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Abstract

With the increasing number of computer systems connected to the Internet,
security becomes a critical issue. To combat this problem, several attack detec-
tion methods have emerged in the past years, such as the rule based Intrusion
Detection System (IDS) Snort - or anomaly based alternatives that are able
to detect novel attacks without any prior knowledge about them.

Most current anomaly based IDS require labeled attacks or extensively filtered
training data, such that certain attack types, which generate large amounts of
noise in terms of false positives, are effectively removed.

This thesis describes a novel anomaly based scheme for detecting attacks, us-
ing frequent itemset mining, without performing extensive filtering of the input
data. In brief, the scheme, which is named the Grimstad Data Classifier (GRI-
DAC ), uses teams of hierarchically organized Learning Automata to generate
a rule tree with a set of linked nodes – where the granularity of each node
increases along with the current level in the tree.

In turn, GRIDAC was implemented as an anomaly based IDS called Inspec-
tobot, and evaluated using the 1999 DARPA IDS Evaluation Sets. At best,
the prototype was able to detect 51 out of 62 attacks in the 1999 DARPA IDS
Evaluation Sets with 56 false alarms, giving a detection rate of 82 %, after
training on one week of attack-free traffic, and classifying another full week of
data containing attacks.

The empirical results are quite conclusive, demonstrating that the prototype
shows an excellent ability to mine frequent itemsets from network packets, such
that normal behavior can be modeled. With an average detection rate of 73 %
of all attacks in the DARPA set, and a fairly low amount of false positives, it
is also shown that Inspectobot can be used for IDS purposes.

In its current state, Inspectobot requires a high processing capacity to perform
the rule matching. When compared to the popular IDS Snort, it is currently
not as useful outside of a testbed environment. Nonetheless, the scheme has
the potential of serving as a complementary anomaly based IDS alongside
Snort for detecting novel attacks, given a more optimized implementation.
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This Master’s Thesis was submitted in partial fulfillment of the requirements
for the degree Master of Science in Information and Communication Technol-
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Chapter 1

Introduction

Today, many businesses rely on the Internet as an important source of income.
For many, it serves as a key channel for advertising as well as internal and
external communication services. In addition to this, many businesses depend
on services provided on the Internet to carry out their daily work.

As a consequence of its size, the Internet has attracted many malicious users∗

that may see the vast number of users as an opportunity for dishonest profit.
To name an example, such users might be capable of attacking the computer
networks to their target companies, which could leave them without Internet
connectivity for hours, days or even weeks. Because of the corner stone posi-
tion the Internet has adopted in many companies the past two decades, the
consequences of such attacks might be devastating.

∗ In this context, a malicious user is a person who exploit weaknesses in computer software for
personal gain, or otherwise partakes in the distribution or creation of malicious software, such as
trojan horses, which are non-replicating computer programs planted illegally in another programs
that might do damage locally when the software is activated.
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1.1 Background and Motivation

Between 1995 and 2003, the Computer Emergency Response Team (CERT)
[1] reported an almost exponential growth in reported security incidents, as
shown in Figure 1.1.
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Figure 1.1: Reported Security Incidents by Year [1]

Given the widespread use of automated attack tools in recent years, attacks
against systems connected to the Internet have become so commonplace that
CERT stopped providing these statistics as of 2003. However, even though
these numbers are quite outdated, Figure 1.1 clearly indicates that automated
attack tools are on a constant, if not exponential, increase. When the number
of users connected to the Internet grows larger, so does the amount of potential
targets. From the point of view of the regular user, this would actually decrease
the probability of being attacked. For the attacker however, the probability
of finding a computer vulnerable for attack would increase. Thus, conclusions
can be drawn to state that it is becoming increasingly important to protect
computer systems against such attacks.

Rule Based IDS

Traditionally, the intrusion detection in computer networks is done using rule
based network intrusion detection systems (R-NIDS) [2] such as Snort∗, where
rules, also known as signatures, are manually generated by security profession-
als to detect threats in the network traffic. In general, a signature refers to
a set of conditions that characterize intrusion activities in terms of network
packet headers and payload contents.

This approach relies on a database of attack signatures, and triggers an alarm
when one or more of these signatures match what is being observed in the
live traffic. Besides lacking the ability to detect novel attacks, a drawback of
R-NIDS is that the number of signatures increases along with the number of
threats, with the potential of becoming a scalability issue over time.
∗ http://www.snort.org
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Using System Dynamics, this problem, hereby referred to as Rule Entropy, can
be modeled as an ”out-of-control” System Archetype∗, and is shown in Figure
1.2.
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Figure 1.2: System Archetype of a traditional R-NIDS, with rule entropy being the
problem, and anomaly based IDS being a possible solution to bring the problem into
balance.

If R-NIDS is used to detect new threats in a given environment - new rules are
constantly added to compensate for the hostile traffic. This should lower the
number of undetected threats, but it can also pose an undesired side effect; as
new rules are added over time, the system might enter a state of rule entropy
- where the resources required to analyze packets, based on the number of
rules, increase. Thus, when the total number of rules reaches a certain level, it
takes increasingly more time to manage and delete obsolete rules, leaving the
R-NIDS operator with less time to deal with novel attacks.

Anomaly Based IDS

An alternative IDS scheme, known as Anomaly Based NIDS (A-NIDS) is focus-
ing on detecting computer intrusions and misuse by monitoring system activity
and classifying it as either normal or anomalous. Since this process does not

∗ A system archetype is a variant of the Causal Loop Diagram (CLD). For further reading on such
diagrams, the reader is referred to http://en.wikipedia.org/wiki/Causal loop diagram.
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require a set of pre-defined rules like R-NIDS, A-NIDS possesses the ability to
detect novel attacks.

By itself, A-NIDS is not a better solution than R-NIDS [2], as one of its main
drawbacks is the number of false positives (FP) generated in current systems,
as opposed to real positives (RP). Still, it is a valuable tool for a security
analyst as it helps detecting behavior like:

• Hosts that start transmitting abnormal amounts of TCP packets to a
foreign (and previously unknown) server. This might indicate that the
hosts are infected by malicious software that reports data back to their
command center.

• Too many UDP datagrams compared to TCP, which can reveal a mis-
configured server or possible denial of service (DOS) attacks towards a
local DNS server.

• Port scans from both external and internal hosts.

Current A-NIDS techniques

In Anomaly-based network intrusion detection: Techniques, systems and chal-
lenges, Garćıa-Teodoro et. al. [3] review the most well-known anomaly-based
intrusion detection techniques – in addition to presenting systems under de-
velopment, available platforms and current research projects in the area.

The current techniques can be divided into three main categories: statisti-
cal, knowledge-based and machine learning-based. Statistical models usually
determine normal network behavior by comparing recent and historical at-
tributes [4], such as bandwidth usage and hosts that communicate with each
other – while knowledge-based A-NIDS techniques try to capture the claimed
behavior from available system data (like protocol specifications, network traf-
fic instances, etc.) [3]. Finally, machine learning schemes are based on the
establishment of an explicit or implicit model, that allows for analysis and
categorization of patterns.

Using machine learning in combination with pattern recognition is particularly
interesting, as the domain contains areas that still remain unevaluated with
regards to A-NIDS.

The next section describes the problem at hand, before Section 1.3 continues
by presenting three A-NIDS approaches that exist in the literature.

1.2 Problem and Research Questions

The header of each datagram in the Internet Protocol (IP) consists of unique
fields that contain information about both its addressing and its contents. By
collecting a substantial amount of such packets, one might discover patterns

4



among them – such as common source addresses, variations in TTL values,
uncommon port numbers and so on. By creating a customized computer pro-
gram for detecting these patterns, it is believed that any underlying semantics
in the network packets can be detected, such that normal behavior can be
modeled as a data structure.

Frequent Pattern Mining and Association Rules

This thesis describes a data mining scheme for adaptively building Intrusion
Detection models that rely on frequent itemsets. Frequent itemsets play an
essential role in many data mining tasks that try to extract interesting pat-
terns from databases. Association rules [5], originally defined by Agrawar et.
al. [6] for discovering regularities between products in large scale transac-
tion data, is a technique that can be used for this purpose. For example,
the rule {Protocol = ”TCP”, DestinationPort = ”80”, SourceAddress =
”10.0.0.2” ⇒ ”normal”}, that might be found in a set of network packets,
indicates that packets with those specific properties would pass as normal be-
havior.

The problem then becomes how to proceed. The process of modelling normal
network behavior, by extracting patterns from a set of IP packets is not com-
pletely new, as several methods [7, 8, 9, 10] already implement such approaches.
Although A-NIDS have been around for several years, and the techniques are
continuously evolving, there still exists several open issues and challenges [3]
regarding these systems. In particular, these are related to low detection effi-
ciency and low package throughput because of the required processing power.

In their survey [3], Garćıa-Teodoro et. al. mention several systems that use
concepts and approaches found in the domain of machine learning, but none
of these seem to be related to the Learning Automata paradigm.

Learning Automata (LA)∗ are adaptive decision making devices that have
the ability to operate in both unknown and non-deterministic environments
[11]. One of their powerful properties is that they progressively improve their
performance through a reinforced learning (RL) process. In addition, they
combine fast and accurate convergence with low computational complexity,
and have been applied to a broad range of modeling and control problems.
[12]

Research Questions

By applying the LA paradigm to mine the frequent itemset patterns, the work
presented in this thesis will investigate the scheme’s potential to classify un-
known traffic as normal or anomalous.

In essence, the proposed scheme, hereby referred to as the Grimstad Data
Classifier (GRIDAC) will attempt to generate rules based on frequent patterns

∗ Learning Automata are explained in more detail in Section 2.2 on page 23.
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in the network packets, without any human supervision. These patterns will
be detected by randomly selecting a packet from a dataset, hereby known
as the filter packet, which contain a certain set of properties. Then, packets
with similar properties will be grouped together by LA, such that a rule can
be generated which match these properties. This process continues until the
dataset is fully covered. The generated rules will be hierarchically organized
as a tree data structure, such that their granularity will increase along with
the current level in the tree. These steps form the basis for researching the
following questions.

RQ 1 By applying the LA paradigm, is it possible to mine network packets
for frequent patterns, such that rules for modeling ”normal” behavior
can be generated?

RQ 2 How good is GRIDAC at detecting anomalies, compared to an existing
solution? Also, to what extent are false positives∗ and false negatives†

generated?

RQ 3 Would the A-NIDS implementation of GRIDAC be able to replace cur-
rent R-NIDS implementations like Snort?

The next section follows up on Current A-NIDS techniques, mentioned on page
4. In particular, the systems NETAD [8], fpMAFIA [10] and MINDS [9] will
be reviewed.

1.3 Literature Review

During the past decade, there has been much interest in applying pattern
recognition and data mining techniques to NIDS, as malicious network traffic
often differs from benign traffic in ways that can be distinguished without
knowing the nature of the attack [8]. To give an example, Matthew V. Mahoney
proposes a system which flags suspicious packets based on unusual byte values
in network packets.

1.3.1 Packet Header Inspection

This system attempts to separate normal traffic from hostile traffic, and pro-
vide alerts to the system operator. Initially, this is done by identifying five
types of anomalies in hostile traffic, and give scores based on how ”malicious”
the traffic is. These fives types of anomalies are [13]:

∗ A false positive occurs when a network packet is inaccurately classified as anomalous, when it
is indeed normal. † A false negative is used to define a malicious packet which is categorized as
normal, when it is in fact anomalous.
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User behavior. Hostile traffic may have a previously unknown source ad-
dress because it comes from an unauthorized user of a restricted (pass-
word protected) service. Also, probing applications such as nmap may
attempt to access nonexistent hosts and services, generating anomalies
in the destination addresses and port numbers.

Bug exploits. Attackers usually exploit errors in target software, like heap
based buffer overflow vulnerabilities. Such errors are likely to be found
in the least-used features of the program, as the error would otherwise
been detected during ”normal” use.

Response anomalies. Sometimes a target will generate anomalous traffic
in response to a successful attack, for example, a victim might send a
response to a C&C (Command & Control) server indicating that a trojan
is installed on the victim’s computer, and is ready to accept commands
from the attacker.

Bugs in the attack. When an attack is performed, the client protocols must
typically be implemented by the attackers themselves. Due to possible
carelessness, or because it is not necessary, the client protocol does not
match the protocol standards implemented in benign software. An at-
tacker may use lowercase for convenience, even though normal clients
always use uppercase.

Evasion. Attackers may deliberately manipulate network protocols to hide
an attack from an improperly coded IDS. Such methods include IP frag-
mentation, overlapping TCP segments that do not match and deliberate
use of bad checksums to name some.

Given the variety of anomalies, it makes sense to examine as many attributes
as possible. The idea is that if an attribute takes on a novel value, or at least
one not seen recently, then the data is suspicious.

The proposed system, Network Traffic Anomaly Detector (NETAD) is based
on PHAD (Packet Header Anomaly Detection) [13], also by Mahoney et. al.

1.3.2 PHAD and NETAD

PHAD uses time-based models, in which the probability of an event depends
on the time it last occurred. For each attribute, a set of allowed values is
collected, and novel values are flagged as anomalous. Specifically, a score of
tn/r is assigned to a novel valued attribute, where

t is the time since the attribute was last anomalous (during either training or
testing),

n is the number of training observations, and
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r is the size of the set of allowed values.

NETAD shares the same concept as PHAD, using time-based models. There
are also some significant differences, like:

1. The traffic data is filtered such that only incoming server requests are
examined.

2. Starting with the IP header, only the first 48 bytes are treated as an
attribute for the model.

3. The anomaly score tn/r is modified to score rare, but not necessarily
novel, events.

To make it easier to detect anomalies, NETAD separately models nine subsets
of the filtered traffic corresponding to nine common packet types, such as:

1. All TCP ACKs to port 23 (telnet)

2. All TCP ACKs to port 25 (SMTP)

3. All TCP ACKs to port 21 (FTP)

Essentially, NETAD is a two stage anomaly detection system for identifying
suspicious traffic. The first stage filters the input data and generates the model,
while the second assigns anomaly scores to unclassified network packets.

For each of the 48 collected attributes, a set of allowed values are generated
(i.e. anything observed at least once during the training phase). Then, if one
the attributes contain a value not previously observed, the specified packet
is marked as anomalous. This process can be described with the following
boolean expression:

{x ∨ y ∨ z}︸ ︷︷ ︸
attribute 1

∧{p ∨ q ∨ r}︸ ︷︷ ︸
attribute 2

∧ · · · ∧ {u ∨ v ∨ w}︸ ︷︷ ︸
attribute 48

Figure 1.3: NETAD Attribute Model as a Boolean Expression

The final result was tested against the 1999 DARPA IDS Evaluation Sets -
and it was concluded that this system detects 132 of 185 attacks, with 100
false alarms.

By taking Mahoney’s research into consideration, it is reasonable to adopt the
same limitations with respect to the network traffic. As a result, the scheme
proposed in this paper will focus on analysing the first 48 bytes of a network
packet, starting with the IP header.

As Mahoney’s approach is slighty customized for detecting the attacks in the
1999 DARPA IDS Evaluation Sets, due to his use of 9 different data models -
applying unsupervised anomaly detection in NIDS is a new research area that

8



have already drawn interest in the academic community. In 2005, Leung et.
al. [10] investigates a new density- and grid-based clustering algorithm which
relies on mining frequent itemsets, that is suitable for unsupervised anomaly
detection.

1.3.3 Unsupervised Anomaly Detection in Network Intrusion De-
tection Using Clusters

In [10], Leung et. al. propose a clustering algorithm known as fpMAFIA. The
algorithm takes as input a set of unlabeled data and attempts to find intrusions
contained within. After these intrusions are detected, it is possible to train a
misuse detection algorithm or a traditional anomaly detection algorithm using
the data. Although they focus primarily on clustering techniques, mining
frequent itemsets is one of the intermediate steps in their algorithm.

Apparently, fpMAFIA is based on the frequent-pattern growth (FP-growth)
algorithm that is quite efficient for mining frequent itemsets [10]. It avoids the
cost of generating a huge set of candidate itemsets, like the well-known Apri-
ori algorithm, by building a compact prefix-tree data structure, the frequent-
pattern tree (FP-Tree).

[10] explains that FP-Growth first scans the database, and derives the set of
frequent items and their support (frequency) counts. Then, the set is sorted
in the order of descending support count. To construct the FP-Tree, let L
denote the resulting set, rescan the database and process the items in each
record in L order (i.e., sorted according to descending support count). The
processed items should then represent a branch in the tree, with each frequent
item represented by a node. Following, the branch is added to the tree if it
does not exist. If any prefix of the branch already exists in the tree, then
increment the count of each node along the common prefix by one and extend
the branch.
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fpMAFIA is an optimized version of the pMAFIA algorithm, with the modifi-
cation that FP-Tree is used in the intermediate step, and is able to run with a
large dataset of 1 million records on a single PC, and terminated in under 11
minutes.

Their algorithm was evaluated using the 1999 DARPA IDS Evaluation Sets,
where it was able to achieve a performance rate of 0.867, as shown in the ROC
(Receiver Operator Characteristic) chart in Figure 1.4.
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Figure 1.4: ROC curve of fpMAFIA [10]

The performance rate is calculated as the Area R under the ROC chart. It
should also be noted that this particular chart does not show the amount of
total attacks that have been detected (i.e. the detection rate), but the rate of
detected attacks with regards to the false positive rate. Leung et. al. [10] does
not provide the total detection rate.

Their evaluation shows that the accuracy of their approach is close to that
of existing techniques reported in the literature [10], and that is has several
advantages in terms of computational complexity.

