of its inputs, which were externally AC-coupled, were tied
to a rail. It could not simply be powered down because it was connected to the same
power supply pin as the thresholder.

A theory of why the LNA was oscillating, is that the LNAout pin, which is very
close to both the LNA input pins, could be coupling into these, thus causing a positive
feedback. Especially the bond wire is a potential culprit here. A big package with long
bond wire stretches and thin, close, bond wires could cause strong coupling between
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Figure 6.9.: Measurement setup
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adjacent bond wires at high frequencies.
A possible fix for this problem would be to remove the LNAout bonding wire. That

can be done because it is not needed for normal operation of the radar. This delicate
operation has not yet been attempted due to limitation of time.

6.2.2. Radar readout with different pulses

Figure 6.10 shows measurements with the radar sampler in swept threshold mode with
no pulse and the four different pulses which the pulse generator can produce. A loop
cable connects the pulse generator and the LNAout pin. Each gray scale image consists
of 256 horizontal rows. Each of these rows is a full readout from the sampler, namely
the values from the 64 counters, i.e. the 64 samplers. Each row in one of the gray scale
images corresponds to a given initial delay, τ. The top row is for τ = 0, and then each
following row is an increment of one unit delay. Dark shades of gray represent a low
Vin recovered, and light shades of gray represents high values.

What we see in the gray scale images with pulses, are black lines at about 45◦. This
is the pulse that has gone through the cable and then has been sampled. The 45◦ slope
simply means that when we increase the initial delay, the pulse appears earlier in the 64-
sample sequence. Since the slope is quite close to exactly 45◦, it means that the sampling
interval and the τ unit delays are almost exactly equal. Any difference between the two
delays would cause the slope to get a different angle.

Since the initial delay circuit is made up of two cascaded tapped delay lines, one with
short unit delays and one with long unit delays, we have to find out how many short
delays corresponds to one long delay in order to be able to sweep τ smoothly. This has
been found by trial and error, and the factor between the two is 32. That is, 32 short
delays equal one long delay.

When there is no pulse, we can still see some patterns in the gray scale image. This
measurement is actually done by simply removing the loop cable since the pulse gen-
erator can not be turned off. The pin that triggers the pulse generator is the same that
triggers the initial delay element which in turn triggers the sampling. The patterns we
see in the upper left corner is therefore probably direct coupling between the pulse gen-
erator and the input pin, probably either between the bonding wires, or between wires
on the PCB. We also see vertical stripes. This is interference noise that is correlated to
the start of sampling sequence, not the transmission of the pulse. A possible explana-
tion for this, is the “sample” output pin which was meant to be a measuring point for
characterizing the initial delay circuit. It raises when the initial delay output raises, and
is thus correlated to the start of the sampling sequence. It was discovered that ripping
off the pin helped alleviate the problem somewhat. All measurements in this chapter
were made with with the pint off. A further improvement would probably be to re-
move the bonding wire too, but this is a delicate operation, and has not been attempted
yet.
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Figure 6.10.: Readout from the radar with different pulses
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By subtracting the “clutter map” we get when there is no pulse, or when there is no
loop cable, to be precise, we get better readouts of the cases with pulses.

After subtracting the clutter map we can see that some remains from the correlated
interference from the “sample” pin still exist in the crossing between the pulse and the
interference. This suggests that there are some non-linearities involved in addition of
the two signals, i.e. the interference and the pulse. This could mean that our input
pathway from package pin to thresholder input is not a linear system.

An interesting observation to make is the reflections appearing a little later than the
main pulses. This is probably due to the coax not being properly terminated since since
it is connected to the LNAout pin instead of the LNA input which has 50 Ω matching.

A second observation is that pulse 2 and pulse 3 cause some very strange behavior
in the sampler. The 45◦ lines suddenly start and stop in “mid-air”, a dark spot appears
for only some τ, and the factor between short and long unit delays in the initial delay
circuit seems to have changed, thus the horizontal tears in the gray scale images. What
causes all this is not known.

Pulse 1 looks very good, so it will be used in all the subsequent measurements.

6.2.3. Radar readout with different cable lengths

Figure 6.11 shows readouts from the radar sampler for loop cables of different lengths.
Again we see reflections. An interesting thing to note here, is that the pulse which has
gone through the longest cable is a little weaker than the others, but not very much
blurred. If there was much jitter in the initial delay circuit, that would have caused
blurring, so apparently there is not very much jitter.

6.2.4. Measuring the sample rate

Figure 6.12 shows a plot of the radar readouts for two different cable lengths at a given
τ. The pulses are measured to be separated by 30.0 samples. This difference is due
to the difference in travel time in through each of the cable lengths. The cable, “Suh-
ner Switzerland RG 400/U”, has a signal propagation velocity of 69% of c. Knowing
that the difference in cable length is 27.5 cm, we can calculate the sampling period and
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68 cm 95.5 cm ≈3 m
Cable length

Reflection

Reflections

Figure 6.11.: Readout from the radar with different cable lengths
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Figure 6.12.: Measuring the sample rate

sample rate:

v = 0.69c
∆s = 27.5 cm

∆Samples = 30.0
∆t = ∆s/v

= 1.33 ns
Ts = ∆t/∆Samples

= 44 ps
fs = 1/Ts

= 23 GHz

So the radar sampler has a sampling frequency of 23 GHz!

