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Abstract 
 
 
 
This thesis investigates the possibility of enhancing an existing performance 
monitoring system for UNIX servers, by adding the capability of predicting upcoming 
failures, using generic UNIX operating system performance metrics like used server 
memory, CPU utilization, I/O traffic etc. as input data for machine learning and pattern 
recognition. In this thesis we survey possible research methods based on input data 
they process, and propose a novel approach for symptom based failure predicting. In 
order to make a generic solution that can be used on any UNIX computer, we have 
only used open source software. We evaluate the classifiers Naive Bayes and Logistic 
Regression with input data in both standard and vectorized format. Furthermore we 
use the search algorithm Forward stepwise selection to find an optimal generic set of 
variables (features) that improves the quality of the classification. Our empirical 
testing demonstrates that our proposed method is capable of predicting symptoms with 
high overall accuracy, but the uncertain quality of the monitored performance data 
used as input makes it difficult to ascertain if the symptoms are actually failures. 
Applying the search algorithm for feature selection and vectorizing the input data set 
we improved the time for classification with an order of magnitude. In our opinion the 
proposed technique for online failure prediction will benefit to applications concerning 
performance monitoring and contribute to the research field of online failure 
prediction with new insight. 
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Chapter 1

Introduction

In this work we investigate the possibility of enhancing an existing performance moni-
toring system for UNIX servers used at Skatteetatens IT og Servicepartner in Grimstad,
by adding the capability of predicting the future possibility for a server to fail. We ex-
amine related work and outline all possible methods for online failure prediction. We
use generic UNIX operating system performance metrics like used server memory, CPU
utilization, I/O traffic etc. as input data for the machine learning and pattern recognition
to detect failures. Gathering the performance information for predictions with operating
system commands that are generic for all UNIX genres gives the advantage of making
the solution portable to any UNIX computer and without any extra expenses for software.
We make a model that uses a script with the “AWK” command to prepare the perfor-
mance data for the classifiers. Evaluating different classifiers we find that Naive Bayes
and Logistic Regression are well suited for this task The model is then used to analyze the
performance metrics in order to optimize the performance and accuracy for the classifiers.
Finally we evaluate the classifiers and select Naive Bayes for the task.
In section 1.1 we show state of the art research for online failure prediction. In the follow-
ing section 1.2 we define “Online failure prediction”, before we present our motivation in
Section 1.3. Section 1.4 contains the full thesis definition. In Section 1.5 we state the key
assumptions and limitations. A presentation of the contributions are given in Section 1.6.
We end this chapter with a section describing the intended target audience of this thesis
in Section 1.7, and present an overview of the thesis layout in Section 1.8.

6



CHAPTER 1. INTRODUCTION 7

1.1 State of the art

In this section, we give a brief overview of some of the latest work that has been carried
out in the field of online failure prediction. We give examples from the all three main
categories defined by Salfner et al. [10] for online prediction according to the type of
input data that they process. At the end of this section we mention the importance of
feature selection (variables) and finally explain the novelty of our research.

Failure tracking evaluate the times of previous failure occurrence. Due to sharing of re-
sources, system failures can occur close together either in time or in space. It has
been observed, that failures occur in clusters in a temporal as well as in a spatial
sense. (For further explanation see chapter 2.1.1)
Liang et al. [21] in 2006 used such an approach to predict failures of IBM’s Blue-
Gene/L from event logs containing reliability, availability and serviceability data.
The key to their approach is data preprocessing, employing first a categorization and
then temporal and spatial compression: Temporal compression combines all events
at a single location occurring with inter-event times lower than a determined thresh-
old, and spatial compression combines all messages that refer to the same location
within a given time window. Prediction uses data from temporal compression, if
a failure of type application I/O or network appears, it is very likely that another
failure will follow shortly. If spatial compression suggests that some components
have reported more events than others, it is very likely that additional failures will
occur at that location.

Detected error reporting approaches evaluate the detection of errors in log files that have
not yet evolved to become a failure. (For further explanation see chapter 2.1.3)
Lal and Choi in 1998 [24] used log files as input data to detect errors and failures
in a UNIX server. They show plots and histograms of errors occurring in a UNIX
server and propose to aggregate errors in an approach similar to tupling. They state
that the frequency of clustered error occurrence indicates an upcoming failure. Fur-
thermore, they show histograms of error occurrence frequency over time before
failure.
Later, Leangsuksun et al. in 2004 [19] presented a study where hardware sensors
measurements such as fan-speed, temperature, etc. are aggregated using several
thresholds to generate error events with several levels of criticism. These events
are analyzed in order to eventually generate a failure warning that can be processed
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by other modules. The study was carried out on data from a high-availability high-
performance Linux cluster.
Salfner and Malek in 2007 [26] use error log files with data from a commercial
telecommunication system as input data to predict performance failures. They state
that. “Error-logs are a fruitful source of information both for diagnosis as well
as for proactive fault-handling however elaborate data preparation is necessary to
filter out valuable pieces of information”. They use well known techniques, and
proposed three algorithms: (a) assignment of error IDs to error messages based
on Levenshtein’s edit distance, (b) a clustering approach to group similar error se-
quences, and (c) a statistical noise-filtering algorithm. Two Hidden Semi Markov
Models are trained: One from failure and one from non-failure sequences. HSMMs
extend standard hidden Markov models by defining cumulative probability distri-
butions in order to specify the duration of state transitions. With this approach, the
two HSMMs learn to identify the specifics of failure and non-failure sequences.
This paper shows that data preparation is an important step to achieve accurate
error-based online failure prediction. Analysis show good prediction performance
on field data of an industrial telecommunication system.

Symptom monitoring assumes that symptoms are side-effects of errors. Thus the ap-
proaches evaluate monitoring data reflecting symptoms (side-effects) of errors. (For
further explanation see chapter 2.1.2)
In 2001 Hamerly and Elkan [12] use Naive Bayes classifiers for failure prediction
in hard-disk drive failure prediction. Input data used is time-driven SMART (self-
monitoring and reporting technology) attributes that comprise for example spin-
up time, power-on hours and counts for seek errors and CRC errors. The authors
propose two Bayesian methods for the prediction of hard disk drive failures: an
anomaly detection algorithm that utilizes a mixture of naive Bayes sub-models and
a naive Bayes classifier that is trained by a supervised learning method. The first
method builds a probability model only for drives behaving normal. The Naive
Bayes Model is trained by using Expectation-Maximization and is hence called
NBEM. The second method is computing conditional probabilities for SMART val-
ues belonging to the failure or non-failure class. Both methods are tested on real
world data from 1936 hard disk drives. The predictive accuracy of both algorithms
is far higher than the accuracy of threshold methods used in the disk drive industry
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at the time of 2001.
The Naive Bayes classification requires that input variables take on discrete values.
Therefore, monitoring values are often assigned to a finite number of bins as in
Hamerly and Elkan [12]. This can lead to poor assignment of features to bins, if
monitoring values are close to a bin’s border. Fuzzy classification addresses this
problem by using probabilistic class membership. Turnbull and Alldrin [28] in
2003 use Radial Basis Functions networks (RBFN) to classify monitoring values of
hardware sensors such as temperatures and voltages on motherboards. More specif-
ically, all N monitoring values occurring within a data window are represented as
a feature vector which is then classified to belong to a failure-prone or non failure-
prone sequence using RBFNs. Experiments were conducted on a server with 18
hot-swappable system boards with four processors, each. The authors achieve good
results, but failures and non-failures were equally probable in the data set.
Other researchers use time series analysis with regression in their approach e.g.
Castelli et al. [5] in 2001 say that IBM has implemented a curve fitting algorithm
for the xSeries Software Rejuvenation Agent. Several types of curves are fit to the
measurement data and a model-selection criterion is applied in order to choose the
best curve. Prediction is again accomplished by extrapolating the curve. Cheng et
al. [6] in 2005 present a two step approach for failure prediction in a high avail-
ability cluster system. Failure prediction is accomplished in two stages: first, a
health index ∑0 , 1] is computed using fuzzy logic, and in case of a detected “sick”
state of a node, a linear function is mapped to the monitored values of the resource
in order to estimate mean time to resource exhaustion. The authors also reference
a technique called “prediction interval” to compute a lower and upper bound for
time to resource exhaustion. The fuzzy logic assignment of the health index is
based on “processor time”, “privileged time”, “pool non-paged bytes”, and “avail-
able Mbytes”.
Regression is used by several, for instance: Li et al. [20] in 2002 use a stochas-
tic model and collect various parameters such as used swap space from an Apache
web server to build an auto regressive model with auxiliary input (ARX) that pre-
dict further progression of system resources utilization. Failures are predicted by
estimating resource exhaustion times. They compared their method to Castelli et
al. [5] and showed that on their data set, ARX modeling resulted in much more
accurate predictions.
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Andrzejak and Silva [4] in 2007 apply deterministic function approximation tech-
niques such as splines to characterize the functional relationships between the target
function (the authors use the term “aging indicator”) and “work metrics” as input
data. Work metrics are, e.g., the work that has been accomplished since the last
restart of the system. Deterministic modeling offers a simple and concise descrip-
tion of system behavior with few parameters. Using work-based input variables
rather than time-based variables gives the advantage that the function is not depend-
ing on absolute time: For instance, with little load on a server, aging factors accu-
mulate slowly and so does accomplished work whereas in case of high load, both
accumulate more quickly. The authors present experiments where performance of
an Apache Axis SOAP (Simple Object Access Protocol) server has been modeled
as a function of various input data such as requests per second or the percentage of
CPU idle time.
Function approximation is one of the predominant applications of machine learn-
ing. An example of this is the research where Hoffmann in 2006 [2] developed a
failure prediction approach based on universal basis functions (UBF), which is an
extension to radial basis functions (RBF) that use a weighted convex combination
of two kernel functions instead of a single kernel. UBF approximation has been
applied to predict failures of a telecommunication system. The method has also
been successfully applied to the prediction of resource consumption in the Apache
web server. Where Hoffmann et al. [14] in 2007, conducted a comparative study
of several modeling techniques with the goal to predict resource consumption of
the Apache web server. The study showed that UBF turned out to yield the best
results for free physical memory prediction, while server response times could be
predicted best by support vector machines (SVM). The basic idea is to permanently
monitor characteristic variables such as workload, number of processes, used I/O
bandwidth in a software system, the probability of failure occurrence is assumed to
be a function of a selection of these input variables. This functional interrelation is
learned from previously recorded measurements by proposing a machine learning
approach: universal basis functions. This method uses offline selection of param-
eters (feature selection) from previously recorded training data and then used it to
perform an online prediction of failures. If it exceeds some predefined threshold, a
failure warning is raised. After applying a feature selection only two features are
used, namely the number of semaphore operations per second and the amount of
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allocated kernel memory.

