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INTRODUC'riON 

In the fall 976 a st (R. Rommetveit), a 1 

guist (E. ), a philosopher (D. F¢llesdal), and a mathe-

rna tical ,J" Eo Penstad} decided to give a nar togeth~ 

er on as seen from thei1· va perspect:ives. This was 

an interdiscipl venture, the 'copic turned out to be fashion~ 

able, and \ve had an overflow audience c- at least. until the Hl.a·the-

Montague's "~J:t.er that etn.· audience was reduced to a more 

comfortable size. But enough interest had been generated for the 

seminar to con:t 1\nd has served as a useful meeting place. 

The "hard been a group of linguists and logi-

c bnt from to we have also had the active part. 

pation of rs, psychologists, and computer sci ts. 

After the grand opening we settled down to understanding the 

impact of the Montague paradigm on theoretical linguistics, and it 

was natural for us to focus on the semantics of natural languages 

and the rrelat betv1een syntax and semantics. A result 

of this learning vJas the lecture i•iodels for natural lan-

guages [1] ch I gave to the 4th Scandinavian Logic Symposium. 

It represents a logician's reaction to Montague's PTQ. As a logi-

cian I could make ici t t.he use r"iontague had made of the notion 

of generalized quantifi~. (In addition to "surface" uses it was 

also pointed out that an unspecified generalized quantifier seems 

to lurk belo',v the surface in passive constructions,. If we assert 
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that Mary is liked, we leave open whether by one, several, many, 

most.. . . Perhaps this explains why politicians love the passive 

voice.) I also pointed out. how the Montague analysis could be 

given a more 

red interpreta 

bent. 

as a rel 

'Love' as a bivalent verb has a natu­

on bet'ween two individuals. This is 

t.he lexial "fact". If th,;: cornpositionality requirements of your 

favorite synt:actic analysis requires something different, you can 

always lift in type using the technique of t..~abstraction. Fur-

ther an analysis o£ pass was given that was attuned to this 

lexical point of and vlhich seems to be similar in spirit to 

some current lexical treatments of passive. 

The lecture concluded noting several shortcomings of the 

Mon>cague paradigm. The model frame Ot = <A, F I> carries too 

little structure and needs to be enriched by further computational 

and/or geometric content. And I also emphasized that in a 

speaker/listener si it is misguided to try to force all of 

the pragmatics into the index set I of th,e structure at, We 

have to deal with partial interpretations, conflicting interpreta­

tions, the building up of an interpersonal interpretation; and 

interpretations may be modified or determined by functionals which 

carry along the presuppositions introduced. 

Except for a few specific points such as the remarks on gen­

eralized quantifiers much of what was said in the lecture was 

either expository or of a general and programmatic character. 

Later in our seminar v1e returned to and discussed fur'cher the 

connection betv;een part:ial i t.y and presuppositions. I introduced 

in'co the Hontague framework a partial functional R(a ~ ~) where a 
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is of arbitrary type and ~ is of type t, R(a~~) is then of the 

Sc@e type as a~ n1e semantics is as follows: 

IIR(cq~)ll =lied! if li ~II = 1 , II R (a ; ~ ) II is undefined o-therwise. 

(Note tha·t e, g. II~ II - means that II~ II is defined and is equal 

to 1; with t:here are "weak" and "strong" notions, this 

we do not enter into here.) The R-functional was applied by c. 

Fabricius-Hansen ein wieder? Zur Semantik von wieder 

[ 2]. It is vlell~known that v1ieder (again) has both an external 

(repetitive) and an internal (restitutive) reading. In her paper 

c. Fabrici.us~Hansen 9ave a m1ified analysis within a ~~Iontague PTQ 

framework extending the partial R-functional to account for the 

associated presuppositions. (To indicate, very briefly, part of 

the repetitive wiede~:· may be captured in the translation 

wieder' = A.p.R(p:!:_p), v;here P is the past tense operator. The 

full story, much on Dowty's account in Word Meaning and 

Honta9ue Grammar> can be found in [ 2] . ) 

An important event in the history of the seminar was the 

"Horkshop qn~els for l~atural Languages which ,,,e arranged in Oslo 

in the fall of l 980 and vlhich helped us to establish broader 

international contacts. At that time some candidate theses were 

being written as an offshot of the activities in the seminar (a 

few each in lingustics, computer science, and mathematics). In 

this Report we have reproduced revised versions of the parts of 

t.hree candida-te theses l·vhich were submitted to the Department of 

Mathematics in 1982/83. 

Helle Frisak Sem g in the first part of her thesis, Quantifier 

Scope and Coreferenti;:J.lity a modified treatment of the quantifier 
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storage mechanism developed by R. Cooper in Quan·tification and 

Syntactic Theor_y, In cular, she eliminates the use of multi-

valued functions the semantic interpretation. Cooper's storage 

mechanism is successful in treating many questions of quantifier 

scope na·tural uages but there are defin limitations. 

1"1any of these can be overcome by using Hans Kamp' s theory of 

Discou~se Representation Systems, and in the second part of her 

thesis Helle Sem ext:ends Kamp' s analysis to cover ·the Cooper 

system and is thus a.ble to obtain a satisfactory treatment of some 

of the examples that could not be handled by the storage method. 

In the final she studies the connection bet\l<?een Dis-

course Representation st.ems and the theory of Situat.ion Seman-

tics as developed by J-. Barv1ise and J. Perry. 

Tore Langholm develops in his thesis, Some Tentative Systems Re-

of the He studies first a propositional 

system L(S) based on a model structure <Q,w,[ ]>, where Q is 

a non-empty set of sit.uations, wEQ is the actual "world" and [ ] 

is a valuation on the prositional variables, [p] = <[p]+,[p]->, 

where [pJ+,[p]- ~ Q and [p]+ is the set of situations which 

supports 'che truth of p. [ p] ~ is the set of situations that 

definitely refutes the truth of p. We assume that wE[p]+U[p]­

and that wf[p]+n[p]-, but in general neither [p]+u[p]- = Q, nor 

[p]+n[p]-*¢, thus situations may both be partial and contradic-

tory. 

Langholm gives a complete axiomatization of L(S) and also 

proves similar resul t:s for a first-order theory L ( SQ). In the 

final part he uses his systems to study naked infinitive percep-
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t.ual reports. thesis is a first and useful step toward a more 

comprehensive mathematical study of situation semantics. 

Jan Tore L¢nniES_ develops in his thesis, Mass Terms and Quantifi­

,cation, a novel o£ the semantics of mass ·terms o The basic 

semantic entity an atomless Boolean algebra and both mass noun 

phrases and the homogen,eously referring verb phrases denotes ele-

ments algebra. "rhis "simple" idea seems to get right the 

va s t.roublesome features of previous accoun·ts" To give some 

precision to his treatment L¢nning constructs a fragment of 

English, a su 

ment, and the 

gation is carried out 

ical formalism to correspond to this £rag­

ate !rtodel theory. A mathem.atical investi-

dun:'!s). And looking at the formalism in different \'ll'ays (i.e. 

us the appropriat«:1 representation theorems) he explains how it 

is poss consistent} to either viev! mass terms as "indi-

viduals" (s ar tenns) or to view them as "properties" (general 

tenns). Thus some of the earlier philosophica.l discussion do not 

seem too profitable. In the final sections of his thesis L¢nning 

extends the fragment to include count nouns and amount terms. 

An underlying premiss for our activities in ·the seminar has 

been our belief in the fruitfulness of the interaction between 

logic and linguistics. I hope that the work reported on in this 

Report gives substance to this belief. \1/e plan to continue the 

Oslo Seminar and hope, in par·ticular, to strengthen our competence 

. , , , ~in the computational aspects of natural language modeling. 

Jens Erik Fenstad 
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[1j Fenstad, J.E., Models for Natural Languages, in: Hintikka 

et al. (eds.), Essays on Mathematical and Philosophical 

Logic, pp. 315-340. 

D. Reidell Publ. Comp. Dordrecht 1978. 

(2) Fabricius-Hansen, C., Wieder ein wieder? Zur Semantik von 

wieder, in: Bauerle et al. (eds.), Meaning, Use, and Inter­

pretation of Language, pp. 97-120. 

w. de Gruyter, Berlin, New York, 1983. 
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SOME TENTATIVE SYSTEMS RELATING TO SITUATION SEMANTICS l 

Tore Langholm 

The motivation for considering the systems of this article is to 

be found in the field of Situation Semantics, which is currently 

being developed by Jon Barwise and John Perry. Our systems are 

not meant to catch the full complexity of the richer theory. 

Rather, they are intended as tools with which to study some of the 

more elementary properties of situations, and to provide the 

opportuni for a sort of reconnaissance trip into areas which 

eventually will have to be conquered by a more comprehensive 

formal theory. 

1 • TBE PROPOSITIONAL SYSTEM L ( S) • 

In every-day life, the truth-value of a proposition depends upon 

the situation at hand. In the first part we shall try to make 

this idea precise by studying a simple propositional language 

based on a semantics of situations. 

1.1. Definition of L(S). 

Symbols: propositional variables 

connectives 

auxiliary symbols 

Formation rules: 

; , V, A, => 

(,) 

(l) All propositional variables are formulae. 

(2) If A and B are formulae, so are ,A, (AvB}, (AAB) and 

(A=>B) . 

By (A=>B) we want to express that B is true in every situation 
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in which A is ·true. Vile have to discuss what logical principles 

ought to be valid. In [Barwise 1979] the following two rules are 

proposed: 

(1) (AAB) is true on the basis of s just in case both A and 

B are true on the basis of s. 

(2) (AvB) is true on the basis of s just in case A or B or 

both are true on the basis of s. 

This can also be inferred from the rules on pages 137 and 138 of 

[Barwise and Perry 1983]. If these rules are accepted, the 

following formulae and.rules of inference become valid: 

(A;,B) => (BAA) (AAB) => A 

(AvB) => (Bv A) A => (AvB) 

A => B A => c 

A => c B => c 
------
A => (BAC) (AvB) => c 

As for negation, it appears obvious that A is true on the basis 

of s just in case ,A is false on the basis of s, and that ~A 

is true on the basis of s just in case A is false on the 

basis of s. This gives us the following principles: 

A => -,,A 

Also it seems reasonable ·to accept de Morgans laws in the present 

context: 

-,(AAB) => (-,Av,B) 
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1 .1. 1. The Formulae (AA-,A) => B and A => (BV""~B) in Situation 

Semantics, 

If no formula can be both true and false on the basis of the same 

situation, then ~> B is a valid principle for any A and 

Motivated by a. sh to s'cart. out with the broadest possible frame, 

we vJill, ho,,veve:r ,. admit inconsistent situations, hence not accept 

the unrestrici:ed of (AA,A) => B. As we shall later see, 

inconsistent tuations can be eliminated from our models by 

adding (Afl.-d\) => B as an extra axiom scheme. 

The principle ~ ~> (Bv,B) will be rejected on the grounds that a 

proposi i:ion may be total foreign to a situation, and thus 

neither be true nor false on the basis of it. 

From the above remarks, vte construct the following truth tables 

for v and 1\, where 'c, nt, f and nf abbreviate true, not 

true, false and not false respectivelyo 

-:t: (P,VB) A B (AAB) 

t t t t 

(1) t ( 2 ) t nt nt t 1 nt 
I 

nt t t. nt t nt 

nt nt nt nt nt nt 

By de Morgans laws and the rules 

( 3 ) A true iff ,A false 

A false iff ,A true 
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we 

A B AV B) A B (AAB) 

nf nf nf nf nf nf 

( 4) nf f f (5 ) nf f f 

f nf -t-'"' ""' L nf f 

f f f f f f 

for S it.ua1: 

He see that ·there four possible t:n;;th~'<mlues for propositions 

with 

true and not false 

true ax1c1 fa_lse 

fa.l e t:1r-1cl 

From the above t:e>J:):L ete:ri ve t:..he fol (uniquely deter-

mined) truth tables 

r. 
"' 

? 

~ 

0 0 

? 

? 0 

(6 '? 