6.2.5. Detail view of swept threshold sampling

Figure 6.13 shows a detailed view of the swept threshold sampling method. Each row
in the images is a readout of the 64 counters, and for row from bottom to top the thresh-
old VT is increased. Only one sampling has been done at each threshold level. Black
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Figure 6.13.: Detailed view of swept threshold sampling
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represents a counter value of “1”, and white represents a counter value of “0”. Mea-
surements both with and without a pulse is shown, and a zoom-in of the no pulse case
is shown. The zoom-in simply means stepping through a short range of VT with smaller
steps.

A normal swept threshold readout would be made just like this measurement, but
instead of reading and resetting the counter at each threshold level like here, the coun-
ters would simply be allowed to accumulate throughout the sweep, and not read before
the entire range of VT had been swept through. That means that summing each vertical
column of these measurements would produce a normal swept threshold readout.

The second zoom level looks quite untidy. This could be due to low frequency noise
which essentially shifts the threshold level up and down randomly. To compensate
this, we sort the rows according to how many “1”-s there are in them. The result of
this operation looks much better than the unsorted one. For normal swept threshold
readout, though, the order of the rows do not matter, since they are summed anyway.

An interesting observation is that we see sequences of consecutive “1”-s or “0”-s
down to one or two counters in length. This means that the system is able to handle
also very short pulses.

6.2.6. Comparison to oscilloscope measurement

In figure 6.14, we have plotted the readout from the radar together with a measurement
of the pulse using a regular oscilloscope. We see there is a big difference in both shape,
phase and amplitude of the pulse. What causes all this is not known, but the inductance
of the bonding wire, the broken LNA and parasitic capacitances are all possible culprits
here.

6.2.7. Radar measurement of moving hand

Figure 6.15 shows a measurement with antennas connected to both the pulse generator
and the input to the radar sampler. The antennas are placed close together, and a hand
is being moved back and forth once in front of them.

Since we have no LNA, there is much noise in the system, and we have to average
a lot of samples. Here, we average 120’000 samples. Because of this high number
and because the readout circuitry used is a bit slow, the whole session took about 350
seconds to record.

The leftmost gray scale image shows the original swept threshold readout. Here,
we can see some horizontal lines. This is some sort of low frequency noise which can
be removed by subtracting the DC-value from each row. This has been done in the
second image. The “clutter map” has also been subtracted from the second image. This
removes the vertical pattern. The third image is simply an amplification of the second
image.
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Figure 6.16.: Low frequency noise in the radar

We can see that we are able to detect a hand at a distance of at least 30 cm from the
antennas. The closer the hand is, the stronger the radar echo is. We also note that the
resolution is very high, with tens of pixels covering just 30 cm. The resolution is more
precisely:

∆R = cTs/2
= 6.6 mm

The radar has a resolution of 6.6 mm! On the other hand, it does not have a very long
range, though. These properties are quite different compared to other radar systems
like for instance air traffic radar.

6.2.8. Low frequency noise

To measure the noise characteristics of the system, we have used stochastic resonance
sampling. We set the threshold to a value near the DC point of the signal, then sent 100
pulses and read back one of the counters. We then repeated this in rapid succession to
get a readout of the low frequency characteristics of the noise. We are here using noise
to measure noise itself, so the results might not have a very high quality, but we are
indeed getting some interesting readout anyway. In figure 6.16, we can clearly see how
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Figure 6.17.: Low frequency noise in the radar: FFT

the readout varies with time at very low frequencies. The Fast Fourier Transform (FFT)
in figure 6.17 confirms this, and shows that the noise exhibits a 1/ f characteristic. The
source of the noise could be the first NMOS transistor in the common source amplifier
cascade. The transistors in the common source amplifier have a very small gate area,
namely 0.6 · 0.1µm2, so they probably generate some flicker noise.

The measurement setup has used USB powering of the circuit, so this could be a
noise. Battery supply has been tried, however, and no improvement could be seen.

It might seem strange at first that low frequency noise has anything to say for us,
since we operate at such high frequencies. But considering that this noise might be
modeled as a noisy threshold, we quickly understand how this definitely affects us.
The tricky thing about low frequency noise, is that it can not be averaged away within
a short period of time. But since all the 64 samples in our sampler gets the same offset
problem due to this noise, the low frequency noise can simply be alleviated by remov-
ing the DC component from the sequence of the 64 samples. This might sound perfect
at first, but because the 64 samples have different values of ideal Vin, they will each
interact differently with a given pattern of low noise fluctuations. Thus, some of the
problem from the low noise will leak through the DC-removal step.

