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Abstract

Multi-armed bandit problems have been subject to a lot of research in computer science because it cap-
tures the fundamental dilemma of exploration versus exploitation in reinforcement learning. The goal of
a bandit problem is to determine the optimal balance between the gain of new information (exploration)
and immediate reward maximization (exploitation). Dynamic bandit problems are especially challeng-
ing because they involve changing environments. Combined with game theory, where one analyze the
behavior of agents in multi-agent settings, bandit problems serves as a framework for benchmarking the

applicability of learning algorithms in various situations.

In this thesis, we investigate a novel approach to the multi-armed bandit problem, the Kalman Bayesian
Learning Automaton, an algorithm which applies concepts from Kalman filtering, a powerful technique
for probabilistic reasoning over time. To determine the effectiveness of such an approach we have con-
ducted an empirical study of the Kalman Bayesian Learning Automaton in multi-armed dynamic bandit
problems and selected games from game theory. Specifically, we evaluate the performance of the Kalman
Bayesian Learning Automaton in randomly changing environments, switching environments, the Goore
game, the Prisoners Dilemma and zero-sum games. The scalability and robustness of the algorithm are

also examined.

Indeed, we reveal that the strength of the Kalman Bayesian Learning Automatons lies in its excellent
tracking abilities, and are among the top performers in all experiments. Unfortunately, it is dependent on
tuning of parameters. We believe further work on the approach could solve the parameter problem, but
even with the need to tune parameters we consider the Kalman Bayesian Learning Automaton a strong
solution to dynamic multi-armed bandit problems and definitely has the potential to be applied in various

applications and multi-agent settings.
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Chapter 1

Introduction

The Kalman Bayesian Learning Automaton is made to address the recurring problem of balancing explo-
ration versus exploitation in reinforcement learning. The Bandit problem is the model that captures this
dilemma. The problem is usually described in terms of a gambler and a k-armed gambling machine where
each arm has an unknown reward probability. The gambler wants to choose the sequence of arm pulls that
maximizes his reward. In turns out that such problems are important in many areas of computer science,
for instance web queries and routing. Indeed, it also appears in game theory, a mathematical model of
interaction between agents, where each decision may be modelled as an arm on a gambling machine with
unknown reward. However, the bandit problem has proven to be hard to solve in general. The dynamic

variant, where reward probabilities changes over time, is extra challenging.

Solving dynamic bandit problems by applying Kalman filtering is, to the best of our knowledge, a novel
approach. We are interested in how this approach compares to existing solutions. In brief, we intend to
evaluate the Kalman Bayesian Learning Automaton in multi-armed dynamic bandit problems and selected
multiplayer games from game theory. In addition, we are interested in how the performance scales with
the number of actions and interacting players. Last, but not least, since the KBLA has to incorporate prior

beliefs, its sensitivity to incorrectly specified priors will also be considered.

By carrying out this work we believe our contribution to the field of artificial intelligence is a compre-
hensive empirical evaluation revealing several strengths and weaknesses of a Kalman filtering approach

in dynamic multi-armed bandit problems.

13



CHAPTER 1. INTRODUCTION

1.1 Background

1.1.1 Research area

This master thesis fits into an area of machine learning called reinforcement learning. In brief, reinforce-
ment learning involves agents that performs actions in an environment. The environment is capable of
giving the agents feedback about the actions they perform. The agents adjust their actions based on the

feedback they receive.

The learning scheme evaluated in this thesis is a solution to the bandit problem. The bandit problem is a
well known problem in reinforcement learning modelling the trade-off between exploration and exploita-
tion. The bandit problem can be viewed in terms of a slot machine with k£ arms and a gambler. Each arm
on the machine has a certain, unknown, probability of giving a reward. The gambler wants to maximize

the rewards received, how should he proceed?

This is where the fundamental trade-off between exploration and exploitation comes in. The gambler
has to try different arms, i.e explore, in order to obtain information about the reward probabilities for
each arm, but each time he pulls an arm he might have been better off exploiting existing knowledge by
choosing the arm believed to be optimal presently. The problem here is to balance the exploration of arms

and the exploitation of existing knowledge in such a way that the long-term reward is maximized [SB98].

Bandit problems can be either stationary or dynamic. If the reward probabilities for each arm are constant
then the environment is said to be stationary. In contrast, if the reward probabilities are changing with
time, we are dealing with a dynamic environment. The learning scheme evaluated in this thesis, the
Kalman Bayesian Learning Automaton, is designed for both stationary and dynamic environments, but

our emphasis in this thesis is first and foremost on environments containing some dynamic aspects.

An environment can be dynamic either in the sense of a time-varying process, or perceived dynamic due
to constant influence by some unknown factor. Such unknown factors may for instance be the decisions
of adversaries or cooperating players in multi-agent settings. The decisions of each agent influence the
state of the environment and therefore also the feedback given each agent. These settings can be analyzed
by a a branch of mathematics called game theory, which is becoming increasingly important in computer

science because of its applicability in the design and analysis of agents for multi-agent systems[RN02].

Thus, in this thesis we apply the Kalman Bayesian Learning Automaton to both general multi-armed

14



CHAPTER 1. INTRODUCTION

bandit problems and selected games from game theory with the intention of revealing its strengths and

weaknesses in various settings.

1.1.2 The Kalman Bayesian Learning Automaton

The Bayesian Learning Automaton (BLA) was first introduced by Granmo in [Gra08]. In this paper,
Granmo shows how Bayesian parameter learning techniques can be applied to stationary bandit problems
with Boolean feedback.

Granmo’s work was later extended by Braadland and Norheim in their master thesis [BN0O9]. Using
the same Bayesian estimation techniques they introduce three new variants of the Bayesian Learning
Automaton, which they call the BLA Poisson, the BLA Normal Known o and the BLA Normal Unknown
o2. The names are given according to what feedback distribution the scheme handles. The schemes
are evaluated thoroughly and reveals strong results in stationary environments. However, in dynamic

environments, inertia hinders performance.

Using the scheme designed for stationary environments with normally distributed feedback, the BLA
Normal Known o2, as basis, we introduce a new scheme in [GB10] intended for environments where
the reward probabilities are changing over time. This scheme is a slightly modified version of the BLA
Normal Known o2 with the addition of a Kalman filter. The Kalman filter is a Bayesian state estimation
technique intended for probabilistic reasoning over time. The filter is a recursive data processing algorithm
which incorporates all noisy measurements that can be provided to it, and creates an estimate of the
variables in interest in such a way that the error is minimized[May79]. It is this scheme, which we call
the Kalman Bayesian Learning Automaton, that is investigated in this thesis. Specifically, we will study
the performance, scalability and robustness of the scheme. By answering these questions we hope to

determine the strengths and weaknesses of the approach.

15



CHAPTER 1. INTRODUCTION

1.2 Importance of topic

Bandit problems are important because it is a formal model of many real problems. Indeed, the trade-off
between exploration and exploitation modelled by the bandit problem is fundamental in many areas of
research and our daily life. This is because situations and problems where we can choose between several
different actions, and each action has a stochastic outcome, can often be viewed as bandit problems.
The payoff for an action corresponds to the payoff for pulling an arm. Trying out different actions, i.e
exploration, is risky because each time we might have been better off choosing another action. However,
we are forced do some exploration in order to determine which actions are worthwhile. That is, we must

explore to maximize our long-term well-being and exploit to maximize our reward.

When the payoff one receives for choosing an action is invariant in time the environment is said to be
stationary. However, many real world problems are dynamic in nature. One example is web monitoring
where one has to deal with a continuously changing Internet. Another example is adaptive routing where
one aims to minimize the network delay in an environment where changes in the network topology is

common due to connection loss between nodes.

Most importantly for this thesis however, is that dynamic environments appear in decentralized learn-
ing. Decentralized decision making can be formulated as a game, where the problem is to coordinate
decentralized players which know nothing about each other or the true nature of the environment. This
thesis focus on selected games from game theory which from the players‘ point of view may be treated
as a bandit problem. Such games has been used in benchmarking of learning algorithms before[NT89]
[ACFSO3][ACFS98][IK03][TK93], and we thus consider them an important part of determining the ap-

plicability of the Kalman Bayesian Learning Automaton.

In the context of related work we believe our topic is important because of the, to the best of our knowl-
edge, unique approach of using Kalman filtering in non-stationary multi-armed bandit problems. There-
fore, even if the results turns out to be inferior compared to other solutions, we consider the evaluation
of the Kalman Bayesian Learning Automaton, a learning scheme with Kalman filtering techniques, a

valuable contribution to the field of reinforcement learning.

16



CHAPTER 1. INTRODUCTION

1.3 Thesis definition

Dynamic bandit problems arise in many areas of computer science like adaptive routing, web queries
and decentralized learning. In contrast to stationary bandit problems, dynamic bandit problems involves
stochastic environments where the reward probabilities of the optimal arm may change with time. Al-
gorithms intended for stationary environments are not suited for such dynamic environments because of
inertia. In a recent paper, Solving Non-Stationary Bandit Problems by Random Sampling from Sibling
Kalman Filters, we introduce the Kalman Bayesian Learning Automaton which is designed for dynamic
bandit problems with normally distributed feedback. The results are promising, but more experiments are
needed in order to fully understand the strengths and weaknesses of the approach. In this thesis we intend
to extend the work on the Kalman Bayesian Learning Automaton. Specifically, we will propose how the
automaton can be used to solve various dynamic bandit problems and selected games from game theory,
together with a performance evaluation of the scheme in these contexts. In addition, we will also inves-
tigate the scaleability and robustness of the scheme. Based on the outcome of these results we intend to

propose application domains where we consider the automaton most applicable.

1.4 Research questions

The essence of this thesis is to investigate a novel scheme for bandit problems, which is called the Kalman
Bayesian Learning Automaton (KBLA). We want to see how this new scheme can be applied in several
settings related to the bandit problem. Specifically, our main objectives is to determine the KBLA’s
performance in general multi-armed bandit problems, its ability to solve selected games from game theory,

its scalability and its robustness.

The following research questions will be answered:

e How does the Kalman Bayesian Learning Automaton perform compared to the BLA Normal

Known o2 and other bandit learning schemes in dynamic multi-armed bandit problems?

The bandit problem is a well known problem modelling the trade-off between exploration and
exploitation in reinforcement learning. There exist several variants of this problem, but the essence
of the problem can be viewed in terms of a gambler and a slot machine with k£ arms. Each arm has

a certain, unknown, probability of giving a reward when pulled. The gambler wants to maximize

17



CHAPTER 1. INTRODUCTION

the rewards received.

The predecessor for the Kalman Bayesian Learning Automaton, the BLA Normal Known o2 as-

sumes that the probability of getting a reward is constant and should therefore converge to a specific
arm. As such, it may be hindered by inertia in dynamic bandit problems where the reward probabili-
ties of the optimal arm may change. The Kalman Bayesian Learning Automaton(KBLA), however,
can take into account the fact that the best arm may change from time to time and can therefore
avoid converging towards a single choice. We intend to investigate this property by determining

how it compares to other bandit learning schemes in such dynamic environments.

e Is the KBLA able to find better solutions in multiplayer games compared to the BLA Normal

Known o2 and other learning schemes?

Game theory forms the basis for multi-agent systems that make decisions in a distributed fashion.
Each agent has limited knowledge of the system and therefore each decision it makes involves
uncertainty. In addition, the outcome of each decision is dependant on what the other agents do.
Consequently, we may relate game theory to dynamic bandit problems where we view each decision
available to the agent (or player) as an unknown arm’ changing over time depending on the actions

of the adversaries(or collaborators).

To study the applicability of the Kalman Bayesian Learning Automaton in decentralized systems,
we will evaluate its performance in selected games from game theory. In the interest of comprehen-
siveness, the selected games covers the main elements found in game theory. This involves testing
cooperative, non-cooperative, zero-sum, non-zero-sum and mixed strategy games, as discussed in

the following paragraphs.

Cooperative games involves several players which need to cooperate to achieve a common goal,
there is no individual payoffs. In a non-cooperative game the players make decisions individually.
We will study the Goore game, introduced by Tsetlin in [Tse74], which is a hybrid game with both
cooperative and non-cooperative elements. We want to determine whether a team of KBLA players

can solve the Goore game faster than other learning schemes.

Zero-sum games are games where the payoff adds to zero. This implies that a two-player zero-sum
game has identical, but opposite, payoffs for each player. The solution to a zero-sum game, the best

outcome, can be in terms of playing a fixed strategy or it can be by playing a *mix’ of strategies'.

!Often referred to as pure and mixed strategies in game theory literature.
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We will test the KBLA in both zero-sum games where it is optimal to play a fixed strategy and

zero-sum games where mixed strategies achieves the best outcome.

Mixed strategies are not only good for being unpredictable, but also for minimizing the information
an adversary can gain by observing one’s actions|RNO2]. An example of a mixed strategy game is
Rock-paper-scissors where rock beats scissors but loses to paper. Clearly it is easy to beat a player
that always selects rock. Since many learning schemes, for instance the BLA Normal Known o2,
are made to converge towards a single strategy we believe that it is suboptimal to the KBLA in such
mixed strategy games. To investigate whether our belief is true we want to put the KBLA up against

other bandit learning schemes in mixed strategy games.

Another game we will investigate is the classical Prisoner’s Dilemma. The Prisoner’s Dilemma is
a two-player, non-cooperative, non-zero-sum game where the most likely outcome, the equilibrium
point, is worse than the optimal outcome. This dilemma has relevance in many areas, among others
psychology, economics, and politics. When the game is played in succession it is called the iterative
prisoners dilemma. The goal for each player is then to maximize their outcome over n iterations. It
is this iterative version of the Prisoner’s dilemma we will use to check the behavior of the KBLA.

Does it converge to the equilibrium point, which is the rational strategy, or does end up cooperating?

e Does the KBLA suffer from scaleability problems?

When the number of players rise it gets increasingly hard for most learning schemes to determine
the optimal solution in the Goore game. Many real-life problems like [IKO03] is dependent on a
large number of agents. Therefore it is important to see how the performance of a KBLA team in

the Goore game varies with the number of players in the team.

Scaleability also concerns the number of “arms” in the environment, the available actions a bandit
player(or agent) may apply, and thus we also intend to test multi-armed bandit problems and zero-

sum games with various number of actions.

e How is the performance of the KBLA affected by incorrect parameters? What if the assump-

tion of normally distributed feedback is wrong?

The KBLA takes all available information about the environment into account and creates an es-
timate of the unknown parameters. The update model for the environment models how the envi-
ronment evolves over time and the sensor model models how we interpret observations from the
environment. However, in practice, it is often the case that we do not know the true update model

and sensor model for the environment. One might have to guess or estimate the update model and/or
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sensor model. Therefore it is important to determine whether the KBLA is robust and can handle

situations where there exist uncertainty in the update model and sensor model.

Also, the KBLA assumes normally distributed rewards, what if it is applied in an environment
where this assumption is wrong and instead it receives Bernoulli distributed feedback. Bernoulli
distributed feedback is either a reward or a penalty, that is, a 0 or a 1. Many problems in reinforce-
ment learning have this type of feedback[SB98] and we therefore feel it is important to investigate

whether the KBLA is able to learn the best actions in environments like this.

1.5 Contributions

By answering our research questions we will identify strengths and weaknesses of the Kalman Bayesian
Learning Automaton (KBLA) in dynamic multi-armed bandit problems. Specifically, our contributions

are:

e A performance evaluation of the KBLA in dynamic multi-armed bandit problems. In chapter 5 we
compare the KBLA to other bandit learning schemes in several dynamic environments. We show
that the KBLA are especially strong in randomly changing environments, and is among the top

performers in all tested environments.

e A study of the KBLA in zero-sum and non zero-sum games. theoretic viewpoint. Such games are
fundamental for the analysis of rational agents. The experiments in chapter 5 reveal the KBLA as a
very rational player in all tested games. In fact, it quickly determines a near-optimal strategy even

in the mixed strategy case.

e An analysis of the KBLA’s ability to function as a team, by applying it in the Goore game. The
Goore game appear in decentralized learning where one aims to coordinate decision makers in
systems with large amounts of noise and uncertainty. In chapter 5 we show that, even though it may
need extensive tuning of parameters to do so, the KBLA is able to get close to the optimal solution

in the Goore game.

e A look at how the number of interacting players and amount of actions available affects the per-

formance of the KBLA. Indeed, we reveal that the KBLA handles an increasing number of actions
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better than traditional learning automatons. Even a randomly changing bandit problem with fifty-
arms is tracked with surprisingly high accuracy. Also, the KBLA identifies strong mixed strategies

in zero-sum games when increasing the number of actions.

Increasing the number of players in the Goore game on the other hand, unfortunately makes the

KBLA very sensitive to its parameter configuration.

e A sensitivity analysis of the KBLA. Both in terms of incorrect parameter configuration and binary
feedback. It is shown that the performance of the KBLA is rather sensitive to its update variance
parameter in random walks, but the sensor variance parameter does not have a large influence as
long as the environment contains a moderate amount of noise. In fact, it is revealed that in some

cases an incorrect sensor parameter can significantly reduce regret.

It is also revealed that the KBLA can deal with binary feedback, and approaches optimal solutions
in binary zero-sum games and the binary Goore game. It even performs surprisingly good in an
online exploration vs exploitation competition with binary feedback. However, in turns out that
the performance of the KBLA in such binary environments is highly dependent on the parameter

configuration.

1.6 Target audience

The thesis is written with the intention of being self-contained and in a way that fellow students without
any particular previous domain knowledge should be able to follow. Since we touch a lot of different
topics like reinforcement learning, learning automata, game theory, decentralized learning and Bayesian
statistics, we consider the audience to be anyone interested in these topics. Though, perhaps especially
researches wanting to see how Bayesian state estimation techniques can be applied to dynamic multi-

armed bandit problems.

By identifying possible domains where the strength of the automaton lies, we also hope our work is of

interest to application developers wishing to apply ‘state-of-the-art’ research to their applications.
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1.7 Report outline

Central to this thesis is the bandit problem, the Bayesian learning automatons and game theory. Each of
these subjects have received their own chapter. We start with the bandit problem in chapter 2. Here we
describe the fundamental theory of Markov decision processes that underlies reinforcement learning and
associates this theory to the exploration vs exploitation dilemma which is captured by the bandit problem.
Chapter 3 introduces the various Bayesian learning automatons. Specifically, we briefly introduce some
of the most important concepts from Bayesian statistics and show an example of how these concepts can
be applied in a stationary binary bandit problem, before we derive the equations applied in the Kalman

Bayesian Learning Automaton.

Chapter 4 contains an overview of game theory and the games we intend to investigate in this thesis. We
also show how to derive the mixed strategy solutions for the games we have included in our experiments.
Chapter 5 contains the evaluation of the Kalman Bayesian Learning Automaton. Here, it is compared
to several other state-of-the-art algorithms in randomly changing environments, switching environments,
zero-sum games, Prisoner’s Dilemma and the Goore game. We analyze the results in chapter 6, together
with a brief discussion on possible applications domains for the KBLA. Chapter 7 sums up everything

together with several interesting proposals for further work.

22



Chapter 2

The Bandit Problem and existing solutions

The Bandit Problem is a formal model of the exploration versus exploitation dilemma. It asks how a
bandit player, or agent, should choose its sequence of actions as to maximize a reward criterion. Exploring
actions, i.e gaining information, is important because it allows the agent to estimate the utility of a certain
action, but too much exploration drops performance as one may have been better of exploiting existing

knowledge.

The amount of exploration needed by the agent is largely dependent on the mechanics of the environment
it interacts with, and as such significant work has gone into the development of a general mathematical
model for the interaction between an agent and its environment. Currently, the most widespread theoret-
ical models describing this interaction are Markov Decision Processes and Partially Observable Markov
Decision Processes. Thus, due to their importance, we use the first part of this chapter to briefly introduce

these ideas.

Reinforcement learning is the general term for the approach where agents learn from feedback. We
touch into this subject in slightly more depth after introducing the general theory of Markov processes.
Furthermore, we provide a more verbose description of the bandit problem and relate the theory of Markov
processes to the environments encountered in this thesis. The last part of this chapter is devoted to existing

solutions, various algorithms created to address the exploration versus exploitation dilemma.
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2.1 Sequential decision making under uncertainty

The Kalman Bayesian Learning Automaton has to make decisions in sequences. One decision per time
step. This decision influences the feedback it receives from the environment. Each decision is made

according to its own belief - that is, by being Bayesian' - about the state of the world/environment.

Sequential decision making problems can be modelled in terms of of a Markov Decision Process|[RN02],
a mathematical model that describes the interaction between the agent and the environment. The only
requirement is that the problem satisfies the Markov property[SB98, p66]. This property says that the

preceding state is only dependent on the previous state, and not on the entire history of states.

A Markov Decision Process (MDP) is given in terms of[RN02]:

e Initial state: sg
e Transition model: T'(s, a, t) - the probability of reaching state ¢ when executing action a in state s.

e Reward model: R(s,a,r) - the probability of receiving reward r when performing action a in state

S.

As we shall see, this model is not entirely appropriate for the environments the KBLA is applied to, but
for now it suffices to say that MDP’s are present in all areas of AI[SB98, p64], and is the main underlying
idea that ties together theoretical work in reinforcement learning. A solution to an MDP is called a policy,
and defines how the agent should behave (what action is should apply) at a given time[RNO2][SB9S, p7].
We adopt the notation from [SB98] and [RN02] where a policy is denoted 7.

We said earlier that an MDP was not entirely appropriate to model the interaction between the Kalman
Bayesian Learning Automaton and the environments encountered in this thesis. An MDP assumes that
the environment is fully observable, that is, the agent knows what state the environment is in. The en-
vironments encountered in this thesis are only partially observable. In partially observable environments
the agent does not know its present state. We will consider environments which are partially observable
in the sense that the exist uncertainty about the state of the environment because the feedback from the
environment is noisy. There are various ways to deal with uncertainty about state, but the KBLA handles

this through a state estimation technique known as Kalman filtering.

!Chapter 3 elaborates on what it means to be Bayesian.
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A partially observable Markov decision process (POMDP) describes such environments|RN02]. A POMDP
contains the same elements as an MDP in addition to an observation model*. The observation model is

O(s, a, 0), the probability of perceiving observation o when performing action a in state s. The decision
cycle of a POMDP is|[RNO2]:

1. Based on inferences about the state of the environment, execute the action that maximizes expected

outcome a = 7*(s).
2. Receive observation o.

3. Predict the next state of the environment by incorporating belief about environment dynamics (tran-

sition model) and the knowledge gained from observation o (sensor model).

When the transition model 7', reward model R or in the case of POMDP’s observation model O is un-
known the agent must learn the environment by experimentation. For each action the agent performs, the
environment responds with feedback for the purpose of evaluation. Such feedback is called a reward or
reinforcement[RNO2]. Also, depending on the environment, the agent may affect the future state of the

environment (chess is one example).

Reinforcement learning can be passive or active. Passive reinforcement learning involves agents which has
precomputed all actions. Active agents on the other hand, like the Kalman Bayesian Learning Automaton,
must decide for itself which actions to perform, and as such need to explore the environment to determine
the best actions. It turns out that just how much an agent should explore of the environment is very hard

to solve in general. Exploration problems of this kind has generalized under the term bandit problem.