Feature selection is concerned with finding the optimal subset of measurements to speed
up and get more accurate predictions. This has proved to be very important in sev-
eral researches. One of the major findings in Hoffmann et al. [2007][14] is that
the issue of choosing a good subset of input variables has a much greater influence
on prediction accuracy than the choice of modeling technology. This states that the
result might be better if, for example, only workload and free physical memory are
taken into account and other measurements such as used swap space are ignored.
A typical variable selection algorithms is Forward Stepwise Selection (see, e.g.,
Hastie et al. [13] , (Chapter 3.4.1), which has been used by Turnbull and Alldrin
[28] in 2003. In addition to UBF, Hoffmann [2] has also developed a new algo-
rithm called probabilistic wrapper approach (PWA), which combines probabilistic
techniques with forward selection or backward elimination.

In this thesis we use symptom monitoring as input for classifiers. This is in principle the
same approach as Hamerly and Elkan [12] where the authors use temperature, spin-up
time, power-on hours and counts for seek errors and CRC errors as input for Naive Bayes
classifier, to get failure prediction for hardware failures. We propose a solution where the
novelty in our approach is using generic UNIX performance metrics like memory use,
CPU utilization and I/O traffic as input data for Naive Bayes and Logistic Regression to
achieve failure prediction in software. Our solution also use Forward stepwise feature
selection in order to improve the failure prediction. In the above description of research
done in symptom monitoring we see that there are many of the researches which use
similar input as we do, but all of them use other principle approaches like time series
analysis with regression or the more predominant function approximation approach to
predict failures.
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1.2 A definition of Online Failure Prediction

The goal of online failure prediction is to predict the occurrence of failures during run-
time based on the current operating system state. To give a more precise definition, the
terms “failure” and “online prediction” are defined in separate subsections

1.2.1 Failures

Avizienis and Laprie’s[1] definition of failures is commonly used:

“A system failure occurs when the delivered service deviates from the
specified service, where the service specification is an agreed description of
the expected service”.

Said with other words: A failure is a misbehavior that can be observed by the user, which
can either be a human or a computer component. Error may appear in a system, but if the
system delivers its intended service it is not a failure. In this thesis the intended service is
the UNIX operating system.

1.2.2 Online prediction

Online failure prediction is to predict during run-time whether a failure will occur in a
short period of time based on an assessment of the monitored current running operating
system state.

1.3 Motivation

Computer systems are getting increasingly more complex with growing connectivity, in-
teroperability and they are also changing dynamically. Changes are caused by the mobility
of computer devices, changing execution environments, frequent updates and upgrades,
configurations, online repairs, the addition and removal of system components and the
system/network complexity itself. With the high focus on ICT costs, and the fact that
we are getting increasingly more dependent on computer systems, users expect and even
demand that computer systems should never fail, still systems are inherently prone to fail-
ures. Failures have consequences like high costs for users who may experience loss of
service for some period of time or even loss off valuable data. To find solutions to this
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challenge we have to ask ourselves what are the reasons for computers systems to fail?
There are lots of reason for computer systems to fail:

• hardware problems

• environment problems

• third-party, open-source software, Commercial-Of-The-Shelf (COTS) components

• unproven design

• bad configuration

• growing number of attacks and threats

• misuse

• novice users

• and probably most of the times it is due to software faults

What can be done to improve the failure-prone systems? Because, eventually they will
fail again! Building better software is a obvious solution, but it seem like some software
developers have failed this task. We can find ways to identify failure-prone situations
and react accordingly. But how can we know when a failure is about to happen? The
obvious solution is to predict the failure! If a failure can be predicted, preventive action
can be taken to reduce consequences of the pending failure. This states that proactive
fault management is an effective approach to enhancing reliability. Conventional methods
does not consider the actual state of a system and are therefore not capable of reflecting
the dynamics of run-time systems and failure of processes. Often a root cause analysis
is done when the failure has occurred to find and repair a bug. Root cause analysis are
typically useful in design for long-term or average behavior predictions and comparative
analysis based on:

• failure rates

• architectural properties

• the number of bugs that have been fixed etc.
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Figure 1.1: Distinction between root cause analysis and failure prediction. Composed
from [10]

Short-term predictions on the other hand are made on the basis of run-time monitoring,
and we therefore need to develop methods that capture and select the essential data of
computer systems. The method must be able to select the most significant variables to
failure prediction, which may be only a few of probably many hundreds of variables that
could be observed. Next we need to develop a method that interpret the collected data and
recognize erroneous system states in order to predict future system failures. Figure 1.1
shows the difference between root cause analysis and online failure prediction
People have always tried to predict the future and today millions of people work with
prediction, because we know that if we can predict the future it will give us an advantage.
The key to improve proactive fault management is to predict failures before they actually
happen. This would give us the advantage to prevent potential disasters or to limit the
damage that can be caused by a computer system failure.
Many companies have Service level agreements for different ICT systems depending on
how important they are. Often the SLA for an important system says that the system is
expected to be available 99 percent of the time in working hours (between 08.00 - 16.00)
and if this requirement is not met there will be some penalty. For the operating department
in charge of the computer systems it will be a great advantage if they are warned when a
failure is imminent. This gives us the necessary time to do maintenance or stop a service
so that no data will be lost. In some cases when a failure is imminent a restart of a
service that takes 2 minutes can save many hours of restoring from backup. Two minutes
downtime can be acceptable in an SLA, but hours will most likely be outside the accepted
scope in the SLA. If a prediction can be done correctly then a counter measure can be
taken such as:
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• Initiation or restart of service.

• manual or automatic configuration

• optimization

• some task for healing

• protection

and thus save companies for large amounts of money.

1.4 Thesis definition

“We will investigate the possibility of using generic UNIX performance metrics like mem-
ory, CPU and I/O as input data for "online failure prediction in UNIX systems". We will
find a good subset of the input variables to give highest possible prediction accuracy and
the best performance. Further we will show that this can be implemented on any UNIX
system in a relatively simple manner.

1.5 Key assumptions and limitations

1.5.1 Assumptions

One main issue when researching on the large amount of data that is available in this
project is to make sure that the quality of the data is good. The challenge will be to make
sure that the reference data set indicates for each data point if it is a failure-prone or non-
failure-prone situation. For instance, if a server is shut down manually the monitoring data
will show that the server status is down and incorrectly indicate a failure-prone situation.
To make sure we have the best quality possible for this research we have selected data
only from production servers, because they are very infrequently restarted or turned off.

1.5.2 Limitations

This project will be limited to search for patterns in UNIX metrics that can give an online
prediction whether a server is failure-prone or not. This includes making UNIX shell
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scripts to automate the process of preparing the data from the database into two category-
files that will be used for classification. The online failure prediction would most certainly
be more accurate if several methods where used in conjunction. Due to limited time we
will not investigate any other methods This means that the research is limited to using
generic operating system metrics like used memory, disk, i/o, etc, for symptom-based
online failure prediction with classifiers.

1.6 Contributions

In this thesis we evaluate a novel approach to online failure predicting for UNIX op-
erating systems using open source software. The evaluation is done with real world data
from a performance monitoring system. We have used approximately thirteen month with
performance data from sixteen failure-prone production servers for the evaluation. Our
intention has been to make all parts of this solution fast enough to run online. For this
reason we analyze all the features with Forward stepwise selection to speed up and get a
more accurate prediction. For classifying we use Naive Bayes and Logistic Regression.
Both of the classifiers are evaluated with features in a standard format and in a vectorized
format in order to find differences in prediction speed and accuracy. We use a novel ap-
proach where generic UNIX performance metrics like memory use, CPU utilization and
I/O traffic are used as input data for Naive Bayes and Logistic Regression to achieve fail-
ure prediction for software. We believe that the use of open source software and operating
system commands that are generic for all UNIX genres to gather the features for online
failure prediction gives a good advantage for further research in this area, because the
software and code can be implemented relatively easy and without any extra expenses for
the software. The research has determined which performance metrics are suitable for on-
line failure prediction and used forward selection of features to make a generic set of the
most significant features that can be used on any UNIX server for failure prediction. This
helps to identify the most common symptoms for failure-prone situations. Used server
memory is the most significant feature and thus it indicates that there is some memory
leak in many of the servers investigated in this research. We have proved that the Naive
Bayesian classifier also for this task gives the best predictions and computing speed. The
research shows that Logistic Regression is a good alternative if one takes into consid-
eration the nature of the classifier and eliminate all features with constant values before
classifying. We are convinced that this research shows that it is possible to find patterns
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in the stored performance data that can be used to give a warning if the current situation is
failure prone and thus give a continuous measure that judges the current situation as more
or less failure-prone, although there is still some work that has do be done to achieve this.
Our research together with the questions that we uncover also give a good foundation for
further research.

1.7 Target audience

The target audience of this thesis is anyone interested in data mining, machine learning
and classifiers. The thesis requires that the reader is familiar with basic concepts from
statistics and classification theory, however the thesis is written in such a way that it
should be possible for any interested reader to follow. A brief introduction to the most
important concepts and theory is given, but especially with regards to statistics and prob-
ability distributions we assume some background knowledge.

1.8 Report outline

We start in the next chapter with an outline possible methods for online failure prediction
and give a brief introduction to the theoretical framework. Then we explain and discuss
the selected research approach in chapter 3, We use our novel approach in chapter 4 to
analyze the performance data. and discuss the results in Chapter 5, before we conclude
and propose further work in chapter 6.



Chapter 2

Outline of failure prediction methods
and theoretical framework

First we start giving an overview of the possible failure prediction methods for the the-
ses and in the next sections we give a brief description of each main category. For each
method and principle approach we give a brief introduction to the theoretical framework.
The articles referenced in the introduction are mentioned in the appropriate sub chapter
to give a better understanding of the content in each article and picture what area the re-
search belongs to. Sub chapter 4.2 describes the selected, most feasible method for this
research and the possible principle approaches.

2.1 Synopsis of prior research

Felix Salfner et. al. [10] made a survey of online failure prediction methods in 2010.
From this survey we have made a figure to give an overview of the possible research
methods. Online failure prediction methods can be divided into four main categories ac-
cording to the type of input data that is processed. The main categories can be divided
further by the principle of approach they employ and then subsequently by the methods
they use. The dotted lines in figure 2 indicate where further research methods exist, but
they are left out because the approaches are not feasible.

18
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Figure 2.1: An overview over online failure prediction approaches. The dashed lines
indicate further research methods. Composed from [10]

2.1.1 Failure Tracking

This method evaluates the times of occurrence as well as the types of failures that has
previously occurred in a system. The failure prediction can be done in two different ways

1. Estimation of the probability distribution of a random variable for time to the next
failure.

2. Approaches that build on the co-occurrence of failure events. Liang et al. [21] in
2006 use such an approach to predict failures of IBM’s BlueGene/L from event logs
containing reliability, availability and serviceability data. This is briefly described
in chapter 1.1.

These techniques assumes the system is stationary within some time window and in the
cases of:
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0,

Figure 2.2: Function approximation. Composed from [10]

• bug-fixing

• configuration changes

• or even varying utilization patterns.

it will affect the failure process and it can result in poor estimations. Because of the
weakness in this method it has not been considered for this research.