The scheme presented in this thesis also relies on mining frequent itemsets
, but it does not implement any of the algorithms that are known from the
literature. Instead, it relies on a team of Learning Automata for building a
rule tree, similar to FP-growth.

A somewhat different approach, called the Minnesota Intrusion Detection Sys-
tem (MINDS) [9] uses a suite of data mining techniques to automatically detect
attacks against computer networks and systems.

1.3.4 MINDS - Minnesota Intrusion Detection System

Unlike NETADS, MINDS [9] depends on Netflow version 5 data as input, where
the difference to regular network packets is that flow data only capture packet
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header information (i.e. it does not capture message content), and build one
way sessions (or flows).

Before any data is fed to the anomaly detection module, a data filtering step is
performed by an analyst to remove trivial network traffic. Following, the first
step in MINDS is extracting features that are used in the data mining analysis,
like IP addresses, source and destination ports, protocol type etc. and derived
features include calculation of time and connection windows. These features
are constructed to capture connections with similar characteristics in the last
T seconds.

The following figure gives a general overview of MINDS’s architectural design.

Filtering

Network

Data Capture Device

Storage Feature Extraction Known Attack Detection

Anomaly Detection

Association
Pattern
Analysis

Anomaly
Scores

Analyst
Labels

Detected Known Attacks

Summary of anomalies

Figure 1.5: A general overview of MINDS’s architectural design. [9]

Once the feature extraction step is completed, the known attack detection
module is used to detect network connections that correspond to attacks for
which signatures are available, and then to remove them from further analysis.

The remaining data is fed into the anomaly detection module that assigns
anomaly scores to each network connection, and the human analyst may then
inspect the most anomalous connections, to determine if they are real or false
positives.

Continuing, the association pattern analysis module summarizes network con-
nections that are ranked highly anomalous by the anomaly detection module.
Finally, the analyst provides a feedback after analysing the created summaries
– and decides whether these summaries are helpful in creating new rules that
may be used in the known attack detection module.

Although MINDS was a hybrid of R-NIDS (due to the Known Attack Detec-
tion Module) and A-NIDS, the results from their anomaly detection approach
are quite satisfactory. In addition, Ertöz et. al. [9] state that it is suitable for
detecting many types of threats, such as outsider attack, insider attack, and
worm/virus detection after a machine has become infected and starts commu-
nicating with its command and control server.

The most interesting aspect from MINDS, in terms of the approach presented
in this thesis, is its architectural design. Similar to NETAD, MINDS also make
use of anomaly scores, making it reasonable to adopt this feature as well.
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With NETAD, Mahoney used the 1999 DARPA IDS Evaluation Sets for eval-
uation. One of the many original criticisms of this dataset [14], was that it
did not evaluate traditional R-NIDS like Snort. Brugger et. al. wanted to do
something about this, and they performed an assessment of the DARPA IDS
Evaluation Dataset with Snort in 2007.

1.3.5 An Assessment of the DARPA IDS Evaluation Dataset using
Snort

In [14], Brugger et. al. performed an evaluation of the 1998 DARPA dataset
using the de-facto R-NIDS Snort. Initially, they thought that Snort would
perform well on the DARPA dataset, but their empirical results showed the
exact opposite.

They discovered that the overall detection performance was low, and that the
rate of false positives was unacceptable. At first, they assumed it was due
to a failure in the DARPA dataset, or that the attacks were outdated since
they used a Snort signature database from 2005. Eventually, they figured
that the DARPA dataset only includes a limited number of attacks that are
detectable with a fixed signature. Apparently, the majority of the malicious
connections present in the 1998 DARPA dataset came from Denial of Service
attacks. While Snort has some capability for detecting such attacks, they have
not been the primary focus of its design.

For that reason, they do not endorse changing Snort to detect Denial of Service
attacks, but rather use Snort in conjunction with another NIDS, designed for
such purposes.

1.4 Method

GRIDAC is based on the LA paradigm, found within the Machine Learning
domain. In order to get satisfactory answers to the research questions on page
5, it is important to gather observable and measurable evidence through a
series of tests, formalized in a Test Programme∗. To achieve this, a quantitative
approach will be taken, and the collected data will then be used to discuss the
final outcome.

In addition to presenting some existing research methods that have been
adopted to create and test GRIDAC, the scheme itself is explained briefly
in the next sections.

1.4.1 Solution Approach

GRIDAC features two separate stages for classifying binary formatted data.
At first, it is necessary to create a hierarchy of rules that will model normal
∗ Use of the Test Programme is explained in Section 1.4.4 on page 18 and presented in Section 4.1
on page 53.
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data. Then, unknown traffic is compared to the model, and it is classified as
normal or anomalous. To generate the initial rule, the input data is passed
through a feature selection process∗ – in which one determines what needs to
be measured in order to accurately classify objects into distinct classes.

The IP header in network packets contains several features (or bytes) that can
be used for this purpose. As an example, packets sent to host A and B from
host C can be split into two separate groups based on the bytes that make up
the destination IP address, but there are also other fields in the IP header that
can be used for the same purpose.

Feature Selection Process

To detect these fields, in an unsupervised manner, a set of split criteria, referred
to as a rule, must be generated. This rule will then be used to divide the input
data into two or more classes. An abstract illustration of this process, given
successive trials, is shown in Figure 1.6.

Figure 1.6: Abstract selection of split criteria. The split criteria used in each rule
describe a given class, and reduces the overall entropy in the dataset.

A team of LA will generate the rule used in the initial classification process.
Each feature will first be subjected to the jurisdiction of a dedicated LA. Next,
a random packet will be drawn from the input data, known as the filter packet.
Reinforced learning (RL) will then be applied to guide the LA towards one of
two possible actions; constant (C) or wildcard (?). Here, wildcard means that

∗ Explained in brief in the next section, and in more detail in Chapter 3.
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a feature can take on any value, while constant requires a feature to have a
specific value.

When all of the LA have converged towards an action, the actions are trans-
lated into split criteria and added to a classification rule. An example of a
possible rule that could have been generated from the input data shown in
Figure 1.6 is given in Table 1.1.

Table 1.1: An example rule generated from the abstract dataset shown in Figure
1.6.

is
represented by classified by

10001001 ? C0 C0 C0 ? ? C0 ?

The triangle object, represented by the bitstring 10001001, has been classified
using the rule displayed in Table 1.1, by setting a series of constants and
wildcards as criteria.

If one constant in the rule had been set to the opposite value, the object shown
in Table 1.2 might have been classified rather than the one showed in Table
1.1.

Table 1.2: Another example rule generated from the abstract dataset shown in
Figure 1.6

is
represented by classified by

00011100 ? C0 C0 C1 ? ? C0 ?

Similarly, if this constant had been set to a wildcard, both objects might have
been classified by the same rule, as shown in Table 1.3.

Table 1.3: Example rule that classifies the objects shown in Table 1.1 and Table 1.2

are
represented by classified by

10011001 ? C0 C0 ? ? ? C0 ?
00011100

To give a summary of GRIDAC up to this point, it generates a rule that
consists of a certain number of features, specified by constant C or wildcard ?.
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Each feature is formulated in terms of operands in a sequence of boolean AND
operators, illustrated in Equation 1.1. Specifically, these features are learned
by a cooperative game between the LA that aims to divide the dataset in a
given ratio.

(f1 = αx(u)) ∧ (f2 = αy(v)) ∧ · · · ∧ (fn = αz(w)) (1.1)

However, dividing the dataset is only the first part of the process.

Increasing Rule Granularity

The next step attempts to model approximately 100 % of the dataset by select-
ing multiple filter objects that generate multiple rules. In turn, the granularity
of these rules are increased by hierarchically structuring them. This will be
done by repeating the same process on the data that is classified by the initially
generated rules, as illustrated by Figure 1.7.

Figure 1.7: Hierarchical structuring

Successive progression will be used at each level in order to classify exactly
100 % of the objects in the dataset, meaning that the data not classified by
rule n should be used for generating rule (n + 1) and so on.

An attempt will also be made to increase the granularity of each rule at any
given level, until a specified limit has been reached that states that the rule
should not be able to match less than x % of the dataset.
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Applying GRIDAC as an A-NIDS

Once the hierarchy of rules has been generated, it is believed that it can be
used to model normal behavior in a set of network packets. Thus, when new
traffic is introduced, it should to some degree be classified as anomalous –
depending on a series of different factors. These factors might include how far
an unknown packet is able to traverse the hierarchy, and how many features
of an unknown packet that matches a given rule.

While classifying unknown packets, a specified amount of features in all objects
present in the dataset will be compared to the generated rule. If all features
of a given object matches the requirements of the rule, it will be classified
as accepted for that given node in the hierarchy. If exactly one or more of
the object’s features deviates from the requirements specified in the rule, it
will be classified as rejected – but not necessarily anomalous. For this reason,
an anomaly score will be calculated, based on the factors mentioned in the
previous paragraph.

To verify that the designed scheme works as intended, a prototype will be
developed. This prototype will then be subjected to a formal Test Programme,
and the results gathered from these tests will be used to form a conclusion.

1.4.2 Software Development Approach

The process involving the development of the prototype will, as closely as
possible, follow industry practice. This is to maximize the probability that
minimum standards of quality are being attained in the development of the
prototype.

To increase the probability of successful results while dealing with software de-
velopment, the Guidelines for Secure Software by Futcher et. al. [15] suggests
that the development process should structured, planned and controlled from
the start - while at the same time using good practices to increase efficiency.
[15] also explains that:

• Software should be developed iteratively.

• Requirements should be managed.

• The use of component-based architectures is recommended.

• Software should be modelled using visual abstractions.

• Verification of software quality is important.

The advice from Futcher et. al. lead to the decision of using an iterative
software development approach known as Prototyping, first proposed by the
US Department of Health and Human Services.[16]
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This basically implies that the system requirements are defined while the sys-
tem is being modeled and programmed, as shown in Figure 1.8. The reason
why this method was chosen was the possibilities made available by not locking
the process from the beginning. By using this method, the thought process
can constantly be stimulated, which could lead to new ideas during the devel-
opment process. This is because the requirements initially defined are likely to
change while working on GRIDAC, because of experiences, functionality and
design.

System Design

Coding, testing ...

Requirements
Definition

Initial
Investigation

Implementation Maintenance

Figure 1.8: System development using the ”Prototyping” method.[16]

According to [16], prototyping is a software development method that is espe-
cially useful for resolving unclear objectives. It can also be used for identifying
and validating user requirements.

By using prototyping, a set of requirements is expected to be formally defined
once the solution has become operational. During this process, the larger
components that make up the prototype will be defined and documented in
various work packages.

These work packages will contain a description of the system component it is
intended for, along with a set of specific requirements. Once the different work
packages have been designed, they will be assigned to the team members for
execution.

The main idea is that, by separating a large project into smaller, more man-
ageable parts, it will be easier to keep track of how much work is remaining.
Once all the work packages have been completed, the prototype should be
ready for verification through intensive testing.

1.4.3 Choice of Programming Language

Python has been selected as a suitable programming language, mainly because
of how productive a programmer is able to be in a given time frame, compared
with other languages like C, C++ or Java.

According to an article on the pros and cons of Python, [17] it is said that ”an
experienced programmer can probably pick up the basics of Python in a day,
be productive in a week or less, and be relatively expert in the language many
times faster than she could achieve equivalent fluency in C, C++, Java, or
even Perl.”
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Python is also very strict when it comes to clean code syntax. Unless the code
is properly indented, the Python interpreter refuses to compile it. This forces
the programmer to write clean code, making it more understandable for fellow
programmers.

1.4.4 Quality Assurance

Quality assurance is a collective term for various procedures that are used to
both preserve and increase the quality in software projects. The work presented
in this thesis tries to adhere to best coding practices, code inspection and use
of a formal Test Programme.

Best Coding Practices

To increase the readability of the produced code, it is important to write in
a structured and understandable manner. Commenting is also considered an
important aspect. In addition, it is important to adhere to the recommended
coding conventions of the selected programming languages.

GRIDAC will be programmed, and implemented, using the Python program-
ming language. Therefore, it seems reasonable to adhere to PEP 8 ∗ and PEP
257 †, which contain guidelines and conventions for programming style and
in-line documentation.

Code Quality and Work Package Execution

To ensure a certain standard of quality in the code, thus avoiding software
entropy (also referred to as code rot), systematic monitoring and evaluation of
the various aspects of the project has been carried out.

As an example, upon completion of a specific work package, it will be queued
for inspection. The other team members will then review the code that has
been produced, as suggested by Futcher et al. [15].

When the code has been verified, it can be fully tested using the Test Pro-
gramme.

Test Programme

When the prototype is finished, it will be verified through the use of a for-
mal Test Programme (TP), and help validate that it works according to the
specified requirements. The TP includes a set of test cases, carefully designed
to test different aspects of both GRIDAC and the prototype it will be im-
plemented in. By executing these tests, the need for design changes can be
minimized.
∗ Style Guide for Python Code: http://www.python.org/dev/peps/pep-0008/
† Docstring Conventions: http://www.python.org/dev/peps/pep-0257/
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Once the formal Test Programme has been verified, the achieved results and
findings will be discussed and the work will be concluded.

1.5 Key Assumptions and Limitations

The novel scheme for modelling normal traffic patterns, and for detecting
anomalies in binary formatted data, will be implemented as an A-NIDS pro-
totype. This prototype will consist of several components, and the field of
research is quite vast. Thus, to provide a basic framework for research, it has
been necessary to apply some key assumptions and limitations.

Assumptions

• Prior Research and Data is Correct
It is assumed that the previous research mentioned in Section 1.3 is cor-
rect, and that the results are valid and reproducible. Also, it is assumed
that the number of computer related attacks, based on the amount of re-
ported incidents as shown in Figure 1.1 on page 2, are still on a constant,
if not exponential, increase.

• DARPA IDS Evaluation Sets
When GRIDAC is implemented as an A-NIDS, it will be evaluated with
the 1999 DARPA IDS Evaluation Sets [18]. Even though the specific
attacks in this dataset are outdated, it is assumed that current attacks
stand out in a similar way, such that they can be detected as anomalies by
GRIDAC. Although, the payload in current attacks (like SpyEye ∗) are
in most cases encrypted, the IP header still remains in cleartext (unless
VPN technologies like IPSec are used).

• Attack Traffic is Statistically Different
It is assumed that the attack traffic is statistically different from normal
traffic. Hence, traffic that deviates from the normal traffic patterns might
indicate a possible attack.

In addition to these assumptions, the following limitations further narrows
down the scope of the work being done.

Limitations

• Inspected Bytes of each Packet
Similar to NETAD, only the 48 first bytes of the network packets are
analyzed, starting with the IP header.

∗ Detailed analysis of the SpyEye trojan, v1.3: http://j.mp/f58HWl
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• Hardware Support
Hardware support will be limited to the 32-bit and 64-bit compatible
x86-platform, more specifically i386 and upwards in addition to x86 64.

• Software Platform
The platform used for testing and verification will be based on GNU/Linux.
It is not within the scope of this thesis to make it work on other software
platforms.

• Performance
Performance, in terms of time consumption during the modelling and
classification process, is assumed to be of less importance than the actual
outcome, and is thus out of scope.

• Classification of DARPA IDS Evaluation Sets
Because of time limitations, only the attacks categorized as ”outside” will
be analyzed. These attacks are listed in the DARPA IDS Evaluation Set
Detection Truth lists. ∗ †

The next section presents what contributions the work done in this thesis will
add to current knowledge within the chosen field of research.

1.6 Contribution to Knowledge

The work presented in this thesis investigates if LA can be applied to mine
frequent items from a dataset, such that it can be modeled as rules organized
in a tree structure. When unknown, but similar, traffic is introduced to the
tree structure, most of the objects should be classified as normal, while others
are reported as anomalous - mainly because they do not relate to the model.
As such, the work also examines if the aforementioned approach can be applied
to A-NIDS scenarios by detecting anomalies in a set of network packets.

A prototype will be created, and it will be evaluated with the 1999 DARPA
IDS Evaluation Sets [18], and the results will be compared towards those of
NETAD, presented in Chapter 1.3.

1.7 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 contains theory on
Machine Learning, and explains how it can be applied to make decisions in
non-deterministic environments. Information on Learning Automata is also
given, explaining what these devices can be used for, before taking a look at
one of the many LA implementations, known as a Tsetlin Automaton. Also,

∗ http://www.ll.mit.edu/mission/communications/ist/files/master-listfile-condensed.txt
† http://www.ll.mit.edu/mission/communications/ist/files/master identifications.list
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a short summary of patterns in TCP/IP is given in order to make the reader
better understand the key concepts behind GRIDAC. This should provide the
reader with enough information to be able to take in the finer details of the
proposed solution.

In Chapter 3, the solution approach is explained. A set of requirements and
design guidelines for the system has been given, and models of the key compo-
nents are added. As a whole, the solution chapter provides solid documentation
of all the important aspects of the designed system.

System verification and testing is documented in Chapter 4. Here, results from
the various tests, carried out in a formal Test Programme, is presented, and
the research questions are also investigated.

Chapter 5 is used to discuss the results that were obtained in Chapter 4.
Problems with the proposed solution is brought to attention, and an effort has
been made in order to identify their causes. It is also determined if the results
from Chapter 4 are valid, and if the solution is correct. In some cases, steps
for dealing with the identified problems are also given.

Finally, Chapter 6 provides a brief summary of the solution that has been
developed. The main findings, and corresponding implications are shown.
Lastly, options for future work are given.