? 0 

~~~~ ~ 

0 

0 

0 

0 !J, ill 0 o/' 

G 0 0 
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From rule;c; ( 3) t1'lt:' :ruth t:able for negation constructed: 

A 

'? 

0 

Observe that these, trut.h ta 1)1es are closed re to the se'c 

lues they also agree with. ordinary two~ 

aure that a situation de a.n ordinary two 

f~lerne11t therefore only have ·to require that each 

.2. The Semantics 

In our seraar1tics etation of a proposition 11 be the 

its truth. More precise , we assume 

of situations, An inte£Eretation is 

det:ermined a func:tic:on frorn propositional variables to sets of 

propositional variable p there will be two 

IDI+ 
. ..t: ~ t' 

+ 
Q, where I pI is the set of situations 

p and I pI·- the set of si t.uations "''hich ren-

Cter Accord.i tJ:J our discussion under 1 • l , 1 IPI+ n 

(existence of "inconsistent" si tua·tions) and 

U !PI- may be a proper subset of Q. l!'Je denote by the 

c:srdered pair 
I ~~ I p 1 > , thus an int is a map 

from proposi on.'"-' ,,,ar:lab:Les to the set :P (Q) (Q 

shall further as ume that~ Q contains a particular element w 

S;Lt.11ation" ~ which we single out as the key to ·tru'ch 

ancl. falsi A proposition will be considered true or false just 
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in case it is true or false on the basis of w. To ensure that 

all propositions are true or false and not both, we impose the 

requirements "that 

and 

for all propositional variables p. 

With these preliminary explanations we come to the formal defini-

tion: 

A model or structoure L(S) is a triple ~~ = <Q, w, I >, 

where 

( 1 ) Q is a non-errtpty set of situations. 

( 2) w is a di uished element of Q. 

( 3) is a function from the set of propositional variables of 

L(S) into 

We write jpj 

( 4) + 
wE IPI U 

= <lpl+, 

I Pi~· 
IPI-> and require that 

\illf I P I + n I P I -and 

for all propositional variables p of L(S). 

The function gives an interpretation for the propositional 

variables. This will be extended to all formulae by the following 

definition~ 

1.2 .. 2. Defini·tion of the Interpretation IIAIIot = + -
<IIAIIcJt~d. 

( i) ProEosi·tional variables: II pliO[.,= jpj 

(ii) Negati~~ + 
II -,AII~rt - II All ()t, Vv 

II ,Jl.llo-c 
+ = II AIICll-

..!. ...... 
IIBII~ ( i ) Disjunction~ II AVBIIOC = IIAIIOLU 

II Av B llu"t = II Allot n II Bllo-t. 

( i v) Conj_unction: + 
II Alldl n IIBII~ II AABII = 

or~ 

II AABI!ot. = II All!)t U II BIIUl 
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'I'he reader will see hovJ' these clauses correspond to the truth-

tables above. 1-Jhen no confusion is likely to occur, we drop the 

index !){,_ and write more simply IIAII for II Allot.. 

(v) Strong I~plicatio~~ From our previous explanations it 

( ) . I+ follows that we want A=>B to be true, 1..e. wEIIA=>BI , 

just in case IIAH+ c HBH+. In other situations there seems 

to be no preferred 1"'1ay to define the truth-value of (A=>B) 

from II All and II Bll , Considerations of simplicity have led us 

to the fol choice: 

< Q , ¢ > " if il Ali + c II B II + 
IIA=>BII = 

¢,Q>, otherwise 

l .2.3. Definition o~~, 

A formula A of L(S) is true in the model QL, in symbols 

+ 
wE HAll 

true in all models 

is true or valid, in symbols fA, if 

of L { S) . 

A is 

Let as usual A :::J B abbreviate -,Av B. It follows from 1 • 2. 2 that 

the following formulae are valid: 

(A=> B) :::J ( c~~ {1-\=>B)) 

-,(A= B) :::J (C=>-,(A=>B)) 

(A=> B) :::J (-:(ll.=>B)=>C) 

,(A=>B) :::J ((A=>B)=>C) 

It should be pointed out that these formulae are very marginal to 

the theory. He could just as well have made them not well formed. 

Our chief concern lies formulae of which no subformula is 

within the scope of more than one occurrence of =>. 
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l .2.4. A Remark on Complete Sets of Connectives for L(S). 

We close this section with some remarks on the truth-functional 

connectives v, r\ and .,. They do not comprise a functionally 

complete se·t of connectives with respect to the four truth values 

0, +, iJ,. and 1 • This should be no cause for concern, since the 

contrary vmuld be positively undesireable. If we had formulae 

corresponding to truth functions which are not closed with respect 

to the set {0,1}, w could not be made to define a two element 

valuation. However, it could be of interest to find a set of 

connectives complete respect to the set of functions which 

preserve two-,val>.Jed logic. Such a set is obtained by adding the 

connectives T a.nd ~ with the following truth tables: 

An absolutely complete set is obtained by adding (to 

{A, v, ,, T, -}) a constant u denoting ? (or <¢,¢> in the 

semantics of L(S).) 

It is, however, difficult to find intuitive counterparts to these 

connectives (with the possible exceptions of T), and since the 

systems in this article are constructed with analysis of natural 

languages in mind, I cannot see any reason to include them. He 

could have been forced to introduce them in order to achieve a 

complete axiomatizat.ion. But this turned out not to be the case; 

hence they can safely be disregarded. 
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1 .3. Valuation Structures. 

Although the relationship between situations and propositions is 

defined as a membership relation, it will sometimes be useful to 

think of situations as valuations on propositions. Given a model 

ot of L(S) and a situation sEQ we define: 

IIAII = 
0-teS if 

if 

if 

•o= 
lL 

+ 
sEll Allot 

+ sE II Allot 

' + 
Sf II Allq 

s~IIAII~ 

and 

and 

and 

and 

sf II Allot 

sE II Allen_ 

s~ II Allot 

sEll Allot. 

From the correspondence bebreen truth tables ( 6) and ( 7) and defi-

nition 1 .2 .2 we see U,at for any ()t, and s,. II will be a 
01,.' s 

valuation conforming to (6) and (7). Moreover, II II will be 
~,w 

an ordinary two-valued valuation. 

l.3.J. Definition of §imple Formulae. 

A simple formula is a formula of L(S) without occurrences of the 

connective =>. 

1 .3.2. Definition of Valuation Structure. 

A structure or_, = <Q, w, I I> is called a valuation structure if Q 

is a set of valuations on the simple formulae of L(S) according 

to the truth tables (6} and (7), and for which 

v(p) = II pll 
- ()[_,, v 

for all vEQ and all propositional variables p of L ( S) . 

In other words, the situations of a valuation structure are valu-

ations, and their valuations of propositional variables correspond 

to their memberships in the positive and negative extensions of 



the propositional variables. Any set of valuations (containing a 

two element valuation), together with a distinguished element in 

the set (being a t>,vo element valuation), uniquely determines a 

valuation structure. From the remarks above it follows that in a 

valuation structure Qt, v(A) = II All !'I-f for all simple formulae 
vv,V 

A. 

l • 3 • 3. Lemma. 

Every L (S) struct:ure is elementarily equivalent to a valuation 

structure. 

The proof straightforward. 

1 . 3 . 4. Theorem. 

A=>B, vJ'ith A and B simple, is valid if and only if the joint 

truth table of A and B has or ~ in the column for B in 

any line in which A is assigned the value or the value ~· 

Proof~ It is immaterial to the truth of a formula of the type 

A=>B which two element valuation (if there are more) is the 

designated one. We also see that for any pair et,1 , 0(,2 of valu­

ation structures and pair A,B of simple formulae, if Ql ~ Q2 

OL1 fA=>B follows. Now let ~ be a valu-

ation structure built up from all possible valuations on the simple 

formulae. By the remark above, if 1i ~A=>B, A=>B is valid in any 

valuation structure, and hencein any structure. 

From this line of reasoning a stringent proof can easily be con-

structed. 
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1 o4. Axiomatization 

The following axiomatization is an adaption of the axiomatization 

of the System E fde of Anderson and Belnap. The connection to 

Efde will be explored in the next chapter. 

Axiom schemes. 

(Al) (AAB) => A 

(A2) (MB) => B 

(A3) -,A ;;:::> -,(AAB) 

(A4) ..,B => ,(AAB) 

(AS) A => (AvB) 

(A6) B => (Av B) 

(A7) -dAvB) => -,A 

(AB) .,(AVB) => -,B 

(A9) A => -y-,A 

(A1 0) ;;A => A 

(A 11 } -,(AAB) => (,Av,B) 

(Al 2) ( -,AA -,B) => -,(AvB) 

(A1 3) 
.. 

(AA (BVC)) => ( (AAB)vc) 

(AI 4) (A=> B) :::J ((A=>C) :::J (A=> ( B/\ C) ) ) 

(Al 5) (A=>C) :::J ((B=>C) :::J ( (AvB)=>C)) 

(Al 6) (A=> B) :::J ( (B=>C) :::J (A=>C)) 

(Al 7) (A=> B) :::J (A :::J B) 

(A1 8) (A=>B) :::J (C=> (A=>B)) 

(Al 9) -,{A=>B) :::J (C=>-; (A=> B)) 

(A20) (A=> B) :::J (-;(A=>B)=>C) 

(A2 1 ) -:(A=>B) :::J ( (A=>B)=>C) 

Rules of inference: 

Hodus Ponens: From A and A :::J B we may infer B. 
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1 .4.1. Theorem 

Every theorem is valid in every structure. 

Proof~ Validity of (AJ )-(A13) is verifiable by 1 .3.4. (A14)-(A16) 

are simple set-theoretic principles involving the interpretation 

rules for v and A. . (Al 7) follows from the fact that wHl. The 

validity of (A18)-(A21) is a consequence of our particular choice 

for the interpretation of -(A=>B). Finally, Modus Ponens clearly 

preserves validity. 

l .4.2. Remark. 

Since the axioms are given by axiom schemes (and M.P. is the only 

rule of inference), every substitution instance of a theorem will 

be a theorem. Hence we should expect the same for validity; the 

following reasoning shows this to be the case: 

Since no restrictions are posed as to how the truth values of 

propositional variables are to be defined in various situations 

(except completeness and consistency for w), the interpretations 

of formulae in general cannot vary more freely than those of the 

propositional variables. This means that given a distribution of 

interpretations to some set of formulae, the same distribution can 

be attained by a corresponding set of propositional variables, and 

from this it is seen how a counter-example for some substitution 

instance A' of a formula A may be converted into a counter­

example for A. 

Note that this is not as trivial as it might perhaps seem. If, 

for instance, we had required that each propositional variable has 

a situation supporting its truth, substitution would not preserve 

validity. 
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1 .5. Comparis~n to _the System E of Entailment. 

The semantics described in 1 .2.1 and 1 .2.2 gives L(S) some 

important features which makes it natural to compare it to the 

system E of entailment, which was constructed in order to catch 

the intuitive notions of entailment and relevancy. 

1 • 5. l • An Equivalent Decision Procedure. 

The decision procedure of 1 .3.4 is equivalent to a slightly diffe-

rent one. He may define the partial ordering < on the set of 

truth values by let·ting 'F 1. .... $ and £ are identical, or if 

£ is above $ in the figure below: 

Naw accept A=>B as valid if 

v(A),v(B) for all valuations v. 

The test may seem stricter than the first 8 since vJe do not allow 

<? , 0 > , <? > and < 1 >. However, because of the symmetry be-

tween ? and ~ in the truth tables; if there exists a v for 

which v(A) = '? and v(B) = 0, there is a v' for which 

v' (A) = ~ and v' {B) = 0. Similar remarks hold for <?.~>I <'tt, ?> 

and < 1 , 1- > I < 1 , ? > • 

1 • 5 • 2 • L ( s) and E "'d • 
----~--'---'------Ie 

In the system E, a first degree entailment forrnula is a formula 

A=>B with A and B containing only truth-functional connec-

tives. The system Efde (first degree entailment fragment of the 

calculus E) is characterized by the decision procedure above 

(cfr. [Anderson & Belnap 1975] ). In other words, the set of valid 

L(S)-formulae within the set {A=>BjA,B simple} coincides vli th 

E • 
fde 
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In proving the completeness of L(S), it would be a waste of ef-

fort to start from scratch rather than finding some way to benefit 

from the works of Anderson and Belnap. In "Entailment" they prove 

the following to be a complete axiomatization of Efde" 

Axiom schemes 

(AAB) => A 

(AAB) => B 

A =;i> (AVB) 

B => (Av B) 

(AA(BVC)} :0:::) ( (AAB)VC) 

Pt => ,,A 

-,-,A => P.. 

Rules of inference: 

A => B A => B A = >C 

B => c A ~""-
-? c B => c A => B 

A => (~ A => (BAC) (AVB) => c -,.B => -TA 

1 .5.3. The System L(S)fde· 

We want to prove that the set of theorems of Efde is cointained 

in the set of ·theorems of L(S). In order to do this, we define 

the systems L(S)fde in the following way: 

Axiom schemes: (AI ) - (A1 3) • 

Rules of inference: 

A => B A => B A => C 

B => C A => C B => C 

A => C (AvB) => C 
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] . 5 . 4. Lemma. 

A formula of the type A=>B with A and B simple is valid in 

L(S) iff it is valid in Efde" 

Proof: Since Efde is c~haracterized by the decision procedure of 

] e5.1, this follows from the result of that section. 

1 • 5. 5. Lemma. 

Every valid formula of Efde is a theorem of Efde" 

Proof: Cfr. [Anderson & Belnap 1975]. 

1 • 5 • 6 • Lemma. 

Every theorem of is a theorem of L(S)fde" 

Proof: All axioms of Efde are axioms of L(S)fde" In order to 

prove that any theorem of Efde is a theorem of L(S)fde' we need 

only to show that if A=>B is a theorem of L(S)fde' so is ,B=>,A. 

The proof os this (by induction on the derivation of theorems) is 

straightforv.rard but lengthy, and we omit it here. Cfr. pp. 29-34 

of my cand.scient. thesis. 

1 . 5 . 7. Lerruna. 

Every theorem of L(S)fde is also a theorem of L(S). 

Proof: All axioms of L(S)fde are axioms of L(S). The rules of 

inferense of L(S)fde are derivable in L(S) by Hodus Ponens and 

(Al4)-(A16). 
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1 . 5 . 8. Theorem. 

Every valid formula A=>B of L(S) with A and B simple is a 

theorem of L(S). 

Proof: This follows immediately from lemmas 1 .5.4 to l .5.7. 

1 .6. L(S) and Ordinary Two-valued Propositional Calculus. 

1 • 6. 1 • Lemma. 

Let A be a simple formula which is also a tautology of ordinary 

two-valued propositional calculus. If are the propo-

sitional variables of A, then 

is a theorem of L(S). 

Proof: Validity of ((,p1vp 1 )A ... A(,pnvpn))=>A is verified by 

l .3.4. The rest then follows by 1.5.8, Al7 and M.P .. 

1 .6.2. Theorem. 

If A is a tautology of ordinary two-valued propositional calcu-

lus, then A is a theorem of L(S). 

Proof: This follows from 1 .6.1 by M.P. and iterated use of the 

fact that (,p,vp.) and A~ (B ~ (AAB)) are theorems of L(S). 
l l 

1 .6.2.1. Remark. 

As the proof is carried out, it applies oply to simple formulae. 

But any tautologous formula A is a substitution instance of a 
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simple, tautologous formula A'. A proof of A' is easily con-

verted into a proof of A by substituting throughout. 

1 .6.3. Definition. 

A 1 , ••• ,An 1-- B means that B is a theorem of the system obtained 

by adding A1 , ••• , A 
n 

to the axioms of 

1 .6.4. Theorem (DeductioncTheorem). 

L ( S). 

If A1 , ••• , An 1- B, then A1 , .•• , An-l !-An => B. 

Proof: This property belongs to any system with M.P. as the only 

rule of inference, which contains all formulae of the types 

(A => ( B => C ) ) => ( (A => B) => (A => C ) ) and A => ( B => A) 

as theorems. 

Normal E'orm. 

The reduction theorem of SS states that every formula is equiva-

lent to a formula in which no modal operator occurs within the 

scope of another modal operator. The similarity in structure 

between L(S) and S5, as opposed to T or 84, i.e. the fact that 

+ 
IIA=>BII is either Q or ¢, leads us to expect something similar 

for L (S) . 

1. 7.1. Definition. 

A formula is in normal form if every subformula of the type 

A=>B has the following property: A is either simple or it is 

the formula p 1 =>p.1 • B is either simple, or it is the formula 

-,(p1=>p1 ). (p1 is the first propositional variable.) 



- II. l 8 -

1 • 7.2. Theorem. 

Let as usual A=B abbreviate (A~ B) A (B ~A). Given a formula 

A of L(S), we can effectively find a formula A' of normal 

form such that A=A' is a theorem of L(S). 

The proof of this, ,,.,hich is by induction on the construction of 

formulae and makes essential use of axiom schemes (A18)-(A21 ), is 

straightforward but very tedious, and we omit it here. Cfr. pp. 

48-61 of my cand~scient. thesis. 

1 .8. Theorem (Decision Procedure). 

There is an effective procedure to check whether a formula of 

L(S) is valid. 

1 .8.1. Restriction to a Subset of Formulae. 

In view of 1 .7.2, we need only prove decidability for formulae of 

p 1 normal form. 

But we may simplify further. Relying on results of the ordinary 

propositional calculus, we know that there is an effective way to 

check whether an arbitrary formula F in p 1 normal form is a 

tautology ((A=>B) is considered atomary). If F is a tautolo-

gy, it is valid. If it is not, there is an effective way to find 

a formula F' in conjunctive normal form which is tautologically 

equivalent to F. (And hence true in an L(S) structure iff F is 

true.) Checking whether F' is valid in all structures, is equi­

valent to checking whether each of its conjuncts is valid in all 

structures. 

Each conjunct looks like this (cfr. 1 .8.1 .1 - E and all indexed 

capital letters represents simple formulae.): 
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E 

v (\1. __. ( G . = H, ) ) 
l"' l l 

v(V .. , p "">p )=>D.)) 
l"-n ~] -J l 

v 

.=>B.)) 
1. l 

m,n,r,s,k,l;;>O 

·ro check the valid of this is equivalent to checking the fol-

lowing (The special case r p should be read as F .r, i.e. 

F·,(I\A)): 
AEf 

rp 
(2) v(Vi~k(( =>p1 )=>ci)} 

v( x(K:L'"'>.,(pl=>pl))) 

where r is the se·t 

{ ,E 1r iJ {G.=> \ Ll { (p =>p )=>D } 
l J i.;; m 1 J i i.;; n 

U {L.=>-dp1=>p1 )}. 
1. J..( r 

1 • 8. 1 • 1 • Remark. 

In (1) of J .8. 1 we assume that the conjunct does not contain 

-:((p =>p )=>-,(p =>p )). 
1 1 1 1 

Hnen this fails, vte have one of the following cases: 

( i) ·rhe conjunct contains ., ( ( p 1 => p 1 ) =>., ( p 1 => p 1 ) ) 

as a disjunct, and is hence valid. 

(ii) The conjunct is the formula (p =>p )=>.,(p =>p ), 
] 1 1 l 

and lid. 

(iii) The conjunct properly contains (p =>p )=>,(p =>p ) 
] ] ] ] 

as a disjunct, and is equivalent to the formula obtained 

by deletin<;~ this disjunct. 
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1.8.2. Set-u:e for the Decision Procedure. 

In the joint truth table of E and all G. , H. I D. I L. I A.' B. I 
~ ~ 1 1 1 1 

c. and K.' delete all lines with one of the following properties: 
1 l 

( i) For some i,;;; m, G. has 
l 

one of the values or 'j,-, and 

H. has not. 
l 

{ii) For some i,;; n, D. has a value distinct from and ~. 
l 

(iii) For some i" r, L. has a value distinct from 0 and ? • 
l 

1.8.3. Decision. 

The validity relation (2) holds if one of the following is true: 

( i) None of the lines in the reduced truth table defines a 

two element valuation. 

(ii) None of the lines in the reduced truth table does at the 

same time define a two element valuation, and assign ,E 

(iii) 

(iv) 

( v) 

the value l . 

For some i(s, all lines which assign A. 
1 

the value 

or t, also assign B. 
1 

one of these values. 

For some i,;;k, it is the case that all lines assign 

or ~. 

For some i,;;Jl., it is the case that all lines assign 

0 or ? . 

c. 
1 

K. 
1 

The procedure covers all possible special cases. If there is no 

formula E, the possibility of validity by (ii) vanishes. If r 

is empty or the second, third or fourth line in (1) does not 

exist, the reduction of the truth table is correspondingly less 

extensive. If the fifth, sixth or seventh line in (1) does not 

exist, the possibility of truth by (iii), (iv) or (v) vanishes. 

All lines in (1} cannot vanish at the same time, since then we 

would not have a formula in the first place. 
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l .8.4. Proposition. 

If (2) holds, then the procedure concludes that (2) holds. 

Proof: Suppose the procedure concludes that the validity relation 

does not hold, He then know that the reduced truth table contains 

a two element valuation. In case there is a formula E, there is 

a two element valua'cion supporting the truth of -,E. For each 

formula A.=>B. there is ~a line which assigns A.' but not B., 
l l l 1. 

or 1-. For each c. there is a line assigning c. 0 or ? • 
l l 

For each T there is a 1 • assigning T or t-. LJ • ..t.lne .u . 
1. 1. 

These lines each defines a valuation, and from this set of valu-

ations vve construct a valuation structure, letting a two element 

valuation (which supports the truth of -,E if there is such a 

formula) be the distinguished element. It is immediate that this 

constitutes a counterexample to (2). 

1 .8.5. Proposition. 

If the procedure concludes that (2) holds, then (2) holds. 

Proof: Suppose (2) does not hold. There is then a counter-exam-

ple ot, \l!hich by l . 3. 3 is elementary equivalent to a valuation 

struc·ture OV. All valuations in 01,' correspond to lines in 

the reduced truth table. For if a valuation is present in the 

counter-example (which must validate r), it has defied all reduc-

tions on the previous page. For each of the formulae A.=>B., 
l l 

(p1 =>p 1 )=>Ci and Ki=>,(p1=>p 1 ), there are situations in ~· 

which prevent them from being true; and hence lines in the reduced 

truth table which prevent the decision procedure from according 

(2) truth. 
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l .8.6. Corollar~. 

From the formulation of the decision procedure, it immediately 

follows that a validity relation of the kind indicated in (2) 

hol,ds just in case 

i: ..,r 

or for some i, 

rj:: A.=>B. 
J_ 1. 

or r~ (pl=>pl)=>Ci 

or r I= K i = > , ( p 1 = > p 1 ) 

This result will be useful when we prove completeness in the next 

section. 

1 .9. Theorem (Completeness). 

Every valid formula of L(S) is a theorem of L(S). 

1 .9.1. Proposition. 

Completeness follows if we are able to show the following impli-

cations ( ~ ,r should be read as 1- , ( 1\ A) ) : 
AEf 

( 1 ) r ~ A=>B ~ r f- A=> B 

( 2 ) F .,r - f- ..,r 

( 3 ) r 1= (p =>p )=>c - r ~ (p =>p )=>c 
] 1 1 1 

( 4) fF K=>.,(p1=>P 1)- r 1- K=>., (p 1 =>p1 ) 

when r is the set (m~O, and E, D, L do not necessarily exist): 

(All capital letters represent simple formulae). 
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Proof: By] .7.2 and 1 .6.2 we only need to show that validity 

entails provabilit.y for formulae of type ( l ) of 1 . 8. l . (1.8.1.1 

applies to provability as well as validity.) By J .6.4, this is 

equivalent to showing that (2) implies the corresponding provabi-

lity relation. By 1 .8.6 this is equivalent to proving (1 )-(4) 

above for r of the type specified in l .8.1. 

The assumption that r contains at most one formula of the type 

(p =>p )=>D is justified by the fact that 1 ] 

is a theorem of L(S) Similarly for L=>,(p1=>p1 ). 

1 .9.2. Proposition. 

Implication (1) of] .9.1 is true of L(S). 

Proof: By adopting a technique used in the completeness proof of 

"de Morgan Implication" (which is the same as Efde) in [ Hakinson 

] 973 J, it can be shown that if r¥ A=>B, then there must exist a 

valuation v which satisfies v(D)E{l,~}, v(L)f{ 1,~} and 

v(G")E{l,~}----r v(H")E{l,'t,}, but not v(A)E{l,~}- v(B)E{l,'l-}. 
l l 

Also, if r ~ A=>B, then r must be consistent. Hence, also 

{EADA;L} U {G. ~ H.}" is consistent. Since L(S) contains the 
1 1 1.;;n 

ordinary propositional calculus, this implies the existence of a 

two element valuation v• such that w(EADA-,L) = 1 and 

w(G.) = ]-----;. w(H.) =]. It is easily checked that the valuation 
1 l 

structure based on {v,w} with w as the distinguished element 

constitutes a counterexample to fF A=>B. 
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1 .9.3. Proposition. 

Implication (2) of J .9.1 is true of L(S). 

Proof: If ~ f, then f~ (p1v-.p 1 )=>(p1/\,p] ). f~ (p1v,p1 )=>(p1/\-,pl) 

now follows by 1 .9.2. Since ,((p1v,p1 )=>(p1/\-;p 1 )) is a theorem, 

we must then have f- -If. 

1 . 9. 4. Lemma. 

Let II be a subset of {E} U {L=>,(p1 =>p, )} U {G.=>H.} ._. (i.e. 
J 1. 1. 1."" n 

II does not contain (p1 =>p1 )=>D). If II has a model, then 

II~(p 1 =>p 1 )=>C for any simple c. 

Proof: Suppose OVI= II for a valuation structure 01.,. A new 

valuation structure 01J is derived from ot.,. by adding to the 

situation domain of Ol the constant valuation assigning all 

simple formulae the value ?. E, L=>-,(p1=>p1 ) and all G.=>H. 
1. 1. 

remain unchangedg but (Jt,' ~ (p =>p )=>C. r J 1 

1 .9.5. Proposition. 

Implication (3) of 1.9.1 is true of L(S). 

Proof: Suppose fF (p1=>p 1 )=>C. There are two possible cases, 

corresponding to whether r has a model or not. If r has no 

model, 1- -,r follows by l • 9. 3, and hence r f-- (p1 =>p1 )=> C since 

L(S) contains the propositional calculus. If r has a model, 

((p1 =>p1 )=>D) E r for some D by the lemma. Since 

( (p1 =>p1 )=>D) :::J ( ( (p1 =>p1 )=>c):: (D=>C)) is a theorem, the rest now 

follows by l .9.2. 
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1 .9.6. Propositio~. 

Implication (4) of 1 .9.1 is true of L(S). 

The proof is similar to the proof of 1 .9.5, and uses a lemma 

similar to 1 .9.4. 

1 .10. Closed Strctures. 

A set E of valuations is closed if it has the following property 

(we suppose all propositional variables occur in the sequence 

<p. > '~JN) : -1 1~ 

For any valuation u if for all n there is a valuation vEE 
n 

such that v (p.) = u(p.} for all i~n, then uEE. 
n 1 1 

A structure is closed if its situation domain corresponds to a 

closed set of valuations. 

1 .10.1. Topological Compactness. 

The expression "closed set of valuations" is topologically moti-

vated. He define the metric d on the set of valuations in the 

following way~ 

A set of valuations will then be closed in the sense above if and 

only if it is closed with respect to the topology defined by d. 

This topology is also a product topology of a very trivial, com-

pact topology. Hence it is itself compact. This means that it 

has the following important property: 

If the intersec-tion of every finite subfamily of a family of 

closed sets is non~empty, the intersection of the family itelf is 

non-empty. 
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As will become apparent fron the proof of the next theorem, the 

notion of topological compactness is closely related to the notion 

of logical compactness. 

1 .10.2. Theorem (Logical Compactness). 

A set of formulae has a model if and only if each finite subset 

has a model. 

Proof: This follows if we can show that every consistent set of 

formulae has a model. 

1 • J 0. 2. 1 • Contruction of the Hodel Qtl:l. 

Suppose the set IT is consistent. We extend TI to a maximal 

consistent set l:l. Let V be the set of all valuations on the 

simple formulae. For each simple formula A, we define FA to be 

the set { vE V I v (A) E { 1 , t1, } } • Hence FA is both open and closed. 

He now define QL'I as follows: 

QL'I = n (FA. u FB.) n (n F ) n (~FD. ) 
i i 

c. 
2 l l l l 

{A.=>B.}. is the set of all formulae 
l l l 

A=>B in L'l (A, B simple) . 

{c.}. is the set of simple formulae C 
l l 

for which ( (p1 =>p 1 )=>C)EL'I. 

{ni}i is the set of simple formulae D for which (D=>,(p1=>p 1 ))Ell. 

The simple formulae contained in L'l define a two elemen~ valu-

ation w. It is easily checked that wEQ 6 . We now want to show 

that the valuation structure Ot,6 based on 0. 6 with w as the 

distinguished element, is a model for l:l. 

l .10.2.2. Proposition. 

For all simple A, AEL'I iff A is true in Qt6 • 
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iff AE6. 

1 .10.2.3. Proposition. 
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iff + 
wE II AIIO(t,, 

If (A=>B)E6, then A=>B is true in ()t6 . 

i.e. iff w(A) = 1 , 

Proof: This follows immediately from the construction of Q 6 . 

1 .10.2.4. Proposition. 

If A=>B is true in then (A=>B)E6. 

Proof: Suppose A=>B is true in ot6 . This means that 
~ 

i.e. 

Q6 n FA n FB = ¢. By topological compactness, it now follows that 

~ 

Qt, n FAn FB = ¢ for some finite subset 60 of 6. Clearly 
0 

under these conditions the set 6 0 U {,(A=>B)} can have no model. 

This is because Ol6 is in a sense a maximal model of ~ 0 , and 
0 

if a model of ~O contains a counterexample to A=>B, this coun­

terexample must be present in OL~ . By completeness 
0 

60 U {-,(A=>B)} must then be inconsistent, i.e. ~O f-A=>B. 

Accordingly ~ J- A=>B, and by maximal consistency (A=>B)E£1.. 

1 .10.2.5. Propositio~. 

For every formula A of L(S), AE~ iff ot~j:::A. 

Proof: By 1 .7.2, we only need to show this for formulae of ~he 

types A, (A=>B), (p1=>p1 )=>A, A=>,(p1=p1 ) with A and B simple. 

He have already showed it for the two former types. The proofs 

for the two latter types are similar to 1 .10.2.3 and l .10.2.4. 
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1 .10.3. Theorem. 

Every structure is elementarily equivalent to a closed valuation 

structure. 

Proof: The proof of 1 .10.2 applies. 

1.11. Sideview to Hodal Logic. 

1.11 .1. The Systems L(CS) and L(CS)+. 

Consider the following structural constraint: 

(1) for all p. 

This corresponds to a ban on inconsistent situations, and a 

narrowing of attention to (strong) three element valuations. 

VJhen L ( S) is used to describe such structures, we call it 

L ( CS) . (Language of Consistent Situations.) 

A complete axiomatization of L(CS) is obtained by adding to 

(Al )-(A21) the axiom scheme 

(A22) (AA,A)=>B. 

An interesting group of L(CS) structures are those which satisfy 

the following: 

( 2) Given a situation s and a finite set {q1 , ... ,qn} of 

propositional variables such that llq.ll =!=? for all 
l. s 

i~ n. 

For any propositional variable p there is then a situ-

ation t for which llpllt:f? and llq.ll =llq.llt for all i~n. 
l. s l. 

Hhen L(CS) is used to describe such structures, we call it 

L(CS)+. A complete axiomatization of L(CS)+ is obtained by 

adding to (Al )-(A22) the axiom scheme: 
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(A23) ( ( ( AA B ) =>;A) A ( ( AA ., B ) = > -:A ) ) ::) (A=> 1A ) 

These completeness results are easily derived from the complete-

ness theorem for L(S). The proofs by themselves do not reveal 

any interesting properties, and we omit them here. Cfr. pp. 94-96 

of ffi'.J cand.scient. thesis. 

1 • 1 1 • 2 . Lemma. 

Every L(CS)+ structure is elementary equivalent to a closed 

L(CS)+ structure. 

Proof: Let Ot be and L(CS)+ structure. ot is also an L(S) 

structure, and hence elementarily equivalent to a closed L(S)-

structure OL'. All A22 and A23 axioms are true in at, and 

therefore in CV~. Since every L(S) structure satisfying all the 

A22 axioms is an L(CS) structure, and every L(CS) structure 

satisfying all A23 axioms is an L(CS)+ structure, Ot' must be an 

L(CS)+ structure. 

1 . 11.3. Definition. 

s is a subsitua·tion of t if 

+ + 
sEIPI --+ tEIPI and 

sEiPI,--- tEIPI 

for all propositional variables p. 

1.11.4. Definition. 

A situation is a possible 1,vorld if it defines a two element valu-

ation. 
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1 . 1 1 . 5 . Lemma . 

A closed L(CS) structure is an L(CS)+ structure iff every situ-

ation in the structure is a subsituation of a possible world in 

the structure. 

Proof: Obviously, an L{CS) structure in which every situation 

is a subsituation of a possible world, is an L(CS)+ structure. 

Let s be an arbitrary situation in a closed structure for 

L(CS)+. Let q 1 ' ' " • ' qn ' · · · be an enumeration of those propositio-

nal variables q for which I qJ =I=?. Since ()'0 is an L(CS)+ 
s 

n 
structure, for any n there is a sequence <t > of situations r r 

in Q which all agree with s for q 1 , ••• ,qn' and which conver­

ges towards a possible world. This possible world must then be a 

member of Q. Hence we have shown that 

where A 
n 

Q. 
1. 

= ;qi 

Since PW 

there is a 

FA n Q n PW * 0 for all n 
n 

is Ql/\ • • .AQn (Q. = q. if 
l l 

if JqiJs = 0) and Ph' is 

JqiJ s 

the set 

is closed, (n F 
An 

) n Q n PW=I=¢ by 
n 

possible world in Q which agrees 

= 1 ' 

of possible 

compactness, 

with s for 

q.' i.e. in relation to which s is a subsituation. This 
1. 

pletes the proof. 

1.11.6. Definition. 

worlds. 

and 

all 

com-

OA is an abbreviation of •A=>;(A=>A). An M-formula is a formu-

la which is built up using the connectives 0, v, 1\ and , 

only. 0 A is true iff A is false in no situation. \ve want to 

compare this operator to the necessity operator of S5. 
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1 • 1 1 • 7. Lemma. 

If theM-formula A is valid in L(S), then it is valid in S5. 

Proof: From a set of two element valuations on simple formulae, 

and a distinguished member of the set, both an 85 structure and an 

L(S) structure can be built. The rules for interpretation of 

formulae in the connectives 0, v, A and , are seen to coin-

cide, hence a formula in these connectives is true 1n both the S5 

structure and the L(S) structure, or false in both. 

Since all S5 structures are of this kind, any H-formula which is 

valid in L(S), is also valid in 85. The converse does not hold, 

ho'll.rever, since the formula O(A ::J B) ::J ( 0 A =OB) is valid in S5 

but not in L(S). On the other hand, it is valid in L(CS)+. 

This will follow from a theorem below. 

1 .11 .8. Lemma. 

If the M-formula A is valid in S5, then it is valid in all 

closed L(CS)+ structures. 

Proof: Let Ot be an arbitrary, closed L(CS)+ structure, and 

let ot['PH be the structure obtained by removing from ()L all 

situations which are not possible worlds. He must show that G'(, 

and O'C~PH are elementarily equivalent with respect to the set of 

M-formula. 

By J. 11 • 5 there is a function f:Q + Q~PH such that s is a 

subsituation of f(s) for all s. Since we must have f(w) = w, 

and II All :f? for all A, the lemma will follow from the ot,,w 
proposition below: 
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1.11. 8.1. Proposition. 

For all situations s, if II All r"'4 :f? 
V\,.Jf S 

and A is an M-formula, 

then II All(}(.,, 8 = II AI!Jt f' PvJ, f ( s) • 

Proof: We show this by induction on the construction of M-formulae. 

Basis: For propositional variables, this is immediate from the 

definition of subsituations. 

The induction steps for the truth-functional connectives are 

straightforward. 

Consider OA. If there is a counterexample in ot, i.e. an s 

such that IIAII(}(,,s = 0, IIAII()t,~PW,f(s) = 0 by the induction hypo-

thesis, and so there is also a counter-example in OCt PW. Suppose 

there is a counter-example in otl' PW, i.e. an u such that 

II Allot ~ PW, u = 0 . 

tio ad absurdum) 

Since uE PVJ, IIAI!ru E{O,l}. 
VI.Jt U 

Suppose (for reduc-

that II All I1..A v ~_,, u 
= 1 • Then IIAIIQ-li'PW,f(u) = by 

the induction hypothesis. But f( u) = u (since uE PW), so this 

gives a contradiction. Hence we must have II All/l./ = 0, and so 
Vt_.,tU 

there is a counter~example in &e. 

He have now seen that OA is true in OC iff it is true in O(lPW. 

Accordingly, since IIOAII = <Q,¢> or IIOAII = <¢,Q> in all 

structures, D A is either true in all situations in both ~ and 

CCI' PH, or it is false in all situation in both. This completes 

the induction step for 0, and hence the proof by induction. 

1.11 .9. Theorem. 

If A is a M-formula, then A is valid in L(CS)+ iff it is 

valid in s5. 



- II. 33 -

Proof: This follows from 1.11.7, 1.11.8 and 1.11.2. 

1 . 1 1 . 1 0. Remark. 

The theorem states that SS is in a sence a subsystem of L(CS)+. 

The converse, however, does not hold. It is not possible to de-

fine => from the connectives D, v, t\ and ., . In the proof 

above, it v1as shown that a tvi- formula cannot distinguish between 

(}L and 0()' PW when ot is a closed structure for L ( CS )+. If 

=> were defineable using these connectives only, no formula of 

L (S) could distinguish between ()(, and Ol~ PW. But this is 

clearly not so. If (}C. contains a situation s for which 

IPI = ?, -d(p=>p)=>(pv-w)) is true in (}(., but not in O()'PW. 
s 



- II.34 -

2. EXTENDING L ( S) ..12_. QUAJ\TTIFICATIONAL LOGIC - THE SYSTEH L ( SQ) . 

He will now consider a quantificational extension of L(S). More 

or less sophisticated modes of quantification (e.g. generalized 

quantifiers) could be used, but for the sake of simplicity we have 

chosen the ordinary first order quentifiers. 

However, the question of how to define such quantifiers turns out 

to have no obvious answer. If we associate with each situation a 