Ways to fix this problem is to perhaps use greater gate area or perhaps using an
amplifier with some sort of feedback structure, so as to dynamically correct for the low
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Figure 6.18.: Measuring σN : CDF and PDF gray scale plots

frequency noise.

6.2.9. Measuring the noise standard deviation

To measure σN , the noise in the input signal, we can sweep the threshold through a
given range at some given step size. By resetting the counters, taking many samples
and then reading out the counters at each step, we get a set of data which describes the
probability of the input signal being over the threshold at each of the given threshold
levels. Such a data set is shown in the left gray scale image in figure 6.18. Each vertical
column in this image is a Cumulative Distribution Function (CDF). By differentiating
this data with respect to VT, we get PDFs in the columns, shown in the right gray scale
image in the figure. The CDFs are also plotted in figure 6.19, and the PDFs are plotted
in figure 6.20. Both these last graphs have the curves shifted so that they overlap in
order to compensate the fact that the CDFs and PDFs have different centers. This, of
course, is because the ideal Vin is different for each of the 64 samples.

We can see that the plot of the PDFs roughly resembles a normal distribution func-
tion. The standard deviation is calculated for each of the 64 samples and plotted in
figure 6.21. We see that σN ≈ 1.4 mV. Where there is sharp slopes in the input signal,
the σN rises. This is probably due to jitter in the initial τ or other places in the system.
If a sharply rising curve is shifting slightly back and forth, the amplitude at a given,
fixed point will fluctuate with a very high amplitude. That is the reason jitter noise in
combination with sharp slopes gives high σN .

Corresponding measurements for when a pulse is being received is shown in fig-
ure 6.22 and figure 6.23. Again, sharp edges cause an increase in σN .

76



6.2. Measurements

 0

 20

 40

 60

 80

 100

-15 -10 -5  0  5  10  15

P
(V

in
(τ

) 
>

 V
T
 o

ffs
et

) 
(%

)

VT offset from mean (mV)

Sweep of 64 samples

Figure 6.19.: Measuring σN : CDF

0

-15 -10 -5  0  5  10  15

P
ro

ba
bi

lit
y 

de
ns

ity
 fo

r 
V

in
(τ

) 
>

 V
T
 o

ffs
et

VT offset from mean (mV)

Sweep of 64 samples

Figure 6.20.: Measuring σN : PDF

77



6. Implementation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  10  20  30  40  50  60  70

σ N
 fo

r 
V

in
(τ

) 
(m

V
)

Sample

Figure 6.21.: Measurement of σN

Note that the CDFs presented here are actually inverted compared to the normal
CDFs, which go from low to high, not high to low.

6.2.10. Measuring the noise in the recovered signal

To measure σN recovered, we repeat a complete sampling 100 times, i.e. we retrieve the
complete sample Vin recovered 100 times. Each time we retrieve it, it will be slightly dif-
ferent. This is what we call the σN recovered noise. In figure 6.24, we have made these 100
complete samplings for both swept threshold and stochastic resonance, and done so
also for different values of n, i.e. the number of steps for swept threshold and the num-
ber of repeated samplings for stochastic resonance. To reduce the low frequency noise
problem, we have tried to remove these noise components, which appear as horizontal
lines in the uncorrected gray scale images.

Next, we choose sample 5 and measure σN recovered for it, i.e. we calculate the standard
deviation of all the 100 readouts of sample 5. Sample 5 is chosen because the stochastic
resonance sampling method only has a very narrow good region consisting of the first
few samples. The stochastic resonance data is LF-noise compensated by removing the
DC component of sample 0, i.e. making sample 0 equal throughout the 100 repeated
samplings. This means that the closest samples, sample 1, sample 2 and so on, are quite
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Figure 6.22.: Measuring σN of received pulse: CDF and PDF gray scale plots
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tied to this and therefore exhibit less noise than they should. Sample 5 is hopefully
sufficiently far away. Higher samples start to go out of the stochastic resonance good
region, so using a higher sample is not a good idea either.

The measured σN recovered is plotted in figure 6.25 and figure 6.26. We see that the
measured data fits well with the theoretical model.

σN for swept threshold is 0.0321, higher than the measured 0.0014. This is because of
a compensation that has been done. We are sweeping over a shorter range than from 0
to Vdd=1 V, so we have to increase σN accordingly in order for the model to match. In
other words, if we look at a smaller signal, the input noise gets relatively larger.

For stochastic resonance, we have a choice of σN because there really is not any signal
range in this measurement. We choose σN = 0.32, since this is a good operating region
for the stochastic resonance sampler, and because the counter to Vin recovered mapping
function is almost simply proportional at this noise level (figure 5.16). This means that
little error is introduced due to the lack of a mapping function.

6.2.11. Power consumption

Digital Vdd: 0.34 mA
When setting the threshold to the DC point of the input signal, so that it constantly
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crosses the threshold, and setting the ForceDistributeSignal register bit for the
buffer, i.e. force the buffer to distribute the signal also when a sample is not just
about to be made, in this cases, this power supply line draws 1.3 mA. This shows
how limitation of signal distribution can save power. The 0.34 mA is still quite
high, and might be because of leakage currents through the transistors. High
threshold transistors should probably have been used at least in the less frequency
demanding areas.