The Appendices include an example report taken from the formal Test Pro-
gramme and the Work Package Overview, respectively.
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Chapter 2

Machine Learning and
Applications

A dictionary defines learning as a modification of behavioral tendency by expe-
rience. In his book Introduction to machine learning [19], Nils Nilsson draws
parallels between machine learning and animal training, where the behavior
of the system (or the animal) is modified by rewarding good decisions and
punishing bad decisions.

2.1 Reinforced Learning

The concept of reinforced learning can be illustrated by the well known T-maze
learning problem, as shown in Figure 2.1, where a mouse (or an automaton)
interacts with a maze, trying to find cheese.

M

Figure 2.1: Hungry Mouse in a T-Shaped Maze

Should the mouse decide to go right, it is rewarded - with the overall goal of
selecting the same direction in future decisions. Should the mouse decide the
opposite (going left), it is punished. With successive trials, the mouse will
hopefully learn to make the correct decision.
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2.2 Learning Automata

In Learning Automata: an introduction, Narendra and Thathachar [11] define
Learning Automata (LA) as adaptive decision making devices that have the
ability to operate in both unknown and non-deterministic environments. This
implies that they are able to perform tasks without any information about the
effect of their actions at start of an operation - and that a given action not
necessarily produce the same response each time it is performed.

According to [11], one of the powerful properties of LA is that they progres-
sively improve their performance through a reinforced learning process - similar
to the T-Maze problem (illustrated in Figure 2.1), where the mouse interacted
with a specific environment.

In general, an environment is a large class of unknown media in which an
automaton or a group of automata can operate, or perform actions. Once
an action is performed, the environment responds with either a penalty or a
reward, as shown in Figure 2.2.
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Figure 2.2: Relation between actions and rewards, with regards to the environment.

More specifically, the automaton can perform an action, ai, from a set of
unique actions, a1, a2 . . . ai. When performing the action ai, there is a certain
probability that the environment responds with a penalty.

P (Penalty|Action = ai) = ci, 1 ≤ i ≤ r (2.1)

The responses from the environment are in turn used as input to the automa-
ton, which maps it to its internal ’memory’ - such as a series of different states.
When the current state of the automaton is updated, new input is received
from the environment, and the automaton is learning by reinforced measures.

This process can be implemented in different ways, and one of these is the
Two-action Tsetlin Automaton.
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2.3 Tsetlin Automaton

A Two-action Tsetlin Automaton (TA) [20] operates with two different actions,
such as yes or no, or true or false. An example of a TA is shown in Figure
2.3.

Figure 2.3: Two-action Tsetlin Automaton with 3 states per action.

It comprises of n states per action, meaning that for each answer it is able
to provide, it maintains an internal ’memory’ of n different states. Once an
answer is given, the automaton is either rewarded or penalized. If it keeps
giving the same answer over and over, the current state of the automaton is
incremented towards either end state.

When the current state reaches state 1 or state n, the automaton has converged.
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2.4 Patterns in Network Traffic

Network protocols are a formal description of digital message formats and
the rules for exchanging those messages between computing systems. Because
of these strict message formats, it is possible to investigate a set of network
packets with the purpose of identifying similarities or differences between them.

As seen in the below figure, the IPv4 packet header consists of 14 fields, of
which 13 are required [21]. Obviously, the optional field is ”options”, which is
rarely in use. The fields in the header are packed with the most significant byte
first (big endian), meaning that the hexadecimal notation of 0x0001 equals 1
in decimal notation.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| IHL |Type of Service| Total Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification |Flags| Fragment Offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time to Live | Protocol | Header Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 2.4: IPv4 Packet Header Structure, as described by RFC791. [21]

Some of these fields remain constant in certain contexts. For example, if
tcpdump∗ or Wireshark† is used to analyze the network traffic originating
from host A towards host B, the IP Source and Destination Address field
would most certainly remain constant (given that one direction is analyzed,
and not both). Also, if IPv4 is the only network layer protocol in use, the IPv4
version field would similarly remain constant.

There are also fields in the IPv4 header that seldom are in use. For this reason,
they are either set to their default value or 0 – and can thus be regarded as
constant. A good example of such fields are the IPv4 Header Length and the
Options field.

On the other hand, an example of a field that almost never is constant is the
Header Checksum field.

∗ http://www.tcpdump.org/ † http://www.wireshark.org/

25



Chapter 3

Solution

The following sections will give an in-depth presentation of GRIDAC. Based
on a list of requirements and design guidelines associated with the scheme, its
basic aspects will be explained in full detail.

GRIDAC consists of different components, and the component development
workload have been divided into different work packages.

This chapter is written in a partial bottom up approach. Once the requirements
have been defined, an overview of the various work packages is given before the
inner workings of GRIDAC are presented. Then, a study of how GRIDAC can
be implemented as an A-NIDS is given. Finally, the graphical user interface
of the prototype is presented.

3.1 Requirements

To test GRIDAC in its entirety, a prototype will be developed in the Python
programming language. Primarily, it should be able to handle datasets that
consists of either network packets or artificial datasets with properties similar
to network packets.

The following lists define the requirements of the prototype, in addition to
certain design guidelines. Each of these requirements and guidelines are rep-
resented with an ID, a short title, and a more explanatory description.

The requirements describe certain technical features of what GRIDAC is sup-
posed to accomplish. These are:

REQ 1 Customization of Experiments

It must be possible to toggle and edit various attributes in order to
tailor the system for a specific experiment, such as:

• Specifying how much data each tree node should try to match,
e.g. 50%.
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• Setting the number of iterations before deciding on a given rule
(i.e. how many runs that should be performed before selecting
the best matching rule).

• Restricting the amount of bits each rule element should represent
(e.g. 8 bits of data equals 1 element).

• Specifying the maximum tree depth and node limit.

• Increasing the amount states per action for each TA.

• Choosing the amount of randomly selected packets for the train-
ing period.

REQ 2 Use of Real Network Traffic

The prototype should support reading raw network packets from a
given interface, and also from the capture file format libpcap∗.

REQ 3 Use of Artifical Datasets

The prototype should support reading artificial datasets which are
binary structured. This makes it easier to interpret how GRIDAC
behaves in different scenarios.

REQ 4 Hierarchical Organization

It should be possible to organize the generated rules hierarchically,
such that their granularity will increase along with the current level
in the hierarchy.

REQ 5 Graphical User Interface

It should be possible to interact with the prototype using a graphical
user interface (GUI). The GUI should be able to list possible attacks,
a graphical representation of the rule hierarchy, as well as other in-
formation that might be of use to the analyst that uses it.

In addition to these requirements, certain design guidelines will also be fol-
lowed.

Design Guidelines

The design guidelines are rules that should be followed in order to ensure
development of good quality code. The following guidelines identifies core
principles and best practices to assist in creating the prototype in the best
possible manner.

DG 1 Good Coding Practices
All written code must follow good coding practices to ensure code

∗ For more information about the libpcap format, the reader is referred to
http://wiki.wireshark.org/development/libpcapfileformat
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cleanness and security. As mentioned in Section 1.4, this would be
the Python Enhancement Proposals (PEP) 8 and 257.

A few examples from PEP 8 is:

• 4 spaces per indentation level.

• Maximum line length in the code should be set to 79 characters.

• How existing (and also self-written) libraries should be imported
into the code.

DG 2 Object Oriented Programming
The prototype must be written in an Object Oriented Programming
(OOP) language. By splitting the prototype into different classes and
methods, it will make it easier to extend with additional features later
on.

With the requirements and design guidelines presented, the work packages can
be defined.
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3.2 Work Package Overview

The following work packages have been defined based on the aforementioned
requirements and research questions. By dividing the workload into different
work packages, it will help distribute the workload and also help keep the
overall work on track.

Table 3.1: Work Package Overview

ID Title Description

WP 1 Classifier - Basic

The classifier is responsible for detecting
split criteria in the input data. This is
done by creating a rule that represents a
given ratio of the data in question.

WP 2 Classifier - Hierarchical

Once an initial rule has been generated,
the hierarchical part of the classifier takes
over, and attempts to generate new rules
with similar properties as the parent rule.
The only difference is that the new rules
are more fine-grained.

WP 3 Anomaly Detector

When the classification process is com-
plete, and the hierarchy of rules is gen-
erated, the next step is to compare un-
known data towards the set of rules. This
process also introduces the use of anomaly
scores that will help distinguish false pos-
itives (FP) from real positives (RP).

WP 4 Graphical User Interface

A GUI will make it easier to use the pro-
totype, and keep track of the results when
testing GRIDAC and the anomaly detec-
tor.

WP 5 Graphing
With graphs, it will be possible to give a
graphical representation of the rules gen-
erated by WP1 and WP2.

During the next sections, the most important aspects from these work packages
are presented, such as how GRIDAC functions in detail, and how the anomaly
detector is implemented.
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3.3 Action Selection

One of the important aspects of unsupervised learning with LA, is determining
how each automaton should be rewarded or penalized based on the actions it
performs.

As presented in Section 1.4, GRIDAC will implement a feature selection pro-
cess, with the purpose of creating distinct classes to accurately classify objects.
This will be done by randomly selecting an object, also known as the filter ob-
ject (or packet, if the input data are network packets) from a set of objects,
that contain both common and unique features. In turn, the common features
will be found by comparing a large amount of randomly selected objects with
the filter object.

Using an LA scheme called Tsetlin Automata (TA), GRIDAC will detect these
features by assigning a TA to each respective object’s attribute. More specif-
ically, while the features of the filter object are being compared to those of
the other randomly selected objects, the TA will decide between two actions;
constant (C) or wildcard (?), and attempt to converge towards either action
– depending on whether the compared features of the objects match those of
the filter object or not.

The action selecting process will be accomplished by applying reinforced learn-
ing (RL). This implies the use of both rewards and penalties in order to make
each TA converge. The probability r, where r is a rational number between 0
and 1, of assigning a penalty or reward will be handled by a governing process
that aims to classify a given ratio, x, of the total amount of objects.
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3.4 Values of r With Respect to x

Considering a simplified set of objects where the possible values of each object’s
feature can be either 0 or 1, and that the set is created in a way where 70 %
of the objects differ from the remaining 30 %, it is believed that this traffic
amount can be matched by creating a rule in which 70 % of the available
features are set to match a constant. In Figure 3.1, a TA is shown with
equations for selecting action probabilities in such scenarios.

C *

Reward

Penalty

Reward

Penalty x · 1.0

(1-x) · rx · 1.0

(1-x) · r

n-2 n-1 nn-2n-1n

Figure 3.1: Tsetlin Automaton with n states per action and action probabilities.

As displayed in the above figure, the probability of giving the automaton a
reward, thus incrementing its current state towards C, is set to x·1.0, where x in
the previous case would be 0.7. To make the remaining 30 % converge towards
?, the action probability is set to (1 − x) · r, where r, will help decrease the
probability of selecting ?, with the overall goal of making the rule, illustrated
in Figure 1.1 on page 15, more accurate.

More specifically, the process of increasing and decreasing the current state of
each TA is done using the following algorithms. Algorithm 3.1 shows how a
specific TA is rewarded based on the value of r.

Algorithm 3.1 Rewarding a specific TA
y = the current state
n = the number of states per action
prob = the reward probability
random = a rational number between 0 and 1
if random ≤ prob then

if y < 0 and y ≥ −n then
y = y − 1 {Decrease the current state}

else if y ≥ 0 and y < n then
y = y + 1 {Increase the current state}

end if
end if
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Similarly, Algorithm 3.2 shows how a specific TA is penalized based on the
value of r.

Algorithm 3.2 Penalizing a specific TA
y = the current state
n = the number of states per action
prob = the penalize probability
random = a rational number between 0 and 1
if random ≤ prob then

if y < 0 and y ≥ −n then
y = y + 1 {Increase the current state}

else if y ≥ 0 and y < n then
y = y − 1 {Decrease the current state}

end if
end if

Setting r Dynamically

Once these algorithms were implemented, the accuracy of the LA were quite
good, but the time they used to converge towards a rule, was not satisfactory.
For this reason, it was believed that the time used for the TA to converge might
decrease by considering the aforementioned action probabilities as ’forces’ that
dragged towards ? or C, and that the value of r could be dynamically set by
letting the action probability for ? be equal to that of C, as seen in Equations
3.1, 3.2 and 3.3.

x · 1.0 = (1− x) · r (3.1)

r =
x · 1.0
1− x

(3.2)

r =
x

1− x
(3.3)

With r being calculated based on the value of x, r becomes larger than 1 if x
is set to 0.5 or more, as shown in Table 3.2.

Table 3.2: Values of r when 0 < x < 1

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
r 0.11 0.25 0.43 0.67 1 1.5 2.33 4 9

32



Markov Chains

Since r is the probability used for giving a reward or penalty, setting the value
larger than 1.0 will not have an immediate effect. To add support for values
of r larger than 1, a possibility might be to move at least brc states towards
either direction for such values of r, with an additional probability of r mod 1
for incrementing the current state even further. In probability theory and
statistics, this is known as a Markov chain [22]. An illustration of this design
is shown in Figure 3.2, where r is set to 2.33.

n+2n+1n n+3

1.0 1.0 0.33

0.67

Figure 3.2: Markov Chain where r is set to 2.33.

Implementing this design resulted in the TA converging faster for large values of
r, making them more deterministic, while still maintaining the same accuracy.
The case was not the same for lower values of r, where the LA were more
stochastic in behavior, hence increasing the time to converge. To make the TA
deterministic for lower values of x, a possibility might be to inverse Equation
3.3 when r < 1 ⇔ x < 0.5, resulting in Equation 3.4.

r =

{
x

1−x
if 0.5 ≤ x < 1

1−x
x

if 0 < x < 0.5
(3.4)

The following table shows the new values of r with respect to x when Equation
3.4 is used.

Table 3.3: Values of r using Equation 3.4.

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
r 9 4 2.33 1.5 1 1.5 2.33 4 9

When these values of r were used, the TA also converged faster for lower values
of x. A side effect was that the accuracy also suffered a small drop, but this
could be compensated for by increasing the number of states per action for
each independent TA.
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Meanwhile, algorithms 3.1 and 3.2 had to be revised to support the markov
chains. The revised version for rewarding a specific TA is shown in Algorithm
3.3.

Algorithm 3.3 Rewarding a specific TA - REVISED
y = the current state
n = the number of states per action
prob = the reward probability
random = a rational number between 0 and 1
while prob > 1.0 do

if y < 0 and y ≥ −n then
y = y − 1 {Decrease the current state}

else if y ≥ 0 and y < n then
y = y + 1 {Increase the current state}

end if
end while
if random ≤ prob then

if y < 0 and y ≥ −n then
y = y − 1 {Decrease the current state}

else if y ≥ 0 and y < n then
y = y + 1 {Increase the current state}

end if
end if
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Similarly, the revised version for penalizing a specific TA is shown in Algorithm
3.4.

Algorithm 3.4 Penalizing a specific TA - REVISED
y = the current state
n = the number of states per action
prob = the penalize probability
random = a rational number between 0 and 1
while prob > 1.0 do

if y < 0 and y ≥ −n then
y = y + 1 {Increase the current state}

else if y ≥ 0 and y < n then
y = y − 1 {Decrease the current state}

end if
end while
if random ≤ prob then

if y < 0 and y ≥ −n then
y = y + 1 {Increase the current state}

else if y ≥ 0 and y < n then
y = y − 1 {Decrease the current state}

end if
end if

Now that the possible values of r have been determined, the next step in the
approach can be explained; rule generation.

Rule Generation

Once the automaton chooses action C, 0.5 ≤ x < 1 ⇔ r < 1, and an object
passes - it is rewarded with r, as shown in Table 3.4. If the object does not
pass, it is given a penalty of 1.0. If ? is chosen and a constant could have
been used instead, the automaton is penalized with 1.0. If ? was correct, it is
rewarded with r.

Table 3.4: Action probabilities when r < 1

Action Pass Not Pass

α1 – ?
Correct: P (reward) = r

–
Incorrect: P (penalty) = 1.0

α2 – C P (reward) = r P (penalty) = 1.0

If 0 < x < 0.5 ⇔ r ≥ 1.0, and the automaton chooses action C, and the
object passes - it is rewarded with 1.0, as shown in Table 3.5. If the object
does not pass, it is penalized with r. If ? is chosen, and the action is correct,
the automaton is rewarded with r. If C could have been selected instead, the
automaton is penalized with r.
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Table 3.5: Action probabilities when r ≥ 1

Action Pass Not Pass

α1 – ?
Correct: P (reward) = 1.0

–
Incorrect: P (penalty) = r

α2 – C P (reward) = 1.0 P (penalty) = r

When the training is complete, and all the TA have successfully converged,
the overall rule will consist of several independent features, where each distinct
feature will tell which action it has converged against and the filter objects’
bitstring for that particular feature.

As an example, if each of the first 48 bytes of a given network packet was
treated as a feature, the rule can be expressed in the following boolean state-
ment, where the argument for each action (α) represents the bitstring of the
filter packet’s feature:

(f1 = αx(u)) ∧ (f2 = αy(v)) ∧ · · · ∧ (f48 = αz(w))

In order for a packet to match (and pass) the rule, it must also match all of
the features specified in the rule.
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To get a more detailed view of how the classification process in GRIDAC works,
the pseudocode in Algorithm 3.5 is provided – which illustrates how the reward
and penalty probabilities are assigned to a specific TA, depending on a given
action α, and how the rule is generated.