set of individuals - those present in the situation, we have the 

following alternatives: Is VxA true in the situation s when 

A is true in s for all individuals of s, or should it be all 

individuals whatsoever? L(SQ) contains two distinct universal 

quantifiers, each corresponding to one of the alternatives above. 

2 • ] • Definition of L ( SQ). 

Symbols: 

A countably infinite set 

of individual variables 

For each n and m such 

that m~n, a countably 

infinite set of n,m-ary 

relation symbols R1 , R2 , 

Logical symbols 1, A, v, =>, V, a 

Auxiliary symbols (,) 

By an n-ary relation symbol we will understand a relation symbol 

which is n,m-ary for some m. The difference between n,m-ary 

and n,k-ary relation symbols will only become apparent through 

the semantics. Syntactically they are interchangeable, though it 

will be possible to decide from the appearance of a relation sym-
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bol whether it is n,m-a.ry or n,k-ary (by indices or otherwise). 

Formation rules: 

If x1 , ... ,xn are variables and R is an n-ary relation sym-

bol, then R(x 1 , ••• ,x) 
n 

a formula. 

If A1 and A2 are formulae, so are (A 1AA 2 }, (A1vA2 ), ,A1 and 

{A.1=>A2 ). 

If A is a formula and x a variable, VxA and axA are 

formulae. 

2.2. The Semantics for L(SQ). 

2.2.1. Definition of L{SQ) Hodel. 

A Model or Structure for L(SQ) is a quintuple <Q ,w,D,dom, I I> 

( 1 ) Q is the set of situa·tions 

( 2) w is a distinguished element of Q 

( 3 ) D is the set of individuals 

(4) dom is a func·tion from Q into p (D). 

The function dom assigns to each situation its domain of indivi-

duals, which is a subset of D. 

( 5 ) 

( 6) 

dom(w) = D 

is a function from the set of relation symbols into 

U (~(QxDn)~(QxDn)) such that if R is n-ary, then 
nEN 

I R I E~ ( Q x D n ) ~ ( Q x D n) . 

IRI+ is to be interpreted as the set of those n+l-tuples 

such that a 1. , ••• , a 
n 

bear the R-relation to each 

other in the situation s. 



I R 1- is ~to be intf'o as the set of those n+l~tuples 

<s a 
g 1 SL1C1n that explicitly don"t bear the R-

relation 'co each other in the i t.uation s" 

( '7 ) 
' I 

n 
xD 11 "'" ¢ and 

c u 

This carr to requirement 4 of 

{8) If R 

r1.ember of 

In an n m-ary relat 

reserved for agents vlhich 

sity of an 

A variable ass for:-

Defirlit_ 

For a 

assignment g, tne 

is a 

I PI ! ·~"- i then 

the first m argument places are 

t.CJ present for the truth or fal-

i '" r·elat.io:v1 t.c be determined on the basis 

Ide define to be a func-

the set of individuals in 0{,. 

:Lon funct 

g 

and a variable 

liN 
vv• g 

is defined by 

indu the fol ng way 

Basis 

+ 

g 
,,.,g(x )>EIRI-} 

n 

Induc"cion step: Fc;r 1\ v, , and ""'>, ·the induction step is 

defined as 

is the set of t~ose sEQ + sE II All~ , for every 
vv,g 

g" ·the value at x. 



IL3 

t'h(J23 19 sEQ such that sE II + for AIIOGg' some 
,, 

J is t II s g 

g ' from g in the value at x. 

+ e sEQ such t.hat sE II P.~llr'<d ~· ! for every 
Ul.• ':::1 

·i~ 

il axA l C· t<h~:: 
q ~-~ 

g ' f~r-orn 9 -t:~h~£-? value at x, and 

for s 

+ sEQ such that sE II Allo~ , for some 
leg 

~ .. 
ts tJ:-g::· 

g 

Z:rc)lTi g ~trte value at x, and 

for ::d 0 

exl.J, def1ned 

A la. "tii t11 r to g if 

A forrnula is t:r:ue s It is easily verified 

true or false, and not. both. 

\tal t.J::ue stucture with respect to 

"' c:. § ,, z.::.~ 
--~~------~~~~~z•~=~ 

The fo1lmving basit1 for t1le set of valid 

formula.e of 

cnns A ll s u ·~, s t ·~~~ lid L(S) formulae are 

Since t1t fm." L(S), it is 

effectively deci a formula is an ax of this kind. 

Also, all formul the follovling schemes are 

axioms~ of (P..=>B) (B"">Jl,). A(y/x) is 

the formula obtai substituting for every free 

occurrence of 
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(Axl ) Vx(A=>B} :=1 (3 xA=>B) 

(Ax2) Vx(B=>A} :::::> (B=>VxA) 
X is not free in B 

(Ax3) \ix ( Bv p,) => (Bv\ixA) 

(Ax4) ( (3 xA)AB) => 3 x(A/\B) 

(Ax5} \ixl\_ => A( x) J 
in A, X does not 
occur v>Ti thin the 

(Ax6) J1. { x) => 3xA 
scope of any quantifier 
binding y 

(Ax7) ,vxA => 3 x-rA 

(Ax8) ax ( Bv l\} => ( Bv axA) } is in X not free B 

(Ax9) ( ( exA) .1\B) ='l- ex(AAB) 

(AxlO) ( ( axA) '" C ) => A( x) l In A, X does not 

J 
occur within the 

c~x11) (A(y/x)AC => exA 
scope of any quantifier 
binding y 

In AxlO and Axll, C is the formula R(z 1 , •• "'zn) or the formula 

, R ( z 1 , ••• , z n) , with R n, m-ary and with y among z 1 , ••• , zm. 

(Ax12) 

Rules of inference: 

Hodus Ponens j- A and f-A :::::> B yield f- B. 

Generalization f-A yields 

a-introduction ~A:::::. ( (BAP(x) )=>C) yields !-A:::::> (B=>axC) 

when A, B and c do not contain the unary relation symbol P, 

and X is not free in A or B. 

e~introduction j-A:::::. ( (CAP(x)=>B) yields t-A:::> (exC=>B) 

\vhen A, B and c do not contain the unary relation symbol P, 

and X is not free in A or B. 

a-int.roduction and e-introduction are not rules of inference in 

the sence that the consequent is true in 0C if the premiss is. 

They merely state tha·t if the premiss is true in all structures, 

then so is the consequent. 
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2.3.1. Theorem. 

Every theorem of L(SQ) is valid in L(SQ). 

Proof: The axioms are clearly valid, and the first two rules of 

ference are easily seen to preserve validity. He show this to 

be the case also for a-introduction. The proof for e-introduction 

is similar. 

Suppose A~ (B=>axC) is false in crt,g. Then (B=>axC) is 

false, and is + 
sf n axCII~ . so there an sE II BIIO(, such that By ,g ,g 

the interpretation rule for a, + 
sf II CliO( , for ,g a g' differing 

with g at most at x, and for which g ' ( x) E dom ( s) • Let (}(,' be 

a structure identical to G{,, except that P denotes a "presence 

predicate", i.e. lpl + = { I < )} - < s, a> aE dom s . Hence + sE II P ( x ) HN , , • 
vv ,g 

Since neither of A, B or C contains P, a shift from ot to 

o~· does not alter the interpretation of any of these formulae. 

Also, A and B do not contain x, so a shift from g to g' 

does not alter the interpre·tation of these formulae. Hence 

sEIIBII~, ,g' , sEIIP(x)ll~.: ,g' and s111cll~, ,g' . This means that 

(BAP(x})=>C is false in OL',g'. Furthermore, A is true, so 

~',g' constitutes a counter-example to A~ ((BAP(x)=>C). 

2.3.2. Derived Rules of Inference. 

2.3.2.1. L(S) Entailment. 

If A;, ... ,A~ and B' are substitution instances (by the same 

substitutions) of the L(S) formulae A1 , ... ,An and B, and 

.A. 1 , ... ,A f- B, then 
n L(S) 

Al , ... , A' t-- B' 
n L (SQ) 

Proof: This follows immediately from the deduction theorem of 

L(S), the fact that every substitution instance of a valid L(S) 

formula is an axiom, and the rule of Modus Ponens. 
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2. 3. 2. 2. S~mplified a- and e-Introduction. 

The rules we obtain by deleting the "A" in the rules of a- and 

e-introduction, are easily seen to follow from these rules. We 

will sometimes refer to these simpler rules also as a- and e-

introduction. 

2.4. Definition. 

r is consistent if -.(A1 r\ •• • /\An) is a theorem for no finite 

subset {P~ 1 , ••• ,An} of r. 

2.5. Theorem (Completeness). 

Every consistent set of formulae in L(SQ) has a model. 

The central ideas of the proof below are borrowed from the com­

pleteness proof of Modal LPC in [Hughes & Cresswell 1972]. Cen-

-tral to the proof is the notion of E-formulae ~ 

2 .5. 1 • Definit.ion of E- formulae. 

Formulae of the following kinds are called E-formulae: (P is 

1 ,1~ary and there are no occurrence of P or free occurrences of 

y other han those displayed. He also assume that y does not 

originally occur in C.} 

( i) 

(ii) 

(iii) 

(iv) 

( v) 

3xl'" ::J A(y/x) 

{((AAVxC)=>B A(A=>{BvC(y/x)))) ::J (A=>B) 

(({C(y/x);\A)=>B)A(A=>((3xC)vB))) =:1 (A=>B) 

(((AAaxC =>B)I\((AI\P(y))=>(BvC(y/x)))) =:1 (A=>B) 

( ( (C(y/x),AJ\;\P(y) )=>B),\ (A=> ( ( exC)vB))) =:1 (A=> B) 

They are said to be E-formulae with respect to the variable which 
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is here represented by y, and (for categories iv and v) the 1,1-

ary relation symbol \¥hich is here represented by P. 

Two E-formulae which are identical, except that they are E-forrnu-

lae with respect to different variables or relation symbols, are 

said to be of the same E~form. 

2.5.2. Lemma. 

If IT is a consistent set of formulae, then so is IT U {E} for 

any E-formula E with respect to a variable and (for categories 

iv and v) a 1 ,!-ary relation symbol which do not occur in any 

formula of IT, 

Proof: Suppose (for reductio ad adsurdum) that IT U { E} is 

inconsistent, This means that H :::::> -,E is a theorem, where H is 

the conjunction of some formulae in IT. Furhter suppose E is of 

type iv, i.e. E is the formula 

( ( (AAaxC)=>B)J\ ( (AAP(y} )=> (BvC(y/x)))) :::::> (A=>B) 

Since rH :::J ·~1E, we must have 

f-H :::::> -;(A=>B), 

r-H :::::> ( (AAi'lXC) =>B) 

and ~H :::::> ( ( AA P ( y ) ) = > ( Bv C ( y / x ) ) ) 

'\rJe want to show that the last entails 

f-H::; (A=>(BvaxC}) 

This is proved in the following manner: 

( ] ) 

( 2 ) 

H::; ((AAP(y))=>(BvC(y/x))) 

H::; (A=>ay(BvC(y/x))) 

theorem by the assumption 

1 , a- introd. 



( 3) 

( 4) 

(5) 

(6) 

From 

and 

and 
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H ::J (A=>(BvayC(y/x))) 

~< ) 

"'" P(v))=>C -- .ct. "' 

aye( x)=>axc 

H ::J (A=>(BvaxC)) 

j- H ::J -,(/I"=>B) 

j- H ::J ( (AAaxC)=>B) 

j-H ::J (A=>(BvaxC)), 

2, Ax8, L(S) ent. 

Axl 0 

4, a-intra. 

3, 5, L(S) ent. 

1- ,H follows by the rule of L(S} entailment. 

Hence I1 is inconsistent, contrary to the assumption. This means 

'chat n U {E} must be consistent when E is of type iv. The 

proofs for E-formulae of types i-iii and v are similar. 

2. 5. 3. Lemma. 

Every consistent set of formulae (in an L(SQ} language ~) can 

be extended to a maximal consistent set (in an L(SQ} language !.;• 

which extends which contains at least one E-formula of each E-

form ( in 1./ ) . 

Proof~ Let there be given a consistent set r of formulae. We 

extend the language by an infinite list of 1 ,1-ary relation sym-

bols, and an infinite list of variables. Since the original lan-

guage did contain infinitely many of both these sorts of symbols, 

r is consistent also in this language. We now want to extend r 

to a consistent set which contains at least one formula from each 

E- form of the ne\v language. There are just countably many E-

forms, hence they can be given an enumeration. 

He now define a corresponding sequence <A > of E-formulae in n n 
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the fol 

Infinitely ~' do not occur in r, and only finitely 

rnar.t:.z CJcc:u I"' in 1 
1 rn~ 

lar remarks hold for J , J -ary rela-

tion s. Hence there is a variable y and a 1,1-ary rela-

p r Let 

be the E- formula of fc,nn n+ l i th respect to y (and, in cases 

iv and t.o P 1.nc>2 r 1~s cons it no~."r follows by 

that r u is consistent 

for· a1i 11 ~ Hence r U also consistent. 

In order to obtain the se escribed the lernma, v:re nov1 only 

need to extend r u 1:o a mcnu.mal consistent set. For 

used for consistent sets of first 

or de::::: ic lS a licable. 

2.5.4. Def 

An formula of the R(x1 , ••• , ) . 

A. formuLa :Ls either a proper atomary formula, or it 

is of one of th·r:: V xA or axA. 

Hence all fo:rrr,ulae are built up from quasi-atomary formulae using 

truth-functional connectives 

Lemma,, 

Every maxima corH:;istent:. set 6. which contains at least one formu-

la for each E- form, has a rFJ.odel. 

2.5.5.1. Construc"tion of the Model o-1_,. 

Let:. V be >che set. c£ tour elernent valuations which treat quasi-

atomary formulae as We only demand of elements in V 



V' 

if 

star}t: \ra 

As an exam~ 

the relationship between 

ogy t.he same 

{ vE V I v (l, ) E { 1 , ~ } } 

closed. The subset V' of V is 

li 

of closed sets, hence t is closed itself. 

property: 

la A and every variable ~= 

l 
f 

c 

.-I 
<_ \ 

l 

' 

' 
! 

ere 

tJ-Jere 

' 

a.nd 

is 3 y for 

is a y for 

is a '\! and 
-' 

\:fi~t i ch 

vlftic~h 

a ? 
} 

v(A( 

v(P.. ( 

~axy p 

x})E{l 

x))H 1 .~} 

for 

and v(A ( y/x) ) ,_ { 1 

"1 ~ary P for 

and v(A y x) ~{l .~} 

n 
" the two con~ 

re 

follows: 

iff AE 6. ) • 

he distlnguished element. 

(2 The domain of sit Q u is the Q above.) 

( 3) 'I'11e clorr;_[:±ir1 .i. ivlduals is the set of variables in the 
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(4) dom(v) = {x I there is a n,m-ary relation symbol R and a 

m-tuple , , , , , z > which contains x, such that 
m 

v(R(z1 ,, •• ,z y 1 , ••• ,y )) is in {0,1 ,1,} for some 
m n-m 

( 5) 

x >lv(R(x 1 , ••• ,x ))E{0,1t}}. n n · 

Clearly, ~~ satisfies all requirements of 2.2.1. The assignment 

g is defined as ~he ity map on the set of variables. 

2.5.5.2. Propo~~tion. 

If vEQ, (G=>H)Ell and v(G)E{1,1t}, then v(H)E{1,1-}. This 

follovJs immediate from the construction of Q. 

2.5.5.3. Proposition. 

If (-,(G=>H) )EL1, ·then. there is a vEV' such that v(G)E { 1 .~} and 

v(H)~{l,~}. 

Proof: Suppose there is no vEV' such that v(G)E{l,~} and 

v(ff)f { 1 ,'1,-}. By the definition of V', this means that 

FG n ~H n ( n (~ U F)) = ¢. 
- -- (A=>B)E6 A B 

By topological compactness, there is a finite subset 

of 6 such that 

But then 

FG n FH n ( n (~ , . A 
i<n i 

( 1\ {A.=>B. )) :::l (G=>H) 
i< n 1 1 

= ¢. 

{A.=>B.} ./ 
1 1 1"' n 

is a substitution instance of a valid L(S) formula, and by con-
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2.5.5.4. Proposition. 

If (.,(G0 =>H0 ))E:LI, then there is a vEQ such that v(G0 )E{l,'t-} 

and v(H0 )~{1 .~}. 

Proof: Suppose (,(G 0 =>H0 ))ELI. The set of formulae of the types 

3xA, exA, ~xA and axA can be enumerated. Suppose the first is 

exA. From the construction of Ll, we know there is a variable y 

and a 1 ,1-ary relation symbol P such that 

is contained in Ll. By maximal consistency of Ll, 

( 1 ((A(y/x)AG0AP(y))=>H0 ))El.\ 

or (-,(G 0 =>((exA)vH0 )))ELI. 

He choose one, and call it -, (G =>H ) . 
1 1 

Since (-,(G 1=>H 1 ))ELl, we 

~ 

V'=i=¢ have FG n FH n by 2.5.5.3. \i?e 
1 ] 

also see that 

~ 

(FG n ) (FG ) . FH c n FH 
1 1 0 0 

The procedures for ~' 3, and a are similar. Also for these, 

suitable E-formulae are present in f.\. This process is repeated 

by induction. At step n+J we form 

from -,(G =>H ) 
n n 

and the n+1 'th formula in the (3xA, exA, ~xA, axA)-sequence in 

the same way as 

and the first element in the (3xA, exA, ~xA, axA)-sequence. 

For all n we will have 



and 

By compactness 

(n (F G 
n n 

follows. 
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n FH ) ) n V't¢ 
n 

It follows from the construction of {~(G =>H )} that 
n n n 

( n ( f' 
G n n 

n 'FH ) } n v• c 
n 

Together, these results yield 

-Clearly, no element of Qo" Q is contained in FG n FH • Hence also 

follows. 

( n < E' 
G n n 

n n 

Thus FG n FH n D.t¢, and there is a vEQ for which v(G0 )E{1,~} 
0 0 

and v(H0 )~{1,'J;}. 

2.5.5.5. Proposition. 

FA fl Q c FB n Qt¢ if and only if (A=>B)Ell. 

This follows from 2.5.5.2 and 2.5.5.4. 

2.5.5.6. Proposition. 

wEQ. 

Proof: Suppose wfV'. Then there are formulae A and B such 
~ 

that wE FA n FB and (A=>B)Et:.. But (A=>B) =:J (A =:J B) is a theo-

rem, and by maximal consistence (A =:J B)Et:., i.e. w(A =:J B) = 1, 

-contradicting wEFA n FB. Hence wEV'. 
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In order to show that this w is also in Q 0 , suppose 

w(3xA) = 1. There is an y such that ((3xA) ~ A(y/x))E6, and 

hence w(A(y/x)} = 1. exA ~ 3xA is easily seen to be a theorem 

of L(SQ). Hence also w(exA) = 1-- w(A(y/x)) = 1. For w the 

two other requirements for elements of QO are reducible to the 

two just considered, since w is a two element valuation. Hence 

we have shown wEQ 0 . Since w(p)E{O,l} for all p, wEQ immedia­

tely follows. 

2.5.5.7. Proposition. 

flAil~ = v(A) 
vv•g,v 

for all vEQ. 

The proof is ~' induction on the construction of formulae. 

Basis: For atomary formulae this follows immediately from the 

definition of I . 

Induction step: For truth-functional connectives, the induction 

step follows from the correspondence between the valuations and 

the inductive definition of II II • 

=>: We first show that v(A=>B)E{0,1} for all vEQ. There must 

be some formula C for which v(C)E{l .~} (v is not the 

constant valuation on ?. Hence v(C')E{J,~,O} for some 

C', and so v(C'v.,c')E{l,~}). Since C=>((A=>B)v 1 (A=>B)) is 

a theorem, v(A=>B)E{l,~,o} by 2.5.5.5. There is also some 

formula D for which v(D)E{O,?}. ((A=>B)A,(A=>B))=>D is a 

theorem, so v(A=>B)E{l,?,O}. Combining these results, we 

obtain v(A=>B)E{O,J}. Also, (A=>B) ~ (C=>(A=>B)) and 

(,(A=>B)) ~ (C=>,(A=>B)) are theorems, so v(A=>B) = w(A=>B). 

Hence we only need to show that + wE II A=>BII iff (A=>B)E6. 

Now wE II A:::o:>BII + iff II All+ c II Bll +. By the induction hypothe-
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F~ n Q c n D) 
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iff (FAn Q)::. (FB n Q). 

iff (A=>B)El'l. 

ste~q for is proved. 

But 

Suppose v axA f{l, } . Since vEQ, and hence satisfies the 

requ "cs of 2. 5. 5 , 1 , there is a y and a 1 , 1 -ary rela-

t P such tha·t v ( P ( y) ) E { l , 0,1-} and 

v the induction hypothesis, this means 

IIA y; } . Then { 1 /lr} for the 

(J ( _, ica1 to g e that g" (x) = y. Since 

c g' 
} . dom( v}, II a;.O\Ii 

New supposE· ·v(axf\, E[l,~'}. Further suppose yEdom(v), i.e. 

that E r' '1 o· 1 
l J ' .' ' J where y is runong z 1 , ... ,zm 

and R lS m-ary Since ( (axA)AR(z1 " •• ,z ))=>A(y/x} 
n 

z ))=>A(y/x) are contained in ~. 
I1 . 

r • the induction hypothesis, 

IIA(~l x il This means that IIAII , E{1,"lt} (j(,,g ,v for 

all g tferi th g at most at x, and for \vhich 

9 ' ( x )E dom ( v) • in other words, II axAIII"l-l E { 1 , ~} • Hence 
v~_,,g,v 

v axA)E{1,'1r} iff llaxAii 1'+4 E{l,~}. 
V(n g, V 

vve have show'TI. 

s, :Lt follows that 

v(ex;B E! 1 iff ii r::•xBII E { ] '~} • ,g,v And hence, by Ax12, 

{o:,v}. iff il axlU 
g, Together, these 

esuH:s yield 

II axAII - v ( axA). 

The induction step for 'II is similar. This concludes the proof 

of 2 • 5 ,, 5 • 7 • 
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0-c . .~ is a model for 6 , 

Proof~ 

iff AEb.. 

2.6. A Remark on a- and a-Introduction. 

Plain a- and e-Intrcduction. 

The rule I l-\ -~ B=>C) 
( X is not 

':! ,, 
~ (B""'-'axc) n 

free in A or 

+ wE II All 
()t,g 

B 

vle call roduct.ion. The analogous simlification of e-

introduction we call plain e-introduction. They are simpler than 

a- and a-introduction and do also preserve validity. They are not 

would be too weak. There are cases 

for •,IJhicb A ::J ( ('E:.;,p x)) =>C) a teorem, but not A~ (B=>C), 

eve:n \All1eJ1 P ()Ccurs neither of A, B or C. This is so be-

cause of AxlO and Axll He •<Van-t to show that a- and e-introduc-

tion cannot be aced their "plain" counterparts, and define 

L0 to be the system in IAihich this replacement is made. 

Generalized Semantics. 

In the qeneralized s~nantics for L(SQ) dom is a function of two 
~"----~---=--...~-----~-~---~ 

entities. One coordina-te is a situation, the other an individual 

vcu·iable ~ For each variable x and situation s, dom(s,x) must 

satisfy all requirements of dom(s) in an ordinary structure. 

axA lS true in a situation s iff all aEdom(s,x) have the 

property of A. (For a formal definition, substitute dom(s,x) 

for dom(s) in the definitions of + 
II axAII"W 

o~,.,, g 
and + 

II exAIIO(..g in 



~ II,,51 

It should be noted that dam is a function of the variable x 

Thus ax really binds the variable 

x, since dam s,x is independent of the in-terpretation of x. 

2.6.3. 

(axR(z) ·~~ a valid formula of L(SQ) with the 

g·ei1.eralizcd. r;;_rnantlCS ~ 

P :t-Ct()f ·: If for all aEdom(s,x), but <s,b>t jRj+ for 

a bt II axfd x il + ..l. t-
+ ( y) II , 

Lernrna, 

E-ver·v t.l1.ec)r2n~ ·.Jf •s valid in the generalized semantics for 

L ( SQ) ·~ 

Proof: are easily checked to be valid. 

Mod s Ponens nd eneralization clearly preserve validity. In 

t. 

wE II ,q_ sEPB 

st 

ain a-introduction preserves validity, 

fi 

is false in the structure ()1,, g. 

i i: ior1 .c 
O.L 

for a 
g 

+ 
II axCII.lt c ,g 

situation s in 

' + sp CIIO"Lg' for 

cliff ·Lh C1 at: fJ()St a 4C. X, '""' o lnce neither A nor B 

tains x, A ~ B=> false in ere, g •. 

Th<::· introduction is similar. 

2.6.5. 

is not a complete axiomatization of L(SQ). 

(axR(x ):o:: (a y is a valid formula of L(SQ). 

Then 

the 

a g' 

con-
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3 o }\PPLICi'-\'riOf\f Nl~J<:ED INF'lNJ:CfiVE PERCEPTION REPORTS 

3,] , Prelimi 

Huch of Barwise' on Situation Semantics emerged from 

his study of pe s, cfr. [Barwise 1979] [Barwise 

' ' .J_ ur3 tlC}rta_ " idea on perception out.lined there have 

·been tec1 of [ B se & Perry 1983]. 

Ide ill n.o>v ry t.o lat~e some of these notions within the 

so -far i:n s article, Due to the comparative 

s lici L S(} a rough approximation can be 

·8 

In ·the foL assume that the reader acquainted with 

[B. 3rnplEc on page 1 86, the follm¥ing rule for 

naked infin~ I.Vt::. l')e inferred. Barv1ise and Perry do not 

a rule, and express the need for 

ex entences are embedded. However, we try 

c).e, e' and a location 

overlapping that 

tuation such that. 

d~ !I ~~I ll 1 ~ 2 

,e'; yes 

article is insensitive towards 

connections and d1sco tuationso Also, there is nothing cor-

re to ocatior . This leads us to the following simplifi-

caticrn: 

an e' such that 

II cb II e' 

Ir:. e~ .seei ~'}" 



- IL 53 -

Finally we drop the individual coordinate in the seeing relation. 

This can be interpreted as a restriction of our study to the per-

ceptions of one specific individual. This simplification is just a 

convenience and not really necessary. But it is also of little 

consequence and can eas1 be amended. If we also switch from 

"II ¢11 e" to "eE II ¢11 +,. v1e now obtain: 

eEIISEES ¢11+ 

iff there is an e'EH¢11+ 

such that In e: seeing,e';yes 

This is what we intend to represent within the setting of L(S). 

Now the scheme "In e: • 1 II seelng,e ;yes is one \vhich cannot possibly 

be defined in L(SI, since the situations of this system are pri-

mi ti ves and not sets. Hov1ever, we can get something very similar 

so to speak lifting the seeing relation out of the situations, 

and define a 

+ 
L: c n xn 

~:= 

such that <e,e'> E E corresponds to In e: seeing,e':yes 

The interpretation of ,SEES ¢ is something which Barwise and 

Perry say nothing about. The following I feel is a plausible 

suggestion: 

eE II SEES ¢II 

iff In e: seeing,e';no for every e' (possibly within some 

further specified set) such that 

e' E II¢ II+ 

Now 

In e: seeing e' ;no is something different from 

not (In e: seeing e' yes) 
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Hence we need one more relation such that <e,e'> E L 

corresponds to 

In e: seeing,e'~no 

3.2. Syntax and semantics of L(See*) 

Symbols 

propositional variables 

connectives 1 , v, A, =>, See 

auxiliary symbols (,) 

Formation rules 

(l) Every propositional variable is a formula. 

(2) If A and B are formulae, then so are (A=>B), 

(AvB), (AAB) and ,A. 

(3) If A is a formula without occurrences of See or =>, then 

See(A) is a formula. 

A structure for L(See*) is a quadruple <Q,w, I I ,L> 

(J) Q is the set of situations. These are primitives. 

(2) w is a distinguished element of Q 

(3) I I is a function from the set of propositional variables into 

j) ( Q} x.P ( Q) 

+ 
wE I PI u I PI ( 4) 

( 5) is an ordered pair + -
<L , L > with both elements 

being sets of ordered pairs of situations. 

( 6) and 

+ 
c Z U L 

The last is just the requirement that for every t, <w,t> is a 

member of one, but not both, of z+ and L This corresponds to 

(4) and is necessary in order to ensure that See(A) is either 

true or false and not both. 
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For a given si:ructure (;'It, =<Q, w, I 1,2: >, the interpretation func-

tion II u00 is defined exactly as for Lo (S} on pages II. 6 and 

IL7, with the following addition: 

(vii) + + 
sEIISee(A)II iff there is a tEQ such that <s,t>EL: 

and tE II All +. 

(viii) sE II See (A) II iff <s,t>El: for all tEIIAII+ 

A is true in (}L if and only if + wE II AIIO'(.. 

3.3. Loerrrrna. 

Every well-formed substitution instance in L(See *) of a valid 

L(S) formula is valid in L(See * ). 

Proof: Remark l .4.2 is applicable. 

3.4. Axiomatization. 

A complete axiomatic characterization of the set of valid formulae 

of L(See *) is obtained by adding to the derivation rule and 

axiom schemes of L(S) the following axiom schemes: 

(Sl) (A=>B) ::J (See(A)=>See(B)) 

(S2) (A=>B) ::J (,see(B)=>•See(A)) 

(S3) See(AvB) ::J (See(A)vSee(B)) 

(S4) ,(see(A)vsee(B})=>,see(AvB) 

(SS) See(A)=>,(A=>,(A=>A)) 

(S6) (A=>,(A=>A))=>,See(A) 

3.5. Theorem (Validity). 

Every theorem is true in every structure. 
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Proof: By lermna 3 "3, all formulae indicated by the axiom schemes 

{A1 )-(A2l} are valid in L(See * ). Validity of Sl-86 follows 

immediately from the interpretation rules for the connectives. 

3. 6. Theorem (Complet~E0SS) . 

Every consistent set o:f formulae in L(See *) has a model. 

He prove this f:com the corresponding result for L(S): 

Construction of a model for a consistent set r. --------
Let r be a consistent set of formulae in L(See * ). We extend 

the language by a countably infinite set of new propositional 

variables, one for each simple formula of the original language. 

'rhe propositional variable corresponding to the simple formula A 

is denoted by pA. To ohtain the set r' , vve substitute pA for 

every occurrence of See(A) in formulae of r. 

IT is the set of all formulae of the types 

(A=>B) ::) (p =>p ) 
- 1\ B 

(A=>B) ::) 

P(AvB) => (pAvpB) 

-;(pAvpB) => IP(AvB) 

PA => ,(A=>,(A=>A)) 

{A~>,(A=>A)) => iPA 

Since r is consistent in L(See *), r• U IT must be consistent 

in L(S). r' U IT then has a model (}"G= <D.,w,ll> which is a 

closed valuation structure. In this structure we define an object 

z + = < Z , I ' ·' suchthat CTt/=<fl,w,II,I> isan L(See*)model 

for T' : 

.,.,+ = { <s,t> It~ u /_, {II All +I sf II pAll+} 

" = {<s,t>ltE u '-" { li All+ I sEll pAll-} • 
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3. 6. 2. Proposi·tio~. 

1\.1 ' • ( • v~ ls an L See*) structure. 

Proof~ He mus~c check that ( 6) in 3. 2 holds. Since ()-(_, is an 

L(S) structure, II pAll+ iff ldE II pAll • Hence from the definition of 

2:, <vl,t>E2::+ iff <vi,t>t:>.:~, and this is just a reformulation of (6). 

3.6.3. Proposition. 

+ + 
IISee(A)II ~ llpAII 

Proof: Suppose I ) + sEIISee~A II • Then + <s,t>EI 

L + 
definition of I: ', this implies that sE II pAll . 

3.6.4. Proposition. 

+ ( + llpAII c IlSee A)ll • 

for a + tE II All By 

Proof: + Suppose sE II pAil and suppose (for reductio ad absurdum) 

that 
+ ' + + 

stiiSee(A)II, i.e. <s,t.>p: for all tEIIAII By the 

definition of + 
I: ' this means that II All+::_ U {II Bll +I sf II p 8 11 +}. 

+ Since pA=>.,(A=>.,(A=>A)) is true, IIAII =F¢. By compactness, 

+ + + + 
IIAII c (II B1 11 U ... U II B II ) = II B.1v., .VB II for a finite subset . n n 

{B 1 , .•• ,Bn} of {BI sf1lp8 11 +}, By the truth of 

follov.rs. 

But by repeated use of the true scheme 

must lead to a contradiction, since s111PB.II+ for all i, l<i<n. 
]_ 

3.6.5. Proposotion. 

llpAII = I!See(A)II. 



P:coof fc:11 c ') 
·~ 0 ._} Q ~· 3.6.4 and corresponding results 

for the negat.i 

is a. :T1odel 

Proof: fo1 from 3.6"5' 

es. 

L(See -r: JS :: ':>:ir · :::.oo .,;e:1k, since it allows the possibility of 

see fal e sit~ation 1.~. 

not necessa ly ~ue. The addition of this as an extra axiom 

tures: 

In such a 

1.1: 

,::; fol 

+ 
1- r. I p II 
LC! J':"J 

extra constrain·t on the struc-

wE I p! 

sees QJ t:hen ljl 

then b doesn't see ¢ 

of chap'cer 8 in l Ba.r':Jise .o;_:)d Perry 1983] become valid. 

'The cons·tra nt a.buV•2 can ~J.e strengthened to the following: 

( i) 

(ii) 

T '" T <s,t>E:>:: 

.L 

sE I pI , 

If + sEipj 

J. 

and tEipj' ( tE I PI then 

and tE I p j , then 
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This corresponds to 1:1-10 extra axiom scheMes 

The nc es 

E~ I f b E;.e12s ¢ and lj_J 
' 

then b sees ¢ and b sees c); 

F: I"" L }) se s rb c); 
' 

then b sees ¢ or b sees c); 

ee(¢)/\See(c);)) 

See ¢v0 ~ (See(¢ vsee(q;)) 

are bot:h Vcclid :Ln L(SeE,"' The first follmvs from Sl, the 

second from S3, 

3. 7. 3. Princip1et]_~or2:_cerning Identity and Quantification. 

Barwise and Perry also t fon;ard the following principles: 

c~ If }::> sees ~) ·the IT) then there is something1 such that 

b sees ¢(it. 1 ) 

G: If b sees ¢ (a 11 ) then there is a IT] such that b 

sees ¢(i ). 

None of these are expressible in L(See -x·). However the following 

very rough approximations: 

See(¢(x, ))A.:c ""· x 2.) ~See(¢ (x 2 )) 
J ] 

See( j 

arc':! both expre:ss.it;le o.nd txue in the language L(See Q) obtained by 

combining L(SQ) and L See*), and adding identity. (There are 
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several alternatives for the definition of II x = yll , buth that does 

not concern us here as long as + 
\vE II X = yllot, <] iff g (X) = g ( y) • ) 

The language L(See Q) vvas studied in my cand.scient. thesis, in 

particular, a complete axiomatization was given. This will be the 

topic of a further publication. 
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4. APPLICATION TO THE CONCEPT OF POSSIBILITY. 

The definition of the H-operator in section 1.11 enabled us to 

investigate the connections between the formal systems L(S) and 

SS. But there is more than this to be said about the notion of 

possibility in situation semantics, even within the narrow frar:te 

of the present systems. 

The concept of possibility represented in systems like S5, is the 

concept of philosophical possibility; "possibly A" r:teans "A 

could have been true" or "A does not describe an impossible 

constellation of facts''. However, in ordinary discourse another 

interpretation is intended at least as often. When our informa­

tion is incomplete, we of·ten use "possibly A" as a synonyme of 

"perhaps A is the case". In the terminology of situation seman­

tics, such a usage may correspond approximately to 

(1) "The present situation may be part of a situation in which A 

is the case." 

Could such a notion be represented within possible world seman­

tics? First note that ,A and Poss(A) could never be true at 

the same time. Then suppose Poss(A) is true in a possible world 

w. Since w defines a total valuation on the formulae, either A 

or ,A is true. It cannot be ,A, hence A follows. If we also 

accept the principle A=>Poss(A), the result is that we cannot 

distinguish betv.;een A and Poss (A), and we have a collapse to 

the propositional or predicate calculus. This argument cannot be 

used against L(S), since 

Po s s (A ) = > ( A v ,A ) 

need not be true. 
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Before we try to represent Poss(A) (as defined in (1 )) within 

L(S), we must decide ho'lr! to understand "may be part of". One 

interpretation is our technical term subsituation (cfr. 1.11 .3). 

"This situation may be part of t" should then be read as some-

thing like "Everything true 1.n this situation is also true in t, 

so on the basis of this situation we cannot exclude the possibili-

ty that t is factual. ". 

This could be a viable approximation, but I fear it may turn out 

to be a little confining, for instance in the presence of the 

concept of a situation's associated domain of individuals. In 

order to grant ourselves a little flexibility, we therefore leave 

open the possibility that there can be something inherent in a 

situation \vhich prevents some other situation from being a possi-

ble extension, independently of other facts in the two situations. 

Hence subsituation is a necessary, but not sufficient, condition. 

Since we choose "possibly par-t of" to be a basic notion, we must 

add something to an ordinary L(S) structure in order to represent 

this notion. One candidate for this added feature is simply a 

relation + II on the set of situations. In order to represent 

also "cannot be part of" and a gap in between, we need one more 

relation II-. Poss(A) is then defined to be true in s iff s 

may be extended to a situation t in which A J.S true~ i.e. iff 

there is a tE II All+ such that . + <s,t>EII Correspondingly, Poss(A) 

is false in s iff s cannot be extended to any situation t in 

which A 1.s true; i.e. iff <s,t>E:II for all tEll All "'-

By what we have said so far, we have defined a language L ( Poss * ) 
which is isomorphic to L (See -A ) • Hence we have a complete axiom-

atization at hand. So far we have done nothing to ensure that s 
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ls a subsituation of t if + siT t. Hence we do exactly that, and 

add the structural constraint: 

( 2 ) + If siT t, then s is a subsituation of t. 

A new axiomatization l.s then obtained by adding the axiom 

Poss(A)AB => Poss(AAB). 

A counterpart for the negative extension could be 

( 3) If + 
sEjpJ and tEjpJ 

- -
then siT t and tiT s and the axiom 

It could also be argued that ,Poss(A) is the same as ,A, so 

that 

II Pass (A) II should be defined as IIAII 

and we could dispense with IT . 

Other reasonable additions are the axiom A=>Poss(A) and the 

requirement that be reflexive. 

He note that by the isomorphy of L(Poss *) to L(See *), 

Poss(A) => ,(A=>~(A=>A)) 

i.e. Poss(A) => M(A) is valid. 

Several augmentations of the L(Poss *) structures could be 

studied. An interesting step would be to allow formulae like 

Poss(Poss(A)), and to discuss which additions should be made to 

make valid the right formulae of this extended language. 

It could also be argued that L(CS), rather than L(S), would 

provide the proper framework, since the truth of Pass (A) in a 
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consistent situation should entail the truth of A in a consi­

stent extension. 

The formula 

Po s s (A ) = > ( Po s s ( AA. B ) v Po s s ( AI\ , B ) ) 

could also be of interest, perhaps even L(CS)+ would be the best 

framework for a discussion of this formula. 
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Note. 

This article was based on excerpts from my cand.scient. thesis 

of the same title, which was written at the University of Oslo 

under the supervision of Professor Jens Erik Fenstad. I am 

indebted to him for encouragements and valuable advice during 

·the work on my thesis and in the composition of this article. 
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0. Introduction. 

Some typical examples of mass terms are: v.rater, gold and 

cheese. They are separated from typical count terms like ~~ 

house and book, both on semantic and syntactic grounds e.g. in 

the determiners they take. But the dividing line is notthatsharp. 

Some words are said to belong to both classes e.g. cake, typical 

mas terms like water has occurences as count terms, and it is even 

claimed (Pelletier (1975)) that every count noun can occur as a 

mass term. He shall not consider this claim, but from the mere 

fact that it has been stated, we can conclude that it may be 

better to look upon the distinction between mass terms and count 

terms as a distinction between different types of noun occurences 

in sentences, and not as a lexical distinction, even though many 

nouns nearly always occur in only one of the two categories. 

I shall not try to classify all noun occurences according to 

this dichotomy, nor shall I discuss \vhether such a classification 

is possible. vfuat I shall do, is to separate out two smaller 

classes of noun occurences which are clear cut examples of mass 

terms and count terms, respectively, and whose semantics will 

occupy us in the sequel. The mass terms will be nouns (or nouns 

together with modifying adjectives or restrictive clauses) in 

indefinite singular preceded by one of the determiners all, ~· 

much, most, little, a little or an amount term like two liters of, 

less than one kilo of and so on. The whole noun phrase including 

the determiner or amount term will be called a mass noun phrase. 

In comparison, typical count terms are nouns (or modified nouns) 

in singular preceded by ~· an, or every, or in plural preceded by 

many, most, few, a few, two, three, ... more than two, less than 