2.2 The Bandit Problem - a model of the exploration vs

exploitation dilemma in reinforcement learning

2.2.1 Exploration versus exploitation

As previously mentioned, reinforcement learning involves agents that performs actions in an environment.

The agent is not aware of the environment it operates in, so it has no way to know whether an action

20r sensor model. We use the terms interchangeably.
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is worthwhile or not. However, each time the agent performs an action the environment will give the
agent feedback about that particular action. And as such, the agent can use the information obtained by
performing an action to reason about the utility of the corresponding action. The overall goal of the agent

is to choose its sequence of actions in such a way that the overall feedback is maximized>.

The process of testing out an action to determine whether it is worthwhile is called exploration. Thus,
the exploration part in the dilemma simply refers to the activity of gaining knowledge about the unknown
environment it operates in. However, too much exploration can hurt the performance of the agent. Instead,
it should use existing knowledge to determine which action it should perform next. This is the exploitation
part of the dilemma. That is, when should the agent exploit existing knowledge and choose what it believes

is the best action?

The problem is to find the optimal balance between exploration and exploitation.

2.2.2 Terminology

The terms agent, bandit player and learning scheme are used throughout this thesis to refer to algorithms.
“Arms” and “actions” are also used interchangeably in this thesis, which refers to the algorithms estimate

of a certain choice one can apply in an environment.

2.2.3 Environments and types of feedback

It is important to make the distinction between stationary and non-stationary bandit problems. In a station-
ary environment the feedback function associated with each arm does not depend on any varying factors
such as time. Thus, in a stationary environment the “arms” of the environment has only one state and can
therefore be described with a Markov decision process where the transition function 7°(s, a, t) is indepen-
dent of the action a and the target state ¢ is always equal to s. The reward function R(s, a, ) on the other

hand is unknown and must be learned online be reinforcement techniques.

In a dynamic environment however, the feedback function associated with each arm in the environment is
dependent on time. Also, an environment can appear dynamic to an agent when for instance the reward
depends on the choice of other agents. In addition, most environments considered in this thesis consists

of continuous variables, which implies an infinite state space. As such, it is intractable to describe these

30r minimized, depending on the problem.
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environments with a Markov decision process, but it suffices to say that we want to learn, or perhaps
more precisely, track, a changing continuous reward distribution for each arm using an observation model

O(t, a, 0) where the observation o depends on the action* a at time .

We also distinguish between a stochastic and non-stochastic environment. Stochastic environments have
an element of randomness, which usually means that the feedback function is a probability distribution.

All environments considered in this thesis are stochastic.

Two different feedback functions are encountered in this thesis. The first type of feedback is normally
distributed feedback. Such feedback is sampled from a normal distribution with mean y and variance 0.
We refer to the variance as the noise of the environment. High noise indicates a hard environment. The

Kalman Bayesian Learning Automaton is made for precisely this type of feedback.

The second type of feedback we consider, though not as thoroughly, is perhaps the most discussed en-
vironment in literature, namely environments where the feedback function is a Bernoulli distribution. A
Bernoulli distribution has boolean feedback where the probability of receiving 1, often referred to as a

reward, is p and the probability of receiving 0 (a penalty) is 1 — p.

2.3 Other bandit solvers

Here we describe several approaches to the bandit problem, from the most basic to the most advanced

schemes we consider to be state-of-the-art in the field.

2.3.1 Greedy approaches

The most obvious approach to the bandit problem would be to calculate the average reward received
from an arm and use this as an estimate of the actual value of that arm. This is called the sample average
method[SB98]. Thus, the estimated value () of an arm that has been chosen n times with rewards ry ... 7,

is:

Q:T1+T2+...—|—T’k @

n

4Since the state of each arm are continuously changing and unobservable except for the arm that is played.
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One possibility is to always selected the arm with the highest reward estimate in the action selection
process. In other words a pure exploitation strategy that maximizes immediate reward. Such an approach
might fail to identify the best arm due to the lack of exploration, so an alternative is to use e-Greedy
methods, which involves selecting a random action with a small probability ¢, as described in [SB98].
The pseudocode of this approach is shown in listing 1, where () is the reward estimate vector, K is the

number of actions and n; is the number of times arm/action ¢ has been selected.

Algorithm 1 Pseudocode for e-Greedy

1: Parameters: € € [0, 1]

2: Init: Q; =0foriel... K

3: loop

4:  if Random € R|0, 1] < € then

5: i = Random € Z[1, K|

6: else

7: i = arg max %wherej € {1.K}
8.  endif ’

9: r =feedback from action q;

10: ni=n; +1

1: Qi=Q;+r

12: end loop

However, balancing exploration and exploitation in this way is not optimal because of constant exploration
even when one are quite sure of the reward values. In addition, it is equally likely to explore the worst

arm as it is to explore ones with high reward estimates.

[ACFO02] describes a variant of e-Greedy which let the ¢ parameter gradually decrease to shift focus from
exploration to exploitation. In their paper, the rate of exploration is given by equation 2.2, where c is a
tuning constant, K is the number of arms, 7 is the total number of selections and d is the distance between

the best and the second best arm.

K
¢ = min(1, ;2—”) (2.2)

We note that, in a dynamic environment this variant might not do any good, as more exploration is needed

and the algorithm will suffer performance if its focus is changed entirely to exploitation.

Due to the similarity with e-Greedy the pseudocode of this approach is not shown here, but resides in
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appendix B.1.

Another possibility is to create action probability functions of the estimated values[SB98, 30]. That is,
a weighted function that ranks each arm according to their value estimates. The arms with the highest
reward estimates will then have the highest probabilities of being explored. This is the softmax action

selection mechanism where the action a on the nth play is selected with probability[SB98]:

Qa)/r

ST @3

Here, 7 is a parameter for controlling the similarity of the action probabilities. That is, a large 7 value
gives all actions very similar probabilities and becomes a random search in the limit. Oppositely, a small

7 value reduces exploration and the limit liH(l) equals the greedy action selection mechanism[SB9S].
T—

[SB98] also discusses another method for calculating averages. It is based on the motivation that in non-
stationary environments the most recent rewards are usually more important than the old rewards. The
exponentially, recency-weighted average weighs a reward depending on how long ago it was observed and

the reward estimate () at time ¢ is given by[SB98]:

t
Q=01-a)'Q+> a(l—a) (2.4)
=1

The « parameter is a value in the range [0, 1] and controls the weights. The higher the o parameter is,
the more rapidly it “forgets” its past and the larger the difference between the past rewards and the most
recently received reward. Listing 2 shows the pseudocode for the SoftMax algorithm with exponential
recency-weighted averages, but equation 2.4 is rewritten in a recursive manner to avoid the need for

considering the entire history of rewards each time step.

2.3.2 Learning automata

Among learning automata (LA) based solutions we find the Linear-Reward-Inaction (Lr_7) scheme,
Linear-Reward-Penalty (L z_ p) scheme and the Pursuit scheme. Lr_; and Lr_ p are based on linear up-
dating of arm selection probabilities while the Pursuit scheme maintains maximum likelihood estimates

for the reward probabilites of each arm. Learning automatas can operate in unknown stochastic envi-
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Algorithm 2 Pseudocode for SoftMaxEWA

Parameters: 7 € R
Init: ); =0fori € 1... K
Init: P, =1/Kforiel...K
loop
1 = action drawn from probability vector P.
r = feedback from action a;
Qi(t) = Qi(t —1) + alr — Qi(t — 1))
forjc{1...K}do
P = eQi®)/T

Qg (1)
»Fer

10:  end for
11: end loop

R A AT

ronments and combine rapid and accurate convergence with low computational complexity, but they are

dependant on external tuning of parameters|[NT89].

Due to their similarity, we show only the pseudocode for Pursuit here, listing 3.

Algorithm 3 Pseudocode for Pursuit

1: Parameters: o € [0, 1]
2: Init: Pj:%forje 1...K

3: loop

4: 4 =action drawn from probability vector P
5: n;=mn; +1

6:  r = feedback from action %

7 r,=r;+r

8: i*:argmax%,wherejE{l...K}

9: forje{l...K}do

10: Pj=(1-a)P;

11:  end for
12: Py =Py + «
13: end loop

The Lr_p scheme can avoid converging to a single action by setting the parameters of the algorithm suf-
ficiently small [NT89], the two other schemes however are not made for dynamic environments and tries
to converge towards a single action. A learning automaton that is able to handle dynamic environments is

the Tsetlin automaton[Tse74] which is very simple. It only keeps track of which state it is in and performs
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an action reflecting this state, if the action yields a reward it will become more sure of this action, while
on a penalty it will gradually work its way towards a new state and therefore also another action. This is
illustrated in figure 2.1. Despite its simple nature it performs remarkably good in some types of dynamic
environments and it has been proven in [NT89] that a team of Tsetlin automata can solve the Goore game

with sufficient iterations. A downside of the Tsetlin automaton is the requirement of Bernoulli feedback.

Figure 2.1: The Tsetlin automaton

Action 1 Action 2

O T TN
A A

2.3.3 Adaptive Pursuit

Adaptive Pursuit is a variant of the Pursuit scheme specifically designed for non-stationary environments[ Thi0O5].
It uses a parameter P,,;, which denotes the minimum probability an action can have. In this way it ensures
that no actions are lost, however this also means that the maximum probability any action can achieve is
Praz = 1 — (K — 1)Ppin [ThiO5], where K is the number of actions. Thus we see that the maximum
performance of this algorithm will only degrade when the number of actions increases because Py,qz

decreases.
Listing 4 contains the pseudocde for AdaptivePursuit [Thi05].

Here @ is a vector with value estimates for each action. The parameter o determines how much to
weigh the current reward, hence a low value means that it does not take the current reward too seriously
while a high value weighs the current reward heavily. A high « is probably benefitial in non-stationary

environments since recent rewards can give a better picture of the environment than the reward history.

The 3 parameter is similiar to the a parameter given to the normal Pursuit scheme. It determines how
“similar” the action probabilities are. Thus, a small 5 parameter leads to more exploration since there is

less difference between action probability values.
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Algorithm 4 Pseudocode for Adaptive Pursuit

1: Parameters: P,,;, € [0, %],oz € [0,1],58 € [0,1]
2: Imit: P, = %forie 1...K

3: Imit: ); =1.0foriel... K

4: loop

5: 1 =action drawn from probability vector P
6: r =feedback from action a;

7 Qi(t)=Qi(t — 1)+ afr — Qi(t — 1)]

8: " =argmax(@Q;(t), where j € {1... K}
9. forje{l...K}do

10: if j # i* then

n: P; = P; + 3 Pin — P)]

12: end if

13:  end for
14: P =R*+,6[Pmax_f)i*]
15: end loop

2.3.4 Confidence interval based algorithms - The UCB family

These algorithms assign an optimistic reward estimate within a certain confidence interval [VMOS5] to
each arm. Based on frequency inference, meaning that the more an arm is chosen the closer its optimistic
reward estimate will be to the true reward mean. At each step the arm with the highest optimistic mean is

chosen.

Auer et al[ACFO2] performs an analysis of some confidence algorithms in their paper. Three for binary
feedback, the UCB1, UCB2 and UCB1-Tuned algorithms and one for normally distributed feedback,
the UCBNormal algorithm. Among the binary schemes, the results show that UCB1-Tuned is the best
performer. Common for all of them is that the balancing between exploration and exploitation can be seen

by the optimistic reward estimates for the arms, for UCB-Tuned this is:

Inn . 1
it win L Vi) @9
Here, n is the total number of arm pulls and 7 is the number of times arm j has been pulled. The V; term

is an upper confidence bound for the variance of arm j and is rather complicated. The interested reader
should consult [ACFO02] for all details.
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We see that arms with few pulls will have greater uncertainty and therefore also more likely to be explored.
As the number of arm pulls increases this uncertainty will be lower for all arms and the algorithm is more
likely to choose the best arm. However, this also means that the more effort spent on an option will
increase the time needed to rediscover the best strategy should the optimal arm suddenly change as in an

dynamic environment.

Listing 5 contains the algorithm for UCBNormal as it is described in [ACFO02], see appendix B.2 for a
listing of the UCBTuned algorithm.

Algorithm 5 Pseudocode for UCBNormal
1: Initialization phase: n =1, j =1

2: while 7 <= K do

3:  ifn; < 8logn then

4 Play action j, update m; and increment both n; and n by 1.
5:  else
6
7
8
9

j=7+1
end if

: end while

: loop

2
.= Cm 45 7nim;
10 i=argmax; m; +4/16- 1

In(n—1 .
: "(Zj Lforj e {1...K}

11:  r =feedback from action %
12:  Update mean m; from r and increment both n; and n
13: end loop

2.3.5 Adapt-EvE

The AdaptEVE (Adaptive Exploration vs Exploitation) algorithm from [HBG™07] is specifically intended
for both stationary and dynamic environments. It aims to overcome the inertia that hinders the perfor-
mance of the UCB-based algorithms described above under dynamic environments. It applies a so called
change-point mechanism based on Page-Hinkley statistics that is intended to track both sudden and slow

changes in the environment.
AdaptEve was the top performer in the EVE challenge hosted by [AHC'06].

AdaptEvE uses UCBTuned at its core. In fact, the algorithm is identical except for the change point

mechanism and the way such change points are handled. Their paper they describe two different ways of
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dealing with a change point. They call the first the y-restart mechanism, this variant restarts the parameters
of the UCBTuned by a factor of v. Which they claim that is best when the value is zero, which equals a
complete restart of the UCBTuned.

The other variant uses a so-called meta-bandit intended to detect wether a change point was a false alarm.
This meta-bandit variant consists of starting a new UCBTuned with two actions, which are referred to as
oldbandit and newbandit where oldbandit is the same UCBTuned running up to this point and newbandit
is a UCBTuned started from scratch. The “meta” UCBTuned keeps track of which of the oldbandit and
newbandit that receives most rewards and after MT steps the best of the two bandit becomes the new core
UCBTuned. This process is repeated at each change point.

While only UCBTuned as the internal UCB algorithm is described in their paper, we assume it is possible
to extend their approach to normally distributed feedback with UCBNormal. Thus, when we compare
against these algorithms in chapter 5 we use a version with the UCBNormal algorithm in our Gaussian
environments and a version with the UCBTuned algorithm in our Bernoulli environments. In listing 6 and

7 we don’t make the distinction, and only refer to the internal algorithm as “UCB”.

Algorithm 6 Pseudocode for AdaptEvE~-Restart

1: Parameters: A\ € RT,§ ¢ Rt

2: Imit: PHy=0

3: loop

4: 4 = action chosen according to the arm selection process in UCB
5.  r; = feedback from action a;

6:  7; = average reward for action ¢

7: PH,; = maX(PHt_l — 1+ 75— 0, 0)

8: if PH; > ) then

9: Restart internal UCB algorithm and set P Hy=0
10:  end if
11: end loop
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Algorithm 7 Pseudocode for AdaptEvE-MetaBandit

1: Parameters: A\ € RT,§ € R™, MT € Z*
2: Init: PHy=0, metaphase = false

3: loop

4:  if metaphase then

5: Play best of newbandit and oldbandit
6: Update reward estimate of played bandit and increment 7,,¢¢¢
7: if nyetq == MT then
8: Set internal UCB as best of newbandit and oldbandit
9: Reset all variables
10: end if
11:  else
12: ¢ = action chosen according to the arm selection process in UCB
13: r; = feedback from action a;
14: 7; = average reward for action ¢
15: PH; = max(PHt_l — 1+ 7 =0, O)
16: if PH; > ) then
17: metaphase = true
18: oldbandit=current internal UCB, newbandit = fresh start UCB
19: end if
20:  end if
21: end loop

2.3.6 Poker

Poker is an abbreviation for the Price of Knowledge and Estimated Reward algorithm introduced in
[VMOS]. According to its creators: “The POKER scheme relies on three main ideas: “pricing uncer-

tainty, exploiting the lever distribution and taking account into account the horizon”.

Pricing uncertainty means that it tries to quantify the knowledge gained while pulling a particular lever.
Exploiting the lever distribution means that, based on the knowledge it has gained, it tries to estimate the
unobserved levers. The last point, taking the horizon into account, says that the remaining number of

rounds to play is to be used as a parameter.

Assuming normally distributed feedback, these three properties leads to the following price formula[ VMO0S5]:

pi = i + Plpi > i+ 0,)0,H (2.6)
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where ji; is the estimated reward mean associated with arm ¢, ¢ is the estimated reward improvement and

H is the rounds remaining.

The algorithm for Poker is fairly long and has therefore been put in appendix B.3.

2.3.7 Exponential weight schemes
Exp3

Exp3 is the simplest of several related exponential weight schemes introduced in [ACFS03]. At each time

step t, the probabilities for each arm is given by[ACFS03]:

pilt) = (1 - )y &

(0%
— 2.7
SEowt) K @7

where K is the total number of actions, « is a tuning parameter in the range (0, 1] and w; is a weight value
associated with each action. This probability distribution is a mix of both a uniform distribution and a
distribution assigning each arm a probability mass exponential in the estimated cumulative reward for that
arm [ACFS03]. The uniform distribution is there because it adds uncertainty and therefore ensures that

all arms are explored.

At each time step, the weight value w; is updated according to

wji(t + 1) = wj(t)exp(vz;(t)/K) (2.8)

where Z; is feedback/pj for the selected arm and O for the rest. This is the main idea of the algorithm.
That is, by dividing the gain by the probability of choosing that action, arms with more rewards will
increase their probability of being chosen. Again, we see that similar to many of the previous algorithms,
the time needed to adapt in the case of a dynamic environment will increase with the effort spent on a

particular arm.
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Chapter 3

The Bayesian Learning Automatons

The essence of this thesis is to investigate the Kalman Bayesian Learning Automaton, a learning scheme
intended for dynamic environments. However, the concepts of this automaton is largely related to those
found in the Bayesian learning automatons intended for stationary environments. Therefore, we feel it is
appropriate to devote this chapter to introduce both the Bayesian learning automaton family for stationary

environments and the Kalman Bayesian Learning Automaton, together with their theoretical background.

Common and fundamental for all the Bayesian learning automatons is Bayesian inference where Bayes’
theorem is central. Bayes’ theorem tells us how to update our belief in light of new evidence. By apply-
ing Bayes’ theorem and conjugate priors, probability distributions with special properties, the Bayesian

learning automatons can calculate its belief state with suprisingly simple procedures.

The Kalman Bayesian Learning Automaton also applies Bayes’ theorem and conjugate priors in light of
new observations, however, since the environment may change from time to time it also has to incorporate
some extra information regarding the dynamics of the environment. It turns out that, once again, conjugate

priors provides the solution.

3.1 The Bayesian Learning Automata family for stationary environments

As mentioned briefly in chapter 1, the first Bayesian Learning Automaton (BLA) was introduced by
Granmo in [Gra0O8]. The BLA was intended for stationary multi-armed bandit problems with Bernoulli
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feedback. In such bandit problems, each each “arm” in the environment has a certain probability p of

giving a reward. In the absence of a reward, a penalty is given.

Previous Bayesian approaches to the bandit problem was in general computationally inefficient, and the
BLA was therefore made to address precisely this issue. The novel features of the BLA can be summed

up in the following:

e [t maintains a beta distribution of each “arm” in the environment, where each of these distributions is
an estimate of the reward probabilities associated with a particular arm. These beliefs, the Bayesian
estimates, are used in the arm selection process. This is in contrast to the traditional learning
automatons mentioned in chapter 2, which maintains an action probability vector as basis for arm

selection.

e It applies a randomized arm selection mechanism based on the Bayesian estimates. That is, during
arm selection, instead of using the estimates directly, the automaton draws random samples from

each of the beta distributions and selects the arm with highest sampled value.

Braadland and Norheim pursued these ideas further in their master thesis ([BN09]) where they showed
that Granmo’s solution could be generalized to handle different types of feedback. Specifically, they cre-
ated three new Bayesian learning automatons to handle stationary environments with poisson distributed
feedback, normally distributed feedback with known variance and normally distributed feedback with un-
known variance, respectively. Table 3.1 gives an overview of the Bayesian learning automatons and the

type of feedback they are intended for, while listing 8 contains the general pseudocode.

Table 3.1: The BLA family for stationary environments

Name Feedback type

BLA Bernoulli Boolean variable

BLA Poisson Poisson distributed

BLA Normal known o2 Normally distributed with known variance

2

BLA Normal unknown o Normally distributed with unknown variance

In the following sections we will introduce the concepts from Bayesian statistics relevant to understanding
the inner workings of the stationary BLA family. However, since our primary goal is give the reader an

understanding the of Kalman Bayesian Learning Automaton, the coverage of these concepts will not be
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Algorithm 8 Generic pseudocode for the BLA family

1: Imit: K = number of arms/actions

2: Inmit: Set parameters according to prior belief

3: loop

4:  Sample z; from P;, where P is a probability distribution and j € {1... K'}
5. 4= argmax xj, where j € {1, K}

6 r = feedback from action q;

7. Update belief of parameters by using r

8: end loop

comprehensive. Readers interested in a more complete overview of the stationary BLA family should

consult Braadland and Norheims thesis.

3.2 Bayesian inference vs frequentist inference

The Bayesian learning automaton family relies heavily on Bayesian inference. Inference is the process
of drawing conclusions from evidence and prior beliefs rather than direct observation. From a statistical
viewpoint there are two main approaches to inference, namely Bayesian inference and frequentist infer-
ence. While the Bayesian viewpoint is of most interest here, understanding how they differ is helpful for

getting in an Bayesian state-of-mind.

3.2.1 Frequentist inference

Frequentists views probability as a property of the system under observation[Nyb]. This property is

determined by imagining infinite repetitions of the same test.

Consider flipping a coin. Then there is two possible outcomes. Heads or tails. To determine the probability
of receiving heads, a frequentist would repeatedly flip the coin and count the number of heads. Naturally,
he cannot perform this experiment forever, so instead he imagines what happens if he had performed
the experiment infinitely many times. Thus, the probability is inferred by performing a finite number of
experiments and with these experiments as basis the real value is approximated. Equation 3.1 generalizes
this approach. Here P(A) is the probability of a certain outcome, n is the number of trials and a(n) is the

number of such outcomes observed so far.
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P(A) = tim 20 3.1)

It is vital to realize that imagining infinite repetitions implies using unobserved data in the inference

process. An important distinction between frequentist inference and Bayesian inference.

3.2.2 Bayesian inference

Bayesians applies same method as the frequentist, they perform experiments repeatedly, but in contrast to
frequentist inference, only the actually observed data is used to infer the probability. More specifically,
Bayesian inference starts with a prior belief about the probabilities. Then, as data arrives, the prior is
used together with the newly observed data to infer the new probability. This update procedure is done

according to Bayes’ theorem, equation 3.2.

P(a)P(bla)

P(alt) = =5

(3.2)
Bayes theorem is the heart of Bayesian inference and underlies all modern Al systems for probalistic
inference [RNO2].

When applied to parameter learning, it seems common in scientific literature to use a different notation
for a and b to clarify the distinction between data and parameters. We adopt the notation from [GCSRO03]

where Bayes’ theorem is expressed as:

P(Oly) = (3.3)
Here, 0 is the parameter and y is an observed value. The key quantities are P(#) and P(y|6) which are
referred to as the prior distribution and likelihood function respectively. P(6|y) is the inferred distribution

and is usually referred to as the posterior density.