Algorithm 3.5 Rule Converge Process
objectfilter = read filter object
r = calculate r based on the given value of x
while rule 6= converged do

objectrandom = read random object from dataset
compare objectrandom with objectfilter {Allow the TA to make a decision}
rule = array of unconverged TAs
for each TA in rule do

α = let TA make decision {Depends on the current state of the TA.}
if r < 1 then

if α2 and objectrandom passes then
reward TA with r

else if α2 then
penalize TA with 1.0

else if α1 and objectrandom passes then
penalize TA with r

else
reward TA with 1.0

end if
else

if α2 and objectrandom passes then
reward TA with 1.0

else if α2 then
penalize TA with r

else if α1 and objectrandom passes then
penalize TA with 1.0

else
reward TA with r

end if
end if

end for
if all TA have converged then

rule = converged
end if

end while
write rule based on TA action values

Now that the rule generation process have been presented, the next step in the
process is dealing with datasets that contain larger amounts of randomness.
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Action Forcing

In some cases, the TA might encounter difficulties selecting a specific action
due to large amounts of randomness in the dataset. For this reason, it is often
necessary to force the TA into selecting a specific action, since it is unable to
converge by itself. This step, which in practice is merged into Algorithm 3.5,
is explained in Algorithm 3.6.

Algorithm 3.6 Forcing a TA to select an action
TA = a given TA
TA iteration counter = iteration counter for TA
force converge limit = force converge limit given by user
if TA iteration counter > force converge limit then

? counter = amount of ?s received.
C counter = amount of Cs received.
if ? counter > C counter then

force TA to ?
else

force TA to C
end if
reset all TA which have not yet converged

end if

When a TA has been forced to either action, the remaining TA which have
not yet converged are reset to their default values. The reason for this is that
the forced decision of a single TA might have an impact on the game played
by the remaining TA, thus potentially creating an obscure rule which does not
match the dataset - unless the remaining TA are reset.

This concludes the feature selection process, and the first part of GRIDAC.
Using the aforementioned algorithms, the scheme is able to generate a rule
that selects a split criterion in a dataset, and splits it in two separate parts,
based on the given split ratio x.
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3.5 Multiple Rules and Hierarchical Organization

The next step attempts to classify approximately 100 % of the dataset by
selecting multiple filter objects that generate a set of rules, S = {s1, s2, . . . , sn},
as shown in Figure 3.3. The data not being classified by rule sn will be used
to converge the TA into generating rule sn+1.

Figure 3.3: Selection of filter object. The filter object for rule sn+1 is based on the
rejected objects from rule sn.

Pseudocode for describing this process in detail is given in Algorithm 3.7.

Algorithm 3.7 Multiple Rule Generation
x = classification target
data set = dataset given by user
rules = array
while data set is not classified do

generate rule by attempting to describe x % of data set
with rule, calculate fraction of passed objects
append rule to rules
subtract fraction of covered data from data set

end while

Once the initial rules S have been generated, an attempt will be made to
increase the granularity of each rule in S – by repeating the feature selec-
tion process using data that classifies rule sn, such that a set of rules T =
{t1, t2, . . . , tm} can be defined as a subset of S, tm ⊆ S. This is because the
data classified by any rule in T is also classified by the parent rule in S.
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The process of generating the hierarchically organized rules is illustrated in
Figure 3.4.

Level 2

Level 3

Level 4

Figure 3.4: Hierarchical Organization of Abstract Objects

For each of the initially generated rules in S (corresponding to level 2 in Figure
3.4), new rules, T , will be generated based on the data classified by the parent
rule sn, as shown in Algorithm 3.8 on the next page.
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Algorithm 3.8 Increasing the Rule Granularity
x = classification target
r = reward for selecting ?
for each rule in rule set do

data set = dataset classified by rule
newrules = array
while data set is not classified by newrules do

while
newrule is duplicate of parent rule or
newrule only contains ? or
newrule is more general than rule do

r = r · 0.999 {Decrease the reward for selecting ?.}
generate newrule by attempting to describe x % of data set
with newrule, calculate fraction of passed objects

end while
append newrule to newrules
subtract fraction of covered data from dataset

end while
end for

While the new rules are generated, there is a possibility of selecting an in-
frequent filter object. If this happens, all the TA might converge towards ?
because the remaining traffic is significantly different from the filter object.
As such, certain criteria are set while the new rules are generated. If the new
rule is a duplicate of the parent rule, only contains ?, or is more general then
the parent rule – that particular rule, tm, will be skipped, and another filter
object will be selected.

To further decrease the possibility of selecting an infrequent filter object, the
reward for selecting ? with any given TA, is decreased in each attempt.

Once the dataset classified by rule sn is covered by T , the process continues
with rule sn+1.

When the hierarchy of rules is completed, it should be possible to send un-
known objects through the hierarchy, and depending on how similar these
objects are to the rules, they will be given an anomaly score. This will be
explained in the next section.
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3.6 GRIDAC as an A-NIDS

In order to answer RQ 2, a prototype has to be developed that is able to
match unknown objects against the hierarchy of rules generated by GRIDAC,
and report whether the packet is anomalous or not. The current working name
of this prototype is Inspectobot, and its architectural design is shown in Figure
3.5.

Filtering

Network

Data Capture Device

Storage Feature Extraction Hierarchy of Rules

Anomaly Detection

Anomaly
Relational Database

Anomaly
Scores

Analyst

Summary
of

anomalies

Pre-generated dataset

Testing Mode

Training Mode

Packet
Metadata

Figure 3.5: Inspectobot’s architectural design.

Similar to the architectural design of MINDS, as shown in Figure 1.5 on page
11, Inspectobot will be able to read packet streams from the network interface.
In addition, it should be possible to use pre-generated datasets like the DARPA
IDS Evaluation Sets, or more customized (artificially generated) datasets to
test each aspect of Inspectobot. Unlike MINDS, Inspectobot will need to enter
one of two different modes. If the mode is set to Training, GRIDAC is used for
generating rules that are stored in a hierarchy. If the mode is set to Testing, the
objects (or network packets) in the dataset is matched against the hierarchy
of rules. If the packet is found to be anomalous, it is given an anomaly score,
and the metadata of each packet is added (along with the anomaly score) to
a relational database. Then, the Security Analyst has the ability to both sort
and group the anomalies, based the anomaly score or the packet’s source or
destination addresses. This way, it is possible to accumulate the anomaly score
of several packets, based on their metadata.
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When Inspectobot enters the Testing mode, it will check each packet in the
dataset sequentially. The packet is then sent to the anomaly detector where it
is tagged as anomalous or normal. This process is explained in Algorithm 3.9.

Algorithm 3.9 Detecting Anomalies
for each packet in data set do

processed rules = array
current rules = initial rules {The initial rules generated in the hierarchy}
while current rules is not empty do

pop current rule from current rules
most general rule = current rule
if current rule is not in processed rules then

if packet matches current rule then
current rules = the children of current rule {Continue down the hier-
archy}

else if current rules is empty then
wildcards = amount of ? in most general rule
constants = amount of C in most general rule
anomaly score = wildcards− constants
break

else
if current rule contains more ? than most general rule then

most general rule = current rule
end if

end if
end if
push current rule to processed rules

end while
if anomaly score > 0 then

store anomaly score in database
store packet metadata in database {IP addresses, ports etc.}
store rule metadata in database {features that don’t match the packet}
store parent rule id in database

end if
end for

The packet is then matched against the initially created rules (or the root
nodes in the hierarchy) in the same order as when the rules were generated.
If the packet matches a given rule (or node), it is then matched against the
rule’s children (or child nodes). If the packet does not match a specific rule,
it is matched against the other rules at the current level in the hierarchy. If
the packet does not match a specific rule, it is matched against the other rules
at the current level in the hierarchy. If the packet does not match any of the
nodes in the current level in the hierarchy, it is flagged as anomalous, and an
anomaly score is calculated based on the most general rule at that specific level
(meaning the rule with the most ?). This way, an anomalous packet receives
the maximum amount of points at any given level.
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Calculating the anomaly score is not a complex task, as it is merely the dif-
ference between the amount of ? and C for the rule in question. However, if
the anomaly score is 0, or negative, the packet is classified as normal. The
anomaly score may be negative if a packet is able to work its way down the
hierarchy at the point where the rules contain more C than ?. This might also
happen at the higher levels in the hierarchy, as there might exist a rule in one
of the top levels that contains more C than ?.

In addition to generating an anomaly score, Inspectobot also attempts to group
anomalies into possible attacks, by looking at the packet’s address fields and
timestamp value, as shown in Algorithm 3.10.

Algorithm 3.10 Grouping Possible Attacks
for each anomaly in detected anomalies do

matching attacks = array
source address = anomaly source address
destination address = anomaly destination address
timestamp = anomaly time stamp
new attack = false
for each attack in possible attacks do

a source = array of all source addresses in attack
a destination = array of all destination addresses in attack
a common = a source ∩ a destination
if (source address in a source or destination address in a destination) and
source address ∪ destination address in a common then

push attack to matching attacks
end if

end for
for each attack in matching attacks do

last timestamp = last timestamp in attack.
if timestamp− last timestamp > 3600 then

new attack = true
else

push anomaly to attack {Update attack with anomalous packet.}
push attack to possible attacks

end if
end for
if new attack then

attack group = array
push anomaly to attack group
push attack group to possible attacks

end if
end for

Whenever a packet receives an anomaly score larger than 0, an attempt is
made to group the packet towards similar anomalous packets, thus forming
the basis for a potential attack. This is done by comparing the source and
destination addresses of the packet toward the attacks that have already been
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detected. If there is a match, the packet is added to the previous attack –
but only if it occurred within a one hour time span of the other packets in
the attack. If not, it is added as a new attack. This is also the case if the
anomalous packet does not match any of the previously detected attacks.

The next section explains how Inspectobot has been implemented, before the
Test Programme is presented in Section 4.1.

45



3.7 Implementation

GRIDAC has been implemented in Inspectobot using the Python programming
language, and consists of three main components, also written using Python.
These are:

• inspecto-generate, which is responsible for generating the rules.

• inspecto-filter, which compares unknown traffic towards the rule hierar-
chy, calculates anomaly scores, and attempts to group packets according
to different requirements.

• inspectoweb, which is the graphical frontend to the output from both
inspecto-generate and inspecto-filter, and allows an analyst to look into
the data that has been produced.

inspecto-generate

The component inspecto-generate represents the ”Training” mode of Inspecto-
bot, as illustrated in Figure 3.5. It is responsible for generating multiple rules
that are organized in a hierarchical manner, based on certain input parameters
from the user, as specified in REQ1. The required parameters are divided into
two main categories, and shown in Tables 3.6 and 3.7.

Table 3.6: Parameters Related to Dataset Parsing

Name Switch Description

Number of bytes -b
Number of bytes to consider, starting with the
IP header. Default is 48 bytes.

Bits per group -g
The number of bits each feature in the rule
should represent. The default is 8 (implying 8
bits in 1 byte).

Training packets -p
The amount of (randomly selected) packets that
will be loaded from the input file.

Artificial -a
If set, the input file is treated as an artificial
dataset.

Randomize -r
If set, objects from the input file are loaded in
random order.

The above table shows the parameters that are required for defining how the
input file should be parsed. This is a very important in terms of customizing
the various experiments that will be performed – as it enables the possibility
of setting the amounts of bits per group, the amount of bytes that should be
inspected for each packet, and also makes it possible to use artificial datasets.

Table 3.7, as shown below, lists the required parameters that are used during
the training phase.
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Table 3.7: Parameters Related to Dataset Training

Name Switch Description

Target ratio -t
The ratio of packets the generated rule should
match. (e.g. 50 %)

States per action -s The number of states per action for each TA.

Force converge -c

If the TA is unable to decide between two ac-
tions, it is forced to make a decision based on
its current state, after a given amount of itera-
tions. (e.g. 10000).

Tree depth limit -d Maximum hierarchy depth.

Node limit -l
Stop expanding the hierarchy if one of the leaf
nodes classifies the given ratio of the total input
file.

These parameters are equally important as those listed in Table 3.6. Target
ratio enables the user to set the target classification ratio of a given rule. Note
that the actual classification ratio might differ somewhat from the target ratio,
as it is merely used as a guideline for the teams of TA. The two last parameters
are used to minimize the possibility of creating rule hierarchies that are too
strict – meaning that there could be a single rule per packet. Node limit
effectively eliminates this problem by checking that a rule does not classify
more than a given ratio of the total dataset.

To better understand what a rule might look like after it has passed through
inspecto-generate, consider the following example. If the number of bytes (-
b) is set to 48 bytes, and the amount of bits per group (-g) is set to 8, the
following rule might be created once all the TA have converged using the format
fn = αx(u)).

C(01000101) C(00000000) C(00000010) I(01011101) I(10100011) I(01110000)
C(01000000) C(00000000) C(00111101) C(00000110) I(11111111) I(01011111)
C(10111100) C(01111110) C(11001000) C(00010111) C(00001010) C(00000000)
C(00001010) I(00110101) I(10010011) I(10101100) C(00000000) C(01010000)
I(10000000) I(01111100) I(00100000) I(10010100) I(00001001) I(11100011)
I(10111001) I(10111011) C(10000000) C(00011000) C(00000001) I(00111010)
I(00100110) I(11100100) C(00000000) C(00000000) C(00000001) C(00000001)
C(00001000) C(00001010) C(00000000) C(00110100) I(01111000) I(01110110)

Figure 3.6: Example rule with bit grouping set to 8, and the number of inspected
bytes to set to 48.

The rule is read from left to right, and from top to bottom. The first rule
element has been set to constant, denoted by the letter C, and describes the
first eight bits in the IP header. Note the bitstring 01000101 in the first
element. The first four bits specifies which IP protocol in use∗, and the last 4

∗ Unless there are other network protocols involved, like IPv6, the first four bits are always constant,
and set to 0100 (or 4 in decimal notation).
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bits specifies the amount of 32-bit words∗ in the IP header.

Using graphviz †, it is also possible to automatically create a graphical visual-
ization of how the generated rules relate to each other, as shown in Figure 3.7.
The purpose of the below figure is not to show the details of the rule tree, but
to present its overall complexity.

        

Figure 3.7: Graphical representation of a rule hierarchy, created automatically using
graphviz.

The above figure displays a rule tree with a depth of 13 levels. The number of
levels is determined by the number of rows in the tree. Table 3.8 provides an
explanation of the different symbols found in Figure 3.7

Table 3.8: Rule Tree Symbol Explanation
Symbol Description

        Input dataset that is used in the training process.

Node describing more traffic than the specified node limit.
Unless the tree depth level has been reached, this node will
be expanded into another tree level.
Node describing less traffic than the specified node limit. It
will not be expanded further.

Note that the node limit in the tree depicted in Figure 3.7 was set to 5 %.
No maximum depth was specified, which allowed the tree to expand until the
node limit was reached in all branches of the tree.
∗ As shown in Figure 2.4 on page 25, the amount of 32-bit words in the IPv4 header is set to 0101

(or 5 in decimal notation), unless any additional options are set. † Graphviz is open source graph
visualization software. http://www.graphviz.org/
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inspecto-filter

Inspectobot’s three components have one thing in common. They all rely on
a database to both store and retrieve information. When inspecto-generate
has finished generating a hierarchy, it uses a Python module called pickle∗ for
serializing (and de-serializing) the object structure as a physical file that can
be stored in a file system. The path to the pickle object is then saved in a
database, as displayed by the Entity Relationship Model in Figure 3.8, along
with all the parameters that were used in generating the hierarchy. In the
below figure, each attempt to create a rule hierarchy is referred to as a ’Run’.

User

id int

name varchar

email varchar

username varchar

password_sha1 varchar

created Timestamp

Test Run

id int

user_id int

alias varchar

run_id

artificial_dataset Boolean

finished Boolean

analyze_events Boolean

Run

id int

alias varchar

data_set_file varchar

pickle_file varchar

bytes id

force_converge int

bits_per_group int

states_per_action int

target_percentage float

node_limit int

training_set_size int

artificial_dataset boolean

tree_depth int

randomize boolean

created Timestamp

1

n  

1

n

Anomaly

id int

testrun_id int

attack_id int

destination_address varchar

destination_nationality varchar

destination_port int

source_address varchar

source_nationality varchar

source_port int

timestamp timestamp

anomaly_score int

parent_node_id varchar

1

n   

AnomalyFields

id int

anomaly_id int

testrun_id int

node_id int

tried_value varchar

1

  n

 n 

Attack

id int

alias int

tried_value varchar

autologged boolean

status int

1

1

Figure 3.8: ER diagram of Inspectobot’s Database Structure

For each run, a series of tests can be performed. This is handled by inspecto-
filter, and the results are stored in the tables TestRun, Anomaly, Anomaly-
Fields and Attack.

There are two parameters required when using inspecto-filter. The first is the
pathname to the dataset containing the unknown packets, and the second is
the location of the pickle object that contains the rule hierarchy used when
classifying packets.

∗ http://docs.python.org/library/pickle.html
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When inspecto-filter is initialized, it matches every packet in the input dataset,
and attempts to classify them as normal or anomalous.

If an anomalous packet is detected, inspecto-filter looks up information about
the relevant nodes in the rule hierarchy, and temporarily caches this infor-
mation. Then, it attempts to categorize the anomalous packets into different
attacks, as shown in Algorithm 3.10 on page 44. Each possible attack is also
cross-referenced with the aforementioned Detection Truth Lists included in the
DARPA IDS Evaluation Sets.

Finally, all the results are stored in the database, and it can then be retrieved
using the graphical user interface, inspectoweb.

inspectoweb

The graphical user interface, inspectoweb, makes it easier for an analyst to
view the anomalous packets, and get a detailed overview of current events
and possible attacks. It is written as a web application using Python and
Javascript – and utilizes the web development frameworks, Pylons∗ and jQuery
†, in addition to the Python object relational mapper (ORM) SQLAlchemy ‡.

Figure 3.9: Screenshot of Inspectoweb, the Graphical User Interface to Inspectobot.
It presents a list of grouped events to the user.