three and so on. 
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Definite descriptions will also be of concern to us since 

there are semantic fferences betv,reen expressions like the red 

car and expressions l the water that John drank. Intuitively 

·the first one is generated from a count term, the latter from a 

mass term. Hmvever, since v.'e have abandoned the idea of the 

mass/count dichotomy as a lexical distinction we have also lost 

the possibility ·to distinguish these two definite descriptions on 

purely syntactic grounds. That is maybe not so bad, because it is 

possible to g at least the latter one a second ("countable") 

reading. ~Je shall be careful not to use the technical term mass 

!]?Uf_l phrase to any occurrence of definite descriptions for reasons 

to be given in section l . 

Hany studies of mass terms (e.g. Quine (1960), Parsons 

( 1 970) ) take as the s·tarting point occurences of mass terms with­

out determiners e,g, in the sentence Water is wet. There are 

several reasons for 1,vhy we deviate from this practice. First, of 

course, mass terms with determiners are semantically interesting 

in themselves. Second, it is possible, as we have seen, to sepa­

rate out a class of mass terms with determiners syntactically from 

a class of count terms with determiners. This may not be possible 

for mass terms without determiners, at least not in a language 

like Norwegian where kj¢re bil (drive a car} has the same form as 

drikke vann (drink vJat<-..,.r). Third, if one v1ants to study the seman­

tics of mass terms with no determiners, one runs into problems 

which are independent of the mass/count distinction. Water is wet 

has a form very similar to Horses are kind and one is thus lead into 

problems with so-called generics. On the other hand, in the study 

of mass terms with determiners one can learn from the study of 
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count terms with determiners. He shall particularly profit from 

Barwise and Cooper's (1981) study of generalized quantifiers. 

Fourth, most analyses of the sentence Water is wet (e.g. Parsons 

(1970), l'vlontague (1973 b)) propose to paraphrase it as All water 

is wet or Most water is wet, thus in effect reducing the study to 

the cases we propose to consider. 

Why is the analysis of quantification and mass terms proble-

matic? ~fuy cannot this problem be treated along the same lines as 

"normal" quantification, letting water as a mass term refer to all 

quantifies of the world's water, All water is wet be true if and 

only if every quantity of water is vlet, and Sor:te water is wet be 

true if and only if some quantity of water is wet? I think that 

this approach works if one restricts oneself to the logical deter-

miners all and some, but one gets into problems when more general 

mass noun phrases and definite descriptions are taken into con-

. d . 1 s1 erat1on. 

A definite description like the red car has meaning in a 

context only if there is one and only one red car present. But if 

John drank one quantity of water there were many more quantities 

that he also drank, still the description the water that John 

drank has a clear meaning. There has been two ways to tackle 

this. The first approach, proposed e.g. by Burge (1972), is often 

called r.tereology and stems from Leonard and Goodman's (1940) "cal-

culus of individuals". The idea is to add to the semantic model a 

new primitive relation between the individuals called overlap. 

This in turn gives rise to an inclusion relation betv.Teen the indi-

viduals. Then the description the water that John drank is taken 

to denote the maximal element under this inclusion relation in the 
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set denoted by water that John drank. Hhat is needed to make this 

work, is some restrictions on the semantics that secures this set 

to contain a maximal element, and at the same time does not force 

the set denoted by gold that weighs 2 kilos to contain a maximal 

element. I have not yet seen the necessary details carried out. 

'I'he other approach -to definite descriptions has been to keep 

the model standard and then paraphrase the gold in Smith's ring as 

something like the gold co~tituting Smith's ring (Hontague (1973 

b)) which intuitively works in this example since there is only 

one gold quantity that constitutes Smith's ring. But it is pro-

blematic to paraphrase some definite descriptions and not all if 

one wants a serClantic analysis that match the syntactic analysis as 

in Hontague (1973 a} grammar. It is also a problem to find the 

right way of paraphrasing; e.g. it may seem odd to use constitute 

in connection with the water that John drank. The main objection 

is, ho\\rever, that this is not a sa tis factory formal semantic 

explanation. Even though it is intuitively clear that there is 

only one gold quantity that constitutes Smith's ring vle cannot be 

sure that ~ld consti tutin · Smith's rin \vill denote a unit set in 

every model, at least not if constitute is treated as a normal 

transitive verb and assigned as denotation a (non-specific) set of 

ordered pairs. In that case the cardinality of the set denoted 

by constituting Smith's rina 
~__,J. 

11 vary from model to model, and 

the same will happen with the intersection of this set and the set 

denoted by gold, i.e. the set denoted by gold constituting Smith's 

rir.!..9:. The result will be models where the definite description is 

undefined" 

Then there is the ques'cion how mass noun phrases with non-

logical determiners like much and most or amount terms can be 

handled when water is interpreted as guantities of water. 
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Huch water does not mean the same as many quantities of water, if 

the latter one has any meaning at all. He can say that one glass 

contains more water than another glass, but we will not say that it 

contains more quanti·ties of wa·ter. One proposal for handling much 

(Montague 0973 b)) is to paraphrase much water F as some large 

quantity of water F. But this does not generalize to little or 

to amount terms, ,John drank less than one liter of milk does not 

mean the same as John drank a quantity of milk with volume less 

than one liter. 

liters of milk. 

'I'he latter sentence is true even if John drank 5 

Furthermore it is hard to see that such rewrit-

ings is compatible with a s·trategy that aims at a semantic analy­

sis which is parallel to the syntactic analysis. 

A related problem has t.o do with negation. If some water 

boiled and some water did not boil, there were quantities of water 

that partly boiled and partly did not boil. More precisely, there 

would have been at least as many such quantities as there were 

quantities that boiled. If now negation is interpreted as set-

theoretic complement in the set of quantities then the set denoted 

by water t.ha"c did not boil cannot have smaller cardinality than 

the set denoted by water that boiled. It follows that the sen­

tence More than half (of the) water boiled only can be true if All 

(the) water boiled is true. The sentence 

( 1 ) Much vlater did not boil 

has according to my intuitions two readings - one with wide scope 

negation a.nd the oJcher IAJi01 narrow scope negation: 

( l a) It is not the case that much water boiled 

(lb) It was much \vater that did not boil, 

respectively. If much water boiled, and some water did not boil, 

(lb) will become true with these interpretations. So it seems 
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that interpreting water as quantity of water is not compatible 

with normal interpretation of negation. 

The goal of this paper is to present a new theory for mass 

term quantification whicl!. takes these problems into consideration. 

At the same time we must be able to give an account for the valid 

inferences of previous theories, in particular, of Bunt's (1979) 

examples 

(2) (a) All water is water 

(b) All blue water is water 

(c) All blue water is blue 

We will also consider it as a goal to show how it is possible to 

get a valid form ·to the 

( 3) Huch 1"1ater 

All that evap,nated, disappeared 

.. Huch water dis 

and at the same time not to get a valid argument if much is 

exchanged <,vith little. 'I'he final goal is to show that the theory 

naturally extends to treat amount terms and to give the connec-

tions betv,reen the sentences 

(4) Less than two kilos of cheese disappeared 

(5) The cheese that disappeared weighed less than two kilos 

Before continuing let me add some general remarks. Our aim 

is to give in a uniform way a semantics of natural languages in 

modeltheoretic terms. T'hus we aim to give the semantics uniformly 

(or mechanically) from the syntactic analysis as in Montague ( l 97 3 

a) grammar. This excludes, in particular, any kind of rewriting 
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which is not uniform, 

Further, our interest lies in the natural language itself, 

not in the world ::'Jescribes. This means that the models we 

build are not necessa ly "true" models of the physical world, but 

means to understand the particular, to give valid 

forms to intuitive true sentences and inferences. 

Finally, natural uages have priority not only over the 

physical world, but also all kinds of formal languages and 

logical systems, lfuat is of primary inocerest is the natural lang-

uage and s model t.heore>tic c1renotations, not any intermediate 

formal language. But: an intermediate formal language may be a 

valuable tool in stud t.he semantics of our natural language 

fragment, in particul r, in gai some insight into the complex-

ity of the structure and the inferences in the fragment we are 

studying. 

section 2. 

It is to t.Li.s end that we introduce the system Ll.\1 in 

The treatment here ll be pure extensional. This is not 

because every mass noun rase can be taken to be extensional. 

But we need first to a correct account of the difference 

between mass noun phrases and count noun phrases. 

independent of intensionality. 

The rest of the paper organized as follows. 

And that is 

In section 

one we discuss the idea of homogeneous references and show how 

this gives a clue to a "Boolean" semantics for mass noun phrases. 

In section ·two we construct a simple formal system LM and show 

in section three how a fragment of English can be interpreted via 

it. In section four we discuss the metamathematics of LM, this 

section can be omittedo In section five we discuss a combined 

system for mass terms and count terms, and in section six we 

extend the fragment to include amount terms. 
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1 • Homogeneous re:fe:rencre bo0Jean alaebras. 

Two proposed uni V•3~csals for t.he ~'3emc.ntics of mass terns, 

fsrence have been widely dis-

cussed. On cummulative re!'erence we n:::a.d Quine (i960); "So-

called mass terms like and 'red' have the 

semantical property of r<::?.f·er nsr cumrclt"lE1ti ·'"' any sum of parts 

which are water hc•wever also be 

ful lassifi0:d as mass 

terms such as plurais of one, like Quine, extends 

the category mass ~erms t eome uccurences of adj s - an 

adjective like hea 

A furhter cr.ite proposed, namely dis-

tributive reference 3 ) 
., 

p:±r >:.s c:E something which 

is water are vvater than the first 

criterion for the fol Q ine ( 1 960 ) } g there are 

parts of water, sugar, t l1 to count as water, 

sugar, furniture. small to count as furni-

ture is not too small (p 99) • 

Bunt { 1 979 has poitJt:..:od cn:t -th,~l th can be read in two 

different ways. Either a;.:; a statE:ment about the vvorld around us, 

and in tha-t case it l:S Or as a statement 

about our use of the l3nguage. In tJ1a. e is necessary to 

point out where OlJr ~Jse rna sa the existence of 

minimal parts is reflected. such evidence 

forthcoming. 

Quine's goals in ·'t']ord Object are differen-t from the goals 

of this paper. 

language and the outer wo:r: ld, hmv the used for refer-

ring. This is reflected not on in his onjections to the distri~ 
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butive reference criterion but also in the formulation of the 

cummulative reference criterion. For our purposes it is not cri-

tical if mass terms really refers homogeneously, that is both 

cummulatively and distributively. Rather what is of importance is 

whether they behave as if they did and what it means to behave in 

such a way. 

From this discussion and from the fact that we have defined 

mass terms as certain specific occurrences of nouns in sentences, 

it is natural to take as point of departure some examples of sen-

tences containing mass terms: 

(6) (a) Much water boiled 

(b) John drank much water 

(c) * Much water weighed two grams 

(d) * Much \vater contained ten grams of salt. 

Rather than focusing on the mass terms alone, let us shift 

attention to the rest of the sentences and ask which semantic 

property is shared by the phrases boiled and John drank in opposi-

tion to weighed two grams and contained ten grams of salt? It is, 

of course, the property of homogeneous reference. If John drank 

two parts, he drank the sum of them and any smaller parts con-

tained in them. On the other hand, the sum of two (different) 

parts, each weighing two grams is more than two grams and parts of 

them weigh less than two grams. An analysis of more examples 

gives the same result, so I propose the following as a linguisti­

cal universal3 : 

Homogeneous Constraint: 

Mass noun phrases combine only with homo­

. 4 f geneous express1ons to orm sentences. 
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Intuitively, a homogeneous expression is an expression which 

refers homogeneously. But to avoid undesirable references to the 

outer world and speculation on whether an expression refers homo-

geneously in all possible worlds we will redefine homogeneity 

without mentioning reference: 

Let a be a noun which can occur as a mass term, and let ~ 

be a noun modi which can combine with a to form a mass term. 

The expression 6 is said to be homogeneous if and only if the 

follmving two inferences are valid: 

CUM The ~a 6 

The no·t~,~ a o 

DISTR The a o 

T"here is some ~a: 
-~~--------~---

To give an example on how this definition works, say we want to 

test disappeared Then we can choose gold for a, white for ~ 

and substitute disappeared for 6. The two inferences then become 

(7) The white gold disappeared 

The not-white gold disappeared 

, . The gold disappeared 

(8) The gold disappeared 

There was some ll'lhi te gold 

.. The white gold disappeared 

which are valid. He can test any expression which can combine 

with the white gold to form a sentence, with this test. For a 
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phrase like John drank the word order has to be changed, of 

course, so the first premiss in CUM reads John drank the white 

gold. 

It is our opinion that the phrases disappeared, boiled and 

John drank pass this test, while contained ten grams of salt and 

weighed two kilos fail. 

Is it possible to restate the Homogenous Constraint in purely 

syntactic terms? We think it can be done at least to some extent. 

First, nearly all intransitive verbs seem to be homogeneous and 

can combine with mass noun phrases. But some exceptions exist, 

including meet and 

For transitive verbs the picture is more complex. We have 

seen that John drank can combine with mass noun phrases. That is 

also true for the phrase t'1any men drank, even though this does not 

pass the homogeneity test, It is clearly enough that what each 

man drank was homogeneous, so a slight modification either in the 

Homogeneous Constraint or in the test is necessary to cover this. 

It is more doubtful whether mass noun phrases can be found in 

direct object position with any transitive verb. It is at least 

difficult to get an extensional reading of love much water. 

Sentence (6d) indicates that a mass noun phrase cannot stand 

in subject position to a transitive verb when the direct object is 

quantified, and that seems to be the case for all transitive 

verbs. On the other hand, when the direct object is not quanti­

fied a combination is possible, e.g. much water contained salt. 

Similar observations as for transitive verbs may be done for 

3~place verbs. Finally, sentence (6c) exemplifies that mass noun 

phrases cannot have subject position to measure verbs. 
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Observe that if much water is exchanged with the water that 

John drank in any of the example sentences in (6), the result is a 

well-formed sentence. Definite descriptions are not subject to 

the Homogeneous Const nt, and that is one reason why they should 

be kept separate from mass noun phrases. 

Let us turn to the formal semantic treatment of mass terms, 

and start with the observation that countability pervades current 

formal semantics. This means that the denotation types of all 

types of terns is determined by the fact that they occur in sen-

tences vlhere the noun terms are count terms. Thus a verb phrase 

like disappeared is taken to denote a set, and we get a natural 

semantics of the sentence a man disappeared, viz. it is true if 

and only if the intersection between the set denoted by man and 

the set denoted by disappeared is non-empty, i.e. contains an 

individual. But if v.re look at the sentence much water disappeared 

it may be unnatural to let disappear denote a set, and we may run 

into problems if disappear is presupposed to denote a set and the 

denotations of water and much water are forced to submit to this. 

He must thus be v.rilling to rethink the semantics and not only ask 

for the right types of denotations for the mass terms, but also 

for the co-occurring terms. And it is here that we shall take our 

cue from the Homogeneous Constraint. And we shall also have to 

account for the semantic difference between the verb phrases in 

(6a) and (6d), which are given the same type of denotation in the 

count case. 

The proposal for a semantic model for mass terms is based on 

the concept of a boolean algebra. A boolean algebra is a set A 

with at least two elements named 0 and 1, where there is de-

fined a binary function +, sum, which to any two elements a and 
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b gives a new element a+b, another binary function x, product, 

which to tvm elements gives the product, axb, and a unary function 

complement, >vhich to the element a gives its complement a. 

(Other names and symbols such as v and joint for + and A • • 

meet and in·tersection for x are frequently used). The last part 

of the definition of a boolean algebra is certain postulates or 

laws the functions and special elements have to consider, such as 

a+b = b+a (commutati ), a+a =a (idempotens), a+a = 1 and 

axa = 0. A typical example of a boolean algebra is the set of all 

subsets of a nonempty set X, \oJhere 0 and are interpreted as 

¢ and X and +, x and are interpreted as U (union), n 

(intersection) and 
-x 

(complement \'llith respect to X) respectively. 

Hhat will be of interest to us later is that it can be proved that 

every boolean al is isomorphic to a subset of the set of all 

subsets of a nonempty set X >Ill th these interpretations. 

It is not necessar:y with so many primitives to define the 

boolean algebras. It is, for example sufficient with x, -, and 

the following set of postulates (Hughes and Cresswell ( 1 972)): 

BAl A contains at least two elements 

BA2 If a,bE.A. then aEA and ax bE A 

BA3 If a,bEA then axb = bxa 

BA4 If a, b, eEl', then ax ( bx c) = (ax b) x c 

BAS For all a, bE A, if ·there is some c such that 

-axb :::::: ex c, then axb = a 

BA6 For all a,b,cEA if axb = a, then axb = ex c. 

From this 0 and + can be defined: 

0 = ax a 
df 

= 0 
df 

--s 
a+b = (ax b) 

df 
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The intended u:3e of a boolean algebra as a model for senten-

ces containing mass noun phrases is then the following: Homogene-

ous expressions like boiled and John drank shall denote elements 

in the algebra. Mass noun phrases like much water shall denote 

subsets of the algebra and the sentence much water boiled will be 

true if the element denoted by boiled is a member of the set 

denoted by much water. Mass terms shall also denote elements of 

"the algebra, and determiners shall denote relations between ele-

ments of the a or, equivalently, functions which to ele-

ments of the algebra ass s subsets of it. This resembles the 

generalized quanti£ approach to count terms, where determiners 

are taken to be functions which to subsets of the individual 

domain assign sets of such subsets (Barwise and Cooper (1981 )). 

The determiners all and some will have a fixed (or logical or 

modelindependent) interpretation. The interprettion of ~ shall 

be the function which to each element a in the algebra assigns 

shall be such that 

II all II (a) = {~I a:(~} where a(~ is defined to be o;x~ = a. 

This model is a formal model for the language - not a model 

of the world. Still it may be of help to think that the elements 

of the algebra a.re the quantities (or portions of matter or bits 

of matter) in the actual ~,vorld. is the quantity which is the 

sum of all the other quantities and 0 is the empty quantity. 

Hater refers to the totality of the worlds water, boiled to the 

totality of what boiled at the time interval involved and some 

water boiled is true if and only if the quantity which is the 

product of these quantities or what is refered to by the water 

that boiled is different fron the empty quantity. But since the 

model works as well for abstract mass terms as for concrete mass 
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terms, it is necessary to think of the elements of the boolean 

algebra as more general than physical quantities. 

Let us see how this model can be used to solve some of the 

problems presented in the introduction, and let us start with the 

question on how adjectives can be treated. Only predicative 

adjectives will be considered. An adjective a is predicative if 

x is an a_§ if and only if x is a and x is a @ for every 

noun ~. For count terms this is the same as saying that ex can 

be considered as a general term and be treated as a predicate in 

an analysis in a first order language. Typical examples are red 

and square. We observe hmvever, like Quine ( 1960) and Bunt 

(1981 ), that only a smaller class of these can stand attributively 

to mass terms 

(9) (a) Much red water boiled 

(b) * . Much square v:ater boJ.led 

It is the same class which can stand predicatively to mass noun 

phrases: 

( 10) (a) Much of the water was red 

* Much of the water was square 

Of course the semantic difference between red and square lies in 

the fact that red refers homogeneously and square does not. We 

can use the previously established criteria CUH and DISTR to 

the expression was @ to decide whether a predicative adjective ~ 

is homogeneous or not. And our observation is that of the predi-

cative adjectives only the homogeneous ones stand attributively to 

6 
mass terms and predicatively to mass noun phrases . 
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Homogeneous predicative adjectives shall denote elements in 

the boolean algebra. A mass term like red water shall denote the 

product of the denotations of red and water. The verb phrase was 

red shall denote the same as red in this simplified model where 

only one time interval is considered. The reader may check that 

the sentences of example (2) become valid with these inter­

pretations. 

Adjectival clauses behave similar to adjectives. Vfe observe 

that only clauses constructed from homogeneous expressions combine 

~vi th mass terms as 1:hese examples show: 

(ll) (a) f'iuch (of the) water that John drank, 

(b) 
-A 

Much (of the) l,vater that weighed two grams, 

In the model that John drank can be given the same denotation as 

John drank, an element of the boolean algebra. Hhat the denota­

tions of John and dran~ shall be, will be discussed in part 5. 

In the introduction v.1e discussed the possible readings of the 

negation in the sentence much water did not boil. The wide scope 

reading (la) will be captured in the propositional part of the 

model. To capture the narrow scope negation we let (lb) did not 

boil denote the (boolean) complement of the denotation of boil. 

This will also give a sound denotation to water that did not boil. 

Definite descriptions will be given a very simple analysis in 

this model. The water that John drank shall denote the same ele­

ment of the algebra as water t.hat John drank. This is well-defined 

since water ·that John drank denotes one and only one element. The 

difference bet"~ileen water and the water is intuitively that water 
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refers to the totality of >~Vater in the world while the water 

refers to a definite subquantity. That is also why it is more 

natural to say much of the water that John drank than much water 

that John drank. In a more fine-grained analysis where place­

references and tense, aspect, and time-references are taken into 

consideration, ·this difference has to be made clear. At this 

stage however, we shall not differentiate semantically between 

water and the water nor between much water and much of the water. 

The sentence (12a) can then be paraphrased as (12b). 

(12) (a) The water boiled 

(b) All (the) water boiled 

Definite descriptions can also combine with inhomogeneous expres­

sions as \ve saw in 

(5) The cheese that disappeared weighed less than two kilos 

Here the inhomogeneous verb phrase weighed less than two kilos 

shall denote a subset of 'che boolean algebra. The sentence is 

true if the element denoted by the cheese that disappeared is a 

member of this set. It is easy to see the problems which would 

arise if inhomogeneous verb phrases were to denote elements of the 

algebra. Thus in our proposal verb phrases get denotations on 

different levels depending on whether they are homogeneous or not. 

This will give a natural account for the lack of grarnmaticality of 

the examples (6c) and (6d), It will also bring about that the 

rewriting in (12) is uniform, i.e. whenever the verb phrase is 

homogeneous rewrite the a as all (the) a. 
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2. LM - A logic for mass noun phrases. 

A LM language consists of: 

2. 1 . Logical ~§y_mbols o 

a) propositional connectives: v, , 

b) parantheses: (,) 

c) two operator ls~ - (unary), • (binary) 

d) two logical determiners~ lUl, Some 

2.2. Non-logical symbols. 

a) a nonempty set of constant symbols, e,g, ~~ E' £• 

b) a (possibly 

e.g. D,, D.., 
-1 -L. 

2.3, Formation rules~ 

Fl~Terms 

) set of nonlogical determiners, 

a) constant symbols are terms 

b) if t is a term, then (-!) is a term 

c) if s and t are terms -then (_!:• ~) is a term 

F2-Quantifiers 

if D is a deterrniner and t is a term, then !2_(!J 

quantifier 

F3- Formulas 

a) if Q is a quantifier and t is a term then .Q.{_!J 

formula 

is a 

is a 

b) If E and g are formulas, then (Evg) and ,E are 

formulas 

The well-famed e~~pig~ of the language is defined to be any~ 

thing that can be built up by using the rules Fl-F3 a finite num-

ber of times. 
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Other propos onal cormecti ves can be defined in the usual 

way: 

pAq = ' ( -;q) 
df 

p+q = q 
df 

Parantht~ses ;pJ]l be tted ',vhen this does not give rise to 

ambiguities. 

2,4, Semantics 

A model for a L consists of a boolean algebra 

<A,+,x, ,0,1> and an interpretation function H•ll defined on the 

non-logical s L such that 

Sl a) llaiiEA for constant symbol a 

b) For each non- ical determiner symbol !2_, 11]211 shall be 

a function vihich t.o each element aE A gives a subset 

II Dli (a of l'i such that 

bEIIDII{ if ax bE II D II ( a) 

(II Dll a "li :5 a). 

The inte ions of ·the expressions of the language can then be 

given by ext the function ll•ll. 

S2 a) II All II is the function 1.vhich to each aE A gives 

the l:l<.Jolean ring relation which can be defined 

by: a<b if and if axb = a) 

b) IISomell is the func·tion which to each aE A gives 

II Some li ( a) """ { bE A: ax bt- 0} • 

S3 a) II ( ~t) II = iltll for every term t 

b) II (!.• ~)II = II !11 x 11..§.11 for all terms t and s. 

S4 IIQ(!:)II = II.Q.Il (11!11) for every term t and and non-logi-

cal determiner D. 
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S5 a} If Q is a quantifier and t a term, then 

b) 

If ot= 

If 4J 

I 
l 1 

IIQ(_~)II = 

and (~) ctre 

( 
II ;¢II =~I 

~ 
r 

li ¢ v <jJ II ~J~ 

<<A,+,x, ,,0,1>,ii•ll 

if and only if 
othervlise 

formulas, then 

if II 4> II = 0 
if II¢ II = 1 

if II 4> II - 1 or 
if II 4> II = 0 and 

is a model and 

II til Ell Q!l 

II <jJ II = 1 
II <!1 II = 0 

¢ a formula such 

that 11¢>11 = 1, ¢l is said to be true in ()t; or equivalently Ot 

is a model for ¢ (in symbols ot ~¢). If all the formulas in a 

set of formulas r are true in C't, ()t is said to be a model for 

r (ot, Ff) , A formula \]> is true in every model is valid 

In the rule Sl b) 'was presupposed that every determiner 

D forms a quantifiar 11£11 (a) which "lives on" a. This is an 

empirical fact taken over from Barwise and Cooper's (1981) treat-

ment of the count det:erm:Lners. It seems to be true of mass deter-

miners as \vell and is as easy to formulate in this semantic frame 

as in the set-theoretical one. 

An important subclassification of the determiners in the 

count case can also be formulated in this frame. A quantifier Q 

is said to be monotone (increasing) in a model if for all a,bEA 

the following holds: aE II tJII and acb implies bEHQH. A deter-

miner D is said to be monotone if it always gives rise to mono-

tone quantifiers. Monotone decreasing quantifiers and determiners 

can be defined in a similar way. 
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3. Application of LM to a small fragment of English. 

In this section we present a small fragment of English con-

taining mass noun phrases together with a translation procedure 

into the system LH, thus giving the fragment a modeltheoretic 

semantics. 

3o1. Lexicon. 

N - {water, gold, salt} 

AD - {blue, hot} 

VP - {boiled, evaporated, disappeared} 

Det- {all, some, much, little, one kilo of, less than two 

kilos of} 

3.2. Syntactic rules. 

We define the set of structural descriptions. 

SRO - Lexical insertion: 

If a is a word listed in the lexicon under A then 

[A a] is a SD. 

The phrase structure rules will have the form A + BC which is to 

be read: if a,~ are SD's of forms [By] ,[co] respectively 

is a SD. 

SRJ - s + I,NP VP 

NP negVP - if the VP is not already negated 

s and s 

0! or s 

SR2 - NP + r~et N 

~ Det R 

I net of DD 

Go 
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SR3 - DD -+ the N 

SR4 - N ~ {: N 

R 

SRS - VP -+ was AD 

was N 

negVP - if the VP is not already negated 

SR6 - R -+ that VP 

negVP is the negation of the VP. A VP which is not negated 

has either the form was a or it is a lexical expression of the 

form a-ed. In the first case negVP is was not a, in the 

second case negVP is did not a. 

3.3. Translation into LM 

'i/le define the translations into LM of the expressions in 

the English fragment inductively on the structural descriptions. 

A translation a' of an expression a is uniquely determined by 

the derivation of a, but not necessarily by a due to the 

ambiguity of the negation. 

TO - a) Each word listed in the lexicon under N, AD or VP 

shall be translated to a constant symbol. 

b) The determiners all and some shall be translated to the 

logical determiners All and Some respectively. 

c) Other words listed in the lexicon under Det shall be 

d) 

translated to non-logical determiner symbols. 

If a is a SD of the form [X ~] where ~ 

lexicon, then the translation of a, a' is ~' 

is in the 

given in 
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Tl - ( S [ NP a ][ VP ~ J ) translates as a ' ( ~ ' ) 

( S[ NPo; J neg[ VP~ J " " ,a I ( ~ ' ) 

[ s[ st1>] and[ s<V]] " " <I> I 1\cjJ I 

[ s[ s4>] or[ sq.,]] " " <I> I vq., ' 

T2 - [ NP[ Det0 )[ Na)] " " 6'(a:') 

[ NP ( Det 0 J ( Rp J J " " 6 ' ( p ' ) 

(NP[Deto)of[DDyJJ " " 6 ' ( y ' ) 

[ NP[ DD y J) " " All(y I) 

T3 [ DD the[ No:) J " II a:' 

T4 - [N[ADc:J[1:l]J " " (e:'•a') 

[ N[ No: )[ Rp ) J "' II (a'•p') 

TS - [VPwas[ADE:]] " " E: ' 

[ VPwas[ No: J J " " a' 

[ VPneg[ VP~]] " " ( -~ ' ) 

T6 - [Rthat[VP~JJ " II ~ I 

3.4. Examples. 

The sentence 

( 1 ) Much water did not boil 

can be given two different syntactical derivations: 

( 1 a) ' [ 8 [ NP[ DetMuch] [ tlV'ater]] [ negdid not] [ VPboil] J 

( 1 b) ' [ 8 [ NP[ DetMuch] [ Nwater]] [ VP[ neg did not) [ VPboil] J] 

with corresponding LM-·translations. 

( 1 a) '" 

( 1 b) II 

,Huch (water) (boil) 

Huch (water) (-boil) 

which reflects the two possible readings of the sentence. 
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The sentence (2c) gets the derivation (2c)' and the valid LM­

translation (2c)". 

( 2c) 

( 2 c) ' 

( 2c)" 

All blue water was blue 
7 

[ 8 [NP[DetAll][N[ADblue][Nwater])J[vp~[ADblueJ]] 
All (blue• v1at.er) (~) 

The inference (3) gets the translation 

( 3) ' Much ( 'lt<!a ter )(evaporate) 

All(evaporate)(~sappear) 

:. Much(water)(disappear) 

This inference is val if Much is demanded to be monotone in-

creasing. Since it is not reasonable that little or less than two 

kilos of are monotone increasing, the inference will cease to be 

valid if ~uch is exchanged with any of these. But if on the other 

hand less than two kilos of is demanded to be monotone decreasing 

then the following inference gets a valid translation 

(13) Less than two kilos of water disappeared 

All that evaporated, disappeared 

:. Less than two kilos of water evaporated 
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4. Formal aspects of the logic LM. 

\tJe now turn to a study of the model theory of the language 

UL A reader who does not 'l'lant to go into the mathematical 

details may W'ithout loss of continuity proceed to section 5. 

He start with the simpler system LA. A LA-language is a 

LM-language with no non-logical determiners. The determiner Some 

can be defined from All by the schema: 

Some(t)(s) <-> ,All(t)(-s) 

LA can then he axiomatized as follows: 

A.xiorn Schemata 8 : 

for all terms t, s and r: 

Al All(t)(t) 

A2 All(t)(s)A~11(s)(r) ~ ~ll(t)(r) 

A3 All(t•s)(s•t 

A4 All(t•s)(t) 

AS All(t) (s)AAll(t) (r) ~ A~_!(t) (s• r) 

A6 All(t•(-s))(r•(~·r)) ~ All(t)(s) 

A7 All(t)(s) ~ All(t• (~s)}(r• (-r)) 

A8 Al~(t)(r• (-r)) 7 ,All(-t)(r• (-r)) 

Rule of inference: 

If <P is a tautological consequence of <V 1 ,</1 2 , ... ,<jln, then 

from <V 1 ,</1 2 , ... ,<Vn to infer ~. 

A proof is defined (in the usual way) as a sequence of formu­

las where each formula is either an axiom or follows from the 

earlier formulas in the sequence by the rule of inference. The 

last formula in such a sequence is said to be provable or to be a 

theorem. As usual we write ~~ to assert that ~ is a theorem. 
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If we allow formulas from some set of formulas 2: in the 

sequence, 4> is said to be provable from L: (2: r~). A set of 

formulas is said to be consistent if there is a formula ~ 

tha"t not L: ~¢ • 

Theorem 1. Every theorem is valid. 

such 

Proof. Remembering that the interpretation of All is nothing but 

the boolean ordering relat <, it is straightforward to check 

that all the axioms are true in every boolean algebra. And the 

rule of inference o£ course preserves valinity since the interpre­

tation of the propositional calculus is "normal". 

q.e.d. 

Theorem 2. 

a) Every consistent set of formulas has a model 

b) is provable from Z if and only if <P is true in every 

model for L: o 

c) is provable if and only if it is valid. 

Proof. Since the tautology rule is the only rule of inference, we 

have that 

if :w{r-<P} 

ru{~}~¢ if and only if 

is inconsistent. Hence 

Zr~~<P and Zr~ if and only 

b) follows from a) and c) is 

just a special case of b). To prove a) suppose E is a consi-

stent set. Then E can be extended to a maximal consistent set 

r, that is a consistent set vvhich is not properly contained in any 

