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1. Introduction 

1.1 Oxidative stress 

Oxygen was discovered by the Swedish scientist Carl Wilhelm Scheele in 1777. The 

quotation by Neil Young “The same thing that makes you live can kill you in the 

end” fits well with the functions of oxygen in aerobes. Oxygen is both essential and 

toxic to aerobes. The essentiality lies in the energy production via a class of chemical 

reactions called as reduction-oxidation or redox reactions. The toxicity is due to a 

number of free radicals and other reactive oxygen- and nitrogen species (ROS/RNS) 

produced during these normal cellular redox reactions as listed in Table 1. 

Table 1 Examples of ROS and RNS 

Free radicals Non-radicals 

Superoxide, O2
•– Hydrogenperoxide, 

H2O2

Dinitrogen tetraoxide, 

N2O4

Hydroxyl, OH• Hypochlorous acid, 

HOCl

Peroxynitrite, ONOO-

Peroxyl, RO2
• Ozone, O3 Peroxynitrous acid, 

ONOOH

Alloxyl, RO• Nitronium ion, NO2
+ Nitroxyl anion, NO-

Hydroperoxyl, HO2
• Singlet oxygen, 1O2 Nitrosyl cation, NO+

Nitric oxide, NO•   

Nitrogen dioxide, 

NO2
•

Dinitrogen trioxide, 

N2O3



18

The main endogenous source for the production of ROS in eukaryotes is 

mitochondria via electron transport chain. The reduction of oxygen to water in 

mitochondria requires four electrons. Even under ideal conditions, there is leakage of 

electrons and 1-3% O2 undergoes an incomplete singlet reduction producing reactive 

species especially superoxide anion (O2
•–) (1). Other potential endogenous sources 

are cytochrome P- 450 (phase 1 detoxification reactions), xanthine oxidase (purine 

degradation pathway), microsomes and peroxisomes (produce mainly hydrogen 

peroxide H2O2) , and inflammatory cell activation (1). Besides ROS, other reactive 

species like RNS are also produced. The most important source of nitrogen for the 

generation of RNS in vivo is nitric oxide (NO•) (2). It is known to be a product of the 

catalytic action of the nitric oxide synthase enzyme family on L-arginine (2). Recent 

evidence also suggests that it can be generated by reduction of nitrite, which can arise 

in the body by ingestion or from bacterial metabolism (2). Although nitric oxide 

(NO•) is not highly reactive with biological molecules it reacts rapidly with other 

oxygen radicals to generate highly damaging RNS such as peroxynitrite (ONOO-),

nitrogen dioxide radical (NO2
•) and dinitrogen trioxide (N2O3) (2) (Table 1). 

Enhanced formation of ROS/RNS also occurs as a consequence of diseases and from 

exogenous factors like tobacco smoke, environmental pollutants, drugs, ethanol and 

radiation (3). The reactivity and specificity of both ROS and RNS vary, hydroxyl 

(OH•) being the most reactive free radical with a half life of approximately 10-9

seconds (4). 

The reactive species produced can both be useful and harmful. Among their useful 

functions, they are involved in pathogen defence, apoptosis, cell signalling pathways 

and regulation of transcription factors (5-7).  .

The harmful effects of ROS/RNS are due to their non-enzymatic oxidation of various 

important cellular components like lipids, proteins and DNA. Lipid peroxidation 

occurs mostly in cellular membranes and low-density lipoproteins (LDL). The 

oxidation of lipids in plasma membranes alters their physical properties thereby 

changing their biological function. Oxidation of LDL is considered as one of the 
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factors contributing to atherosclerosis leading to cardiovascular disease (8). Protein 

oxidation leads to loss of function or premature degradation in several proteins 

thereby resulting in functional changes modulating cellular metabolism. Cataracts are 

thought due to photooxidation of lens proteins resulting in protein damage, 

accumulation, aggregation and precipitation in the lens (9). DNA oxidation can lead 

to gene mutation, and thus abnormal protein synthesis, alteration in gene expression, 

apoptosis and cell death. Oxidatively modified DNA may also play a role in 

carcinogenesis (10).