The factor P(y) is independent of the parameter # and may therefore be regarded as a constant. As such,
for inference we can omit this factor and use the unormalized version of Bayes’ theorem, which is given
by[GCSRO3]:
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P(0ly) = P(0)P(yl) (3.4)

3.3 Learning the parameters of a two-armed Bernoulli bandit problem

To illustrate how the Bayesian Learning Automaton applies Bayesian inference to learn the parameters of

the “arms” in a two-armed Bernoulli environment, we go through an example.

In a Bernoulli environment each arm has a certain, unknown probability of giving a reward. Thus, for
each arm we associate a random variable ©, which can take on any value in the interval [0,1]. This
value, which we denote 6, is the parameter we want to learn. Meaning that, at each time step, what
we want to know is the probability of a reward given the range of data, d; ... dy, observed so far, that
is P(© = 0|d;...dy). This term is called the posterior, the conditional probability. However, the
Bayesian approach to parameter learning updates this probability at each time step[RN02], and as such
only the most recent observation d; = y needs to be considered. Therefore it is sufficient to find the

probability at a given time step P(© = 0|d; = y) with y € {reward, penalty}.

A Bayesian view needs a prior belief. Initially, we have no information available, every value is equally
likely. The uniform distribution is one way to represent this, but as we will see in the next section about
conjugate priors, a beta distribution the perfect choice. A beta distribution for a parameter 6 is given
in terms of two hyperparameters' ¢ and b, which determines the shape of the function. Function 3.5
is the beta distribution. Note that the denominator does not depend on the parameter and serves as a

normalization constant.

00,—1 1—-96 b—1
70,05 = ——1=9) (3.5)
w11 — u)bildu
0

Denoting the normalization constant c, we have our prior distribution for Bernoulli environments in equa-
tion 3.6.

P(© = 0) = betala,b](f) = a1 (1 —)"! (3.6)

'The term hyperparameter is used in Bayesian statistics to avoid confusion with the parameters of the system.
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The second quantity we need for a Bayesian update step is the likelihood function. How likely are we to
receive a reward or a penalty? Intuitively, receiving a reward is determined exclusively by the parameter
0, the probability of a reward. And as such, the probability of a penalty is just the complement 1 — . With

1 representing a reward and 0 representing a penalty we get:

Pl6) = 6
PO|)) = 1-96
PY|§) = 6Y-(1—6)Y (3.7)

With both the prior and likelihood in place, we have the complete equation for a Bayesian update step in

a Bernoulli environment.

posterior = prior X likelihood (3.8)
P(O©=0|di=y) = betala,b](8) x 6Y(1 —§)Y~* (3.9)

Finally, we can consider what happens when the Bayesian learning automaton applies an action in the

environment. If the feedback from the environment is 1, then:
PO=0ld=1) = a0 (1-6)"1.0 (3.10)
= af*(1—0)"1 (3.11)

We see that the posterior distribution is just the beta distribution we used as a prior with the a parameter

increment by one. Similarly, if we had received 0 as feedback:

PO =0ld,=0) = af®1(1-0>1.-(6-1) (3.12)
= a1 -0)° (3.13)
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Then the b parameter is incremented by one. This means that, at every time step, the automaton only
needs to increment its parameters to update its belief. The a parameter is incremented on reward and the
b parameter incremented on a penalty. Figure 3.1 shows the arm estimates produced by the BLA in a
hypothetical case where the first arm has been selected 110 times with 70 rewards and the second arm has

been selected 90 times with 40 rewards.

. . ‘ ‘ .
——a=70b=40 a=40b =50
! ! ! ! ! ! !
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0 0
(a) Belief arm 1 (b) Belief arm 2

Figure 3.1: Estimates after 200 time steps in a Bernoulli environment where arm 1 has been pulled 110
times with 70 rewards, while arm 2 has been pulled 90 times with 40 rewards.

As we will see in the next section, this remarkable property of equal parametric forms in the prior and

posterior is not unique to this combination of prior and likelihood.

3.4 Conjugate priors

According to the choice of prior distribution, the product of the prior and likelihood may take on different
parametric forms. In the case were the posterior is of the same parametric form as the prior, the prior is
called a conjugate prior for the likelihood function. This is vital because then only the parameters need
updating when determining the posterior. Only updating the parameters means that we avoid complex

mathematical calculations.

In the previous section, we saw that the beta distribution is a conjugate prior to a boolean value, but it can
be shown that all probability distributions of the exponential family have conjugate priors. Each member
of the stationary BLA family are made for handling one such probability distribution. Table 3.2 show
four likelihood functions and their corresponding conjugate as applied in the BLA family for stationary

environments.
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Table 3.2: Likelihood functions and their corresponding conjugate prior

Likelihood function p(y|0) Conjugate prior p(0)
Bernoulli Beta
Poisson Gamma

2 Normal

Normal-Scaled Inverse- X2

Normal unknown g and known o

Normal unknown £ and unknown o2

3.5 BLA Normal Known o2

As mentioned in chapter 1, the Kalman Bayesian Learning Automaton bears close resemblance to the BLA
Normal Known o2, because of the assumption of normally distributed feedback. As the other members
of the BLA family it is reliant on a conjugate prior to update its parameters in light of new evidence. A

conjugate prior for a normally distributed likelihood function is also a normal distribution[Nyb].

Therefore, to learn a stationary, continuous variable X we again apply Bayes’ theorem. Denoting the

value of the variable z, the first observation 21 and the variance of the observation o we get:

_1 Zl_w) 1(@)

P(z|z1) = P(z1|z) x P(z) =e 2" 72 " xe 2 o2 (3.14)
From here, it is just a matter of standard algebm2 to show that:
- (0'2*zl+o'§,u) 2
,l( 2” tozy . :
2 2
P(z|z)) =e * on/o7toxn (3.15)

. . . . . . . . _liz—p
Remembering that a Gaussian distribution is given in terms of N (u,0) = ae 2 (2 ), we see that the new

mean and variance is calculated from equation 3.15 as follows:

2Combine the exponents and complete the square, the next section elaborates on this technique.
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022n+0o2pn_1

Hndl = 7 otio?
o2 = 9307
N A

Together with the sampling process, these equations forms the algorithm for the BLA Normal Known o2,

for which the pseudocode from [BN(Q9] can be seen in listing 9.

Algorithm 9 Pseudocode for BLA Normal Known o

1: Init: Set m; and s? according to prior belief of ;1 and o
2: loop

3:  Sample z; from N (m;, s?), foreachj € {1... K}

4: i =argmaxxj, wherej € {1... K}

5.  r = feedback from action a;

6 my = (sjr +oimy)/(s] + 02)
782 = (s202)/(s2 + o)
8: end loop

3.6 The Kalman Bayesian Learning Automaton

3.6.1 Theoretical background

The Kalman Bayesian Automaton is also made for environments where the feedback is normally dis-
tributed like the BLA Normal Known o2, but in addition the feedback may change at each point in time.
Thus, this time, the variable is dependent on the time ¢, and we denote the unknown variable X for which
we want to learn z;, the value at time ¢. The prior and likelihood functions are the same as for the BLA

Normal Known o2,

With a fixed value these equations would suffice, but since we know that the value might change at every
time step, we need to know how to update this equation for every time step. Fortunately, we can use
the same interesting property that we saw earlier in the section about conjugate priors. Combining a

Gaussian function with another Gaussian function gives a posterior distribution which is also a Gaussian
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distribution, and may thus also be used to predict the next state if our transition/update model is Gaussian
[RNO2].

Specifically, the one-step prediction is as equation 3.16[RNO2]:

o0

Plaiy) = / Plavs|20)Par)da: (3.16)
—0o0

The integral is there because we are updating the state of a continuous variable. The term P(x¢y1|x¢)

describes how the next state distribution is given from the previous state distribution and is commonly

referred to as a transition model or update model of the environment.

To understand how to create an update model for a Gaussian distributed random walk we can again
examine the properties of the normal distribution ae_%(%). The nominator with the mean decides
how much the function has been translated rightwards or leftwards and the variance in the denominator
stretches the function horizontally. Therefore for a random walk where the mean may shift leftwards or
rightwards the nominator for an update step is just the difference x;+; — ¢, and the uncertainty of this

shifting is represented by o2 in the denominator.

oz (3.17)

Incorporating this with the one-step prediction gives us the following estimate of x at ¢; before the mea-

surement is taken.
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P(CL‘l) = /Oo P(.’E1|I‘0)P($0)dl‘0

09 _1(0(2)(301—960)2-%0%(960—#0)2)
22
/ ) dag

00 1 (0'(2)17%7211zoog+zgo%+zgog72zoa'§,u0+o':%y,g
2 2,2
/ e 759% dxo

o 1(w%(og-kag)—l‘o?(wwg+H00%)+03u%+o§x%)
e 0%z dxg

2 2
With see that we have an quadratic equation in xg, that is, az? + bxg + ¢ with a = (00; %), b
0 05032

2(z1024+pp02 o2 2 +o2g? . . .
% and ¢ = Z2EOT%0%1 A technique known as completing the square allows us to rewrite

axg + bxo + cas a(xg — 5—;’)2 +c— % [RNO2]. The residual term does not depend on xy and may thus

be placed outside the integral.

0o B 2
Pla) = [ btz e B,

— 00

(3.19)

Now the integral is on the form of a normal distribution with z( as the variable, and since, by definition,

the integral of a normal distribution from —oo — oo is 1 we are left with just the residual term.
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2
1 b
Ll
P(I‘l) = € 2( 4a)
2($1U%+M0092;))2
,l(“?c“?ﬁ”(z)z% _ 70%z )
2Y o202 ,(ogtod)
= e e
_l(oiu%-ﬁ-o%x% _ (2108 +ngo2)? )
= e 2 crgo'% (o‘%+o’%)o‘%o‘%
2 2 2 2 2
_1(11000172110()01“0 oL G )
= ¢ 2 (08 +02)020%

(3.20)

Again, we have a quadratic, this time in z;. After completing the square and simplifying we obtain the
one-step prediction in equation 3.21[RN02]. We see that the prediction is just a normal distribution with
the same mean, but the function is stretched further horizontally because there is more uncertainty in

regard to its new value.

(21 -p0)?
(3R

P(x1) = ae® “0t% " (3.21)

Then, after incorporating the observation our belief is reflected in equation 3.22. We omit the complete

derivation, but yet again, this is solved by standard algebra and completing the square with regard to x;.

P(z1]|z1) = aP(z1|x1)P(z1)

2
1 (zl—x1)2 _ 1 (1 —pg)
= qe 255z )e 2 og+oi )

(01— (o3 +02)z1+02 10 )2
T o2152452
1 < 00+o'z+az >
2
ae

(03+02)02 /(03 +02+02)

(3.22)

From this, we see that the new mean and variance can be updated recursively as follows.
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_ (0F+02)zr1toim
Hi4+1 = o.?Jro.%Jro.g (323)
2 _ (07 +03)02
Ot+1 = o2 o2 +o2 (3.24)

3.6.2 Algorithm

The Kalman Bayesian Learning Automaton works like the other members BLA family. First it samples
values from all of its arms and selects the arm with the highest sampled value. The index of this selection
is passed to the environment which provides the automaton with feedback, feedback which is used for

updating its parameters.

The KBLA differs from the BLA Normal Known o2 in two ways. The first is the update equation for the
parameters, which we saw earlier, is almost identical to the BLA Normal Known o2. The second differ-
ence is due to the fact that time goes on, and we have to assume changes in the environment. This means
that, for each time step, one becomes more uncertain about the arms that were not selected. Therefore,

the variance of the these unobserved arms are incremented by the variance of the update model.

Algorithm 10 Pseudocode for the Kalman Bayesian Learning Automaton

1: Init: Set 02 and o according to the environments update model and sensor model
2: Inmit: Set m; and s? according to prior belief of ;1 and o

3: loop

4:  Sample z; from N (m;, s?), foreachj € {1... K}

5. 4 =argmax z;, where j € {1, K'}

6: r = feedback from action a;
7

_ (si+od)r+oim;
i = " (2302 102)
2 _ (sitod)o?
t (sitoi+ol)
9. forje {l1...K}do
10 if j £ i then
11: 53 =87+ 0,
12: end if
13:  end for

14: end loop
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Chapter 4
Game theory

Game theory is a fascinating model of interaction. Interestingly, it also has it uses in computer science
and has become a major part of this thesis. How the Kalman Bayesian Learning Automaton behaves in

such games can answer questions related to the applicability of the automaton in various settings.

Game theory allows us to analyze the behavior of agents when they are influenced by other agents. Games
are commonly represented as a matrix, where each cell specifies the payoff for a particular combination
of strategies. A strategy profile can either be in pure strategies or mixed strategies. A pure strategy
consists of only playing a single action, while a mixed strategy randomizes between actions. Often, it is
not immediately obvious what one should consider an optimal strategy to a game, but there exist several
solution concepts, where the most important for us are the Nash Equilbrium solution and the minimax

solution. These solutions often calls for mixed strategies.

In this thesis we focus on zero-sum games, where the total payoff adds to zero. We consider both zero-
sum games with pure strategy solutions and zero-sum games with mixed strategy solutions. We also
consider the Goore game, where a team of players aims to maximize a global reward criterion without any

communication.
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4.1 Introduction

Game theory is applicable in a wide range of domains as for instance biology, politics and social sciences.
For our purposes it sufficies to say that game theory helps us model the interactions between agents. From
chapter 2 we know that the bandit problem is concerned with the decisions of a single agent. Game theory
takes this one step further and asks what happens when an agent (or bandit player) starts interacting with

other agents and as such are influenced by their decisions.

More specifically, in computer science there is two main areas where game theory has proven to be
important[RNO2]:

e Rational agent design - How should an agent be designed to maximize its performance? A rational
agent is one that takes prior beliefs and received evidence into account, and selects the action that
maximizes its performance measure. Game theory is important in agent design because it allows
one to analyze the agents decisions and compute the expected utility for each action, and therefore
also determine the best action[RN02].

e Mechanism design! - The task of designing environments that maximizes the global utility. Even
though agents are acting rational and trying to maximize their own utility, mechanism design seeks
to design environments in such a way that the collective decision favour a particular outcome.
For instance, how do you design a protocol for the internet where users are greedy and want to
maximize their own throughput? The current solution, the TCP protocol is not designed with game
theory principles. Instead it relies on settings being hidden from the normal user in the operating
system, but for a knowledgeable and “greedy” user it is easy to exploit this protocol. In the case
where everybody acts greedy the overall performance is lowered for everyone. Mechanism design
on the other hand assumes that everyone acts rational, that is, to maximize their own well-begin,
and aims to work around the aforementioned issues by designing environments where the global

maximum performance is reached exactly in the case where every agent is acting rational.

To see exactly what kind of questions game theory can help us answer, we feel it is worthwhile to continue
with an example of a game before we jump into the theory. For this example we have chosen the Prisoners
Dilemma, the game that popularized game theory[HV04]. The classical Prisoners Dilemma is described

in the following way[ChoO7]:

!'Also called inverse game theory[NRTVO07].
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”Two suspects, A and B, are arrested by the police. The police have insufficient evidence
for a conviction, and, having separated both prisoners, visit each of them to offer the same
deal: if one testifies for the prosecution against the other and the other remains silent, the
betrayer goes free and the silent accomplice receives the full 10-year sentence. If both stay
silent, the police can sentence both prisoners to only six months in jail for a minor charge. If
each betrays the other, each will receive a two-year sentence. Each prisoner must make the
choice of whether to betray the other or remain silent. However, neither prisoner knows for

sure what choice the other prisoner will make.”

Game theory illustrates this situation by a payoff matrix, where the cells contains the payoff (years in
prison) to each player for a particular combination of decisions. The payoff matrix for the Prisoners

Dilemma is shown in table 4.5.

Table 4.1: The Prisoners Dilemma

A/B Refuse Testify

Refuse A=-0.6,B=-0.6 A=-10, B=0
Testify A=0,B=-10 A=-2B=-2

Knowing this, several questions arises. Can we predict the behavior of the players? What is the most
rational decision? What can be considered a “solution” to this game? Would allowing communication
between the players influence the decisions? Would the outcome be different if played repeatedly against

the same opponent?

From here, we will continue with concepts relating to the understanding of how game theory can answer

these questions.

4.2 Basic concepts

4.2.1 Branches of game theory

We can divide game theory into two branches, which is non-cooperative game theory and cooperative

game theory. In non-cooperative game theory we are concerned with the individual. We want to study
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what actions we can expect from an agent under certain conditions. In coalitional game theory however,

we are concerned with how an entire group behaves[SLOS].

Our focus in this thesis is non-cooperative games, and as such most of the remaining text in this chapter is
related to non-cooperative games. Only one of the games we intend to study, the Goore game, has some

cooperative elements.

4.2.2 Representations of non-cooperative games

There are two common ways to represent a game in game theory[HV04, 45]. The first is the normal form.
This is the “matrix” form we used for the prisoners dilemma in the start of the chapter. If we think of a
normal form game as an environment, then each cell in the matrix corresponds to a state, and the state is

only dependent on the combined actions taken by the participants.

The second representation form is the extended form. Extended form is appropriate for illustrating turn
based games. We don’t study any turn based games in this thesis, but it turns out that viewing a simul-
taneous game as a turn based game can be very helpful in understanding some important game-theoretic

concepts. This will be illustrated in section 4.3.3, the minimax theorem.

4.2.3 Utility theory
Utility theory can help us understand why an agent would prefer a certain decision under a certain con-
dition. In utility theory we are concerned with utility functions. Utility functions maps states to real

numbers which represent the agents level of happiness in the given state[SLOS]. It is reasonable to assume

that an agent want to maximize the value of its utility function.

4.2.4 Strategies

The outcome of a game is determined by the combination of each players action [HV04].
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Table 4.2: Playerl’s best replies (underlined) in the Rock, Paper, Scissors game

P1/P2  Rock Paper Scissors

Rock 0,0 0,1 1,0
Paper 1,0 0,0 0,1
Scissors 0,1 1,0 0,0

Pure and mixed strategies

If an agent has n available actions, ay, ..., a,, then sticking to a certain action a;, ¢ € n is referred to as a
pure strategy. If the player instead plays a linear combination of the available actions, piai, ..., pnany, it
is called a mixed strategy[HVO04, 44]. In fact, we see that a pure strategy is just a special case of a mixed

strategy when one of the action probabilities p1, . . ., p, happens to equal 1.

Best reply

The most basic concept is the idea of a best response. It is simply defined as the strategy that yields the
largest pay-off against a particular choice of action by the adversaries. Table 4.2 illustrates player one’s

best replies in the well-known Rock, Paper, Scissors game.

If the same reply is the best for every choice, then there exist a best strategy that is independent of the

strategy played by the adversaries, such a strategy is referred to as a dominant strategy.

4.3 Solution concepts

4.3.1 Dominant strategy solution

In the case where each player has a dominant strategy, that is, a unique best strategy, the game has a
dominant strategy solution. Few games satisfies this property, but the solution concept is very important

in mechanism design where one aims to design games that have dominant strategy solutions[?].
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4.3.2 Nash equilibrium

Nash equilibrium is the most important solution concept in game theory [HV04]. It applies to a much
wider range of games than the dominant strategy solution, in fact Nash proved that every finite game
has a Nash equilibrium solution. In a Nash equilibrium neither player is tempted to change strategy.
Meaning that, for a certain outcome to be a Nash equilibrium, both players would only lose by devi-
ating. For instance, in the Prisoners Dilemma, both players confessing is a Nash equilibrium. Should
either player deviate from confessing, he would be worse off. Nash equilibrium strategies are always
rationalizable[SLOS].

4.3.3 Maximin

Von Neuman invented a technique for finding the optimal mixed strategy for two-player zero-sum games.
As the name implies, it is the strategy that maximizes your minimum expected payoff. Assuming that the
adversary plays an optimal strategy. Player i's maximin strategy is defined as equation 4.1 [NT89][SLO08],
where u; is the payoff to player one while a; and a; is the, possibly mixed, strategies of player one and

two respectively.

arg max min u;(a;, a;) 4.1)
a;  aj

Similarly, the minimax strategy is the strategy that keeps the maximum expected payoff to the adversary

at a minimum.

arg min min w;(a;, a;) (4.2)
a;  aj

It is easier to understand this solution concept if one imagines a turn based game. For instance, each

player may ask themselves:
“I start by playing a certain strategy with probability p, what is my worst outcome?”

With the assumption of an optimal opponent, we can consider the payoff for every value of p. We will use

the two-finger Morra game and an extended version of Rock,paper,scissors to illustrate this.
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Two-finger Morra

In this game player one wins if the number of fingers are even and player two wins if the number of fingers

are odd, matrix 4.3 illustrates this.

Table 4.3: Payoff matrix for two-finger Morra

P1/P2 C1 C2

R1 2,2 33
R2 -33 4,4

We call player one the maximizer because he follows the maximin strategy. Player two is referred to as the
minimizer, because his intention is to minimize player one’s reward. When player two minimizes player
one’s gain he actually maximizes his own. Why? Because in a zero-sum game one man’s loss is another

man’s gain.

The maximin strategy is in general in terms of a mixed strategy[SL08]. Consider the case where the max-
imizer player plays a pure strategy, then the game in extended form is as figure 4.1, where the maximizer
makes his move at the root node. For every response of the minimizer, the terminal nodes contains the

payoffs to the maximizer.

Figure 4.1: Two-finger Morra in extended form

ay a2

2 -3 -3 4
Since we assume that the adversary plays optimally, we see that the maximum expected payoff to player
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one is -3 no matter what pure strategy he adopts.

Now, if player one instead considers a mixed strategy (a; : p,az : 1 — p), then his expected payoff for a;
is (2p+ —3(1 — p))g = (5bp — 3)q where q is the probability that player two also applies a1. Similarly,
forag: (—=3p+4(1—p))(1 —¢q) = (=Tp+4)(1 — q). We could visualize these in 3d space and solve for
the intersection, but here we will make a different point, because it is vital to realize that, in a turn-based
game, the second player does not need to play a mixed strategy. If he does play a mixed strategy then his
payoff is a linear combination of his payoffs from the pure strategies pu; + (1 — p)us [RNO2]. It is simply
impossible for this combination to be better than the best of u; and us?! Hence, he might as well adopt a

pure strategy when he knows the choice of p as we assume.

The first player can again reason as follows: “if my adversary responds to my (a; : p,as : 1 — p)
strategy with a; then I get 5p — 3, and with ay as the response I get —7p + 4. These lines are plotted
in graph 4.2. For instance, for a choice p = 1, the payoff to player one is 2 if player two plays strategy
a1 and —3 for strategy ao. Of course, player two, the minimizer, plays optimally and always choose the
response that minimizes player one’s payoff, the lower of the two lines. Therefore the best player one
can do is to choose p at the intersection, where player two is indifferent about his choices. Here, p is
bp—3 = —Tp+4 = 7/12, thus (a1 : 7/12,a2 : 5/12) is optimal, and the expected payoff for player
one with this mixed strategy is 5 % 7/12 — 3 = —0.083 = —1/12. Consequently, the zero-sum property
implies 1/12 as the expected payoff to player two.