larger consisten"t set, For every formula 4> ,r~¢ if and only if 

Q>Er, and either 

A model for 

<PEr or •¢Er but not both. 

r, and hence for E, can then be constructed as 

follows. Define the relation ~ on the terms by 
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t:::s if and only if r~All(t)(s)AAll(s)(t) 

This relation is clear sywnetric and from the axioms Al and A2 

it follows that it: is reflexive and transitive, so it is an equi-

valence relation. We can write [t] for the equivalence class of 

t, A for the set of equivalence classes and define the unary 

operation and binary operation x on A by 

[t] = [(~t J 

[t]x[s] = [(t•s 

It. is necessary to ch·eck tl1at these are well-defined. We leave 

the first one to thE:: reader and verify the second one. Suppose 

t"'r and S"'P· vJe must sho>N' that (t•s)::::(rop). 

·- from the definition of t::::r by the 

tautology rule 

II r~All(t• s) (t) instance of A4 

III rt-All(t® s) (r) - from I and II with the aid of A2 

IV fi'-All(s)(p - from the definition of S"'P 

v f!-lli(t•s){s) - from the axioms A4, A3 and A2 

VI rt-~ll(t•s)(p) - from IV and v with the aid of A2 

VI I !'t-All ( t s s) r • p) - from I I I, VI and AS 

VIII f!-~11( r• p) ( t• s) - by an argument symmetric to I-VII 

IX - from VII and VIII. 

The next step is to prove that the structure <A,-,x> is a 

boolean algebra. One way to do this is to check that the six 

principles BAl-BA6 listed 1n part 1 are satisfied. He give one 

example, BAS. Suppose a,b,cEA and (axb) = (cx"C;). He shall show 

that axb = a. There must be terms t,s,r in the language of r 

such that [t] =a, [s] = b, [r] =c. It is sufficient to show 
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I rrAll(te(-s))(r• (~r))- from the supposition 

II fj-All(t)(s) - from I and A6 

III fi'-All(t)(t) ~ instance of Al 

IV fi-All ( t) ( te s) - from II, III and AS 

v rf-All(t•s) (t) - instance of A4 

VI (t• s)zt - from IV and v. 

The last step is to define the interpretation function 11•11 

on the constant symbols by II all = [a], and to check that 

oc = <<A, • X) •' li II ) a rnodel for r or in other vmrds that 

fl-¢1 if and only if iJL, F¢ for every formula cp. This must be 

checked first for formulas of the form All(t)(s) and then by 

induction for propositional combinations of such formulas. 

q.e.d. 

Theorem 3. LA has a decision procedure. 

Proof. Theoreru 2c gives a characterization of the valid formulas, 

but not a way to decide if a formula is valid or not. To see that 

there is a method for doing this we start with an example. A 

formula with only two constant symbols a and b will have its 

truth-value in a model totally determined if vle know which of the 

- ~ ~ ~ 

elements li all xn bll, II all xll bll, II all xn bll, II all xU bll that equals 0 and 

which does not. There 
4 

is only 2 different answers to this ques-

tion and since a model has at least two elements it will be suffi­

Ll. 
cient to check 2'-l different models. This line of argumentation 

may be repeated in the more general case to state that for a for-

mula with n different constant symbols it is sufficient to in-

spect 
( .,n) 

2 "- ~ 1 differen·t models. 
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Implicit in the proof of theorem 3 is a normal form theorem 

for the system LA. Let 4> be a formula in the constant symbols 

a 1 ,a 2 , ••• ,an. Then it is not difficult to prove that 4> is prov­

ably equivalent in LA to a formula 4>' which is a propositional 

combination of formulas of the form 

where each b. 
1 

is either a. or 
1 

(-ai). The reason for this is that Some(b1 •b2 • ... •bn)(b1 • ••• •bn) 

is true in a model OC = <l'\,11 II > if and only if 

llb 1 11xllb2 11x ••• xllbnii=FO. From the normal form we can derive a proof 

procedure for the system LA. q.e.d. 

Before taking the whole LM into consideration we shall make 

some more comments on the system LA. First observe that Al-AB 

can be taken as axioms for the first order theory of boolean alge-

bras letting t, r and s be variables, and function 

symbols and All a reLation symbol. So this is one possible answer 

to the question (raised by Parsons (1970)) whether mass terms 

shall be translated into names or predicates in a first order 

analysis, For the other possible ansv1er we start with a lemma. 

Lemma. A set of LA formulas r which has a model has an atomic 

model, that is, a model where the boolean algebra is atomic. 

Proof. A boolean algebra <A, x, +,-, 0, 1 > is isomorphic t.o an 

algebra 
-x 

<B,n,u, ,¢,x> for a non-empty set X where B cP(X} 

(see e.g. Halmos (1963) for a proof). So if <<A,x,+, ,0,1>,11•11 > 
_.., 

is a model then <<B,n,U, --,¢,X>,foJI•II> is a model where f is 

an isomorphism from A to B. It is easy to see that the com-

pleted model 
-x 

<<SJ(x),n,u, ,¢,X>,foJI•II> verifies the same formu-

las and hence is a model too. 
q.e.d. 
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One consequence of this is that is is impossible to formulate 

in LA that a model is non-atomic, even if one uses an infinite 

set of formulas 9 . So the semantic aspects of mass terms that can 

be expressed in LA, and as we shall see later in the whole LM, 

is independent of \vhether mass term references have smallest parts 

or not. 

LA does not only have a direct relationship to the first 

order theory of boolean algebras but also to first order langu-

ages, in particular in the form given in Barwise and Cooper 

( l 981) To make this explicit, given a LA-language L, the L(GQ)-

language L' which has a set of unary predicate symbols correspon-

ding to the set of constant symbols in L as the only non-logical 

symbols, will be called the corresponding L(GQ)-language. A 

translation f from L into L' can be defined inductively as 

follows: 

i) If a is a constant symbol then f(_~) = Pa, the corre-

spending predicate symbol 

ii) If t is a terrn of form (-s) and f(s) is defined, 

then 
A 

f ( t) = x[ 1 f ( S) (X) ] 

iii) If t is a term of form (s•r) and f(s) and f(r) 

are defined then f(t) = ~[f(s)(x)Af(r)(x)] 

iv) f(All) = Every 

v} I£ Q = D(t) is a quantifier and f(D) and f(t) are 

defined then f(Q) = f(D}(f(t)) 

vi) If 4J = Q(t_) is a formula and f(Q) and f(t) are 

defined then f(¢) = f(Q)(f(t)) 

vii) If ~ = ~~ and f(~) is defined then f(~} = ,f(~) 

viii) If ~ = ~v~ and £(~) and f(~) are defined then 

f(¢) = f(<)J)Vf(yj} 
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Theorem 4. A set for formulas r in a LA-language has a model if 

and only if the translation f[r] into the corresponding L(GQ)-

language has a model. 

Proof. It is straightforward to check (by induction on the defi­

nition of f) that <~(X),n,u,-x,O,l>,ll®ll> is an LA-model for 

r if and only if <X, II ~11 > is an L(GQ)-model for f[r]. Then use 

the lemma. 
q.e.d. 

So this is the other possible answer to the question whether 

mass terms shall be translated into names or predicates in a first 

order analysis. It says also that LA is a reformulation of 

d . f' d . . f . d' 'd 1 10 mona 1c 1rst or er log1c w1th no re erence to 1n lVl ua s. So 

first order language is an extension of LA where more structure 

is imposed on the models and the language is equipped with tools 

to profit from these extensions, i.e. terms which make it possible 

to talk about individuals. One word of caution is appropriate. 

The translation of All into Every does not mean that the LA (and 

LH)-analysis of mass terms is equivalent to a L{GQ)-analysis which 

reads all water as every quantity of water, since the translation 

does not give rise to quantification over the set of quantities 

but rather over the set of atoms. 

Let us now turn to the general LM-language. It can be axio-

matized if we add ·the following schemata to Al -A8 of LA: 

for all terms t, s, r and non-logical determiners D: 

MQ All(t)(s)A~(s)(t) ~ (D(r)(s) ~ D(r)(t)) 

MDl All(t) (s)AAll( s) (t) ~ (D(s) (r) ~ D(t) (r)) 

MD2 D(t)(s) <-> D(t)(t•s) 
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The first two schemata give the extensionality of the non-logical 

determiners. The third one states that IID(t)ll lives on II til 

and should of course not have been added if we had not imposed 

this restriction on the semantics. Proof, provable (from I), 

theorem and consistent are defined as for the system LA (of 

course with this larger set of axioms). 

Theorem 5. 

a) Every consistent set of formulas has a model. 

b) ~ is provable from r if and only if ~ is true in every 

model for 

c) ~ is provable if and only if it is valid. 

Proof. One part of b) and c) is proved in the same way as 

theore~ 1. ~fuat is new is to check that the new axioms are valid. 

a) and thereby the second part of b) and c) are proved in the same 

way as theorem 2a) . What is new here is that we must define the 

interpretation function U$U on the non-logical determiners, and 

that in a way which secures that r~¢ if and only if 

<<A, , x >,II • II >f:¢ for every formula <!>. So if D is a non-logical 

determiner, let II Dll be the function which to each aE A gives 

IIDII(a) = {bEAithere exists terms t and s such that [t) =a, 

[s] = axb and r~D(t)(s)}. This definition is clearly in accor-

dance with the semantic rule for determiners. Horeover, with this 

definition it is possible to show that r~D(t)(s) if and only if 

<<A, , x>,II•II>~D(t)(s) for all terms t and s. Notice that all 

the three new schemata are used in this proof. Then the conclu-

sion follov1s as in theorem 2. 

q.e.d. 
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We shall not try to copy theorem 3 and show how to construct 

a decision- and proof procedure for LH. But this can easily be 

done along the folowing lines: We saw that for checking LA-vali­

dity it was only necessary to check a finite number of models 

where each such model could be assumed to be finite. Now, in such 

a finite model, it is only a finite number of ways to introduce an 

interpretation of a non-logical determiner. And this means that 

there will only be a finite number of non~isomorphic LM-models 

which must be considered to check the validity of a Lr-1-formula cj>. 

Hov1 many depends on the number of non-logical symbols in cj>, i.e. 

constant symbols and non-logical determiners. This number will, 

however, be very large if more than very few symbols are involved. 

So other procedures mus·t be developed to practical purposes. 

If LA is considered as the first order theory of boolean 

algebras, LM is this theory extended with more relation symbols, 

all restricted by HD2. The lemma is valid for LM as well as for 

LA. And if a corresponding L(GQ)-language is defined as above 

with the addition that the L(GQ)-language shall have the same set 

of non~logical determiners as the LM-language and that the defini­

tion of f is extended with 

o) f(D) = D for each non-logical determiner symbol, 

then theorem 4 can be extended to LM-languages too. 

He conclude this section with showing that the semantic 

important notion of monotonicity is axiomatizable. A determiner 

D is consistent with the schema 

MM All(t)(s)-* (D(r)(t)-* D(r)(s)) 
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if all instances of this, (i~e. for all t, r and s), can be 

added without causing inconsistencies. 

Theorem 6. A determiner D is monotone (increasing) if and only 

if it is consistent with the schema MM. 

Proof. It is immediate to see that every monotone determiner has 

to be consistent with MH. The other part is parallel to theorem 

Sa). The only difference is that H H will have to be defined in 

a slightly modified way on the non-logical determiners consisent 

with MM. If D is such a determiner then IIDII shall be the 

function which to each aEA gives IIDII(a) = {bEA: there exist 

terms s and t such that [t] =a, [sJ(axb and r~D(t)(s)}. 

This is clearly monotone and HM will secure that rt-D ( t) ( s) if 

and only if <<A,-, x >,II ~II >I=D ( t) ( s), with this interpretation. 

q.e.d. 



- III. 35 -

5. Hass terms and count terms. 

In our proposal for a semantics for mass terms, verb phrases, 

adjectives etc. have got denotations different from the usual 

ones. Hence it is not at all clear that count noun phrases can be 

treated in this frame. Moreover 8 examples like 

( 14) Much gold and many coins disappeared 

shmv that mass noun phrases and count noun phrases occur together 

and that an analysis is needed of a verb phrase such as disappear 

which can work both in combination with mass noun phrases and 

count noun phrases. Transitive verbs also often occur with both 

count noun phrases and mass noun phrases, like 

(6b) John drank much water 

and this must also be accounted for in our proposal. 

In this section we present in outline how a combined system 

of mass terms and count terms can be constructed. The starting 

point is that we have two models at hand: One based on a boolean 

algebra <A, x, +, , 0, 1 > and one based ·on a non-empty set I 11 . 

The first can be used for the pure mass term part, the second for 

the pure count term part. Our first idea is to take the union of 

the two models in some direct way - either the union of A and I 

(where A and I do not have to be disjoint, A c I is one 

possible proposal), or the union of A and P(I). This is pro-

blematic for two reasons. 

In connection with mass terms homogeneous verb phrases and 

inhomogeneous verb phrases got denotations at different levels, in 

combination with count noun phrases they get denotations at the 

same level. So if we take the union in either of the two ways the 
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result is that one of the two classes of verb phrases will get 

denotations at bvo levels at the same time. 

The second reason is that taking e.g. A as a subset of I 

may be interpreted as identifying quantities with individuals 

vihich is questionc<ble, as already Parsons ( 1 970) pointed out, 

because the identity tions seem to differ for the tvvo 

classes. \!Je tolerate many changes in the material basis of an 

idual and st 1 c :hat it is the same individual, but we 

are not so ll to tolerate changes in quantities. Of course 

·this objection turns on the relationship bet\veen the language and 

the outer world and it is t"herefore not crucial according to the 

principles stated in the introduction. But it may be important if 

we want to exted our analysis to more complex sentences which take 

time references into consideration. 

Ide therefore propose to take as basis for a model both a 

boolean algebra < +, ,0,1> and a set I. A homogeneous verb 

phrase, like shall then denote an ordered pair <d ,d > 
1 2 

where d 1 EP. (an element in A) (a subset of I). A 

mass noun phrase like ~ shall, as before, denote a subset 

of A and a count noun phrase like many coins shall denote a 

subset of 9 (I as usual" The conjunction much gold and many 

coins shall have t.he denotation {<x,y>EAxY(I):xEIImuch goldn 12 and 

yEI!many coinsll}. The sentence 

( 1 5 ) Much gold disappeared 

is then true just in the case d 1 Eli much goldll , while the sentence 

(14) is true if d 1 ,d 2 >EIImuch gold and many coinsll which is the 

same as a1 E :1 much goldil e:u1d d~.E II many coinsll . 
L. 
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Inhomogeneous verb phrases, such as weighed less than three 

kilos, shall denote an ordered pair where the first element is a 

subset of A and the other element is a subset of I. 

element is needed for sentences like: 

The first 

(5) The cheese that d appeared weighed less than two kilos 

·where v;re still want the cheese that disappeared to denote the 

element ct1xc 

denotes), 

A (vvhere c is the element that cheese 

In the introduction we proposed to regard the distinction 

between mass terms and count terms as a distinction between diffe-

rent kinds of noun occurences. For a noun having both types of 

can be captured as follows: The noun 

wate~ is given a denot"ation of the same type as disappear, L e. an 

ordered pair <w1 , > Much is a mass 

determiner, i.e. ~~ is a mass noun phrase, so much shall 

denote a funct which assigns a subset of A to w1 , ignoring 

'""2 . Many, on the other hand, makes count noun phrases like many 

waters, so the denotation of many will take w2 as argument and 

produce a set of subsets of I. 

Homogeneous predicative adjectives like red shall have deno­

tations of the same type as disappear and water, ordered pairs 

where the first element is an element_ in A, the second element a 

subset of I. \iihile inhomogeneous predicative adjectives shall 

denote subsets of I only. 

John drank has already been proposed to denote an element in 

A. Since John naturally denotes a member of I it seems appro­

priate to let drink denote a function which to elements in I 

yields members of A. A sentence like John drank many beers shows 
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that ,John drank must also 1'ienote a subset of I. So it seems most 

natural to let drink denote a function which to elements in I 

yields ordered pairs where the first element is a member of A, 

the second element a subset of I. Notice that restricted to the 

countable domain this gives the normal interpretation since (2I)I 

is isomorphic to Ix I 
2 . If drink denotes II drinkll and 

II drinkll ( i) = <x,y> we can call x for (II drinkll ( i)) 1 

for (II drink II ( i)) 2 • Then the sentence 

( 16) Hany men drank much water 

and y 

is true if and only if {iEI:(IIdrinkll (i)) 1EIImuch waterll )} is a 

member of the set llmany menll. (Recall that we have restricted 

attention to the distributive reading of count noun phrases.) 

The question remains whether all transitive verbs shall be 

given this type of denotation. For a given transitive verb ~ we 

can check whether the expression John ~ passes the homogeneity 

test. If the answer is yes, this treatment should be appropriate. 

If the ans\'ler is no, the sentence John @ much water will not be 

wellformed according to the Homogeneous Constraint, and ~ is 

better taken to denote a function which to elements in I yields 

subsets of I, or maybe subsets of I and subsets of A. The 

example: 

(17) The water that John drank contained 10 grams of salt 

opens for transitive verb denotations which are functions defined 

on A and I, but we do not yet see how to come from this to the 

homogeneous contained salt in 

(18) Huch water contained salt. 
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Definite descriptions are harder to capture than other noun 

phrases, because it is not possible on syntactic grounds to 

classify the noun as a mass term or as a count term. He are thus 

forced to treat the water and even the water that John drank as 

ambiguous between two readings. Recall that water has a denota-

tion <w1 ,w2 > where w1EA and w2 c I. Then in the first read-

ing, the "mass" reading, the water shall denote w1 • In the 

second reading, the "coun·t" reading, the water will be defined 

only if w2 is a singleton set, and in that case it shall denote 

the unique member of w2 . So with this reading the water that 

John drank shall have a denotation if and only if there was a 

water that John dranJ: and only one such water. 

~lhen this model is applied to a fragment of a natural lan-

guage it is necessary to refine the syntactic rules to take care 

of the differences behveen mass noun phrases and count noun 

phrases, which expressions they can occur together with and so on. 

1 3 
The details are lengthy and will not be given here , we only give 

some examples. The simple rule 

N + AD N 

needs at least the following refinements. N must be separated in 

three subcategories N[M]-mass nouns, N[c)~count nouns, and N[u]­
the nouns that can have both types of occurences (U for undeter-

0 d) 14 m1ne , The predicative adjectives must be separated in two sub-

categories AD[H]-homogeneous adjectives, and AD[I]-inhomogeneous 

adjectives. The reformulated rule is then 

N [ U J + AD [ H J N [ U J 

N[M) + AD[H]N[M) 
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The reader may like to formulate the corresponding semantic rules 

from what is said earlier about the denotation types of the diffe-

rent categories. 

Determiners must also be separated in two subcategories: 

Det[M]-mass determiners, and Det[c]-count determiners. 

NP + Det N 

is then refined to 

Det[M]N[u] 

Det[ M) N[ M] 

NP[c] + Det[c]N[u] 

lDet[ c] N[ c] 

The rule 

Further refinements taking number into consideration to get 

the right analysis of the two noun phrases some water and some 

waters may also be necessary. 

Rules like 

S + NP VP 

where the category NP occur to the right must be refined to take 

care of the Homogeneous Constraint. Notice that this is extended 

to cover noun phrases which are a conjunction of a mass noun 

phrase and a count noun phrase as this example illustrate: 

( l 9) * Much gold and many coins weighed two grams. 
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There are some connections between mass terms and count terms 

which we have not commented on yet. Parsons (1970) starts his 

treatment of mass. terms \vi th the example sentence 

(20) My ring is gold 

I have problems with ascribing meaning to this sentence because 

the direct translation into Norwegian, my native tongue, ringen 

min er gull is not well-formed. One would have to say: ringen 

min er av gull (is of gold) or ringen min er laget av gull (is 

made of gold). That (20) may be odd in english too is indicated 

by a remark in Quine (1960): " ... things are red, stuff alone is 

water" (p 92). But since ( 20) is proposed it must be well-formed 

for some speakers of English and hence demand an explanation. He 

offer two. The first is simply to give gold the same type of 

denotation as water, both an element in A and a subset of I 

and say that the sentence is true if the element in I denoted by 

my ring is a member of this set. 

The other approach is an attempt to explain the relationship 

between the things that are gold and the quantities that are gold, 

and it resembles a proposal by Link (1982). We introduce a func­

tion ft 15 mapping each element in I to a member of A, 

intuitively mapping each object to the quantity that constitutes 

it. If nmv II goldll is a member of A, II is goldll can be given the 

denotation <II goldll, { iE I: ft ( iH: II goldll} >. The awkwardness of this 

approach is that my ring has to be wholly made of gold, it cannot 

e.g. possess a pearl, if the sentence (20) shall be true. How-

ever, with some ingenuity it should be possible to get around this 

particular problem. 



- III.42 -

He conclude this section with one further semantic observa-

tion, Count noun phrases can occur together with homogeneous 

expressions and in nation with inhomogeneous expressions. 

But there is a semantic difference between the two types of occur­

rences, at least concerning occurences exemplified by John and 

Harry, the men, and three men. 

(21) John and Harry weighed 100 kilo 

can either mean that each of them weighed 100 kilo or that their 

combined \veight was 100 kilo. Now this ambiguity is only possible 

if the verb phrase is inhomogeneous. If the verb phrase is homo­

geneous, the two read s are equivalent. Thus, if John disap­

peared and Harry dxs-appeared then John and Harry disappeared, and 

the other way round. The possible ambiguity between the two boys 

disappearing at the same time or at different times is irrelevent 

for the simple sentence John and Harry disappeared. 

does not carry that much information. 

It simply 

In connection -vii th mass terms vve established a test for 

checking homogeneity (CUM and DISTR). With minor changes this 

can be used with count terms to. vfuat is needed is to exchange 

~ with count everywhere in the introduction to the test and 

allow plural forms in the inferences, e.g. 

CUM' The ~ a/a-s 6 

~he not~~ a/a-s o 

..• The a-s 6 

If v!e want to test disappeared for CUM' 

with this inference, e.g. 

then this can be done 
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The red car/cars disappeared 

The not-red car/cars disappeared 

.·. The cars disappeared 

This test does not explain why some expressions give rise to 

ar~bigui ties \vhile others do not. It only gives us a tool to check 

if an expression give rise to ambiguities. Moreover we can use 

this tool if we want to try to give a syntactic classification of 

the homogeneous expressions like we indicated for mass terms. The 

general scheme seems very similar in connection with count terms. 

Nearly all intransitive verbs seem to be homogeneous. And transi­

·tive verbs seem to be homogeneous in relationship to the direct 

object, but inhomogeneous in relationship to the subject when the 

object is quantified. note that the verb love which was problema­

tic in connection with mass noun phrases seem to be homogeneous 

with respect to the direct object now, e.g. John loved two girls. 
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6. Amount terms. 

A.n amount term is composed of a numeral plus a unit of mea­

sure (or denomination) (e.g. two kilos) or is an expression of the 

form less than, more than, at least etc. plus a numeral and a unit 

of measure (e.g, less than two kilos). 

In connection with a mass term it can occur as a part of a 

determiner (sentence (4)) or as a part of ari (inhomogeneous) verb 

phrase (sentence (5)). 

(4) Less than two kilos of cheese disappeared. 

( 5) The cheese tha·t disappeared weighed less than two kilos. 

In this section we extend our semantic model to cover these 

occurences of amoun·t terms and, in particular, we will show that 

the sentences (4) and (5) are equivalent. That will be attained 

if the subset of the boolean algebra denoted by weighed less than 

two kilos is related to the denotation of the determiner less than 

two kilos of according to the following formula 

(22) bEIILess than two kilos ofll (a) if and only if 

(ax b) E II weighed less than two kilos II 

Before we go into the details we add the following co~aent: 

Parsons (1970) starts his study of amount terms with this example: 

( 23) Three teaspoons of gold weigh thirty ounces. 

This sentence diverges from sentence (4) in at least two respects. 

vfuile sentence (4) is about one specific quantity of cheese, sen­

tence (23) is about (nearly) all or a typical quantity of gold of 

a certain size. And the verb phrase in (23) is not homogeneous. 

This means that the Homogeneous Constraint universal will have to 
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be changed to allow sentence (23). Either this can be done by 

giving up the idea that mass noun phrases can be given a purely 

syntactic definition saying that the noun phrase in ( 23) is not a 

mass noun phrase, or by changing the constraint so that it says 

that mass noun phrases do only combine with homogeneous expres­

sions to form sentences with existensial readings. Be that as it 

may, it would, however, be worthwhile further study to classify 

which of the earlier classified mass noun phrases \vhich can occur 

in sentences like sentence (23). 

Note that the contrast between the sentences (23) and (4) can 

also be observed in connection with some types of count noun 

phrases 

(24) 

(25) 

Two men disappeared 

Two apples \veigh thirty ounces. 

The verb phrase in (25) is inhomogeneous, and the sentence is not 

about two definite apples but about (nearly) every pair or one 

typical pair of apples. So this shows that the distinction is 

independent of the mass/count distinction. We feel therefore 

justified here to concentrate on sentence (4) and reserve for 

later treatment the problems raised by sentence (25). 

Let us return to the sentences (4) and (5}. Then some ques-

tions arise. First what is the meaning of each of the words in 

the amount term and the measure verb and what kind of denotations 

shall we give them. The second question arise because there are 

numerals involved in the amount terms and concerns how much of 

nathematics shall be regarded as a part of the semantics. I think 

these questions have in corrmon that they do not have a right or 
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even a best answer. So let us consider some possible answers 

starting with ·the second question. 

In the boolean framework the concept of measure (or measure 

function) comes immediately to mind when thinking about amount 

terms and measure verbs. A (finitely) additive measure 1-L on the 

boolean algebra <A, .•. > is a function from A into the 

nonnegative real numbers such that for any two elements a,bEA 

.ADD: if axb = 0 then !J.(a+b) = !J.(a)+!J.(b) 

(+ to the left here boolean sum, the + to the right is the 

standard arithmetic operation of addition.) The application of 

this to our semantic model should then give 

(26) llweighed less than two kilosll = {aEA:iJ.(a)<k} 

for some measure 11 and constant k which are related to the 

words of the phrase in some well-determined way. It would then 

follow from this, formula (22) and ADD that IILess than two kilos 

o£11 is monotone decreasing. 

This reflects fairly well what is going on when we measure 

something. But it is somewhat questionable if all mathematical 

truths which can be derived from an act of simple measurement 

shall be regarded as semantic truths. To take one example, shall 

it be regarded as a semantic truth that 2 10 kilos of salt is more 

than 1000 kilos of salt? If our goal is a semantics for a natural 

language, ·then I think the answer is no. So let a measure instead 

be a function from A to a primitive set R. 16 We can then study 

which constraints erie should impose on R and the measure func-

tions to validitate some typical inferences involving amount 
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terms. First observe that the relationship in (22) and thereby 

the equivalence of the sentences (4) and (5) may be formulated 

independently of the structure of R and the measures. 

The inference 

(2 -,\, Th " d 3 . e water we1ghe k1los 

:. The water v1eighed more than 2 kilos 

becomes valid if R is taken to be (at least) a (pre-)ordered set 

where II 311 >II 211 (in this ordering). No restrictions on the 

measures are necessary. But as mentioned earlier we are not sure 

that (27) shall be taken as valid if 3 and 2 are exchanged 

with more complex number terms. One way out of this is still to 

demand that R is ordered but not to assume that 112 10 11~11100011 

or even II 3D II 211. Then 3 is greater than 2 or 3 kilos are 

more than 2 kilos can be taken as an additional premiss in (27) to 

get a valid inference. 

There is probably agreement on the following inference 

(28) Two liters of water disappeared 

:. Some v1ater disappeared 

It follows from ADD if we demand II Twoll:fO. But the only fact 

from ADD which is needed here is that there is a special element 

0 in R such that ll (0) = 0 (where 0 to the left is the null-

element of A). ~ne validity of (28) with two exchanged with.~ 

than two will also follow from this if we in addition demand 

lltwoii>O. 

One of the most striking properties of determiners con-

structed from amount terms is the monotonicity: 
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(29) More than five liters of water evaporated 

All that evaporated disappeared 

.. Hare than five liters of v1ater disappeared 

As mentioned, this follows from ADD, but it is sufficient that R 

is ordered and that the measure is monotone: 

MON if a<b then ~(a)c~(b) 

\-Jhich of course is a consequence of ADD. MON also implies that 

quantifiers constructed from art10unt terms starting with less than 

(see example (13)) are monotone decreasing. And MON in conjunc­

tion vJi th (22) yields ·the left monotonicity which validitates 

inferences of the following form: 

( 30) 1'1ore than two liters of red water disappeared 

:. More than two li~cers of water disappeared 

The inferences stud:Led until now depend only on the ordering 

structure of R and ·the monotonicity (MON) of the measures. 

Inferences that also need the arithmetic structure of R and 

(larger parts of) ADD may be constructed, but they seem a bit 

more "mathematical" in structure 

(31) John drank 2 glasses of white wine and one glass of red 

wine 

No vvhi·te wine 1s red wine 

... John drank (at least) 3 glasses of wine 

This presupposes that an operation of addition is defined on R, 

ADD or at least one half .of it where = is exchanged with ) , and a 

"normal" interpretation of the numerals such that II one II +II 211 = II 311 . 

Similar examples can be constructed which needs the other half of 
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ADD, and it is also possible to construct examples which need 

formulation of multiplication on R. 

We have touched upon some issues concerning natural language 

inferences involving amount terms and our discussion is far from 

complete. Another topic beyond the scope of this paper is to 

relate our treatment. of amount terms to Kamp' s (1975) approach to 

comparatives of adjectives, 

Then to the question of what the different words shall 

denote. If we think about what we are doing when "vve measure or 

weigh something, or if vle start with the sentence ( 5), the most 

natural thing seems to be to let weighed denote a measure, that is 

a function from A to R, and let two kilos denote a measuring 

result, i.e. an element in R. Then if a multiplication operation 

o on R is a.vailable, t\\ro and kilo can both be taken to denote 

elements in R, and ~ can denote II twoll • II kiloll , less than 

two kilos denote the subset of R of elements r such that 

r< II two kilos !I (where .;; is a relation on R) and weighed less 

than two kilos denote the set of elements in A mapped into this 

set by llweighedll. 

But this approach leads to problems with sentence (4) because 

there is no measure verb available. The most natural analysis if 

one starts with sentence (4) is to let kilo denote the measure, 

less than two denote the set of elements r in R such that 

r<lltwoll, and less than two kilos denote the set of elements in A 

mapped into this set by the rr1easure function II kiloll . This can 

also take care of sentence (5). All one has to do is to give 

weighed less than two kilos the same denotation as less than two 

kilos. 
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'rhe weakness of the second approach is that vleighed is given 

no meaning in sentence ( 5) . This is a bit counterintuitive and it 

does not give any semant explanation of what is wrong with an 

expression like weiql1ed more than two liters. Another problem 

which the first approach manages better is to explain the closer 

connect:. ions that exis'c bet~,reen e, g. kilo and ounce than between 

kilo and liter. 

One could think of various compromises between the two ap-

preaches. One would be to hide the word weigh somewhere in the 

syntactic deep struc-ture of sentence (4) and claim that it has 

been deleted in the der on of ·the surface structure. Another 

way out is to push the problem to the semantics and give kilo a 

denotation consisting of an ordered pair of an element in R and 

a measure, and then call upon the right part of the pair in build-

ing more complex denotations. In particular, in giving a denota-

tion to (5), vle shall na>.rer call upon the measure part of kilo 

since that will be provided by the measure verb weigh. 

But this is not the end of our problems. Nothing that we 

have said so far blocks a sentence such as 

(32) ?The v.rater weighed two liters. 

One can argue whether it should be blocked on syntactic or seman-

tic grounds. 

Our proposal to get around these problems is as follows: 

Instead of letting measure verbs denote function into one set R, 

1 7 
one can let them denote functions into different sets R1 ,R2 , ... , 

one for each measure verb. If then weigh denotes a function into 

R1 , kilo shall denote an element in R1 while the denotation of 

liter is not in R1 , but in some other To secure that the 
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denotation of kilo is in the right R. the syntactic category 
l 

denomination is equipped with a feature: weight, volume, ... or 

another measure verb. It is then possible to reject sentence (32) 

syntactically if also amount terms get features - the same feature 

as the denomination it contains - and if it is required that the 

feature of an amount term has to correspond to the measure verb 