Analog Vdd1 (Pulse gen.): 8.45 mA
A design flaw caused the pulse generator to have a constant current flowing
through an NMOS and an inductor.

Analog Vdd2 (Prog. delay, SPI, sampler delay line): 0.02 mA
Not affected by transmission of pulses, but we only reach about 39 kHz with our
measurement setup.

Analog Vdd3 (LNA, thresh.): 4.7 mA
Does not change when setting the threshold to the DC-point of the input signal,
thus causing rapid threshold crossings. The LNA is probably what is drawing the
most power here.

Entire circuit when in use: 57 mA
Also includes DAC and level-shifter circuitry.

6.3. Summary

A working short-range high resolution UWB impulse radar has been designed, imple-
mented in 90 nm CMOS and measurements have been made. The radar has a sampling
rate of 23 GHz and thus a resolution of 6.6 mm. Some strange problems have been en-
countered however. The sampler does not seem to be able to read the same pulse shape
as a regular oscilloscope reads. Where this problem lies, is hard to say. There is also a
lot of noise in the system because the LNA did not work and thus had to be bypassed.

6.3.1. Suggested improvement

The implemented circuit requires a DAC to set the threshold level. It might be possible
to create a circuit which does not require this, which simply adjusts itself to its operating
point, allowing for stochastic resonance readout. This self-adjustment will perhaps also
remove the problem with the low-frequency noise.
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7. Conclusion

In this master thesis we have presented an unconventional radar sampler technique and
an implementation of it which was shown to work. The sampler in the implementation
operates at 23 GHz, thus giving the radar a resolution of 6.6 mm. We have also tried
to go in depth into the CTQA signal processing domain which the radar sampler is
based on. System level simulations have been done on the sampling technique, and
measurements have been made that agree with these results.

The most important result in this master thesis is that the introduced swept threshold
sampling technique is actually very close to a perfect sampler in cases where the input
signal is buried in strong noise. This is a bit surprising since the circuit is quite simple
and coarse as it is mostly based on digital unclocked circuitry.

It is hoped that this result can be a contribution to the ongoing exploration of the re-
cently discovered Suprathreshold Stochastic Resonance (SSR) phenomenon, introduced
by [Stoc 00].

7.1. Further research

The analog parts of the circuit implementation needs to be worked through. The sig-
nals that are sampled with the radar sampler implementation are heavily distorted and
plagued with noise, especially a difficult low frequency noise.

An idea for a circuit is that if you have noise of σN = 0.1 and then take your one input
amplifier, for instance an LNA, and “split” it into 100 smaller amplifiers. Each would
have 100 times as high input impedance and thus 10 times as high noise amplitude.
They would also each perhaps consume only one hundredth of the power. In total, pre-
senting the same input impedance and power consumption as the original LNA. Now,
however, the noise is σN = 1, which is perfect for a swept threshold or stochastic res-
onance sampler. In addition, one sampling yields 100 samples at once. Thus reducing
the noise again. This way, it might be possible to “shape” the noise distribution in or-
der to put the sampler into the right working conditions. This idea needs more research
though.
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Data sheet:

S09C58G2: Experimental short-range UWB

impulse radar with swept-threshold sampler

H̊akon A. Hjortland

July 29, 2006

1 Description

• Experimental design!

• 3.1–10.6 GHz target frequency range

• Approx. 23 GHz swept-threshold strobed sampler

• Sampler uses quantized, continuous-time, signals

• Tunable pulse transmitter

• Single-ended antenna output

• Double-ended antenna input

• Pulse transmission externally triggered

• SPI-inspired interface

• 1.0 V supply voltage

• Implemented in STMicroelectronics 90 nm CMOS technology

• JLCC-68 package

• Created by H̊akon A. Hjortland, Tor Sverre Lande, H̊avard Moen,
Kjetil Meisal and Claus Limbodal

A. Chip data sheet
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Figure 1: Block diagram for chip
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5 MOSI

SCLK16

6 Exec

24 SendPulse

21 PulseSelect1

22 PulseSelect2
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13 AntennaRx−
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36 Digital Vdd

4
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17 Analog GND
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Sample

1 pF
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1 V
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Figure 2: Typical circuit

A. Chip data sheet

90



19

13

12

11

14

15

16

17

21

22

23

24

25

Analog Vdd2

AntennaRx−

LNAout

Threshold

Analog Vdd3

AntennaRx+

SCLK

Analog GND

PulseSelect1

PulseSelect2

AntennaTx

SendPulse

Analog Vdd1
2
8

3
3

3
4

3
6

IO
V

d
d

IO
G

N
D

D
ig

it
a
l
G

N
D

D
ig

it
a
l
V

d
d

2
7

4
3

10

26

60

44

6
1

6
8 1 3 4 5 6 7 8 9

S
a
m

p
le

C
o
u
n
te

rB
it

E
x
ec

M
O

S
I

D
ig

it
a
l
V

d
d

D
ig

it
a
l
G

N
D

Marker corner

Figure 3: Wire bond diagram, JLCC68 package overview and pin configu-
ration. Not to scale.
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Pin Description

Digital GND Padframe digital IO GND (core-side).
Core supply (digital circuits).
Substrate connection.