In order to counteract these highly reactive species, eukaryotic cells have developed a 

complex system of both enzymatic and non-enzymatic compounds, referred to as 

endogenous antioxidant defence. A critical balance is maintained between generation 

of ROS/RNS and the antioxidant defence. When there is an imbalance in the favour 

of ROS/RNS, either due to high production of ROS/RNS or due to impairment of 

antioxidant defence, these reactive species interfere with the normal function of 

ROS/RNS, and non-enzymatically oxidize and alter the structure and function of 

several cellular components such as lipids, proteins and DNA as described above. An 

accumulation of these oxidative damages will occur over time and result in oxidative 

stress. Oxidative stress is, thus, defined as “a condition that is characterized by 

accumulation of non-enzymatic oxidative damage to molecules that threaten the 

normal function of the cell or the organism” (3).  

Compelling evidence has emerged in the last two decades demonstrating that 

oxidative stress is intimately involved in the pathophysiology of many types of 

diseases. Oxidative stress is now thought to make significant contribution to all 

inflammatory diseases (e.g. arthritis, vasculitis, glomerulonephritis, systemic lupus 

erythematosus, adult respiratory distress syndrome), ischemic diseases (heart disease, 

stroke, intestinal ischemia), cancer, hemochromatosis, acquired immunodeficiency 

syndrome (AIDS), emphysema, gastric ulcers, hypertension and preeclampsia, 

neurologic diseases (multiple sclerosis, Alzheimer’s disease, Parkinson disease, 

amyotrophic lateral sclerosis, muscular dystrophy), alcoholism, smoking-related 
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diseases, and many others as reviewed by McCord et al. (11). Additionally, a slow 

and steady accumulation of oxidative damage has also been considered as the major 

theory of aging (12). 

1.2 Defence system against oxidative damage  

As mentioned above, in order to minimize the generation and counterbalance the 

damaging effects of reactive species, eukaryotes have developed a comprehensive 

defence system. The defence system comprises of both enzymatic and non-enzymatic 

components, which works at different molecular aspects.  

Preventive antioxidants suppress the formation and decrease the reactivity of reactive 

species. The enzymes involved in this process include superoxide dismutase, catalase, 

glutathione peroxidase, glutathione reductase, peroxiredoxins and thioredoxin 

reductase. The non enzymatic components include polypeptides like thioredoxins, 

glutaredoxins and sulfiredoxins; metal binding proteins like transferrin, albumin; low 

molecular weight antioxidants like glutathione, uric acid; dietary antioxidants like 

vitamin E, ascorbic acid, carotenoids and polyphenols. 

Another aspect in this defence is the repairing process and includes repair enzymes, 

which repair the damage and reconstitute membranes and DNA, for example lipase, 

DNA repair enzymes and transferases. 

The defence system mentioned above could be called as “antioxidant defence 

system” since an antioxidant defined by Halliwell is any substance that delays, 

prevents or removes oxidative damage to a target molecule (13). A brief description 

of some of the endogenous and dietary antioxidants is given below. 
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1.2.1 Endogenous antioxidants 

Antioxidant enzymes 
The major enzymatic antioxidants present in eukaryotes are superoxide dismutase, 

catalase, glutathione peroxidase, glutathione reductase, peroxiredoxins and 

thioredoxin reductase. 

Superoxide dismutase 
Superoxide dismutase (SOD) was first discovered by McCord and Fridovich in 1969 

(14). SOD catalyses the dismutation of two superoxide anions (O2
•–) to oxygen and 

less potent hydrogen peroxide (H2O2) in the following reaction:

It is a pseudo first order reaction with rate constant of magnitude 109 M-1S-1 (15). 

Three major forms of SODs (cytosolic CuZnSOD, mitochondrial MnSOD and 

extracellular SOD) are present in animal cells based on their structure, localisation, 

inducibility and metal ion requirement. SOD containing other transition metals like 

FeSOD, Fe/MnSOD and NiSOD are present in some bacteria (13). All SODs 

destroys O2
•– by successive oxidation and reduction of the transition metal ion at the 

active site. MnSOD is considered to be one of the most important antioxidant 

components of a cell and is largely located in mitochondria (15). MnSOD is a 

homotetrameric enzyme with Mn (III) at its active centre. CuZnSOD, a homodimeric 

protein, is located mainly in cytosol and requires both Cu (II) and Zn (II) at its active 

site. Cu (II) is essential for the enzymes catalytical activity, and Zn (II) imparts 

stability to the protein structure (15). Extracellular SOD, a tetrameric glycoprotein, 

also contains Cu (II) and Zn (II) and is found in the interstitial spaces of tissues and 

extracellular fluids, accounting for the majority of the SOD activity in plasma, lymph 

and synovial fluid (16).

