
UNIVERSITY OF OSLO

Department of Informatics

Improving latency

for interactive,

thin-stream

applications by

multiplexing

streams over TCP

Master thesis

Chris Carlmar

February 7, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30820005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Improving latency for interactive, thin-stream

applications by multiplexing streams over TCP

Chris Carlmar

February 7, 2011

Abstract

Many applications use TCP on the Internet today. For applications that produce data all the time,

loss is handled satisfactorily. But, for interactive applications, with low rate of data production,

the loss of a single packet can mean huge delays.

We have implemented and tested a system to reduce the latency of an interactive TCP applica-

tion server with many clients. This systemmultiplexes the streams, to clients in the same region,

through a regional proxy, which then sends the streams to their destination. This increases the

chance of triggering the TCP mechanism fast retransmit, when a packet is lost, thus reducing

the latency caused by retransmissions.

i

ii

Acknowledgements

I would like to thank my supervisors, Pål Halvorsen and Casten Griwodz, for their guidance

and feedback. This thesis would not have been possible without their help.

I would also thank all the guys at the ND Lab at Simula Research Laboratory, for their inspi-

ration and friendly talks. And a special thanks to Brendan Johan Lee, who helped with proof

reading, and to Ståle Kristoffersen, who always was willing sanity check my code when some-

thing was not work correctly.

And finally, thanks to my wife, Anette, for being patient and supporting me through this entire

thesis.

iii

iv

Contents

Abstract i

Acknowledgements iii

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Background and motivation . 1

1.2 Problem Statement . 2

1.3 Main Contributions . 3

1.4 Outline . 3

2 Interactive applications 5

2.1 Properties and requirements of interactive applications 6

2.1.1 Games . 7

2.1.2 Remote systems . 8

2.1.3 Voice over IP . 9

v

2.2 Summary . 10

3 Transport 11

3.1 Choosing a transport protocol . 12

3.2 TCP . 12

3.2.1 Flow control . 14

3.2.2 TCP congestion control mechanisms 14

3.2.3 Retransmission timeout calculation 16

3.2.4 Nagle’s algorithm . 17

3.3 Thin streams . 18

3.3.1 How do TCP’s mechanisms affect thin streams? 18

3.4 Summary . 19

4 Design 21

4.1 Bundling of streams . 22

4.2 Assumptions and abstractions . 23

4.3 System design . 25

4.3.1 Step 1 . 26

4.3.2 Step 2 . 26

4.3.3 Step 3 . 27

4.3.4 Step 4 . 27

4.3.5 Step 5 . 27

4.3.6 Step 6 . 27

4.4 System overview . 27

4.5 Summary . 28

vi

5 Implementation, experiments and analysis 31

5.1 First prototype . 32

5.1.1 Multiplex server implementation . 32

5.1.2 Multiplex proxy implementation . 32

5.2 Test environment . 33

5.2.1 Tools and techniques . 33

5.2.2 Testbed . 33

5.2.3 Test parameters . 34

5.2.4 Measuring delay . 34

5.2.5 Understanding the graphs . 35

5.3 First tests and conclusions . 36

5.4 Second prototype . 38

5.5 Second tests and important observations . 38

5.5.1 Imposed delays . 45

5.5.2 Observations . 46

5.6 Parallel connections prototype . 46

5.7 Parallel connections tests . 47

5.8 Summary . 48

6 Conclusion 51

6.1 Summary . 52

6.2 Contributions . 52

6.3 Future work . 53

Bibliography 55

vii

A List of abbreviations 59

viii

List of Figures

2.1 Total active subscriptions in MMO games [3] 7

3.1 TCP header . 13

3.2 An example of AIMD, slow start and fast recovery 15

3.3 An example of packet transmission with and without Nagle’s algorithm when

there is unacknowledged data on the connection. 18

4.1 Example of retransmission with and without multiplexing 22

4.2 Multiplexing . 24

4.3 A breakdown of each step in our system . 25

4.4 System overview . 29

5.1 An example boxplot. 35

5.2 Comparison of Baseline and TCPlex tests with 100 ms delay 37

5.3 Comparison of Baseline and TCPlex tests with 300 ms delay 37

5.4 Travel times between the server and proxy . 39

5.5 Travel times between the proxy and client . 39

5.6 Time it takes from a packet is captured and to it is sent 40

5.7 Comparison of Baseline and TCPlex2 tests with 100 ms delay 41

5.8 Comparison of Baseline and TCPlex2 tests with 300 ms delay 41

ix

5.9 Time data for establishing new client connections, gathered from profiling the

proxy . 42

5.10 Time data for sending data, gathered from profiling the proxy 42

5.11 Time data gathered from profiling the server libpcap buffer delay 43

5.12 Time data gathered from profiling the server send delay 44

5.13 Zoomed out version of figure 5.12 . 44

5.14 Delays found in our system. 45

5.15 Parallel connections server . 46

5.16 Comparison of Baseline and TCPlex3 tests with 100 ms delay 49

5.17 Comparison of Baseline and TCPlex3 tests with 300 ms delay 49

x

List of Tables

2.1 Analysis of packet traces from thin and greedy streams [26]. 6

xi

xii

Chapter 1

Introduction

1.1 Background and motivation

The Internet has the last 30 year been about bandwidth and capacity, and thus the early network

models from this era were focused on fair sharing of resources. We have seen great leaps in

networking technology since these early days of the Internet, and now, we have greatly im-

proved bandwidth capacity. This rise in capacity has been followed by a trend to consume more

bandwidth.

At the same time as we had this inclination to consume more bandwidth, applications needing

real-time communication evolved, and today, the Internet is used for a wide range of interactive

services. This has led to latency requirements; if a service has too high latency, the users do not

feel it is interactive and may also suffer from bad quality. To get a high-quality experience in

games, the response time for the user should be between 100 ms and 1000 ms, depending on

the type of game [14]. For Voice over IP (VoIP), the International Telecommunication Union

(ITU-T) recommends an end-to-end delay of 150 ms, and a maximum delay of 400 ms [19]. A

solution to this problem was to try reservation in the network, but it was not generally accepted.

These interactive applications usually generate a very specific traffic pattern, they have small

packet sizes and large Interarrival Times (IATs) (i.e., a low packet rate). This traffic pattern is

something we define as thin streams.

Currently, the most common end-to-end transport protocols are the Transport Control Protocol

(TCP) [28] and User Datagram Protocol (UDP) [27]. There are also protocols under develop-

ment, that try to add more versatility and functionality, like the Stream Control Transmission

1

2 1.2. PROBLEM STATEMENT

Protocol (SCTP) [29], but there is no widespread support for these new protocols for the end-

user. Thus, TCP is the most viable choice for applications that need reliable, in-order data

delivery. TCP also provides congestion- and flow control, enabling the sharing of network ca-

pacity and preventing the overwhelming of the receiver. UDP does not provide any of these

services, but allows the sending application to determine the transmission rate. This makes

UDP suited for latency sensitive applications that do not need reliability. However, many inter-

active applications require reliability, forcing them to either use TCP, or implement reliability

on the application layer. Still, because of it’s lack of congestion control, some Internet Service

Providers (ISPs) block UDP in their firewalls. Thus, many time-dependent interactive applica-

tions use TCP as the main, or fall-back, transport protocol.

Since the focus in TCP is on achieving high throughput, the mechanisms responsible for recov-

ering after loss assume that the sending application supplies a steady stream of data. This is not

the case for interactive applications, thus they suffer high delays since TCP can use up to sev-

eral seconds before recovering after a packet loss in a low rate stream. Therefore, the focus in

this thesis is to enable some interactive applications to recover after packet loss, without adding

a high latency. By combining TCP streams that share a path through the network, we aim to

reduce the latency by making the stream behave as an ordinary TCP stream over the unreliable

path in the network, so that TCP’s mechanisms works at peek efficiency.

1.2 Problem Statement

Traffic generated by interactive applications is treated badly by TCP congestion control. Inter-

active applications generally generate so little data that they are unable to trigger mechanisms

like fast retransmit. Other TCP mechanisms like exponential backoff also hurt interactive ap-

plications performance, since they send data so rarely that the timeouts can become quite large.

One proposed solution to this problem, for multi-user applications, is to multiplex several

streams into one stream [16, 22]. This system should reduce the latency of an interactive ap-

plication, by multiplexing its many thin streams into one thicker stream in cases where the thin

streams all share a path through the network. This raises the probability of triggering a fast

retransmit, and thus lowers the number of times the exponential backoff is triggered. In this

thesis, we try to implement this solution transparently, so it can be used without modifying the

sender application.

CHAPTER 1. INTRODUCTION 3

This solution to the latency problem is competing with the solution proposed by Andreas

Petlund in his PhD thesis [26]. His solution is to modify TCP itself on the server side to treat

interactive applications fairly.

1.3 Main Contributions

In this thesis, we explore a solution to the latency problems that arise when using TCP with

interactive thin stream applications, specifically in online gaming.

We create a system that multiplex many thin streams, over one or more TCP connections, to a

proxy which then demultiplexes the stream(s) and sends the original streams to their destination.

This helps to raise to probability of TCP treating the streams fairly, by triggering fast retransmit

more often and reducing the retransmission delay.

We evaluate tests run with and without this system, and we break down the delays added in

each step of our system. These results are then used to create new and better prototypes, and we

compare the end-to-end delay of the different prototypes to the results from the baseline tests.

The end result is a system that can be used to reduces the maximum delays of a multi-user,

interactive, thin-stream application in high loss scenarios, at the cost of a higher average delay

time.

1.4 Outline

In this thesis, we describe some properties of interactive applications and congestion control in

TCP, look at our design, implementation and experimentation, and analyse the results of these

experiments. Here, we introduce each chapter.

• In chapter 2, we look at the traffic pattern of different kinds of interactive applications.

• In chapter 3, we describe how TCP works, and some of the mechanisms that contribute to

interactive applications getting worse performance with normal TCP options than greedy

streams. We also discuss the characteristics and behavior of thin streams.

4 1.4. OUTLINE

• In chapter 4, we look closer at why interactive streams suffer under TCP and discuss our

solution for one scenario. We also go though the design of our application and go through

the assumptions taken when implementing and testing this application.

• In chapter 5, we present multiple prototypes for the programs that were written to mul-

tiplex and demultiplex the thin-streams. We thoroughly go through the testing of each

prototype and describe the problems that arose and how we solved them.