for the combination of them to be well-formed. Where the amount 

term is a part of a determiner the feature can be regarded as a 

syntactic counterpart to the stored measure in the semantics. 

This means that it is not necessary to let a denomination denote 

both an element in an R. 
l 

and a measure since the measure can be 

derived from the feature in a uniform way. 

It d f '" f 1 f f f 1' h 19 ns ea o g1v2ng a set o ru es or a ragment o Eng 1s , 

let us see how the example sentences (4) and (5) may be treated in 

a way consistent with vihat is said above. Observe that of is not 

given a denotation but is introduced syncategorematically when 

determiners are formed out of amount terms. That is partly be-

cause there are languages (e.g. Norwegian) where of is not real-

ised. It is also assumed that there are only finitely many words 

except numerals which can be the head of an amount term, and that 

they can be given a special (logical) treatment. 

The syntactic categories used are: 

Den[w] - denomination; feature: weight 

Num 

AT[ w] 

MV[w] 
HVP 

IVP 

- numeral 

- amount term~ feature: weight 

- measure verb; feature: weight 

- homogeneous verb phrase 

- inhomogeneous verb phrase 
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Det - determiner 

N - (mass) noun 

NP - (mass) noun phrase 

DD - definite (nass noun) description 

TI1e syntax trees are then: 

I 
Det 

\ 

----------
~ 

'., 
Num Den[ J H 

s 

I 
NP 

N ffiTP 

(4) Less than two kilos of che se disappeared 

~s 
DD 

~~ 
N IVP 

\ ~ 
R AT[v,T] 

I 
N ffiTP Num Den[w] 

(5) The cheese that disappeared weighed less than two kilos. 
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One model for this is based on a boolean algebra <A, .•. >. 

Since only one feature weight is involved, it is sufficient with 

one additional set R, with at least one binary relation < and 

one binary function • , and one function w from A to R. The 

denotations of cheese, disappeared, and the cheese th~t 

disappeared are exactly as in part 3. In addition 

II[D kilos]ll 
en[ w] 

is an element in R 

11 [ Num t'tlO] II is an element in R 

II [ less thanf two] [ kilos] II = 
AT[ w] - Num Den[ w] 

{rER: r<II[N two]II•II[D kilos]ll} 
urn en[wJ 

Let us call this last set LTTK. Then 

II [ Det[ AT[ w] less than[ Num two] [Den[ w] kilos]] of] II 

is the function f from A to the set of subsets of A such 

that 

bEf(a) if and only if w(axb)ELTTK. 

Notice here that the measure w stems from the feature weight of 

the amount term (in a uniform way). The rest of the semantics of 

sentence (4) is now standard. For sentence (5) we require that 

II [ IVP[ MV[ w] weighedl [AT[ w J less than[ Num two] 

[D kilos]] )11 = {aEA:w(a)ELTTK}. 
en[w] 

Since the denotation of the definite description which introduce 

this sentence is II [ n cheese] II x II [ IWP disappeared] II , it is easy to 

see that the two sentences become semantically equivalent. 
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One special problem related to amount terms concerns noun 

phrases like two cups of coffee. Our proposal for an analysis is 

that this phrase is ambiguous between two readings. In the first 

reading two cups functions as an amount term along the same lines 

as two liters. So cup can be put in the syntactic category deno­

mination with feature volume. This reading is the most natural 

in 

(33) John drank two cups of coffee 

where it is not necessary that there were two cups present, not 

even one if John drank from a glass. The second reading is domi­

nant in situations where the presence of two cups are necessary. 

One such example is 

(34) Two cups of coffee are on the table. 

In this case the noun phrase is a count noun phrase with cups as 

its head noun, of coffee functions as a noun modifier, and two is 

the (count) determiner. 
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7. Further directions. 

Throughout the paper we have listed some problems that need 

further study. To begin with we gave some reasons for taking mass 

terms with determiners as basic. But it is an open question if 

this approach can be extended to (some) occurrences with no deter­

miners. v~e have not proposed to rewrite drank water as drank some 

water, because it is not clear how this rewriting can be done 

uniformly, e.g. it does not extend to water is wet. Another 

reason is that the two verb phrases drank v1ater and drank some 

water react differently to time references. They combine with 

different members of the pair for an hour/in an hour. 

This last point shows the importance of extending the analy­

sis to cover tense and time references. Another reason to such an 

extension is that we want a better analysis of the differences 

between definite and indefinite mass terms, e.g. ice and the ice. 

In the sentence Huch ice a, we evaluate ice at the time interval 

indicated by the verb phrase a. vJhile in the sentence Much of 

the ice that John found a, ice is evaluated at the time indicated 

by found, and that does not have to be the same time as the action 

time of a. So what we are talking about in the last sentence 

need not be ice when it a. 

Verb phrases, like disappear, which express a change of state 

may also get a more realistic analysis, i.e. an analysis which 

covers more of their semantics, if a more dynamical model is 

established. 

The remarks at the end of part 5 suggest a further study of 

collective and distributive readings of count noun phrases. We 

need here an analysis which does not overgenerate i.e. which does 

only produce a conflict between a collective and distributive 
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reading in the cases where the verb phrase is inhomogeneous. 

Closely connected tc this is the problem of existensial and (near­

ly) universal collective readings mentioned in part 6, both when 

mass terms and count terms are considered. 

Footnotes. 

* This paper an extract of my (unpublished) cand.real.thesis 

{L¢nning ( 1982)). I ;,vish to thank my advisor Professor Jens Erik 

Fenstad for valuable help and encouragements, both in the work of 

the thesis and this paper, I wish also to thank Helle Frisak Sem 

and the participants in the Groningen workshop on generalized 

quantifiers in July 1983 for comments on earlier versions of this 

paper. 

1. \-That follmvs is not a satisfactory criticism of all contempo­

rary theories of mass term quantification, but some problems 

which face everyone who want to study this phenomenon. 

2. This is reformulated from Cheng to match better with the other 

criterion. 

3. That this is a proposal for a universal means that is open for 

amplification and changes (in the sequel). 

4. Expression Means here the rest of the sentence. That is, it 

includes e.g. John drank vvhich is not normally regarded as a 

unit. 

5. For nore information on boolean algebras see Halmos (1963). 

6. Bunt (1981) finds it necessary to single out some exceptions 

to this. But none of this examples are predicative. 
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7. is is exchanged with 1.vas to get a sentence generated in the 

fragment. 

8. This is not an independent set of axioms since e.g. Al can be 

proved from the other ones. 

9. Here one can see how the LA~language is weaker than the first 

order theory of boolean algebras. The latter one needs only 

to be extended with one sentence: Vx(x:f0-+3y(y<xAy:f0Ay:fx)), to 

get the theory of non~at.omic boolean algebras. 

10. This follows because it can be proved that every formula in 

the corresponding L(GQ)-language with no determiners except 

Every and Some is equivalent to a translation of a L-formula. 

If one extend LA ;,.-lith modal operators 0 , 0 and the seman­

tics which is the natural combination of LA's semantics and 

85's semantics, then the result is a decidable system. Modal 

monadic first order logic is not decidable on the other hand. 

One reason for this discrepancy is that there are modal mona­

dic first order formulae which do not correspond to LA+S5 

formulae, e.g. formulas of the form 3x8¢. 

1 l • This is not a complete analysis of count noun phrases and 

their semantics. In particular so-called collective readings 

of count noun phrases will not be considered. Hy cand.real.­

thesis (L¢nning (1982)) includes a logic for treating collec­

tive readings of numerals (e.g. two men), which is formulated 

in a way which allows a complete axiomatization with respect 

to the semantics. 

l 2. Here and for the rest of the paper II • II will be a function 

which to natural language expressions gives their formal 

denotations. 

13. In L¢nning (1982) this lS carried out. 
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14. If it is true tJ1at every noun can have both types of occuren-

ces then the lexical entries of and will be 

empty and the following rule accordingly shorter. 

l 5. The t in ft indicates the dependence of time. 

l 6. Parsons ( 1 970) lets m.c:;asures be relations. That is uneccesary 

since nothing can have more than one \-Teight. 

17. An eresting question is if it is sufficient with finetly 

many such 

1 8. A numeral like two must have deno'cations in each R .• 
l 

1 9, In L¢nning ( l 982) I gave such rules and formulated a formal 

language ~tJhich had semantics in ·terms of <A,+, • , ... > and R. 

I also showed there thai: if R is supposed to be an ordered 

field and the meastJres satisfies the ADD requirement, a com-

plete axiomatization with respect to the semantics can be 

given. 
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0. Preface. 

In this article we discuss questions of quantifier scope and 

anaphoric relations between noun phrases. vJe approach the topic 

through a study of two different systems for representing language 

meaning, one the system using the "storage mechanism" developed in 

R. Cooper: "Quantification and Syntactic Theory" (Cooper 1983), 

the second the theory of Discourse Representation Systems as 

introduced in H. Kamp: "A Theory of Truth and Semantic Represen­

tation" ( Kamp l 981 ) . 

v~e start out by giving a modified treatment of the Cooper 

systems, in particular, we eliminate the use of multivalued func­

tions in the semantic interpretation. The storage mechanism is 

successful in treating many questions of quantifier scope in 

natural languages, but there are examples which the system does 

not seem able to handle. He conclude this part of our study with 

a systematic discussion of limitations of the storage method. 

Many of these limitations can be overcome by using the theory 

of Discourse Representation Systems. We extend the analysis of 

Kamp's (Kamp 1981) to cover the syntactic fragment of Cooper 

(1983) and are thus able to obtain a satisfactory treatment of 

some of the examples that could not be handled by the storage 

method. 

The way the Discourse Representations describe submodels of a 

model for Discourse Representation Systems bear clear resemblances 

to the way event-types describe partial mode~s in the Situation 

Semantics presented by J. Barwise and J. Perry in "Situations and 

Attitudes" (Barwise and Perry 1983) . ~'le end the paper with an 

illustration of how the theory of Discourse Representation Systems 

can be applied in the construction of meaning relations for 

linguistic expressions in Situation Semantics. 

vJe assume familiarity with (Cooper 1 983) and (Kamp 1 981 ) even 

if, in principle, this article is self-contained as the systems 

are presented in full details. For reasons of space few examples 

are discussed. A more comprehensive treatment is found in my 

cand.scient thesis "Kvantifikasjon, syntaks og semantikk" (Sem 

1983) (in Norwegian) which was written under the supervision of 

Professor Jens Erik Fenstad, and I am indebted to him for encour­

agement and valuable advice during the work on my thesis. 
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1. The Cooper stores, 

1 • 1 • 

The aim of this section is to study "the Cooper stores", 

their possibilities and limitations. As a starting point for our 

investigations \ve take Fragment 6 from Cooper (1 983). This is the 

simplest non~transformational fragment rich enough to contain the 

full use of the storing mechanisms with relative clause formation 

and embedded questions. 

For reasons of clarity and ease of readability some simplifi-

cations both of the phrase structure rules in the syntax and of 

the technical apparatus of the semantics will be made. Thus, a 

better basis for further extensions, especially with regards to 

interaction between the different storage applications, is 

obtained. Though the notation and to some extent the technical 

apparatus undergoes several changes, the main virtues of the stor­

age technique remain unchanged. The limitations discovered for 

the present version will also apply to the original one, as far as 

the original contains the possibilities of the present version. 

That a fragment with the syntax of Fragment 6 and semantics sim~ 

plified similarly as the present fragment is syntactically and 

semantically (weakly) equivalent to the present fragment, is 

proved in Sem (1983, I.4), 

The syntactic simplifications are all motivated by the desire 

to avoid the following kind of syntactic ambiguity. I want to 

avoid any two SD's of the form 

tactic categories, A*B, and ~ 

[ J!'J ,[!!'] where A,B 
"' A "' B 

are syn-

is a string of SD's. The indue-

tion base of the syntax then defines the basic elements of the set 

SD, while the phrase structure rules defines a function from 

SDxSD into SD (provided we regard 'that' and ¢ as basic SD's 

in the case of S + that S and NP + R) . 



- IV.3 -

The use of multivalued functions in Cooper (1983) is motiva­

ted partly by free pronouns, partly by semantic ambiguity of syn­

tactically unambiguous phrases (Cooper 1983, Ch. II, 2.5). The 

full interpretation of a phrase is the set of all the different 

readings of the phrase. The point is to make one phrase corre-

spond to exa one interpretation. During the interpretation 

process, only one of the readings for each constituent phrase can 

be used to calculate one of the readings for a compound phrase. 

Thus, the process itself is obscured by a notation designed only 

for denoting the entire set of meanings for a fully interpreted 

phrase. The multi-valued notation can therefore be dispensed with 

altogether without any loss of compositionality. The set of 

obtainable readings will remain the same for every phrase. To 

further increase readability, the K and p functions will not 

be used, 

In addition to giving a simpler and more uniform treatment of 

the WH-clauses, the present syntax definition provides a fragment 

that follows a somewhat stricter principle of compositionality 

than the original fragment. A further discussion of the fragments 

with respect to the principle of compositionality and a definition 

of an equivalent fragment following a strict formulation of the 

principle is found in Sem (1983). 

Som restrictions will then be removed from the semantics to 

get a fragment that allows more complicated use of the storage 

mechanisms. Although the storage technique turns out to meet most 

of the needs of this more extended fragment, one major class of 

problematic constructions emerges - a class comprising the con­

structions knovvn in the literature as "the donkey sentences". 

The storage technique is used to obatin the correct relation­

ship between the referents of the various NP-phrases (including 



- IV.4 -

gaps and VJH-terms), Different quantifier scopes 6 de re/de dicto 

readings, coreferentiality between antecedent and anaphoric 

pronouns and finally reference for gaps in relative clauses and 

questions are obtained by means of storage. The main idea behind 

the storage technique is to put the intension of a NP-term on ice 

for a while, in order to give it wider scope. When appropriate, 

the stored NP-intension is lifted out of the store to get scope 

over the phrase now composed, We will return to the actual defi­

nitions of these mechanisms later on. 

There axe essentially b1o kinds of storage: ordinary NP­

storage and vJH-storage. The two should not interfere. As a tech­

nical means to carry out the storage and retrieving processes, we 

let the intensions depend on certain terms of countable sequences 

of elements from the domain E, and distinguish between the two 

storage types by means of a standard trick: the one storage type 

use the odd terms of the sequence, the other the even terms. This 

approach differs from the approach in Cooper (1983) where the se­

quence is used exclusively for NP-storage and -retrieval while WH­

storage makes use of a special element as a flag in the store 

(Cooper, Ch. IV, 3). 

l .2. Introduction to Fragment 6 11 • 

The simplified version of Fragment 6, Fragment 6 11 , consists of: 

Syntax: - Lexicon 

- Induction base 

- Recursion clauses (Phrase structure rules) 

- (Exclusion clause) 

- Horphology. 
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Semantics: - Denotations for each word in the lexicon 

- Denotations and interpretations for the base 

- Recursive rules for interpreting compound phrases 

- Rules for the storage mechanisms: opening, storage, 

retrieval. 

The basic building blocks of the semantics are as usual a set E 

(of entities), a set W (of possible worlds) and the set of truth 

values, {0,1}, from which we build a possible world semantics for 

the fragment. 

Notation 1. 

For each Structural Description (SD) a 
1 ) 

defined by the syntax , 

we want to define interpretations of the form 

<llcxll (NP 1 ). , ••• ,(NP ). > 
cr,w, 1.1 n l.n 

where 

Q:;;; n, nEft..i 
i .EIN for j = 1 , ••• , n 

J 

w crEE , an infinite (countable) sequence of elements of E 

wt::.W 

II all = lied (cr) (w) is a denotation for a with respect to the 
cr,w 

sequence cr and world w 

llall = lla;ll (cr) is an intension (function with domain W) cr 
for a; 

(NP. ) . 
J l. . 

J 

wrt. the sequence cr. The intension II a; II may depend on 
cr 

crk either because the storing of a NP-intension in a 

binding operator has left an opening, or because there is 

an opening created from a pronoun or a gap on the k-th 

term. 

is a stored binding operator for the NP NP .. 
J 

He follow 

the convention of letting the category name denote a SD 

of the category in question, the j is just a convenient 
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way to enumerate the stored NP's in a general case, the 

index i. indicates which term in a the binding 
J 

operator is to operate on. 

(NP 1 ). , ... , (NP ) . is called the store. If n = 0, the store is 
1 1 n 1 n 

said to be empty. 

For convenience, we will in the following use the terms storage, 

binding, binding operator, retrieval for the general NP-storage 

terms, and use the prefixes NP and WH for the ordinary NP-case 

and WH-case respectively. 

Jr will be used to denote a variable over NP-intensions, 

J.f~w + {XIX c:::.:P (E)} NP- int = {X I X '=. ~ (E) } W 

p will be used to denote a variable over propositions, 

p:v~ + {0,1} Prop = { 0, 1 } vJ 

The following definitions will be useful: 

Definition 1: An intension llall for a SD a is said to depend 
(J 

on the k-th term in the sequence a if lied 
(J 

varies with the 

value assigned to ok. Similarly for denotations. 

Definition 2: a called a HH-tenn if a: is a SD of category 

NP not on the form [R]NP' and the leftmost word in a: is a 1-'JH­

word (who, what or which in Fragment 6). 

Definition 3: a is called a VJH-phrase if a is a SD on the 

form [NP s]X' where NP is a WH-term and X is some syntactic 

category. 
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The rules for interpreting a compund phrase on the basis of its 

constituents will all be on the following form: 

If o: is a SD on the form [ AB] , \vhere c 

<II All , ( NP l ) . , ••• , ( NP ) . > 
cr 1 w 1 1 n 1n 

< II B II , ( NP + l ) . , • • • , ( NP + ) . > 
cr,w n J] n rn Jm 

Ot;:; n,m 

are interpretations of A and B respectively, and 

i) 

ii) 

iii) 

number) . 

jl, ... ,j m are even numbers (possibly 

{i 1 , ••• ,i }n{j 1 , ... ,j} = p 
n m 

If II All cr , 'iiv 
depends on then 

iv) If kl , •. ' I k and kb , ... , ~ are odd terms in cr 

v) 

then 

1 ah 1 2 

II All , II Bll are dependent on, respectively, then cr,w cr,w 

{k. , ... ,k }n{kb , ... ,kb} = ¢ a, ah 1 2 

If is an odd number for a 1, Ot;:;1 .. n, then 

depends on cr. 
11 

II Bll cr, w 

an odd 

that 

<II [ A.B J II I ( NP 1 ) . ' ••• I ( NP ) . , ( NP +1 ) . I ••• , { NP + ) . > c cr,w 1 1 n 1 n Jl n m J n m 

is an interpretation of o:, where ..... 

( ( NP 2 ) . must be retrieved and removed frorn the store if 
11 

i 2 is odd). 
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As mentioned above, HH-binding operators and NP-binding operators 

are distinguished by means of the difference between the odd and 

even numbers. 

where: 

The conditions i) ... v) are safety mechanisms, 

i) prevents further storage of WH-binding operators 

ii) prevents more than one binding operator for each term in cr 

iii) prevents backwards binding of pronouns 

i v) prevents more than one gap to be bound by the same vm­

binding operator 

v) ensures that if the first constituent, A, is a vVH-phrase, 

then there is a gap in the second constituent, B, that will 

be bound in the composing process. 

All the safety mechanisms will not l>e required in every rule, and 

redundant mechanisms v1i 11 be omit ted. 

1 .2.1. !,he storin9_Eiechanisms~ some preliminary reflections. 

Before giving the exact definition of the simplified frag­

ment, some questions concerning the storage mechanisms and their 

interaction must be considered. lfuat restrictions should be made? 

How general should the mechanisms be - what restrictions should be 

inherited from the definition of the mechanisms and what restric­

tions should be imposed on the rules? The answers given here are 

by no means exhaustive, The guiding principle is to make the 

basic definitions and rules as general and independent as possible 

to get a base that allows for flexibility. Specific restrictions 

may then be imposed on the combination rules as demonstrated 

above, or given as constraints. These imposed restrictions and 

constraints can easily be changed to accommodate particularities 



- IV.9 -

proper to the different languages. 

In addition to the restrictions concerning the manipulation 

of binding operators and openings mentioned in the general scheme 

for phrase-structure rules, a choice regarding the possibility of 

the following options must be made before defining the basic stor-

age mechanisms: 

I) Should more than one gap be accepted in one phrase? 

II) In the case of NP-storage, should the NP-interpretations be 

allowed to 

1) be an open pronoun exclusively? 

2) be an open gap exclusively? 

3) contain open pronouns (as proper parts)? 

4) contain open gaps (as proper parts)? 

5) have 1iJH-binding opera tors in the store? 

6) have NP-bind.ing operators in the store? 

Point II.4 is only relevant if the answer to I) is affirmative. 

In that case, a decision concerning phenomena like crossover 

dependencies must also be made. In the definition of Fragment 6, 

Cooper gives an affirmative answer to I) 2 ). Concerning NP-storage, 

Cooper requires the NP-interpretations to be stored to have empty 

store and no openings, Thus, storage of NP-terms with one of the 

features 1), ... 6) is prevented. 

The aim of tW-storage is to change NP-scope by storing an NP-

intension and thereby postponing the combination of the NP-inten­

sion3) vli th the intension of the rest of the phrase of which it is 

a constituent until suitable. Consequently there should be a 

proper NP-intension to store. The openings serve to mark off 

where a possible stored intension is to have effect. vJhen stored, 

a NP-intension will leave behind an opening exactly similar to a 

pronoun opening. At retrieval, these two kinds of openings will 
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not be distinguished. The openings themselves are in a sense 

intensionless. At retrieval of a corresponding binding operator 

from the store, they are to be filled with the stored intension. 

Nor have the HH-terms ordinary NP-intension, they are to be 

functions on propositions (S-intension) as well as indicating the 

possible NP-intensions for the gap. 

The position taken here is therefore not to allow the NP­

s·torage of pure openings and HH-terms, that is, a negative answer 

is given to point 1 ), 2) and 5). For the moment, nested storage, 

point 6), liJill also be prevented. 

1 .2.2. Storage, opening and retrieval. 

Definition 4: An intension depending exclusively on the value 

assigned to a certain term of the sequence a is called an 

opening at that t.erm, 

As opposed to Cooper (1983), pronouns and gaps will here be 

treated in a uniform manner. The two opening types will be dis­

tinguished by letting openings at odd terms of a be gap openings 

while openings at even terms v1ill be pronoun openings. In addi­

tion to giving a basis for uniform formulation of the two storage 

types, this approach enables us to avoid the special NP-intension 

reserved for marking off the gaps in the store (Cooper l~ti:;, Ch. 

IV, 3) • 

The definitions of the storage machinery will also differ 

from the definitions in Cooper (1983), especially in the case of 

\vH-storage (Cooper 1983, Ch. IV, 3.2). The NP-storage definition 

from Cooper (1983) will be used as a pattern, and we make the 

following general definitions: 
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Definition 5: A binding operator is a function constructed from a 

w 
NP-intension, with the domain ({o}Vl)E , replacing a certain term, 

say ai, of each element from Ew by a NP-denotation obtained 

from the NP-intension. The binding operator is said to be at the 

i-th term of a. He denote such a binding operator by 

where NP denotes the stored NP-intension. 

(NP),, 
]_ 

Definition 6: Storage is the process of taking the intension from 

the denotation part of an NP-interpretation and use it to form a 

binding operator in the store at some term of a, say a, • 
]_ 

After 

storage, the denotation part of the NP-interpretation may be empty 

or an opening at i. 

Definition 7: Retrieval is the process of applying a stored 

binding operator to the intension taken from the denotation part 

of the interpretation to give a new denotation part and remove the 

binding operator from the store. 

With the formulation of the storage mechanisms to be presented 

below, the two storage types can be regarded as a weaker and a 

stronger kind, respectively. ~~-storage, the weaker kind, leaves 

behind an opening, and allows freedom with respect to the moment 

of retrieval, while the stronger kind, WH-storage, leaves the 

denotation part empty, and retrieval is obligatory at fusion. In 

addition, the weaker one yields a sentence intension from a sen-

tence intension while the stronger one yields a function from E 

to the set of sentence intensions. 

To fulfil the conditions of the definitions and be in accor-

dance with the principle of compositionality, the denotations for 
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WH-words must be chosen carefully. Intuition does not give any 

clear support to the choice of meanings for \'lH-.-mrds. To choose 

E or some subset of E as denotations does not seem too far 

fetched. In this context, no distinction between amimate/inami­

mate etc. is made, so all the WH-words will have E as denota­

tion. In a more sophisticated fragment such a distinction could 

be implemented by choosing the appropriate subset of E as deno­

tation for each \18-word, No·te that the HH-word which will have 

only one denotation though it is listed under two categories in 

t.he lexicon. The ·two SD's [which]NP and [which]Det will get 

different interpretations by lexical insertion, corresponding to 

their different syntactical function. 

I put forward bvo alternative proposals for building inter­

pretations for NP-terrns resulting from lexical insertion of WH­

words: 

a) Guiding principle: Every NP-denotation is a set of subsets of E. 

This is the usual claim rising from the principle of compositiona­

lity. SD's of the same category should have set-theoretically the 

same kind of denotation in order to make the semantical machinery 

work in a uniform way. HH-terms stand in a class by themselves as 

NP-terms. During the interpretation process, they are always 

distinguished and treated differently from other NP-terms. A 

minor reduction in the guiding principle of alternative a) allows 

a somewhat simpler solution: 

b) Guiding principle: An ordinary NP-denotation is a set of 

subsets of E, a IJH-term denotation is a subset of E. 
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A final decision concerning the two alternatives will not be taken 

here. I will give rules for both alternatives. The semantics 

will not be affected by the choice other than in the rule for 

lexical insertion of vVH-words and in the rule for WH-storage. 

1 .3. Fragment 6rr. 

1 • 3. 1 • Syntax 

Lexicon: NP: John, Mary, Bill, Sam, Leslie, Kim, Chris, ... , 

he, who, what, vvhich 

N: woman, man, fish, unicorn, centaur, 

VP: runs, 

V: loves, admires, seeks, needs, believes, knows, 

says, thinks, ·wonders, 

Det: !3:..1 every, no, which 

Induction base 

0. Lexical insertion: If a is listed under X in the 

lexicon, then [a]XESD 

[ ] NPE SD 

Phrase structure rules. 

1 • s ~ NP VP 

2. VP ~ 

v {t} 
-3 . s ~ that S 

4. NP ~ , UP R r l l ~et N J 
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6. R + NP S 

In rules 1 and 2, NP may be headless relative, in rule 2, R 

functions as an embedded question, in rule 4, first alternative, R 

functions as a non~restrictive relative, and in rule 5, R and S 

function as restrictive relatives. Rule 3 creates both sentence 

objects and relative clauses starting with that, rule 4, third 

alternative creates a headless relative from a relative (WH-) 

clause, rule 6 creates all relative clauses starting with a WH-

word. 

Exclusion clause: Nothing is a member of SD unless resulting 

from applications of the rules 0-6. 

Morhology: If a is a SD, then the result of applying rule 7 to 

a represents a syntactically well-formed expression of the frag-

ment. 

7. Pronoun case-marking: Change every occurrence of [he]NP, 

[she]NP not immedately below S in a tree representation 

of a to [him]NP' [her]NP' respectively. 

l .3.2. Semantics. 

The semantics is based on a model consisting of: 

A non-empty set E - the universe 

A non-empty set W - the set of possible worlds 

{ 0, 1 } - the set of truth values 
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Denotations for the words in the lexicon: 

NP: i) If a is John, ~~ ••• ,Chris there is an eE::E for 

each a such that lied = e cr,w 

ii) For any eE E, II hell = e is a denotation for he 
(f 'w 

iii) If a is who, which, what, lied = E 
(f, w 

N,VP: If a is listed under N or VP, then 

V: 

II all = f(w), where f is a given function for each a 
(f. w 

such that f:W + {xjx ~ E} 

i) 

ii) 

If a is a) loves, admires 

b) seeks, needs 

c) believes 

d) says, thinks 

e) wonders 

then II all = f(v!) where f is a given function for 
(f 1 W 

each a such that 

a) f:W + { X I X '=._ Ex E} 

b) f:W + {X I X c::_ Ex NP- int} 

c) f: lv + { X I X ::_ Ex ( P ropJ E >} 

d) f:W + {XIX c::_ ExProp} 

e) f:W + {xjx '=- Exj)({qjq:W +Prop} )} 4 ) 

llknowll = f(w). g(w) or h(w), where f,g,h are given 
-- (f ,w 

functions such that 

f:W + {xjx '=- ExE} 

gdv + {XI X'=.. Ex Prop} 

h: W + {X l X '=. Ex:P ( { q I q: W + Prop} ) } 
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Det: For given A c E, then 

"~"a,w(A) = {x ~ EIXnA*¢} 

lleveryll (A)= {xc EiAc X} - a,w - -

llnoll (A)= {xc_EIXnA= ¢} - a,w 

llwhichll = E 
a ,w 

Induction base: 

0. If a is listed under X in the lexicon 

II [a] XII = II o:: II cr,w a,w 

unless 

i) a is listed under NP, a*who, what, which, then 

II [ a J.TP II = { X c E 111 a II E X} 
u a,w - a,w 

For alternative a) : If a = who, what or which, then 

II [ a J NP II cr ' w = {llo:ll } 5 ) 
cr, w 

ii) a is love or admire, then 

n[a]vn = {<xJ(>I{yl<x,y>EIIo:ll }EJf(w)} cr,w a,w 

iii) a is believe, then 

II [a] VII = { <x.J(> I {yl <x,y>EIIall }EJ{('Itl)} cr,w a,w 

U { < x, p> I < x, p> E II a II } 
cr, w 

i v) a is know, then 

II [a] VII = { < x ,J'(> I { y I < x, y> E f ( w)} EJ{( w)} 
cr, vl 

or 

ll[a] II = {<x,p>l<x,p>Eg(w)} 
v (j '"'' 
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or 

II [a:] II = { <x, Q> I <x, Q>E: h(w)} where Q varies 
V rJ,W 

over subsets of {qlq:W ~ Prop} 

v) a is which and X is Det 6 then for given subset 

A c E, then 

For alternative a): 

n[~...rhich] II (A)={X=EiX=Aflllwhichll J Det a w - a, 

For alternative b): 

11[which] 0 til (A)=Anllwhichll e a,w a,w 

When a is listed under X in the lexicon, and [a:]X is a 

SD with denotation ll[a:]XII , then a, w 

<II [a] II > is an interpretation of [a:JX. X a,w 

Phrase structure rules. 

1. If a is a SD on the form [NP VP] 8 where NP is not a 

WH-term, and 

< II NPII , ( NP ] ) . , ••• , ( NP ) . > 
a,w 1 1 n 1n 

<II VPII ,, ( NP +l ) . , ••• , ( NP + ) . > 
a ,w n ] 1 n m Jm 

are interpretations of NP and VP respectively, where 

i) il, ... ,in, jl ' • ' ' ' jm are even numbers 

ii) { i 1 , . . . ' in} n { j 1 , • . . , j m} = ¢ 

iii) If II NPII 
a ,w 

depends on then 

{ k 1 , ••• , k;. } n { j 1 , ••• , j m} = ¢ 

iv) If k , ... ,k and k_ , ••• ,k. 
a 1 ah ·o1 --b;. are the odd terms in 

a that IINPII ,IIVPII are dependent on respective-a,w a,w 

ly, then {k , ... ,k }n{k , ... ,k } = ¢ 
a 1 ah ·o1 ·o1 
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then 

<II [ NP VP] S II , ( NP1 ) . , ••• , ( NP ) . , ( NP +l ) . , , •• , ( NP + ) . > 
a,w 1 1 n 1n n ] 1 n m Jm 

is an interpretation of a where 

II [ NP VP) 8 11 = 
(J 'w 

iff II VPII E II NPII cr,w cr,w 

2. If a is a SD on the form [v A}VP where A is a SD of 

-category NP, S or R, A not a WH-term, and 

<II VII > 
Ci , \'J 

< II A.ii , ( NP l ) . , ••• , ( NP ) . > Q.;; n 
cr, w 1 1 n 1n 

are interpretations of V and A respectively, where 

i) i 1 , ••• ,i are even numbers 
n 

then let 

II Ail' 
a ,w 

= [IAIIcr,w if A is of category NP or 
{pI p( \.V) =11\3 a\iw' ~ W ( p ( w' ) =1 +-I- aE II All )} 

(J 'w 

-s 
otherwise 

then 

< II [ V A} VPII , ( NP l ) . , ••• , ( NP ) . > cr,w 1 1 n 1n 

is an interpretation of a where II [ V A] VPII cr, w <::. E such that 

bEIIV A]VPII iff <b,IIAII '>EIIVII cr,w cr a,w 

3. If a is a SD on the form [that s} 8 and 

< II S II , ( NP l ) . , • • • , ( NP ) . ) Q( n 
cr,w 1 1 n 1n 

is an interpretation of S where 

i) i 1 , ••• ,in are even numbers 

then 

<II [that s] 811 , ( NP l ) . , ... , ( NP ) . > 
cr,w 1 1 n ln 

is an interpretation of a where n[that s}-8 11 =nsn ---- cr,w a,w 
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4. a) If 0: is a SD on the form [ NP R) NP' NP is not a 

WH-term, R is on the form [ [who] NPs] R or 

[ [which) NPS] R' and 

<IINPII ,(NP 1 ). , ••• ,(NP ). > 
a,w 1 1 n 1n 

<IIRII ,(NP +l). , ••• ,(NP +). > 
a, w n ] 1 n m Jn 

0~ n,m 

are interpretations of NP and R respectively, where 

i) i 1 , ••• , in, j 1 , ••• , jm are even numbers 

iii) If II NPII depends on 
a''" 

iv} If k , •.. ,k 
al ~ 

are the odd terms in 

a that IINPII ,IIRII are dependent or respectively, a,w a,w 

then { k 1 • • • 1 k } n { kb 1 I 1 'kb } = ¢ 
al ah 1 1 

then 

< II ( NP R] NP II I ( NP 1 ) . I • • • , ( NP ) . I ( NP + 1 ) . , • • • I ( NP + ) . > 
a ,w 1 1 n 1n n . ] 1 n rn Jm 

is an interpretation of a where 

II [NP R)NPII = {XiXnll Rll Ell NPII } a,w a,w a,w 

b) If a is a SD on the form [Det N]NP' and 

<II Detll > 
a, w 

< II N II , ( NP 1 ) . , ••• , ( NP ) . > Q.;; n 
a,w 1 1 n 1n 

are interpretations of Det and N respectively, 

where 

i) i 1 , ... ,in are even numbers 
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then 

<II [ Det N J NPII , ( NP 1 ) . , .•. , ( NP ) . > 
cr,w 1 1 n 1n 

is an interpretation of a where 

II [ Det N] NPII ,.., , ,.. = II De til (II Nil ) .., .,. cr,w cr,w 

c) If a is a SD on the form [ R] NP' R is on the form 

[ [what] NPS] R' and 

<IIRII ,(NP 1 ). , ••• ,(NP ). > 
cr, w 1 1 n 1.n 

is an interpretation of R where 

i) i 1 , ••• ,in are even numbers 

then 

<ii[R]NPII ,(NP 1 ). , ••• ,(NP ). > 