Digital Vdd Padframe digital IO Vdd (core-side).
Core supply (digital circuits).

IO GND Padframe digital IO GND. ESD reference for pads.
IO Vdd Padframe digital IO Vdd. ESD reference for pads.
Analog GND Common GND for analog circuits.

Substrate connection.
Analog Vdd1 Pulse generator, SendPulse buffer.
Analog Vdd2 Prog. delay, “SPI”, sampler delayline.
Analog Vdd3 LNA, thresholder.

Table 1: Power supply pins

2 System overview

The SendPulse pin triggers a pulse transmission. After a programmable time
τ , 64 parallel samplers are triggered in sequence, sampling at an interval
of about 43 ps (23 GHz). The antenna input is thresholded with a given
threshold. It is this quantized signal that is sampled. If one of the 64
samplers sample a ’1’, a corresponding 16-bit counter is incremented. After
up to 65535 pulse transmissions / samplings have been made, the 1024 bits
of the counters can be read out through a serial interface. The counters can
then be reset.

3 Recommended operating conditions

Vdd 1.0 V
Digital VL 0.0 V
Digital VH 1.0 V
Threshold 0.0–0.2 mA

4 Pin description

4.1 Power supply pins

See table 1.

4.2 MOSI, SCLK, Exec, CounterBit

“SPI” interface (section 5 on page 7).

A. Chip data sheet
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4.3 SendPulse

Trigger a pulse transmission/sampling.

4.4 AntennaTx

Transmit antenna. Single ended. Requires AC coupling of about 100 fF.
Can be connected to a transmission line of e.g. 50–75 Ω.

4.5 Sample

Measuring point: Output from programmable delay. Goes high when the
sampling sequence begins.

4.6 PulseSelect1, PulseSelect2

PulseSelect<2,1> is a 2-bit number which selects 3, 5, 7 or 9 delay elements
for the pulse generator. Shorter delay means higher frequency.

4.7 AntennaRx+, AntennaRx−

Receiver antenna. Differential input. Requies a 1 pF AC-coupling capacitor
on each line. Internally biased to about Vdd/2. Input impedance is 50 Ω in
the 3.1–10.6 GHz range.

4.8 LNAout

Measuring point: Single-ended LNA output.

4.9 Threshold

Threshold selector. Current drawn from this pin determines the threshold.
See figure 1 on page 2 for details. A typical configuration with a 5 kΩ re-
sistor between the pin and a voltage source Vin (figure 2 on page 3) has an
approximate transfer function Vres = 1.118 − 1.427Vin between the input
voltage and the voltage over the internal 10 kΩ resistor. The transfer func-
tion is relatively linear for Vin ∈ [250, 650] mV. The Vres range will then
be [190, 761] mV. The actual threshold voltage is the difference between
the resistor voltage and the operating point of the thresholding element,
Vthreshold = Vop − Vres. With Vop ≈ 0.5 V:

Vthreshold = −0.618 + 1.427Vin
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Commands:

0: SetRegBuffer

1: SetRegFineTune (N/A)

2: SetRegMediumTune

3: SetRegCoarseTune

4: ResetCounter

5: CounterFirstBit

6: CounterNextBit

Exec

MOSI

SCLK

8

Decoder

Command

3

Data

C0 C1 C2 D0 D1 D2 D3 D4 D5

Shift register

D

Figure 4: “SPI” interface

5 “SPI” interface

SPI-inspired serial interface. Bits from the MOSI pin is clocked into a shift
register on the rising edge of SCLK (figure 4). When Exec goes high, the
given command is executed. The command can be either “Set a register”
or “Send a signal”.

5.1 Register “Buffer”

Bit Signal Description

D0 SignalOverride ’1’ means override input signal
D1 SignalOverrideValue Which value to override with
D2 ForceDistributeSignal The input signal is usually only

distributed a short time after a
pulse has been sent. ’1’ here
enables distribution at all times.

D3–D5 (Unused)

5.2 Register “FineTune”

Not implemented.

A. Chip data sheet
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5.3 Register “MediumTune”

6-bit value. 0–63 × approx. 30 ps programmable delay.

5.4 Register “CoarseTune”

6-bit value. 0–63 × approx. 1 ns programmable delay.

5.5 ResetCounter, CounterFirstBit, CounterNextBit

Signal Function

ResetCounter Reset the counters in the sampler
CounterFirstBit MUX the first counter bit to CounterBit
CounterNextBit Step to the next bit on each Exec rising edge

Typical sample/readout procedure:

1. Send ResetCounter signal

2. Transmit n (≤65535) pulses (triggered with SendPulse)

3. Send CounterFirstBit

4. Read CounterBit

5. Send CounterNextBit

6. Read CounterBit

7. Repeat until 1024 bits have been read

Bit order: <one spurious bit>, sample 63, sample 62, . . . , sample 1, sample
0.
Each sample: Counter bit 15, 14, . . . , 1, 0.
Counter goes 0, 65535, 65534, . . . .
Count c from readout r: c = (65536 − r) mod 65536.