2.1.2 Symptom monitoring

Symptom monitoring assumes that symptoms are side-effects of errors. Thus the ap-
proaches evaluate monitoring data reflecting symptoms (side-effects) of errors. The in-
tention of failure prediction based on monitoring data is that errors like memory leaks can
be detected by their side effects on the system, such as unusual memory usage, CPU load,
disk I/O, or unusual function calls in the system. These side effects are called symptoms.
Symptom-based online failure prediction methods frequently address non-fail-stop fail-
ures, which are usually more difficult to grasp. This method is the most adequate method
for the monitored data available for this project. To find patterns in the UNIX performance
metrics is analogous to analyzing monitoring data in order to detect symptoms that indi-
cate an upcoming failure. There are four principle approaches that have been identified:
Failure prediction based on:
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2.1.2.1 Function approximation

Function approximation tries to imitate an unknown target function by the use of measure-
ments taken from a system at run-time (see fig. 2.2). For failure prediction the target func-
tion is usually the probability of failure occurrence, where the target value is a Boolean
variable only available in the training data set but not during run-time, or it might be some
computing resource such as the amount of free memory. Although the current value of
free memory is measurable during run-time, function approximation is used in order to
extrapolate resource usage into the future and to predict the time of resource exhaustion.

2.1.2.2 Classifiers

Figure 2.3: Online failure prediction by classification of operating system metrics. Com-
posed from [10]

Instead of approximating a target function, some failure prediction algorithms evaluate the
current values of system variables directly. Failure prediction is achieved by classifying
whether the current situation is failure-prone or not. This is shown in figure 4.
The classifier’s decision boundary is usually derived from a reference data set for which
it is known for each data point whether it indicates a failure-prone or non-failure-prone
situation. Online failure prediction during run-time is then accomplished by checking on
which side of the decision boundary the current monitoring values are. The dimensions of
data points can be discrete or continuous values. We have briefly described the research
of Hamerly and Elkan [12] where they use the Naive Bayes classifier for hardware failure
prediction.
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Classification methods evaluated in this thesis are:

K-nearest neighbor[23] K-nearest-neighbor classification is one of the most fun-
damental and simple classification methods and should be one of the first choices for a
classification study when there is little or no prior knowledge about the distribution of the
data. K-nearest-neighbor has the advantage that it is robust to noisy training data (espe-
cially if we use inverse square of weighted distance as the “distance”) and it is effective if
the training data is large. K-nearest-neighbor has disadvantage that it needs to determine
the value of parameter K (number of nearest neighbors) and for the distance based learn-
ing is not clear which type of distance to use and which attribute to use to produce the best
results. Shall we use all attributes or certain attributes only? Also the computation cost
is quite high because we need to compute distance of each query instance to all training
samples. There exist some indexing methods that may reduce this computational cost.

Bayesian classifiers [7] A Bayes classifier is a simple probabilistic classifier based
on applying Bayes theorem (from Bayesian statistics) with strong (naive) independence
assumptions. In simple terms, a naive Bayes classifier assumes that the presence (or ab-
sence) of a particular feature of a class is unrelated to the presence (or absence) of any
other feature. For example, a fruit may be considered to be an apple if it is red, round, and
about 4" in diameter. Even if these features depend on each other or upon the existence
of the other features, a naive Bayes classifier considers all of these properties to indepen-
dently contribute to the probability that this fruit is an apple. Depending on the precise
nature of the probability model, naive Bayes classifiers can be trained very efficiently in
a supervised learning setting. In many practical applications, parameter estimation for
naive Bayes models uses the method of maximum likelihood; in other words, one can
work with the naive Bayes model without believing in Bayesian probability or using any
Bayesian methods. An advantage of the naive Bayes classifier is that it requires a small
amount of training data to estimate the parameters (means and variances of the variables)
necessary for classification. Because independent variables are assumed, only the vari-
ances of the variables for each class need to be determined and not the entire covariance
matrix.

Logistic Regression [3, 22] Logistic regression is a popular classification method
that comes from statistics.and is used for prediction of the probability of occurrence of an
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event by fitting data to a logit function. This is a useful way of describing the relationship
between independent variables (in our case e.g. used server memory, disk i/o, etc.) and
a binary response variable, expressed as a probability, that has only two values, such as
being failure-prone or not ("failure-prone behavior" or "normal behavior"). It is a general-
ized linear model used for binomial regression. Like many forms of regression analysis, it
makes use of several predictor variables that may be either numerical or categorical. The
logistic function is useful because it can take as an input any value from negative infinity
to positive infinity, whereas the output (probability (p)) is confined to values between 0
and 1. The probability (p) of a class value is computed as:
p = ƒ(F) = exp(F)/(1+exp(F))
The variable F represents the exposure to some set of independent variables, while ƒ(F)
represents the probability of a particular outcome, given that set of explanatory variables.
For our classifier in Orange the outcome variable F (class) must be binary (dichotomous)
and discrete attributes must be translated to continuous. The variable F is a measure of the
total contribution of all the independent variables used in the model and is known as the
logit. The model is described by a linear combination of coefficients, where the variable
F is defined as:
ƒ(F) = ß_0 + ß_1*X_1 + ß_2*X_2 + ... + ß_k*X_k
where ß0 is called the "intercept" and ß_1, ß_2, ß_3, and so on, are called the "regression
coefficients" of X_1, X_2, X_3 respectively. The intercept is the value of z when the
value of all independent variables are zero (e.g. the value of z in normal server behav-
ior). Each of the regression coefficients describes the size of the contribution of that risk
factor. A positive regression coefficient means that the explanatory variable increases the
probability of the outcome, while a negative regression coefficient means that the variable
decreases the probability of that outcome; a large regression coefficient means that the
risk factor strongly influences the probability of that outcome, while a near-zero regres-
sion coefficient means that that risk factor has little influence on the probability of that
outcome.
Logistic regression tends to systematically overestimate odds ratios or beta coefficients
when the sample size is less than about 500. With increasing sample size, the magnitude
of overestimation diminishes and the estimated odds ratio asymptotically approaches the
true population value. In a single study, overestimation due to small sample size might
not have any relevance for the interpretation of the results, since it is much lower than
the standard error of the estimate. However, if a number of small studies with system-
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atically overestimated effects are pooled together without consideration of this effect, an
effect may be perceived when in reality it does not exist.[22] A minimum of 10 events per
independent variable has been recommended.[3] For example, in a study where death is
the outcome of interest, and 50 of 100 patients die, the maximum number of independent
variables the model can support is 50/10 = 5.

2.1.2.3 A system model

Figure 2.4: Online failure prediction using a system model. Composed from [10]

In contrast to the classifier approach, which requires training data for both the failure-
prone and non-failure-prone case, system model based failure prediction approaches rely
on modeling of failure-free behavior only (normal system behavior). The model is used
to compute expected values, to which the current measured values are compared. If they
differ significantly, the system is suspected not to behave as normal and an upcoming
failure is predicted. We have available training data for both the failure-prone and non-
failure-prone case and therefore do not consider this method.
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2.1.2.4 Time series analysis

Figure 2.5: Online failure prediction using time series analysis. Composed from [10]

As the name suggests, failure prediction approaches in this category, treat a sequence
of monitored system variables as a time series. This means that the prediction is based
on an analysis of several successive samples of a system variable (see figure 6). The
analysis of the time series either involves computation of a residual value on which the
current situation is judged to be failure-prone or not, or the future progression of the
time series is predicted in order to estimate, for example, time until resource exhaustion.
This approach does not seem to give results as good as with classifiers and we have not
considered it because of this.. In chapter 1.1 we briefly describe two references using time
series analysis. Castelli et al. [5] in 2001 say that IBM has implemented a curve fitting
algorithm for the xSeries Software Rejuvenation Agent and Cheng et al. [6] in 2005
presents a two step approach for failure prediction in a high availability cluster system.
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2.1.3 Detected error reporting

Figure 2.6: Online failure prediction based on error reports. Composed from [10]

Analyze error reports to detect errors that have not yet evolved to become a failure. A
log file is a list of messages and an error log provides a mechanism for reporting errors,
warnings, and other significant events that happen during run-time of a server. Each
message written to the error log will include a category (indicating the area of the server
in which the message was generated) and severity (indicating the relative importance of
the message), along with an integer value that uniquely identifies the associated message
string. The error log can be analyzed for:

• Auditing, determine the cause of an event (past).

• Predicting important events (future).

The different approaches can be divided in two main groups:

1. Rule-based failure prediction methods derive a set of rules where each rule consists
of error reports.

2. Error pattern-based approaches has several techniques:

(a) Co-occurrence of errors is a method used by many researchers with good re-
sults. Salfner and Malek in 2007 [26] use error log files with data from a com-
mercial telecommunication system as input data. Lal and Choi in 1998 [24]
used log files from a UNIX server, Leangsuksun et al. in 2004 [19] presented a
study where hardware sensors measurements such as fan speed, temperature,
etc are used as input. The method is briefly described in chapter 1.1.
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(b) Pattern recognition techniques that operate on sequences of error events try-
ing to identify patterns that indicate a failure-prone system state. We briefly
describe the research of Salfner and Malek [26] in chapter 1.1 that uses error
log files with data from a commercial telecommunication system as input data
to predict performance failures.

(c) Statistical test

(d) Classifiers

Detected error reporting is a method that is proven to give good results in above mentioned
researches and it would be very interesting to evaluate on its own or in conjunction with
the "symptom monitoring”, but we choose not to use it because of the limited time for the
thesis.

2.1.4 Undetected error auditing

Using auditing to actively search for incorrect states (undetected errors) regardless whether
the data is used at the moment or not. Undetected error auditing uses auditing to actively
search for incorrect states (undetected errors) regardless whether the data is used at the
moment or not is a method that has not been researched yet [10]. One drawback with
this method is that it can cause a high load because it is online. Experience with security
auditing has shown that this can be a serious problem. In a production environment this
is not realistic to implement.



Chapter 3

Research approach

I start this chapter I will first explain how the research question has emerged. In section
3.1 we select the research approach and in section 3.2 we state the requirements before
we in section 3.3 explain how we select data to predict failures. The next two sections
describes how the research is conducted to achieve online failure prediction. In the last
section in this chapter we describe how to verify the achieved results.
In SITS we have an online performance monitoring system that shows any current perfor-

mance issues for approximately 250 AIX/Linux servers running different Oracle products.
The main (start homepage) page in the PMS shows the servers that currently have most
important issues, for instance server down. The PMS is used by operation managers on
duty to monitor the health condition of approximately 250 servers with UNIX operating
system. The PMS system gathers performance metrics from all the servers every five
minute with UNIX shell commands and stores 28 different performance metrics, for each

Figure 3.1: Model of the Performance Monitoring System
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server in a MYSQL database. The performance metrics are stored for 12 months and the
historical data can be viewed as graphs in order to analyze the server behavior, e.g to find
out when a server failure occurred the first time and what can have caused the failure. This
information is used to generate a web page that shows the servers that currently have most
important maintenance issues, for instance if a server is down or percentage of filling for
a file system. The servers with maintenance issues are listed by priority, where produc-
tion servers that have failed are the most important issues. The page is regularly checked
manually and some action will be taken if the person on call (watch) finds it necessary.
SITS wishes to improve the performance monitoring system, in order to improve the
availability for all the systems that are monitored. The performance monitoring system
should if possible give warnings or list the most failure-prone servers when it is probable
that a system will fail in the near future.
The problem to address in this thesis is to identify "during run-time" whether a failure will
occur in the near future based on an assessment of the monitored current UNIX system
state.