Figure 4.2: Expected payoff by playing (a; : p,as : 1 — p) for the pure responses of player two

4
T —5p—3
CY S b .
—Tp+4
g 2 |
z
o 1 -
B
3] 0 ,
Q
o
s —1p 1
—2 - -
-3 | o
0 0.5 1

The constraint p € [0, 1] yields the range [u1, uz).
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A similar derivation would reveal the optimal mixed strategy for player two, but in this case it is unnec-
essary because of symmetry in the game matrix, and we also have (a; : 7/12,a2 : 5/12) as the optimal
mixed strategy for player two. We said earlier that the second player might as well play a pure strategy if
he knew the choice of p for the adversary, and indeed, this gives the same expected payoff. However, if
the game is played repeatedly this is not beneficial because the opponent could learn and end up adjusting
his own strategy to exploit the pure strategy[RNO2][SLO8][HV04].

Rock, paper, scissors extended

As for the second game we will use an extended version of Rock, paper, scissors. The original version
has a mixed strategy equilibrium of (1/3), (1/3), (1/3) which is the same as one get by playing randomly
and therefore does not pose the same challenge. In this extended version there are two additional actions,
fire and water. Fire beats rock, paper and scissors, but loses to water. Water loses against rock, paper and

scissors, but wins against fire. This is illustrated by table 4.4, the payoff matrix.

Table 4.4: An extended variant of the well-known Rock, paper, scissors game

P1/P2 Rock Paper Scissors Fire Water

Rock 0 -1 1 -1 1
Paper 1 0 -1 -1 1
Scissors -1 1 0 -1 1
Fire 1 1 1 0 -1
Water -1 -1 -1 1 0

Using the same approach as for two-finger Morra, where player one considers the expected payoff for the
different pure strategy choices of player two, we can determine the optimal mixed strategy. Denoting the
probability of playing rock r, paper p, scissors s, fire f and water w we get the following equations for
the expected payoffs.
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Rock = —-p+s—f+w
Paper = r—s—f+w
Scissors = —r+p—f+w
Fire = r+p+s—w
Water = —r—p—s+f

(4.3)

By applying linear algebra we can solve for the intersection of the hyperplanes. Matrix form and row

reducing yields:

[0 -1 1 -1 1 R] [1 00O —% 0]
1 0 -1 -1 1 P 0100 —3 0
-11 0 -1 1 S{—=1]0010 —-% 0
1 1 1 0 -1 F 0001 -1 0
-1 -1 -1 1 0 W] 0000 0 Wj

First we notice that the expected payoff is zero. Furthermore, r — %w = 0 so p equals %w, similarly for p
and s, while f = w. Applying the constraint p +r + s+ f +w = 1, we find 3 * %w +wtw=1+—
w = 1/3, which means that the optimal mixed strategy is (r : 1/9,p : 1/9,s : 1/9,f : 1/3,w : 1/3).

Again, by symmetry, the same strategy is optimal for player two.

In both these games the minimax solution coincides with the Nash Equilibrium. This is always the case

for zero-sum games, but not for non-zero sum[HV04, 43].

4.4 Games investigated in this thesis

4.4.1 The Prisoner’s Dilemma

The Prisoner’s Dilemma is a paradox that has received a lot of attention, especially in social sciences. It

fascinates social scientists because, even though both players behave rational, the outcome is sub-optimal
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for alllHVO04]. To see why, consider the utility payoffs in the following matrix, which were also shown in

the beginning of this chapter.

Table 4.5: The Prisoners Dilemma

A/B Refuse Testify

Refuse A=-0.6,B=-0.6 A=-10, B=0
Testify A=0,B=-10 A=-2 B=-2

Obviously, the best outcome would be for both players to refuse. However, a rational player only interested
in maximizing its own utility would reason as follows: “If my adversary decides to confess I get 2 years by
confessing and 10 years if I deny, so in that case confessing is better. On the other hand, if my adversary
decides to defect then I get 0 years for confessing and 6 months if I defect, so in that case confessing is
better”. Similarly, if the other player is rational he would reach the same conclusion and both ends up

confessing. This is the paradox of the Prisoners Dilemma.

The PD has also been studied extensively from a computer science perspective. Perhaps most known is
Robert Axelrods tournament, described in his book “The Evolution of Cooperation”, where he invited
game theorists to submit an algorithm to compete in a Prisoners Dilemma tournament. The tournament

consisted of every scheme playing 200 rounds against all others over an average of 5 repetitions|HV04].

Surprisingly, one of the simplest schemes, known as 7it-for-Tat won the tournament. Tit-for-tat starts by

a cooperative move and on the subsequent rounds it does what the opponent did the round before.

Later, Axelrod hosted the tournament once more, this time the number of participants where must larger

and the number of rounds where no longer fixed. However, Tit-for-tat won this time too.

We intend to put the KBLA and the other bandit schemes from chapter 2 up against each other in a
Prisoner’s Dilemma tournament, but in contrast to Axelrods tournament we are not so interested in the
score, but rather embraces rational behavior. A rational agent is a predictable agent, which is a vital

property in software agents|RNO2].
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4.4.2 Goore game

The Goore game, also referred to as “Gur game”, is the only game we have included that involves teams
of players. It is also special in the sense that it contains both cooperative and non-cooperative elements.
It is cooperative in the sense that there is a team involved, but none of the players actually know that they

are part of a team and as such only plays to maximize their own reward as in a non-cooperative setting.

[NT89] describes the game in the following way:

”Imagine a large room containing N cubicles and a raised platform. One person (voter)
sits in each cubicle and a referee stands on the platform. The referee conducts a series of
voting rounds as follows. On each round the voters vote yes or no (the issue is unimportant)
simultaneously and independently (they do not see each other) and the referee counts to the
fraction 6 of yes votes. The referee has a unimodal® performance criterion g(#) € [0, 1],
which is optimized when the fraction of yes votes is exactly 6*. The current voting rounds
ends with the referee awarding a dollar with probability g(6) and assessing a dollar with
probability 1 — g(#) to every voter independently. On the basis of their individual gains and

losses, the voters then decide, again independently, how to cast their votes next round.”

As we see, this equals a binary bandit problem for each player where the probability of receiving a reward
is 1 — g(#). However, since the Kalman Bayesian learning automaton assumes normally distributed
feedback we have also created a version of the Goore game with such feedback. Relating to the description
above, our version has the performance criterion g(f) € [0, A] where A is the amplitude of Gaussian
function. And instead of assessing a reward with probability 1 — g the reward to each player is instead

sampled from N (u, o) where p is given by the proportion of players that vote yes 6.

Figure 4.4.2 illustrates a case with five players where the referee’s probability of reward is highest when
two players vote yes. With two yes votes the probability is 0.8, and as such the goal for the players is to

learn that two yes votes are optimal, without any communication at all.

30Only one local maxima.
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1
0.8} .

T 06 :

3

S

g

x 0.4} .
0.2} .

"o 1 2 3 4 5

yes votes

Our motivation for empirically evaluating the Kalman Bayesian Learning Automaton in the Goore game
is due to its distributed nature, and the fact that it has been studied from practical settings before (Quality
of Service in [IK03], wing optimization in [HNP03] and distributed control in [TK93]). Since there is

no communication between players the Goore game is resolved in a completely distributed manner.

It has been shown that a team of Tsetlin automata with large memory can solve the game if the number of
rounds is sufficiently large[NT89]. However, from a practical viewpoint it is just as important to quickly

reach near-optima instead of using a long time to solve the game exactly.

4.4.3 Zero-sum games

Zero-sum are games where the payoffs, as the name implies, sums to zero. Should the payoff to one par-
ticipant equal ten, then the other participant must suffer a loss of the same amount, that is the fundamental
property of zero-sum games. Thus, when we represent zero-sum games in matrix form each cell sums
to zero. For normally distributed payoff matrices the value in each cell is the mean value i of a normal
distribution N (u, o), while the matrices with binary feedback contains the probability of a reward P(1)
in its cells. However, note that the sum of the actual feedback received might be different from zero in

normally distributed zero-sum games because of noise.

Zero-sum games has been studied extensively from a computer science perspective before and according
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to [NT89] it serves as a valuable benchmark for testing rationality of learning automata. In this thesis we
consider both zero-sum games with normally distributed payoff and zero-sum games with binary feedback

are considered .

The solution to a zero-sum game might be in pure strategies or mixed strategies. For our benchmark we
have used two games with pure strategy solutions and two with mixed strategies. The pure strategy games
has been created in a somewhat similar way to how it was done by [NT89] in their zero-sum analysis, and
should emphasize specific aspects of the learning algorithms. In the first pure strategy game both players
have dominating strategies, while in the second pure strategy game only player one has a dominating
strategy. The mixed strategy games are the same as we derived the minimax solution for earlier, the

two-finger Morra game and, for the scalability aspect, an extended version of Rock, paper, scissors.
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Experiments

This chapter contains an empirical evaluation of the Kalman Bayesian Learning Automaton. The perfor-
mance in terms of regret and action probabilities are compared between the Kalman Bayesian Learning
Automaton and the other bandit schemes introduced in chapter 2. Preceding the comparison is a param-
eter analysis of the KBLA to illustrate how the sensor variance parameter and update variance parameter

may be used to balance exploration and exploitation.

The schemes are compared in random walk environments, switching environments, the Goore game and
zero-sum games. Both normally distributed feedback and binary feedback are considered. Naturally, since
our focus is on the KBLA, many experiments are performed with the KBLA alone with the intention to
emphasize certain aspects of its behavior. For instance, the Goore game is tested with a wide range of
parameters for the KBLA to understand how to control the amount of exploration, while the two-finger
Morra zero-sum game is tested against an optimal opponent. We also include results for the Exploration vs
Exploitation challenge, a competition which is a direct commercial application of the multi-armed bandit

problem and involves both stationary and non-stationary binary environments.

5.1 Performance measures and accuracy

The two most fundamental performance measures we have used is the ’probability of a selecting a certain

action’ and ’regret’. The first consists of keeping track of how many times the automaton selected a certain
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action during an experiment. In general, we are often most interested in how the probability of selecting
the optimal action develops over time. This enables us to observe for instance learning speed and points

in time where performance is dropping rapidly.

Regret is a but popular measure of success in the exploration vs exploitation dilemma [ACFO2]. It is a
measure of the difference between the sum of rewards actually gained and what one would have gained
by only playing the optimal action. In this way it is a little more “forgiving” than the “probability of
selecting the optimal action” measure because choosing the next best action might not be very regretful in
many cases. If we denote the reward of the best action at a time step ¢, r;, and the reward from the action

actually played at ¢, ¢, then the regret after 7" time steps is:

> ot -y (5.1)

Due to the stochastic elements in the experiments these measures are noisy and thus rather imprecise

without an average, which brings us to our second point, accuracy.

Most of our experiments is performed in a sequence of interactions with an environment, performed over
n discrete time steps, where each sequence is repeated 1000 times. When computing the results for a
specific sequence we consider the entire collection of repetitions, the ensemble. From this we calculate
the ensemble average. Our motivation for using the ensemble average is due to randomness. We only
control the simulation at a macroscopic level, not the microscopic details. An example of a microscopic
detail is the value sampled from a normal distribution. This value is random, so there is certain amount of
“luck” involved in regard to whether this value is increasing the performance of the algorithm at a certain

point in time. Therefore, every iteration can, and will, yield a different result.

To obtain an accurate measure from these fluctuations caused by the uncontrollable microscopic elements,

we are interested in the mean value, which is exactly what the ensemble average represents.

As an example, table 5.1 shows a calculation of the ensemble average for each time step in a case with just
4 repetitions. The rows contain the repetitions, while each column is a certain point in time. The values in
each cell is action selected at that point in time for the repetition. For instance, repetition 1 selected arm 1

on the first and fourth time step while on repetition 4 it selected this arm on all time steps.
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Table 5.1: Table illustrating the ensemble average, the average of a column.

Repetition/Time tlI 2 3 t4

rl 1 0 0 1
r2 0 0 0 1
r3 0 1 1 0
4 1 1 1 1

Ensemble average 2/4 2/4 2/4 3/4
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5.2 Parametric analysis

It is important to understand how different numerical values for the parameters of the Kalman Bayesian
Learning Automaton influence its decisions. We know that during the arm selection process, the sampled
value is determined by the mean and variance of the arms. Arms with high variance will give values in a
greater range, and thus the effect is that the arm selection process has more “noise” and the probability of

selecting another arm is higher.

As we saw in chapter 3, the mean and variance of each arm is given by the following recursive equations:

_ (of+od)zsitoim
Ht+1 o2+02+02
2 _ (et
t+1 o7 +02+0?

We refer to ag and cri as the sensor variance parameter and the update variance parameter respectively.
The sensor variance parameter is supposed to match the noise of the observations in the environment,
while the update variance parameter is the automatons belief of how the environment changes each time

step.

1

The development of the variance' over time for some combinations of the sensor variance parameter and

update variance parameter is plotted in figure 5.1.

From the figure we note several interesting properties.

e [t seems that an update variance parameter of zero causes the variance to approach 0. This is
in conformance with prior beliefs, an update variance parameter of zero implies that the tracked

object is stationary and therefore its position is deterministic.

e A nonzero update variance parameter on the other hand causes the the variance to converge to a
certain value. Again, this seems reasonable, one can never be completely sure about the location of
a randomly moving object. In bandit terms, this implies that the update variance parameter decides

the rate of constant exploration.

!'The variance is initially set to a very high value as to not exclude any true value of the mean.
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Figure 5.1: Variance development over time

(a) Low sensor variance (b) High sensor variance
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e A high sensor value causes the variance to reduce at a much slower rate than a low sensor value.
From a bandit point of view a Kalman Bayesian Learning Automaton with high sensor variance

parameter explores more in the beginning.

Also note the very quick convergence of the variance when the sensor variance parameter is small with a
nonzero update variance parameter. The array below shows the variance value for the 50 first time steps

when both the sensor and update equals 1.

1 2 5 10 20 50

10000 0.9999 0.619047 0.618034 0.618034 0.618034

We can also see this with the variance formula, where the fixed point is given by:
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JE (02 + 02)o? _ o0? o202

o?24+02+02 o2402+02 02402+ 02

0 = o2_ 0202 B 03*03
o 2 2 2 2 2 2
c*+o;+o; o0°+o0;+ 0%
202 2 2 2 2 2 2
0 = o%(c“°+0;+0,)—0c°0; —0io;
_ 4 2 2 2 2 2 2 2.2 __ 4 2 2 2 2
0 = o"+o0°;, +0°0;, —0°0;, —0,0, =0 +0°0, — 0,0,

And since 02 and 02 = are constants, we can apply the quadratic formula az? + bx +c =0 +— o =
—bEvb%2—4ac 2 2 2
2a

where z = 02, a = 1, b = 02 and ¢ = 0202. Remembering that the variance must be

positive, we end up with equation 5.2.

o= Tt ‘;3 002 (5.2)

If we apply the values 02 = 1.0 and 02 = 1.0 we see that it coincides with the value in the table above.
(0% = _1%\/5 = 0.618034). It also confirms the discussed properties above like converging to zero when

the update variance parameter approaches 0.

lim —02 + /ol + 40202

020 2

=0
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5.3 Multi-armed bandit problems

5.3.1 Types of environments
For the general multi-armed bandit problem we have used two types of environments.

Random walk environment: The recursive equations from section 3.6 was derived from a Gaussian
distributed random walk, and since they form the basis of the Kalman Bayesian Learning

Automaton we say that a random walk environment is exactly the type of environment

2

the KBLA is designed for. The parameters of the environment, the observation noise o

and update model o2, matches the parameters of the automaton.

Therefore, in an environment like this, the value of an “arm” ¢ changes each time step
with a value sampled from a standard normal distribution N(0,02) and the feedback
from an action is given from N (u;, 02). An example of how a random walk environment
may change over time can be seen in figure 5.2. Each experiment is repeated 1000 times,
where each repetition runs a different random walk environment over n time steps. Thus,
this gives an indication of the KBLA’s average performance on such randomly changing

environments.

Figure 5.2: Example of random walk environment with 3 arms

—— Arm 1
Arm 2
--- Arm 3

time step

Switching environment: These environments contain both stationary and dynamic elements. The reward

distributions of each arm are constant. However, the arms interchange their values at
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certain intervals as can be seen in figure 5.3. Switching environments are of interest
because they involve both the ability to adapt to sudden changes and the ability to track a

stationary best arm without to much performance loss.

Figure 5.3: Example of switching environment with 3 arms

15 I‘ —— Arm 1
: Arm 2
! --- Arm3
|
3 10 -
I
|
1
|
5 o _________ _ |
\ \ \ \ \ \ \ \ \

0 10 20 30 40 50 60 70 80 90

time step

5.3.2 Results random walk environments

Our test configurations for random walk environments consists of 2-armed, 10-armed and 50-armed prob-
lems with two different degrees of noise and two different degrees of update speed, as seen in table 5.2.
Higher noise indicates a tougher environment because the arms are harder to distinguish when the value
distributions of each arm are wider. A higher update speed on the other hand might both make the environ-
ment easier and harder. Easier because the difference between the mean values in the reward distributions
will most likely be greater, but then again, a more rapidly changing environment can also increase the
amount of times the index of the optimal arm changes.

Also note that in all these configurations the Kalman Bayesian Learning Automaton is given the correct
parameters of the environment. Later, in the last part of the chapter, we will consider random walk

environments where the parameters given to the KBLA are incorrect.

In table 5.3 we see the results for the test with just two arms and low noise. The Kalman Bayesian Learning

Automaton is clearly superior in this type of environment, at least when given the correct parameters as
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Table 5.2: Random walk configurations

Arms Observation noise (Sensor variance) ag Transition noise (Update variance) 03

2 1,100 1,100
10 1, 100 1, 100
50 1,100 1,100

here. None of the other schemes are able to reach the same accuracy. Many of them are hindered by their
inertia when another arm becomes the best, but even dynamic schemes like AdaptivePursuit, GreedyEWA,
SoftMaxEWA and AdaptEvE-MetaBandit does not come close to the performance of the KBLA.

Table 5.3: Results for two-armed environment with observation noise o2 = 1.0 and transition noise o2 =

1.0
Player / Iteration 10 100 1000 2000 10000
KBLA 02 = 1.0, 02 = 1.0 074 09 097 097 0.99
BLA Normal Known o2 0.74 078 078 0.76  0.77
Poker 07 077 078 077 0.76
Pursuit 0.005 0.5 057 065 065 058

AdaptivePursuit o =0.8,5 =0.8, Py, =0.01 055 064 080 0.83 0.85
AdaptivePursuit o =0.1,5 =0.1, P,,,;;, =0.01 0.57 0.68 075 0.79 0.82

Greedy € =0.05 062 07 071 074 071
Greedy € =0.02 061 065 071 074 0.73
en-Greedy c =1,d =0.1 052 05 067 07 0.68
GreedyEWA € =0.05 o =0.3 0.66 0.74 079 0.84 0.84
GreedyEWA € =0.01 a =0.3 062 061 075 0.78 0.83
SoftMaxEWA 7=0.5 a=0.8 070 0.82 083 0.84 0.83
SoftMaxEWA 7=0.1 o=0.9 078 085 0.86 0.88 0.89
UCBNormal 049 077 0.75 0.78 0.75

AEMetaBandit = 0.005, A = 5.0, MT' =100 0.62 0.78 0.86 0.87 0.88

The difference becomes even more apparent if we increase the number of arms. Table 5.4 shows the

results for the case with 50 arms.
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Table 5.4: Results for fifty-armed environment with observation noise 02 = 1.0 and transition noise o2

=1.0
Player / Iteration 10 100 1000 2000 10000
KBLA 02 = 1.0, 02 =1.0 0.02 043 079 0.85 0.94
Poker 0.03 0.25 0.15 0.13 0.10
Pursuit 0.005 0.02 0.06 0.18 0.14 0.09

AdaptivePursuit o =0.8,8 =0.8, Py =0.01 0.04 0.17 040 043 048
AdaptivePursuit o =0.1,8 =0.1, Py, =0.01 0.02 0.07 0.17 024 040

Greedy € =0.1 0.02 020 024 027 032
Greedy € =0.05 0.02 021 022 027 031
en-Greedy c =4, d =0.1 0.02 0.02 021 022 0.19
GreedyEWA € =0.1 o« =0.9 0.02 0.28 047 059 0.78
GreedyEWA € =0.05 o =0.9 002 026 036 049 076
GreedyEWA € =0.01 o =0.3 0.02 0.17 013 0.14 0.28
SoftMaxEWA 7=0.5 a=0.3 0.02 0.04 006 0.05 0.05
SoftMaxEWA 7=0.2 o=0.9 002 0.15 0.17 0.16 0.14
UCBNormal 0.02 0.02 0.02 046 034

AEMetaBandit 6 = 0.005, A = 5.0, MT =500 0.01 0.02 0.26 034 038

The GreedyEWA scheme is the best of the other schemes by far. However, we should note that the
AdaptivePursuit scheme also seems close to its maximum performance. Due to the way it works, its
maximum performance drops with the number of actions, and from the description of the algorithm in
section 2.3.3 we can see that P = 1 — (K — 1)Ppin = 1 — (50 — 1) % 0.01 = 0.51. AEMetaBandit
also performs decent. Even though it needs a change of reward in the negative direction, the low choice

5.0 for the A\ parameter ensures a lot of exploration.
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To see how the parameters of the environment affects the performance of the Kalman Bayesian Learning
Automaton figure 5.4 shows normalized regret for four parameter combinations. We see that only when
the sensor variance (observation noise) is high compared to the update variance (transition noise) the per-
formance drops significantly. Both high sensor variance and high update variance does not influence the
performance, thus it seems likely that a higher update variance parameter actually makes the environment
somewhat easier due to the increased difference between the mean values of the reward distributions in

the arms. The slightly lower regret on the environment with only high update variance also supports this.

Figure 5.4: Regret for KBLA in fifty armed random walks with varying difficulty
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5.3.3 Results switching environments

The configurations for the switching environments are shown in table 5.5 and 5.6. In the first case the value
of the best arm switches with an inferior arm, and thus favors algorithms designed to increase exploration
when detecting rapid changes in the current exploited arm. In the second case the value of an inferior
arm increases while the previously best arm does not change, and is thus harder to detect unless regular

exploration is used.

Table 5.5: Switching environment configuration 1

Arm: 1 2 3 4 5 6 7 8 9 10
Meanvalue: 5 10 15 20 25 30 35 40 45 50

Comment: Arm 5 and 10 interchange values

Table 5.6: Switching environment configuration 2

Arm: 1 2 3 4 5 6 7 8 9 10
Meanvalue: 5 10 15 20 25 30 35 40 45 50

Comment: Arm 5 alternates between 25 and 55

In contrast to random walk environments, the update variance of a switching environment is unknown to
the Kalman Bayesian learning automaton, and therefore several parameters have been tested in order to

learn more about its behavior. The results for the first configuration are shown in table 5.7.