• In chapter 6, we summarize what we have learn from working on this thesis, and discuss

the results and possible future expansions of our work.

Chapter 2

Interactive applications

As we saw in chapter 1, the way we use the Internet has changed over the years. We are now

using the Internet much more interactively, i.e., we chat, play games, use VoIP and interact with

real-time systems. All these applications generate data streams that behave differently from

greedy streams. In this chapter, we explain how interactive applications behave and look at

what kind of traffic pattern they generate.

5

6 2.1. PROPERTIES AND REQUIREMENTS OF INTERACTIVE APPLICATIONS

2.1 Properties and requirements of interactive applications

A greedy stream tries to move data between two points in the network as fast as possible, like

a File Transfer Protocol (FTP) download, while an interactive application generates a small

amount of data with high IAT between the packets.

Table 2.1 shows characteristics such as payload sizes, packet interarrival time and bandwidth

consumption for a number of different interactive and greedy applications [26].

application

payload size packet interarrival time (ms) avg bandwidth

(bytes) percentiles used

avg min max avg med min max 1% 99% (pps) (bps)

Casa (sensor network) 175 93 572 7287 307 305 29898 305 29898 0.137 269

Windows remote desktop 111 8 1417 318 159 1 12254 2 3892 3.145 4497

VNC (from client) 8 1 106 34 8 < 1 5451 < 1 517 29.412 17K

VNC (from server) 827 2 1448 38 < 1 < 1 3557 < 1 571 26.316 187K

Skype (2 users) (UDP) 111 11 316 30 24 < 1 20015 18 44 33.333 37K

Skype (2 users) (TCP) 236 14 1267 34 40 < 1 1671 4 80 29.412 69K

SSH text session 48 16 752 323 159 < 1 76610 32 3616 3.096 2825

Anarchy Online 98 8 1333 632 449 7 17032 83 4195 1.582 2168

World of Warcraft 26 6 1228 314 133 < 1 14855 < 1 3785 3.185 2046

Age of Conan 80 5 1460 86 57 < 1 1375 24 386 11.628 12K

BZFlag 30 4 1448 24 < 1 < 1 540 < 1 151 41.667 31K

Halo 3 - high intensity (UDP) 247 32 1264 36 33 < 1 1403 32 182 27.778 60K

Halo 3 - mod. intensity (UDP) 270 32 280 67 66 32 716 64 69 14.925 36K

World in Conflict (from server) 365 4 1361 104 100 < 1 315 < 1 300 9.615 31K

World in Conflict (from client) 4 4 113 105 100 16 1022 44 299 9.524 4443

YouTube stream 1446 112 1448 9 < 1 < 1 1335 < 1 127 111.111 1278K

HTTP download 1447 64 1448 < 1 < 1 < 1 186 < 1 8 > 1000 14M

FTP download 1447 40 1448 < 1 < 1 < 1 339 < 1 < 1 > 1000 82M

Table 2.1: Analysis of packet traces from thin and greedy streams [26].

A greedy stream maximises the use of available bandwidth. It sends data as fast as TCP allows,

sending more and more data per second until it has used all available bandwidth. When it tries

to send more data than the link is able to handle, TCP starts dropping packets. This signals TCP

on the sending side that it should send less data. When more than one greedy stream compete

on the same link, this greedy behaviour makes them share the link fairly1between them since

all streams sends packets as fast as they are allowed.

If interactive applications try to compete with greedy streams, the interactive streams are unable

1At least TCP fair.

CHAPTER 2. INTERACTIVE APPLICATIONS 7

to get their fair share of the link. This is because of the high IAT of interactive applications.

Since they do not send packets all the time, they are not likely to get one through when they

need to. This is because all streams on a link fight for the same buffer space in the routers. All

packets have the same probability of being dropped, but the greedy streams have many more

packets, and thus do not care as much if one gets lost.

2.1.1 Games

One of the popular genres of computer games is Massive Multiplayer Online Games (MMOGs),

with 34% of online games falling into this category [11]. In figure 2.1, we see the estimated

development of MMOG subscribers, and that in 2008, we exceeded 16 million subscribers [3].

As we can see, there is a steady growth rate to the number of people who play online games.

This is one of the reasons that we focus on networked computer games in this thesis.

Figure 2.1: Total active subscriptions in MMO games [3]

Gaming is a popular use of the Internet that has strict latency requirements. Different kinds of

games have different requirements. More fast paced and high precision games need lower la-

tencies than games with slower interaction. A number of studies measuring player performance

8 2.1. PROPERTIES AND REQUIREMENTS OF INTERACTIVE APPLICATIONS

with respect to latency have showed that approximately 100 ms for First-Person Shooter (FPS),

500 ms for role-playing games (RPGs) and 1000 ms for real-time strategy (RTS) games are the

thresholds for players tolerance to latency [14]. These three genres can also be seen as MMOGs.

We have found an analysis of several games and other interactive applications that is presented

in table 2.1 taken from [26]. This table has six MMOGs, where three of them are RPGs, two

are FPSs and one is a RTS game. When we look at the characteristics for these games, we see

that they all have small packet sizes, and most of them have high IATs. We can see that the

high intensity FPS games only have moderate IATs. This is because they need quicker position

updates and such for the players to reliably be able to hit each other when aiming. We can also

see that all the games have a very moderate bandwidth consumption, and this should not be any

problem for a modern Internet connection.

Due to the interactivity, games are very prone to high delays, and if packets have to be retrans-

mitted because of congestion the delays can be several seconds. This manifests as in-game lag.

When you are on a ”laggy” connection, objects in the game, typically other players, tend to

move erratically. This is because you are missing position updates, and when you receive an

update, it seems like the object instantly moved. This contributes to a bad user experience.

2.1.2 Remote systems

It can be very useful to control and run programs on a remote system. We have looked at three

common ways of interacting with remote systems. These three applications were tested while

editing a text document on a remote computer.

Secure Shell (SSH) is used to get a command line interface or shell on an remote Unix computer.

Since the data transmitted is only text and produced by a user typing on a keyboard, it makes

small packets with large IAT on the client side. On the server side, the commands typed by

the user are executed, and the output is sent back to the user. This may create somewhat larger

packets, but still smaller than non-interactive applications like HTTP. It can also be used to

tunnel traffic securely through the Internet. After creating an SSH connection to a server, it

binds a port on the local host to a server and port on the remote host. Any local connection to

this port is first sent through the SSH connection before it is connected to the specified server

and port. This can be used to encrypt the data from protocols that normally do not support

encryption. One use of this is to forward a graphical interface from the server to the client.

This behaves much like a Remote Desktop Connection. If there is high latency on an SSH

connection, it manifests as a delay between when you enter something on the keyboard, and

CHAPTER 2. INTERACTIVE APPLICATIONS 9

when it appears on the screen. This kind of delay is not as critical as delays in gaming since

writing is not usually time dependent, but still very annoying. In table 2.1, we can see that SSH

packets have small packet sizes and a large IAT. The bandwidth consumption of SSH is thus

very low.

A Remote Desktop Connection (RDC) gives access to the graphical interface of a remote com-

puter. It sends the keyboard and mouse input to the server which sends back a display of the

desktop and programs running on the remote computer. It is more vulnerable to latency than

an SSH connection, as moving a mouse requires more precision than just typing on a keyboard.

If the mouse pointer does not follow your directions quickly, you end up guessing where it is

and what you are clicking on. This can very hurtful to the user experience. As we see in ta-

ble 2.1, RDC has somewhat larger packets and about the same IAT as SSH. The bandwidth

consumption is about the double, but this is still quite low.

Virtual Network Computing (VNC) works in similar ways as RDC, and is prone to the same

vulnerabilities. We can see from table 2.1 that VNC sends much more data from the server to

the client than the other way. We also see that both server to client and client to server IAT

is moderate, but if we compare it to the IAT of applications like Hypertext Transfer Protocol

(HTTP) or FTP, it can still be called large.

2.1.3 Voice over IP

VoIP telephony systems commonly use the G.7XX audio compression formats recommended by

ITU-T. For the two codecs G.711 and G.729, the data rate is fixed at 64 and 8 Kbps, respectively.

This means that the packet size is determined by the packet transmission cycle [17]. The ITU-

T defines guidelines for acceptable end-to-end transmission times to be 150 ms delay, and a

maximum delay of 400 ms [19]. If the delay becomes larger than this, the user experiences that

the sound staggers.

In table 2.1, there is an analysis of two Skype [9] conferences, one with using the default UDP

protocol, and one with the fall-back TCP protocol. Again, we see that both streams have small

packet sizes and moderate IATs.

10 2.2. SUMMARY

2.2 Summary

By looking at the traffic pattern of different interactive and latency-sensitive applications, we

see that most of them produce small packets with high interarrival times. We have also seen

that these kinds of applications can suffer during congestion when used over reliable transport

like TCP. To explain why the performance of interactive applications suffer, we examine the

way different transport protocols work and how they can affect these kinds of applications in

the next chapter.

Chapter 3

Transport

In this chapter, we look at some of the different transport protocols, in particular TCP, since

this protocol is used in many of the interactive applications we looked at in chapter 2. We look

at how different congestion control mechanisms behave with these kinds of traffic. We also

introduce a definition of thin-stream applications.

11

12 3.1. CHOOSING A TRANSPORT PROTOCOL

3.1 Choosing a transport protocol

We are limited to the following options when choosing a transport protocol for a time dependent

application:

1. Use TCP which is reliable but may give high latency in certain conditions for our appli-

cation class [28].

2. Use unreliable protocols like UDP or Datagram Congestion Control Protocol (DCCP),

and implement in-order delivery and reliability on the application layer [21, 27].

3. Use an experimental protocol like SCTP that is reliable and does not give high latency for

our application class [29].

One solution to the latency problems observed when packets are dropped due to congestion was

to use Quality of Service (QoS) to reserve a portion of the bandwidth in the net [18]. But today,

there is practically no support for QoS over the Internet.

As we saw in table 2.1, some interactive programs use UDP. But, they often have to use TCP

as a fall-back since UDP is blocked by the firewalls of some ISPs. This mean that even if the

application could work with UDP, a good solution for TCP is also needed in the cases where

the application need to fall back to this.

Newer and experimental protocols like SCTP and DCCP are not widely supported on all the

end-user systems, and therefore difficult to use in commercial software.