This type of failure prediction is called "online failure prediction" and thus we have the
research question: ”Online failure prediction in UNIX systems”
In this context we assume that a failure will cause a server and/or service to stop working,
In the next sections we describe how the task is to be solved. Where the task is to make
it possible to achieve reliable online failure prediction with the help of UNIX operating
system metrics in order to identify situations that most probably will evolve into a failure.
In the next Section we argues for the choice of method and in Section 3.1 we propose a
model.

3.1 Selecting research method

To answer the research question above we must look for patterns in the database with
monitored UNIX operating system performance metrics that can give a prediction of a
possible imminent failure. The outline of failure prediction methods in the previous chap-
ter revealed four possible failure prediction methods based on the type of input data they
process. For each of the main methods we explain why or why not it is selected as a
research approach:

Failure tracking techniques assumes the system is stationary within a time window and in
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the cases of: bug-fixing, configuration changes or even varying utilization patterns
it will affect the failure process and it can result in poor estimations. Because of the
weakness in this method it has not been considered for this research.

Symptom monitoring assumes that symptoms are side-effects of errors. Thus the ap-
proaches evaluate monitoring data reflecting symptoms (side-effects) of errors. Symp-
tom monitoring is a method that analyzes the monitored data in order to detect
symptoms that indicate an upcoming failure. Monitored metrics from the Perfor-
mance Monitoring System is available for this thesis and symptoms monitoring with
classifiers is the optimal method to use on the available performance data. Thus we
select symptoms monitoring with classifiers to be used as the research approach for
this thesis.

Detected error reporting is a method that analyzes the error reports on a system to detect
errors that have not yet evolved to become a failure. This method could also be used
for this thesis, alone or in conjunction with symptom monitoring. There are several
reasons why we have choosen not to use this method. From state of the art research
we have:

• Felix Salfner and Steffen Tschirpke [11] in the paper “Error Log Processing for
Accurate Failure Prediction” from 2008, conclude that even though error logs are a
fruitful source of information both for analysis after failure and for proactive fault
handling. However, in order to get access to the essential information contained in
error logs, the error log data needs to be filtered and formatted into shape, so that
valuable pieces of information can be picked from the vast amount of data stored in
error logs. The authors state “The results unveiled that elaborate data preparation is
a very important step to achieve good prediction accuracy.” From the conclusion we
can tell that it is a very time-consuming process to achieve good results for online
failure predictions when using error logs.

• One of the major findings in Hoffmann et al.[2007][14] was that the issue of choos-
ing a good subset of input variables has a much greater influence on prediction
accuracy than the choice of modeling method. This means that the result will im-
prove when concentrating on choosing the input variables.
From the above we have that the use of error logs for online failure predicting is a
very time demanding task and that focusing on the selection of the input variables
will give better results compared to the time spent.
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Detected error reporting is a method that is proven to give good result in above
mentioned researches and it would be very interesting to evaluate it alone or in
conjunction with the "symptom monitoring”, but we choose not to use it because
of the limited time for the thesis. The error log files for the servers used in this
thesis are not configured in a standardized manner and it would not be possible to
change the logging strategy, set up filtering and selecting the valued information for
all the 250 servers within the amount of time available for this thesis The method
"detected error reporting" will for these reasons not be used for this theses.

Undetected error auditing use auditing to actively search for incorrect states (undetected
errors) regardless whether the data is used at the moment or not. One drawback
with this method is that it can cause a high load because it is online and has to log
from the most active processes. Our own experiences with security auditing has
shown that this often is a serious problem to the pay-load of a server and we do not
consider this to be a useful approach.

In the next section we investigate the research question “Online failure prediction” with
respect to the area of application

3.2 Selecting a model

Using symptom monitoring to get online failure prediction we must automate the process
for predicting how failure prone a server is at the present time. The following algorithm
gives a brief introduction of what has to be done to set up an environment for predicting
online failures:

Online failure prediction algorithm for one server:

1. Select performance data for a specific host from the PMS MYSQL database and
save to tabulator separated text file host-name_date.tab.

2. With the help of a Unix shell script prepare a data-set with two classes from the file
host-name_date.tab.

(a) One class that represents normal server behavior (drawing a baseline)
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(b) and the other class which represents the behavior a preset time period prior to
server failure (critical). This data-set is saved to a file host-name_date_data
set.tab.

3. Use a Python script with Orange modules to generate predictions of the failure
prone state of the server.

4. Save predictions in the PMS MYSQL database so the information can be used to
show a page with status for the most failure prone servers and give a warning by
e-mail or SMS.

With the online failure prediction algorithm in place several questions emerge:

• Which of the UNIX performance metrics should we use for failure prediction?

• Will virtual servers show the same result as for physical servers, given the same
operating system metrics?

• Which combinations of monitored metrics gives the best result for predicting online
failures?

• Which classifier gives the best predictions, for instance the Bayesian classifier?

• Which of the classifiers gives the best performance in terms of:

– Speed.

– Accuracy.

– Speed compared to accuracy.

• How early can the failure prone pattern be found?

• Is possible to give a binary decision or give a continuous measure that judges the
current situation as more or less failure-prone?

• Can it be done for many computers simultaneous, how many?

Each question is treated as a separate experiment and they are described separately in the
following paragraphs:
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Which of the UNIX performance metrics are suitable for failure prediction? When in-
vestigating the above question to find reasons for different behavior, we ask our
selves: Why may the OS metrics that have significant values in predicting online
failures change for different computers?

• The computers may have different hardware e.g. Motherboard, CPU etc.. Some
hardware is more failure prone than other.

• The installed software is different for most computers, except for cloned computers.
A cloned computer, is a computer installed with an exact copy of the software from
a reference computer or it can be a virtual computer which is an exact copy of
another virtual computer and the only things that differ is host name, media access
card address etc..Software is failure prone because of bugs, memory leaks etc.

• Computer load: High load on a computer may result in trashing and this can cause
services to stop responding.

• Find all the metrics that does not have any impact for online prediction. This might
be monitored metrics that have more or less constant values.

First we examine each fields in the PMS data to find all the features that reflect the change
of system performance and fluctuate according to systems change. Static fields does not
reflect the system performance and can be eliminated. When we have all the features
(performance metrics) that reflect the systems change we want to find....

Which combinations of monitored metrics gives the best result for predicting online fail-
ures? In order to find the optimal set of features we have to predict with different
combinations of the features and measure each combination. We mentioned in sec-
tion 1.1 that feature selection has proved to be very important in several researches
e.g. Hoffmann et al. [2007][14] and that a typical variable selection algorithms
is Forward Stepwise Selection (see, e.g., Hastie et al. [13] , (Chapter 3.4.1). The
method has been used by Turnbull and Alldrin [28] and Hoffmann [2] with good
result. With relatively few features to evaluate (max 27) this should not be to costly
to try out. To find a set of features that are generic for all the servers we will calcu-
late the intermediate values in each step of Forward stepwise selection process and
pick the most significant intermediate value for the next step. This test should give
a list of the metrics with their significance to prediction accuracy. Once we have
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established which metrics that can add value for the prediction of online failures we
still do not know if:

virtual servers show the same result as for physical servers, given the same operating
system metrics. First we need to define a virtual server: In this thesis hardware
virtualization or platform virtualization defines a virtual server that acts like a real
computer with an operating system. The software executed on these virtual servers
are separated from the underlying hardware resources. The term host computer
refers to the actual computer on which the virtualization takes place; the term guest
computer, refers to the virtual server. The virtual servers investigated in this thesis
are the following:

• Xen virtual servers for Red Hat Linux running on Hewlett Packard intel host servers

• AIX Power 570/795 host servers running AIX 6.0 with IBM PowerVM virtual
servers

The use of virtualization has many benefits for instance:

• Increase the hardware utilization.

• Reduces physical space and operating costs involved with powering and cooling
older, often less efficient computers.

• Decrease the capital and operating cost by sharing in number of VM’s.

• High availability and it is secure.

But we would think that a VM has a higher failure rate because of the extra layers with
software or is it developed in such a manner that it compensates for all the “extra” program
code? Counting the number of times virtual servers are down and comparing with the
number times physical servers are down on the same amount of time should indicate if
there is a difference or running separate test on physical and virtual servers to find which
type of operating system parameters gives the best prediction result and which type of
server gives the most accurate online failure predictions. Now that we know we will use
as input for prediction, we have to find out:

Which type of classifier gives the best predictions. To find the answer to this question
we simply try to predict with different classifiers e.g.:



CHAPTER 3. RESEARCH APPROACH 35

• KNN classifier

• Bayesian classifier

• Logistic Regression etc.

For each classifier evaluated we want to find as many of their properties as possible, such
as:

• Speed: We want to find if there is a big difference in the time it takes to find a
online failure prediction. Performance metrics are gathered approximately every
five minute for each server. This means we want to do the prediction in less than the
five minutes time window when the next set of performance metrics are gathered.

• Accuracy: A theoretical, optimal failure prediction aims to achieve 100% sensitiv-
ity, but how many valid failure predictions can be done if we want to be for instance
95 % sure that there is a upcoming failure. This can be measured with a ROC
curve (Receiver Operating Characteristic). The ROC curve was first developed by
electrical engineers and radar engineers during World War II for detecting enemy
objects with radar, and was known as the signal detection theory Since that time
ROC analysis has been used in many areas like medicine, radiology, and lately it
has been introduced in machine learning and data mining.[8, 9] The area closest to
the north-west of the ROC curve, shows the best performance of the tested classifier.

• Speed compared to accuracy: For use of the online failure prediction in the PMS
we need make sure that there are very few false positives. this is due to earlier basis
of experience, where the threshold systems have turned out to be useless because
of to many false positives. If we set a threshold limit for the failure prediction to be
very high, for instance it should be 99 % sure that there is an upcoming failure in
the near future, will this affect the time it takes to predict a upcoming failure?

• Computing load: How many predicting processes can a server handle? Is it pos-
sible to do online failure prediction for all the servers in PMS (approximately 250
servers)? Is it possible to do failure predictions with the data power from a single
computer for all the servers in PMS simultaneously? If not, how many computers
are needed for this task. In the worst case scenario we might have to do the failure
prediction’s on each host being monitored by PMS.
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We should now be able to predict failures, but how early can the failure prone pattern be
found? Is it possible to predict an upcoming failure minutes, hours, days or even weeks
before the failure comes into force? If time permits we will investigate if an upcoming
failure can be predicted relatively long before the actual failure. This can be done by
changing the size of the classes used for failure predicting. The script that makes the data
sets must have a variable that declares a time interval before a failure occurs. In this way
we can look for failure-prone patterns as far in advance as possible.. Here we need to take
care of challenges like:

• The time between two failures: what if two or more failures occur inside a time
period shorter than the one we have set for the failure-prone class? To avoid this we
need to check, and find the smallest time-window between to failures and set the
initial time-window to this value and then try smaller time-windows for each step.