The screenshot displayed in Figure 3.9 shows a list of events (or anomalies) that
are grouped by the source and destination addresses. The anomalous packets
are collected from the DARPA IDS set. Additional information generated by
inspecto-generate and inspecto-filter is also displayed.

∗ http://www.pylonshq.com/ † http://www.jquery.com ‡ http://www.sqlalchemy.com
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It is also possible to get a detailed view of all the possible attacks, where the
analyst has the opportunity to filter packets based on attack identification
numbers, as shown in Figure 3.10.

Figure 3.10: This view gives the analyst a list of possible attacks, with the possibility
of filtering them based on their identification number.

This enables the possibility of filtering all the packets that are related to a
possible attack, such that the packets can be further analyzed in tools like
Wireshark∗.

∗ http://www.wireshark.org
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Chapter 4

Testing and Validation

In this chapter, verification of GRIDAC and the prototype Inspectobot is car-
ried out. The research questions that were defined in Section 1.2 on page 5
are also researched, and the findings are presented here.
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4.1 Test Programme

In order to thoroughly investigate the research questions, a formal Test Pro-
gramme was created. This test programme included a set of test cases, care-
fully designed to evaluate different aspects of Inspectobot. The test programme
is displayed in Table 4.1.

Table 4.1: Test Programme

ID Title Description

TC 1 GRIDAC Parameter Tuning

Determine the optimal parameters for
use with artificial data and real life net-
work packets, such as the amount of
states per action, target ratio and force
converge limit.

TC 2
Classification Evaluation with
Artificial Data

Determine that Inspectobot is able to
mine frequent itemsets from a dataset.
Generate several datasets using a col-
lection of pre-defined template objects.
Inspectobot will then be set to classify
these datasets, and the purpose in each
case is to identify patterns matching the
pre-defined template objects.

TC 3
IDS Evaluation with Artificial
Data

Determine that Inspectobot is able to
function as an IDS. Using two artifi-
cially generated datasets - one normal
and one containing anomalies - see if
Inspectobot is able to filter out objects
that do not match the rules generated
when training on the normal data set.

TC 4
Classification Evaluation with
Network Packets

Determine that Inspectobot is able to
extract frequent patterns from a dataset
consisting of real network packets. Us-
ing the 1999 DARPA IDS Evaluation
Set, see if Inspectobot is able to gen-
erate rules that can be used to classify
different network packets.

TC 5
IDS Evaluation with Network
Packets

Determine that Inspectobot can be used
to detect anomalies in network packets.
Using the 1999 DARPA IDS Evaluation
Sets, investigate if Inspectobot is able
to detect the listed attacks.

Of these test cases, TC 5 was divided into two subtests, which are presented
in Table 4.2.
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Table 4.2: Test Case 5 - Subtests

ID Title Description

TC 5.1 Attacks Detected
How many of the attacks are actually
detected by Inspectobot, and which at-
tacks remain undetectable.

TC 5.2 Detection Rate
Based on the amount of detected at-
tacks, how many of these are real posi-
tives compared to false positives?

The details of the different tests were documented in separate test case docu-
ments, and in Appendix B, an example is included. The key findings that were
gathered during the execution of the test cases are included in the following
sections.

4.2 GRIDAC Parameter Tuning

The underlying parameters to Inspectobot can be tuned and altered in a variety
of ways. In order to find the optimal combination of all the parameters, several
preliminary tests were conducted. The details of these tests are not included
here, but the derived parameters are presented.

In Table 3.6 on page 46, a brief explanation of the different parameters was
given. Two sets of parameter values were derived from the preliminary tests;
one for testing with artificial datasets, and another for testing with network
packets.

Table 4.3: Parameter Values used in Test Programme

Name Switch Artificial Data Network Packets
Number of bytes -b 10 48

Bits per group -g 8 8
Training packets -p 1000 10000

Artificial -a True False
Randomize -r True True

Target ratio -t 90 % 90 %
States per action -s 70 70

Force converge -c 1000 10000
Tree depth limit -d Not set Not set

Node limit -l Varies Varies

Table 4.3 describes the parameter values that were used in all of the test cases
described in the Test Programme. As can be seen, there are some differences
between the parameters used for artificial datasets and those used for network
packets.
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The reason for these differences is that the artificial datasets are of a smaller
size than the datasets containing network packets. Therefore, a larger number
of bytes are needed when dealing the larger data sets (like the DARPA IDS
Evaluation Sets). Also, since a certain number of packets are selected randomly
from the entire dataset during the training process, more packets are needed
in order to get an accurate representation of a larger dataset. More packets
available in the training process also means that the force converge parameter
can be set to a higher value. This is to allow for more exploration.

For both artificial and network packet datasets, the tree depth limit was dis-
abled in order to allow the tree to grow to its full potential, reaching the set
node limit in all branches before halting tree growth.

One of the more influential parameters of Inspectobot is the parameter con-
trolling the number of states per action used in the training process. More
states per action leads to increased accuracy, but also causes performance to
drop, as each LA will require more iterations in order to converge.

To illustrate how the number of states per action affects the tree generation
performance, Figure 4.1 shows how the total number of iterations required to
generate a tree - using the same input data in all cases - increases as a direct
consequence of adjusting the number of states per action.
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Figure 4.1: The number of required iterations needed to generate a tree in relation
to the number of states per action that is used.

By looking at the curve in Figure 4.1, it becomes evident that the number of
states per action has a significant effect on the number of iterations that are
required in order to generate a tree. After several tests, the number of states
per action parameter was set to a value of 70. This provided a good balance
between accuracy and performance.

After the input parameters had been determined, the rest of the test cases
could be executed.
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4.3 Classification Evaluation with Artifical Data

Determining all the frequent itemsets in a dataset consisting of network packets
is a very complex task, and almost impossible for a human entity to accomplish.
Because of this, it is hard to verify that all patterns have actually been correctly
identified. To avoid this problem, several simple, artificially generated datasets
with known patterns was used. Using artificial datasets, the classification
aspect of Inspectobot could be verified.

Dataset Description

A number of different objects, generated from template objects which were
defined in dataset templates, were included in the artificial datasets. Using
only these datasets, the goal of each test was to correctly identify the recurring
patterns that were defined when the dataset was first generated. By doing this,
Inspectobot would be able to mine all the objects that were generated from
one template object - matching the designed dataset split ratios∗ perfectly.

A brief description of the different datasets that were generated is given in
Table 4.4.

Table 4.4: Dataset Overview

ID Size Split Ratios Description

DS 1
100000
objects

25 %, 50 %, 75 %,
100 %

Consists of four different ob-
jects, where some of the ob-
jects are subsets of other ob-
jects.

DS 2
100000
objects

12.5 %, 25 %, 37.5 %,
50 %, 62.5 %, 75 %,
87.5 %, 100 %

The same as DS 1, but with
eight objects instead of four.

DS 3
100000
objects

4 x 25 %

Consists of four objects,
where the feature values of
the objects are completely
unique. The only split ratio
that can be achieved is 25 %.

DS 4
100000
objects

8 x 12.5 %
The same as DS 3, but with
eight objects instead of four.

Each dataset provided Inspectobot with a unique challenge. DS 1 challenged
Inspectobot’s ability to distinguish between objects that had some feature
values in common. The different object types that were added to this dataset
can be seen in Figure 4.2.

∗ Split ratio refers to the total percentage one object type represents in the dataset. Achieving a
split ratio of 0.2, a rule that matches 20 % of the objects in the dataset would have to be created.
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1: 11111111000000000000000000000000
2: 11111111111111110000000000000000
3: 11111111111111111111111100000000
4: 11111111111111111111111111111111

Figure 4.2: The different objects types present in DS 1. One object per line.

DS 1 contains 25000 objects of each object type, adding up to 100000 objects
in total. Because Inspectobot has been set to group 8 bits together, the result-
ing rule should consist of four rule elements. For instance, in order to classify
75 % of the objects present in DS 1, the rule described in Figure 4.3 would
have to be generated.

C(11111111) C(11111111) I(00000000) I(00000000)

Figure 4.3: Rule classifying 75 % of the objects in DS 1.

By varying the number of constant fields, Inspectobot had to match all four
possible split ratios. DS 2, which was designed in the same way as DS 1, had
eight possible split ratios.

In addition to testing if Inspectobot was able to identify objects which con-
tained similarities, it was also necessary to see how it would manage when the
template objects were 100 % different from one another. To test this, DS 3
and DS 4 were created. Figure 4.4 provides an example of four of the objects
contained in these datasets.

10000000100000001000000010000000
01000000010000000100000001000000
00100000001000000010000000100000
00010000000100000001000000010000

Figure 4.4: Examples of objects present in DS 3 and DS 4. One object per line.

When grouping 8 bits together, these objects do not have any feature values
in common. Therefore, it is impossible to create rules that describe more than
one object type at a time.
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Artificial Classification Results

Using this dataset collection, the classification aspects of Inspectobot could be
evaluated. Table 4.5 shows the results from the tests, where 5 iterations per
dataset were used.

Table 4.5: Results from testing the classification aspect of Inspectobot

Identified Template Objects
DS 1 DS 2 DS 3 DS 4

1 4/4 8/8 4/4 8/8
2 4/4 8/8 4/4 8/8
3 4/4 8/8 4/4 8/8
4 4/4 8/8 4/4 8/8
5 4/4 8/8 4/4 8/8

Total 4/4 8/8 4/4 8/8

Table 4.5 shows that all template objects were correctly identified, meaning
that Inspectobot had successfully learned all of the frequent itemsets present
in all of the datasets.

Now that the classification aspect of Inspectobot had been verified, the next
step was to determine if it would function as an IDS - separating unknown
objects from normal objects by matching against learned frequent itemsets.

4.4 IDS Evaluation with Artificial Data

In order to determine if Inspectobot was able to detect and filter out anoma-
lies, two artificial datasets were generated; one dataset containing normal ob-
jects that was used for training, and one dataset containing both normal and
anomalous objects that was used for testing.

An anomalous object is an object that does not support any of the learned
frequent itemsets in a tree. For each object that is filtered through a given
tree, an anomaly score is calculated. If the score is positive, Inspectobot sees
the object as an anomaly. If the anomaly score is negative, it is considered
normal, and no alarms are raised.

Evaluation Method

The dataset that was used for training, contained one million objects which
were based on seven different template objects. Figure 4.5 gives an overview
of the different objects that were included in the dataset, in addition to the
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amount of each object type that was included. A ∗ indicates that the value of
that particular object feature can be either 0 or 1 for that object type∗.

30% 0 * 0 1 * * 1 *
30% 0 1 * * * 1 1 0
10% 0 * 1 * 0 0 1 *
12% 0 * * * * * 0 1
8% 0 0 * 0 1 * 1 *
5% 0 1 0 * * * 0 1
5% 0 0 0 * * * 0 1

Figure 4.5: The proportion of different object types that are found in the artificial
dataset used for training Inspectobot.

When Inspectobot was trained on this dataset, the bits per group parameter
was set to a value of 1. This meant that each value in Figure 4.5 was considered
an object feature value, and resulted in 8 groups per object.

After Inspectobot had created rules to describe the frequent patterns in the
dataset, the resulting tree was tested against a dataset which contained anoma-
lous objects. In addition to the normal object types described in Figure 4.5,
this dataset also included a variable amount of three additional objects, which
differed from the normal ones in varying degrees. Figure 4.6 contains an
overview of these objects.

1 * * * * * * *
0 * * * * * 1 *
* * * * * * 0 *

Figure 4.6: The proportion of different anomalous object types that are found in
the artificial dataset used for testing Inspectobot.

The objects in Figure 4.6 were grouped to form four different artificial attacks,
and were then mixed in with the normal objects to emulate background noise.

∗ The values for these fields are selected randomly when the datasets are generated.
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Artificial IDS Results

As previously mentioned, the objects in Figure 4.6 should be assigned higher
anomaly scores than the normal objects when they are compared to the rules
in the tree. Figure 4.7 shows the anomaly score distribution in the artificial
dataset after running the test dataset through the generated tree.
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Figure 4.7: The anomaly score distribution for an artificial dataset containing four
artificial attack instances. The peaks indicate the locations of the attacks.

The anomaly distribution displayed in Figure 4.7 clearly shows that there are
four areas which have higher anomaly scores than the rest of the dataset.
These areas correspond to the four artificial attacks that were inserted into
the dataset. This shows that Inspectobot was able to detect the anomalous
objects, and that they were assigned a higher anomaly score.

As can also be seen in the figure, one attack instance generated a lower anomaly
score than the others - the reason being that the objects in this attack had
more features in common with the normal objects.

4.5 Classification Evaluation with Network Packets

Having determined that Inspectobot was able to mine frequent itemsets and
that it could detect anomalies in artificially generated datasets, the next step
was to determine how well it would perform with datasets containing real
network packets. To determine this, a customized network packet dataset and
the 1999 DARPA IDS Evaluation Sets were taken into use.

The 1999 DARPA IDS Evaluation Data Sets

In 1999, DARPA contracted the Lincoln Laboratory at MIT to develop a range
of datasets with the purpose of testing the performance of existing IDS. The
datasets try to simulate network traffic occurring in a small US Air Force base
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that is connected to the Internet. The internal network is connected to the
Internet by a CISCO router, and network traffic is captured on both sides of
this router. The captured traffic is made available in separate files for inside
and outside network traffic.

Only the network packets captured on the outside of the CISCO router was
used when evaluating Inspectobot, as explained in the Key Assumptions and
Limitations on page 19.

A total of five weeks worth of network traffic is provided in the set; Three
weeks for training, and two weeks for testing. Week 1 and 3 are attack free,
while week 2 contains labeled attacks. Week 4 and 5 contains over 200 labeled
attacks in total. [18]

Split Criteria Analysis

Before evaluating Inspectobot with the DARPA dataset, Inspectobot’s ability
to generate a single rule from a dataset consisting of network packets needed
to be investigated. To accomplish this, a custom made dataset was used. This
dataset was created manually, and consisted of traffic towards two different IP
addresses, hosting a combined total of two services.

Exactly the same amount of network packets for both IP addresses was in-
cluded, where both hosts were represented by 500 network packets each, adding
up to 1000 network packets in total.

The dataset was filtered to only include network packets in one direction. Only
traffic directed towards one of the two servers was included - everything else
was removed. This was done to reduce the randomness of the values contained
in the IP destination address field, making it easier to interpret the results.

The motivation for filtering the dataset in this way was to determine if the
prototype could identify and use the IP destination address field as a split
criterion, and thereby achieve a perfect split ratio of 50 %.

Due to how GRIDAC works, a classification target of 50 % means that the
rewards for selecting either a constant field or a wildcard field is equal. This
leaves the randomly selected filter packet and the randomly drawn training
packets with the deciding factor on how the generated rule turns out∗.

∗ If an automaton is unable to decide whether to choose a constant or a wildcard for its object
feature, a manually adjustable limit can be used to force the automaton to decide after a given
number of iterations. This keeps the training process from stagnating.
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Figure 4.8 shows the inner workings of a rule that was generated using the
manually created dataset, along with the achieved split ratio.

Packets: 1000

Element 1
IPv4: Version, IHL
Bitstring: 01000101

Element 3
IPv4: Length
Bitstring: 00000010

Blocked: 50.1%

Element 48
IPv4: Payload
TCP: Payload
Bitstring: 00001010

Packets passed: 499
POPP: 49.9%

Figure 4.8: The impact of the different split criteria in a rule that was generated
with a 50 % classification target.

As shown in the figure, only one constant field is active in the classification
process∗, matching a classification percentage of 49.9 %, which is very close to
the target of 50 %.

Although the outcome deviated from what was expected, Inspectobot com-
pleted its task successfully, classifying 49,9 % of the objects in the dataset.

To understand why the system did not manage to classify exactly 50 % of the
dataset, the generated rule, displayed in Figure 4.9, had to be analyzed.

C(01000101) C(00000000) C(00000010) I(01011010) I(10011111) I(00001011)

C(01000000) C(00000000) C(00111100) C(00000110) I(00000100) I(11001011)

C(10111100) C(01111110) C(11001000) C(00010111) C(00001010) C(00000000)

C(00001010) C(00110010) C(10101001) I(01011101) C(00000000) C(01010000)

C(10101110) I(00000011) I(10101001) I(01000011) C(10000111) I(00111101)

I(01101001) I(10111011) C(10000000) C(00011000) I(00000000) I(10111100)

I(10111100) I(01111010) C(00000000) C(00000000) C(00000001) C(00000001)

C(00001000) C(00001010) C(00000000) C(00101111) C(00011101) I(00001100)

Figure 4.9: A rule generated with a classification target of 50 %, showing the different
split criteria that has been used.

The third rule element in the rule, which has been highlighted in the above fig-
ure, is the IP Length field. The four other highlighted rule elements correspond
∗ Even though only one constant field is active in the classification process, there may be other
constant fields present in the rule as well, but they could be shadowed by an earlier occurring
constant field, rendering them inactive.
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to the four octets that together make up the IP destination address.

As can be seen in the figure, the IP address destination fields were in fact
identified as split criteria, but all four of them were shadowed by the earlier
occurring IP Length field. That is, the IP Length split criterion had already
classified all of the network packets that would have been taken care of by the
four IP destination address rule elements.

Despite of this, a near perfect classification percentage was achieved, classifying
0.01 % less than the optimum.

Having determined that Inspectobot could successfully identify object split
criteria in a dataset containing network packets, the next step was to see if it
would be able to generate a tree describing 100 % of a given week in the 1999
DARPA IDS Evaluation Set.