So, since none of the other options are viable, we have to make it work with TCP. This is also

what most game companies today that need reliable transport do. Examples of this is World of

Warcraft, Anarchy Online and Age of Conan.

3.2 TCP

TCP, together with IP, is one of the two core components of the original Internet Protocol suite.

It is the de facto standard when reliable transport over the Internet is needed. Because of this, it

is widely supported and outgoing traffic is usually not stopped by ISP firewalls as other transport

protocols might be. TCP offers the following services:

CHAPTER 3. TRANSPORT 13

Ordered data transfer The receiver application gets the data in the same order as it was sent.

Reliability If any packet is lost or erroneous, it is retransmitted.

Error detection A checksum is used to check if the packet has been altered since it was sent.

Flow control The sender does not send data faster than the receiver can handle.

Congestion control If network congestion is detected, TCP adapts the send rate to fairly share

the bandwidth with other streams.

These services imply the need to keep a state. Some of this state data needs to be exchanged

between the endpoints, and is embedded in each packet. This state is arranged in a header as

seen in figure 3.1. Since the header must be sent with each packet, this makes the overhead

large for small packets. We see that the header includes two port fields. These numbers com-

bined with the source and destination IP address from the IP header uniquely identifies each

TCP stream. The ”Sequence number” keeps track of how many bytes have been sent, and the

”Acknowledgment number” indicates how many bytes have been received. These two num-

bers does not count from zero, but from a random number that is exchanged during connection

setup. ”Window size” tells the sender how much data it can send and is updated with each

Acknowledgement (ACK). ”Data offset” specifies the size of the TCP header in 32-bit words.

Since this field is 4 bit, the maximum header size is 15 word, or 60 bytes. The minimum size of

a TCP header is 20 bytes, leaving 40 bytes for optional header information. The other field are

used during the setup and tear-down process, and to keep track of the TCP state.

Bit offset 0-3 4-7 8-15 16-31

0 Source port Destination port

32 Sequence number

64 Acknowledgment number

96 Data offset Reserved Flags Windows Size

128 Checksum Urgent pointer

160 Options

... ...

Figure 3.1: TCP header

14 3.2. TCP

3.2.1 Flow control

Receiver’s advertised Window (RWND) is a receiver-side limit on the amount of unacknowl-

edged data [10]. It is used to avoid that the sender sends more data than the receiver is able to

buffer. This window size is sent with each ACK the receiver sends, so the sender always has

the updated size. If the sender receives a RWND of 0, it stops sending data and starts a persist

timer. This to avoid deadlocks where the window size update is lost and the sender is unable to

send data. If the timer expires, TCP tries to recover by sending a small packet.

3.2.2 TCP congestion control mechanisms

There are several different mechanisms in TCP to assure that each stream in the network gets

its fair share of the bandwidth and that the streams do not overwhelm the network. We now take

a closer look at the most important ones in the version of TCP that is called NewReno.

3.2.2.1 Congestion window

The Congestion Window (CWND) is a sender-side limit on the amount of data the sender can

transmit into the network per Round-Trip Time (RTT). TCP must not send data with a sequence

number higher then the sum of the highest acknowledged sequence number and the minimum

of CWND and RWND [10]. The initial value of CWND depends on the size of the Sender

Maximum Message Size (SMSS), and can hold between 2 and 4 segments.

3.2.2.2 Slow start and congestion avoidance

The task of this mechanism is to estimate the available bandwidth. It uses the "Additive In-

crease, Multiplicative Decrease" (AIMD)-algorithm to achieve this [10]. We can see an ex-

ample of AIMD and slow start in figure 3.2. Slow start is used while the congestion window

is less than the slow start threshold (ssthresh). The congestion window grows with up to one

SMSS each time an ACK is received that covers new data, until CWND reaches or exceeds

ssthresh [10]. Congestion avoidance is then used while the congestion window is larger then

ssthresh. Initially, ssthresh may be set arbitrarily high, some implementations of TCP set it to

RWND. In the congestion avoidance phase, additive increase is used, incrementing CWND by

one full-sized segment each RTT until congestion is detected. Any loss of a packet is considered

CHAPTER 3. TRANSPORT 15

a sign of congestion, and triggers multiplicative decrease. ssthresh is set to half the congestion

windows size, and then slow start is initiated.

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 44

 48

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
o
n
g
e
s
ti
o
n
 w

in
d
o
w

 (
M

S
S

)

RTT

slow start
additive increase

multiplicative decrease
fast recovery

sshtresh

Figure 3.2: An example of AIMD, slow start and fast recovery

3.2.2.3 Fast retransmit

When a TCP receiver gets data out-of-order, for example because a packet is lost, it sends

an ACK with the next sequence number it misses. Since it also sent an ACK with that se-

quence number when it received the last in-order segment, this is a Duplicate Acknowledgment

(dupACK). The fast retransmit mechanism uses these dupACKs to detect that a packet has been

lost. Three dupACKs without any intervening ACKs is used to indicate a lost packet. When a

TCP sender get these three dupACKs for a segment, it sets the CWND to half it’s current value

and retransmits the lost segment right away, instead of waiting for the retransmission timer to

expire [10].

16 3.2. TCP

3.2.2.4 Fast recovery

This mechanism is triggered after a fast retransmit. When fast recovery was first introduces,

instead of going into slow start, TCP would set the congestion windows to ssthresh plus 3*MSS

and continue to send data segments as normal. If an ACK for new data is received before a

timeout was triggered, the congestion window would be set back to ssthresh.

This algorithm were updated in NewReno to instead set ssthresh to half the congestion windows

[15]. And when an ACK is received, if it covered some but not all new data, a new fast retransmit

was initiated followed by a new fast recovery period.

We can see how fast recovery works in comparison with slow start in figure 3.2. Here, we can

see that the congestion window and ssthresh is set to half of what the congestion window was

before the loss was detected. We can see that the congestion window jumps back up again after

a little while, this is because an ACK covering new data was received.

3.2.2.5 Retransmission timeout and exponential backoff

Retransmission Timeout (RTO) is how long a packet has to wait before being retransmitted, if

fast retransmit is not triggered. If the sender does not receive an ACK for a packet before the

RTO expires, the sender retransmits the packet.

Exponential backoff doubles the RTO for a segment each time it is retransmitted as explained

above. This is done to prevent a congestion collapse, a state where little or no useful communi-

cation gets through a router, when faced with severe congestion.

3.2.3 Retransmission timeout calculation

To be able to compute the current RTO, a TCP sender needs to maintain two state variables,

Round-Trip Time Variation (RTTVAR) and Smoothed Round-Trip Time (SRTT) [25]. These

variables are calculated from the RTT measurements. The RTO calculation specification says

that RTT measurements must use Karn’s algorithm [20]. This algorithm says that the RTT mea-

surements of a retransmitted data segment must never be used as the basis for RTO calculations.

In the following equations,G is the granularity of the system clock in seconds. Here is the three

different equations used to calculate RTO at different stages of the connection.

CHAPTER 3. TRANSPORT 17

1. Until an RTT measurement can be made for a TCP connection, the RTO should be set to

three seconds.

2. When the first RTT measurement R is made, the host can then use equation 3.1 to calcu-

late the RTO.

K = 4

SRTT = R

RTTV AR =
R

2
RTO = SRTT +max(G,K ×RTTV AR) (3.1)

3. For each subsequent RTT measurement R′, the host then uses equation 3.2 to calculate

the RTO.

α =
1

8
, β =

1

4
RTTV AR = (1− β)×RTTV AR + β × |SRTT −R′|

SRTT = (1− α)× SRTT + α×R′

RTO = SRTT +max(G,K ×RTTV AR) (3.2)

If any of these equations calculate a RTO of less then one second, the RFC specifies that

RTO should be rounded up to one second. This is not true in several newer operating

systems, where they permit an RTO of less than one second.

3.2.4 Nagle’s algorithm

This mechanism was introduced to reduce the overhead of TCP packets. It avoids sending

unnecessary small packets by delaying transmission while there is unacknowledged data until

the segment is full or it receives an ACK [24]. Since small packets have large overhead due to

the size of the TCP header, this saves the sender a lot of unnecessary bytes. In figure 3.3(a),

we see an example of how TCP works with Nagle’s algorithm turned on. The sender delays

the data segments, 1, 2, and 3, in the network buffer since it has not received an ACK for

segment 0. When segments 4, 5 and 6 fills up the buffer, the sender sends the entire buffer. The

same transmission with Nagle’s algorithm turned off is shown in figure 3.3(b). Here, the data

segments is transmitted without delay as soon as they are put into the buffer.

18 3.3. THIN STREAMS

Sender Receiver

1, 2, 3, 4, 5, 6

4 5 6

Data from application

1 2 3

Data from application

1 2 3 4 5 6

Waiting for segment

to fill up.

0

(a) With Nagle’s algorithm.

Sender Receiver

4 5 6

Data from application

4, 5, 6

1, 2, 3

1 2 3

Data from application

4 5 6

0

(b) Without Nagle’s algorithm.

Figure 3.3: An example of packet transmission with and without Nagle’s algorithm when there

is unacknowledged data on the connection.

3.3 Thin streams

By looking at table 2.1 and comparing the average payload size and IAT of interactive ap-

plications to that of known thick-stream applications like HTTP or FTP downloads, we can

see the distinct differences. The interactive applications all have high IATs, compared to the

thick-streams, and where a thick-stream always fills a segment up to the Maximum Segment

Size (MSS), the interactive applications on average only fill 10% of the segment.

This kind of traffic pattern is what we define as thin-streams. That the packet sizes are relatively

small and since the IAT of these packets are so high, the streams’ transmission rate is not limited

by congestion control, but by the application’s data production.

This means that the interactive applications we described in chapter 2 can be categorised as

thin-stream applications.

3.3.1 How do TCP’s mechanisms affect thin streams?

The biggest problem that greedy, or thick, streams experience with TCP mechanisms is slow

start, since it reduces their bandwidth whenever there is a packet loss. This is not a problem for

CHAPTER 3. TRANSPORT 19

thin streams, since they send their packets so infrequently that the restrictions put down by slow

start does not affect their transmission rate.

Of the mechanisms we looked at in section 3.2, three are particularly bad for applications with

specific latency requirements like the interactive thin-stream applications we looked at in chap-

ter 2. These problems are all due to high IAT of thin streams.