6 Problems

• The LNA seems to oscillate. LNAout can be used as input instead.
Silence the LNA by pulling one of its inputs up or down.

• The Sample output pin raises at a time correlated to the start of the
sampling sequence of the 64× sampler. If this pin somehow couples
into the sampler input, this could be a problem since such correlated
interference noise can not be filtered out through averaging. Ripping
the pin off of the chip carrier or at least not connecting the pin to a
wire seems to reduce the problem.
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Figure 5: Padframe pinout diagram
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Abstract— A novel CMOS Impulse Radar (CIR) is proposed
exploring the concept of swept-threshold sampling. Time-domain
signal processing with counter-based integration in parallel
structures is used. With continuous time, delayline based parallel
sampling topologies we achieve a sampling rate in excess of
20GHz. A functional CMOS Impulse radar is implemented in
silicon with measured system performance.

I. INTRODUCTION

The conventional radar was introduced in the pioneering

days of World War II and the original radar technology was

based on impulse emission. Later, signatures or bursts were

used for improved quality. The high frequency pulses or

bursts of microwaves are demanding dedicated technology

with high frequency devices (SAW filters, bipolars). In the

late eighties [1] the impulse radar technique was revived for

ground penetrating radar (GPR) for short-range detection of

mines buried in the ground. During the nineties McEwan

at Lawrence Livermore National Laboratory developed the

micropower impulse radar (MIR) for a number of short-range

applications.

In 2002 FCC released the largest unlicensed frequency band

ever, known as Ultra Wide Band (3.1–10.6GHz). Combined

with short gate delay of deep submicron (nanoelectronics)

technology, exciting new application are feasible in standard

CMOS.

In this paper we are exploring the possibility of short-

range radar implementation in standard CMOS technology.

Novel simplified processing techniques sweeping threshold in

continuous time in combination with delay lines is taking

advantage of technology scaling and is shown to work in

silicon.

A. Background

Conventional radar technology is exploring signatures often

made up by sinusoidal bursts (chirps). The duration of these

bursts are limiting the depth resolution of the radar. A shorter

signature will increase the resolution. The shortest signature

is a single pulse and the shorter pulse length, the better res-

olution. However, backscattered energy from short pulses are

hard to recover and significant signal processing is required.

McEwan [2] proposed the concept of micropower im-

pulse radar (MIR). Randomized pulses are emitted and the

backscattered energy sampled at a fixed, but short time interval

(strobed) after pulse emission. The integration of backscat-

tered energy is done with an analog integrator and sampling

Fig. 1. McEwan micropower impulse radar principle

diode(s), preferably fast switching diodes like schottky diodes

or step recovery diodes (SRD). The impulse radar may have

significant more mileage if available in cheap CMOS technol-

ogy. However, novel processing techniques and creative use of

simple MOS transistors must be utilized to achieve this goal.

As indicated in figure 1, the pulses are emitted repeatedly at

randomized intervals and the backscattered energy is sampled

after an accurate, fixed delay from pulse emission. A typical

pulse duration is <1ns, maybe close to 100ps, giving wide

bandwidth ranging towards 10GHz. The width of the sampling

window should be shorter, possibly a fraction of the emitted

pulse. The range is set by an accurate delayed strobing after

pulse emission. The backscattered signal is weak and often

buried in noise. Improved signal-to-noise ratio is achieved by

significant integration using fast samplers and analog integra-

tors. An interesting variant of this radar is the motion detecting

radar [3] having Doppler-like behavior. Even low frequency

movement like heart beat or breathing can be detected as

exemplified by Staderini [4] in his demonstrator of a medical

radar.

Aiming at a standard CMOS implementation, the high speed

signal processing, often analog, is a major challenge. The low

power supply voltage virtually prohibiting any kind of high

quality analog processing.

The advantage of deep submicron technology is the high

speed with gate delay towards 10ps. In this paper we propose

novel processing solutions where high quality analog signal

processing is simplified to crude thresholding of backscattered

energy and continuous time signal processing is explored for

target detection.
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Fig. 2. By sweeping the thresholding level, the incoming signal may be
recovered. To some extend the quantized pulse width reflects the strength of
the signal.

II. SYSTEM OVERVIEW

The fundamental simplification of using quantized or digital

values is well known. In ∆ − Σ analog-to-digital converters

the analog input signal is converted to a sequence of bits

clocked at high frequency known as bitstreams [5]. The pulse

density coding (or PWM coding) of bitstreams is accurately

representing the continuous analog input value. The coarse

thresholding of the continuous input to just ’0’ and ’1’

is compensated by increased clock speed. Trading reduced

number of quantization levels with higher clock speed is quite

appropriate for fine pitch technology and is explaining the

gaining popularity of ∆− Σ analog-to-digital converters.