AdaptEvERestart is definitely superior in this test. Unsurprisingly, the change point detection mechanism
is very strong in environments like this. Far behind AdaptEvERestart, but still performing adequately,
we find the exponential recency weighted average schemes, and we see that especially the “aggressive”
GreedyEWA performs well.

To understand how the schemes reacts to changes in the environment, figure 5.5 shows how the probability
of selecting the optimal arm develops after the first change point (¢ = 1000).

Here we can clearly see the rapid convergence and quick adaption of AdaptEvERestart scheme. The other
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Table 5.7: Regret for switching environment configuration 1 with interchanging every 1000 time steps

Player / Iteration 10 100 1000 2000 10000
KBLA ¢? = 1.0, 02 = 0.0 427 511 512 23574 1124.66
KBLA o2 = 1.0, 02 = 0.01 427 512 545 11928 821.28
KBLA 02 =1.0, 02 = 0.1 427 525 956 5329  322.87
KBLA 02 = 1.0, 02 = 0.2 424 539 1426 42.08  270.35
KBLA 02 = 1.0, 02 = 0.5 425 587 2566 5777 31194
KBLA 0% = 1.0, 02 = 1.0 428 6.65 397 8232 42361
KBLA 02 = 1.0, 02 = 2.0 428 827 6123 123.67 621.63
Poker 50 548 548 24288 1131.82
Pursuit 0.005 497 40.14 1015 390.32 1278.8

AdaptivePursuit v =0.8,8 =0.8, P, =0.05 4.01 27.79 25296 505.05 2519.31
AdaptivePursuit a =0.3,8 =0.3, P,,;, =0.02  4.07 27.37 1340 2552 123248

Greedy € =0.1 50 951 5423 308.01 1508.0
Greedy € =0.05 50 7.22 2972 27219 1316.79
en-Greedy c =1, d = 0.1 499 49.81 499.6 885.36 2399.07
GreedyEWA € =0.1 a=0.3 50 1022 572 155,56 913.64
GreedyEWA € =0.05 o =0.9 50 717 2958  72.65  438.39
SoftMaxEWA 7=0.5 a=0.3 50 3465 341.13 684.13 3429.28
SoftMaxEWA 7=0.1 a=0.3 50 10.18 4424 185.56 915.52
UCBNormal 9.89 7133 121.0 415.05 1200.07
AE~Restart 6 = 0.005, A = 5.0 7.78 10.09 10.21 21.0 107.48

dynamic schemes is not able to get the same accuracy, and does not adapt as quickly. The stationary
schemes identifies the best arm in the beginning, but then none of them see to overcome their inertia at
all.

Surprisingly, even though the AdaptivePursuit is better at tracking changes in the environment, we see
that it is almost outperformed by the Pursuit scheme in terms of total regret, even though Pursuit is much
slower to adapt. If we think about the environment works, it makes perfect sense. The distance between
the best and next best arm is relatively small and therefore choosing the next best arm has no drastic
impact on regret. Thus, the Pursuit scheme probably ends up selecting the next best arm a while after the
change point because this action received the next highest probability during the initial “learning”(before

the first change point) phase.
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Figure 5.5: Dynamic and stationary schemes in a switching environment
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Looking at the results for the KBLA, we see that it performs best for update parameter 0.2, but shows
great variation in performance for different values of the update parameter. How the update variance
parameters affects the automaton in switching environment configuration 1 is shown in graph ??. Clearly,
the choice of update parameter is a compromise between accuracy and adapting speed. We see that if the
update parameter is too small the automaton is not able to adapt when the optimal arm suddenly changes.

However, a too high update parameter drops the maximum precision it is able to get.

Table 5.8 shows regret for the same environment with the switching frequency increased. Not surprisingly,
the best update variance parameter is slightly higher when switching more frequently. That is, for 1000

the best is around 0.2 while for 250 it seems to be around 0.5.

We end of this section with the results for regret in switching environment configuration 2 in table 5.9.
Only the adaptive schemes together with the KBLA is shown. Now that there is no change in the best
option we see that the AdaptEVE scheme is not able to obtain the same performance as some configurations
of the KBLA and GreedyEWA.
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Figure 5.6: The compromise between learning speed and accuracy
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Table 5.8: Regret for switching environment configuration 1 with interchanging every 250 time steps

Player / Iteration 10 100 1000 2000 10000
KBLA02=1.0,02=0.0 424 511 11877 22989 1118.79
KBLA 02 =1.0,02 =0.01 425 512 88.02 19523 1022.85
KBLA02=1.0,02=0.1 427 525 76.64 158.62 81597
KBLA02=1.0,02=0.2 425 538 5692 126.76 679.97
KBLA 02 =1.0,02=0.5 425 586 49.11 101.36 518.98
KBLA02=1.0,02=10 429 668 5697 11691 598.6

KBLA02=1.0,02 =20 431 829 7186 14459 726.94
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Table 5.9: Regret for switching environment configuration 2 with interchanging every 1000 time steps

Player / Iteration 10 100 1000 2000 10000
KBLA 02 = 1.0, 02 = 0.0 50 50 501 10501 505.01
KBLA 02 = 1.0, 02 = 0.01 50 501 536 105.89 479.83
KBLA 02 =1.0, 02 = 0.1 50 512 941 6596 32683
KBLA 02 = 1.0, 02 = 0.2 50 528 1422 4948 23898
KBLA 02 = 1.0, 02 = 0.5 50 575 2552 5859  286.3
KBLA 0% = 1.0, 02 = 1.0 50 654 3967 7971 39246

AdaptivePursuit o =0.8,8 =0.8, Py,;, =0.05 4.13 27.89 25251 49745 248491
AdaptivePursuit o =0.3,5 =0.3, Py, =0.02 39 2736 13296 250.19 1131.26

GreedyEWA € =0.1 o =0.9 50 945 5462 111.06 54145
GreedyEWA € =0.05 o =0.9 50 724 2944 7646  352.01
SoftMaxEWA 7=0.5 a=0.3 50 347 34359 669.19 3341.27
SoftMaxEWA 7=0.1 a=0.3 50 1147 58.62 1937 903.93
AE~Restart 9 = 0.005, A = 5.0 7.78 10.09 1022 104.48 492.14

AEMetaBandit 6 = 0.005, A = 5.0, MT =50 7.78 10.1 10.27 107.46  502.53
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5.4 Goore game

As we mentioned in section 4.0, where we introduced the Goore game, we have created both normally
distributed and binary feedback functions for the Goore game. The functions have been adapted to accept
a percentage of players that vote yes. This enables us to use the same function for different team sizes.
Two properties of the function should affect the outcome, the shape and amplitude. Two shapes have been
chosen, one flat and one narrow, while the amplitudes are set to 20 and 400. The complete set of feedback
functions can be seen in table 5.10 while figure 5.7 shows the shape of the Gaussian functions. Note that
the optimal percentage of yes votes is chosen to not be at the center of the graph because of the likeliness

of 50% yes when selecting actions at random.

Figure 5.7: The Goore game functions used for normally distributed feedback
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Table 5.10: Goore game configurations
Config Feedback type Function Optimal yes  Team size
1 Gaussian with noise o2 = 1.0 Flat Gaussian 20% 10 and 100
2 Gaussian with noise 02 = 1.0 Peaked Gaussian 20% 10 and 100
3 Binary Function from [IK03] 80% 10 and 100
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5.4.1 Goore game results

The results for 10 player Goore game is shown in table 5.11.

Table 5.11: Results for 10 player Goore game on peaked Gaussian function with amplitude 20 and where
2 yes votes are optimal.

Team / Iteration 10 100 1000 2000 10000 100 000
KBLA 0% = 1.0, 02 = 1.0 264 277 267 267 2.64 2.64
€n-Greedy ¢ = 0.3, d = 0.1 499 177 1.1 115 1.09 1.18
en-Greedy ¢ = 0.6, d = 0.1 481 3.16 034 112 1.04 1.02
Greedy € =0.02 0.09 048 212 211 21 2.06
GreedyEWA ¢ =0.02 o =0.3 023 032 211 22 216 2.23
SoftMaxEWA 7=0.5 a=0.3 255 417 411 417 417 4.18
SoftMaxEWA 7=0.1 a=0.3 00 00 038 078 1.88 2.77
Pursuit 0.01 481 219 1.02 1.08 1.08 1.08
Pursuit 0.001 489 465 191 069 1.3 1.3
AdaptivePursuit @ =0.8,8 =0.8, Py,in, =0.01 425 2.65 228 241 236 2.38
UCBNormal 333 10 02 00 0.1 0.01

AEMetaBandit 6 = 0.005, A = 10, MT =100 0.0 0.12 132 1.81 2.36 2.45

None of the schemes are able to solve the game completely with this parameter configuration. The simple
Greedy scheme is very close, and it is surprising that it slightly outperforms the GreedyEWA scheme
which should be more suited for a dynamic environment like this. The SoftMaxEWA 7=0.5 obviously
does too much exploration because it is far away from the solution, but even with lower exploration it is
not able to get particularly close to the optimal solution. The KBLA quickly gets close to the optimal

solution, but then it seems to stop, because it does not get any better over time.

Increasing the team size to 100 players makes the problem harder because it increases the amount of noise
in the environment, in addition the distance between rewards are smaller. Table 5.12 contains the results

for teams of 100 players on the peaked function.

We see that most schemes has problems when the number of players increases to 100. Only the €,-Greedy
¢ = 0.6 scheme is close to the optimal solution, but the performance seems to be very sensitive to its
parameter values. The simplest scheme of them all, the e-Greedy scheme and the AdaptEvEMetaBandit

scheme are also quite close after 100 000 iterations. The Kalman Bayesian Learning Automaton does not
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Table 5.12: Results for 100 player Goore game on peaked Gaussian function with amplitude 20 and where
20 yes votes are optimal.

Team / Iteration 10 100 1000 2000 10000 100000
KBLA 02 = 1.0, 02 = 1.0 43.34 41.25 41.81 4193 4192 41.83
€n-Greedy ¢ = 0.3, d = 0.1 49.59 47.29 4297 4227 413 40.7
en-Greedy ¢ = 0.6, d = 0.1 50.84 3896 2266 2134 20.68 20.5
en-Greedy c =2, d = 0.1 4997 49.87 4051 38.62 37.34 3698
e-Greedy € =0.1 3148 3594 3531 34.17 3099 26.8
GreedyEWA € =0.1 o = 0.3 992 1377 3568 3428 34.7 36.64
SoftMaxEWA 7=0.5 =0.3 29.18 4742 48.04 4994 492 48.42
Pursuit 0.01 49.24 4777 4143 41.15 41.0 41.0
AdaptivePursuit o« =0.8,8 =0.8, Py, =0.05 45.84 41.08 40.74 40.66 409 41.48
Poker 45.04 4331 4322 4322 4322 4322
UCBNormal 0.0 100.0 1000 0.0 100.0  100.0

AEMetaBandit 6 = 0.005, A = 10, MT =100 0.0 1.74 514 6.74 9.8 16.32

perform well at all, it seems to converge quickly because there is no noticeable increase in performance

over time.

We assumed that the early convergence of the KBLA in the 10 player game and its rather bad performance
in the 100 player game was due to too high update variance and therefore ran the tests again with smaller
values. The results of these tests can be seen in table 5.13 and 5.14 for the 10 and 100 player game
respectively.

Table 5.13: KBLA results for varying values of the update variance parameter in 10 player Goore game
on peaked Gaussian function with amplitude 20 and where 2 yes votes are optimal.

— o
—_

277 258 214 222 213 2.17

Team / Iteration 10 100 1000 2000 10000 100000
KBLA 0% = 1.0, 02 = 0.0 248 245 245 245 245 245
KBLA02=1.0,02=1e—-05 273 27 27 27 265 2.6
KBLA 02 = 1.0, 02 = 0.0001  3.07 285 285 285 28 2.15
KBLA 02 =1.0,02=0.001 285 285 275 255 221 202
KBLA 02 = 1.0, 02 =0 25 235 217 212 207 207
2
o;=0

KBLA o2 = 1.0,
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Table 5.14: KBLA results for varying values of the update variance parameter in 100 player Goore game
on peaked Gaussian function with amplitude 20 and where 20 yes votes are optimal.

Team / Iteration 10 100 1000 2000 10000 100000
KBLA 02 = 1.0, 02 = 0.0 42.15 403 40.12 40.08 40.02  39.64
KBLA 02 =1.0,02=1e—05 4251 40.76 40.52 4042 4024 37.36
KBLA 02 = 1.0, 02 = 0.0001  42.66 40.38 40.19 40.02 37.98 23.57
KBLA 02 = 1.0, 02 =0.001  42.83 4032 39.0 372 2679 247

KBLA 02 = 1.0, 02 = 0.01 4195 3921 3041 287 2838 28.03
KBLA 02 = 1.0, 02 = 0.1 42.05 35.61 33.93 3459 3432 3458

Indeed, for the 100 player game it seems clear that too much constant exploration was the problem. We
also see that lowering the exploration in the 10 player game increases performance, but the KBLA is

definitely not as sensitive to the update variance parameter here.

One might ask, what if the feedback range of the Goore game was larger, would that affect the parameter
choice? Common reasoning implies that a larger feedback range gives greater distance between rewards
and in a way the environment therefore “moves” faster and should require a higher update parameter.
Table 5.15 shows the results for 100 KBLA players on the same peaked function, but with the amplitude
increased to 400.

Table 5.15: KBLA results for varying values of the update variance parameter in 100 player Goore game
on peaked Gaussian function with amplitude 400 and where 20 yes votes are optimal.

Team / Iteration 10 100 1000 2000 10000 100000
KBLA ¢% = 1.0, 02 = 0.0 4393 38.66 3486 34.75 3424 3424
KBLA 02 =1.0,02=1e—05 4487 3857 3524 3427 3278 31.83
KBLA 02 = 1.0, 02 = 0.0001 4551 3896 34.46 33.17 3125 29.93
KBLA 02 =1.0,02=0.001 4523 384 3299 31.63 288 268

KBLA 02 = 1.0, 02 = 0.01 4493 3752 313 2955 2579 23.99
KBLA ¢2 = 1.0, 02 = 0.1 4522 367 3036 2839 2552 24.68

Here we see that we cannot expect to gain the same performance for the same parameter if the feedback

range is different.

So far we have only considered the update parameters effect on the performance. However, the sensor

parameter is also unknown in the Goore game. While the observation noise of the feedback function is
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known, more noise is introduced by the other players. If all players had voted similarly each time, then
the feedback would be the only source of noise and the sensor parameter had been known, but this is not
the case. While the update variance parameter contributes to constant exploration, the sensor parameter
can contribute to initial exploration, and thus might be more beneficial in environments like this where it

is important to converge in the end.

Table 5.16 contains the results of increasing the sensor variance, and therefore the initial exploration, on

the peaked Gaussian function with amplitude 20.

Table 5.16: The effect of increasing the sensor variance parameter in a 100 player Goore game on peaked
Gaussian function with amplitude 20 and where 20 yes votes is optimal.

Team / Iteration 10 100 1000 2000 10000 100000

KBLA 02 =10.0, 02 =0.0 4321 34.18 32.89 3242 31.75 30.71
KBLA 02 =50.0, 02 =0.0 46.69 323 28.18 27.89 2728 2649
KBLA 02 =100.0, 02 =0.0 47.68 36.96 2521 24.89 24.13 23.66
KBLA 02 =225, 02 =0.0 483 4258 2091 21.12 21.16 20.94
KBLA 02 = 400.0, 02 = 0.0 4848 4471 17.58 17.14 18.1  19.08

2
u
2

Now, can these parameters be extended to the function with amplitude 400? Table 5.17 has the answer.
Unfortunately, we see that there is no silver bullet, the sensor variance parameter had to be increased

significantly to obtain the same performance.

For comparison, the results for the other schemes are also shown. We see also many of these are very
sensitive to their parameter configuration. Again, it seems that a properly configured ¢,-Greedy scheme
is very strong in this game both in terms of convergence speed and accuracy. As before, AdaptEvEMeta-
Bandit needs some time, but performs very well over time. It also surprising to see the basic Greedy

scheme with as much as 10% exploration obtaining a very good score in the end.

Another consideration when increasing the sensor variance parameter in the KBLA, is the learning speed.
More exploration in the start avoids early convergence, but may slow down the automaton significantly.
We end of this section” with figure 5.8 where we show the learning speed for several choices of the sensor

variance parameter on the peaked Gaussian function with amplitude 20.

’The results for the flat Gaussian function where omitted because they revealed nothing new.
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Table 5.17: Results for 100 player Goore game on peaked Gaussian function with amplitude 400 and

where 20 yes votes are optimal.

Team / Iteration 10 100 1000 2000 10000 100000
KBLA 02 = 225, 02 = 0.0 44.19 3888 3646 36.11 3573 35.65
KBLA 02 = 400.0, 02 = 0.0 44.65 39.05 3721 36.89 36.57 36.51
KBLA o2 = 2000.0, 02 = 0.0 4447 3826 36.69 3638 3571 3545
KBLA 02 = 10000, 02 = 0.0 46.48 3239 31.82 30.83 29.76  28.89
KBLA ¢2 = 100000.0, 02 = 0.0 49.87 37.58 18.81 18.89 19.23  20.02
eén-Greedy ¢ = 0.3, d = 0.1 504 3592 2923 29.0 28.64 2861
én-Greedy ¢ = 0.6, d = 0.1 49.8 38.18 19.52 1845 178  17.62
€én-Greedy ¢ = 1.0, d = 0.1 474 5028 17.82 157 1435 14.04
Greedy € =0.1 553 452 2858 28.84 28.69 2122
Greedy € =0.05 28 248 3235 3243 3235 306
GreedyEWA € =0.1 o =0.3 933 1056 27.83 30.06 31.1  31.77
GreedyEWA ¢ =0.05 o =0.9 6.2 3752 39.74 41.13 3955 399
SoftMaxEWA 7=0.1 a=0.3 00 008 146 40 1791 42.86
SoftMaxEWA 7=0.1 a=0.9 00 028 216 462 1756 42.16
Pursuit 0.005 073 136 199 20 20 2.0
AdaptivePursuit « =0.8,8 =0.8, P,in, =0.05  1.13 144 188 188 1.89  1.89
AdaptivePursuit « =0.2,3 =0.2, P,,;, =001 1.0 078 08 16 197 198
AEMetaBandit § = 0.005, A =5, MT =100 0.0 00 004 1.0 1995 2249

85



CHAPTER 5. EXPERIMENTS

100
02=10, 020 ——
02=100, 02=0 -------
_ 2_,
022400, 62=0 -
80 - g
60 - g

Average yes votes

0 5000 10000

Figure 5.8: The impact on learning speed when the sensor variance parameter is increased.
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5.5 Zero-sum games

As mentioned in chapter 4, zero-sum games serves as a benchmark for testing rationality in learning
algorithms. These experiments are inspired by the analysis done in [NT89] and the game matrices have
been chosen to cover different scenarios. In the game matrices, we show only the payoff to player one,
since, because of the zero-sum property, the payoff to player two is easily determined by negating the
payoff to player one.

The first game illustrates the case where both players have dominating strategies.

Gamel = 2.6
-3 3

For the second matrix, only player one has dominating strategies. Game?2 is also much harder than Gamel

in the sense that the difference between feedback values are smaller.

Game2 = [ 2 1]
-2 1

The last type of zero sum games we have considered is the case of where no player has dominating
strategies. Only mixed strategy equilibriums exist. The optimal solution to such zero-sum games is the
minimax solution. Here we have chosen two games, one with 2 actions, the two-finger morra game, and

one with 5 actions, an extended version of the rock, paper, scissors game.

2 =3
Morra =

0o -1 1 -1 1
1 0o -1 -1 1
RPSgx =|-1 1 0o -1 1
1 1 1 0 -1
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As we saw in section 4.3.3 the optimal mixed strategy for the Two-finger Morra game is (aq : 7/12,as :
5/12), while in the extended rock, paper, scissors the optimal mixed strategy is (a1 : 1/9,a92 : 1/9, a3 :
1/9,a4 : 1/3,a5 : 1/3). Because of symmetry, this holds for both players.

For the games with pure strategy equilibria we only put the schemes up against an instance of themselves
to observe how fast they are able to identify the best choice. However, in the mixed strategy games we
run a tournament too. The reason for this is to observe which scheme is best at exploiting weaknesses in

other schemes.

5.5.1 Results Gamel

Table 5.18 contains the results for the Gamel. The first number in each column is player one’s probability
of selecting the dominating strategy, while the second number is player two’s probability of selecting the

dominating strategy.

Table 5.18: Probability of selecting the dominating strategy in Gamel

Player / Iteration 10 100 1000 10000

KBLA 02 = 1.0, 02 = 0.0 0.97,0.99 1.00,1.00 1.00,1.00 1.00,1.00
KBLA 02 = 1.0, 02 = 0.001 0.97,0.98 1.00,1.00 1.00,1.00 1.00,1.00
KBLA ¢? = 1.0, 02 = 0.01 0.97,0.98 1.00,0.99 1.00,1.00 1.00,1.00
KBLA 02 =1.0, 02 = 0.1 0.96,0.97 0.98,0.98 0.98,0.98 0.98,0.98
KBLA 02 = 1.0, 02 = 0.5 0.96,0.92 0.95,0.94 0.95,0.94 0.96,0.94
KBLA 02 = 1.0, 02 = 1.0 0.93,091 0.93,0.92 0.93,0.92 0.93,0.92
en-Greedy ¢ = 0.3, d = 0.1 0.51,0.51 0.84,0.84 0.99,0.98 1.00, 1.00
Greedy € =0.02 0.99,0.99 0.99,0.99 0.99,0.99 0.99,0.99
GreedyEWA € =0.02 o =0.3 0.99,0.99 0.99,0.99 0.99,0.99 0.99,0.99
SoftMaxEWA 7=0.1 a=0.3 1.00,0.88 1.00,1.00 1.00,1.00 1.00,1.00
Poker 0.82,0.98 0.99,0.99 0.99,0.99 0.99,0.99
Pursuit 0.01 0.52,0.53 0.81,0.80 1.00,1.00 1.00,1.00
AdaptivePursuit o =0.8,5 =0.8, P,,;, =0.01 0.99,0.99 0.99,0.99 0.99,0.99 0.99,0.99
UCBNormal 0.67,0.67 0.86,0.90 0.99,0.98 1.00,0.99

AEMetaBandit § = 0.005, A = 5.0, MT =100 0.67,0.67 0.86,0.90 0.99,0.98 1.00,0.99

Perhaps not surprisingly, most schemes are able to quickly identify the dominating strategy. For this
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game, it seems that an update parameter close to zero gives the best performance of the Kalman Bayesian
Learning Automaton. In terms of convergence speed GreedyEWA, SoftMaxEWA, AdaptivePursuit and

the KBLA players with small update variance is the fastest schemes to find a near-optimal solution.

5.5.2 Results Game2

Table 5.19 shows the results for Game2. Again, the reported probabilities are versus an instance of itself,
and the first number is player one’s probability of playing the optimal action, while the second number is
player two’s probability of playing the optimal action. Only player one has a dominating strategy (a1),

but player two’s optimal choice is as because it minimizes player one’s payoff and therefore also its loss.