cr,w 1 1 n l.n 

is an interpretation of a where 

II [ R} NPII = {X '::_ E jll Rll eX} cr,w cr,w-

5. If a is a SD on the form [N A]N, A is a SD of cate­

gory R or S, if A is of type R then A is on the form 

[ [ whoJ NPs] R or [ [which] NPs] R' and 

< II Nil , ( NP l ) . , • • • , ( NP ) . > 
cr,w 1 1 n 1n 

<II All , ( NP +l ) . , • , • , ( NP + ) . > 
cr, w n J 1 n m Jm 

Q<; n, m 

are interpretations of N and A respectively, where 

i) i 1 , ••• , in, j 1 , • • , jn are even numbers 

ii) {i 1 , ... ,i }n{j 1 , ... ,j} = ¢ n n 

iii) If 
(J 'w 

depends on then II Nil 
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iv) If k , ... ,k are the odd terms in 
al ~ 

a that IN" ·"R" are dependent on respectively cr,v., a,w 

then {k , ... ,k }n{~ , ... ,kb} = ¢ 
al ah 1 1 

v) 
~ 

If A is of type S, then II All depends on (J • I for 
(J 'w J 

an odd number j 

let II All ' = ~I All if A is of type R 
a,w } 1 a, 

·-l{ a Ill A.ll 0j = 1} if A is of type s 
a, iii 

then 

< II [ N A) Nil , ( NP l ) . , .. , , ( NP ) , , ( NP + l ) . , ... , ( NP + ) . > cr,w 1 1 n 1 n ] 1 n m J n m 

is an interpretat.ion of a where 

By 

II Nil nil All' cr,w· cr,w 

crj we mean the sequence exactly like a 
(J except possi-

bly for the j-th term where aj has the value 
a a. 

6. If a is a so on the form [NP s]R, NP is a vvH-term, and 

<¢,(NPO)j> 

< II S II , ( NP l ) . , ••• , ( NP ) , > Q,.; n 
cr,w 1. n1 

J n 

are interpretat of NP and S respectively where 

i) j is an odd number, i 1 are even numbers 

ii) II Sll depends on cr . 
cr,w J 

then 

<(NP 0 ).(11SII ),(NP 1 ). , ... ,(NP ), > 
J a,w 1 1 n ln 

is an interpretation of a. (See the definition of HH-stor-

age for the definition of (NP0 )j.) 
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Note that the f does not include a special category 

for quest If 't!e wanted to single out the questions in 

the syntax, v-Ye could have chosen the approach used for head-

less relat es ,. That is, v.;e could have added a syntactical 

rule -~ R and R '"ri th Q in syntax rule 2. In 

the sernantics we '.Nould t.hen need a rule expressing 

IIQII 
CJ, 

r 
"" 1P 3a'1w'EVJ(p(vi') = 1+-+aEIIAII ) }, 

CJ, w 

eliminating r:·he on fo:r embedd.ed questions in rule 2. 

Such a v.rould be equ lent ·to the present one. 

Similar 1.ve could h.a ve chosen the approach used in the 

present t for ,e.mb(o:dded quest also in the case of 

headless relatives 

Rul 

For iEN we d.efin•": 

Pronoun~et]i_!"J.9 ~ 

11 r .· J 1• H j_ ! 
L NP IJ .. 

= {x c Eio.EX} 
~ 

If a: is [he] NP i:hen for any even 1., iEIN 

<llri] II > 
- NP a 

is an i on of a: 

Gap opening: 

If a is [] NP t.hen for odd i. iEfl\1 

<ll[i] .11 
NP cr ,, 

an interpretation of a 

NP-storage: 

If a is a SD of category NP not a \··H-I-term and 

< II t<fP II > 
a~ "~-'1'1 

is an interpretation of a 
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where II NPii on any term in cr , 

then for any even :l, 

<II [ i J P ls 21n 
l 

etation of a 

where 

i 
W ,w W Ew 

NP ) , ({ 0 , l } ) t, ~ ( { 0 , 1 } ) 
l 

such t 

I cP i 
a,w 

- 1} E: II NPII 
(J 'w 

<II NPII of a 
a ' 

Vlhere II NPII on any term in a, then for any odd 

i, i 

t~Je ·~, on of Ct 
}, 

where 

i 

' J 
'!I'J) then 

,_ .. I ~l:n 1 =·I ::JA(AE: II NPII 1\ aE A} '!. d.. ~ \l· 
0 a cW a 

for alternative a) 

""l aEIINPII } 
a ,w 

for alternative b) 
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NP-retrieval: 

If a is a SD of category S and 

<IISII ,(NP 1 ). , ••• ,(NP ). > l~n 
cr,w . 2 1 n 1n 

is an interpretation of a where i 1 , ••• , in are even numbers and 

] .;; k<; n, then 

< ( NPl ) . (II Sll ) ' ( NP] ) . I ••• 8 ( NPk J ) . 
-.;: 1k a ,w 1 1 .- lk-l 

{ NPk+l ) . , ... , ( NP ) . > 
~+1 n ln 

is also an interpretation of a. 

1 .4. Nested storage. 

In this paragrapllu one of the most important restrictions on 

contained in the other, is removed to see whether the storage 

technique can accomplish the interpretations then required. 

1 .4.1. What is nested storage? 

Definition 8: Let a be a so of category NP where 

< II ctll , ( NP 1 ) . , . . . , ( NP ) . > 0~ n 
a w 1 n 1 

' l n 

is an interpretation of a such that llall depends on a., jE~. 
a, w J 

To apply storage on this interpretation is called nested storage. 

In other words, nested storage is to store a NP-intension contain-

ing an opening. This is prevented in the earlier fragments. Note 

that an interpretation without openings must have empty store or 

empty denotation part. ~fuether the opening results from previous 
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storage or pronoun/gap opening will not be distinguished. From a 

retrieval point of view, openings are recognized only by their 

correspondence to a term in cr, and will be treated in the same 

way no matter whether they result from the creation of a binding 

operator or from a pronoun/gap opening. 

To have an interpretation satisfying the conditions of defi-

nition 8, a NP II 
in Fragment 6 must be on one of the following 

forms: 

[NP[NP[NP VP] 8]RJNP non-restrictive relative 

[ Det[ N[ [ t~~t] [ NP VP] 8 ) [if N] NP restrictive relative 

[ NP [ NP VP J SJ RJ NP headless relative 

In other fragments of English, simpler NP-constructions containing 

NP-terms would be generated, i.e. by a syntax rule like 

NP ~ NP' and NP". The present fragment is not particularly fit 

for the study of nested storage as the examples all will be 

unnecessarily complicated. 

Nested storage is like simple storage motivated by wide scope 

readings of one of the following types: 

1 . Reversed quantifier scope readings 

2. De re readings 

3. Binding of pronouns. 

This gives 6 types of nested storage. For each of the three kinds 

mentioned above the interpretation of the NP-term in question may 

contain 

i) an even opening (with or without stored binding 

operator) 

ii) a gap opening 
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In the present fragment, case ii) will only occur if the NP-term 

is a part of a larger relative clause (containing two gaps). This 

does not occur in English, but is grammatically acceptable in 

Scandinavian languages (see Engdahl 1980). The storage mechanisms 

should consequently give an appropriate account even for such 

constructions. 

III ·1 • 4, 2. Fragment 6 • 

The fragmen~t is presented as a series of alterations to 

Fragment 6 11 . 

Openings may nov.1 occur in the store, and consequently the 

safety mechanisms to prevent backwards binding and more than one 

gap opened on one term in o must be changed accordingly. The 

phrase structure interpretation rules must all be modified corre-

sponding to the following rewriting of the safety mechanisms iii} 

and iv) on page 7. 

iii)' If ( ) ( ) II All , NP 1 . , , •• , NP 0 depends on ok , ••• , ok 
o,w 1 1 n 1.n 1 J. 

then {k 1 , ••• ,k1 }n{j 1 , .•. ,jm} = ¢ 

iv)' If k , ... ,k and~ , ... ,kb are the odd terms in o that 
al ah 1 1 

IIAII ,(NP1 ). , ••• , (NP ). and 
a,w 1. 1 n ln 

IIBII , (NP +l) 0 , ••• , (NP , ) . depends on respectively, 
o , w n J 1 n-rm Jm 

then { k ' ... 'k } n { kb ' ' .. 'kb } = ¢ . 
a 1 ah -1 J. 

To allow nested storage, the storage rules and the rule for NP-

retrieval must be replaced by the following rules: 
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NP-storage: 

If a is a SD of category NP not a HH-term, 

< II NP 0 II , ( NP 1 ) . , ••• , ( NP ) . > 0<: n 
cr,w 11 n 1n 

is an interpretation of a, there is no iE~ such that 

II NP0 II = II [ i J..:rp II for all 
(j 1 W L (J g 'i;/ 

w crE E , wE tv and are 

even numbers, then for any even iEN such that i*i 1 , ••• ,in and 

II NP 0 11 does not depend on a 1., 
(J 'w 

where 

viR-storage: 

<II [ i] NP II , ( NP0 ) . , ( NP l ) . , ••• , ( NP ) . > cr,w 1 1 1 n 1n 

is an interpretation of a 

W Ew 
(tw 0 )i is the function (NP 0 )i:({O,l} ) ~ 

such that if <PE ( { 0,1} H) Ew then 

(NP 0 )i($)(cr)(w) = 1 iff {ai<P i =1 }Ell NP0 11 a ,w cr,w 
a 

If a is a HH-tern and 

< lltW 0 n , ( NP 1 ) . , ••• , ( NP ) . > 0< n 
cr,w 1 1 n 1n 

is an interpretation of a where i 1 , ••• ,in are even numbers, 

then for any odd iEN such that II NP 0 11 does not depend on a . 
(J, w 1 

<(Zl,(NP 0 ).,(NP 1 ). , ••• ,(l'W ). > 
1 11 n 1n 

is an interpretation of a 

where 
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such that if 

function (NP 0 ) i: ( { 0,1} W) If'-+ 

cp E ( { 0 , 1 } H ) EfU then 

(NP0 ). (<j>)(cr)(v-r)=ja'<jl i =1 "3A(AEIINP0 11 A l. C5 CJ,W a,w 

· for alternative a) .. l { a I <P i =1 A aE II NP 0 11 } 
<J ,W CJ,W a 

for alternative b) 

NP-retrieval: 

If a is a SD of category S and 

<IISII ,(NP 1 ). , ••• ,(NP ). H;n 
cr,w 1.1 n l.n 

aEA} 

is an interpretation of a where i 1 , ••• ,in are even numbers, 

and kEft:J is a number such that 1 ( k( n and neither of 

(NP1 ). , ••• ,(NP }. depends on 
l.l n l.n 

CJ. , then 
l.k 

<(NPk). (IISII ),(NP,). , ... ,(NPk ,). I 

l.k CJ,W 1 1 - 1 k-1 

(NPk+l ). , ... ,(NP ). > 
l.k+l n l.n 

is also an interpretation of a. 

The modifications are all only in the semantic machinery, and 

would apply equally well to a fragment with the syntax of Fragment 

6 in Cooper (1983) with semantics modified similarly to the seman­

II 
tics of Fragment 6 . 

1.4.3. Examples. 

The examples are phrases generated by the syntax of Fragment 

6 II d an , hence, of Fraginent 6 in Cooper ( l 983) since the two frag-

ments have the same generative pm.rer. The interpretations that 
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require nested storage are not obtained in these fragments. To 

get examples that are more natural, we also use words that are not 

explicitely listed in the lexicon, and write the sentences morpho-

logically correct. The binding relations are indicated with 

arrows. The example with two gaps in one relative clause is for 

obvious reasons in Norwegian. The interpretation processes are 

loosely described, exact calculations can be found in Sem (1983, 

6) 
I. 5.3) • 

(l) Mary believes that a man who 
L.T 

loves her 

J 

admires a woman who hates him. 

To get the NP a man who loves her to corefer with him at the same 

time as Mary corefers with her in a man who loves her, a man who 

loves her must be stored with her open, and retrieved to have 

scope over the embedded sentence or over the whole sentence before 

~ is retrieved to bind her. The intended interpretation is 

obtainable in fragment 6 111 , and by choosing a man who loves her 

to have scope over the embedded sentence, we get 7 ) : 

«II Maryll , II Sll 2 >E II believell 2 > 
a ,w crll Maryll ,w crll Haryll ,w 

cr,w cr,w 

where 

-
II Sll 2 is cr , vl 

II Maryll cr, w 

:Jb.::!y(<b,IIMary\1 >EIIlovesll 2 3 1\ bEIImanll 2 
(J I w (J II rvtaryll c 'w a II Maryll , w 

1\<b,y>EIIadmires\1 2 4 
criiMaryll b'w 

cr,w 

A<y, b>t II hates \I 2 4 5 1\ yE II womanll 2 4 
0 11Maryll b a'w criiMaryll b,w> 

cr,w cr,w 
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( 2) Every man who loves, Mary, 

t l -!/' 

E1 
I 

+-
says that he needs her 

In this example every man v,rho loves Hary is to corefer with he at 

the same time as Mary is to corefer with her. To obtain this, 

both Mary and every man who loves Ivlary must be stored or, to be 

exact, Mary must be stored first, and then every man who loves i, 

with a binding operator on i for Mary in the store, must be 

stored. Both the stored NP's must have scope over the full 

sentence, and for -technical reasons every man viho loves i must be 

retrieved before Mary in order to have i bound by Hary. Just 

before retrieval, the situation can informaly be described like 

this: 

<IIi says that i needs jll , (Every man who loves j)., (Mary) . > 
a,w ~ J 

Since the first binding operator depends on the term bound by the 

second, the second binding operator cannot be retrieved before the 

first. Mary therefore gets scope over Every man who loves j. In 

this case however, this has no serious side effects. Formally, 

the obtained interpretation will be 

<'lia( (<a, IIMaryll >EIIlovesll A aEIImanll )--+ 
a,w a,w a,w 

<a,IISII It 2 >EIIsaysll )> a a w a IIMaryll ' a ,w 

where 'liwEH, 

IISII It 2 (i-v)=(<a,IIHaryll >EIIneedsll It 2 a a a a IIMaryll a IIMaryll a,w a,w 

that can be paraphrased as 

1:;/a[(a loves !1ary A a is a man)~{a says that a needs Hary)]. 
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( 3 ) Every man who loves 1i woman, 

L ~ 
.I 

t 
says that he needs her 

This example is just like (2), exept that Mary is replaced by~ 

woman. In this case, the fact that a woman must have scope over 

every man who loves i does have serious side effects. As in (2), 

we obtain the intended coreferentiality, but there is no way to 

obtain the main reading of this sentence, namely the reading with 

the indicated coreferentiality and with Every man who loves i 

having scope over a woman. 

( 4) B) Enhver hest 
Every horse 

en mann som 

(som) 
that 

r~lari kj enner 
Hary knows .,·r 

,____e_i_e_r_..._..,~ , kas t er ham a v 

a man th,_,a_t _ _,~ ovms throws him off 
t 

~1-------------------~ 

To have en mann som eier bind ham, en mann som eier 

must have scope over the full sentence. This means we have to 

store en mann som eier j with an open gap until the full sen-------------===-------
tence is constructed. Technically, this will not work, since WH-

retrieval is obligatory at relative clause formation and retrieval 

cannot take place while a corresponding opening is in the store. 

To get an interpretation at all, en mann som eier j must be 
--------------~==~-------

retrieved before relative clause formation if stored at all, and 

we thereby lose the possibility of coreference with anything out-

side the relative clause. The interpretation we do obtain, may be 

paraphrased as 
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'dbEIIhesterll (3aEIImannll (Mari kjenner a A a eier b) cr,w cr,w 

~ (b kaster a 2 av)), 

a solution varying with a 2 • This is not the intended interpreta-

tion since is not bound to a. 

1 ,5. Storage limitations. 

~Je have that 

Quantifier scope depends on the order of retrieval. The earlier 

the retrieval, the narrower the scope. 

De re/de dicta De re readings are obtained by storage 

Binding Coreferentiality is obtained by interpreting different 

openings in an S denotation by the same individual. This is 

implemented by storing and retrieval. 

III 
In fragement 6 we also have that 

At nested storage, an outer NP-term must be retrieved before inner 

Obviously this may lead to difficulties, i.e. if we want an outer 

UP-terra to have \Jider scope than an inner. To retrieve an outer 

NP-term before an inner is in any case a precarious principle. 

The least natural quantifier order is enforced, that is the order 

opposite to the order given from left to right in the phrase. The 

question is ''vhether another strategy for reformulation of the 
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storage and retrieval mechanisms would give a better result, or 

whether this is a problem implicit to the storage technique 

itself. 

To obtain coreferentiality between openings (at the same term 

in cr), it is necessary to retrieve on a semantic unit, either on 

the denotation part or on one of the binding operators. Retrieval 

on the entire interpretation or parts of it not forming a semantic 

unit will not give coreferentiality. In addition to the retrieval 

III definition given in Fragment 6 , we have the following possibi-

lities: 

J ) To retrieve on the denotation part of an interpretation 

of a SD of a category different from S. 

2) To retrieve on a binding operator. 

Alternative 1 gives the possibility of NP-scopes over phrases of 

other categories than s. This could eliminate some of the cases 

of conflict between de re/de dicto readings and narrow/wide scope, 

but cannot remove the problem entirely. A better solution with 

respect to quantifier order would not be obtained. For alterna-

tive 2), we could define the composition of two binding operators 

like this: 

Definition 9: If (NP). and (NP'). are two binding operators 
l. J 

such that i' j are even numbers and (NP I) . 
J 

(NP) . ( (NP') . ) is the function 
l. J 

w w 
(NP.((NP'.)):({O,l}W)E + ({O,l}W)E such that if 

l J 

then 

depends on cr . , then 
l. 

( NP ) 0 ( ( NP ' ) 0 ) ( <!> ) ( cr ) ( w ) 
l J 

= 1 iff {al{blc!> j i =l}EIINP'II i }E:IINPII 
crb ,w cr cr,w a a,w 
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However, this is even less satisfactory, forcing both ~W-terms to 

have scope over the same phrase while maintaining to give the 

reversed quantifier order. 

Our conclusion is therefore that extension of the storage 

mechanisms to UP-terms containing NP-terms is possible, but forces 

the reversed quantifier order at nested storage. This does not 

III 
matter as long as we keep ·to binding of pronouns. Fragment 6 

works satisfact.orily for (1) and (2). The problem appears in 

(3) and (4) where binding and scope relations interfere. The 

problem is essentially the same in these examples (though it mani­

fests itself slightly differently): conflict between binding and 

scope. In example (3) the binding enforces the reversed quantifier 

order, and the left--to- right order would have blocked the intended 

binding relation. In (4), the intended binding relation is 

blocked by the obligatory scope order. The HH-word can be regarded 

as a scope marker for the vJH-binding, and vVH-retrieval is obliga­

tory at formation of the relative clause. A stored opening must 

be retrieved before it can be bound. Thus if the NP A contains 

a NP B but not the NP C, that is, we have a SD on the form 

• • • [ ' ' ' [ B ) NP ' • ' J NP • ' • [ C ) NP • ' • 

( or ' . ' [ C J NP " • ' [ . • • [ B J NP •• ' ) NP ' •• ) ) 

B cannot corefer vdth or have "vider scope than C without also 

having wider scope than A. 

The problem rises from the co~bination of manipulation of 

quantifier scope (or de re/de dicta reading) and binding through 

the same ~echanism, the one enforcing a retrieval order conflict-

ing \vi th the retrieval order required by the other. This is not a 
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consequence of the nested storage. The same problem occurs in the 

sentence 

( 5) Every man who loves 1a woman 1 needs her, 
L_J I t 

a variety of the so-called "donkey sentence" (after Geach, 1962). 

In the following sentence we have an example of conflict between 

quantifier scope and de re reading: 

( 6) The detective thinks a psychopath killed three 

freemasons. 

on the reading that the detective is not yet aware of the fact 

that the three victims were freemasons, so that a psychopath is to 

be read de dicto while three freernasons is to be read de re with-

out having wider scope han a psychopath. An example of conflict 

between binding relation and de dicto reading is 

(7) John seeks 1a unicorn 1 because he wants to ride on it 

~------------------------------~ 

where a unicorn is to be read de dicto. To use the same 

mechanisms to obtain coreferentiality and de re/de dicto readings, 

and to manipulate quantifier scopes invariably leads to this kind 

of problems. 
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2. The Discourse Representation Systems 

2.1. Introduction. 

In this section ·>ve 1N'ill study the approach to quantifier 

scope and anaphoric relation between noun phrases developed by 

Hans Kamp in "A Theory· of Truth and Semantic Representation" Kamp 

(1981) as opposed to the Cooper approach as presented in the first 

section. The Discourse Representation Systems (DRS) of Kamp (1981) 

are designed to 9ive an account of meaning both as "that which 

determines condit of truth" and as "that which a language user 

grasps when he understands the words he hears or reads" (Kamp 

1981, sect. i). Kamp has two central concerns in his choice of 

fragment in (Karop 1981) namely "(a) to study the anaphoric 

behaviour of personal pronouns; and (b) to formulate a plausible 

account of the truth conditions of the so-called 'donkey--senten-

ces'" (Kamp 1981, sect. 1 

Cooper and Kamp both keep the syntax and semantics of their 

systems s·trictly apart and avoid using semantic motivation for the 

syntax defin This allows us in the following to interpret 

a slightly modified version of Fragment 6 11 by a DRS-semantics. 

The semantics presented below will be a modified and extended 

version of the system presented in Kamp (1981 }. The modifications 

are mainly cosmetic and the main features of the system are 

preserved. 

2,2. !:, II - Fragment 6 -syntax and DRS~sem~ntic~. 

We will follow Ka~p in allowing relative clauses to combine 

only with basic terms or common nouns and not with derived phrases 
Q' 

of category T or CN"'J. That is, the following constructions 

corresponding to a T or CN already specified or restricted by a 



- IV, 37 -

relative clause being further specified or restricted, will be 

prevented: 

T CN 

/""' / ""' T RC CN RC 

~ / '""' T RC CN RC 

On the other hand the fol construction for terms containing 

more than one relative clause will be permitted~ 

CN 
/ ""-, 

CN 

TV 

T RC 

That is, the fragment will generate relative clauses on the basis 

of tenus with relative clause constituents, In paragraph 2.4 we 

will discuss some approaches allowing more than one non-restric-

tive relative to the same CN. Nevertheless, the fragment below 

v-.rill be sufficiently rich to illustrate the quantifier scope pro-

blems and anaphoric relations which we have focused on above 

(1.4.3, LS), 

For the present, we will ignore the problem of intensionality 

and keep to a purely extensional fragment, The DRS-system is not 

fit for the intensionali~cy treatement of possible world semantics. 

I believe that with the choice of another base structure, for 

instance the situation semantics of Barwise and Perry (1983), a 
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fruitful account also for the phenomena we usually cathegorize as 

intensional can be given. 

From these simplifications, it follows automatically that TV-

expressions taking S obj(:::cts and intensional TV's like seek 

ll be tted from L 1 ,. 

To avoid the overgenerating capacity resulting from the non-

trans forma·tional cons of relative clauses on the basis of 

WH-words and gaps as v1ords of category NP (Det), the relative 

clause construction ll be as in L0 in Kamp (1981 ). As far as 

only acceptable ses are concerned, the DRS-construction is not 

affected by this choice. The determiners a and every are 

syncategorematical in·troduced, and the fragment contains condi-

tionals. is to be an extension of L0 ; the lexicon and names 

for the syntax categories are as in L0 • To emphasize the analogy 

between Fragment and I . h , t. e 

II the same order as in Fragment 6 , 

2.3. Fragment L 1 , 

2.3.L Syntax. 

syntactic rules are given in 

L1 contains expressions of the following categories with the 

following basic members~ 

l ) T: 

2) CN: farmer, donkey, window, man, woman, 

3) IV: 

4) TV: 

5) s 

6) RC 
~ 

7 s 
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The terms he, she and it are called pronouns. 

Formation rules 

FR 1 ) : 

FR2): 

FR3,k: 

FR4): a) 

b) 

c) 

FRS): 

If aEIV, ~ET then ~aES 

If aETV, ~ET then a~'EIV where 

him 6 if ~ = he 6 

~ ' = her 6 if ~ = she 6 

~ otherwise 

where 6 is possibly the empty string. 

If <VES and the k-th v1ord in q., is a pronoun, then 

that <V'ES where q.,' is the result of eliminating the 

k-th word from q.,. 

If aERC and ~ is a basic T or formed by FR4 b) 

then ~aE T. 

i) a ( n)a .] If aECN then ET 
ii) every 

If aERC and a starts with what or whoever then aET 

If a is a basic CN, 

{RC and ~ starts with who/whom/which 
~E -

s 

then a~ECN 
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FR6, k) : If ~cS and the k-th word of ¢ is a pronoun, then 

FR7): 

~~'ERC 6 where ~' comes from ~ as in FR3k), and 

\who/~/which according as the pronoun is 

[he, she/him, her/it respectively 

~ is l or 

If 

Lwhat if the prounon is it, whoever otherwise. 

then 

and 

if 

if 

<P.~ 

<P then 

Note: FR3,k) would not be sufficient for the construction of 

that S-phrases in a fragment containing that S-phrases 

other than relative clauses. L1 is a purely extensional 

fragment without_ sentence embedding verbs. The problem with 

the two kinds of that S-phrases is thus avoided. 

~tax terminologx 

Definition 10: ~1 -discourse is an ordered n-tupple of 

expressions of category S in L1 

synatic analyses for D. The nodes in -.,, ... ,-.n can be uniquely 

numbered, e.g. by the leftmost branch principle. 

Definition 11: An occurrence of an expression a in D (rela-

tive to a syntactic analysis) is an ordered couple <a,n> where 

n is the index of the connection node for a in the syntactic 

analysis of D. 
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Let y be a L 1-expression 

Definition 12: If the rule applied last in the construction of 

y is FRl or FR2, then y is formed by combining a term a 

with a IV or TV ~-

Then 

- a is the main term in y 

a ' is the term vii th maximal scope in y, 

where a:' =f If the rule applied last in the construction of 

~ is FR4 a} then a is formed by combining a term 

! tvi th a RC p • Let a' be this term 

t a: otherwise. 

The term lfli th maximal scope is the main term without non-restric-

tive relatives. The reason to single out non-restrictive relatives 

this way is the special position non-restrictive relatives hold in 

the semantics. They are intended to give supplementary information 

about the object(s) determined by the rest of the term, and do not 

give substantial contribution to the determination of the 

object( s). 

He will follow Cooper (1983 Ch IV 2.3) in interpreting head-

less relatives as if they contained a hidden universal: 

Definition 13: If the rule applied last in the construction of y 

is FRl or FR2 and the term with maximal scope starts with every, 

whoever or ~~ then y is called a universal sentence or a uni-

versal IV respectively. If the rule applied last in the construe-

tion of y is FR7, y is called a conditional. The term with 

maximal scope in a universal sentence or IV is called a ~niversal 

term 
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( 8) y = A man Wl!O loves Mary runs 

Syntatic analysis 1 ~ l ~ JA man viho loves Mary runs 

~0-, 
/ ~ ~· '"" 

2: A man who loves Hary 11 :runs 
I 

IFR!Jb) i) 

3 : nan vJho lo•les Hary 

4 5: 'tJ:""tlO loves Hary 
i 

I FR6, l 
I 

6: he loves Hary 

R· u • 

A 
9~ loves 10: Mary 

is the 'cerm with maximal scope in y 

as well a.s the main term. 

Syntac·tic 

FR4b) i) FR6, l 

4. man 6: he loves Mary 
/' 
/FR~ 

// "" 
7' he a, lo~ 

9: loves 10: Mary 



With s a man who loves still the main terM 

a man. 

for how to desc~ 

subrnc;~:!e:l.s ctf 

tion of t rL'.th in ~th<? ::"UCh c 

lf'le use 1. 1 s and some 

variables cal deac be submodels. Given 

a L 1-discourse we consc system", 

c:u1 ordered sys r_E:rl of '''dis at: ions"" describing simple 

submodel:s on a small refr:::rents, The dis-

course l.l represented by 

the scourse rspresenta ~e is a mapping from 

the discours.s :nodel, sa·tis fying the 

cor1di t.i ons i 

Definition l ture on the form 

H = <U F> 

. ) l. u is a n_on set 

ii) F ari ion each 

n::JJne in to an element of U 

basic C::N or IV in to a subset of U 

basic in L to a set of ordered rs of members of 

U, 

The pronouns do not get any i F. This corresponds 

to the ope ~:o·tatio:n of pronc,_ms in ·the fragements in 

part 1 (and to the of gaps, as L1 uses pronouns 

instead of gaps in the construct of relative clauses.) 
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Definition 15: Let V be a countable set of entities none of 

which is a basic expression in L1 or a string of such express-

ions. V is called the set of discourse referents. 

Definition 16: For any subset X c V of V, let L1 (X) be the 

result of adding the members of X as basic terms (expressions of 

category T) to L1 • Let ~l~ be L1 (X) extended with the 

symbols =, ( , ) r and the syn'tactical rules: 

i) If uEX, a a proper name, then u=a ES 

ii) If uEX, aECN then a ( u) E S 

In Ll (X) the following is a derived rule: 

iii) If uEX, o1ao 2ES, aE'l', then o1 uo 2ES 

Definition 17: Let y be an expression in Ll(X), yES. y may 

then be of one of the following three kinds: 

i) y is on the form If 0 1 ,o 2 or If o1 then o2 , 

o1 ,o 2Es in L1 (X), and y is called a conditional. 

ii) y is on the form a~, aET, ~EIV in L1 (X), and y is 

called a simple sentence 

iii) y is an expression of Ll (X)~L 1 (X), and is called a 

'f' ( ' . )10) qual~ y~ng sentence qual1f1er . 

Definition 18: If y is a Li(X)-expression, yES, and all the 

well-formed subexpressions of y (including y itself) that are 

also expressions in L1 

category in L 1 , then y 

are basic expressions of some syntactic 

is called an atomic sentence in Li (X). 



~ IV.45 -

The following table gives examples of the kind of sentences we 

have defined in definition 17 and 18. 

Table: Examples of atomary and non-atomic sentences. 

non-atomic atomic 

conditional If Pedro owns a donkey, he beats it 

qualifying sentence who loves Hary(u) man ( u) 
man u;=Pedro 

-

sentence Pedro 
u runs 

owns a simple donkey loves u v~ 
I 

u,v are discourse referents. 

If y is a non-atomic simple sentence in 

the longest well-formed subexpresson of y 

L 1 (X), let 

in L 1 (X) 

y' denote 

not on the 

form u6 or o u, where o is of any syntax category, and u is 

a discourse referent. 

Proposition: If y is a non-atomic simple sentence in L 1 (X), y' 

is on the form a~ where aET, ~EIV, or y' is on the form ~a 

where a:ET, ~ETV. 

Proof: Suppose this is not the case. Since y is a simple sen-

tence, y must be on the form a~, o:ET, ~EIV. y' is not on this 

form, so y'*Y• and a must be a discourse referent. y is non-

atomic, so ~ can not be a basic IV and is thus on the form 

~'a', ~'ETV, a'ET. Again, y' is not on this form, so y'*~ and 

a' must be a discourse referent. But all the expressions of cate-

gory TV are basic, so in this case y is atomary, contradicting 

the premises. 
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Definition 19: If y is a non-atomic simple sentence in L 1 (x), 

the main term and the term with maximal scope in y is then as in 

y', and y is said to be universal if y' is a universal sen-

tence or IV. 

Definition 20: If y 1 and y2 are Li(x)-expressions, and y2 

comes from yl exclusively by the use of the rules i)-iii) under 

definition 1 6' then y2 is a descendant of y 1 • 

Definition 21: If D is a L1-discourse, <o,k> an occurrence in 

L 1 of an expression in D, then <o' ,k> is an occurrence in 

L1(x) of 6 in D if o'=o or 6' is a descendant of o . If 

o' is a descendant of 6, we say that <6 ', k> is a descendant of 

<o,k>. 

Discourse Representation 

Notation 2: Indexed or primed V's are used for denoting sets of 

discourse referents (subsets of V), while subsets of the universe 

U are denoted by indexed or primed U's. 

Definition 22: A possible DR (Discourse Representation) of the 

L 1 -discourse D is an ordered pair <V ,Con > where: 
m m 

i) 

ii) 

v c v m-

Conm consists of occurrences in L1 of expressions in D 

or descendants in Ll (X) of such occurrences. 
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Definition 23: If m and m' are possible DR's for D, 

m' extends m if V c V , and Con c Con , . Moreover, m";::m+m' 
m- n m- m 

(or m' added to m) is also a possible DR for D where 

m+m' = <V U V , , Con U Con , > 
m m m m 

( 9) D = <Mary loves a man who owns a donkey> 

Syntactic analysis: 

1 : Mary loves a man who owns a donkey 

~-----2: Mary 3: loves a man who owns a donkey 

~ 4: loves s~ a man who owns a donkey 

6: man \vho I owns a donkey 

7: ma~i1s- a donkey 

I 9: he owns a donkey 

~ 
10: he 11: owns a donkey 

/~ 
12: owns 13: aldonkey 

14: donkey 

m: u,v,w 

1 : <Hary loves a man who owns a donkey, 1 > 

2: <u=~1ary, 2> 

3: <u loves a man \vho awns a donkey, 1 > 

4~ <man who owns a donkey ( v), 6> 

5: <u loves v, l > 

6: <man ( v) , 7> 

7: <v owns a donkey, 9> 

8: <donkey (wL 14> 

9: <v owns w, 9> 
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m is a possible DR for D. The occurrences in lines 1, 3, 5, 7 

and 9 are occurrences of simple sentences, while the occurrences 

in lines 2, 4, 6 and 8 are occurrences of qualifiers, the occurr-

ence in line 4 being non-atomic. 1 is an occurrence in L1 , while 

2 is a decendant in L~-(x) of the occurrence <Mary,2> in L 1 . 

Definition 24: Let m be a possible DR for D. An occurrence 

in Con is called unreduced if Con contains no descen-m m 

dant of subexpressions of <o ,n>. 

m is called maximal if every unreduced element in 

occurrence of either of the following kinds: 

i) atomic sentence 

ii) conditional 

iii) universal sentence 

Con 
m 

is an 

Definition 25: A partial DRS (Discourse Representation Structure) 

is an ordered triple <K,A,E> where: 

I K is a set of possible DR's such that 

Vm_1 ,m2EK(Con neon = ¢) m1 m2 

II A, E c KxK such that ArlE=¢ and AU E is a partial function 

from K to K that can be extended to a partial ordering 

< on K with the same domain as AU E. 

III Unique origin of the occurrences of a DR: 

VmEK[3m1 EK (m<m1 )~ 3m2EK(m<m2 A J8 2EConm2veEConm 

( e a descendant of a subexpression of e 2 )) ] . 
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IV The ordering preserves descendance for occurrences: 

( 1 0) 

If u 
mEK 

Con m contains two occurrences and 

e1 EConm I e2 Econ2 for m1 I ~EK such that e2 is a 
1 

decendant of a subexpression of e1 , then m1)m2 . 

D = <Every man loves a woman> 

m0 : l <Every man loves a woman, 1 > 

v u 

<man(v),3< <v loves a woman, 1 > 

<woman (u), 7> 

<v loves u, 1 > 

When a DR raEDom(A), ~11 possible mappings from the discourse 

referents in m compatible v.ri th mappings for the DRS that make m 

true in the model will be necessary in the evaluation of truth for 

the discourse. On the other hand, when a DR mEDom(E), the exi-

stence of such a mapping is sufficient. So in (10) we want 

the discourse to be true in a model if whenever v is mapped to a 

man in the model, there is a mapping for u such that u is a 

woman and v loves u. 
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Definition 26: Let be possible DRs in the DRS <K,A,E> 

or m < m 
-1-JIU E-2 

if 

If <m 1 ,m2 >EA we write m1 < l\m2 and 

if <ml ,m2 >EE we write ml < r,m.;. 
.t:; ,t; 

nate to m2 , or r:'!_l <m2 

if 

there is a chain of iab~ s nate DRs from m1 to m2 • 

If K contains a element mo such that 

mEK, then m0 is the pr~ncipal element. of K. 

) 
Notation 3: K (m) = {m EK I rn';;;m} 

Vr=U ,..-V 
K rncK m 

Vk;;; (m) = U { V , I m' E K> (m)} m· 

ConK= U E KCon m _ m 

for every 

Definition 27: Let 8EConK be an occurrence in the DRS D = <K,A,E> 

e unreduced in D 

if 

ConK contains no descendant of a subexpression of e and e is 

not atomic, 

Definition 28: He say that a partial DRS <K,A,E> 

i) Every element in K is maximal 

ii) No occurrence in Con 
K 

is unreduced. 

is complete if 



Note that as a C011S of de ition 25 and 28 i), any partial 

DRS cannot, l::Je e.?d::ended ng occurrences and possibly some 

new DR's to a_ DRS. If a subexpression of an occur-

renee e ha,s a (iescen~da_._n·t that is not also a descendant of a 

s s of a ccndit or universal subexpression of e, 

or o£ a on t.he form a~ , o:E 'I', BE: RC, in some DR 

other than the DR ng 8, the DRs in the partial DRS 

cannot be made 1 thou.t violating condition I in definition 

25. 

DRS construction ules. 

Notation 4: r 
the resul i: of f~rting v to the k-th position in l;, 

-if y E RC US an..:J y cmnes f:com I; FR3,k or FR6,k. 

~ the resul of ac the main term in y with v if y 

is a s rn.ol~~_=""a_t()rnic- sentence"' 

Let DRS, mE:K, m0 the principal 

element st subset of K containing m having a 

principal element, 8E ' 8 unreduced in J), e = <y ,k>. 

~.r ,<x,s> are the occurrences 

of the antecedent and conses respectively. 

Add to K: m1 = 0,{<~.r>}> 

m2 ~- r.zL r < v s > l > ' " l /\.,. J 
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C2. y is a simple sentence. 

Let a denote t,he term with maximal scope in y, and r the index 

of the occurrence of a: as the term with maximal scope in y • 

r~ 
1 
v~ (m) such that v is suitable if 

1 1 ) 
a: is a pronoun 

Choose a vE: 
v v 

K 

-
othervdse 

a must be either of the following: 

a) a pronoun 

b) a proper name 

c) an indefinite term 