• What is the minimum amount of failures we need to train the classifier to achieve
a acceptable sensitivity for a failure prediction. If we are able to determine this
we can set a threshold in order to not give inaccurate values if the classifier is not
properly trained.

When the failure prediction model is established, it is essential to analyze the quality to
find out if it can:

Give a binary decision or a continuous measure that judges the current situation as more
or less failure-prone. If a known error that causes a failure can be predicted, and we
know that the failure prediction accuracy is above a given threshold, then we can
give a binary decision to schedule a counter measure, for instance restarting some
software that has a memory leak or other known error that will result in a failure.
If the failure prediction accuracy is below a given threshold, then we can use the
prediction to give a continuous measure that judges the current situation as more or
less failure-prone. Storing the measure in the PMS database can be used to give a
list with the most failure prone server on top. The history can give a graph which
will be useful for testing quality of upgrades or new software.

Finally we will make sure our requirements are met and to be careful and validate the
research by comparing two different classifiers when solving the research problem. En-
abling cross-validating techniques should be done if possible. In this way we avoid fail-
ures in solving the problem under investigation.



Chapter 4

A novel approach to failure predicting

This chapter explains how the research is conducted to achieve online failure prediction.
In section 4.1 we state the requirements before we in section 4.2 introduce the model.
Section 4.3 explains how we select data to predict failures and show how the data is
preprocessed. Feature selection is introduced in section 4.4 and in section 4.5 we evaluate
the model. The last section of this chapter explains how the achieved results are verified.

4.1 Requirements

To make sure the Performance Monitoring System in SITS benefits as much as possible
from this research we strive to fulfill the following requirements:

1. Make it portable to any UNIX operating system.

2. Use open source software so that the research methods can be performed free of
cost. Software used is:

• Unix shell script

• MYSQL[27] open source database used for the PMS.

• JpGraph[15] JpGraph is an Object-Oriented Graph creating library for PHP
>= 5.1 and is released under a dual license. QPL 1.0 (Qt Free License) For
non-commercial, open-source or educational use. Also used for the PMS.

• Python[16] open source programming language

• Orange[18] Open source data mining through visual programming or Python
scripting. (import Orange library into Python)

37
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4.2 Failure prediction model

Figure 4.1 is a offline model which is used to train the online failure prediction model
depicted in figure 4.2.

Figure 4.1: Offline model for the training process

With the requirement in place we start by drawing a training model for failure pre-
diction with classifiers. The raw performance data is extracted from the database and fed
into a preprocessing utility in order to make the data into a understandable (supervised)
format for the classifier. Naive Bayes classification requires that input variables take on
discrete values. Therefore, the monitoring values are assigned to a discrete class in the
preprocessing utility. We define a “critical” class that holds a time window of monitoring
data, that starts from a period in time before a recorded failure and ends with the time
of failure. All the rest of the performance data is assigned to the class “baseline”, which
hold the data for normal operation. The preprocessed performance data is then passed on
to the classifier for evaluation.

Figure 4.2: Online model for predicting of failures from symptoms

When the classifier is trained it is ready to classify online performance data. The
prediction from the classifier is now post-processed in order to give a continoues measure
or binary decision whether it indicates a failure-prone or non failure-prone situation. The
failure measure is then stored in the database for later use, for instance show historical
graph for root cause analyze.
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4.3 Data Preprocessing

4.3.1 Selecting data to predict failures

In the first step of the process for predicting online failures we extract all the performance
data. The monitored performance metrics from the different UNIX servers are stored in a
MYSQL database. Every month a new table space is created to keep the size of the table
space easier to handle with respect to backup restore.
The extraction is done with a SQL command. Selecting data for the specified host
“xsru136in”:

SELECT * FROM ‘201009_server-data‘
WHERE node = "xsru136in"
INTO OUT-FILE ’c:/201009_host-name.tab’
FIELDS TERMINATED BY ’\t’
LINES TERMINATED BY ’\n’;

The above command will extract all the records for one host(server) for the month the
table-space yield and put the data in a tabulator separated file (date_host-name.tab).
In this thesis we will use data only from selected failure-prone production servers, because
we know that these computers have recorded failures and are not turned off or restarted
in office hours. They are only on rare occasions stopped or restarted manually after main-
tenance e.g. a software upgrade. All 16 servers used in the research are selected from a
manual registration system for “down time”, which listed them as failure-prone.

A record from the PMS database with labels for a specific host has the following for-
mat:

id sgroup uarea dato node up oslevel sload CPU cputot entcpu lcpu smem
memtot fcache swap pageing iowait network oradb current errlist tps wq
ec pc sr fr netio

A record from an intranet server has the values :

3198283 SKATTENETT REF_DB 20100901000135 host name UP 5300-09
1,18 97 4 1,00 8 80 3072 213 12 0 0 179 2 0 0 2 0 3,8 0,04 0 0 60

See the table 4.1 below for a explanation of each field in a record
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Field Description of the fields
id Primary key in the PMS database.

sgroup The servers are grouped into systems serving a purpose e.g.. Intranet, CITRIX
etc.

uarea Used in area: Development, test, reference or production.
dato date and time when the record is saved.
node Server host name.
up If the host is not UP it may be DOWN or have the status ERR.

oslevel Operating system version and level.
sload Server load in percent.
CPU Percent of CPU power used.

cputot Total available CPU’s for the host system.
entcpu Entitled processor capacity used in IBM’s Power systems [17].Commitment of

capacity that is reserved for the partition. Set upper limit of processor utilization
for capped partitions.

lcpu Logical CPUs are the number of virtual CPU’s available for the host.
smem Server memory used.

memtot Total available server memory.
fcache Memory used for file-cache.
swap Memory swapped to file.

pageing Is a memory-management scheme with fixed-size blocks called pages by which
a computer can store and retrieve data from disk for use in main memory to

allow the physical address space of a process to be noncontinuous.
iowait Time waited for in/out services.

network Average turn - return time when running the shell PING command.
oradb How many Oracle databases are running on this host.

current Not relevant.
errlist Hardware failures.

tps Indicates the number of transfers per second that were issued to the physical
disk.

The second report generated by the iostat command is the disk/tape utilization
report. The disk report provides statistics on a per-physical-disk basis. A

transfer is an I/O request to the physical disk/tape.
wq Waitqueue: Is a vmstat sub command (column b:). The average number of

threads that were waiting for paging to complete.
Average number of kernel threads placed in the (VMM) wait queue (awaiting
resource, awaiting input/output) over the sampling interval. CPU IO wait %.

ec The percentage of entitled CPU capacity consumed.
A vmstat sub command specific for AIX. The vmstat command displays virtual
memory statistics. This metric will only be displayed on a virtual environment

if the partition is running with shared processor.
pc Sub command from vmstat specific for AIX. The number of physical processors

consumed.A vmstat sub command specific for AIX. The vmstat command
displays virtual memory statistics.

sr Pages scanned by page-replacement algorithm.
fr Pages freed (page replacement).

netio Network in/out traffic (mb/s).

Table 4.1: Available system metrics



CHAPTER 4. A NOVEL APPROACH TO FAILURE PREDICTING 41

In the next subsection we show how the data containing the performance metrics is pre-
pared for training.

4.3.2 Preparing training data

Once the performance data for one host is exported from the database the next step is to
format the records so they only have fields of interest for pattern recognition. This means
extracting fields that can influence the learners and leave out fields that are static like id,
Sgroup, Uarea, host-name etc.. We start with all the fields that possibly can play a role in
determining a failure prone state:

• sload CPU lcpu smem memtot fcach swap pageing iowaait network oradb current
errlist tps wq ec pc srfr netio

Figure 4.3: Example data from the PMS database

In order to recognize a pattern for a failure prone state in this data we need to look at a
time period before a recorded failure. A failure can be found in the records which have the
value of the field “UP”different from “UP”, for instance the value may be “SSH/down”
or have the status “ERR”. Since we do not now the size of this time window where the
failure prone pattern is most visible, we initially try with a 30 minutes time period before
a failure.

Each record in the data is taken approximately every five minutes, so 30 minutes is six
records from the PMS database. The file now holds the performance metrics of interest
and we can now prepare the data for pattern recognition. To automate this operation we
use a UNIX shell script. The algorithm shown beneath uses 30 minutes as an example for
the time window before the failure occur.
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An algorithm for preparing input data:

• Remove the fields that is of no interest from all records

• Reverse the order of the records so the oldest record comes first

• Look for records that have a value in column 2 that is different from "UP" and
add the next 6 records (approximately a 30 minutes time period) to the file criti-
cal_records.tab and mark them with the class name critical

• Remove the two first fields from all records (Time stamp and status ) which are no
longer needed.

• Put all the records except the critical_records in the file baseline.tab and mark them
with the class name baseline

• Open a new host name_prepared_data.tab and add column labels.

• Add critical_records.tab and then baseline.tab to the file host name_prepared_data.tab.

• Convert host name_prepared_data.tab from UNIX to DOS text format

This shell script shown as an algorithm, also has functionality to make a vector repre-
sentation of the time window before the failure. The vectorization of the prepared data
gives better results and performance for the pattern recognition in most cases. In the next
subsection we explain features and how we select them.

4.4 Feature selection

Feature selection is the technique of selecting a subset of relevant features for building
robust learning models, by removing the most irrelevant and redundant features from the
data.
In order to find which operating system metrics combination that gives the best results
we will try with different combinations of the metrics in separate trials. Each trial will
eliminate one or more of the 16 metrics(features) that we start off with, until we are left
only with the UNIX performance metrics affecting the performance of the learning model
we use.
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Feature definition: A sample’s features are its individual measurable properties and
characteristics [25]

With 16 features we have 15+14+...3+2+1=120 possible combinations that we have to
try if we are to find the best combination for the performance data feature set. The di-
mensionality of the PMS data does not pose a challenge to the learning tasks due to the
curse of dimensionality. But still with the existence of many irrelevant features, the learn-
ing model can over fit and become less comprehensible. To avoid this we use feature
selection to identify relevant features for dimensionality reduction. Feature selection al-
gorithms designed with different strategies mainly fall into three categories: wrapper,
filter and embedded models.

Filters: Filter models rely on the general characteristics of data and evaluates features
without involving any classifier. Filters use a search algorithm to search through
the space of possible features and evaluates with a filter.

Wrappers: These models require a predetermined classifier and uses its performance as
evaluation criteria to select features. Wrappers use a search algorithm to search
through the space of possible features and evaluate each subset by running a model
on the subset. Wrappers are computationally expensive and can over fit the model.