Reports involving SOD knock outs have revealed that MnSOD is essential for life 

and mice deficient in MnSOD gene die within 10-21 days after birth from 

O2
•– + O2

•– + 2H+ H2O2 + O2
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cardiomyopathy, metabolic acidosis and neurodegeneration (17;18). Mice lacking 

cytosolic CuZnSOD, however, appear normal when they are young, but with age they 

develop neurological damage, muscle wasting, hearing loss and cancers (especially 

liver cancer) at accelerated rates. They also have reproductive problems and show 

impaired vascular reactivity (13).

Catalase
Catalase was named by Loew in 1901 (14). The enzyme consists of four protein 

subunits, each containing a heme group [Fe(III)-protoporphyrin] bound to its active 

site (14). Catalase decomposes hydrogen peroxide (H2O2) into water and oxygen as 

shown in the following equation: 

Catalase is ubiquitous to most aerobic cells. In animals, catalase is present in all 

major body organs and is especially concentrated in the liver and erythrocytes (14). 

At the subcellular level, catalase is found in peroxisomes (80%) and cytosol (20%) 

(14). Mice lacking catalase grow normally and show no obvious abnormalities, 

although their tissues showed a retarded rate in decomposing extracellular H2O2 (19).

Additionally, these mice are more susceptible to trauma induced dysfunction in brain 

mitochondria (19). 

Glutathione peroxidase 
Glutathione peroxidase (GPx) was first described by Mills in 1957 (14). The enzyme 

reduces hydrogen peroxide (H2O2) to water with oxidation of GSH to glutathione 

disulphide (GSSG) in the following reaction: 

GPx are a family of selenium dependent and independent enzymes. They are widely 

distributed in animal tissues and are less common in plants or bacteria. The GPx 

enzymes are mostly specific for GSH as a hydrogen donor. They can however act on 

2H2O2 2H2O + O2

H2O2 + 2GSH GSSG + 2H2O
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other peroxides than hydrogen peroxide (H2O2). Four types of selenium dependent 

GPx exist,  cytosolic/mitochondrial GPx (GPx1), cytosolic GPx (GPx2), extracellular 

GPx (GPx3 a glycoprotein) and phospholipid hydroperoxide GPx (GPx4) (16). GPx1 

is present mainly in erythrocytes, kidney and liver; GPx2 in gastrointestinal tract; 

GPx3 in kidney and extracellular fluids like plasma, milk, seminal fluid, amniotic 

fluid, aqueous humor of the eye and lung lining fluid; Gpx4 is present ubiquitous but 

highest in renal epithelial cells and testis (13;16). GPx2 may serve to metabolize 

peroxides in ingested food lipids as well as generated during lipid peroxidation in the 

intestine itself (13). GPx4, located both in cytosol and the membrane fraction, has the 

unique ability to reduce not only hydrogen peroxide (H2O2) and synthetic organic 

peroxides but also fatty acid and cholesterol hydroperoxides that are still esterified 

(13). It is less specific for GSH as a reductant and can also reduce thymine 

hydroperoxide (product of free radical attack on thymine in DNA) (20) suggesting a 

possible in the repair of DNA damage. The GPx5, expressed specifically in rodent 

epididymis is selenium independent (13).  

GPx1 knockout mice were healthy, fertile and showed normal phenotype (21). The 

animals, however, showed increased susceptibility particularly to ROS-mediated 

oxidative stress as compared to normal mice (22). Gpx4 homozygote knockout 

embryos die in utero by midgestation and were associated with a lack of normal 

structural compartmentalization (23). Gpx4 heterozygote displayed no morphological 

or behavioural abnormalities. The cell lines derived from heterozygotes were, 

however, sensitive to inducers of oxidative stress (23).

Glutathione reductase 
Glutathione reductase (GR) was initially observed by Hopkins and Elliott in 1931 and 

later isolated by Mann in 1932 (14). GR converts GSSG back to GSH in the 

following reaction: 

GSSG + NADPH + H+ 2GSH + NAD+
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GRs contain two subunits, each with flavin adenine dinucleotide (FAD) at its active 

site. The enzyme is found in cytosol and mitochondria which matches GPx 

distribution (14).