Table 5.19: Probability of playing the optimal action in Game2

Player / Iteration 10 100 1000 10000

KBLA 02 = 1.0, 02 = 0.0 0.98,0.70 1.00,0.98 1.00,1.00 1.00,1.00
KBLA 02 = 1.0, 02 = 0.001 0.98,0.69 1.00,0.96 1.00,0.98 1.00,0.98
KBLA 02 = 1.0, 02 = 0.01 0.97,0.69 0.99,091 0.98,0.92 0.98,0.92
KBLA 02 = 1.0, 02 = 0.1 0.95,0.70 0.94,0.80 0.94,0.80 0.94,0.80
KBLA 02 = 1.0, 02 = 0.5 0.90,0.69 0.89,0.70 0.89,0.71 0.89,0.70
KBLA 02 = 1.0, 02 = 1.0 0.88,0.65 0.86,0.66 0.86,0.67 0.86,0.67
en-Greedy ¢ = 0.3, d = 0.1 0.50,0.51 0.84,0.17 0.98,0.02 1.00, 0.00
Greedy € =0.02 0.99,0.03 0.99,0.01 0.99,0.01 0.99,0.01
GreedyEWA € =0.02 o =0.3 0.99,0.02 0.99,0.01 0.99,0.01 0.99,0.01
SoftMaxEWA 7=0.1 a=0.3 1.00,0.76  1.00,0.97 1.00,0.99 1.00, 1.00
Poker 0.98,0.65 1.00,0.93 1.00,0.94 1.00,0.94
Pursuit 0.01 0.54,0.48 0.81,0.30 1.00,0.00 1.00,0.00
AdaptivePursuit o« =0.8,5 =0.8, Py,;,, =0.01 0.99,0.01 0.99,0.01 0.99,0.01 0.99,0.01
UCBNormal 0.67,0.33 0.90,0.77 0.98,0.02 0.99, 0.00

AEMetaBandit 6 = 0.005, A = 5.0, MT =100 0.67,0.33 0.90,0.77 0.98,0.02 0.99, 0.00

Again, we note the rapid convergence rate of the KBLA to its equilibrium point. Just after 100 iterations,
almost all results are unchanged. However a larger update variance parameter does not seem to increase
the speed of the convergence rate, and it definitely seems that assuming a stationary environment (o2 = 0)

is the best here due to its superior accuracy.
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SoftMax is again a top performer as in Gamel, and is together with Poker the only of the other schemes

that does not converge to the wrong solution.

5.5.3 Results two-finger Morra

The results for the two-finger Morra game when playing versus an instance of itself can be seen in table

5.20. The probability of a; is reported for player one, while the probability of as is reported for player 2.

Table 5.20: Results for the two-finger Morra game where the optimal mixed strategy is (0.58, 0.42)

Player / Iteration 10 100 1000 10000
KBLA ¢? = 1.0, 02 = 0.0 091,095 0.74,0.73 0.71,0.71 0.70, 0.69
KBLA 0% = 1.0, 02 = 0.001 0.61,0.31 0.62,0.38 0.58,0.41 0.57,0.41
KBLA ¢? = 1.0, 02 = 0.01 0.60,0.30 0.58,0.37 0.57,0.40 0.57,0.40
KBLA 62 = 1.0, 02 =0.1 0.61,0.29 0.57,0.39 0.57,0.40 0.57,0.40
KBLA 02 = 1.0, 02 = 0.5 0.62,0.31 0.58,0.40 0.57,0.39 0.57,0.39
KBLA 0% = 1.0, 02 = 1.0 0.60,0.37 0.56,0.40 0.58,0.39 0.58,0.39
en-Greedy ¢ = 0.3, d = 0.1 0.49,0.49 0.74,0.65 0.63,0.49 0.66,0.52
Greedy € =0.02 0.99,0.99 0.95,0.85 0.62,0.58 0.62,0.60
GreedyEWA € =0.02 o =0.3 0.98,0.96 0.98,0.74 0.98,0.47 0.98,0.50
SoftMax-EWA-N 7=0.1 a=0.3 0.62,0.44 0.86,0.87 0.97,0.98 0.93,0.94
Poker 0.54,0.75 0.75,0.76 0.75,0.77 0.75,0.76
Pursuit 0.01 0.52,0.53 0.56,0.67 0.95,0.67 1.00,0.67
AdaptivePursuit o =0.8,8 =0.8, Py, =0.01 0.99,0.69 0.98,0.53 0.98,0.51 0.98,0.50
UCBNormal 0.67,0.67 0.46,0.64 0.57,0.64 0.59,0.62

AEMetaBandit § = 0.005, A = 5.0, MT =100 0.67,0.67 0.45,0.62 0.57,0.64 0.59,0.62

We see that none of the schemes are able to identify the optimal mixed strategy. Some of the KBLA
schemes and UCBNormal are very close. This time the KBLA with ¢2=0.0 falls behind.

However, being able to play a good mixed strategy against an instance of itself does not mean that it can
do so versus a variety of opponents. Table 5.21 contains the scores for the tournament where every player

played against all others as both player one and player two.

The tournament are dominated by the adaptive schemes which are definitely better than the converging
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Table 5.21: Average total score in the two-finger Morra tournament

Player / Iteration 10 100 1000 2000 10000

KBLA 02 = 1.0, 02 = 0.5 796  164.62 2103.63 457332  26687.17
én-Greedy ¢ = 0.3, d = 0.1 -0.76 2523  -1173.61 -2765.12 -17747.85
Greedy € =0.05 54 -101.18 -1034.34 -2026.99  -9672.5

Greedy € =0.1 567  -383  -506.16 -957.17  -3959.81
GreedyEWA ¢ =0.1 o =0.3 6.54  -1445 37553  1053.48  8892.19

SoftMaxEWA 7=0.5 a=0.3 9.05 12241 1539.75 3374.92 1983535
Pursuit 0.01 -0.09 2869  -1633.8 -4924.86 -36485.31
AdaptivePursuit o =0.8,3 =0.8, Py, =0.01 9.67 -230.34 -1856.02 -3157.77 -10267.81
Poker 8.02  -105.8 -2033.55 -4316.47 -23575.75
UCBNormal -16.11  74.16  2110.19  4572.18  23160.89
AEMetaBandit § = 0.005, A = 10, MT =100 -16.02 7496  2108.37 4574.49 23133.44

schemes at playing mixed strategies versus a wide range of contenders. The individual arm probabilities

and the expected reward for the KBLA versus the different opponents are shown in table 5.22. The

reported probabilities are all for action one at time step 10000. In the leftmost column with probabilities

the KBLA is player one while in the rightmost column with probabilities the KBLA is player two. Again,

the optimal probability for action one is 0.58 for both players, but player two has a slight advantage in

this game in terms of expected reward (ER). The ER is the average score of the game if it were repeated

infinitely.

Table 5.22: Tournament results for KBLA 02 = 1.0, 02 = 0.5 against each individual player

Adversary P1,,, P2, ERP1) P1l,,P2, ER(P2)
€n-Greedy ¢ = 0.3, d = 0.1 0.95, 0.99 1.71 0.99, 0.05 2.69
Greedy € =0.1 0.82, 0.84 0.65 0.84,0.24 1.14
GreedyEWA ¢ =0.1 o =0.3 0.82, 0.85 0.67 0.86, 0.24 1.22
SoftMaxEWA 7=0.5 =0.3 0.6, 0.63 -0.07 0.58, 0.61 0.08
Pursuit 0.96, 1.0 1.8 1.0, 0.04 2.80
AdaptivePursuit o =0.8,5 =0.8, P,,,;, =0.01 0.92, 0.96 1.48 0.97, 0.09 2.37
Poker 0.94, 0.98 1.64 0.56, 0.47 0.05
UCBNormal 0.6, 0.63 -0.07 0.57,0.56 0.08
AEMetaBandit 6 = 0.005, A =10, MT =100  0.6,0.63 -0.07 0.57, 0.56 0.08
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We see that even though the KBLA does not achieve a positive score when playing as player one against
some schemes, for instance UCBNormal, it is able to get a slightly higher total expected reward against

every scheme. Thus, it makes sense that it was able to achieve the top score in the tournament.

The KBLA was also tested against a perfect opponent. Table 5.23 contains the results of this experiment.
Here KBLA has only played as player one, which has a maximum expected payoff off —1/12 = —0.0833.
In contrast to the tournament score, where the total score is shown, the average score is reported here. We
see that the performance gets slightly worse over time, but the KBLA are still very close to the maximum

attainable payoff.

Table 5.23: The KBLA versus a perfect opponent in two-finger Morra

Player / Iteration 10 100 1000 2000 10000
KBLA 02 = 1.0, 02 = 0.5 -0.08481  -0.08576  -0.08549  -0.09074  -0.09341
FixedProbPlayer [0.583,0.416]  0.08481  0.08576  0.08549  0.09074  0.09341
KBLA P(a1), FPP P(as) 0.58,0.58 0.59,0.58 0.59,0.58 0.59,0.58 0.59,0.58

5.5.4 Results Rock, paper, scissors extended

In table 5.24 we see the effect on performance in zero-sum games when increasing the number of actions.
Only the results for ¢ = 10000 is shown.

While sensitive to the update variance parameter, the KBLA is able to get very close to the optimal solution
with a small update variance parameter. Most of the non-KBLA schemes are far away from the optimal
strategy, except UCBNormal which in fact is quite close. SoftMaxEWA also performs adequate and could
likely get closer with further tuning.
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Table 5.24: Arm probabilities when playing versus an instance of itself in Rock, paper, scissors extended

o
—_

Player / Iteration 10000

KBLA 02 = 1.0, 02 = 0.0 0.11,0.11,0.12, 0.34, 0.32

KBLA 02 = 1.0, 02 = 1e — 06 0.11,0.11,0.11, 0.35, 0.31

KBLA 02 =1.0, 02 =1le — 05 0.11,0.11,0.12, 0.36, 0.30

KBLA 02 = 1.0, 02 = 0.0001 0.12,0.12,0.11, 0.37, 0.28

KBLA 0% = 1.0, 02 = 0.001 0.13,0.11,0.13, 0.39, 0.24
02=0

KBLA 02 = 1.0,

0.14, 0.14, 0.14, 0.37, 0.20

Poker

0.10,0.12,0.12, 0.52, 0.14

€n-Greedy ¢ = 0.3, d = 0.1
€n-Greedy ¢ = 0.6, d = 0.1
Greedy € =0.1

Greedy € =0.02

0.27,0.12, 0.01, 0.46, 0.13
0.24,0.11, 0.01, 0.45, 0.19
0.10,0.11, 0.07, 0.45, 0.27
0.15, 0.13, 0.05, 0.45, 0.23

GreedyEWA € =0.1 o« =0.3
GreedyEWA € =0.02 o =0.3
SoftMaxEWA 7=0.5 a=0.3
SoftMaxEWA 7=0.1 a=0.3

0.55, 0.14, 0.02, 0.26, 0.03
0.67, 0.13, 0.00, 0.19, 0.01
0.17,0.16, 0.17, 0.33, 0.16
0.13,0.11,0.12,0.47, 0.17

Pursuit 0.01
AdaptivePursuit o =0.8,5 =0.8, P,,,;, =0.01
AdaptivePursuit o =0.8,5 =0.8, Pyn =0.1

0.56, 0.04, 0.00, 0.40, 0.01
0.82, 0.08, 0.01, 0.08, 0.01
0.33,0.17,0.14, 0.23, 0.13

UCBNormal
AEMetaBandit § = 0.005, A = 80, MT = 50

0.11,0.12,0.11, 0.38, 0.29
0.11,0.12,0.11, 0.38, 0.29
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5.6 Prisoner’s Dilemma

The Prisoner’s Dilemma is motivated by its special properties and the fact that it is not zero-sum. We use
a normalized version where the payoffs can be seen in the following matrix. For instance, if both players

adopts a rational behavior and testifies, then they both receive 0.4 as payoff.

b [08,08 00,10
~ 110,00 0.4,0.4

5.6.1 Results

Table 5.25 contains the score obtained when playing versus an instance of itself in the Prisoners Dilemma.

Table 5.25: Scores vs self in the iterative Prisoner’s Dilemma

Player / Iteration 10 100 1000 2000 10000
KBLA 02 = 1.0, 02 = 0.0 0.60 047 040 040 040
KBLA 02 = 1.0, 02 = 0.001 053 045 046 042 042
KBLA 02 = 1.0, 02 = 0.01 054 045 048 046 048
KBLA 02 = 1.0, 02 = 0.1 0.56 0.49 050 051 0.50
KBLA ¢2 = 1.0, 02 = 0.5 052 052 051 052 051
KBLA 02 = 1.0, 02 = 1.0 0.55 051 053 053 053
Poker 0.54 048 044 044 043
én-Greedy ¢ = 0.6, d = 0.1 0.56 048 040 040 0.40
Greedy € =0.05 0.60 0.51 043 043 040
GreedyEWA ¢ =0.1 o =0.3 051 055 058 058 0.54
GreedyEWA ¢ =0.05 o =0.9 0.65 076 0.72 071 0.72
SoftMaxEWA 7=0.1 a=0.3 0.60 047 043 042 043
SoftMaxEWA 7=0.3 a=0.3 056 045 046 046 048
Pursuit 0.01 051 047 040 040 040
AdaptivePursuit o =0.8,8 =0.8, P,;n, =0.01 073 072 0.75 0.76  0.72
AdaptivePursuit o =0.8,3 =0.8, Pi, =0.1  0.63 0.62 059 0.61 0.60
UCBNormal 0.67 051 049 059 0.71

We see that the KBLA players seems to converge quickly to the rational behavior. It is clear that a higher
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update variance parameter causes the automaton to deviate somewhat from a completely rational behavior,

but with the constant exploration applied this is expected.

It seems that cooperating is more common for the dynamic schemes, especially one configuration of
GreedyEWA and AdaptivePursuit have nearly determined this non-rational, but optimal solution. UCB-

Normal is the only of the stationary schemes that also approaches this behavior.

The most rational KBLA player (02 = 0) has been applied in a tournament setting with the rest of the

schemes. The result of this experiment can be seen in table 5.26.

Table 5.26: Prisoner’s Dilemma tournament scores

Player / Iteration 10 100 1000 2000 10000

KBLA 02 = 1.0, 02 = 0.0 12.57 12245 117077 2305.67 11248.49
en-Greedy ¢ = 0.3, d = 0.1 11.78 11341 1162.67 2293.29 11195.43
Greedy € =0.02 11.79 108.69 1038.89 2129.19 10993.24
GreedyEWA € =0.02 o =0.3 1206 87.65 495.65 845.11 317592
SoftMaxEWA 7=0.1 a=0.3 12.89 12544 1130.78 2206.11 10712.26
Pursuit 0.01 11.66 110.12 1161.17 2293.38 11179.47
AdaptivePursuit o« =0.8,8 =0.8, P,in, =0.01  10.19 6737  419.88 71093  2510.85
Poker 12.18  119.28 111421 2192.53 10708.57
UCBNormal 85 111.59 1029.64 2076.38 10776.73

While the KBLA obtains the top score, the scores are so similar that it seems like most of the schemes
plays rationally in this game. In fact, only the GreedyEWA and AdaptivePursuit schemes seems to deviate
from the rational strategy in this tournament, because they are so far behind and probably tries to cooperate
way to often, which we know is not beneficial against a rational opponent. Also, it is rather surprising to
see that UCBNormal has a high score, since it did not play rationally versus an instance of itself, but here

we see that it is clearly able to play rationally versus other opponents.

To see exactly how rational the KBLA plays, table 5.27 shows the testify probabilities at time step 10000

against each individual opponent. The results for UCBNormal are also included for comparison.

While there are small differences in testify probabilities, we see that the KBLA is even more eager to

testify than the UCBNormal scheme and should consequently earn some extra points here and there.
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Table 5.27: Probability of testifying (T) for the KBLA and UCBNormal versus each individual opponent
in the Prisoner’s Dilemma tournament.

Adversary T(KBLA), T(Adv) T(UCBNormal),T(Adv)
KBLA 0% = 1.0, 02 = 0.0 X 0.98, 1.00
en-Greedy ¢ = 0.3, d = 0.1 1.00, 1.00 0.98, 1.00
Greedy € =0.02 1.00, 0.99 0.96, 0.98
GreedyEWA € =0.02 o =0.3 1.00, 0.05 0.95, 0.06
SoftMaxEWA 7=0.1 =0.3 1.00, 0.93 0.90, 0.87
Pursuit 0.01 1.00, 1.00 0.98,1.0
AdaptivePursuit o =0.8,5 =0.8, Py,;, =0.01 1.00, 0.04 0.94, 0.04

Poker 1.00, 0.90 0.95, 0.96
UCBNormal 1.00, 0.98 X

5.7 Sensitivity

The tested parameters are in factors of standard deviations from the true parameter. For instance, a factor
range {1, 2, 3, 4, 5} for a true standard deviation value of 50 gives the following test range parameters:
{10, 12.5, 25, 50, 75, 100, 150, 200, 250}.

5.7.1 Sensitivity to incorrectly specified update variance parameter

The regret at t = 2000 for a two-armed random walk environment with true update variance o,, = 50 is

shown in table 5.28, while the corresponding arm probabilities resides in table 5.29.

Table 5.28: Regret at ¢ = 2000 for incorrectly specified update parameter in two-armed random walk
environment with true o,, =50.

Belief %Ju %O’u %Uu %Uu ou 20, 30, 40, 50y,

Regret 200.95 174.75 149.83 110.25 81.81 111.48 146.56 178.28 206.93

The results are as expected, specifying a too high or too low update parameter decreases performance and

the performance loss only increases with values further away from the true value.

However, it is quite interesting to observe that specifying a too high update parameter gives a higher

probability of selecting the optimal arm than a too low update parameter, but in terms of regret it definitely
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Table 5.29: Probability of selecting the optimal arm for incorrectly specified update variance parameter
in two-armed random walk environment with true o,, =50.

Player / Iteration 10 100 1000 2000
KBLA 02 = 1.0, 02 = 100.0 0.80 0.87 089 091
KBLA 02 = 1.0, 02 = 156.25 0.80 0.88 091 0.92
KBLA 02 = 1.0, 02 = 277.777777778  0.80 0.90 0.93 0.93
KBLA 02 = 1.0, 02 = 625.0 0.80 0.90 095 0.96
KBLA 0% = 1.0, 02 = 2500.0 0.78 092 097 098
KBLA 02 = 1.0, 02 = 10000.0 0.72 089 096 0.97
KBLA 02 = 1.0, 02 = 22500.0 0.70 0.86 094 0.95
KBLA 02 = 1.0, 02 = 40000.0 0.67 0.82 093 0.94
KBLA 02 = 1.0, 02 = 62500.0 0.63 0.81 092 093

Table 5.30: Regret at ¢ = 2000 for incorrectly specified update parameter in fifty-armed random walk
environment with true o,, =50.

Belief %Ju %O’u %Uu %Uu ou 20, 30, 40, 50y,

Regret 343.86 300.36 246.62 147.77 110.9 26143 401.33 516.41 606.83

Table 5.31: Probability of selecting the optimal arm for incorrectly specified update parameter in fifty-
armed random walk environment with true o,, =50.

Player / Iteration 10 100 1000 2000
KBLA 02 = 1.0, 02 = 100.0 0.06 0.16 0.15 0.17
KBLA 02 = 1.0, 02 = 156.25 0.07 020 0.18 021
KBLA 02 = 1.0, 02 = 277.777777778  0.05 0.22 024 0.27
KBLA 02 = 1.0, 02 = 625.0 0.06 031 046 051
KBLA 02 = 1.0, 02 = 2500.0 0.03 043 078 0.84
KBLA 02 = 1.0, 02 = 10000.0 0.02 0.14 064 0.74
KBLA o2 = 1.0, 02 = 22500.0 0.02 006 046 061
KBLA 02 = 1.0, 02 = 40000.0 0.02 004 032 048
KBLA 02 = 1.0, 02 = 62500.0 0.02 003 022 037

seems better to specify a lower parameter. This is even more evident if we increase the problem size to fifty

arms, for which the regret and optimal arm probabilities can be seen in table 5.30 and 5.31 respectively.
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Clearly, incorrectly specifying the parameters drops both the regret and optimal arm probability a lot more

in fifty-armed environments than it does in two-armed environments.

5.7.2 Sensitivity to incorrectly specified sensor variance parameter

The results in terms of regret and optimal arm probabilities for incorrectly specifying the sensor variance

parameter in a two-armed environment with true o, = 50 are shown in table 5.32 and 5.33.

Table 5.32: Regret at ¢ = 2000 for incorrectly specified sensor variance parameter in two-armed random

walk environment with true o, =50.

1 1 1 1

Belief 502 10z 502 50 o

20,

30,

40,

Regret 37292 35722 34341 31946 333.15 41631

479.76 53548 575.73

Table 5.33: Probability of selecting the optimal arm for incorrectly specified sensor variance parameter

in two-armed random walk environment with true o, =50.

Player / Iteration 10 100 1000 2000
KBLA ¢2 = 100.0, 02 = 1.0 0.50 0.60 0.84 0.90
KBLA 0% = 156.25, 02 = 1.0 0.52 0.60 086 0.90
KBLA 02 = 277.777777778, 02 = 1.0 053 0.60 0.86 0.91
KBLA 02 = 625.0, 02 = 1.0 0.52 062 0.88 0.92
KBLA 02 = 2500.0, 02 = 1.0 050 0.63 087 091
KBLA o2 = 10000.0, 02 = 1.0 0.50 0.59 082 0.88
KBLA o2 = 22500.0, 02 = 1.0 048 057 0.79 0.85
KBLA o2 = 40000.0, 02 = 1.0 0.52 055 076 0.83
KBLA 02 = 62500.0, 02 = 1.0 0.50 054 073 0381

Surprisingly, the true sensor parameter does not seem to be the best one! We actually see that values

slightly below the true value gives the best results. Also, it is clear from the results that it is better to

choose a small sensor value rather than a large value if unsure about the true parameter.

When increasing the number of arms to fifty we again see the pattern with lower regret in table 5.34, but

also lower optimal arm probability when the sensor decreases as seen in table 5.35.
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Table 5.34: Regret at ¢ = 2000 for incorrectly specified sensor parameter in fifty-armed random walk
environment with true o, =50.

Belief %az %02 %O'Z %O’z o 20, 30, 4o, 50,

Regret 305.76 299.15 300.41 316.87 400.62 572.61 695.1 778.28 830.99

Table 5.35: Probability of selecting the optimal arm for incorrectly specified sensor parameter in fifty-
armed random walk environment with o, =50.