Embedded models: Embedded techniques are embedded in and specific to a model.
Thus the algorithms with embedded model, incorporate variable selection as a part
of the training process, and feature relevance is then obtained analytically from the
objective of the learning model.

The space of possible features are relatively low in this case and will not be to computa-
tionally expensive. We therefore select the wrapper search algorithm “Forward stepwise
selection”: This is a data-driven model building approach. In this approach, we add fea-
tures to the model one at a time. At each step, each feature that is not already in the model
is tested for inclusion in the model. The most significant of these features is added to
the model. Thus we begin with a model including the feature that is most significant in
the initial analysis, and continue adding features until none of the remaining features are
"significant" when added to the model.
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4.5 Evaluating the model

Which the data prepared, and a plan for how to find the optimal features, we begin looking
for patterns with ORANGE in order to answer the questions in chapter 3.

4.5.1 ORANGE model

ORANGE is open source software for data visualization and analysis, which is integrated
with a scripting language called Python. The data mining can be done through visual
programming or Python scripting to automate the procedure. Figure 4.2 below shows the
model we have used with the classifiers that perform best.

Figure 4.4: ORANGE Canvas with failure prediction model

The widget schema shown reads a PMS data set (File widget) and feeds the data to
the Select attribute widget which is used to select all or any set of features. The idea is
that some machine learning methods may perform better if they learn only from a selected
subset of "best" features.The selected set of features is then fed to a Test Learner widget to
evaluate the classifiers Naive Bayes and Logistic Regression on the PMS input data. The
Test learner widget shows a table with different performance measures of the classifiers,
such as classification accuracy and area under curve (ROC) and it outputs a signal with
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data which is used by the ROC Analysis and Confusion matrix widgets to analyze the
performance of the classifiers.

4.5.2 UNIX performance metrics suitable for failure prediction

The database with the PMS data has 29 fields in each record. Evaluating the lists of
possible features in table 4.1 with respect to the definition that they are the “samples
individual measurable properties and characteristics”, we removed 15 possible features.

Id: The record primary id is obviously not a feature

SGROUP: The serving purpose of the server e.g.. Intranet, mail, etc. will of course
affect the rate of failure, but since we are analyzing single servers and not the group
this is not used as a feature.

uarea We only use servers from the production area and therefore do not need this as a
feature.

dato The date field is used when preparing the data, but not as a feature.

node Is just the name of the server.

up The up field is used when preparing the data, but not as a feature.

oslevel Operating system version and level is used when preparing the data, but not as a
feature.

cputot Total available CPU’s for the host system is a static value and not used as a feature.

entcpu Entitled CPU’s for the server is a static value and not used as a feature.

lcpu Logical CPUs for the server is a static value and not used as a feature.

memtot Total available memory for the server is a static value and not used as a feature.

oradb The number of Oracle databases that run on the server is a static value and not
used as a feature.

current The current field is used by some part of the PMS script and is not a feature.
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The suitable metrics for online failure prediction from the PMS data are all the fields
that reflect the change of system performance and fluctuate according to systems change.
There are 16 features that support this:

• sload CPU smem fcache swap pageing iowait network errlist tps wq ec pc sr fr netio

4.5.3 Optimal combination of features for predicting failures

Using the model in Figure 4.2 we do forward selection and start classifying. For each of
the 16 servers we have classified the performance data using 10 fold cross validation for
every feature in separate runs. Classifying is done with a standard formatted file with one
set of features and with a vectorized data set, where a vector is 6 records, the size of the
time window before a recorded failure. Pre-analyzing the classifiers we found that the
best evaluation measure is the Area Under Curve (from ROC).

First step of forward selection is done by classifying with each feature in the data set in
separate runs. Before we calculate the intermediate values we assessed alternative
methods:

1. Calculate the intermediate values for all features without regard to what values they
have. This gives the table below, which shows the intermediate values calculated
from 16 servers with PMS data up to 13 month. The four columns to the left is a
standard data set, and the four columns to the right are the vectorized data set.
The classifiers are LR = Logistic Regression and NB = Naive Bayes.
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Standard Vectorized
LR NB LR NB

Feature AUC Feature AUC Feature AUC Feature AUC
errlist 0.5036 iowait 0.5346 pageing 0.5031 errlist 0.5018

pageing 0.5100 network 0.5348 errlist 0.5035 pageing 0.5031
iowait 0.5204 pageing 0.5361 fr 0.5215 iowait 0.5267
swap 0.5213 errlist 0.5410 swap 0.5220 wq 0.5267

network 0.5250 sr 0.5418 sr 0.5229 sr 0.5278
fr 0.5304 fr 0.5443 network 0.5231 swap 0.5295
sr 0.5318 swap 0.5480 iowait 0.5250 fr 0.5307

wq 0.5369 wq 0.5525 wq 0.5361 network 0.5453
sload 0.5442 CPU 0.5578 tps 0.5362 tps 0.5453
tps 0.5483 sload 0.5623 sload 0.5492 pc 0.5536

CPU 0.5612 pc 0.5662 ec 0.5549 CPU 0.5606
pc 0.5644 ec 0.5725 CPU 0.5569 sload 0.5637
ec 0.5666 tps 0.5744 pc 0.5593 ec 0.5730

netio 0.5752 netio 0.6116 netio 0.5767 netio 0.6011
fcache 0.6244 fcache 0.6273 fcach 0.6129 fcach 0.6077
smem 0.6370 smem 0.6381 smem 0.6237 smem 0.6077

Table 4.2: Results from first step of forward selection

As we can see from table 4.2 the standard data set got better AUC scores than the
vectorized data set and the most significant feature is smem (used server memory)
with AUC score equal to 0.6381. We also notice that the classifier that performs
best is Naive Bayes.

2. Only use the AUC values that are larger than 0.5 for each feature, because values
equal or below does not improve the classifier.
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Standard servers Vectorized
LR NB LR NB

Features AUC Features AUC Features AUC Features AUC
network 0.5819 swap 0.6246 network 0.6083 swap 0.6042

swap 0.5855 errlist 0.6273 CPU 0.6139 errlist 0.6076
errlist 0.5883 pageing 0.6276 tps 0.6179 fr 0.6109

pageing 0.5906 sr 0.6308 ec 0.6199 sr 0.6111
fcach 0.5937 fr 0.6310 pc 0.6200 network 0.6126
iowait 0.5962 network 0.6323 errlist 0.6268 wq 0.6160

tps 0.5977 iowait 0.6329 sload 0.6277 iowait 0.6188
netio 0.6007 CPU 0.6332 wq 0.6292 tps 0.6213
sload 0.6007 wq 0.6378 iowait 0.6315 pageing 0.6220

fr 0.6008 tps 0.6383 swap 0.6337 fcache 0.6246
sr 0.6008 pc 0.6435 pageing 0.6344 CPU 0.6315
ec 0.6067 fcach 0.6447 sr 0.6352 pc 0.6325
pc 0.6077 sload 0.6454 netio 0.6352 sload 0.6342

CPU 0.6116 ec 0.6557 fr 0.6360 ec 0.6429
wq 0.6118 netio 0.6720 fcache 0.6374 netio 0.6534

Table 4.3: Results from first step of forward selection, second alternative

3. Only use the AUC values that are equal or larger than the smem feature for each
server in the past step, because we want to improve the classifier for each step in
the process.
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Standard Vectorized
LR NB LR NB

Features AUC Features AUC Features AUC Features AUC
network 0.5819 swap 0.6246 errlist 0.5591 sr 0.5632

swap 0.5855 errlist 0.6273 pageing 0.5718 network 0.5671
errlist 0.5883 pageing 0.6276 network 0.6074 fr 0.5676

pageing 0.5906 sr 0.6308 CPU 0.6079 swap 0.5708
fcach 0.5937 fr 0.6310 ec 0.6188 errlist 0.5718
iowait 0.5962 network 0.6323 iowaait 0.6315 pageing 0.5802

tps 0.5977 iowait 0.6329 tps 0.6322 wq 0.5904
netio 0.6007 CPU 0.6332 wq 0.639 iowaait 0.6028
sload 0.6007 wq 0.6378 sload 0.6416 pc 0.604

fr 0.6008 tps 0.6383 sr 0.6425 tps 0.6121
sr 0.6008 pc 0.6435 pc 0.644 ec 0.6236
ec 0.6067 fcach 0.6447 netio 0.6474 CPU 0.6239
pc 0.6077 sload 0.6454 fcach 0.6537 sload 0.6376

CPU 0.6116 ec 0.6557 fr 0.6633 fcach 0.6463
wq 0.6118 netio 0.6720 swap 0.6747 netio 0.6582

Table 4.4: Results from first step of forward selection , third alternative

In table 4.3 the standard data set has the highest AUC scores, and the most signifi-
cant feature is netio (network in/out traffic) with AUC score equal to 0.6534 when
classified with Naive Bayes.

Looking at results from the three alternatives we find that netio has the largest AUC score
in all cases. Evaluating the classifiers we also notice that some of the servers have feature
values very different from the intermediate values, which indicates that the classifiers
will gain from a feature selection process for each server. But if we are to find the most
generic set of features for failure-prone UNIX servers the best alternative is to choose
intermediate values for all features regardless of their value.

Second step in forward selection is done by classifying with the most significant feature
smem from the previous step as a fixed feature, combined with all the features in
the data set in separate runs.
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Standard servers Vectorized
LR NB LR NB

Features AUC Features AUC Features AUC Features AUC
network 0.5819 swap 0.6246 errlist 0.5689 swap 0.6042

swap 0.5855 errlist 0.6273 pageing 0.5763 network 0.6043
errlist 0.5883 pageing 0.6276 fr 0.5812 errlist 0.6076

pageing 0.5906 sr 0.6308 sr 0.5815 pageing 0.6091
fcach 0.5937 fr 0.6310 swap 0.5822 fr 0.6109
iowait 0.5962 network 0.6323 network 0.5851 sr 0.6111

tps 0.5977 iowait 0.6329 iowaait 0.5853 CPU 0.6127
netio 0.6007 CPU 0.6332 fcache 0.5861 sload 0.6153
sload 0.6007 wq 0.6378 netio 0.5868 wq 0.6160

fr 0.6008 tps 0.6383 tps 0.5913 fcache 0.6164
sr 0.6008 pc 0.6435 ec 0.5969 pc 0.6174
ec 0.6067 fcach 0.6447 wq 0.5990 iowaait 0.6188
pc 0.6077 sload 0.6454 sload 0.5992 tps 0.6213

CPU 0.6116 ec 0.6557 pc 0.6000 ec 0.6429
wq 0.6118 netio 0.6720 CPU 0.6016 netio 0.6534

Table 4.5: Results from second step of forward selection, first alternative

Third step is evaluated with two fixed features, The two most significant features from
earlier steps (smem and netio) and all the features in the data set in separate runs.
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Standard Vectorized
LR NB LR NB

Features AUC Features AUC Features AUC Features AUC
network 0.5777 CPU 0.6408 errlist 0.585 CPU 0.6389
pageing 0.5843 swap 0.6446 pageing 0.5891 pc 0.6431

swap 0.5877 pc 0.6507 fr 0.596 swap 0.6448
iowaait 0.5894 network 0.6538 sr 0.5967 network 0.6512

tps 0.5936 pageing 0.6538 network 0.5984 errlist 0.6525
sr 0.5936 sr 0.6542 iowaait 0.5993 pageing 0.6535
fr 0.5951 fr 0.6543 swap 0.6003 fr 0.6536
ec 0.5962 iowaait 0.6565 fcach 0.6042 sr 0.6537

sload 0.5966 wq 0.6579 tps 0.6048 sload 0.6552
fcach 0.5976 tps 0.6598 CPU 0.6057 wq 0.6565
CPU 0.5992 sload 0.6601 ec 0.6082 iowaait 0.6581

pc 0.6021 ec 0.6639 wq 0.6092 tps 0.6587
errlist 0.6031 fcach 0.6693 pc 0.6093 fcach 0.6592

wq 0.6037 errlist 0.6746 sload 0.6131 ec 0.6679

Table 4.6: Results from third step of forward selection

In this step the errlist feature scores highest in the standard data set and quite low
in the vectorized data set. This is probably due to the naive nature of the data set
which often has many zeros (errlist is zero if there are no hardware errors reported
on the server).