Peroxiredoxins and thioredoxin reductases 
Peroxiredoxins (Prx) are a family of nonseleno-peroxidases that reduce hydrogen 

peroxide (H2O2) and organic peroxides. They are homodimers and the redox 

reactions are dependent on cysteine at the active sites (13). Of the six mammalian 

members of this family, five (Prx1-Prx5) contain two conserved catalytic cysteines 

and utilize Trx as the reductant while Prx6 contains 1-cysteine and Trx is not 

involved in the reduction process (13;24). The Prx1, -2 and -6 occurs in cytosol 

whereas Prx3 only in mitochondria. The Prx4 form is found in the endoplasmic 

reticulum and extracellularly; and Prx5 in both mitochondria and peroxisomes (13). 

Thioredoxin reductase (TR) is a FAD containing flavoenzyme, and along with 

polypepetide thioredoxin plays a key role in maintaining proteins in their reduced 

states (15). These enzymes contain selenium (as selenocysteine) and show similarities 

to GR (13) 

Non-enzymatic antioxidants 
The non-enzymatic group includes low molecular weight antioxidants, polypeptides 

and metal binding proteins. 

Low-molecular weight antioxidants 
Several low molecular weight antioxidants are synthesized in vivo like GSH, lipoic 

acid, uric acid, taurine, bilrubin, -keto acids, melatonin, coenzyme Q, histidine-

containing dipeptides, melanins, polyamines and plasmalogens. Among these 

antioxidants, GSH is one of the major cellular antioxidant. 

Glutathione
Glutathione (GSH) is one of the most abundant cellular antioxidant, present in 

millimolar concentrations in most prokaryotic and in all eukaryotic cells, providing 
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protection against reactive species. The antioxidant activity comes from the free thiol 

group of GSH, which is easily oxidized, non-enzymatically by electrophiles and other 

oxidants. GSH also serves critical roles in detoxification of electrophiles and oxidants 

through enzymatic reactions with GPx and conjugation reactions catalyzed by 

glutathione-S transferase (GST) (25). Additionally, GSH has a predominant role in 

regulation of cellular and subcellular redox state, for example through reactions with 

glutaredoxin and protein disulfide isomerases to organize a proper tertiary structure 

of proteins through thiol-disulfide exchange (26). Agents altering GSH concentration 

have shown to affect transcription of detoxification enzymes, cell proliferation and 

apoptosis (26-29). Other vital functions of GSH in animals have been reviewed 

thoroughly (25;26;30).

The level of total GSH (i.e. sum of all forms of GSH) in human tissues normally 

ranges from about 1 to 10 mM, being most concentrated in liver (around 10 mM), 

spleen, kidney and erythrocytes (13;25). The liver is the main site of GSH synthesis 

and a net supplier of circulatory GSH via an active export mechanism  (31;32). The 

intracellular concentrations of GSH and GSSG also vary considerably. Most of 

cellular GSH (85-90%) is present in cytosol with the rest in various subcellular 

organelles (25).

When the free thiol of GSH is oxidized, different oxidized forms of GSH may form 

including GSSG, mixed disulfides with free cysteine (GSSC) and protein bound GSH 

(PSSG, glutathionylation). The GSH/GSSG ratio is >10 under normal physiological 

conditions (25). During severe oxidative stress and detoxification reactions involving 

GSH, the concentration of free GSH may decrease and the concentration of GSSG 

may increase in the affected cells. However, during mild stress increased GSH 

concentrations (due to increased GSH synthesis) are often observed (33). Thus, many 

types of oxidative stress increased production of GSH through upregulation of -

glutamylcysteine synthetase (GCS) (34). This upregulation provides protection from 

more severe stress and may be a critical feature of preconditioning and tolerance. 



26

GSH synthesis 

The cellular GSH level is replenished either from i) de novo synthesis, ii) -glutamyl

transpeptidase (GGT, also called -glutamyl transferase) dependent recycling of 

extracellular GSH or other amino acids or iii) GSSG by NADPH-dependent GR. 