Tree Generation

To achieve this, Inspectobot was set to examine one full week of training data.
Once finished, the resulting rules were examined. An example of the size of a
tree generated from one week of network packets can be seen in Figure 4.10.

        

Figure 4.10: Example of a tree that was generated with one week of training data
from the 1999 DARPA IDS Evaluation Set. Each square corresponds to one rule.

As can be seen, multiple rules were needed in order to classify the entire
dataset. In addition, a lower node limit of 5 % was used, meaning that the
generated tree could have become even more detailed if permitted. A descrip-
tion of the different symbols in the Figure can be reviewed in Table 3.8 on
page 48.
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To gain further insight into the tree generation process, Figure 4.11 provides
an example of how many iterations the LA required to generate this tree. Since
the 48 first bytes of each network packet is inspected, 48 object features - each
with one dedicated LA - are active in the training process.
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Figure 4.11: The number of iterations that were required for each object feature to
generate a tree with a 5 % node limit.

Figure 4.11 gives an indication of which object features Inspectobot struggled
the most with. Low iteration values indicate that it was easy for Inspectobot
to decide on an action for that particular object feature. Higher values indicate
that it had trouble deciding.

When Inspectobot has trouble deciding on an action for a given feature, the
struggling automata will be forcefully converged - one by one - in order to
prevent stagnation. As previously explained, this process is done sequentially,
and that explains why the number of iterations for some of the automata
gradually increases along with the object feature number in the figure.

To ensure that Inspectobot had been able to successfully learn the normal
traffic patterns in the dataset, the finished tree was tested against the same
dataset that was used in the training process. This yielded no anomalous
objects, so the conclusion that Inspectobot was able to detect and learn normal
traffic patterns could be drawn.

4.6 IDS Evaluation with Network Packets

Now that Inspectobot had proven itself able to fully describe a fairly large
dataset containing real network packets, the next step was to determine if it
could separate abnormal network packets from normal network packets, and
flag them as anomalies as necessary.
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Evaluation Method

When evaluating the detection rate of an IDS, there are three important factors
to consider:

• The amount of false positives generated; Normal traffic falsely reported
as anomalous by the IDS.

• The amount of real positives generated; Attacks correctly identified by
the IDS.

• The amount of false negatives generated; Attacks not identified by the
IDS.

To determine if an attack was real or not, detailed knowledge of the attacks
present in the DARPA set was required. Thankfully, DARPA provides records
of the attacks in what they refer to as the identification and scoring truth.
All detected anomalies were cross-referenced with these records in order to
measure the rate of false positives, real positives, and false negatives.

Figure 4.12 describes how the IDS detection performance for Inspectobot was
measured.

Figure 4.12: Basic process flow for the attack evaluator used when comparing de-
tected attacks against the DARPA identification and scoring truth.

As Figure 4.12 shows, Inspectobot first reads the network packets, filters out
any anomalies, groups the anomalies into several attacks, before the attacks
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are compared to the DARPA identification and scoring truth records. Here,
the real positive, false positive, and false negative rates are calculated and used
to generate a ROC curve, which shows the overall detection performance to
Inspectobot for the total number of attacks ∗ contained in the DARPA set.

Several trees were generated during the test. The tree generation parameters
remained constant throughout the entire test case - with the exception of
the parameter controlling the node limit and the input file used for training.
Three different node limit values were tested in order to document the effect
each value had on the detection rate. In addition, different combinations of
the training data from week 1 and 3 were tested, in order to determine if
some combinations would achieve better detection rates than others. For all
combinations of the training data and the tree generation parameters, three
iterations were executed in order to determine the consistency of the results.

Attack Detection

To get an impression of how Inspectobot is able to distinguish between normal
and anomalous traffic, some examples of frequent itemsets - or rules - and
which attacks they can identify have been included in Table 4.6.

Table 4.6: Rule examples and some of the attacks they can detect.

Rule Attacks
ver+ihl:0x45, frag1:0x40, frag2:0x00,
proto:0x06, srcport1:0x00, tcphl:0x50, urg-
ptr1:0x00, urgptr2:0x00

ps

ver+ihl:0x45, dscp:0x00, frag1:0x00, frag2:0x00,
proto:0x06, tcphl:0x50, urgptr1:0x00, urg-
ptr2:0x00

ps

ver+ihl:0x45, dscp:0x00, len:0x00, frag1:0x40,
frag2:0x00, ttl:0x40, proto:0x06, dstaddr1:0xac,
dstaddr2:0x10, dstport1:0x00, dstport2:0x17,
tcphl:0x50, recwd1:0x7d, recwd2:0x78, urg-
ptr1:0x00, urgptr2:0x00, pld1:0x00, pld5:0x00,
pld7:0x00, pld8:0x00, pld9:0x00

ps, guesstelnet, sendmail

As seen, each rule consists of selected bytes from a packet, combined with a
hexadecimal representation of the corresponding byte value. Thus, consider-
ing the first row of the table, network packets of the so-called ps-attack do not
match the frequent itemset ver+ihl:0x45, frag1:0x40, frag2:0x00, proto:0x06,

∗ The ROC chart presenting the performance rate of fpMAFIA, as showed in Figure 1.4 on page
10, displays the number of detected attacks in relation to the total false positive rate - while Figure
4.13 shows the number of detected attacks

total amount of attacks
in relation to the overall rate of false positives. This makes it

easier for the reader to visualize the total detection rate in the 1999 DARPA IDS Evaluation Sets.
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srcport1:0x00, tcphl:0x50, urgptr1:0x00, urgptr2:0x00, and are therefore re-
ported as anomalies.

IDS Performance

When evaluating Inspectobot’s IDS performance, only the outside data from
the DARPA set was used. All of the generated trees were tested against week
4 and 5 of the DARPA set, and the results are shown in the form of several
ROC (Receiver Operator Characteristic) curves. As explained in Figure 4.12,
the rate of real positives, false positives and false negatives is calculated for
all of the generated trees. These rates are used as a basis for the ROC curves,
where the rate of real positives runs along the y-axis, and the rate of false
positives runs along the x-axis.

For each real positive that is detected, a point is added to the curve. The
y-coordinate denotes the current rate of real positives, while the x -coordinate
denotes the current rate of false positives that have been detected so far. A false
positive rate of 1 means that 100 % of the false positives that were generated
during the test had occurred when x true positives had occurred.

For example, the point (0.5, 0.3) denotes that when 30 % of all attacks con-
tained in the dataset had been identified, 50 % of all generated false positives
had at that time occurred.

ROC curves are very useful for visualizing how the generated trees perform in
different areas of the dataset. They will often show different attacks that are
detected - at various timestamps in the dataset. A curve that quickly moves
towards (1, 1) indicates that the tree in question has a high detection rate, and
that it has generated a low amount of false positives.

The detection rate achieved by each tree, is determined by the highest y-value
in the ROC charts. The amount of false positives can be seen as points along
the x-axis.
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As previously mentioned, three node limits were tested for each dataset. Three
trees were generated for each node limit, and in Figure 4.13, the best trees from
each node limit are displayed. One ROC chart per training dataset has been
included below.
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Figure 4.13: ROC charts showing how the IDS performance of Inspectobot varies
depending on the training data and node limit that is used.

As illustrated in Figure 4.13, there were some variations in the results. The
trees that got the best detection rates were the ones that were generated with
a node limit of 5 % - and particularly the ones trained with only week 1.
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The amount of false positives changed in accordance with the set node limit.
A node limit of 5 % provided for a moderate amount of false positives. The
trees generated with a node limit of 1 % had a lower detection rate, and also
showed an increase in the amount of false positives generated. Finally, the
trees generated with a 10 % node limit generated less false positives than in
the other cases, but were also the ones with the poorest detection rate.

To further demonstrate the effect the node limit had on the detection sensitiv-
ity, Figure 4.14 shows the anomaly scores for three trees that were generated
with different node limits. The same input data was used in all cases.
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Figure 4.14: Comparison of anomaly distribution between three trees generated with
different node limits.
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As displayed in Figure 4.14, the majority of the dataset received anomaly scores
below 0. Knowing that a typical computer network contains more normal
traffic than anomalous traffic, this was in line with what was expected. A
spike in the anomaly score indicates that an anomaly is present. Notice that
as the node limit increases, the number of spikes decreases. Although the
number of detected anomalies is at its highest when a low node limit has been
set, all of these anomalies are not necessarily considered real positives.

To give a more comprehensive view of Inspectobot’s detection capabilities,
Table 4.7 provides an overview of the results that were gathered from all of
the tests that were executed.

Table 4.7: Results from IDS evaluation using the DARPA set
Parameters Ratio False Positives

Training Data Node Limit avg min max avg min max
Week 1 Outside 1 % 0.56 0.55 0.57 412.67 392 453

5 % 0.73 0.72 0.74 123 120 129
10 % 0.43 0.42 0.44 61.67 52 69

Week 3 Outside 1 % 0.54 0.50 0.58 427 426 429
5 % 0.63 0.57 0.66 88.33 81 96
10 % 0.54 0.53 0.55 59.67 58 61

Week 1+3 Outside 1 % 0.54 0.52 0.56 418 404 436
5 % 0.61 0.57 0.66 82 68 94
10 % 0.46 0.43 0.53 47.33 40 61

Table 4.7 shows that the best detection rates were achieved by the trees that
were trained on week 1, and used a node limit of 5 %.

To get an impression of the overall detection capabilities of Inspectobot, all of
the results from all of the generated trees have been combined, and in Table
4.8, an overview of the attack types that remain undetected by all trees is
given.

Table 4.8: Undetected DARPA Attack Types
Alias Instances Console/remote Inside/outside Stealthy
anypw 2 console - no
dict 6 remote inside no

guesspop 1 remote outside no
illegalsniffer 14 remote inside mix

land 2 remote both no
ntfsdos 3 console - no

resetscan 1 remote inside yes
sshprocesstable 12 remote inside no

Given that only the outside data from the DARPA set was used, the attacks
that occur on the inside were undetectable by Inspectobot. Also undetectable

70



are the locally executed attacks that do not generate any network traffic. This
leaves two detectable attacks that were not detected by Inspectobot: one in-
stance of guesspop and one instance of land (the other instance is on the inside).
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Chapter 5

Discussion

This chapter discusses the results that were gathered during the execution of
the Test Programme, and links these findings to the research questions, formed
in Section 1.2.

5.1 Frequent Pattern Mining in Network Packets

The work presented in the past chapters introduces a scheme known as GRI-
DAC, and a prototype named Inspectobot. Using teams of learning automata
for mining frequent patterns in network packets (or artificially generated datasets),
RQ 1 asked if it was possible to generate rules for modelling the normal be-
havior. To investigate this theory, test case TC 1, in addition to TC 2 and
TC 4 in particular, were defined.

The purpose of TC 1 was to determine the optimal parameters required to
achieve the best possible results such that the remaining test cases could be
carried out.

Parameter Tuning

During this evaluation, several changes were done to GRIDAC, including
adding support for Markov Chains, as described in Section 3.4. By making
it possible to move several states in each iteration, the number of iterations a
TA needed in order to converge was significantly reduced. Another addition
was the ability to forcefully converge a given TA. This was done in order to
prevent the scheme from stalling when it encountered difficulties selecting an
action.

Moreover, it was discovered that a variable bit grouping could lead to a negative
impact on the overall classification process. If a feature contains eight bits (like
a byte in a network packet), Inspectobot should be configured to group the
features on exactly eight bits - and not four, two or one. The preliminary results
showed that a more appropriate bit grouping lead to better classification of
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data, and that the exact opposite happened in other cases. When the bits per
group parameter was set to one (and feature objects containing 8 bits were
used), the TA were more likely to converge towards constant, where wildcard
would have been the better choice.

Also, in some of the first preliminary tests that GRIDAC was put through,
it became apparent that the rules, in some cases, were too strict to be useful
at the lower levels in the tree. To combat this, support for specifying a lower
node limit was added. (An option for specifying the tree depth limit was also
added, but as the node limit was added, this parameter became deprecated.)
In effect, adding the node limit parameter stopped tree growth in areas that
described less than its set value.

Setting the node limit can however be challenging. The preliminary tests
showed that if it was set too low, some of the generated rules became too strict,
which lead to a higher false positive rate while evaluating the IDS aspects.
Setting the node limit too high would cause the rules to become too general to
be used for IDS purposes. The false negative rate would increase as a result.
These aspects are discussed further page 76.

When the parameter optimization process was completed, and Inspectobot
was properly tuned, REQ 1 had been satisfied and TC2 could be started, in
which artificial datasets were generated for testing the classification aspects of
Inspectobot.

Classification with Artificial Datasets

With four pre-generated artificial datasets, carefully designed to evaluate and
verify the classification process it would be easier to determine if Inspectobot
was behaving properly - as defined in TC 3. When this was not the case,
meaning that the results were not in accordance with the expectations, figuring
out the reason behind the faulty results was usually a trivial matter. As real-
world network packets are quite complex, and contain more data, it would be
more difficult to locate and correct any errors.

Each of these datasets contained specific template objects, and the ultimate
goal while evaluating them, was to identify their recurring patterns, such that
rules could be generated. The final outcome of this test case was an overall
success. Inspectobot was able to generate rules for identifying the template
objects, and an example is defined as ”C0 ? C1 ? C0 C0 C1 ? ”. Some of
these datasets were also created to verify that hierarchical structuring of the
rules were possible. As such, both REQ 3 and REQ 4 were satisfied, and its
classification aspects (when dealing with artificial datasets) had been verified.

The next step was to see if Inspectobot behaved correspondingly while classi-
fying network packets.
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Classification with Network Packets

In order to verify that Inspectobot was able to mine frequent itemsets in real-
world network packets, as stated in TC 4, two different datasets were used
during the evaluation process. In addition to the 1999 DARPA IDS Evaluation
Sets, a customized dataset consisting of manually generated network traffic
towards two unique IP addresses was created, where each host acted as a
server that hosted a specific service, and where the number of packets were
evenly divided among the hosts. The reason for including a customized dataset
of network packets was to evaluate if Inspectobot was able to achieve a perfect
split (of 50 %) in the dataset based on the IP destination addresses.

As opposed to classification with artificial datasets, Inspectobot was now con-
figured to inspect the 48 first bytes in each network packet, and with the bit
grouping parameter set to eight.

With the manually generated network packets, Inspectobot was indeed able
to generate a rule for dividing the packets, as shown in Figure 4.8. Although
the result was not perfect, it was highly satisfactory, as the generated rule was
able to represent 49.9 % of the network packets by using the IP Length header
field as split criterion. This indicated that 49.9 % of all the packets in the
dataset had this particular field set to a specific value, while the remaining
50.1 % of the packets would be represented by slightly different split criteria.
This indicates that the choice of filter packet (i.e. the randomly selected packet
which is used as base for creating a rule) had an impact on the overall result
when only a single rule was generated.

In addition to the customized dataset, Inspectobot was set to examine one full
week of training data from the DARPA set, and as explained in Section 4.5,
Inspectobot was able to create a tree structure containing multiple rules. As
such, REQ 2 was satisfied. When this process was completed, it also became
apparent that the choice of filter packet was not as essential as when a single
rule was created. Since multiple rules are generated for each level, multiple
filter packets are drawn, and the hierarchy continues to grow regardless of the
order they are being drawn.

To ensure that Inspectobot had been able to successfully learn the normal
traffic patterns in the dataset, the finished tree was tested against the same
dataset that was used in the training process. This yielded no anomalous
objects, so the conclusion that Inspectobot was able to detect and learn normal
traffic patterns could be drawn.

Impact of Anomaly Scoring

The implemented anomaly scoring functionality worked surprisingly well. This
was first noted during TC 2, where Inspectobot was set to classify unknown
data in an artificially generated dataset. As shown in Figure 4.7, most of the
data was classified as ”normal”, with a few exceptions that resulted in anomaly
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score peaks. Not all of these peaks were reported as anomalous however, since
the anomaly threshold was set to 0. In this particular case, lowering the
anomaly score threshold to −2 would have detected the final anomaly as well,
without introducing any additional false positives.

However, the same cannot be said for the anomaly distribution graphs pre-
sented in Figure 4.14. Lowering the anomaly score threshold in these cases
might have lead to more real positives being detected, but it would also sig-
nificantly increase the number of false positives.

Nonetheless, the anomaly scoring worked according to its purpose, and it can
be concluded that there is a tradeoff between the number of detected real
positives and false positives, and that the anomaly score threshold can be
modified to adjust it.

Impact of Node Limit

Based on the results from evaluating Inspectobot with the DARPA IDS Eval-
uation Sets, as presented in Table 4.7, it became evident that the node limit
affected the detection rate and the amount of false positives generated.

The rule hierarchies that have been generated with a node limit of 5 % appear
to provide the best detection rate. Those that were generated with a node limit
of 1 % did not provide a higher detection rate, but contributed to a significant
increase in false positives. In contrast, the rule hierarchies with a node limit of
10 % provided, in all cases, a lower detection rate compared to both the other
hierarchies. It also returned a much lower amount of false positives.

The amount of false positives in rule hierarchies with a node limit of 1 %
suggest that the network packets, which in other cases would be classified as
normal, are not able to traverse the rule hierarchy far enough to achieve an
anomaly score below 0, and thus be classified as such.

With rule hierarchies that have a node limit of 10 %, the generated rules
appear to be more general - meaning that packets which in other cases would
be classified as anomalous, is wrongly being classified as normal.

Based on the hierarchies that used the node limit of 5 %, week 1 reported an
average detection rate of 73 %, while week 3 achieved an average detection
rate of 63 %. With both weeks combined, however, an average detection rate
of 61 % was reported. These results are likely explained by the increase in
the amount of network packets considering both weeks, as it might raise the
probability of creating generic rules, especially if the there are large differences
between the packets in week 1 and 3.