Since thin streams have such a high IAT, they usually do not send enough packets to trigger

fast retransmit, and thus is unable to get fast recovery. To be able to use the fast retransmit

mechanism, a stream must send three packets and receive the dupACKs for these packets after

a packet is lost. If we have an RTO of 2 seconds, an RTT of 0.2 seconds and the thin stream

sends a packet each 0.8 seconds, then if a packet got lost, the sender would only receive two

dupACKs before the RTO timed out and retransmitted the packet. Now TCP again needs three

new dupACKs to trigger fast retransmit. This would also trigger exponential backoff.

If exponential backoff triggers as we saw above, it retransmits the earliest unacknowledged

packet and doubles the RTO of the lost packet. This is quite hurtful to thin streams because

when exponential backoff begins, the stream suffers higher and higher delays if the same packet

gets lost again. This is also because of the high IAT.

Flow control is not an issue for thin streams since the packet sizes are so small that receiver

does not have any problems processing them. Nagle’s algorithm would also make problems for

thin streams, but luckily this can be turned off by the application.

3.4 Summary

In this chapter, we defined the term thin stream, and showed that the interactive applications

from chapter 2 qualify as thin streams. We also saw that these streams are unaffected by the

bandwidth limitation of congestion control, but that the retransmission delays of TCP conges-

tion control mechanisms can create very high latencies for thin streams.

In chapter 4, we look closer at this problem and propose a solution for some scenarios.

20 3.4. SUMMARY

Chapter 4

Design

In chapter 3, we looked at thin streams and how they suffer from high latencies when TCP

applies congestion control. We now look at many thin streams at once, and discuss how this

can be used to better the performance. We present multiplexing of several thin streams as

a promising idea to solve the latency problem where this is possible. We then go through

the assumptions made when implementing and testing this solution, and lastly, we look at an

overview of our proposed solution.

21

22 4.1. BUNDLING OF STREAMS

4.1 Bundling of streams

As we saw in chapter 3, there are many mechanisms in TCP that make thin streams suffer

latency-wise. Since the IAT of packets in a thin stream is high, fast retransmit is unable to

trigger because usually the thin stream does not send four packets before a timeout occurs.

Some studies have shown that multiplexing several thin streams into one TCP connection gives

a theoretical gain in performance [16, 22]. Our solution is therefore to try and implement this

approach, multiplexing several thin streams into one stream. This way there is a much higher

probability of receiving the three dupACKs needed to trigger fast retransmit whenever a packet

is lost. We can see a comparison of how fast retransmit works with and without this kind of

multiplexing of thin streams in figure 4.1.

s1p1

s2p1

s3p1

s4p1

s1p1-ack

s3p1-ack

s4p1-ack

timeout
s2p1

s2p1-ack

s5p1

s5p1-ack

(a) Without multiplexing

s1p1

s1p2

s1p3

s1p4

s1p1-ack

s1p1-ack

s1p1-ack

s1p2

s1p5-ack

s1p5

s1p1-ack
dupack

dupack

dupack

(b) With multiplexing

Figure 4.1: Example of retransmission with and without multiplexing

In figure 4.1(a), we see five different TCP streams named s1 through s5 each sending one

packet, p1. s2’s packet is lost, for example due to congestion, all other packets arrive at their

destination and an ACK is sent back. s2 must now wait for a timeout before it can send p1

again. This is because the ACKs for the other streams do not count as dupACK for this stream.

This time the packet arrives correctly and ACKs is sent back. In figure 4.1(b), we see the same

scenario, just that we now use our system where all the data goes through one stream, s1, so the

packets are now numerated in the order the they were sent in figure 4.1(a). Again, the second

packet is lost, and since TCP always ACKs with the packet it wants to receive next for each

CHAPTER 4. DESIGN 23

stream, we now get Duplicate Acknowledgments (dupACKs) which, as we saw in chapter 3

triggers a fast retransmit. This reduces the overall latency since we do not have to wait for

timeouts if there is enough data going through the stream.

One example where this idea could be used is between an online game server with many clients

in one region. Instead of having one connection to each client from the server, the game com-

pany could place regional proxies closer to the client, and then bundle the traffic between the

server and the proxy. The placement of these proxies would have to take into consideration

usage patterns and how many users typically were online from different regions, but one sug-

gestion would be to place a proxy in each country. We have drawn an example of a game server

with and without the use of this idea in figure 4.2. Here, we see the classical approach of one

connection between the server and each of the clients in figure 4.2(a). In figure 4.2(b), we use

multiplexing on the long, and maybe congested, line between the server and the proxy. We

bundle each of the outgoing packets into one stream, and then unpack them on the proxy. Then,

we send the data as normal between the proxy and each of the clients. This means that on the

stretch were we are most likely to encounter congestion, we are better equipped to handle it.

By combining the thin streams into a thick stream, we expect to be able to trigger fast retransmit

and not having to wait for a transmission timeout. Exponential backoff would also behave as

normal since the stream would have a low IAT because of the bundling, and not create any larger

problems. We do expect to see a slightly bigger RTT since we now have to do some additional

processing on each packet. And there might also be problems if we bundle too many streams,

as we could then get into bandwidth problems during congestion. These effects needs to be

investigated, and we do so in chapter 5.

4.2 Assumptions and abstractions

In our tests, we used an approximately one hour long packet trace from one of Funcom’s An-

archy Online servers. This gives us a more realistic traffic pattern compared to if we would

have used a packet generator to simulate multiple thin streams. The program used to replay this

packet trace is called tracepump. It was developed by Andreas Petlund in his work with thin

streams [26]. It reads a trace file an recreates the sending side of several streams, but replaces

the destination with one given as a parameter.

The server received no feedback from the clients. We are only interested in improving the delay

from the server to client. It is more realistic to only make changes server-side, since it might

24 4.2. ASSUMPTIONS AND ABSTRACTIONS

Server

Client

Client

Client

Internet

(a) Without multiplexing

Server

Internet

(International)

Client

Client

Client

Proxy

Internet

(Regional)

(b) With multiplexing

Figure 4.2: Multiplexing

not be feasible to impose changes on the clients. Since we used a trace from a real game server

communicating with many clients, we have a realistic view of how the server would respond to

clients without having to actually send data to the server. A server might respond differently if

packets from a client is delayed or lost, but again, since we are using a real packet trace, this is

not a problem.

The testing were done without cross traffic. We instead used netem [5] to emulate the different

network conditions. Netem can create random packet drop and delay packets.

CHAPTER 4. DESIGN 25

4.3 System design

To design experiments, we simplified the scenario to six essential steps. These steps are shown

figure 4.3. For each of these steps, we list the decisions we had to make and why we chose as

we did.

1. Capturing the thin streams for multiplexing.

2. Sending the multiplexed stream to the proxy.

3. Emulating network conditions.

4. Receiving the multiplexed stream.

5. Demultiplexing and sending the individual thin streams to the clients.

6. Client receiving the data.

Client

Server

Packet generator

Network Emelator

1 2

3

4

56

Proxy

Figure 4.3: A breakdown of each step in our system

Steps 1 and 2 happen on a machine running the server software, step 3 on a separate machine

used to route the network traffic between the server and proxy, step 4 and 5 happen on a machine

running the proxy software, and lastly step 6 on a fourth machine. We separated the different

parts of the designed system on different machines to better be able to simulate real working

conditions. Each of these machines log all network traffic so we can verify the results after each

test.

26 4.3. SYSTEM DESIGN

4.3.1 Step 1

On step 1, we looked at three different solutions:

A. Rewrite the sending application to send the streams as one thick stream.

B. Write a program that can be used as a sink for sending application.

C. Write a program that gathers the streams from the network.

We decided that understanding and rewriting the sending application would take to much time.

We also wanted our system to be somewhat transparent so we might use several sending appli-

cations to generate the thin streams.

If we would write our program as a sink for the sending application, we would also loose some

transparency. We would not be able to get the destination information directly from the packet

headers, and a problem of finding the clients would have to be solved.

We therefore decided to write a program to gather the thin streams directly from a network

interface. This way we can get all the information we need from the packet headers, and the

system can be used with different packet generators.

4.3.2 Step 2

On step 2, we had the following decisions:

A. Wait until we have a full segment or a timeout has elapsed before sending.

B. Send the packets as soon as we receive them.

As we see in chapter 5, we tested both these variations thoroughly. Our first prototype used the

method described in A, while the other prototypes used the method described in B. We found

that sending the packets as soon as possible gave the best results.

CHAPTER 4. DESIGN 27

4.3.3 Step 3

In step 3, we decided to use netem [5] and tc [2] to emulate different network conditions. We

choose to use these programs since we had experience with them and knew how to make them

do what we wanted to do in our tests. Netem and tc are programs found in Linux to modify

the behavior of the network interfaces. They can be uses to, for example, limit the connection

bandwidth, create artificial network delay and drop percentages of packets.

4.3.4 Step 4

In step 4, we decided to implement a simple socket program with a select-loop. This enables us

to have more than one server per client. In most MMOGs you can choose from many servers, so

we want several servers to be able to use the same regional proxy. Whenever one of the server

connections has any new data, this data buffer is sent to another part of the program.

4.3.5 Step 5

In step 5, the proxy program reads out each header and payload from the multiplexed packet

it got from the select-loop. For each header and payload pair, it checks if a connection to the

client is open. If there is no open connection to that client, one is established. It then sends the

payload.

4.3.6 Step 6

The client is just a data sink. It receives and discards incoming data and sends ACKs back to

the proxy.

4.4 System overview

Our system consists of three parts, a server, a proxy and clients. The server and proxy are

shown in figure 4.4, and the client is a simple data sink that just ACKs the packets it receives

and discards the data. In figure 4.4(a), we can see that the server runs a packet generator. This

28 4.5. SUMMARY

program is run locally in two modes, send and receive, and is responsible for producing the thin

packet streams. It does this by ”replaying” a packet-trace file over the loopback device. On the

client, we use this program in receive-mode. Our system is called TCPlex, and the sender side

of this program is running on the server. It captures the thin streams from the loopback device,

and examines each packet. It then adds a header containing the size of the data payload, the

destination address, the source and destination port and the sequence number. This header and

the payload is put into a send buffer and a function is called that sends this buffer to proxy via

the emulated network.

In figure 4.4(b), the proxy receives a multiplexed packet. The buffer containing this packet is

sent to a function which extracts the header information put in by the server. It then checks to

see if there is a connection associated with this stream in the socket table. If there is already a

connection to a client for this stream, it sends the payload data to the client, if not, it creates the

connection before sending the data.