De novo synthesis of GSH 
The major determinant of GSH synthesis is the availability of cysteine and the level 

of the rate-limiting enzyme GCS, also called glutamate cysteine ligase (GCL). GSH 

is synthesised in the cell cytosol by the sequential actions of GCS and GSH 

synthetase (GS) (35).  GCS catalyzes formation of the dipeptide -glutamylcysteine

( -GC) from glutamate and cysteine, while GS catalyzes formation of the tripeptide 

GSH from -GC and glycine. 

Mammalian GCS is a heterodimer comprising a heavy subunit (GCSh, 73 kDa) and 

light subunit (GCSl, 28 kDa) polypeptide each encoded by separate genes (36;37). 

Catalytical activity and GSH feedback inhibition are properties of the heavy subunit, 

but association with the catalytically inactive light or regulatory subunit can 

significantly influence its enzymatic activity by promoting high affinity for glutamate 

and appropriate sensitivity to GSH feedback inhibition (37;38).

Formation of GSH through GGT dependent pathways 

GSH contains a -peptide linkage between glutamate and cysteine (Figure 1). 

The -peptide bond promotes stability, as it is resistant to degradation by cellular 

peptidases. Plasma membrane bound GGT may, however, cleave the -peptide bond 

of extracellular GSH, and thereby support intracellular synthesis of GSH (39). This 

NH
NH COOH

NH2

HOOC

O
SH

O

-peptide linkage 

-glutamyl glycinecysteinyl
Figure 1 Structure of GSH 

showing -peptide linkage 

between amino acids 

glutamate and cysteine 
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cleavage of GSH is important since GSH can not be taken up by most cells, in 

contrast to the cysteine, which is formed by the action of GGT and a dipeptidase. 

GGT additionally facilitate the extracellular formation of -GC (40). -GC may then 

be taken up by cells where it can be further metabolized to GSH. These GGT 

dependent pathways may help maintain the GSH level in the short term when GSH is 

rapidly utilized, but they are not sufficient to restore GSH levels in the long term 

when de novo synthesis of GSH is needed. Upregulation of plasma membrane bound 

GGT is often seen in oxidative stress, and free plasma GGT is a useful biomarker for 

oxidative stress (41). 

Formation of GSH through glutathione reducatse 
The intracellular GSH level is also influenced by the flavoenzyme GR and the family 

of selenium dependent GPx. GPx catalyzes the oxidation of GSH with the 

concomitant reduction of hydro- and lipid-peroxides, thereby resulting in the 

formation of GSSG. GR reduces GSSG to GSH through a NADPH-dependent 

reaction (33).

GSH is in a constant state of turnover; its half life has been estimated as 5 hours in rat 

liver, 5 days in human erythrocytes and few minutes in human plasma (42-44).  

Numerous studies have demonstrated that GSH is an essential part of the antioxidant 

defence in all eukaryotic organisms. For example, experimental deletions of genes 

responsible for GSH synthesis in animals are lethal (especially in GCSh homozygous 

knock outs) and increases the vulnerability for oxidative stress, while overexpression 

of the same genes leads to enhanced defence against oxidative stress and extends life 

span (45-47). Furthermore, inborn genetic errors of such genes in humans are known 

to cause a wide spectra of GSH deficiency symptoms as reviewed by Townsend et al. 

and Ristoff et al. (30;48). 

Uric acid
Uric acid is produced from hypoxanthine and xanthine by xanthine oxidase (XO) and 

xanthine dehydrogenase (XDH) enzymes (49). In most species, urate oxidase 
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converts it further to allantoin and then gloxylate plus urea. Urate oxidase is absent in 

humans causing an accumulation of uric acid in plasma (49). The concentration of 

uric acid in human plasma is 0.05-0.9 mM (49). At physiological pH, it is present as 

urate ion since pKa of uric acid is around 5.4. Ames et al. (50) suggested that urate is 

a powerful scavenger of ROS in vitro, proposing that it functions as a biological 

antioxidant. Urate reacts with several reactive species like hydroxyl radical (OH•),

peroxyl radical (RO2
•), singlet oxygen (1O2), hydrogen peroxide (H2O2), ozone (O3),

nitrogen dioxide radical (NO2
•), peroxynitrite (ONOO-) and oxo-heme oxidants 

produced by peroxide reaction with haemoglobin (13;50). Urate binds metal ions like 

Cu and Fe making them poorly reactive in catalysing free-radical reactions (51;52). 