In the CMOS Impulse Radar (CIR) we are exploring this

technique further by processing two-level quantized (digital)

values in continuous time.

A. Swept-threshold coding

As explained above, the pulses are emitted repeatedly and

the backscattered energy accurately strobed. In order to im-

prove signal processing quality we are changing the threshold

level “mapping out” the analog input signal as shown in figure

2.

The backscattered signal is close to buried in noise. For

a given threshold white noise will appear as variations in

pulse widths and sometimes even disappearing pulses. By

sweeping the threshold we are able to recover quite a lot of the

pulse energy and even take advantage of added noise. Pulses

below the thresholding level will normally pass undetected but

with white noise added, the pulses will sometimes exceed the

threshold and the weak signal may be sensed. This behavior is

often called stochastic resonance [6]. The concept of swept-

threshold coding enables quite accurate signal processing even

with only two quantization levels.

B. Integration

A crucial function of weak signal reception is significant

integration. The purpose of integration is to get rid of added

white noise. With repeated pulse emission and thresholding the

white noise will introduce uncertainty in pulse detection. The

probability of detecting a pulse, P (′1′) = Pemission + Pnoise,

will depend on both the signal strength and the noise strength.

In swept threshold coding the noise by itself give a sequence

of bits containing an equal number of ’1’s and ’0’s (assuming

threshold level is in the white noise range), while the emitted

imposed signal will contribute with more ’1’s for positive

signals or more ’0’s for negative signals. The important obser-

vation is that the integration can be realized in swept-threshold

coding simply by counting ’1’s and the emitted signal value

is the difference from the average value. The integration time

is simply the number of pulses emitted and can be controlled.

Normally a longer integration time will increase quality, but

take longer.

The quality of this style of integration is quite sensitive to

the threshold level and behavior is different when the threshold

is above the white noise level. With stronger signal levels well

above the white noise floor signal detection is simpler. The

important sweeping of the threshold level enables iterations to

an appropriate threshold level adapting to the received energy

of the received pulse.

Analysis of swept-threshold sampling compared to pure

analog integration as a function of integration level and noise

has been performed (figure 3).

Our estimations reduce the standard deviation of the white

noise term for the analog average from σN to σN/
√

n by

averaging over n samples. With little noise in the input

signal, the swept threshold sampling is not doing too well.

The surprisingly good performance, however, with increasing

noise levels (σN = 0.1 or 1, 1 being the signal swing),

indicates the swept threshold method needs only 10 or even

just twice the number of samples of the full analog inte-

grator! These estimates makes the swept-threshold solution

quite promising since most real backscattered signal is quite

noisy. An interesting observation is that stochastic resonance

behavior, only available for large noise components, has the

same performance as the swept-threshold sampling.

C. High speed sampling

The simple radar shown in figure 1 is only processing

reflecting energy for one strobing time reflecting a fixed

distance. Different distances is measured by sweeping the

delay and sequentially measure backscattered energy.

With the swept-threshold coding we are able to explore con-

tinuous time structures and achieve sampling rates exceeding

20GHz exploring delaylines. The samplers are similar to D-

latches with all the data inputs (D) connected to the incoming

quantized signal. By clocking (or strobing) the latches in a

fast sequence, we are able to accumulate reflected energy at

several distances for each emitted pulse.

In figure 4 the principle is shown. We are latching the

quantized input pulse with a clock input or strobe pulse

delayed by small delays (τ ) consisting of two inverters. In the

current implementation 64 parallel samplers are used and the

inverter delay is approximately 21ps with load measured. In

this way we are sampling the incoming pulse with a sampling

distance of about 43ps which is equivalent to a sampling rate of
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Fig. 3. Comparison of pure analog integration with swept threshhold
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high noise levels, the swept-threshold technique is doing almost as good as
analog integration

Fig. 4. Delayline sampler and integrators

≈ 23GHz confirmed by measurements. The depth resolution

achieved should be less than 9mm assuming speed of light

electromagnetic propagation (in most cases the propagation

will be slower, increasing spatial resolution).

With the parallel sampler we are sampling at least 41cm

depth. In order to adjust further we have added an initial delay

(similar to the McEwan radar) before trigging the sampling

sequence. This delay is adjustable, again using delaylines. We

have one coarse delayline of ≈ 64 × 1.4ns delay elements

and a fine tuning delayline of 64× 43ps delays. By selecting

a coarse and a fine tap using multiplexers we may vary the

initial delay from 0 to 90ns with 43ps resolution. With this

tuning ability, we are theoretically able to detect targets at a

range of up to > 13m.

As will be shown by measurements all these novel pro-

Fig. 5. Input stage of CMOS Impulse Radar consists of an LNA, thresholding
element with a buffer amplifier. A simple first order HP filter is included on
the input of the thresholding element using a resistive load to the threshold
voltage

Vdd Vdd VddThreshold

In

Out

Gain=2.5 Gain=2.5 Gain=2.5

Fig. 6. Common source buffer amplifier consists of eight cascaded common-
source passive load amplifiers with highpass tunable filter on the input.

cessing techniques are explored to implement a working short

range radar in CMOS.