4.5 Summary

In this chapter, we presented a possible solution to the latency problems caused by TCP by

combining many thin streams. We discussed all decisions made during the design process and

gave a complete design of the different parts of the system. In the next chapter, we show how

we implemented this system through an iterative process, with thorough testing between each

new prototype, and a final comparison of latency in thin-stream applications with and without

our system.

CHAPTER 4. DESIGN 29

packet generator

data sink

loopback

capture

sendbuffer

tcplex_sender

server

send_packet
ethernet

(a) Server

handle_input_data

tcplex_receiver

proxy

send_packet
ethernet

socket table

ethernet

(b) Proxy

Figure 4.4: System overview

30 4.5. SUMMARY

Chapter 5

Implementation, experiments and analysis

In this chapter, we describe the implementation details of the multiplex server and proxy. First,

we go through the program flow of the first prototype. Then, we look at the testing environment

and explain how we did the testing, what network conditions we emulated and how to under-

stand the results. After this, we describe what we learned from the first prototype and do an

iterative process of improvements and tests to make it better.

31

32 5.1. FIRST PROTOTYPE

5.1 First prototype

For the first prototype, we implemented the ideas from chapter 4. We are now going to describe

how the program works and explain what program functions the server and proxy use. In both

the server and the proxy, we have disabled Nagle’s algorithm to minimize the latency. We

decided to keep the first implementation as simple as possible, and thus, both the server and

proxy run in a single thread each.

5.1.1 Multiplex server implementation

We implemented the server with the concepts found in figure 4.4(a). The program goes through

an infinite loop of acquiring packets from the loopback device, this is done with libpcap [7].

We decided in chapter 4 that we want to capture ”in-flight” data to get the most transparency,

we therefore need libpcap since this is one of the easiest tools to work with to capture data

from network interfaces. The captured packets are put into a buffer, and a multiplexed packet

is sent out when there is no more room in the buffer, or a timeout has occurred. The following

functions are used by the server program:

got_packet is called by libpcap for each packet it sniffs from the loopback device. If the

packet has any payload, got_packet copies destination and source information and the

payload to a sending buffer. If the buffer is full, the send_packet function is called

before copying to the buffer and updating the counter for payloads in the buffer.

send_packet is used to send a combined packet from the sending buffer. It first writes the

number of payloads in the buffer and the length of the buffer to the first 4 bytes of the

buffer, so the receiver knows how many payloads it must read. Then, it sends the buffer

and resets the counters.

5.1.2 Multiplex proxy implementation

We implement the proxy with the concepts found in figure 4.4(b). The program goes through an

infinite loop where it runs select. Select returns when there is a packet ready for processing.

It then calls handle_input_data which splits the multiplexed packets into sets of header

and payload and calls send_packet for each set. The following functions are used by the

server program:

CHAPTER 5. IMPLEMENTATION, EXPERIMENTS AND ANALYSIS 33

handle_input_data is called for each packet received by select. It reads out how many pay-

loads it contains, then runs through the packet and calls send_packet for each payload

and corresponding header.

send_packet gets a header and a payload. It reads the header and checks if it has a connection

for this stream. If it finds one, the payload is sent. If a connection is not found, it

establishes one first.

5.2 Test environment

In this section, we describe the different tools we used during testing, our test environment,

explain how the different test parameters influence the tests and how to understand the results.

5.2.1 Tools and techniques

Our own program TCPlex is run in sender mode on the server and in receiver mode on the

proxy. We use libpcap [7] on the server to gather the streams made by tracepump, which

reads a packet trace from a file and generates packets with the same timing and size as the ones

in the file. On each of the machines in the network we run tcpdump [7] to get the packet trace

from the experiments. These dump files together with logs from TCPlex are then analysed.

We wrote analyzation scripts in python [8] and awk [4], which generate data files that can be

plotted by Gnuplot [6]. We used ntpdate [1] to synchronize the system clocks. Finally, as

stated before, we also used tc and netem [5] to simulate different network conditions that can

occur on the Internet.

5.2.2 Testbed

Our testbed consists of four computers, as seen in figure 4.3. The Server is where we run the

TCPlex server and tracepump sender. Here, tracepump sends all the thin streams on the

loopback device, and TCPlex reads them and multiplexes them into one thicker stream before

sending. On the Netem machine, we run netem to simulate different network conditions.

The Proxy runs the TCPlex client and is where we receive the multiplexed thick stream and

demultiplex it into the original thin streams. On the Client, we only run tracepump receiver

as a sink for the TCPlex client.

34 5.2. TEST ENVIRONMENT

In the baseline tests, we used tracepump in send-mode on the Server, and in receive-mode

on the Client. The packets went through the same network path, and were exposed to the same

network conditions, as when running the TCPlex tests.

5.2.3 Test parameters

To simulate different Internet conditions on our network, we changed some of the network

parameters between each run of a systems test. The following values are the same values as in

the study that simulated the multiplex performance gain [16]. We have found that the chosen

values are realistic to simulate Internet conditions [12, 13, 23]:

Packet loss: This parameter defines how many of the packets were dropped. The parameter

is the total percentage of packets dropped from the link statistically over time. We used

both 1% and 5% packet loss in our tests.

Delay: This parameter specifies how much delay is added to each packet traveling through the

Netem machine. The delay is added in both directions, meaning that the delay is added

twice to the round trip time. We used both 100 ms and 300 ms delay in our tests.

Jitter: This parameter decides how much the delay varies. We used 0% and 10% jitter in our

tests. This means with 100 ms delay and 10% jitter, a packet has a random delay between

90-110 ms. With 500 ms delay and 10% jitter we would get a random delay between

450-550 ms.

In addition to these varying parameters, we had 50 ms added delay, with no jitter and no loss,

between the proxy and the client. This was added to get a more realistic RTT between clients

and a regional proxy.

5.2.4 Measuring delay

We decided to compare the end-to-end delay of the packets as the success metric of our system.

To be able to measure this delay, we needed to know when a packet first was generated on the

server, and compare this to when that same packet arrived at the client. This was not trivial, as

the system clocks run at slightly different speeds and we needed precision in the millisecond

range. We decided to synchronise the clocks in each machine before and after each test, and

CHAPTER 5. IMPLEMENTATION, EXPERIMENTS AND ANALYSIS 35

see how much the clock had drifted from start to finish. This drift was then applied to each

timestamp to correct it. When all timestamps on both the server and the client were corrected,

we could compare them against each other to find out how long it took the packet to travel from

the server to the client.

This seemed to work at first, as we got results in the time range we were expecting. But some of

the tests we ran showed very sporadic delays that could not be explained by the system. After

doing some research, we found that ntpdate slews the clock if it is under 500 ms wrong. This

means that instead of correcting the clock, it is sped up or slowed down the clock until it was

corrected. This is what caused our measurements to vary between different runs of the same

test. We found that ntpdate could be forced to set the clock regardless of the current offset,

and after running some new tests, we now had an accurate way of measuring the end-to-end

delay.

5.2.5 Understanding the graphs

 0

 20

 40

 60

 80

 100

sample

Y
 a

x
is

X axis

Introduction to boxplots

Min

1. quartile

Median

3. quartile

Max

Figure 5.1: An example boxplot.

All the graphs we show you in this chapter are

boxplots. They are used to convey statistical

data. We explain how to read them in a small

example in figure 5.1. Each plot has a box

with a horizontal line drawn through it, and

there is also a horizontal line drawn above and

below, which is connected to the box. These

two lines represent maximum and minimum

observed values respectively. The low and

high end of the box represent the lower and

upper quartile, or first and third quartile re-

spectively. The line through the box represents the median, also known as the second quartile.

If a maximum value falls outside the scope of the graph, its value is shown on top of the graph.

Quartiles divide a data set into four equal parts. If you sort the data set from lowest to highest

value, the first quartile is the value which has one fourth of the lower values below itself. The

second quartile, or median, is the middle value and have half the values before and after it. The

third quartile is the value with one fourth of the values over it. The difference between the upper

and lower quartiles is called the interquartile range, and is what the box in a boxplot represents.

All graphs shown have some ”cryptic” letters and numbers on the x-axis, for example ”1l 100d

36 5.3. FIRST TESTS AND CONCLUSIONS

0j”. This defines the network parameters between the server and proxy for that test. ”l” stands

for loss, and the number before it is the percentage of loss. ”d” stands for delay and the number

before it is the number of milliseconds packets are delayed each way. ”j” stands for jitter and

is the percentage of jitter applied to the delay. Thus, in the example, we have 1% loss, 100 ms

delay and 0% jitter.

5.3 First tests and conclusions

We implemented the prototype described above, and then we did some initial testing. Figure 5.2

and figure 5.3 show statistics for packet arrival time with and without the use of our system. We

observe from these tests that our system performs drastically worse than the baseline test1.

Both maximum values and the interquartile ranges were much higher in our system than in

the baseline test. We started to analyse all available data to find the cause of this. We first

thought that the difference might be from CPU usage in our system and that one or more of the

subroutines the packet must go through were slow.

We therefore compiled our system for profiling and ran some new tests. The profiling data

showed that on average, none of the functions used much time, all functions were in the nano-

and microsecond range.

We then went back to the network logs and wrote some new tools to analyse specific paths in

the system. We measured the time for the following steps of our system:

1. From the time when the packet is picked up on the loopback device until it is sent.

2. Between the server and proxy.

3. Between the proxy and client.

The analysis of logs between the server and proxy can be seen in figure 5.4. Here, we see

that interquartile ranges are where they should be, on 100 ms and 300 ms respectively, as the

network parameters permitted. In figure 5.5, we see the travel times between the proxy and the

and client are at 50 ms.

1In all test runs, we did not get accurate data for the 5% loss and 300 ms delay TCPlex tests. Tcpdump did

not manage to capture all the packets to and from the proxy, and we are thus not sure if the bad results we see in

figure 5.3 and figure 5.8 are real.