Fourth step is evaluated with three fixed features, The three most significant features
from earlier steps (smem, netio and errlist) and all the features in the data set in
separate runs. Table A.1 can be found in the appendix. errlist is zero for some of
the servers and thus do not add any value for the classifiers. The most significant
feature is here fcach in the standard data set.

Fifth step is evaluated with four fixed features, The four most significant features from
earlier steps (smem, netio, errlist and fcach) and all the features in the data set in
separate runs.
Table A.2 can be found in the appendix. The most significant feature is here fcach,
again in the standard data set.

Sixth step is evaluated with five fixed features, The five most significant features from
earlier steps (smem, netio, errlist, fcach and ec) and all the features in the data set
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in separate runs.
Table A.3 can be found in the appendix. This time tps in the standard data set scores
barely higher than iowait.

Seventh step is evaluated with six fixed features. Here the evaluation value AUC for
the features tps and iowait are very close, so we check both features in this step
of forward selection. The values evaluated with tps can be found in table A.4 in
the appendix and for iowait in table A.5. The observed result does not give any
suprises, and we conclude that iowait is the most significant feature in the seventh
step of forward selection.

Eighth step results in table A.6 in the appendix. As can be seen from the graphs in figure
4.3 and 4.4 the curves now levels out, indicating that we have found the set of most
significant features for failure prediction. Adding more features for classifying will
not give any substantial improvement of the prediction but it will just take a longer
time to predict.

The graphs below shows evolution for the most significant features, measured as area un-
der curve (ROC). Calculated as intermediate values for all sixteen servers. y-axis is AUC
and x-axis is number of forward selection steps.
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Figure 4.5: Forward feature selection with the Logistic Regression classifier

We observe that the curve in step two for Logistic Regression doesn’t ascend at the
same rate as for Naive Bayes. This is owing to the monotonous content in the feature er-
rlist. The majority of the servers does not report any hardware errors, thus the value of the
feature errlist often is zero. This makes it difficult for the Logistic Regression classifier
to predict, and we often experienced program interruption probably due to one of the beta
coefficients escaping towards infinity or because one of the values did not converge. We
can conclude that Naive Bayes gives the best classification accuracy and needs two less
steps in the search algorithm to find the optimal set of features.
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Figure 4.6: Forward feature selection with the Naive Bayes classifier

4.5.4 Differences between virtual servers and physical servers

Due to the fact that there are no failure-prone physical production servers in the PMS data
we are not able detect any differences. The failure-prone production servers used in this
thesis are all virtual servers. But we do know that the computer hardware used in the
production environments are built to enable best possible up time. This is often done with
a UPS, dual power supply, RAID solutions and monitoring equipment, all which is run in
a temperature controlled dedicated server room. Optimized hardware in combination with
the UNIX operating system which is known for stability, we can then assume that one of
the reasons for using virtual servers is to segregate software solutions that are failure-
prone due to software bugs. Instead of having a failure on a server with many services the
services can run on separate virtual machines.
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4.5.5 Classifier performance

The classification accuracy is in general very high, about 98 percent. Where classification
accuracy is the percentage of correct predictions made by the model when compared with
the actual classifications in the test data. However it is impossible to give a good measure
of the classification accuracy for failure prediction because we do not know how many
failures that are recorded in the performance monitoring data set, compared to manual
shutdowns.
Examining the tables with the intermediate results from the experiments we observe that
using the standard data set as input for the Naive Bayes classifier gives the best accuracy
with the AUC equal to 0.70, which is less than one percent better than with the vectorized
data set.
For the Logistic Regression classifier the accuracy is only about five percent lower, but it
has another drawback, the fact that features with monotonous content caused the classifier
to fail, probably due to one of the beta coefficients escaping towards infinity or since the
values didn’t converge.
The Forward stepwise feature selection improved accuracy from 0.67 to 0.70 measured
with AUC for the standard data set and classifying with Naive Bayes. As can be seen
from the table 4.2 and A.6, the search algorithm improved the accuracy with approxi-
mately four percent.

In order to evaluate the performance speed we added a timer function in a python script
to calculate the time it takes to classify the input data. The times are calculated when
classifying a year of performance data using Naive Bayes. The time it takes to classify a:

• standard data set is approximately 36 seconds and

• vectorized data set is approximately 25 seconds

We get nearly 30 percent reduction in time used to classify, when the data set is vectorized.
Running the same test after applying feature selection we get the time it takes to classify
a:

• standard data set is now approximately 12 seconds and

• vectorized data set is now approximately 5 seconds
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We observe that the classifier uses one fifth of the time when applying feature selection
and vectorizing the input data.

If we compare the advantage of classifying speed to the accuracy we observe that vec-
torizing of the input data set gives under one percent less accuracy but it increases the
classifying speed with an order of five (with the feature search algorithm). With this in-
formation we find that, thus applying vectorized input and the feature search algorithm
gives a great advantage when it comes to the computing load, and has little significance
for accuracy.

Logistic Regression Naive Bayes
Host names CA AUC Host names CA AUC

h00u001 0.9806 0.8539 h00u001 0.9806 0.8374
l00u001 0.9796 0.8541 l00u001 0.9796 0.8470
r00u000 0.9770 0.8602 r00u000 0.9769 0.8675
t00u001 0.9811 0.6094 t00u001 0.9811 0.5966
u00u001 0.9817 0.6200 u00u001 0.9816 0.6200
xspu139 0.9812 0.5611 xspu139 0.9812 0.5702

xspu141fo 0.9801 0.6487 xspu141fo 0.9803 0.7801
xspu151 0.9821 0.6925 xspu151 0.9817 0.7109

xspu157fo 0.9811 0.5935 xspu157fo 0.9809 0.5685
xspu166mv 0.9806 0.6467 xspu166mv 0.9807 0.6783
xspu167mv 0.9798 0.6102 xspu167mv 0.9802 0.6809
xspu168mv 0.9813 0.5703 xspu168mv 0.9813 0.5626
xspu169mv 0.9809 0.7673 xspu169mv 0.9789 0.6833
xspu183ar 0.9814 0.6472 xspu183ar 0.9814 0.5365
z00u000 0.9815 0.5854 z00u000 0.9815 0.5846
z00u038 0.9811 0.5883 z00u038 0.9811 0.6133

Intermediate value 0.9807 0.6693 Intermediate value 0.9806 0.6711

Table 4.7: Initial intermediate evaluation measures for the classifiers Naive Bayes and
Logistic Regression calculated for all servers with a standard data set

According to the classification accuracy that is above 98% our novel prediction solu-
tion is well fitted to the problem but in our case, we have the outside effect of features that
is influencing the output class we predict. Thus, we get to high classification accuracy.
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4.5.6 Choosing a classifier

Initially we tested several classifiers. KNN gives acceptable classification accuracy but is
far too slow. The two classifiers that stand out are Naive Bayes and Logistic Regression
and to run in a production environment we will recommend the Naive Bayes classifier,
because it is a little faster, and more accurate than the Logistic Regression classifier and
because the Logistic Regression classifier has flaws that made it malfunction.



Chapter 5

Discussion

In the following section we discuss the obtained results for, feature selection, perfor-
mance, precision and verify them in the last section of this chapter.

Analyzing our novel approach to predicting failures for UNIX system has shown that
it is possible to find failure-prone symptoms, but how far are we from implementing the
solution in a production environment? Through our review of related research we discov-
ered that the most recent work in the area of failure prediction has proved that selecting
the optimal set of features can give better predicting results than the choice of predicting
method. Forward stepwise selection of the features proved that this is true to some extent,
but in our case it gives more of a contribution to the classification speed. When preparing
the performance data for the classifiers we observed that the UNIX shell script with the
AWK utility for preprocessing the input data is impressively fast and flexible. The prepa-
ration of the data also revealed that the quality of the data is important to achieve good
predictions.

5.1 Feature selection

In order to train the classifier for all the servers we made a generic set of features that can
be used to classify performance data from any UNIX server. We used Forward stepwise
feature selection to help remove the most irrelevant and redundant features from the PMS
data, and to improve the learning models by:

• Alleviating the effect of the curse of dimensionality. In our case this is not a great
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challenge because of the relatively low number of features. If more metrics are
added to the PMS system it gives more of an advantage.

• Enhancing generalization capability, which is important with respect to making a
generic set of features for all UNIX servers.

• Speeding up the learning process in order to achieve online prediction.

• Improving model interoperability.

• Helping us to acquire a better understanding of the performance data by telling
which are the more important features and how they are related to each other. For
instance the most significant feature is used server memory, which indicate that the
server may have memory leak.

Even though we made a generic set of features, we discovered that servers used in the
same application area (uarea) have quite similar evaluation measures when the perfor-
mance data is classified. This points out that some application areas are more failure-
prone than others and as a verification of our solution it indicates that the prediction works.

5.2 Performance

Preparing the data set we found that the AWK command used in the preprocessing has
very good performance and powerful programming flexibility. The AWK utility performs
with an impressive speed and prepares one year of performance data for a server in a few
seconds.

In the first trials of the different classifiers we found that KNN was very slow for this
task and was therefore ruled out. Testing the KNN classifier with one year of perfor-
mance data for one server took approximately two hours, while the Naive Bayes classifier
can do the same job in seconds. Evaluation of the classifiers showed that the Logistic
Regression classifier performed surprisingly fast and use approximately the same time as
Naive Bayes. To run in a production environment we will recommend the Naive Bayes
classifier, because it is a little faster, and more accurate than the Logistic Regression clas-
sifier and because the Logistic Regression classifier has flaws that made it malfunction.



CHAPTER 5. DISCUSSION 60

Applying feature selection and vectorizing the input data, we improved the performance
for the Naive Bayes classifier by an order of five.