d) a universal term. 

Let I; denote a ::::: 2 in case b. In case 

form a - ~ ' ~ery ~ or what 0 ' whoever 6, 

or vo respectively. 

According to whether a is of type a) ' b) ' 

a) 

b) add <{v},{<l;,r>}> to rna, 

c) add < { v} , { <I; , r> } > to rn, 

d) add ml = <{ v}, <1;,r>}> to K, 

If a: is not the main term of y , then the 

form a: p , p E: RC. Let s denote the index of 

of y' and 

add m' = <¢,,{ <p[ vj ,s>} to K, 

c)-d), a is on the 

let 1;: denote ~ ( v) 

c) or d): 

let rnl denote rn 

let ml denote m 

let ml denote m 

add <m 1 ,rn> to A 

main term is on the 

p in the main term 

and <m' ,m1 > to E 



In case: 

a)-c): 

d) 

- IV.53 -

add <¢, { <y [ v J , k>} > to m1 

add m2 = <yj,{<y[vJ ,k>}> to K 

C3. L-i_s a qualifier, y is on the form ~p(u), ~ECN, pERC. 

Let r,s denote the indices of the occurrences of ~.p in y 

respectively. 

add <¢,{<~(u),r>,<p[uj,s>}> tom 

C4. y is a sequence of sentences, y :::: y1, ... ,yn and kl, ... ,kn 

is the indices of the occurrences of r,, ... ,yn in y respec-

tively. 

add <<!J ' { <yl ,kl >, • '.,<yn,kn>} > to m. 

Definition 29: Any complete DRS obtained from a partial DRS 

<K,A,E> by a sequence of applications of the rules Cl-C4 is 

called a completion of <K,A,E> 

Definition 30: A DRS ~ =<K,A,E> is a DRS for the L 1-discourse 

D=y (relative to a syntax analyses for D> 

if 

D is obtained from <{ <¢,{ <y,k>}>} ,¢,¢>, where k is the index 

of y in the syntax analysis for D, by a sequence of 

applications of the rules C1-C4. 

Well-definedness of the DRS-construction in L 1 

We want to shov1 that starting with the partial DRS 

.D=<{ <¢, { <y ,k>} >} ,¢,¢> for the L1-discourse D==y, a completion of 

.1J v1i 11 give us a complete DRS for D. Horeover, we want this DRS 
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to reflect the universal sentences/IVs, the conditionals and the 

non-restrictive relatives. 

The proof goes by induction on the construction of DRSs as is 

sketched belmv: 

Let D=y be a L 1-discourse. 

Induction hypothesis: D = <K,A,E> satisfies the definitions 25 

and 30, and if 6ECon , mEK and 9 is unreduced in m, then m 

a) 

or b) 

e is unreduced in ConK 

e is reduced in ConK' and 9 is a [uni versa! J d 
conditional an 

there is a pair of DRs m1 ,m2EK such that m1 <Am, m2<Eml 

and m1 contains an occurrence of a descendant of the 

runi versal termJ~ 
~ contains an occurance of a descendant antecedent ' ~ 

of [the ~onsequent} 

1. :D = <{ <¢, { <y ,k>} >} ,¢,¢> is a parial DRS for D as D 

trivially satisfies the induction hypothesis. 

2. If D = <K,A,E> satisfies the induction hypothesis, the 

application of one of the rules Cl-C4 for DRS-construction 

preserves the conditions of the induction hypothesis. 

3. Each of the rules Cl-C4 for DRS-construction leads to the 

reduction of one occurrence in ConK together with the 

addition of some new occurence(s) to ConK. The occurrences 

added to ConK will have smaller parts of the longest 

subexpression also an expression in L1 of the reduced 

occurence, as their longest subexpression also an expression 

in L1 . l.s y is finite, having a finite number of 

subexpressions, this process must stop because no occurrence 
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in ConK is unreduced in D. Hhen no occurrence in ConK 

is unreduced in D, every DR in K must be maximal since 

V satisfies the induction hypothesis, and D satisfies 

definition 28, and is thus a complete DRS for the L -1 

discourse D. 

We have no¥! shown that a completion of D = < { <¢, { <y, k>} >} , ¢, ¢> 

will give a complete DRS for the discourse D = <y>. Note that 

the construction rules Cl-C4 preserves the property that no 

conditional or universal occurrence e is reduced in the DR 

that contains it. In a complete DRS for D, there will thus be a 

Moreover, if 

in the terminology of Kamp (1981 ). 

8ECon , 8 = <a~y,j>, ~ m a non-restrictive relative 

to the term a, then in a complete DRS for D, there is a m'EK, 

m'< m such that Con' contains 8', 8'=<~[vJ ,k> and Con 
E m m 

contains <y[vJ,j>, v a discourse referent. 

Note also that L 1 

sense that if y 

is an extension of L0 in Kamp (1981) in the 

is a L 0 -expression then y is also a L -
1 

expression, and if i) = <K 1 ,A,E> is a complete DRS in Ll for 

the L 0 -discourse D, then Ko will be a L 0 -DRS for D, where Ko 

is exactly like K 1 except for the deletion of all occurrences of 

non-atomic qualifiers and sequences of sentences. 

2.3.3 Truth 

Let M = <U ,F> 
M 

be a L 1-model and let D = <K,A,E> be a complete 

DRS for the L 1-discourse D. A denotes as usual the empty 

function 
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Dl ~ D is true in H on the reading .D 

D2: 

D3: 

(rela·tive to the function c:X + UM, X c V) if 

If 

f verAm 

f verEm 

A(Uc) verE m0 in M 
l 2) 

and 
~ 

VK (m) c X c V, 

f verifies m in M, f ver m 

iff 

iff 

i) 

ii) 

f verAm 

f verEm 

v 
m 

VgEUM (fUg 

v 
3 gEV Mm( fUg 

if 

if mE dom(A) 

if mEdom(E) 

lim' (m' < m + ver m + 
e AIJE 

ver m A \im ' ( m ' < AU Em + e 

fUg ver m' ) ) 

fUg ver m' ) ) 

This is well-defined since AUE is a total function on K'{m0 }, 

AnE = ¢ and all chains of subordiniate DRs end in an atomic DR 

(in the domain of E). 

D4: If m is a DR, X~ V such that every atomic expression in 

Conm is a Ll (X)-expression, and f is a function 

05: 

f:X + UM, 

If 

in 

a) 

b) 

c) 

d) 

rn is elementa_EY verfied in H by f, f ver m 
e-

if 

every atomic occurrence in Con is true in 
m 

M by 

Xc V, e = <<!; 'k> is an occurrence of an atomic sentence -
L1 (X) I then q; is on one of the following forms: 

u=a vlhere uEV, a a proper name 

a ( u) \!here uEV, a a basic CN 

ua where uEV, a a basic IV 

uav where u,vEV, a a basic TV 
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If f is a function, f:X ~ UM, 

e is true in M by f 

if 

a) f(u) = F (ex ) 

b,c) f(u) E F (a) 

d) <f(u), f ( v) > E F (ex ) 

(11) D = <Enhver hest som Hari kjenner en mann som eier, kaster 

ham av> 

DRS: = <K,A,E> where 

mo: u 

<Enhver hest sorn Hari kjenner en mann som eier, kaster ham 

av, 1 > C2d) 

<u=Mari, 7> 
--------------------------------~· ----~,·-·-,- .. 

w,v 
m1 : <hest sam Mari kjenner en mann sorn eier(w), 3> C3 

<hest (w), 4> 

<Mari kjenner en mann som eier w, 5> C2b) 

<u kjenner en mann som eier w, 5> C2c) 

<mann som eier w(v), ll> C3 

<u kjenner v, 5> 

<mann (v), 12> 

<v eier w, 13> 

m2 : <·wkasterhamav, l>C2a) 

<w kaster v av, 1 > 
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which gives D the truth conditions: 

3 x(x=MARI A Vy,z[ (HEST(z) A MARl KJENNER y A ~ffiNN(y) A y EIER z)-+ 

z KASTER y AVj) 

with the coreferentiality as indicated in the first section. 

At first sight it may be a surprise that an existential term like 

en mann is represented by a V-quantifier. We recoginze, however, 

the following equivalence from first order logic: 

'Hhen x is not free in <);: 

An existential term in the antecedent being bound by a V-quanti-

fier outside the implication is thus in complete accordance with 

first order logic. At coreferentiality betw·een the antecedent and 

the consequent, the variable is free in the consequent, and the 

quantifier movement is therefore not allowed. 

2. 4 Some remarks on the Fragment L1 

Relatively to a syntactic analysis for a discourse in L 1 , 

each occurrence in the discourse can be reduced in only one way, 

except possibly for the choice of discourse referent. Thus any two 

complete DRSs for a discourse D based on the same syntactic 

analysis of D will be alphabetic variants of each other except 

possibly for the choice of discourse referents for pronomina. So 

far, we have ignored the consequences of the reduction order to 
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the coreferentiality. To prevent backwards binding we might want 

the reduction order to be from left to right. This can be imple-

mented by requiring the nodes in the syntactic analyses to be 

numbered according to the reading direction, and the occurrences 

to be reduced in increasing order. 

Kamp does not give any definition for deictic use of prono-

mina. One possibility is to split off a subset of the set of dis-

course referents V, say V' c V (or to choose some other set 

V'). Then given an assignement c:V' ~ UM, we could choose dis­

course referents for the deictic pronomina from V', for other 

terms from v,v·. This strategy is indicated in the truth defini-

tions. 

For a fragment permitting more than one non-restrictive rela-

tive to the same term, the following modifications can be made to 

the syntax definition of L 1 : 

Replace FR6,k by 

FR6 ' n, k 1 , ••• , k n: If <jJl, ... ,<jJnES and the k .-th word 
]_ 

a. where a. is either he/him she/her or 
]_ l. 

i=l u ® G ~ n, then ~ 1 <V l ' . . . , ~ n <V ~ E RC (the last 

replaced by 'and'), where comes from 

FR3,k, and ~ . 
l. 

is 

who/whom/which according to~ 
whether the k. -th word in 

l. 

or 

what (only if n=l ) 

in <jJ. is 
]_ 

it for 

corruna may be 

tV· l. 
as in 
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The rules making other use of RCs than as non-restrictive rela-

tives needs a restriction against the RC being made up from more 

than one S. In addition, the first part of notation 4 must be 

replaced by: 

Let y[vj, vEV denote 

- the result of inserting v to the 

k.-th 
1 

position in c: . 
1 

for each i=l, ... ,n, where 

y E RC U S and y comes from C: 1 , ••• , C: n by FR3, k 

and n=l or FR6'n,k 1 , ... ,kn 

The alterations given above express a non-recursive analysis of 

terms with more than one non-restrictive relative. The non-res-

trictive relatives are understood as a sequence of co-ordinate 

clauses rather than as a hierarchy of terms with one non-restric-

tive relative to each ·term. Some alternative strategies for the 

analysis of non-restrictive relatives can be illustrated as 

follows: 

1 ) co-ordinate non-restrictive 2) A hierarchy of terms with 

relatives subordinate to one non-restrictive to 

only one term each term. 
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{ <mi,m1>! i=2, ... ,}EE 

{ <m. , m. 1 > I i=2, . . . , 4} E E 
J. ].-

which will give truth conditions according to the following 

patterns, where x,y,z are variables corresponding to discourse 

referents for terms that have their first occurrence in s 1 , s 2 , 

s 3 respectively: 

for DRs 1 : 

DRS 2a): 

DRS 2b): 

3 xyz ( tjJ 1 A tjJ 2 1\ tjJ 3 ) (if 

3x(<V 1 ) A 3y(<V 2 ) A 3x(<V 3 ) 

3 X ( tjJ l 1\ 3 y ( tjJ 2 A 3 Ztjl 3 ) ) 

S. is 
J. 

tjJ • for i=l , 2, 3) 
1 

If x is not free in <V 2 , tjl 3 , y not free in <V 1 ,<V 3 and z not 

free in <V 1 ,tjl 2 , the three are equivalent. If y is not free in 

<V 1 , and z is not free in <V 1 ,<V 2 , 1) and 2b) are equivalent. 

I have chosen alternative 1) for the following reasons: 

i) Intuitively I understand non-restrictive relatives as a 

string of additional informations to one and the same term, 

and not as isolated additional information to a hierarchy of 

terms. 

ii) Alternative 1) (and 2b)) gives the possibility of coreferen-

tiality between coordinate clauses, as we would need for 

instance in: 



(12) You know Bill, the one ".rho metti:3irl 1 at this party last 

year, who took hir to Hawaii spending all his savings, who 

was then le:H by his v1ife and \vho has been a heavy drinker 

ever since, , ... 

iii) If the reduction order of t.he clauses are from left to 

right, 1) and 2b) always give equivalent truth conditions. 

1) is then preferable as it gives a simpler DRS. 

No restrictions has so far been made with respect to the kind 

of sentences relative clauses can h:! made from. It seems quite 

clear that only simple sentences can be used, but there might also 

be other restrictions regarding the complexity of the sentence. 

Other restrictions, 1 island constraints, restrictions against 

crossing depencies etc. may also be imposed on the relative clause 

formation. 

One of the main virtues of the "Cooper stores" is the great 

flexibility ~vith respect to quantifier scope (and order) and core-

ferentiality. TI1e only limitation to this flexibility is that 

"donkey-structures" (including the structures in (3) and (4)) are 

not feasible. 

The Cooper interpretation process builds interpretations for 

compound phrases from the interpretations already calcu)...ated for 

the constituents. The interpretation process is difficult to 

follow, and even my intuition regarding the construction of sen-

tences being vague, I do not think it looks much like what goes on 

at human sentence construction. As an illustration of what a 

language user grasps at hearing/reading a text, I think the DRS-

system gets far better off. 
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The DRS-system as it stands puts obvious constraints on the 

quantifier scope and order, and with that on the coreferentiality. 

The quantitier scope and order is determined by the left to right 

direction, and the possibility of choice for discourse referents 

for pronouns is determined by reduction order and the subordinate 

relation. It is, however, possible to modify the rules for DRS­

construction to obtain flexibility in quantifier scope and order: 

Replace the first period in rule C2 (the one beginning with "Let" 

and ending with "y ") with: 

If yES and a' 

let a denote 

is a te1~ in y, then 

[:. if a' is on the form 

otherwise 

~ p , ~ E T, p E RC 

and let r denote the index of the occurrence in question 

of a. 

With this modificat.ion, ','ife can alter the quantifier scope in L 1 • 

Note that tvJO complete DRSs for the same discourse D need at 

this not be alphabetic variants of each other except possibly for 

the choice of coreferentiality for pronouns. Even with a restric­

tion on the reduction order, a term can now corefer with any suit­

able pronoun in its scope, also pronouns occuring to the left of 

it in the sentence. This is far too much flexibility and one can 

easily imagine constraints that one would want to impose on this 

modification: constraints against quantifying out of sentences 

(including relative clauses), island constraints etc. 

Some unanswered questions 

The preferable reading of a sentence is normally the reading 

with the quantifier scope and order as given from left to right in 

a written representation of the sentence. Several examples are put 
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forward to support the need of reordering the scope and order, 

among which are the following: 

(13) Every Englishman admires a woman 
a) namely his mother 

b) namely the Queen 
(Engdahl 1980) 

(14) Guinevere has a bone in every corner of the house 
(Rodman 1976. I got it from Cooper 1983, Ch V, 2.5) 

A reversed quantifier order is not necessary for the readings 

we want for (l3)b, as we can obtain the correct interpretation 

also with the left-to~right order. (14) however gives evidence for 

the need of wide-scope mechanisms, unless there is some other way 

of interpreting indefinite descriptions (i.e. something like 

value-free and value-loaded interpretations of Barwise and Perry 

(1980) or the approach taken in situation semantics(Barwise and 

Perry 1983)). Such techniques may also be adequate in the inter-

pretation of sentences like 

(15) As you go north through the valley, the towns get smaller 
( Hellan 1 980) 

A strong candidate against the DRS-·treatment of "donkey-sentences" 

is the following example~ 

(16) Every man who has a daughter thinks she is the most beauti-

ful girl in the world. (Cooper 1979) 

Cooper asserts that the DRS~treatment would "commit any father of 

more than one daughter to the contradictory belief that each of his 

daughters is the most beautiful girl in the world" (Cooper 1979). 
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3. Application of the DRS-analysis to Situation Semantics. 

3.1. Introduction. 

In part 1 and 2 we discussed questions of quantifier scope 

and anaphoric relations between noun phrases through a study of 

the storage mechanisms developed by R. Cooper (Cooper 1983) and 

the theory of Discourse Representation Systems (Kamp 1981). 

The storage systems turned out to be successful in treating 

many problems of quantifier scope in natural languages, but seem 

unable to handle sentences where there is a conflict with respect 

to the need of wide-scope mechanisms. Extension of the analysis 

of Kamp (1981) to cover the syntactic fragment of Cooper (1983) 

enabled us to obtain a satisfactory treatment of some of the 

examples that could not be handled by the storage method. 

The way the DRS describe simple parts of the world by each 

DR, and systematic relations between these simple parts also gives 

a picture of what a language user 'grasps' at hearing/reading a 

text. This feature is strongly reinforced by the correspondence 

between the theory of DRS and situation semantics (Barwise and 

Perry 1983), a promising alternative to the traditional possible 

world semantics. 

Situation semantics is based on a set of individuals A, a 

set of n-ary relations over A for each nE~ and a set L of 

space-time locations. The system also provides a rich number of 

concepts to describe parts of the model (reality), events and 

courses of events, together with a theory of meaning for the 

model. 

How does language get into this machinery so powerful with 

respect to describing reality? To have the means to describe 

reality is one thing, to know what an expression in a (human) 
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language means is anothero Barwise and Perry write: 

"'The linguistic meanings of expressions in a language are 

conventional constraints on utterances. To study semantics 

is to attempt to spell out these constraints, to spell out 

what it is the native speaker knows in knowing ivhat utteran­

ces of his language mean. 

Given an indicative sentence t• we think of the meaning of 

1 as a relation u[~]e between situations u in which ~ 

is uttered and situations e described by such utterances. 

The relation constrains both u and e." 

{Barwise and Perry 1983, a1. 6) 

The theory of DRS gives the means for finding the relations 

that have to hold bet'll.reen the individuals assigned to the dis­

course referents to satisfy the truth conditions of the sentence. 

Can this be used as a means for evaluating the same aspect of the 

meaning relation in situation semantics? My answer to the question 

is yes, and I will in the following indicate how this can be done. 

The event-type in situation semantics describe elements in a situ­

ation structure in very much the same way as the DR describes 

(sub) models of a model for DRS-theory. I will not give any com­

plete system or exact specification of the correspondence rules in 

this paper, but merely illustrate the use of DRS-theory in con-

struction of the meaning relation [~] by means of two examples. 

Familiarity with situation semantics is assumed, and concepts and 

rules from "Situations and Attitudes" will therefore be used with-

out further comments. The definition of the most central concepts 

will, however, be included. 



- IV.67 -

3.2. The meaning relation u[.]e. 

Recall the folloV~ring concepts from "Situations and Attitudes": 

Definition 31: Let DU be the event-type 

DU: = at 1: speaking, ~: yes 

addressing, ~~~; yes 

saying, ~.~; yes 

If there is one and only one anchor f for DU such that a 

c.o.e. or state of affairs (situation) d is of type DU, then we 

call d a discourse situation. 

Definition 32: An utterance situation u consists of a discourse 

situation d and possibly of a situation c called the speakers 

connections consisting of situations of the type 

cu~_= = at ~~: saying, ~·.§.J yes 

referring to, ~.fi_.~i yesl3) 

where _!I!_ ~ ~. for one or more of the subexpressions .§._ in a:. 

Notation 5: If U is an utterance situation-type for $, and ~ 

is a subexpression of • such that CU~ ~ U, we let 

CU(~) = <~',CU~>, that is, the role of the referent of ~ in 

CU~. If u = de is an utterance situation of •, \ve write c(~) 

for the referent of i!_ in c, and let id, ade bd' a:d denote the 

values of ~~~~~~~ in d respectively. 

Definition 33: A statement ~ of an expression $ is an ordered 

triple ~ = <d,c,.> where u = d,c is an utterance situation of •· 

An expression • expresses a meaning relation, a conventional 



- IV.68 -

constraint between utterance situations and described situations. 

~ve adopt the notation from Barwise and Perry (1983) of writing 

for for will be on 

the following form~ 

Notation 6: [~]: = at i : involves, U,E~ yes 
u 

where - u ~ DU'[ <a,$>]ucu, cu posibly empty, 
-- <P 4> 

DU' is DU with the addition of uniqueness 

reguirements for the linguistic roles. 

- E is specified by the analysis of 4> as is to be 

illustrated below. 

[$] may contain more than a simple constraint. 

Note that this means that 

( 1 7) uE MF [ .] 
-<P 

iff u is of type 

and ~ e • e • 

U = DU' U CU 
1 

and a = 4>_ -d 

iff u is an utterance situation of type 

The simple constraint 

and a = 4> -d and e e ., 0 • 

C: = at 1 : involves U,E; yes 
u 

in i[q>] holds a unique position for [4>] as a meaning relation 

ull¢Jl.e. That is, if [_<P.ff contains other requirements, additions 14 ) 

or constraints, these are subordinate to c. No definition of how 

non-simple constraints work is given in "Situations and Attitu-

des", and we will propose the following defective definitions to 

comply with meaning constraints UJl : 
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Definition 34: If [~] is a constraint on the form as in nota-

tion 6, then 

i) uEMF[~l if u is of type U 

ii) If EMF then u["'] e 1' f u [4>], 'I' 

\ff(U[ f]c_::u => 3g(E[ fUg]c_::e 1\ •••• ) 

where f,g are anchors with domains c the set of indeterminates 

for U,E respectively, and the additional conditions denoted by 

in [cj>]. in notation 6 vvill specify ..... 

This definition is equivalent to the corresponding definitions for 

simple constraints in "Situations and Attitudes". 

We also define 

Definition 35: The interpretation of a statement ~ = <d,c,cj>> is 

[~l = {eld,c[cj>]e} 

If uE MF [~], we have 

( 1 8) [~] = {eld,cnle} = {eluMOUJ!e} 

= {e!U[f] is part of u and e is of type E[f] 

for a total anchor f for u} 

Note that Barwise and Perry seems to give a different definition 

in Ch. 6 and in the definition of ALIASS (Barwise and 

Perry 1983). The form given here is more general, and in accor-

dance with the outlines and explanations of "Situations and Atti-

tudes". 
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In part 2, we defined the conditions for a discourse D = <~> 

to be true in a total model M on a reading ~ = <K,A,E> (rela­

tive to a function c). The conditions require that the total 

model M contains a specified submodel, or that it systematically 

contains several specified submodels, depending on the type of the 

sentence. In situation semantics, the underlying structure is 

more sophisticated: 

Definition 36: A structure ~ of situations consist of a collec­

tion M of c.o.e's (the factual c.o.e's) \>lith a non-empty sub-

collection (the actual c.o.e's) satisfying: 

i) Every eEM0 is coherent 

ii) eEM A eo=e => e 0EM 

iii) X is a subset of M => 3eEM0 (ve'EX(e''=.e)) 

iv) If C is any constraint in M, then M respects c. 

Our program is now to characterize those situations in a 

situation structure rn that are described by the expression ~ 

on the basis of the utterance situation of ~. More precisely: we 

want to specify the meaning relation [4>} expressed by ~ on the 

reading D = <K,A,E> of D = <~>, depending systematically on the 

utterance situation of ~· [~] is to be specified so that given 

a statement of ~. ~ = <d,c,~>, if a c.o.e eE[~], that is, if e 

is a model for ~ in the sense of situation semantics, and ~ is 

a simple indicative sentence without non-restrictive relatives, 

then e will be a model verifying ~ with respect to n in the 

DRS-theory. If ~ is true in m then a model verifying ~ with 

respect to V in the DRS-theory can be constructed by union of 

situations in ·T)\ ignoring locations, if the difference of loca-
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tions does not contribute substantially to the truth conditions of 

¢ in m. 
Given an utterance situation u such that uE MF [(p], 

eE [<I? ] iff u[<p] e. ¢1 will be absolutely true in ffi if 11\J 
u 

respects [~], and for simple indicative sentences, ¢ is true 

uttered in u if [q,} nM0 =t: ¢. For sentences that require systema­

tic patterns of simple situations, like universals or conditions, 

this may be a too strong requirement. We may want a universal 

statement to be true for a structure if the structure respects the 

conditions set by the statement without the conditions themselves 

being part of the structure. In this paper, however, we will not 

go further into problems concerning universals and conditions, but 

concentrate on simple indicative sentences without universal 

terms. 

3.3. Specification of u[¢]e by means of DRS-theory. Two examples. 

The meaning relations in these examples are not complete, and 

important aspects of the meaning of expressions, like tense, will 

be ignored or treated in an ad hoc manner. The focus is on the 

relations between the individuals referred to by the noun phrases, 

and we make use of the following notation: 

Notation 7: For every discourse referent vEV in the theory of 

DRS, we let v denote a special individual indeterminant in the 

situation semantics. 

L1 has unique syntax representations (up to the numbering of the 

nodes in the syntax tree) for the two examples we present, and 

syntax analyses will therefore be omitted. The numbering of 
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occurrences corresponds to a leftmost branch numbering of the 

syntax trees. He also make use of the following notation: 

Notation 8: Syntactic expressions are underlined. Capital let­

ters are used in denoting real individuals or relations over A, 

apart from the special system relations. 

~xample 1: ~ 1 = Jackie bites Molly 

mo: v,w 

<Jackie bites Molly, 1 > 

<v = Jackie, 2> 

<v bites Molly, 1 > 

<w = Holly, 5> 

<v bites \v' 1 > 

D1 gives the meaning relation: 

E0 : at ~ 0 : same,~~ cu 1 (Jackie): yes 

same, ~· cu1 (Molly): yes 

BITES, ~~~~ yes 

E0 corresponds closely to the DR m0 , \vi th one line in E0 

corresponding to each atomary occurrence in m0 . Note that E0 

depends on the utterance situation for the referents for Jackie 

and Molly. A specification of U in [~ 1 ] (which we omit here, 



- IV.73-

as we are mainly interested in the right part of the relations 

[~] rising from expressions $) should therefore include 

CUJackie and CUMolly-situation types as part of the speakers 

connections description (see Definition 32). E0 should also 

depend on the utterance situation in the choice of referent for 

~0 , according to some rule for present tense. 

Notation 9: If r is a n-ary relation, e a c.o.e, we write 

re,J.'x1 , ••• ,xn for in e: =at ~:r,x 1 , ••• ,xn; yes 

If n = or n = 2, we may also write 

for and for 

respectively. We may denote same o e,"" by - e, 1 · 

Now, given a statement of Ql 1 I <Ill = <dleCl,$1>' where 

c 1 (Jackie) = JACKIE and c 1 (Holly) = MOLLY, (and such that 

uEMF[tPlJ!) we get 

eE (<I>] iff uEMFU 1] and u[<!> 11 e 

iff u is of type u[c] => e is of type E0[c] 

for every total anchor c for U. 

iff (c 1 (Jackie) = JACKIE A c 1 (Molly) = ~10LLY) 

t 
3fEA{~,~} (f(~) = c (Jackie) A f(~) = c (Molly) 

e, 1 0 1 e, 1 0 l 

A f(~) BITES n f(~)) 
e,""o 

iff 3fEA{~~~} (f(~) = JACKIE A f(~) = MOLLY 
e,1 0 e,1 0 

A f(~) BITES o f(w)) 
e'"" o 
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This is exactly the condition for e to verify 4> 1 on the 

reading .1)1 in the theory of DRS. 

Example 2: ~ 2 = Pedro, who owns a donkey, beats it. 

In 4> 2 , who owns a donkey is a non-restrictive relative. A donkey 

is therefore not to core fer with it (unless by accident) , and the 

use of it is deictic. 

V' = { u} 

c( v) = CHIQUITA 

mo: w m,; y 

<Pedro, who owns a donkey, beats it, 1 > <w ov;ns a donkey, 4> 

<w = Pedro, 3> <donkey (y), 1 0> 

<w beats it, 1> <w owns y,4> 

<\v beats v, 1 > 

] 2 gives the meaning relation: 

This 

Each 

same 

at J. : 
u 

yes 

E0 : at ~0 : same,~~ CU~(Pedro); yes 

BEATS, ~' CU~ (it)~ yes 

E1 at ~l: DONKEY, y; yes 

ovms, ~~ y~ yes 

specification of u;n corresponds closely 

DR, Eo and El corresponds to the DRs 

to 

mo 

way as Eo to mo in example 1 • The relation 

the DRS :D2. 

and ml in the 

< between 
E 
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and is implemented by use of a new concept called addi-

tion. The addition is based on a primitive relation 'besides' in 

very much the same way as the constraint is based on 'involves': 

Definition 37: An addition B is a state of affairs on the form 

B: =at~= besides, s 0 ,s 1 ~ yes 

where s 0 ,s1 are uniform schemata. 

Definition 38: e 0 is meaningful with respect to B, e 0EMFB 

if is of type 

Definition 39: If e 0~MFB, e 1 is a meaningful addition to e 0 

with respect to B, e 0MABe 1, if 

and is of type 

for a total anchor f for s 0 . 

Definition 40: A structure of situations "frv respects B if 

We also imagine a 5th requirement added to the definition of a 

situation structure to respect every factual addition. 
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Now, assuming that ~ 2 has to be anchored in some systematic way 

according to ~ and some rule for the present tense, we get the 

following result given a statement of ~ 2, g)2 = <d2,c2<P2>, \>lhere 

c 2 (Pedro) = PEDRO and c 2 (it) = CHIQUITA (and uE MF [~ ZD ) : 

eE[tii~ iff uMF[cfJ ] and u[<l> 2] e 
2 

for every c with domain c the set of indeterminates 

used in U. 

iff c 2 (Pedro) = PEDRO'' c 2 (it) = CHIQUITA 

A 3gEAb!J(E0 [gUc) ~ e A 3e'3g'EA{y}(E1[dJ9Jg'] c e')) 

iff c 2 (Pedro) = PEDRO A c 2 (it) = CHIQUITA 

A 3gEAh::} (g(w) = c 2 (Pedro) A g(~) BEATS a c 2 (it) 
- e,~o e,""o 

A 3e'3g'EA{y} (DONKEY , (g' (y)) 
e , ~ 1 

A g ( ~) OWNS I ~ g ' ( y) ) ) 
e ' 1 

iff 3gEA{w} (g(w) = PEDRO A g(w) BEATS o CHIQUITA - e,~o - e,""o 

A 3e'3g'EA{y} (DONKEY , (g' (y)) 
e , ~ 1 

A g(w)m-JNS, n g'(y))) 
- e , ""1 
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In the DRS-theory we have: 

D :::: «jl2 > is true in M on .D relative to c 
2 

iff 

3 fEU{ w} ( f(w) = PEDRO 1\ f(w} BEATS c(v) 

1\ 3f'U{y} (DONKEY(f'(y)) 1\ f(w} OWNS f' ( y) ) ) . 

In this example, [~ 2] is not a simple constraint. It constrains 

the situation structure in such a way that it requires a certain 

pattern of situations. The interpretation, however, is not a set 

of such patterns, but of situations e satisfying the conditions 

of the main clause without the non-restrictive relative - if the 

required pattern of situations can be found in the situation 

structure for e, that is. 

The truth condition [~ 2lnM0t¢ will not be affected by this 

choice of what situations are described, as eE [~ iD only provided 

the existence of e'. Hodels for JJ 2 in the sense of DRS-theory 

will constitute the "best approximations" to situation structures 

ht such that e,e'EM, if locations are ignored. 

There may be reasons for preferring other ways to implement 

<E when not preceeded by <A, like using schemata in the main 

constraint in [$1 or choosing to let the addition be the 

situation-type of the described situation. The reason for the 

choice made here is that [~l remains a set of situations that 

can be regarded as described by the utterance of ~. and does not 

become a set of sets of situations nor a set of situations that 

are additions. ¢ 2 talks about the beating that Pedro does, and 

not about the relation between the non-restrictive relative an the 

main clause. 
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3.4. Conclusion. 

We have now given some ilustrations of the connection between 

the theory of Discourse Representation Structures (Kamp 1981) as 

set out in part 2, and situations semantics (Barwise and Perry 

1983). By this we have tried to show that a complete DRS for an 

expression ~ generates substantial parts of the meaning relation 

[~} in situation semantics. Focus is on the meaning relation 

[~], and not on the interpretation [~! of statements of ~. 

though we have also carried out calculations for the elements e 

of [~! in order to study the truth conditions of the statements 

obtained by using [$] . 

Many other interesting aspects of the meaning of expressions 

may"be worked into this frame, not only regarding the technical 

specification of the relation [$!, but also regarding the diffe­

rence between what a statement means for the sender and what it 

means for the receiver, the latter having other (usually far less) 

information about the utterance situation than the former. 
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Notes. 

*This paper is extracts and refinements of my (unpublished) 

cand.scient. thesis (Sem 1983). I wish to thank my advisor, 

Professor Jens Erik Fenstad for valuable advice and encouragement 

both in the work of my thesis and in the work of this paper. I 

wish also to thank both him and Jan Tore L¢nning for comments on 

earlier versions of this paper. 

1 ) Apart from the ones we want to rule out by various semantic 

filters. 

2) That is, he opens for the possibility of more than one gap, 

while giving a single gap constraint in Ch. V, 2.3. 

3) Remember that the intension is a function that yields a deno-

tation for each world, and that the intension can be con-

structed from the denotations for each vlorld. To put the 

denotation rather than the intension as the first term in the 

interpretations is just a matter of notational choice. The 

calculation of the denotation of some types of compound 

expressions, like e.g. in semantic rule 2, may require the 

intension and not only the denotation of one or both of the 

constituents. 

4) See notation 1 for a description of NP-int and Prop. 

5) For alternative b), [who] NP' [what] NP' [which} NP will get 

their correct denotations by the standard rule 

II [a J XII = II a II An exception rule is therefore not 
a,w a,'<'~ 

required in this case. 

6) The examples are there calculated in a fragment with the 

syntax of Fragment 6 in Cooper (1983), but with semantics 

d 'f'd. 'l l 6II d6III S f h mo 1 1e s1m1 ar y to Fragment an . orne o t e 
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words in example 4 are exchanged to get a more natural 

sentence. The structure and the calculation process remain 

the same except for the substitution of words. 

7) The numbers used in the storage mechanisms are arbitrarily 

chosen between the odd or even numbers, and will not be 

further commented. 

8) This sentence is quite heavy even in Norwegian. It may there­

fore be useful to give a contex·t for it: 

"Mari vet lite om hester, men tror at enhver hest kaster sin 

eier av, iallfall hvis eieren er en mann. Hittil har hun 

bare fAtt bekreftet sin tro, idet enhver hest Mari kjenner en 

mann sam eier, kaster ham av." 

The first ~ may or may not be omitted. 

9) Names of the syntax categories will in the following be as in 

Kamp ( l 981 ) and not as in Cooper ( 1 983) . 

10) Only one restrictive relative is permitted for each CN in L 1 • 

The use of non-atomic qualifiers is therefore not necessary. 

We could have followed the Kamp-technique of splitting the 

basic common noun from the relative clause when reducing the 

expression in which the common noun with the relative clause 

is a constituent of the main t.erm. However, the use of non­

atomic qualifiers also serves other purposes: 

i} The rules for construction of DRSs can be made simp­

ler and more systematic, with smaller and more general 

reduction steps. 

ii) Every DR will have a main occurrence which is the 

ancestor to all the other occurrences in the DR. 

iii) It opens for a uniform treatment of more complicated 

CN phrases in a larger fragment. 



iv) t.h one occurrence 

t:erms on the form 

v) The DR:S s l repr-es;:::nt meaning as 

list 'l'he 

entire in our 

(See de:f of DR and 

DRS.) 

1 1 ) At de i Xi G , 

12) The l deictic 

means) between some 

particular s ln A 

verify '1- scourse, relative to 

ible with c. 

13} An extxa ifferent 

occurrences of the it here for 

readabil occur once 

in one es. 

l 4) See under of addi-

tions. 
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