CHAPTER 5. IMPLEMENTATION, EXPERIMENTS AND ANALYSIS 37

 100

 200

 300

 400

 500

 600

B
a

s
e

lin
e

 1
l
0

j

T
C

P
le

x
 1

l
0

j

B
a

s
e

lin
e

 1
l
1

0
j

T
C

P
le

x
 1

l
1

0
j

B
a

s
e

lin
je

 5
l
0

j

T
C

P
le

x
 5

l
0

j

B
a

s
e

lin
e

 5
l
1

0
j

T
C

P
le

x
 5

l
1

0
j

3
7

3
1

4
8

5
0

1
9

3
4

4
8

5
4

1
6

2
1

3

4
8

4
9

1
6

5
9

8

7
0

4
0

P
a

c
k
e

t
a

ri
v
a

l
ti
m

e
 (

m
s
)

Baseline vs TCPlex, delay 100ms

Figure 5.2: Comparison of Baseline and TCPlex tests with 100 ms delay

 300

 400

 500

 600

 700

 800

B
a

s
e

lin
e

 1
l
0

j

T
C

P
le

x
 1

l
0

j

B
a

s
e

lin
e

 1
l
1

0
j

T
C

P
le

x
 1

l
1

0
j

B
a

s
e

lin
je

 5
l
0

j

T
C

P
le

x
 5

l
0

j

B
a

s
e

lin
e

 5
l
1

0
j

T
C

P
le

x
 5

l
1

0
j

3
8

7
1

5
0

4
7

7
3

9
5

6
6

1
9

3
0

3
6

9

1
4

1
9

5

5
0

1
1

2

2
3

4
3

0

P
a

c
k
e

t
a

ri
v
a

l
ti
m

e
 (

m
s
)

Baseline vs TCPlex, delay 300ms

Figure 5.3: Comparison of Baseline and TCPlex tests with 300 ms delay

38 5.4. SECOND PROTOTYPE

The maximum values seen in these two graphs are caused by retransmissions and from analysis

of the data files, we find these deviant values in 1% and 5% on the server-proxy link, where the

network loss is 1% and 5% loss respectively, and about 0.01% of the packets on the proxy-client

link.

These two tests shows that the network emulation is working as it should and packets are not

delayed in the network more then specified.

We see in figure 5.6, that on average, packets had to wait 150 ms from they were captured, until

the server sent the multiplexed packet. In the worst case the delay was 350 ms. This delay was

most likely caused by buffering packets until we could fill a segment. This led us to design a

second prototype.

5.4 Second prototype

Since our original idea of filling up the TCP segment before sending gave bad results, we

rewrote most of the server and the receiving logic on the proxy to send packets as soon as they

were captured by libpcap.

The program does not longer buffer the packet internally, but rather sends the packets as soon as

they are read. Packets may still be buffered, but it is now done by the kernel in the TCP buffer.

got_packet is called by libpcap for each packet it sniffs from the loopback device. If the

packet has any payload, got_packet copies destination and source information into a

header and sends this header and the payload to the send_packet function.

send_packet is used to send a packet through the single connection to the proxy. It first writes

the length of the buffer to the first 2 bytes of the buffer, so the receiver knows how much

it must read. Then, it sends the buffer and resets the counter.

5.5 Second tests and important observations

We reran our system test, and we can see the improvements in figure 5.7 and figure 5.8. The

interquartile ranges were now much closer to the baseline, but there are still things that did not

work as intended.

CHAPTER 5. IMPLEMENTATION, EXPERIMENTS AND ANALYSIS 39

 0

 50

 100

 150

 200

 250

 300

 350

 400

1
l
1

0
0

d
 0

j

1
l
1

0
0

d
 1

0
j

1
l
3

0
0

d
 0

j

1
l
3

0
0

d
 1

0
j

5
l
1

0
0

d
 0

j

5
l
1

0
0

d
 1

0
j

5
l
3

0
0

d
 0

j

5
l
3

0
0

d
 1

0
j

1559 1527 2089 2445 3192 3502 3884 6315

P
a

c
k
e

t
a

ri
v
a

l
ti
m

e
 (

m
s
)

Bundle stats

Figure 5.4: Travel times between the server and proxy

 50

 50.1

 50.2

 50.3

 50.4

 50.5

 50.6

1
l
1

0
0

d
 0

j

1
l
1

0
0

d
 1

0
j

1
l
3

0
0

d
 0

j

1
l
3

0
0

d
 1

0
j

5
l
1

0
0

d
 0

j

5
l
1

0
0

d
 1

0
j

5
l
3

0
0

d
 0

j

5
l
3

0
0

d
 1

0
j

274 348 349 349 251 350 361 360

P
a

c
k
e

t
a

ri
v
a

l
ti
m

e
 (

m
s
)

Proxy-Client

Figure 5.5: Travel times between the proxy and client

40 5.5. SECOND TESTS AND IMPORTANT OBSERVATIONS

 0

 50

 100

 150

 200

 250

 300

 350

1
l
1

0
0

d
 0

j

1
l
1

0
0

d
 1

0
j

1
l
3

0
0

d
 0

j

1
l
3

0
0

d
 1

0
j

5
l
1

0
0

d
 0

j

5
l
1

0
0

d
 1

0
j

5
l
3

0
0

d
 0

j

5
l
3

0
0

d
 1

0
j

D
e

la
y
 (

m
s
)

Delay from capture to send

Figure 5.6: Time it takes from a packet is captured and to it is sent

We found from the comparison between the baseline test and our system test that there was a

large difference in max values. We believed these were caused by setting up the connections

to the client and changed the proxy code to move the code responsible for creating the client

connections into its own subroutine so that we could get accurate profiling data and ran new

tests. These tests showed that the ”create_connection” function used 0 time. The reason for this

is that gprof, the profiling tool we used, cannot measure time outside of user space. We thus

went for a simpler approach and made the program output the time difference between before

and after calling the function, using the system’s gettimeofday function. The results of this test

can be found in figure 5.9. Here, we see that although there is a noticeable delay, it does not

explain the huge maximum numbers we were getting, thus we had to look elsewhere. We also

measured the time it takes the proxy to send a packet to the client, and the results of this test can

be seen in figure 5.10. We can see here that it uses almost no time. The maximum value seen

here is the first packets for each connection, these packets have to wait for the connection to be

established before they can be sent.

We also wanted to measure more accurately the time used by the server to process and send out

the packets. Since each packet that libpcap gives us comes with the timestamp when it was

captured from the link, we compared this with the current time and output it. Furthermore, we

CHAPTER 5. IMPLEMENTATION, EXPERIMENTS AND ANALYSIS 41

 100

 200

 300

 400

 500

 600

B
a

s
e

lin
e

 1
l
0

j

T
C

P
le

x
1

 1
l
0

j

T
C

P
le

x
2

 1
l
0

j

B
a

s
e

lin
e

 1
l
1

0
j

T
C

P
le

x
1

 1
l
1

0
j

T
C

P
le

x
2

 1
l
1

0
j

B
a

s
e

lin
je

 5
l
0

j

T
C

P
le

x
1

 5
l
0

j

T
C

P
le

x
2

 5
l
0

j

B
a

s
e

lin
e

 5
l
1

0
j

T
C

P
le

x
1

 5
l
1

0
j

T
C

P
le

x
2

 5
l
1

0
j

3
7

3
1

4
8

5
0

4
6

6
5

1
9

3
4

4
8

5
4

5
3

4
8

1
6

2
1

3

4
8

4
9

6
3

3
8

1
6

5
9

8

7
0

4
0

6
4

1
8

P
a

c
k
e

t
a

ri
v
a

l
ti
m

e
 (

m
s
)

Baseline vs TCPlex1 vs TCPlex2, delay 100ms

Figure 5.7: Comparison of Baseline and TCPlex2 tests with 100 ms delay

 300

 400

 500

 600

 700

 800

B
a

s
e

lin
e

 1
l
0

j

T
C

P
le

x
1

 1
l
0

j

T
C

P
le

x
2

 1
l
0

j

B
a

s
e

lin
e

 1
l
1

0
j

T
C

P
le

x
1

 1
l
1

0
j

T
C

P
le

x
2

 1
l
1

0
j

B
a

s
e

lin
je

 5
l
0

j

T
C

P
le

x
1

 5
l
0

j

T
C

P
le

x
2

 5
l
0

j

B
a

s
e

lin
e

 5
l
1

0
j

T
C

P
le

x
1

 5
l
1

0
j

T
C

P
le

x
2

 5
l
1

0
j

3
8

7
1

5
0

4
7

4
9

6
6

7
3

9
5

6
6

1
9

6
5

9
7

3
0

3
6

9

1
4

1
9

5

1
5

4
9

0

5
0

1
1

2

2
3

4
3

0

1
3

4
2

6

P
a

c
k
e

t
a

ri
v
a

l
ti
m

e
 (

m
s
)

Baseline vs TCPlex1 vs TCPlex2, delay 300ms

Figure 5.8: Comparison of Baseline and TCPlex2 tests with 300 ms delay

42 5.5. SECOND TESTS AND IMPORTANT OBSERVATIONS

 100

 100.2

 100.4

 100.6

 100.8

 101

1
l
1

0
0

d
 0

j

1
l
1

0
0

d
 1

0
j

1
l
3

0
0

d
 0

j

1
l
3

0
0

d
 1

0
j

5
l
1

0
0

d
 0

j

5
l
1

0
0

d
 1

0
j

5
l
3

0
0

d
 0

j

5
l
3

0
0

d
 1

0
j

202.60 202.36

F
u

n
c
ti
o

n
 r

u
n

 t
im

e
 (

m
s
)

Profile of new client connection

Figure 5.9: Time data for establishing new client connections, gathered from profiling the proxy

 0

 0.005

 0.01

 0.015

 0.02

1
l
1

0
0

d
 0

j

1
l
1

0
0

d
 1

0
j

1
l
3

0
0

d
 0

j

1
l
3

0
0

d
 1

0
j

5
l
1

0
0

d
 0

j

5
l
1

0
0

d
 1

0
j

5
l
3

0
0

d
 0

j

5
l
3

0
0

d
 1

0
j

100.86 100.56 100.53 100.54 100.55 100.97 202.75 202.51

F
u

n
c
ti
o

n
 r

u
n

 t
im

e
 (

m
s
)

Profile of sending data

Figure 5.10: Time data for sending data, gathered from profiling the proxy

CHAPTER 5. IMPLEMENTATION, EXPERIMENTS AND ANALYSIS 43

wished to see if the send call created any problems and therefore also output the time difference

between when the function receives a packet from libpcap and after the send call is done.