For this reason, estimating the optimal node limit appears to be a difficult task.
To achieve the best detection rate, it seems necessary to generate several rule
hierarchies with a variable node limit, and determine which is better, based
on the amount of false positives generated.
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Concluding remarks concerning RQ 1

By evaluating Inspectobot using both artificial datasets, and real-world net-
work packets, it was proven that the prototype was, in fact, able to detect
the underlying semantics in the datasets. With this information in hand, the
normal traffic patterns could be modeled using a tree structure of rules.

5.2 Potential as an Intrusion Detection System

With NETAD, Mahoney [8] was able to achieve good results with the 1999
DARPA IDS Evaluation Sets - by analyzing the first 48 bytes in IP packets,
where it was able to detect 132 of 185 attacks, with 100 false alarms.

Because of NETADs notable detection rate at 71.5 %, a similar approach was
applied to GRIDAC, and implemented in Inspectobot - as it also inspected
the first 48 bytes in IP packets. However, unlike NETAD, in which nine pre-
generated models were used for detecting the attacks, Inspectobot remained
completely unsupervised, and it was also able to classify data going in both
directions (from WAN to LAN and vice versa).

As RQ 2 asks how good GRIDAC (and its prototype implementation, Inspec-
tobot), is at detecting anomalies compared to an existing solution, TC 5 was
defined.

Empirical Results

TC 5 stated that Inspectobot should be evaluated with the 1999 DARPA IDS
Evaluation Sets. By training on one full week of attack-free data (week 1),
Inspectobot was set to classify another week of data (week 4) containing attacks
– and was at best able to detect 51 out of 62 possible attacks, as shown in
Appendix B – giving a total detection rate of 82 %, with 56 false alarms. When
the same training data was used to classify both weeks containing attacks (week
4 + week 5), it managed to achieve an average detection rate of 73 % with
123 false alarms, as displayed in Table 4.7. This rate is unfortunately not
representable for the remaining tests that were performed. Using the same
node limit as in the previous results, 63 % of the attacks were detected when
Inspectobot was trained with Week 3 (instead of Week 1), and 61 % of the
attacks when both Week 1 and Week 3 were used for training.

Determining the amount of attacks in the 1999 DARPA IDS Evalu-
ation Sets

The 1999 DARPA Detection Scoring Truth ∗, and Identification Scoring Truth
† lists were used for cross-referencing the anomalies reported by Inspectobot

∗ http://www.ll.mit.edu/mission/communications/ist/files/master-listfile-condensed.txt
† http://www.ll.mit.edu/mission/communications/ist/files/master identifications.list
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in order to determine the detection rate. According to [18], these lists contain
over 200 instances of 58 attack types, which are distributed over two weeks.
The attacks had also been categorized depending on whether they were console
or network based. Also, the network based attacks were categorized as ”inside”
or ”outside”, stating which side of a firewall the attacks occurred. Based on
calculations presented in Figure 5.1, 148 attacks were defined as being outside
of the firewall, while 40 were defined as being inside. In addition, 12 of the
attacks were defined as console based, or network based (but without any addi-
tional information about which side of the firewall they had occurred). These
numbers were not listed in [18], but were gathered from the aforementioned
Detection Scoring Truth list using the POSIX commands listed in Figure 5.1.

# Lists the amount of total attack incidents for both weeks.
$ egrep "^ID" master_identifications.list | wc -l
201

# Lists the amount of outside attacks for both weeks.
$ egrep "^\s[0-9][0-9]\..*\sout\s" master-listfile-condensed.txt \
| cut -c1-10 | sort -u | wc -l

148

# Lists the amount of inside attacks for both weeks.
$ egrep "^\s[0-9][0-9]\..*\sin\s" master-listfile-condensed.txt \
| cut -c1-10 | sort -u | wc -l

41

# Lists amount of console based attacks, and remote attacks that
# are listed as neither "inside" nor "outside", for both weeks.
$ egrep ’^\s[0-9][0-9]\..*\s{8,}(auto|man).*(rem|cons)\s’ \
master-listfile-condensed.txt | cut -c1-10 | sort -u | wc -l

12

Figure 5.1: Amount of real attacks in the DARPA IDS Evaluation Set

In his paper on NETAD [8] , Mahoney states that there are 185 ”inside” attacks
in the 1999 DARPA IDS Evaluation Sets, of which 132 were detected. Based on
the fact that [18] list the amount of attacks as more than 200 (they do not give
an exact amount), and that the number of ”inside” attacks, as shown in Figure
5.1, are only 41, it could be possible that Mahoney uses a different way of
counting the amount of attacks on the inside. Nevertheless, Inspectobot relies
on the data provided by the truth lists that are provided alongside the 1999
DARPA IDS Evaluation Sets. For this reason alone, no further investigation
has been done in regards to determining why these numbers are different.

It should however be mentioned that the list in question had not been for-
matted in a way that made manual lookup of potential attacks trivial. For
this particular reason, lookup scripts had to be created manually in order to
automate this process, so that the timestamps of the attacks detected by In-
spectobot could be compared against the truth list automatically. Performing
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the lookup using scripts leaves out the human factor, which could lead to faulty
results.

In any way, the results from evaluating Inspectobot with the 1999 DARPA
IDS Evaluation Sets are still quite conclusive. The prototype is able to detect
anomalous packets, and it is also able to group together these packets, based
on the involved IP addresses and their timestamps - such that possible attacks
can be detected.

Undetected Attacks

According to the test results, not all of the attacks were detected. The reason
for this problem is, however, quite simple. Inspectobot attempts to model
the normal behavior in the network packets that are used for training. If any
attacks correspond to ”normal” behavior to such a degree that the anomaly
score falls below zero, it will not be flagged as anomalous. Lowering the bar
for flagging a potential attack as anomalous could lead to more real attacks
being identified, but this would also generate more false alarms.

Two distinct examples are given in Table 4.8 on page 70, where the attacks
land and guesspop remained undetectable. According to the attack database
shipped alongside the 1999 DARPA IDS Evaluation Sets, the Land attack is a
denial-of-service attack that is effective against some older TCP/IP implemen-
tations, where a spoofed SYN packet is sent to the vulnerable system. The
attack is also recognizable because the IP source and destination fields are
identical (which should never exist on a properly working network). It is likely
that this particular attack would be easier to detect by a rule based IDS, as
it is a trivial task to create a rule that triggers an alarm whenever it sees a
network packet with identical source and destination IP addresses.

Guesspop, on the other hand, appears to be a standard dictionary based attack
towards a server running POP (Post Office Protocol). Upon closer inspection of
this particular attack however, it appears that the attack was not successful, as
the aforementioned 1999 DARPA IDS Truth lists reports. Using the protocol
analyzer Wireshark, it was discovered that the attack was performed by a client
using the IP address 172.16.112.194 towards the POP daemon running on
202.247.224.89. During the 30 attempts, the attacker tried to log in to the
server with the username alie, and a password combination that consisted of
the letters alie, in combination with a number sequence ranging from 0 to 29.
For this reason, Inspectobot was in fact correct when it reported the attack
as ”normal”, since people often enter the wrong usernames and/or passwords
when they try to log in to Internet services. However, it still remains unclear
if the attack would have been detected, had it been successful.

Concluding remarks concerning RQ 2

RQ 2 asks how good Inspectobot is at detecting anomalies, compared to an ex-
isting solution, with regards to the amount of real positives versus the amount
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of false positives detected. Since Inspectobot cannot be directly compared to
Mahoney’s results, the detection rate can instead be used as an indicator. On
average, Inspectobot was able to detect 73 % of the ”outside” attacks in Week
4 and Week 5, when Week 1 had been used for training the prototype. Mean-
while, NETAD reported a detection rate of 71.5 %, although [8] claimed to use
the ”inside” network traffic as opposite to ”outside”, which Inspectobot relied
on.

Inspectobot was also able to detect an error in the 1999 DARPA IDS Evalua-
tion Sets. The error was in fact an attack that was reported as successful in
the official truth lists, when it upon closer inspection was in fact unsuccessful.

The next section discusses the final research question that was stated.
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5.3 Possible replacement for Snort?

To answer RQ 3, Inspectobot is currently not a valid replacement for Snort,
nor will it probably ever be. A-NIDS in general, is still a valuable asset to
any security analyst, and should be used alongside Snort, such that novel
attacks can be detected, but also for finding underlying network problems. As
mentioned in Section 1.3.5 on page 12, Snort did not perform well on 1998
DARPA IDS Evaluation Sets, as the datasets only contain a limited number
of attacks that are detectable by signatures. Inspectobot was on the other
hand able to detect many of them.

The main drawback with Inspectobot, is the amount of processing capacity
that is required for running it optimally. The current pros and cons with the
prototype are listed in Table 5.1.

Table 5.1: Pros and Cons with Inspectobot
Pros Cons

Able to detect anomalous packets and
group them as attacks.

Not optimized for reading packets from
network interfaces. Although it is sup-
ported, it does lead to large amounts of
dropped packets in its current state.

No human supervision is required for
generating the rules, or for classifying
unknown packets

Requires a great deal of processing
power, in addition to available memory
and disk space.

GUI makes it easy for an analyst to get
an overview of the various attacks

The prototype does not support edit-
ing or modifying the generated rules.
However, expanding the hierarchy with
additional rules is possible.

Good detection rate (82 %) of attacks
in one week of the 1999 DARPA IDS
Evaluation Set, with an average detec-
tion rate of 73 % in both weeks.

Snort is usually listening on a network interface in order to detect attacks in
live streams of network traffic. This is also possible to do with Inspectobot,
although it will result in large amount of packets being dropped by the operat-
ing system kernel. The reason for this is that the classification (and matching)
process is quite CPU intensive. As such, Inspectbot, in its current state, is not
able to keep up with the incoming and outgoing packet rate, and is thus not
capable of being used actively on a network interface.

For this reason, the prototype should have been implemented in a programming
language like C right from the start to reduce the amount of system calls
needed to do the required operations. However, this would also have made
modifications to both GRIDAC and Inspectobot much more difficult, as it
would require more code, and likely several redesigns of the algorithms. A
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lot of time, programming and debugging wise, was saved by using a high-
level object oriented language like Python, and the end result is a working
prototype. Although it is somewhat inefficient and probably bloated code
wise, it still suits it purpose, and it also has its own Graphical User Interface,
successfully satisfying REQ 5.

5.4 Remarks concerning the 1999 DARPA IDS Evalu-
ation Sets

The 1999 DARPA IDS Evaluation Sets contain several minor errors, which
have made processing and analysis of the attacks a time consuming process.
As previously mentioned, two attack truth lists were provided alongside the
datasets, where one of them listed when the various attacks took place, while
the other listed the amount of unique attacks.

During a cross-reference of these lists, typographic errors were detected in both,
and especially with regards to the attack names – making it much harder to
estimate the amount of unique attacks. As an example, the list containing
the unique attacks, mentions both ”xterm” and ”xterm1”, although it appears
that this is in fact the same attack.

The lists in question were also very unstructured, making it a tedious process
to perform automatic lookup of the attacks reported by Inspectobot. The
truth lists were quite detailed, and contained a lot of information – but they
were not formatted in a standard way, like CSV (comma separated values).
To give an example, the only way to look up if an attack was in fact real or
not, was to cross-reference with the following information:

• When the attack started (although the timestamps were not given in
UTC).

• Which IP addresses that were involved.

It would have been much better if the packet numbers were listed in addition to
the above information, as this would have simplified the lookup process greatly.
If the lists had also been formatted using SQL, that would have simplified the
process even further.
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Chapter 6

Conclusion

The work presented in this thesis has demonstrated that the Grimstad Data
Classifier (GRIDAC) scheme is able to model normal behavior in complex
data formats like network packets. For this reason, GRIDAC was implemented
as an Anomaly Based Network Intrusion Detection System (A-NIDS) called
Inspectobot, which was evaluated using the 1999 DARPA IDS Evaluation Set.

Inspectobot was powered by a team of hierarchically structured Learning Au-
tomata (LA) that have the unique property of operating in unknown environ-
ments. Due to their low computational complexity, they were well suited for
the task in question.

6.1 Empirical Results

Inspectobot, like any network anomaly detector, does not attempt to describe
the nature of an attack, nor does it try to determine if an event is hostile
or not. Instead, it attempts to find unusual or interesting patterns in a vast
amount of data, tag them as anomalous - and bring them to the attention of
a security analyst for further investigation.

In extensive evaluation using both artificial data and data from the 1999
DARPA IDS Evaluation Sets, the results are quite conclusive - demonstrating
that the prototype shows an excellent ability to find frequent itemsets, such
that a large set of network packets can be modeled in the form of hierarchi-
cally structured rules. Furthermore, the sets of frequent itemsets produced for
network intrusion detection are compact, yet accurately describe the different
types of network traffic present, making it possible to detect attacks in the
form of anomalies.

By training on one full week of attack-free data in the DARPA IDS Evaluation
Sets, Inspectobot was at best able to detect 51 out of 62 possible attacks when
it was configured to classify a second week of data containing attacks. Thus,
the detection rate in that particular case was 82 %, and it also reported 56 false
alarms. When Inspectobot was set to classify both weeks containing attacks,
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using the same week as in the previous case for training, it managed to achieve
an average detection rate of 73 %, with 123 false positives.

Also, Inspectobot was able to detect an error in the DARPA sets, where an
attack was wrongfully listed as successful, when it in fact was not.

6.2 Conclusions and Implications

The main goal of the work presented in this thesis has been reached, as Inspec-
tobot is a fully working A-NIDS that is able to mine frequent itemsets, and
detect anomalous patterns in network packets using teams of hierarchically
structured Learning Automata.

During the evaluation of Inspectobot, using artificial data and real-world net-
work packets, it was also discovered that it was able to detect anomalous
patterns which can be regarded as attacks. Although the prototype was un-
able to detect some of the attacks in the DARPA IDS Evaluation Sets, it was
still able to achieve a surprisingly good detection rate – considering the fact
that it performed the classification process completely unsupervised, and with
no previous knowledge of the attacks in question.

In its current state, Inspectobot is not usable outside of a testbed environment,
and in order to obtain satisfactory results from evaluations, the input data,
which is used for both the training and classification processes, needs to be
collected in advance.

Inspectobot is currently not a replacement for Snort, the de-facto rule based
Intrusion Detection System, but it is very likely able to serve alongside Snort
if implemented in a more efficient programming language like C or C++.

6.3 Future Work

To increase Inspectobot’s efficiency, which is currently its largest drawback, it
should be rewritten in a high level programming language with less abstraction∗

than Python, such as C or C++, which generate far more efficient code. The
first priority is to rewrite the component responsible for classifying unknown
data as either normal or anomalous, as this needs to be as fast as possible in
order to cope with larger packet rates.

It is less important to prioritize the component responsible for mining the
frequent itemsets, and generate hierarchically structured rules, as this is more
difficult to accomplish - mainly due to the complete rewrite of all the algorithms
in use.

The next version of Inspectobot should make it possible to tune the generated
rule hierarchies, without having to restart the process from scratch. As an

∗ In this context, abstraction refers to Pythons use of high-level data types, modularity and use of
dynamic typing.
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example, if a new host is connected to an existing network in which Inspectobot
has already learned the normal traffic patterns, the traffic originating to and
from the new host might be classified as anomalous.

Using a Bayesian approach, it might also be possible to increase the amount of
real positives, and reduce the amount of false positives. If a human analyst goes
through the anomalies reported by Inspectobot, and labels these as positive
or negative, this data could be used for better classification of unknown data.
This might be possible by identifying those nodes in a given tree that provide
the best detection rate, and make a decision based on that information.
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Appendix A - Work Package
Example

The following work package was defined in Table 3.1 on page 29. As seen
on the next page, it is wrapped in an informative front page that explains
its purpose, the expected amount of time for completion, and the actual time
used.
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Work Package

Inspectobot Graphical User Interface

Inspectobot Graphical User Interface
Purpose Create a graphical user interface to

Inspectobot for reading and han-
dling output values.

Participants Vegard Haugland
Requirement(s) REQ 4
Estimated Time Usage 150 hours
Actual Time Usage 170 hours



inspectobot
Inspectobot Graphical User Interface

Purpose

One of the key parts of an Intrusion Detection System is that a security analyst
is able to interact with it through an interface. Inspectobot can be adminis-
tered from a command line interface, but from the user’s perspective, the
graphical user interface (GUI) will make the system easier to use on a higher
lever, and also simplifies the process of gaining an overall view of the available
events that need attention.

Choosing a Framework

The purpose of a framework is to improve the efficiency of creating new soft-
ware. By allowing the programmer to spend more time on meeting software
requirements and developing algorithms, frameworks can help improve pro-
ductivity in addition to raising the quality, reliability and robustness of the
software in question.

Since the other components of Inspectobot is written in Python, it is also
reasonable to write the GUI using the same language. Django∗ and Pylons †

are two of the most popular web frameworks that use Python. Both of the
frameworks are mature and tested in production in some major websites, with
Pylons being used by the user-driven news-site Reddit ‡.

According to a discussion on the pros and cons of either web framework §,
Django seems to be the obvious choice for blogs and newspaper sites, as one
of its main requirements during development was to make entire sites quickly,
such as blogs and newspaper sites. It also appears to be more ’user friendly’ to
developers unfamiliar with Python. This isn’t because Pylons is a lot harder
to learn than Django, so much as it is that Pylons’s biggest advantage lies in
its ease of customization. But to really use that customizability, the developer
needs to be more aware of what python software is available.