III. IMPLEMENTATION

Based on the principles above we have implemented a

prototype of the swept-threshold radar in ST Microelectronics

90nm technology. The process was quite new and the design

kit lacked some features for doing high quality analog struc-

tures.

The input stage (figure 5) of the proposed CMOS radar

consists of a low-noise amplifier (LNA) designed for a signal

bandwidth of 3.1–10.6GHz. Several LNA topologies in CMOS

with required bandwidth are published [7] [8]. Typically 10dB

gain is achievable with careful design.

The threshold element is AC coupled to the LNA by a

blocking capacitor and by driving the input to the buffer

amplifier through an equivalent resistance, both thresholding

and high pass filtering is achieved. The resistive element is just

a weak transconductance amplifier with tunable tail current

setting the corner frequency of the HP filter. Some integration

due to parasitic capacitance is unavoidable on the input node

of the buffer amplifier.

The buffer amplifier consists of eight cascaded common

source amplifiers with a total gain of 2.58 = 1526 (figure

6). We are avoiding the high-gain single stage structures like

inverters, since they are hard to linearize for the required

frequency band. By using several low-gain common-source

amplifiers, we are able to maintain an overall linear gain as

indicated in figure 7. A total of eight cascaded common-source

amplifiers were used.

The drawback of this approach is significant power con-

sumption, but with emphasis on novel system aspects, the

cascaded solution was chosen.
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Fig. 7. Buffer amplifiers bode plot indicates the simple idea of controllable
flat gain for high frequencies explored in the current prototype.

τ τ

Sample
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To counter

Fig. 8. The sampler consists of several latching elements as the one shown
here.

Leaving the pure analog domain the next stage is sampling

of the quantized signal. Since the signal may change rapidly,

a specialized latching element has been designed (figure 8).

The input signal is driven through an open transmission gate

and the input voltage is latched when the transmission gate

is strobed. The latched voltage is then shaped by turning

on positive feedback with another transmission gate over an

amplifier driving the value to ’0’ or ’1’. If the latched value

is ’1’, the pulse duration is shaped to ≈ 1ns. Suitable timing

is achieved inserting inverters. The result of the sampler is a

1ns counting pulse for the counter (integrator) when a ’1’ is

detected.

As shown in figure 4 the latching elements are all reading

the same input, but the strobing signal is generated by a

delayline with two inverter (≈ 23ps) between samples.

In order to program the sensing range, a digitally control-

lable initial delay element is included as explained above

The CMOS impulse radar has been implemented in STMi-

croelectronics 90nm CMOS technology sharing silicon with

other projects (figure 9). The actual chip photo is really not

interesting due to the large number of covering metal. The

first silicon is a feasibility study and no efforts were taken

for compact layout. Included in the chip is a pulse transmitter

designed for UWB signal generation.

IV. MEASURED RESULTS

The package chip was mounted on a suitable PCB (figure

10) and interfaced through a simple parallel-to-USB card

(Elexol USB I/0 24 V3). Software for display on a PC was

Fig. 9. Layout of the CMOS impulse radar enclosed in the area framed with
a white line.

Fig. 10. The measurement setup with the packaged chip mounted on a
custom made PCB and interfaced to a PC using a parallel-to-USB interface.

written and quite remarkably we are able to clearly trace

simple movements.

In figure 11 the integrator count is indicated by whiter color

for high counter values, while black is indicating a low counter

values. A hand close to the antennas shows the wave pattern

backscattered energy from the hand. When moving the hand

away from the radar, the same pattern is shifted rightward

as expected. Then again the tracing of moving the hand back

again establishing a similar reflection pattern. We are still in an

early testing phase, but the first results are already convincing.

In our initial experiments we even bypassed the LNA and still

get accountable results.

Through these simple experiments all our assumptions are

verified and the implemented CMOS impulse radar is a

functional system.
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64 samples, about 45 ps interval
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1 cm away from antennas

Position of hand:

Fig. 11. Measured chip performance moving a hand in front of the radar.

TABLE I

CMOS IMPULSE RADAR SPECIFICATIONS

Measured sampling frequency 23GHz (6.5mm)

Measured initial delay 0–90ns (0–13.5m)

Parallel sampler 64 samples (41cm)

Sampling method Swept threshold

Signal processing Quantized continuous time-domain

V. CONCLUSION

A working CMOS impulse radar is designed and imple-

mented in CMOS exploring several novel signal processing

techniques.

The swept-threshold coding scheme is making implemen-

tation in CMOS feasible exploring time-domain processing.

Thresholding of input signals simplifies the integration to

digital counters. The high speed, parallel sampling structure

using delaylines is giving increased depth resolution over

a wide programmable range for every emitted pulse. The

estimated system performance is summarized in table I and

the proposed CMOS impulse radar is verified in silicon.
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