Player / Iteration 10 100 1000 2000
KBLA ¢2 = 100.0, 02 = 1.0 0.02 0.04 037 051
KBLA 02 = 156.25, 02 = 1.0 0.02 004 042 0.54
KBLA 02 = 277.777777778, 02 = 1.0 0.02 0.04 0.44 0.55
KBLA 02 = 625.0, 02 = 1.0 0.02 003 046 056
KBLA o2 = 2500.0, 02 = 1.0 0.02 003 040 056
KBLA o2 = 10000.0, 02 = 1.0 0.02 0.02 023 045
KBLA 02 = 22500.0, 02 = 1.0 0.03 002 011 033
KBLA 02 = 40000.0, 02 = 1.0 0.02 002 007 023
KBLA o2 = 62500.0, 02 = 1.0 0.02 002 005 0.16

5.7.3 Sensitivity to incorrectly specified sensor variance parameter and update variance
parameter

These experiments involves random walk environments where both the sensor variance parameter and
update variance parameter are incorrectly specified by the KBLA. From the experiments on random walk
environments, section 5.3.2, we saw that identical environment parameters constitutes to easy random
walk environments, while a high sensor variance parameter compared to a high update variance parameter
proved to create difficult random walk environments. Table 5.36 shows the results for incorrectly spec-
ifying both parameters wrong in easy random walk environments (¢, = 50,0, = 50), while table 5.37
contains the results for the hard random walk environments (¢, = 50, o,, = 1). Only the results for the

fifty-armed configurations are shown, the results for the two-armed configurations are in the appendix.

For easy random walk environments, we see that in terms of regret the row with the true update parameter
gives the best results. Also, a small update variance parameter drops the performance less than large

values. An incorrect sensor variance parameter on the other hand, does not seem to have a great impact
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Table 5.36: Regret at ¢ = 2000 for incorrectly specified sensor variance parameter and update variance
parameter in fifty-armed random walk environment with true o2 = 50 and true 02 = 50.

Belief %az %O'Z %O’Z %UZ o, 20, 30, 4o, 50,

§O'u 334.67 34281 341.79 3503 339.18 346.05 343.59 357.1 3542
10u 297.88 304.81 308.56 302.16 307.36 309.62 312.34 310.14 315.34
%au 246.31 239.89 24698 25239 24697 248.89 247.84 240.62 25192
50u 150.05 149.03 14747 145.66 147.63 151.18 151.24 151.85 157.13
Oy 111.84 111.89 11222 11223 111.85 11494 11839 122.69 12793
20y 26228 26223 262.13 26241 26239 263.99 26622 269.7 273.67
30y, 401.59 401.61 401.63 401.36 401.58 402.17 403.02 40543 407.62
4oy, 51595 51543 51553 51525 515.55 51555 516.76 51732 518.39
o0y, 605.73 605.73 60548 605.93 606.03 606.01 606.08 606.8 607.23

Table 5.37: Regret at t = 2000 for incorrectly specified sensor variance parameter and update variance
parameter in fifty-armed random walk environment with true o2 = 50 and true o2 = 1.

Belief %O’Z %02 %O’Z %az o, 20, 30, 40, 50,

%au 38493 379.44 366.35 346.68 357.92 49548 638.3 742.63 810.19
%au 360.15 366.84 349.72 336.61 354.32 49639 641.02 744.14 810.59
§Ju 344.11 349.12 327.73 321.57 346.52 5019 643.59 74545 810.57
2

oy 32423 307.04 301.0 306.57 349.35 512.35 651.39 749.49 813.84
Oy 298.93 301.18 302.17 31544 398.84 566.13 689.74 772.27 825.02

20y, 402.26 400.26 405.51 428.36 525.78 674.12 7575 811.98 848.51
3oy 51397 51243 51526 531.64 613.4 729.81 796.62 837.21 865.37
4oy, 600.85 59694 596.8 608.53 6733 767.78 820.19 853.28 877.73
ooy, 667.94 664.05 66098 670.65 717.84 79299 836.86 865.67 885.93

on performance.

In hard random walk environments however, the sensor variance parameter has a major influence on
performance, and again the pattern of increased performance with lower values arises. In fact, this seems
true for every combination of parameters. The update variance parameter is also influential here, but again

you lose less in terms of regret with small values.
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5.8 Robustness to non-Gaussian feedback

This last part of the chapter contains the results for the experiments where the Kalman Bayesian Learning

Automaton has not received the feedback it assumes, that is, normally distributed feedback.

5.8.1 Binary experiments
Binary zero-sum

For binary zero-sum we again used a mixed strategy game. The game matrix used is the same as in the
analysis done by [NT8&9].

0.8 0.2
Binary = [ 04 06]

The optimal strategies here is (0.25, 0.75) for player one and (0.5, 0.5) for player two.

We see that only very small update parameters gives good performance for the KBLA here. Still no
parameter choices seems to beat the binary BLA. Among the non-Bayesian schemes, some schemes
are very close to the optimal solution after 10 000 time steps, especially SoftMaxEWA (but seems to
have stopped), €,-greedy, UCBTuned and the meta UCB scheme. It has been proven by [NT89] that
Lr_.p a =0.002, 8 = le — 05 eventually converges to the optimal solution in this game. However, we

see that only its second player has been able to do so within this time frame.

Binary goore game

The parameters of the KBLA are motivated by the earlier results with high sensor variance parameter
on the Goore game and the very low update variance parameter that seems to be necessary in binary

environments.
Table 5.39 and 5.40 contains the results for the 10 and 100 player binary Goore game.
While no scheme outperforms the Tsetlin automaton in the 10 player Goore Game, some are very close,

both in terms of convergence speed and accuracy. The KBLA does not seem to require much explo-
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Table 5.38: Results for binary zero-sum game where the optimal action one probabilities are 0.25 for

player one and 0.5 for player two.

Player / Iteration 10 100 1000 10000

KBLA 02 = 1.0, 02 = 0.0 0.47,0.35 0.20,0.37 0.25,0.47 0.23,0.49
KBLA ¢? = 1.0, 02 = le — 06 0.46,0.36 0.22,0.37 0.27,0.47 0.26,0.47
KBLA 02 =1.0,02 =1e - 05 0.45,0.35 0.22,0.37 0.26,0.46 0.25,0.46
KBLA ¢? = 1.0, 02 = 0.0001 0.46,0.37 0.22,0.38 0.26,0.42 0.28,0.43
KBLA 02 = 1.0, 02 = 0.001 0.47,0.37 0.26,0.38 0.31,0.40 0.31,0.39
KBLA ¢2 = 1.0, 02 = 0.01 0.47,0.38 0.36,0.39 0.37,0.39 0.37,0.37
BLA-Bernoulli 0.47,0.36 0.19,0.38 0.27,0.50 0.25,0.49
Poker 0.47,0.35 0.20,0.34 0.12,0.42 0.09,0.45
en-greedy ¢ =0.3 d =0.1 0.50,0.50 0.27,0.22 0.18,0.59 0.22,0.48
GreedyEWA ¢ =0.1 o =0.3 0.82,0.67 0.91,0.62 0.92,0.64 0.92,0.65
SoftMaxEWA 7=0.1 a=0.3 0.41,0.31 0.29,0.42 0.25,0.45 025,045
Pursuit 0.01 0.52,0.50 0.46,0.35 0.06,0.42 0.04,0.64
AdaptivePursuit o =0.8,3 =0.8, P,,,;, =0.01  0.98,0.85 0.98,0.94 0.98,0.94 0.98,0.94
Lr_cp a=0.002,3=1e—05 0.50,0.50 0.49,0.49 0.48,0.41 0.10,0.50
Lg_; a =0.005 0.49,0.50 0.50,0.48 0.40,0.30 0.31,0.34
Tsetlin 0.39,0.40 0.40,0.39 0.40,0.40 0.40, 0.40
UCBTuned 0.43,0.27 0.22,0.36 0.23,0.44 022,045
AEMetaBandit 6 = 0.005, A = 5.0, MT =50 0.43,0.26 0.21,0.36 0.22,0.43 0.24,0.47

ration here and quickly identifies a near-optimal solution, but lacks slightly in accuracy compared to BLA

Bernoulli and Tsetlin.

In the 100 player game, we see that the KBLA actually performs quite good compared to many other bi-
nary schemes. UCBTuned is definitely fastest to a good solution, but seems to lack slightly in determining
the optimal point. L_; on the other hand needs some time, but performs very well over time and seems

to converge towards the optimal solution.
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Table 5.39: Results for 10 player Goore game on binary function where 8 yes votes is optimal.

Team / Iteration 10 100 1000 2000 10000 100000
KBLA 02 = 1.0, 02 = 0.0 565 76 792 797 799 8.0
KBLA 02 = 2.5, 02 = 0.0 549 681 7.89 796 8.05 8.0
KBLA 02 = 5.0, 02 = 0.0 559 634 779 787 8.05 8.0
KBLA 02 = 10.0, 02 = 0.0 517 598 755 777 795 @ 8.11
BLA-Bernoulli 629 795 80 80 80 8.0
en-greedy ¢ = 0.6,d = 0.1 507 658 872 88 887 8.1
en-greedy ¢ = 0.1,d = 0.1 505 7.65 799 794 794  7.88
SoftMaxEWA 7=0.1 a=0.3 725 775 796 796 7.9 7.88
GreedyEWA € =0.02 o =0.3 513 6.14 7.66 767 172  17.73
Pursuit 0.01 505 629 897 894 894 894
AdaptivePursuit o =0.8,3 =0.8, P,,;, =0.01 272 3.65 751 7.72  7.66 7.6
Poker 6.12 745 768 7.64 766  7.66
Lrpa=0.1,8=0.1 577 6.04 584 578 591 595
Lr_; a =0.005 509 511 675 774 8.11 8.0
Tsetlin N=1 696 80 80 80 80 8.0
UCBTuned 7.65 775 794 796 7.98 8.0
AEMetaBandit § = 0.005, A = 5.0, MT =50 7.58 7.79 793 798 7.99 8.0

The EvVE challenge

The EVE challenge [AHC™06] was hosted in 2006 as a contest for handling the exploration vs exploitation
dilemma. The challenge includes six environments which intend to represent user behavior in probabilities

in terms of link clicking on the Internet. Every environment has five arms, which represents the link

probabilities.

The environments are very hard in the sense that the maximum success probability is just over 18 percent

and the arm probabilities are very close. The environments (referred to as “visitors” in the challenge) are

as follows [AHC106]°:

e VisitorConstant - Stationary environment

3There were actually one more visitor in the original challenge, called VisitorWeeklyClose Variation, but we were not able to
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Table 5.40: Results for 100 player Goore game on binary function where 80 yes votes is optimal.

Team / Iteration 10 100 1000 2000 10000 100000
KBLA 02 = 1.0, 02 = 0.0 56.49 55.07 69.38 7158 720 = 723
KBLA 02 = 5.0, 02 = 0.0 524 5209 5635 61.64 8274 82.67
KBLA 02 = 10.0, 62 = 0.0 5231 517 5401 56.41 8837 87.19
BLA-Bernoulli 5263 5599 664 6726 6739 67.89
Poker 50.78 53.52 59.92 62.11 6337  63.65
en-greedy ¢:2,d:0.1 49.58 50.08 63.19 64.97 66.25 66.61
en-greedy ¢:0.6,d:0.1 49.83 5191 61.67 62.15 62.61 62.83
GreedyEWA ¢ =0.05 o =0.3 5213 529 557 54.65 5404 5444
GreedyEWA € =0.1 o =0.3 5047 5298 53.54 53.16 5294  53.65
SoftMax-EWA 7=0.1 a=0.3 66.04 6439 56.58 5535 54.19 5434
SoftMax-EWA 7=0.5 a=0.3 542 5093 50.59 50.65 50.62 50.86
Lg_1 a =0.005 50.33 50.13 52.06 54.44 7455 79.84
Lr_1a=0.01 49.7 50.14 5444 60.05 78.89 79.74
Tsetlin N=5 52.14 5571 58.12 59.24 61.01 63.54
UCBTuned 78.67 740 7599 7591 77.68 77.6

AEMetaBandit 6 = 0.005, A = 5.0, MT =50 79.49 74.05 7537 76.62 779 77.82

VisitorFrequentSwap - Switching environment where the best option changes frequently.

VisitorDaily Variation - Two sinusoidal components determines the probability, the component with

the shortest period is dominant.

VisitorWeekly Variation - Same as the daily variation visitor except that the longest period is domi-

nant, and thus the best option changes less frequently than the daily variation.

VisitorLongGaussian - The best option changes after a long period of time.

Motivated by the earlier results showing good performance in binary experiments with update vari-
ances close to zero, we tested the KBLA in these environments with update parameters from the range
0,1079,1078, ..., 1. The performance differences were huge. In table 5.41 we show the best performing
KBLA (02 = 0.0001) together with 02 = 0 and o2 = 1.0. The results are compared to the results in

determine the implementation details for that visitor and it has therefore not been included in this test.
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[HBG™07], where they describe and evaluate 3 variations of the AdaptEVE scheme, were the best one

also won the tournament.

Table 5.41: Regret in the EVE challenge for 10° time steps averaged over 100 repetitions. Values are

x103.

Env/Scheme Restart Meta Meta-p KBLA 0.0001 KBLA 0.0 KBLA1.0
Constant 04+002 25+05 32+£03 9.94+0.6 022+43 20.0£0.09
FrequentSwap 121+0.1 140+£19 106+1.3 154 +22 351 +£2.1 48.6+0.1

Daily Variation 69+06 62+£07 6.1+07 4.8+0.5 63.7+0.0 569 =+0.1

WeeklyVariation 7.3+02 48+0.8 5.1+09 50+£0.6 64.0+00 572402

LongGaussians 74+04 48+16 43+14 43 +0.7 1203 £ 6.4 130.5£0.2
Total 34.1 323 29.3 394 283.0 312.7

We see that the best KBLA seems very strong on the changing environments, especially on the “Daily-
VariationVisitor”, but in terms of total regret we see that it cannot compare to either of the AdaptEvE
schemes due to too much loss on the visitors with constant elements, the Constant and FrequentSwap vis-
tors. The KBLA with zero as the update variance parameter handles the Constant visitor, although with

high standard deviation.
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Discussion

In this chapter we discuss the results with the intention of understanding the behavior of the Kalman

Bayesian Learning Automaton.

6.1 Performance in random walk environments

We argued earlier that random walk environments are the kind of environments the Kalman Bayesian
Learning Automaton is intended for. The tracking capabilities of the Kalman filter is created exactly for
such probalistic reasoning over time under uncertainty. Therefore it was perhaps not surprising that the

performance of the KBLA turned out to be superior to all other tested schemes in this experiment.

When the noise of the environment was increased, we observed that the performance of the KBLA
dropped, however increasing the speed of the environment did not seem to influence the performance
of the automaton, but rather made it easier. When operating in an environment with higher noise the
KBLA will consider each arm more uncertain, and therefore the variances of each arm will be larger
which in turn leads to a wider range of possible values during sampling. Wider sampling value ranges
drops the performance somewhat due to increased amount of overlapping values, but in a more rapidly
changing environment the mean value of the reward distributions of the arms are likely to be further away

from each other and thus reduces the amount of overlapping values.
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6.2 KBLA in switching environments

In switching environments the performance of the KBLA was very dependent on its parameter configu-
ration. Unlike random walk environments, the update variance parameter had to be ’tuned’, either from
knowledge of the environment or simple guessing. We observed that the configurations with the update
variance parameter (0:2) close to 0 had to little exploration to adapt when the arms switched. However,
too large values of o2 resulted in too much exploration and the accuracy dropped significantly. There
was definitely a compromise between adaption speed and accuracy. We also observed that increasing the

frequency of the switching environment favored higher choices of o2.

It seems clear that finding the optimal 2 value in switching environments like this require good knowl-
edge of the environment and its behavior. Still, with the right values of aﬁ, which happened to be between
0.1 and 1.0 in our tests, the KBLA obtained adequate results. In fact, it was only surpassed by the
AdaptEVE scheme.

The AdaptEVE scheme applies a change point detection mechanism that we saw proved very effective in
identifying the new best arm after a changepoint. A KBLA with high o2 should also find the new best
arm fast, but the constant exploration would hinder it from gaining the same accuracy as AdaptEvE. From
another perspective, the changepoint mechanism in the AdaptEvVE scheme is dependent on the value of
the best arm to change. The KBLA however, does not have this weakness, even if there is no change in

the current best option, it would still adapt if another arm ’silently’ becomes the best.

An interesting scheme for handling switching environments would be the KBLA with 02 = 0 with the
changepoint mechanism in AdaptEvE, and then restarting the KBLA at each changepoint. This would not

handle the case of a non-changing optimal arm though.

6.3 Performance in the Goore game

The Goore game results revealed that small teams were easy for the KBLA. With the right parameters it
converged quickly and obtained good accuracy. However when the number of players was increased to

hundred, the automaton had to be tuned to reduce the amount of noise and to stop early convergence.

The parameter configuration was sensitive the amplitude and shape of the function used. We can under-

stand this in terms of the arm selection process in the KBLA. When the amplitude of the function increases
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the values between rewards increases, and in turn causes the distance between the mean values of the re-
ward distributions of the automatons arms to increase and therefore a greater variance is necessary in the
sampling process to explore the other arm sufficiently. For instance, if the update variance parameter is

too small then it would take a too long time before the other arm is chosen in the sampling process.

Similarly for the shape of the function, if the function is flat then the distance between rewards are smaller

and as such should also affect the parameter choice.

We also saw that it was possible to gain good solutions by increasing the sensor parameter. However,
this had a certain effect on learning speed. From the parameter analysis, we know that when the sensor
variance parameter is increased it takes more time before the arm variance reaches its fixed point and thus
increases the amount of exploration initially. More initial exploration makes the KBLA less aggressive in

the start and should therefore lower the learning(convergence) speed.

It was also clear from the results that the magnitude of the sensor variance parameter, the amount of initial
exploration needed, was dependent on the amplitude of the function. Similarly to the update parameter,
this property can be understood by the need for higher variance when the distance between rewards are
bigger.

We found no perfect parameter configuration in our experiments and it is clear that this game needs further
investigation in order to see whether it is possible to determine offline or online what the parameters of

the KBLA should be for optimal performance.

6.4 Performance in zero-sum and non zero-sum games

The zero-sum game results was in general very favorable for the Kalman Bayesian Learning Automaton
and clearly demonstrated its potential as a rational decision making unit. Specifically, in Gamel, the
KBLA players converged quickly to a solution, and even the optimal solution if the update variance was
sufficiently low. A higher update variance parameter did not seem to influence the learning speed in this

game and only dropped the maximum performance due to increased exploration.

Game?2 showed rather similar results for the KBLA players, common for all was the rapid convergence
rate, but also in this game the KBLA players with low update variance was the top performers. The other
schemes however, with the exception of Poker and SoftMaxEWA, had trouble finding the optimal action

for player 2.
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In the mixed strategy game the KBLA players outperformed all other tested schemes and played very
close to the optimal strategy. This time the KBLA with 02 = 0 was slightly behind, which makes sense,
as converging towards a specific action is suboptimal because both arms should be played. The KBLA
was not able find the true optimal strategy versus a perfect player, but the score was very close to the

maximum attainable payoff.

The only non zero-sum game we tested, the Prisoner’s Dilemma, did not reveal anything particularly new

in terms of behavior, it rather just strengthened the view of the KBLA as a rational agent when configured

properly.

6.5 Scalability

In random walk environments, scaleability did not seem like a big problem. Increasing the number of
arms to 50 decreased the performance, but with such amount of randomness involved this was expected
and it is hard to imagine how an algorithm can perform much better on average than the KBLA does in

such environments.

The KBLA also approached the optimal mixed strategy when we applied it in a zero-sum game with five

actions.

The scaleability aspect was also tested in the Goore game, in a different context. It was not the number of
arms that increased, but rather the number of automatons operating together. Here, it became evident that
the automaton became much more sensitive to its parameters in order to find the best solution when the

team size increased.

6.6 Robustness

6.6.1 Sensitivity
Incorrect update variance parameter in random walks

It was clear that the update parameter influenced the performance when incorrectly specified, and this was

more noticable when the number of arms increased. We also saw that a high update parameter gave good
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results on the probability of selecting the optimal arm while a low update parameter was good in terms
of regret. This seems reasonable, because when specifying a too low update parameter, noticing changes
becomes harder and the KBLA stays longer on one arm before exploring others. On the other hand when
the update variance parameter is specified too high more exploration is done and the KBLA will identify
the optimal arm more often, thus the probability of selecting the optimal arm becomes higher, but the

regret increases more rapidly because of the regular exploration of very bad arms.

For environments with high update variance, the performance for an incorrect parameter might be accept-

able, because missing by a factor of 2 on the standard deviation on such an environment like this with true

variance 2500 means incorrectly specifying as much as 2500—625 = 1875 below or 10000—2500 = 7500

above. If the environment instead had a true update variance of 1, then missing by a factor of standard
1

deviation 2 would only be 1 — % = 3 below and 4 — 1 = 3 above.

Incorrect sensor variance parameter in random walks

Incorrectly specified sensor variance in random walk environments gave rather surprising results. The
true value did not give the best result. Instead, a slightly lower parameter gave the best result, and it was

clear that it was better to specify a too small parameter than a too large.

When the value is too low, the automaton thinks the observations are more accurate than they really are
and two things happen. First, the variance of the automatons arms decreases faster and the fixed variance
point becomes smaller, which leads to overall less exploration. Still, since the update parameter is correct,
it tracks environmental changes as it should, and thus the only difference is a slightly smaller variance on
the best arm and it should therefore be a little more “aggressive” in the arm selection process. We can
see this improve performance in certain cases, especially in two-armed environments where it might be

beneficial to stay longer on one arm.

However, we saw that even in fifty-armed environments a smaller sensor parameter improved perfor-
mance, but this was only in terms of regret, the probability of selecting the optimal arm was best when the
true parameter was used. If we think about it, it makes sense, a KBLA with smaller sensor stays longer
on what it thinks is the best arm, and even though it may not be the best arm, it does not waste too much

time exploring very bad arms which has a drastic impact on regret.
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Both wrong update variance parameter and sensor variance parameter in random walks

We again saw the importance of supplying the KBLA with a rather accurate update variance parameter.
The accuracy of the sensor variance parameter did not have much influence in the easy environments, but

in hard environments the performance was highly dependent on this value.

The reason for the sensor variance parameter not being important in easy random walk environments is
likely due to the fact that the update variance parameter has greater impact on the amount of exploration
as we saw in section 5.2, the parameter analysis. And therefore, since it is relatively simple for the KBLA
to distinguish arms in easy random walk environments, the amount of noise it assumes do not have a great

impact.

When the environment is hard however, distinguishing the arms needs a finer balance between exploration
and exploitation, and thus when specifying the sensor variance parameter too high there is likely too
much noise in the arm selection process to be able to track good arms. For low values of the sensor
variance parameter, we can use the same reasoning as in the previous subsection, that is, the KBLA is

more “aggressive” due to lower exploration, and stays longer on good arms.

6.6.2 Binary feedback

While it was clear from the results that the Kalman Bayesian Learning Automaton was very sensitive to
its parameter configuration when receiving binary feedback, the binary experiments also showed that it
was in fact able to solve also binary zero-sum games and the binary Goore game with high degrees of ac-
curacy. Even in the EVE challenge it was able to perform very good on some environments. Unfortunately
though, it was very evident that obtaining adequate performance in binary environments relied on specific

parameter configurations.