5.3 Accuracy

Examining the tables with the intermediate results from the experiments we observe that
using the standard data set as input for the Naive Bayes classifier gives the best accu-
racy with the AUC equal to 0.70, which is approximately one percent better than with
the vectorized data set. For the Logistic Regression classifier the accuracy is only about
five percent lower. Features with monotonous content caused the Logistic Regression
classifier to fail, probably due to one of the beta coefficients escaping towards infinity or
because the value didn’t converge.

The most important thing to improve the accuracy of the failure prediction is to improve
the quality of the input data. This is because we know that some of the recorded failures
are in fact not failures. Some recorded “failures” are just reboots after maintenance. To
avoid recording manual shutdowns as failure, the PMS system needs enhanced function-
ality that can distinguish this in the database. There is also the possibility for a sudden
power cut which can not be predicted. In such cases it should be sufficient with a manual
function in the PMS to correct the error, because this happens very seldom.

The Forward stepwise feature selection improved accuracy from 0.67 to 0.70 measured
with AUC for the standard data set and classifying with Naive Bayes. An important aspect
with the Forward stepwise feature selection that arises is the fact that we do not know if
the set of optimal features change if we change the time window for failure prediction.
It is not very likely that this will happen but we do not know for sure. Also the dis-
advantages of forward stepwise selection can play a role in prediction accuracy because
each addition of a new variable may render one or more of the already included variables
non-significant.
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5.4 Requirements

The requirements are met without any big challenges, however we only tested the Orange
canvas and Python modules in Windows operating systems, but we expect this software
to run without flaws in Linux.

5.5 Verifying the results

Using Naive Bayesian classifier and Logistic Regression classifiers we have shown that
failure-prone patterns can be found. Logistic Regression to some extent shows the same
results as Naive Bayes, but has inferior values. The two algorithms are based on com-
pletely different techniques:

• Naive Bayes with strong (naive) independence assumptions that assumes the pres-
ence (or absence) of a particular feature of a class is unrelated to the presence (or
absence) of any other feature

• and Logistic Regression which is a generalized linear model used for binomial re-
gression that predicts the probability of occurrence of an event by fitting data to a
logistic curve.

In addition we have tested the algorithms with ten fold cross-validation that splits the
data into the ten folds by holding out the examples from one fold at a time; the model is
induced from the other folds and the examples from the held out fold are classified.
Thus this indicate that the results are consistent and valid.



Chapter 6

Conclusion and further work

In this thesis we have investigated failure prediction methods for use in online systems,
and in particular we have studied the domain of symptom monitoring and supervised pat-
tern recognition with the Naive Bayes and Logistic Regression classifiers. Our focus has
been to find a solution that can enhance an existing performance monitoring system with
the capability of predicting upcoming failures.

In this thesis we propose a novel approach to online failure prediction for software fail-
ures, the solution has been formally presented, analyzed, and empirically tested.

We prepare the performance data set as binary classes for input to the classifiers. The
preparation is accomplished with help of the AWK utility in a UNIX script. The solution
proved to be surprisingly fast and well suited for this task.

The input data is optimized with the search algorithm Forward stepwise selection to help
remove the most irrelevant and redundant features. Thus improving the learning model
and finding a generic set of features for UNIX servers. Furthermore the model is eval-
uated with the input data in two formats, standard and vectorized. The vectorized input
data gives approximately, one percent decreased accuracy, but on the other hand it reduces
the time it takes to classify by an order of magnitude.

Several classifiers have been tested on the data set and found useless. The Naive Bayes
and Logistic Regression classifiers are selected for the model. Both classifiers are eval-
uated and compared with each other. The Naïve Bayes classifier has approximately five

62



CHAPTER 6. CONCLUSION AND FURTHER WORK 63

percent better accuracy and needs two less steps in the search algorithm to find the optimal
set of features.

6.1 Conclusion

We have observed that our classifiers are able to classify the failure symptoms with high
overall accuracy. However this is based on the fact that there is some uncertainty due to
the quality of the input data, because some of the failure symptoms are in fact not failures
but actually reboots after maintenance.

Furthermore our experiments demonstrate that open source software can be used to make
an enhanced Performance Monitoring system with online failure prediction. We believe
that our research gives new insight to the field of online failure prediction and is a good
foundation for further research.

6.2 Further work

The method presented in this thesis has demonstrated its ability to classify symptom mon-
itored data with very high accuracy, however there is a need for further improvements.

An important task in order to achieve better failure prediction is to improve the qual-
ity of the input data. In order to rule out records that aren’t failures, but a reboot after
for instance maintenance, the Performance monitoring system must be notified that this
is not a failure. Another possibility is to implement a manual solution for correcting the
stored performance data.

We observed that the classifiers evaluation measures for servers running the same type
of applications are quite similar. This indicates that the feature selection optimalization
will improve if the procedure is automated for groups of servers running the same type of
applications.
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Appendix A

Appendix

Standard Vectorized
LR NB LR NB

Features AUC Features AUC Features AUC Features AUC
network 0.5967 CPU 0.6587 pageing 0.5922 CPU 0.6481
pageing 0.6022 swap 0.6628 swap 0.5937 pc 0.6524

swap 0.6062 pageing 0.6652 network 0.5963 swap 0.6534
iowaait 0.6088 pc 0.6684 fcach 0.6019 network 0.6597

sr 0.612 network 0.6722 sr 0.6035 pageing 0.6616
tps 0.6125 sr 0.6724 CPU 0.6036 sr 0.6623

fcach 0.6129 fr 0.6726 fr 0.6043 fr 0.6624
fr 0.6133 iowait 0.6751 iowaait 0.6052 sload 0.6643
ec 0.6151 wq 0.6768 ec 0.6079 wq 0.6651

sload 0.6158 tps 0.6782 wq 0.6098 iowaait 0.6662
CPU 0.618 sload 0.6782 tps 0.6112 tps 0.6676

pc 0.6207 ec 0.6816 sload 0.6119 fcach 0.668
wq 0.6227 fcach 0.6849 pc 0.6128 ec 0.6757

Table A.1: Results from fourth step of forward selection
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Standard Vectorized
LR NB LR NB

Features AUC Features AUC Features AUC Features AUC
pageing 0.6160 CPU 0.6685 pageing 0.6051 CPU 0.6577

swap 0.6195 swap 0.6726 swap 0.6075 swap 0.6607
network 0.6200 pageing 0.6760 network 0.6128 pc 0.6632

sr 0.6216 pc 0.6794 sr 0.6128 network 0.6665
fr 0.6234 network 0.6818 fr 0.614 pageing 0.6681

iowait 0.6246 sr 0.6821 iowaait 0.617 sr 0.6686
tps 0.6315 fr 0.6821 CPU 0.6217 fr 0.6687

sload 0.6371 iowait 0.6850 tps 0.6272 wq 0.6709
CPU 0.6372 wq 0.6855 sload 0.6275 iowaait 0.6731

ec 0.6410 tps 0.6865 ec 0.6308 sload 0.6733
wq 0.6418 sload 0.6904 wq 0.6314 tps 0.6735
pc 0.6443 ec 0.6920 pc 0.6331 ec 0.6845

Table A.2: Results from fifth step of forward selection

Standard Vectorized
LR NB LR NB

Features AUC Features AUC Features AUC Features AUC
pageing 0.6232 CPU 0.6701 swap 0.6329 CPU 0.6566

swap 0.6394 pageing 0.6785 sload 0.6334 pc 0.6644
iowait 0.6404 pc 0.6816 network 0.6334 swap 0.674

pc 0.6408 swap 0.6833 pageing 0.6341 network 0.683
sload 0.6413 sr 0.6953 pc 0.6354 sload 0.6837

network 0.6414 fr 0.6953 tps 0.6375 pageing 0.6846
tps 0.6454 network 0.6956 CPU 0.6375 fr 0.6849
sr 0.6467 sload 0.696 fr 0.6382 sr 0.685
fr 0.6479 wq 0.6964 sr 0.6385 wq 0.6867

CPU 0.6504 iowait 0.6971 iowaait 0.6448 tps 0.6884
wq 0.6545 tps 0.6982 wq 0.6464 iowaait 0.6887

Table A.3: Results from sixth step of forward selection
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Standard Vectorized
LR NB LR NB

Features AUC Features AUC Features AUC Features AUC
pageing 0.6239 CPU 0.6734 swap 0.6365 CPU 0.6607

swap 0.6437 pageing 0.6811 pageing 0.6387 pc 0.6691
iowait 0.6457 pc 0.6848 network 0.6388 swap 0.6777

pc 0.6458 swap 0.6864 sload 0.6398 network 0.687
network 0.6474 wq 0.6981 pc 0.6401 sload 0.6877

sload 0.648 fr 0.6982 sr 0.6434 fr 0.6884
sr 0.6507 sr 0.6982 CPU 0.6443 pageing 0.6885
fr 0.6512 network 0.6987 fr 0.645 sr 0.6885

CPU 0.653 sload 0.699 iowaait 0.6458 wq 0.6892
wq 0.655 iowait 0.7003 wq 0.6485 iowaait 0.6907

Table A.4: Results from seventh step of forward selection. Case 1

Standard Vectorized
LR NB LR NB

Features AUC Features AUC Features AUC Features AUC
pageing 0.6273 CPU 0.6724 swap 0.6451 CPU 0.6606

swap 0.6464 pageing 0.6809 network 0.6455 pc 0.6684
tps 0.6468 pc 0.684 tps 0.6463 swap 0.6779
pc 0.6482 swap 0.6856 pageing 0.6467 sload 0.6844

network 0.6501 wq 0.6973 pc 0.6468 network 0.6872
sload 0.6503 fr 0.6975 sload 0.647 wq 0.688

sr 0.6518 sr 0.6975 sr 0.6505 pageing 0.6882
fr 0.6527 network 0.6979 wq 0.6518 sr 0.6884

wq 0.6532 sload 0.6982 CPU 0.652 fr 0.6885
CPU 0.6548 tps 0.6996 fr 0.6521 tps 0.6901

Table A.5: Results from seventh step of forward selection. Case 2
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Standard Vectorized
LR NB LR NB

Features AUC Features AUC Features AUC Features AUC
pageing 0.6273 CPU 0.6749 swap 0.6445 CPU 0.6633

swap 0.6469 pageing 0.6828 pageing 0.6462 pc 0.671
pc 0.6492 pc 0.6862 network 0.6465 swap 0.6804

network 0.6506 swap 0.6878 pc 0.6468 network 0.6894
sload 0.651 wq 0.6986 sload 0.6482 sload 0.6898

sr 0.6522 sr 0.6996 sr 0.6504 wq 0.6899
fr 0.6533 fr 0.6996 wq 0.6514 fr 0.6907

wq 0.6537 network 0.7001 CPU 0.6526 pageing 0.6908
CPU 0.6557 sload 0.7002 fr 0.6526 sr 0.6908

Table A.6: Results from eighth step of forward selection
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