We see from figure 5.11 that the delay is mostly between 0.6 ms and 0.8 ms. If we look at

figure 5.12 and figure 5.13, we find the same maximum numbers that are present in figure 5.11,

and by examining the profiling data, we found that the reason we get the high processing delays

is that the whole program waits for the send call and can not process new packets from the

libpcap buffer. Each time there is a long send delay, the next couple of packets gets the same

delay while the system goes through its backlog of packets.

The reason we have to wait on send is that the TCP buffer in the kernel is full. This means

that combined bandwidth of the multiplexed thin streams is higher than the bandwidth allowed

by TCP’s congestion control. We have actually created a too thick stream.

 0

 0.2

 0.4

 0.6

 0.8

 1

1
l
1

0
0

d
 0

j

1
l
1

0
0

d
 1

0
j

1
l
3

0
0

d
 0

j

1
l
3

0
0

d
 1

0
j

5
l
1

0
0

d
 0

j

5
l
1

0
0

d
 1

0
j

5
l
3

0
0

d
 0

j

5
l
3

0
0

d
 1

0
j

20.1 45.8 131.1 3292.7 1733.0 5026.9 10602.1 15550.7

T
im

e
 f

ro
m

 c
a

p
tu

re
 t

o
 p

ro
c
e

s
s
in

g
 (

m
s
)

Libpcap buffer delay

Figure 5.11: Time data gathered from profiling the server libpcap buffer delay

In figure 5.13, we can clearly see that this problem arises when the network conditions worsen,

as the TCP buffer gets filled up while we wait for retransmissions. In section 5.6, we talk about

a possible solution to this problem.

44 5.5. SECOND TESTS AND IMPORTANT OBSERVATIONS

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

1
l
1

0
0

d
 0

j

1
l
1

0
0

d
 1

0
j

1
l
3

0
0

d
 0

j

1
l
3

0
0

d
 1

0
j

5
l
1

0
0

d
 0

j

5
l
1

0
0

d
 1

0
j

5
l
3

0
0

d
 0

j

5
l
3

0
0

d
 1

0
j

19.5 44.8 130.4 3292.2 1732.0 5036.4 10601.4 15550.2

F
u

n
c
ti
o

n
 r

u
n

 t
im

e
 (

m
s
)

Server send delay

Figure 5.12: Time data gathered from profiling the server send delay

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1
l
1

0
0

d
 0

j

1
l
1

0
0

d
 1

0
j

1
l
3

0
0

d
 0

j

1
l
3

0
0

d
 1

0
j

5
l
1

0
0

d
 0

j

5
l
1

0
0

d
 1

0
j

5
l
3

0
0

d
 0

j

5
l
3

0
0

d
 1

0
j

19.5 44.8 130.4 3292.2 1732.0 5036.4 10601.4 15550.2

F
u

n
c
ti
o

n
 r

u
n

 t
im

e
 (

m
s
)

Server send delay

Figure 5.13: Zoomed out version of figure 5.12

CHAPTER 5. IMPLEMENTATION, EXPERIMENTS AND ANALYSIS 45

Receive multiplexed stream

Generate thin streams Capture thin streams Send multiplexed stream

Demultiplex stream and

send thin streams

Create connection

to new client

Receive thin streams

0.7 ms

Up to 200 ms

Up to 15 s

0.01 ms

0.01 ms50 ms

Figure 5.14: Delays found in our system.

5.5.1 Imposed delays

We have now seen that in some steps, some delay is added to a packet going through our system.

These delays are shown in figure 5.14. The most notable that always applies are:

0.7 ms Libpcap buffer delay on the server, seen in figure 5.11

0.01 ms Send delay on server, seen in figure 5.12

0.01 ms Send delay on proxy, seen in figure 5.10

These delays are acceptable and also not something we can improve upon easily. There are also

larger delays added under certain conditions, these are:

Up to 15 s Full TCP buffer on the server due to network conditions, as seen in both the system

tests and the server profiling.

Up to 200 ms New client connections on the proxy, seen in figure 5.9

These delays are due to limitations in our system, and we therefore try to remedy the worst of

these delays in the next prototype.

46 5.6. PARALLEL CONNECTIONS PROTOTYPE

packet generator

data sink

loopback

tcplex_sender

server

ethernet

send thread N

capture thread

send thread 2

send thread 1

log thread

Figure 5.15: Parallel connections server

5.5.2 Observations

We have observed that large delays occur in our system due to congestion on the network and

inside our program. In the next section, we try to remedy the highest of these delays. In the next

prototype, we introduce parallel connections between the server and the proxy. This spreads the

load on the link. We also introduce threading to minimize idle time on the server.

5.6 Parallel connections prototype

Since we found, from analysis of the second prototype, that a single TCP connection actually

becomes too thick to transfer all the thin streams without congestion problems, we designed a

new server program. We can see this new design in figure 5.15. Here, we see that there are now

multiple connections between the server and the proxy, each running in its own thread.

The server can now be divided into three parts; The capture thread, which is responsible for

capturing the thin streams from the loop back device. The send threads, which are responsible

for sending all packets in their queues to the proxy. And the log thread, which is responsible

for writing all log information to a designated log file. The log thread and each of the send

threads are created when the program starts. The number of send threads is determined by a

CHAPTER 5. IMPLEMENTATION, EXPERIMENTS AND ANALYSIS 47

parameter given to the program at startup. The number of connections to the proxy is static,

and is established when the thread is created. The following functions are used by the server

program:

got_packet is called by libpcap for each packet it captures from the loopback device. If the

packet has any payload, got_packet copies destination and source information into a

header, and a temporary buffer is assigned to this packet, where the header, the payload

and the length of the payload is inserted. This buffer comes either from a list of free

buffers, or if there are no free buffers, one is created for the packet. This buffer is then

sent to the send_packet function. The capture timestamp and header is also sent to

the write_log function.

send_packet goes through all the send queues and finds the shortest available queue, and places

the buffer it got from got_packet into this queue. These queues are First In First

Out (FIFO) queues. After the buffer is placed in a queue, send_packet signals the

send_packet_thread that owns that queue.

write_log puts the capture timestamp and destination and source information into a log buffer.

Then, if this buffer has reached a certain threshold, it signals the log_thread.

send_packet_thread constantly loops, taking out the first buffer in its queue. If the queue is

empty, the thread sleeps until it is woken by a signal from send_packet, indicating

the arrival of a new buffer in the queue. The length, header, and payload in the buffer is

then sent to the proxy. The buffer the packet came in is then put back into the list of free

buffers.

log_thread sleeps until it is awaken by the signal from write_log, it then writes the entire

log buffer to a file and sleeps again.

5.7 Parallel connections tests

The number of connections and send threads is not dynamic, but specified as a parameter when

starting the server. We ran a series of tests while changing this parameter each time. These test

did not give the expected results. We saw that the delay actually went up when we added more

connections. We assumed this is because of the hardware limitations on the server. It only has

one Central Processing Unit (CPU) core, and thus cannot run more than one thread at a time.

48 5.8. SUMMARY

This means that we only get the overhead from running with more than one thread, without

getting any performance gain, since the threads cannot run concurrently and we have to switch

back and forth between the threads all the time.

We therefore got a new machine to run the server program, this time with four CPU cores. We

did not have time to run through every test on the new machine, but reran the prototype two

tests, and ran two tests with the threaded server, with two connections and four connections.

The results from these tests can be seen in figure 5.16 and figure 5.17. Here, TCPlex2 means

the second prototype, and TCPlex3 means the third, parallel connections prototype. The ”2c”

and ”4c” means, with two and four parallel connections, respectively. We see that in all the

1% loss cases, TCPlex3 has a slightly larger interquartile range and about the same maximum

values as TCPlex2. If we look at the 5% loss cases, we can see a minor improvement in the

interquartile ranges, and that the maximum values are about the same.

This is not what we expected. We hoped to see a improvement in the maximum values between

the two prototypes. What we do see, is that the waiting we observed in TCPlex2 is due to mul-

tiple retransmissions of a single packet, and that this is not solved by adding more connections.

We can also see a trend towards overall lower delays, in high loss scenarios, when we add more

connections.

5.8 Summary

In this chapter, we implemented and tested many prototypes. We did a thorough examination of

all the delays added throughout our system, and found ways of reducing many of them. In the

next chapter, we look back at what we have learned in this thesis, and talk about the results and

what still needs to be researched.

CHAPTER 5. IMPLEMENTATION, EXPERIMENTS AND ANALYSIS 49

 100

 200

 300

 400

 500

 600

B
a

s
e

lin
e

 1
l
0

j

T
C

P
le

x
2

 1
l
0

j

T
C

P
le

x
3

 2
c
 1

l
0

j

T
C

P
le

x
3

 4
c
 1

l
0

j

B
a

s
e

lin
e

 1
l
1

0
j

T
C

P
le

x
2

 1
l
1

0
j

T
C

P
le

x
3

 2
c
 1

l
1

0
j

T
C

P
le

x
3

 4
c
 1

l
1

0
j

B
a

s
e

lin
e

 5
l
0

j

T
C

P
le

x
2

 5
l
0

j

T
C

P
le

x
3

 2
c
 5

l
0

j

T
C

P
le

x
3

 4
c
 5

l
0

j

B
a

s
e

lin
e

 5
l
1

0
j

T
C

P
le

x
2

 5
l
1

0
j

T
C

P
le

x
3

 2
c
 5

l
1

0
j

T
C

P
le

x
3

 4
c
 5

l
1

0
j

3
7

3
1

4
6

6
3

4
8

6
5

4
7

6
6

1
9

3
4

4
6

5
8

4
7

6
5

5
0

5
8

1
6

2
1

3

4
7

2
1

6
8

1
9

5
2

4
6

1
6

5
9

8

6
5

3
3

7
2

2
0

6
5

6
1

P
a

c
k
e

t
a

ri
v
a

l
ti
m

e
 (

m
s
)

TCPlex2 vs Parallel Connections, delay 100ms

Figure 5.16: Comparison of Baseline and TCPlex3 tests with 100 ms delay

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 2750

 3000

 3250

B
a

s
e

lin
e

 1
l
0

j

T
C

P
le

x
2

 1
l
0

j

T
C

P
le

x
3

 2
c
 1

l
0

j

T
C

P
le

x
3

 4
c
 1

l
0

j

B
a

s
e

lin
e

 1
l
1

0
j

T
C

P
le

x
2

 1
l
1

0
j

T
C

P
le

x
3

 2
c
 1

l
1

0
j

T
C

P
le

x
3

 4
c
 1

l
1

0
j

B
a

s
e

lin
e

 5
l
0

j

T
C

P
le

x
2

 5
l
0

j

T
C

P
le

x
3

 2
c
 5

l
0

j

T
C

P
le

x
3

 4
c
 5

l
0

j

B
a

s
e

lin
e

 5
l
1

0
j

T
C

P
le

x
2

 5
l
1

0
j

T
C

P
le

x
3

 2
c
 5

l
1

0
j

T
C

P
le

x
3

 4
c
 5

l
1

0
j

3
8

7
1

4
8

6
3

5
0

6
4

5
2

9
7

7
3

9
5

6
3

7
8

5
1

4
6

5
2

3
3

3
0

3
6

9

1
2

0
3

1

1
9

5
5

4

1
3

8
3

2

5
0

1
1

2

1
4

6
1

1

1
5

0
0

0

6
3

9
3

9

P
a

c
k
e

t
a

ri
v
a

l
ti
m

e
 (

m
s
)

TCPlex2 vs Parallel Connections, delay 300ms

Figure 5.17: Comparison of Baseline and TCPlex3 tests with 300 ms delay

50 5.8. SUMMARY

Chapter 6

Conclusion

In this thesis, we have presented our work on a transparent way to reduce the latency of a multi-

user interactive thin-stream TCP application. We now summarize the work done in this thesis,

look at the results, and provide an outline of possible future work.