Because of the KBLA’s assumption of normally distributed feedback, we were not to surprised over its
sensitivity to the reward/penalty paradigm. Binary environments contains another kind of noise, the un-
certainty caused by the probability of receiving a zero or one. The KBLA is likely extra sensitive to such
noise because the Kalman filtering estimate is rather aggressive and if a few “unlucky” zeros is received
as feedback on a good arm it will quickly regard this as a bad arm. This seems to indicate that it is worth-
while to reduce the amount of exploration in binary environments, to stay longer on each arm to obtain a

reasonable estimate, while still do some exploration to follow environmental changes. It is clearly a very
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fine line, and we would hesitate to apply the KBLA any such cases unless the dynamics of the environment

is sufficiently regular to allow for offline parameter tuning.

6.7 Impressions on tuning the parameters of the KBLA compared to other

adaptive schemes

It is clear that the performance of the KBLA is highly dependent on the values of its parameters. However,
all adaptive schemes we have used in our comparison need parameter tuning, and also influences their

performance. The question is then whether it is easier or harder to tune the parameters of the KBLA.

If we first consider the schemes that applies the exponential recency-weighted average (EWA) method,
that is, the GreedyEWA, SoftMaxEWA and AdaptivePursuit schemes we know that a single parameter
determines their “response rate”. That parameter, here denoted «, determines how quickly it forgets
older rewards, and thus puts more emphasize on the most recent rewards. There is no direct equivalent
parameter in the KBLA, put Kalman filtering in itself puts strong emphasize on recent rewards as long
as it believes the measurements to be sufficiently accurate, that is, when it is supplied with a rather small
sensor variance parameter. So, it is certainly possible to make the KBLA more “aggressive” to recent
rewards, but some may argue that this is harder to tune than the o parameter in the EWA schemes due to
the fact that the sensor variance parameter also influences other factors such as initial exploration in the
KBLA.

Furthermore, the a parameter is not the only parameter to determine the performance of the EWA schemes,
the GreedyEWA scheme has an exploration rate parameter €, which determines the probability of explor-
ing other actions. The SoftMaxEWA scheme has 7 which also determines the exploration rate, though
in a completely different manner than GreedyEWA, while AdaptivePursuit has two other parameters, 3
and P,,in where both affect the exploration amount. Empirically, we found it much easier to tune the
parameter compared to the 7 parameter!. For AdaptivePursuit we tested a wide range of parameters and
found in to be most sensitive to its P,,;, value, which is not surprising since it ensures that even the worst

action is played with a certain probability.

With some knowledge of the environment we would argue that the KBLA is easier to tune than both

AdaptivePursuit and SoftMaxEWA, due to the update variance parameter having a more clear constant

I'This seems similar to the impressions in [SB98], where they argue that SoftMax methods are hard to tune.
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impact on exploration. On the contrary, compared to the GreedyEWA scheme, it may be harder, since the
€ parameter has a very clear purpose. If we want 10% exploration then we set it to 0.10, nice and easy,
while achieving a rate of 10% exploration in the KBLA with just parameter tuning is nontrivial because
then one would also have to consider a, perhaps dynamic, feedback range and choose the update parameter

accordingly.

Considering the rest, that is, AdaptEvERestart and AdapEvEMetaBandit, we feel that, since most our
environments were not completely suited for their mechanics, it would be unfair to call them “hard to
tune” from trying to make them work in environments where they really don’t fit. Still, some of our en-
vironments, like the first switching configuration, did match their strengths, and we were left with some
impressions. First, tuning for the change point mechanism in a normally distributed switching environ-
ment did not prove as challenging as we initially thought. We thought perhaps the noise in feedback could
trigger the change point mechanism, but we did not see any such deviation in our ensembles even with
rather low values of A, the limit parameter. For the meta scheme, the meta length parameter MT" did not
seem to have a large impact on performance as long as we used values over 50 to let the meta phase build

up a reasonable average.

Overall, we feel the strength of the parameter configuration in the KBLA is due its flexibility and not being
overly sensitive. If only initial exploration is needed, for instance in a environment where it is important
to converge in the end, it is just a matter of increasing the sensor variance parameter. On the other hand,
should there be a need for a more aggressive arm selection process, then lowering the sensor variance
parameter would do the job, with the effect that it stays longer one arm due to less exploration but also

puts more trust in recent rewards.

The downside and most notable weakness in the parameter configuration as we see it is definitely the
fact that one has to consider the feedback range when tuning parameters. We especially saw this in the
Goore game, but this would be true for most of the other experiments as well if we increased or decreased
the feedback ranges there. This is not the case for schemes following a “probabilistic” approach, as the
Greedy variants, SoftMax and AdaptivePursuit, where the amount of exploration is far less dependent on

the actual value range of the feedback.
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6.8 Application domains

While possible application domains for the KBLA is undoubtedly an interesting area for further work,

several impressions arises from the strengths and weaknesses we have revealed.

Its strongest point is definitely tracking an environment with multiple Gaussian processes. Considering
that Gaussian processes is a frequent recurring pattern in nature, science and engineering this seems like no
small feat. Some examples of randomly changing environments according to [Gar79][ch7] is the random
movement of molecules in liquids and gas (brownian motion), the diffusion of heat through materials,
the spread of rumours and the spread of disease. Of course, for the problem to be valid for the KBLA it
most also somehow involve decision making, e.g in a case where an agent has observe randomly moving

objects and at some points determine the nearest one.

The KBLA also obtained very good results in zero-sum games. Immediately, it might be hard to see
exactly where this is beneficial to a system, except from proving the rationality of an agent. However,
[NT89] contains several examples of applications where the theoretical and empirical results from zero-
sum games are used as the motivation factor. They claim that learning automatons first and foremost
are applicable in large systems with a small number of actions with examples including traffic routing,
computer scheduling and decision making in economic networks. Specifically, they considered the case
of routing where several automatons worked together with only two actions and showed that automatons?
outperformed fixed rules because they were able to adapt to the dynamics of the network and play a mixed

strategy.

Thus, since a tuned KBLA were close to the optimal mixed strategy in all our tested zero-sum games, we
believe it definitely has potential in applications where it is important to adapt and play a mixed strategy.
However, since it is unlikely that any such applications where multiple automatons interact can be viewed
in terms of a Gaussian process, we see the same challenges as before occurring. That is, if it is not
possible to decide the values of reinforcement, tuning the parameters for optimal performance may prove
nontrivial. Still, systems can often be tested and validated rigorously in advance before being applied in a

critical setting, so in many cases this might not be a huge problem.

>They used the Lr_; and Lr_ p learning automatons.
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6.9 Thoughts on the Kalman filtering approach

Kalman filtering is able to provide an optimal estimate for linear Gaussian models with simple recursive
calculations. When applied in a bandit setting, the estimates are a bit more noisy since only one arm can
be observed each time step, but it was clear that the KBLA succesfully managed to track multiple arms
with high accuracy in random walk environments, which are described by a linear Gaussian state-space
model. The other environments however, don’t follow a linear Gaussian model and as such the parameters

of the KBLA has to be tuned to balance the amount of exploration needed.

For non-Gaussian and indeed, general case models, there also exist filtering approaches for estimating
distribution parameters. The question is whether these other filtering algorithms also can be extended to
work in a bandit problem setting. Examples of these approaches include the Extended Kalman filter, the
Unscented Kalman filter and Particle filters. Especially particle filters, perhaps better known as sequential
Monte Carlo methods, has received a lot of attention lately, because they allow for recursive state param-
eter estimation of virtually any dynamic model[DD06]. We leave this question for further work, but we

fear that there is a trade-off between higher accuracy and computational simplicity.
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Chapter 7

Conclusion

7.1 Conclusion

In this thesis we have investigated a new interesting approach to non-stationary multi-armed bandit prob-
lems, the Kalman Bayesian Learning Automaton(KBLA). Our empirical study included testing the KBLA
in randomly changing environments, switching environments, the Goore game, zero-sum and non-zero-
sum games. We also looked at the robustness and scalability of the approach. We revealed several

strengths and weaknesses of the automaton, the results can be summed up in the following.

e The KBLA performed excellent in randomly changing environments. No existing solutions we
know of were able to obtain even nearly the same performance in such environments. In switching
environments where it was possible to detect a change in the best option, the KBLA was not able
to outperform AdaptEVE, but still obtained adequate performance with tuning. Also, in switching

environments where no change in the best option occurred, the KBLA was the top performer.

e In most tested multiplayer games the KBLA was able to solve the game with the right parameter
configuration. In the Goore game, the need for the right update variance parameter configuration
became very evident, and it was clear that there was a fine line between too little and too much
exploration. We also saw that it was possible for the KBLA to solve this game by only increasing
the initial exploration, unfortunately this solution was also dependent on the shape and amplitude
of the feedback function. Still, it should be noted that all tested schemes had problems with this
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game , and as such, we don’t necessary consider the KBLA suboptimal to any of the other tested

schemes in this game.

In zero-sum and non-zero-sum games the KBLA approached an almost optimal rational behavior in

all tested games. It found both pure strategy and mixed strategy solutions, with rapid learning rate.

e As for the scalability aspect we observed that in multi-armed bandit problems the KBLA scaled
well with the number of actions, even a problem with 50 arms was tackled with relatively high
accuracy. We also saw that it was able to get near the optimal mixed strategy when the number of

actions were increased in a two-player zero-sum game .

In the Goore game however, it was clear that increasing the players in the team significantly hindered
the performance of the KBLA. Parameters had to be finely tuned in order to balance the line between

too much exploration and early convergence.

e In randomly changing environments the KBLA was surprisingly robust to wrong parameter con-
figuration. Some configurations of the sensor variance parameter even yielded better results than
using the true sensor variance parameter of the environment. The performance was more dependent
on the update variance parameter, and we saw that all incorrect values of this parameter dropped

performance.

In all the other experiments the parameters of the environments were unknown, and it was clear
the parameter configuration of the KBLA definitely had an impact on the maximum performance
obtainable, but this was also the case for all tested adaptive schemes. Tuning the parameters of the

KBLA was in general a simple task, except when playing the Goore game with a large team.

The KBLA was also able to obtain very good results when applied to binary environments. In fact,
it was among the top performers in both binary zero-sum games and binary Goore game. Even to
the wide range of environments in the EVE challenge it performed adequately. However, with such

feedback the need for correct tuning of parameters became very evident.

We believe this says a lot about the strength of a Kalman filtering tracking approach in multi-armed bandit
problems. Clearly, it is able to track a wide range of environments with high accuracy. Its main weakness
is its dependence on the parameter configuration, which we have seen may prove hard to tune in some
environments like the Goore game and binary environments. However, in spite of the apparent parameter
tuning weakness we consider the KBLA a strong approach to the bandit problem and undoubtedly has a lot

of potential in artificial intelligence applications where rational decisions must be made under uncertainty.
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7.2 Further Work

We have seen that in some environments the KBLA needs extensive tuning to perform well, but combining
ideas from other learning schemes might overcome these limitations. Several interesting possibilities for

extending the KBLA comes to mind:

e When it is important to converge in the end, a possibility would be a KBLA scheme using a constant
like €,,-greedy to reduce the sensor parameter and/or update parameter over time and therefore only

be adaptive initially.

e We have seen that the KBLA with zero update variance (¢2 = 0) is very good at quickly con-
verging towards an optimal arm, but often lacks enough exploration to track sudden changes in the
environment. A possible extension would be to combine this configuration with the change point

mechanism from the AdaptEvE schemes.

e The update parameter leads to constant exploration and should not be too high if the environment
is slowly moving or stationary. Is it possible to determine online if the value should be increased or
decreased? A meta scheme is a one possible candidate for the job. A Meta KBLA scheme would
be interesting, but then there is the question of how the sensor and update variance parameters of
the meta KBLA should be determined. Perhaps the parameterless UCBNormal (or UCBTuned in
binary environments) would be more suited as a meta scheme for the KBLA.

e An alternative to a meta scheme is “meta learn” the parameters. This has recently been done for the

SoftMax algorithm in [SikO8], and may provide a starting point.

Thinking back at our approach and what we have done, many thoughts arise regarding areas of further

work:
e Another approach should be considered to really understand the behavior of the KBLA in the Goore
game. Is it possible to calculate what the parameters should be for optimal performance?

e Since, in general, all tested schemes were very sensitive to its parameter configuration in the nor-
mally distributed Goore game and, we have to ask ourselves whether it was right to use this game

in our benchmark. Perhaps our way of approaching this game was wrong, but we feel that it did not
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say too much about the true performance of the KBLA in large team settings, and as such we see
testing the KBLA in different team settings as important further work. Especially real-time systems
comes to mind, because they are often decentralized and calls for adaptive decision making under
uncertainty. In addition, delays and distortions in feedback are common so in a way this would test

several aspects of the KBLA at the same time.

e Sinusoidal patterns are frequently recurring in nature and science. We have only briefly tested the
KBLA in sinusoidal environments (see the EVE challenge and appendix A.1.1) and therefore must

be studied further for a comprehensive understanding of the KBLA in these environments.

e A huge advantage of applying the Kalman filtering approach as a state estimation technique is its
computational simplicity. However, it is really only linear Gaussian environments that is a “perfect”
match for this filter. It would be interesting to see whether more versatile state estimation techniques

like particle filtering could work in a bandit setting.
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Appendix A

Results that were left out of the main
report

A.1 Multi-armed bandit problems

A.1.1 Sinusoidal environments

Sinusoidal environments are a frequently recurring pattern in nature. The experiments with sinusoidal
environments was left out of the main report because only one sinusoidal environment has been tested and
we therefore feel the coverage is not as comprehensive as it should be. This environment can be seen in
figure A.1.

The regret on this environment is listed in table A.1.
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Figure A.1: Sinusoidal environment with 3 arms
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Table A.1: Results for regret on the sinusoidal environment in figure A.1.
Player / Iteration 10 100 1000 2000 10000
KBLA ¢? = 1.0, 02 = 0.0 172 1.72 183.05 833.98 4525.64
KBLA 02 = 1.0, 02 = 0.001 172 1.72 14325 14554 2888.11
KBLA 02 = 1.0, 02 = 0.01 172 172 4694 4859  1738.6
KBLA 02 = 1.0, 02 = 0.1 172 172 691 11.6 55.82
KBLA 02 = 1.0, 02 = 0.5 172 203 174 29.97 142.3
KBLA ¢2 = 1.0, 02 = 2.0 172 429 3924 6998  338.94
Poker 231 231 18336 556.66 4214.21
Pursuit 0.05 519 1298 19439 1025.97 4963.33
AdaptivePursuit o =0.1,8 =0.8, P,,;n, =0.05 491 270 10355 18791  834.44
AdaptivePursuit o =0.8,3 =0.8, P, =0.01 505 3138 5674 7332  241.82
Greedy € =0.05 1.87 4.16 189.92 262.88 3790.66
Greedy € =0.02 1.81 279 181.95 278.29 3804.93
GreedyEWA ¢ =0.05 o =0.3 195 429 3529 6427 3280
GreedyEWA € =0.02 o =0.9 1.77 269 14.84 2643  198.87
SoftMaxEWA 7=0.5 a=0.3 335 22.89 18345 398.05 1914.4
SoftMaxEWA 7=0.1 a=0.3 172 1.72 17179 251.44  2597.55
UCBNormal 9.71 27.98 189.71 196.73 3778.17
AErRestart § = 0.005, A = 5.0 9.71 2798 6041 231.89 1864.41

AEMetaBanditC § = 0.005, A = 5.0, MT =100 3.43 343 12.54 29.92 160.43
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A.2 Goore game

A.2.1 Results for the flat Gaussian function

The results for the 100 player Goore game on the flat Gaussian function with amplitude 20 can be seen in

table A.2.

Table A.2: Results for 100 player Goore game on flat Gaussian function with amplitude 20 and where 20

yes votes are optimal.

Team / Iteration 10 100 1000 2000 10000 100000
KBLA 02 = 1.0, 02 = 0.0 4327 36.74 342 3349 3201 29.82
KBLA 02 =1.0, 02 = 1e — 05 4627 36.94 3441 3404 3278 238
KBLA 02 = 1.0, 02 = 0.0001 39.8 3506 32.04 31.77 2539 27.87
KBLA o2 = 1.0, 02 = 0.001 444 3758 3137 3146 31.86 3252
KBLA 02 = 1.0, 02 = 0.01 46.73 41.56 36.34 37.78 380  38.85
KBLA 02 = 1.0, 02 = 0.0 43.67 37.44 3546 3489 3328  31.6
KBLA 02 = 5.0, 02 = 0.0 49.53 37.74 30.61 30.06 29.64 2826
KBLA 02 = 10.0, 02 = 0.0 43.67 3852 3036 29.02 2778 26.13
KBLA 02 = 50.0, 02 = 0.0 48.33 4548 30.82 2329 23.13 2252
en-Greedy ¢ = 0.3, d = 0.1 51.67 36.12 31.06 30.64 3048 3041
én-Greedy ¢ = 0.6, d = 0.1 49.93 429 2707 26.17 2555 2542
en-Greedy ¢ = 1.0, d = 0.1 512 5092 2591 2446 2349 23.23
Greedy € =0.1 573 522 1746 2697 2858 2392
Greedy € =0.2 1.0 105 2531 26.69 2438 20.14
GreedyEWA € =0.1 o =0.3 9.13 10.34 42.83 39.54 3934 39.86
GreedyEWA ¢ =0.05 o =0.3 473 532 40.76 37.04 3873  39.05
SoftMaxEWA 7=0.5 a=0.3 3527 50.26 49.74 50.01 49.62  49.69
SoftMaxEWA 7=0.1 a=0.9 1.07 1214 4423 47.65 484  48.52
Pursuit 0.005 12 108 199 20 2.0 2.0
AdaptivePursuit o =0.8,3 =0.8, pjnin, =0.05 1.07 134 097 122 1.01 1.08
AdaptivePursuit @ =0.8,8 =0.8, pjnin, =0.01 0.8 0.7 083 1.19  1.37 1.2
Poker 45.13 4098 38.62 384 384 384
UCBNormal 3333 100 20 0.0 1.0 0.1
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A.3 Zero-sum games

A.3.1 Tournament results for Rock, paper, scissors extended

The results for this tournament are shown in table A.3

Table A.3: Results for the RPS extended tournament

Player / Iteration 10 100 1000 2000 10000
KBLA 02 = 1.0, 02 = 0.01 145 610 97574  2120.06 11576.49
en-Greedy c = 0.3, d = 0.1 -0.54 16.87 21.05 -153.43 -1862.9
Greedy € =0.05 .77 -7.19  -232.83  -335.93 -9.39
Greedy € =0.1 1.37 793 2041 105.5 1636.88
GreedyEWA € =0.1 o« =0.3 144 -18.14 -51396 -1073.0 -5515.36
SoftMax-EWA-N 7=0.5 a=0.3 1.01 38.04  541.63 1179.55  6828.99
Pursuit 0.01 -042 7.54 10.65 -515.05  -7245.43
AdaptivePursuit o =0.8,5 =0.8, Py =0.01  -2.12  -89.05 -1334.14 -2739.18 -14030.32
Poker 0.27  4.88 -258.18  -557.74  -3240.84
UCBNormal -424 -21.87 769.62  1969.22 11861.87

A.4 Sensitivity

A.4.1 Sensitivity to incorrectly specified sensor variance parameter and update variance

parameter

The results for the easy and hard two-armed random walk environments are included here in table A.4.
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Table A.4: Regret at £ = 2000 for incorrectly specified sensor variance parameter and update variance
parameter in two-armed random walk environment with true 0> = 50 and true o2 = 50.

Belief %O‘z %az %O’Z %O’Z lo 20, 30, 4o, 50,

Lo, 188.66 190.88 186.89 187.21 182.11 175.71 177.89 177.67 183.92
§Uu 17136 172.19 176.81 171.51 165.79 162.57 163.01 162.16 166.25
10y 149.13  146.21 14347 14194 14224 137.73 139.56 14647 152.43
50u 106.3  110.86 108.49 10638 110.54 109.95 117.28 121.08 126.42
Oy 82.09 82.07 8235 8337 8559 90.85 100.04 10882 117.31
20y, 108.71 109.5 109.5 109.33 111.6 119.05 127.74 136.37 145.65
3oy 141.33 141.85 141.65 14223 144.17 149.71 15821 167.05 175.53
4oy, 171.18 17141 171.61 17229 17326 179.06 186.63 194.28 202.99
ooy, 19942 199.27 199.33 200.1 200.87 205.5 212.19 219.16 226.77

Table A.5: Regret at ¢ = 2000 for incorrectly specified sensor variance parameter and update variance
parameter in two-armed random walk environment with true 02 = 50 and true o2 = 1.

Belief %O’Z %az %O‘Z %02 o, 20, 30, 40, 50,

Lo, 565.58 55592 497.59 43379 405.08 44549 499.55 53541 57277
iou 563.81 506.49 465.8 42093 385.21 44146 493.82 535.59 569.73
50 504.67 48498 45823 401.4 363.95 432.64 485.89 533.74 57227
50u 476.86 459.95 42247 3787 347.81 42196 485.1 53226 570.51
Oy 385.6  367.52 350.17 322.0 343.62 42732 49045 53825 579.26
20y, 362.6 347.08 333.53 332.15 37553 463.58 52327 569.51 607.61
30y 37898 369.09 357.54 35891 407.62 496.63 557.16 599.89 633.14
4o, 402.81 392.11 383.61 381.93 437.63 52442 58239 6225 656.76
D0y, 430.04 419.84 408.17 409.01 461.1 546.06 603.1 644.79 675.13
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Missing algorithms from chapter 2

B.1 ¢,-Greedy

Algorithm 11 Pseudocode for ¢,,-Greedy

1: Parameters: c € Rt
2: Init: Q; =0foriel... K

3: loop

4: €= %

s:  if Random € R[0, 1] < € then

6 i = Random € Z[1, K|

7. else

8 i = arg max %wherej € {1.K}
9:  endif

10: n;=n; + 1
11:  r = feedback from action a;
122 Qi=Qi+r

13: end loop

B.2 UCBTuned
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Algorithm 12 Pseudocode for UCBTuned

: Init: Play each action once
: loop
i =argmax; m; + \/ln” min{%, V;(n;)}Horj € {1... K}

nj

Update mean m; from r and increment both n; and n

1

2

3

4:  r = feedback from action ¢
5

6: end loop

B.3 Poker

[BNO9]’s interpretation of the Poker scheme described in [VMO0S5] is shown in listing 13.
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Algorithm 13 Pseudocode for Poker

1: Init: n; = 0,7 = 0,7f =0forj € {1... K}

2: Init: Select two random actions at least twice and update the corresponding 7,

3: forte {1...T}do
q= ’{i,T‘i > O}‘

190 = arg max fi;

»

i1 = j such that |3, u; > u;| = Vi

5
6:
T 5# = (:uio - .un/\/a
8: u* = argmax i
9:  Ppaxr = —00
10: i = undefined

11: forje{l1...K}do

O

Vi

12: if n; > 0 then

13: w=uj

14: else R

15: # = B nlk>o[ulk)

16: end if

17: if n; > 1 then

18: 0 =0

19: else R

20: 7 = Enfk]>0[ulk]

21: end if -

22: p:,u—I—cSM(T—t)/ N(z, pj, —=dx
pxt0p

23: if p > pp,ax then

24: PmOT =D, b = j

25: end if

26:  end for

27:  x = reward from action %4z
28: Ty = Ve T

29: 7’12 = rfmw + :rf

300 n;=n;+1

31: end for

2
’I”j,

1
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