Dusko Jordanovski has tried to write a non-biased comparison between Django
and Pylons ¶, and states that Django has more magic and less code, while py-
lons has more code and less magic. He also writes that Pylons is essentially a
bare-bones wrapper around the WSGI specification that uses 3rd party mod-
ules for templating, database interaction, routing and just about anything
else, while Django is aimed towards rapid development of web applications
and has everything packed inside of it - it’s own template system, routing and
object relational mapper (ORM). Apparantly, this allows Django to establish
high reusability for code between different projects. On the other hand, the
developer is limited to one ORM and templating system.

Being that Inspectobot GUI will not contain features found in most web sites
today, the ability for customization is essential. Since the developers are also

∗ http://www.djangoproject.com/ † http://pylonsproject.org/
‡ http://en.wikipedia.org/wiki/Reddit § http://j.mp/CjH55
¶ http://jordanovski.com/django-vs-pylons
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familiar with Python in general, Pylons seems to be the better choice. For this
reason, Pylons is selected as the web framework.

Design

The design should be simple and attempt to adhere to the KISS∗ principle,
which implies that simplicity should be a key goal in design, and that unnec-
essary complexity should be avoided.

The most important information should be available to the user from one
screen, such as an:

Executive summary that provides general statistics over all the detected
anomalies, the amounts of test runs that being analyzed in addition to
information related to the anomaly score for all events.

Analyst View that provides the necessary detailed information about the
packets that have been flagged as anomalies. This includes the source and
destination IP addresses, TCP/UDP ports, anomaly score and similar.
However, the information should not be more detailed than necessary. In
case the analyst needs to inspect a group of events in more detail, this
should be done in a different view.

Attack Summary which provides the analyst with a summary of all the
detected attacks. This includes the amounts of events related to the
attack and also the name of the attack should it be available. The naming
aspect will currently only be available when the DARPA set is being
analyzed.

It should also be possible to manage the different rule hierarchies that have
been generated, as well as choosing which test runs that should be analyzed.

Use of Object Relational Mappers and Code Examples

Wikipedia defines Object Relational Mapping as a programming technique for
converting data between incompatible type systems in object-oriented program-
ming languages. This creates, in effect, a ”virtual object database” that can be
used from within the programming language.†.

Inspectobot currently uses the relational database MySQL as backend for in-
formation storage. At an earlier time, however, it used the more minimalistic
variant SQlite, but this was later changed due to processing efficiency. Luck-
ily, SQLalchemy had been implemented as an object relational mapper (ORM)

∗ Keep It Simple, Stupid † http://en.wikipedia.org/wiki/Object-relational mapping
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from the start, so switching from SQlite to MySQL proved to be a rather trivial
problem.

An ORM essentially allows you to access a database using objects from within
the programming language. As an example, the SQL query
SELECT users.username from users WHERE users.id = 1

would be the equivalent of
user = ORM.query(User.username).filter(User.id == 1).

The ORM that is recommended to use with Pylons is called SQLAlchemy∗

which, according to the SQLAlchemy website, provides a full suite of well
known enterprise-level persistence Use of Object Relational Mappers and Code
Examples patterns, designed for efficient and high-performing database access,
adapted into a simple and Pythonic domain language.

The following code example shows how a table in the database is being mapped
to an object, using the SQLAlchemy declarative syntax.

class Anomaly(Base):

"""
This table contains a list of all the anomalies that have been
detected in a given test run.
"""
__tablename__ = ’anomaly’
id = Column(Integer, primary_key = True)
testrun_id = Column(Integer, ForeignKey(’testrun.id’), primary_key=True)
attack_id = Column(Integer, ForeignKey(’attack.id’), default=0)
destination_address = Column(String(255))
destination_nationality = Column(String(255), default="Unknown")
source_address = Column(String(255))
source_nationality = Column(String(255), default="Unknown")
destination_port = Column(String(255))
source_port = Column(String(255))
timestamp = Column(DateTime(timezone=True))
anomaly_score = Column(Integer)
parent_node_id = Column(String(255))
anomalyfields = relation(

’AnomalyFields’,
backref=’anomaly’,
primaryjoin="AnomalyFields.anomaly_id==Anomaly.id",
cascade=’all’

)

Figure WP4.1: Code example that defines the mapping between SQLAlchemy and
the anomaly table in the database.

As seen in the above code, SQLAlchemy is told which columns that are used
as primary and foreign keys. A relation between the tables Anomaly and
AnomalyFields is defined, where cascade has been set to all. This implies that

∗ http://www.sqlalchemy.org/
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whenever a row gets updated or deleted from Anomaly, the related rows in
AnomalyFields will be deleted as well.

GUI in use

The following screenshot displays how the Event view looks like. This is similar
to the Analyst View defined in the Design section.

Figure WP4.2: Screenshot of Inspectoweb, the Graphical User Interface to Inspec-
tobot. It presents a list of grouped events to the user.

In this particular view, the events are grouped based on the source and desti-
nation IP addresses, and an executive summary is given. Thus, the analyst is
provided a table that contains the following information:

• First seen, which specifies when the first packet (of those that are
grouped) was detected.

• Events, which provides a counter of the total number of anomalous pack-
ets between the IP addresses in question.

• Source Port

• Source Address (with geographic information, if possible)

• Destination Address (with geographic information, if possible)

• Destination Port

• Duration, which calculates the duration between the first and last of
the grouped packets.

• Parent Node ID, which lists the parent rule in the hierarchy which
classified the packets as anomalous.
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• Max anomaly score, which lists the maximum anomaly score for all
the packets that are grouped together.

It is also possible to get a detailed view of all the possible attacks, where the
analyst have the opportunity to filter packets based on attack identification
numbers, as shown in Figure WP4.3.

Figure WP4.3: This view gives the analyst a list of possible attacks, with the pos-
sibility of filtering them based on their identification number.

This enables the possibility of filtering all the packets that are related to a
possible attack, such that the packets can be further analyzed in tools like
Wireshark∗.

In order to select which test runs that should be analyzed, the following view
is given:

Figure WP4.4: This view gives the analyst a list of runs (rule hierarchies) and
corresponding test runs.

A run is the equivalent of a rule hierarchy, and the table of hierarchies (or
trees) is denoted as Forest in the above figure. A single run can be associated
with several test runs.

∗ http://www.wireshark.org
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Shortcomings

At the moment, the GUI can only be used for displaying anomalous packets
and possible attacks. It is also possible to list the build parameters for the
rule hierarchies and to display a graphical representation of them.

Due to limited amounts of time, there are some shortcomings in the GUI which
should be fixed before the project is released into the public domain. At the
moment, it is currently not possible to:

• Start the rule hierarchy build process from the GUI

• Create test runs from the GUI

• Store the anomalous packets in the pcap format for further analysis with
Wireshark

These features are available from a CLI environment however, so adding them
to the GUI should not pose much difficulty.

Summary

This Work Package have presented a summary of the Inspecto GUI and the
frameworks involved with developing it. It currently meets the initial design
specifications, but before an eventual public release, the listed shortcomings
should be fixed.

The time spent on designing and programming the GUI was approximated to
150 hours, while the actual time usage slightly exceeded 170 hours.

April 13th, 2010
Vegard Haugland
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Appendix B - Test Case
Example

The test cases provided in this appendix were defined in Table 4.1 on page
53. Each test case is wrapped in an informative front page that explains its
purpose, the expected amount of time for completion, and the actual time
used.
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Inspectobot Test Case

IDS Evaluation with DARPA IDS Set

IDS Evaluation with DARPA IDS Set
Description Using the 1999 DARPA IDS Evalu-

ation Sets, it is necessary to investi-
gate if Inspectobot is able to detect
the listed attacks, and how many
false positives that are generated

Participants Vegard Haugland
Marius Kjølleberg
Svein-Erik Larsen

Estimated Time Usage 4 weeks
Actual Time Usage 6 weeks



inspectobot
IDS Evaluation with DARPA IDS Set

Purpose

In Section 1.2 on page 5, a set of research questions was formed. RQ 2, asked
how good GRIDAC is at detecting anomalies compared to an existing solution
and to what extent false positives and false negatives are generated. RQ 3
then asked whether the A-NIDS implementation of GRIDAC is able to replace
the current R-NIDS implementation like Snort.

The purpose of this test case is to investigate how GRIDAC compares to these
research questions.

Test Setup and Tree Generation

To evaluate the IDS performance of Inspectobot, the 1999 DARPA IDS Eval-
uation Set was used for both training and testing purposes. Despite being
dated, the set is still considered a viable choice for testing anomaly based IDS.
A total of five weeks worth of network traffic is provided in the set; Three
weeks for training, and two weeks for testing. Week 1 and 3 are attack free,
while week 2 contains labeled attacks. Week 4 and 5 contains over 200 labeled
attacks.

As explained in Section 1.5, time limitations dictate that only the attacks
categorized as ”outside” will be analyzed. From this a list of tests have been
composed.

TC5.1 TC5.1: Test Setup
Training Test Node Limit Side
Week 1 Week 4/5 1 – 5 – 10 Outside
Week 3 Week 4/5 1 – 5 – 10 Outside

Week 1+3 Week 4/5 1 – 5 – 10 Outside

As described in Table TC5.1, Week 1, Week 3 and Week 1+3 will be used for
training the system, while Week 4 and Week 5 will be used for testing. Each
instance of training will consist of three runs with different node limit (1%,
5% and 10%) and each node limit will be run three times to ensure that the
system is consistent. Parameters described in 3.6 on page 46 will be used for
training.

The 1999 DARPA Detection Scoring Truth∗, and Identification Scoring Truth†

lists will be used for locating the anomalies in the Evaluation Set in order to
determine how many anomalies are detected and calculate the detection rate.

∗ http://www.ll.mit.edu/mission/communications/ist/files/master-listfile-condensed.txt
† http://www.ll.mit.edu/mission/communications/ist/files/master identifications.list
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By using the POSIX commands listed in Figure TC5.1 it is concluded that
there are 148 attacks possible to detect when using the ”Outside” Evaluation
Set. Of these 148 attacks, 62 are found in Week 4 and 86 in Week 5.

# Lists the amount of outside attacks for both weeks.
$ egrep "^\s[0-9][0-9]\..*\sout\s" master-listfile-condensed.txt \
| cut -c1-10 | sort -u | wc -l
148

# Lists the amount of outside attacks for Week 5
$ egrep ’^\s[0-9][0-9]\..*04/0[5-9].*\sout\s’ \
master-listfile-condensed.txt | cut -c1-10 | sort | uniq \ | wc -l
86

Figure TC5.1: Amount of real attacks in the DARPA IDS Evaluation Set

Table TC5.2 describes the expressions used the results table.

TC5.2 TC5.2: Table explanation
ID Unique Identification test
Run Run number in specific test
Limit Node Limit used in specific test
Testing Training file
Training Testing file(s)
TA Total attacks in testing file(s)
RP Total attacks detected during test
FP Total false positive detected during test
Rate Detection rate
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Results

Week 1

TC5.3 TC5.3: Week 1 - Outside - Node Limit 1%

ID Run Limit Training Testing TA RP FP Rate

1 1 1
Week 1
Outside

Week 4 Outside
Week 5 Outside

62
86

43
42

199
254

0.69
0.49

2 2 1
Week 1
Outside

Week 4 Outside
Week 5 Outside

62
86

43
40

179
214

0.69
0.47

3 3 1
Week 1
Outside

Week 4 Outside
Week 5 Outside

62
86

43
39

176
216

0.69
0.45

TC5.4 TC5.4: Week 1 - Outside - Node Limit 5%

ID Run Limit Training Testing TA RP FP Rate

4 1 5
Week 1
Outside

Week 4 Outside
Week 5 Outside

62
86

49
58

48
72

0.79
0.67

5 2 5
Week 1
Outside

Week 4 Outside
Week 5 Outside

62
86

50
60

48
72

0.80
0.70

6 3 5
Week 1
Outside

Week 4 Outside
Week 5 Outside

62
86

51
57

56
73

0.82
0.66

TC5.5 TC5.5: Week 1 - Outside - Node Limit 10%

ID Run Limit Training Testing TA RP FP Rate

7 1 10
Week 1
Outside

Week 4 Outside
Week 5 Outside

62
86

31
34

26
38

0.50
0.40

8 2 10
Week 1
Outside

Week 4 Outside
Week 5 Outside

62
86

31
34

18
34

0.50
0.40

9 3 10
Week 1
Outside

Week 4 Outside
Week 5 Outside

62
86

31
31

26
43

0.50
0.36
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Week 3

TC5.6 TC5.6: Week 3 - Outside - Node Limit 1%

ID Run Limit Training Testing TA RP FP Rate

13 1 5
Week 3
Outside

Week 4 Outside
Week 5 Outside

62
86

41
45

193
236

0.66
0.52

14 2 5
Week 3
Outside

Week 4 Outside
Week 5 Outside

62
86

34
40

185
241

0.55
0.47

15 3 5
Week 3
Outside

Week 4 Outside
Week 5 Outside

62
86

42
38

188
238

0.67
0.44

TC5.7 TC5.7: Week 3 - Outside - Node Limit 1%

ID Run Limit Training Testing TA RP FP Rate

16 1 10
Week 3
Outside

Week 4 Outside
Week 5 Outside

62
86

38
47

33
63

0.61
0.55

17 2 10
Week 3
Outside

Week 4 Outside
Week 5 Outside

62
86

46
51

31
50

0.74
0.59

18 3 10
Week 3
Outside

Week 4 Outside
Week 5 Outside

62
86

45
51

37
51

0.72
0.59

TC5.8 TC5.8: Week 3 - Outside - Node Limit 10%

ID Run Limit Training Testing TA RP FP Rate

10 1 1
Week 3
Outside

Week 4 Outside
Week 5 Outside

62
86

35
44

23
37

0.56
0.51

11 2 1
Week 3
Outside

Week 4 Outside
Week 5 Outside

62
86

37
43

22
36

0.59
0.50

12 3 1
Week 3
Outside

Week 4 Outside
Week 5 Outside

62
86

37
45

24
37

0.59
0.52

100



Week 1+3

TC5.9 TC5.9: Week 1+3 - Outside - Node Limit 1%

ID Run Limit Training Testing TA RP FP Rate

19 1 1
Week 1+3
Outside

Week 4 Outside
Week 5 Outside

62
86

40
43

178
236

0.65
0.50

20 2 1
Week 1+3
Outside

Week 4 Outside
Week 5 Outside

62
86

39
39

190
246

0.63
0.45

21 3 1
Week 1+3
Outside

Week 4 Outside
Week 5 Outside

62
86

37
40

179
225

0.60
0.47

TC5.10 TC5.10: Week 1+3 - Outside - Node Limit 5%

ID Run Limit Training Testing TA RP FP Rate

22 1 5
Week 1+3
Outside

Week 4 Outside
Week 5 Outside

62
86

43
55

31
63

0.69
0.64

23 2 5
Week 1+3
Outside

Week 4 Outside
Week 5 Outside

62
86

38
50

30
54

0.61
0.58

24 3 5
Week 1+3
Outside

Week 4 Outside
Week 5 Outside

62
86

36
49

27
41

0.58
0.57

TC5.11 TC5.11: Week 1+3 - Outside - Node Limit 10%

ID Run Limit Training Testing TA RP FP Rate

25 1 10
Week 1+3
Outside

Week 4 Outside
Week 5 Outside

62
86

37
41

21
40

0.60
0.48

26 2 10
Week 1+3
Outside

Week 4 Outside
Week 5 Outside

62
86

30
34

13
28

0.48
0.40

27 3 10
Week 1+3
Outside

Week 4 Outside
Week 5 Outside

62
86

29
34

10
30

0.47
0.40
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Attacks Detected and Detection Rate

From the results presented it can be observed that the amount of real positives
detected vary with the difference in node limit. The largest amount of real
positives detected is found the trees that are generated with a node limit of 5
% - and particularly the ones trained with only week 1.

The amount of false positives changed in accordance with the set node limit.
A node limit of 5 % provide for a moderate amount of false positives. The
trees generated with a node limit of 1 % have a lower detection rate, and also
showed an increase in the amount of false positives generated. Finally, the
trees generated with a 10 % node limit generate less false positives than in the
other cases, but are also the ones with the poorest detection rate.

Given that only the outside data from the DARPA set was used, the attacks
that occur only on the inside were undetectable by Inspectobot. Also unde-
tectable are the locally executed attacks that do not generate any network
traffic. When subtracting these attacks, only two of the undetected attacks
are in fact undetectable in the outside sets: guesspop and one instance of land.

Based on the amount of detected attacks a detection rate has been derived
from the results. The detection rate is calculated from real positives divided
by the total number of attacks possible to detect.

From the results it can be observed that the best detection rate is found in
the second tree generated of week 1 with a 5% node limit. During testing with
week 4 80% of the attacks were detected and in week 5 70% were detected.

The results show that during testing with week 4 the detection rate varies from
50% to 82% based on the node limit used in the tree generation. It can also
be observed that the node limit remains close within the different node limits,
showing a consistency in the system. In week 5 the results varies from 36%
to 70%, showing a slightly lower detection rate, but the consistency remains
close.

Summary

In this test case, the 1999 DARPA IDS Evaluation Sets are used to determine
if Inspectobot is able the listed attacks and how many false positive that are
generated. In addition, the detection rate of the system is determined to
provide an overview of the systems accuracy.

From the results acquired the system proves reliant and consistent with a top
detection rate of 80%.

May 15th, 2011
Vegard Haugland
Marius Kjølleberg
Svein-Erik Larsen

102



Appendix C - GANTT Chart

During the course of the project, the following GANTT chart has been used
to illustrate the project schedule. The work on the project started in January,
and finished by the end of May.
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