51

52 6.1. SUMMARY

6.1 Summary

Interactive applications often produce something we call thin streams. These data streams have

small packet sizes with high IATs. When streams like this are transported over TCP, they

succumb to high latencies during loss, due to retransmissions. To overcome this problem, we

implemented a way to multiplex many thin streams over the unreliable network. When many

thin streams all go through one TCP connection, there is a much higher probability of triggering

a fast retransmit whenever a packet is lost. This reduces the delays caused by retransmissions.

Our system captures the packets of thin streams from the network, and send all these packets

through one, or more, TCP connection. These streams are received by a proxy, who sends the

original streams to their destination. We designed and implemented this system through an

iterative process. Between each prototype, we did thorough tests and tried to reduce the delays

our system imposed in the next prototype.

6.2 Contributions

We created a system for transparently multiplexing and demultiplexing packets from several

thin streams. This system was intended to reduce the latency of a interactive application with

many outgoing streams, by making the streams behave more like a normal TCP stream, and

thus effectively using the mechanisms in TCP that help prevent high latencies.

We used a program that simulated the traffic generated by a game server with many clients.

We measured statistical values for delay under several different network conditions for this

program. We then did the same tests again, but with the streams created by this program going

through our system.

We saw that our system imposed many different delays on the packets going through it. Several

of these delays were reduced in new prototypes. If we look at the comparison of the baseline

tests and the two last prototypes in figure 5.16 and figure 5.17, we can see that our approach,

a multiplexing system that is transparent for the sending application, is not as successful as we

had hoped. The interquartile ranges of delay are between 50% and 70% higher in our prototypes

than in the baseline tests. Still, what is interesting, is that the maximum delays in our system

are significantly lower than the baseline in the high loss scenarios. This can be explained by

the lower IAT the streams have when multiplexed together, as this triggers fast retransmit more

often.

CHAPTER 6. CONCLUSION 53

Maximum delays are what reduces the quality and user experience the most in online gaming,

thus this system has some potential. If the added delay can be some what reduced, this system

can be very helpful in improving the user experience in online gaming. We talk about possible

ways to improve the overall efficiency of the system in the next section.

6.3 Future work

We found that some of the delays in our system are due to the fact that we tried to make the

system as transparent as possible to the sending application. A possible future expansion of our

work, would be to integrate the multiplexing functions into the sending application. This will

remove the capturing delay, and the sending application can also optimize transmission for a

multiplexed link.

Another improvement to take a closer look at, is to make the proxy threaded. This would remove

the delay when the proxy has to wait on new client connections before it can handle any other

packets.

54 6.3. FUTURE WORK

Bibliography

[1] ntpdate. man ntpdate, January 2000. 33

[2] tc. man tc, December 2001. 27

[3] An analysis of mmog subscription growth. http://www.mmogchart.com/, 2008.

ix, 7

[4] gawk. http://www.gnu.org/software/gawk/, July 2009. 33

[5] netem. http://www.linuxfoundation.org/collaborate/workgroups/networking/ne

November 2009. 24, 27, 33

[6] Gnuplot. http://www.gnuplot.info, September 2010. 33

[7] libpcap. http://tcpdump.org, April 2010. 32, 33

[8] python. http://www.python.org, 2010. 33

[9] Skype. http://www.skype.com, 2010. 9

[10] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC 5681 (Draft

Standard), September 2009. 14, 15

[11] The Entertainment Software Association. Essen-

tial facts about the computer and video game industry.

http://www.theesa.com/facts/pdfs/ESA_Essential_Facts_2010.PDF,

2010. 7

[12] Jean-Chrysostome Bolot, Hugues CrÃ©pin, and Andres Garcia. Analysis of audio packet

loss in the internet. In Thomas Little and Riccardo Gusella, editors, Network and Operat-

ing Systems Support for Digital Audio and Video, volume 1018 of Lecture Notes in Com-

puter Science, pages 154–165. Springer Berlin / Heidelberg, 1995. 10.1007/BFb0019264.

34

55

http://www.mmogchart.com/
http://www.gnu.org/software/gawk/
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.gnuplot.info
http://tcpdump.org
http://www.python.org
http://www.skype.com
http://www.theesa.com/facts/pdfs/ESA_Essential_Facts_2010.PDF

56 BIBLIOGRAPHY

[13] Jean-Chrysotome Bolot. End-to-end packet delay and loss behavior in the internet. SIG-

COMM Comput. Commun. Rev., 23:289–298, October 1993. 34

[14] Mark Claypool and Kajal Claypool. Latency and player actions in online games. Commun.

ACM, 49(11):40–45, 2006. 1, 8

[15] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to TCP’s Fast Recov-

ery Algorithm. RFC 3782 (Proposed Standard), April 2004. 16

[16] Carsten Griwodz and Pål Halvorsen. The fun of using TCP for an MMORPG. pages 1–7,

May 2006. 2, 22, 34

[17] Mahbub Hassan and Danilkin Fiodor Alekseevich. Variable packet size of ip packets for

voip transmission. In IMSA’06: Proceedings of the 24th IASTED international confer-

ence on Internet and multimedia systems and applications, pages 136–141, Anaheim, CA,

USA, 2006. ACTA Press. 9

[18] G. Huston. Next Steps for the IP QoS Architecture. RFC 2990 (Informational), November

2000. 12

[19] International Telecommunication Union (ITU-T). One-

way transmission time, itu-t recommendation g.114.

www.itu.int/itudoc/itu-t/aap/sg12aap/history/g.114/g114.html,

2003. 1, 9

[20] P. Karn and C. Partridge. Improving round-trip time estimates in reliable transport proto-

cols. SIGCOMM Comput. Commun. Rev., 17:2–7, August 1987. 16

[21] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol (DCCP).

RFC 4340 (Proposed Standard), March 2006. Updated by RFCs 5595, 5596. 12

[22] Chris Majewski, Carsten Griwodz, and Pål Halvorsen. Translating latency requirements

into resource requirements for game traffic. July 2006. 2, 22

[23] Athina Markopoulou, Fouad Tobagi, and Mansour Karam. Loss and delay measurements

of internet backbones. Comput. Commun., 29:1590–1604, June 2006. 34

[24] J. Nagle. Congestion Control in IP/TCP Internetworks. RFC 896, January 1984. 17

[25] V. Paxson and M. Allman. Computing TCP’s Retransmission Timer. RFC 2988 (Proposed

Standard), November 2000. 16

www.itu.int/itudoc/itu-t/aap/sg12aap/history/g.114/g114.html

BIBLIOGRAPHY 57

[26] Andreas Petlund. Improving latency for interactive, thin-stream applications over reliable

transport. PhD thesis, University of Oslo, 2009. xi, 3, 6, 8, 23

[27] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980. 1, 12

[28] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981. Updated

by RFCs 1122, 3168. 1, 12

[29] R. Stewart. Stream Control Transmission Protocol. RFC 4960 (Proposed Standard),

September 2007. 2, 12

58 BIBLIOGRAPHY

Appendix A

List of abbreviations

ACK Acknowledgement

AIMD "Additive Increase, Multiplicative Decrease"

CPU Central Processing Unit

CWND Congestion Window

DCCP Datagram Congestion Control Protocol

dupACK Duplicate Acknowledgment

FIFO First In First Out

FPS First-Person Shooter

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

IAT Interarrival Time

IP Internet Protocol

ISP Internet Service Provider

ITU-T International Telecommunication Union

MMOG Massive Multiplayer Online Game

MSS Maximum Segment Size

59

60

MTU Maximum Transmission Unit

QoS Quality of Service

RWND Receiver’s advertised Window

RDC Remote Desktop Connection

RPG role-playing game

RTO Retransmission Timeout

RTS real-time strategy

RTT Round-Trip Time

RTTVAR Round-Trip Time Variation

SCTP Stream Control Transmission Protocol

SMSS Sender Maximum Message Size

SRTT Smoothed Round-Trip Time

SSH Secure Shell

ssthresh slow start threshold

TCP Transport Control Protocol

UDP User Datagram Protocol

VNC Virtual Network Computing

VoIP Voice over IP

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Background and motivation
	Problem Statement
	Main Contributions
	Outline

	Interactive applications
	Properties and requirements of interactive applications
	Games
	Remote systems
	Voice over IP

	Summary

	Transport
	Choosing a transport protocol
	TCP
	Flow control
	TCP congestion control mechanisms
	Retransmission timeout calculation
	Nagle's algorithm

	Thin streams
	How do TCP's mechanisms affect thin streams?

	Summary

	Design
	Bundling of streams
	Assumptions and abstractions
	System design
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6

	System overview
	Summary

	Implementation, experiments and analysis
	First prototype
	Multiplex server implementation
	Multiplex proxy implementation

	Test environment
	Tools and techniques
	Testbed
	Test parameters
	Measuring delay
	Understanding the graphs

	First tests and conclusions
	Second prototype
	Second tests and important observations
	Imposed delays
	Observations

	Parallel connections prototype
	Parallel connections tests
	Summary

	Conclusion
	Summary
	Contributions
	Future work

	Bibliography
	List of abbreviations