These reactions generates urate radical and the unpaired electron is localised over the 

purine ring, giving a resonance stabilized radical that does not react with oxygen to 

form peroxyl radical (RO2
•) (13). The role of urate as an antioxidant is, however, 

controversial. Recently, large clinical studies have shown a high risk of cancer and 

cardiovascular mortality with high levels of serum uric acid (53-56).

Polypeptides –Thioredoxins, glutaredoxins and sulfiredoxins
Thioredoxins are polypeptides of relative molecular mass about 12000, found in 

both prokaryotes and eukaryotes (13). Three different variants of human Trx have 

been described: cytosolic Trx1, mitochondrial Trx2 and SpTrx which is highly 

expressed in spermatozoa (57). Both Trx1 and Trx2 are ubiquitously present in 

humans (58). Reduced thioredoxins contain two –SH groups in a conserved -Cys-

Gly-Pro-Cys- active site that form a disulphide in oxidized thioredoxin (57). Trx are 

involved in a variety of functions including reduction of ribonucleotide reductase and 

several transcription factors such as p53, nuclear factor- B (NF- B), activator 

protein-1 (AP-1), thereby playing a protective role against oxidative stress (57). They 

bind to target proteins and via intermediate formation of a mixed disulphide, reduce 

the protein disulphide bridge while oxidising themselves (13). Oxidized Trx are 

reduced in vivo in animals by TR. Glutaredoxins are thiol-disulphide 

oxidoreductases requiring GSH for their catalytical functions (15). Grx are present in 

most living organisms and catalyse the reduction of protein disulphide to their 
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respective sulphydryls by donating reducing equivalents to the oxidized proteins (15). 

The oxidized Grx gets reduced by GSH, which is oxidized to GSSG. Sulfiredoxins

are mainly present in eukaryotes and are involved in reduction of cysteine-sulphinic 

acid in the 2-cysteine Prx enzymes (59). They are also involved in 

deglutathionylation of proteins (60). 

Metal binding proteins 
Although metals like Cu, Zn and Fe are essential in almost all eukaryotes for the 

synthesis of various proteins involved in respiration, O2 transport and antioxidant 

defence. However, these metals also act as prooxidants and convert less reactive to 

more reactive species, for example Fe (II) and Cu (I) catalyses the formation of more 

reactive hydroxyl radicals (OH•) from less reactive hydrogen peroxide (H2O2) (13).

Various metal binding proteins are present in animal cells that bind metal ions 

thereby making them non-toxic. Metallothioneins are metal binding low molecular 

weight thiol proteins that are involved in the sequestration and distribution of metal 

ions especially Cu and Zn, removal of heavy metal ions from extracellular space (61). 

These proteins are rich in sulphur containing 22-33% cysteine thereby contributing 

significantly to total cellular protein thiol (13). The high –SH content also make them 

excellent scavengers of peroxynitrite (ONOO-), hypochlorous acid (HOCl), singlet 

oxygen (1O2) and hydroxyl radicals (OH•) (13). Other proteins like transferrin, ferritin 

and lactoferrin bind Fe (13). Caeruloplamin binds Cu and also exhibits ferroxidase 

activity; it oxidizes Fe (II) to Fe (III) and can facilitate iron loading on to transferrin 

and possibly ferritin (13). It also exhibits peroxidase activity in lung lining fluids 

(62). Fe can still act as prooxidant in some bound forms like haem and haem proteins. 

Plasma, however, contains haemoglobin-binding haptoglobins, as well as a haem-

binding protein (haemopexin). The binding of haemoglobin and haem to haptoglobin 

and haemopexin respectively, decreases their effectiveness in stimulating lipid 

peroxidation (13).
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Malfunctioning of the metal-binding proteins increases the concentrations of free 

metal ions making cells susceptible to oxidative damage as reviewed by Halliwell et 

al. (13). 

Albumin
Albumin is a small, highly soluble plasma protein at a concentration of about 40 

mg/ml (63). It contains an exposed –SH group at position 34 and contributes up to 

500 μM to total plasma thiols (13). Albumin has multiple roles including being an 

important extracellular antioxidant. Among its antioxidant roles, it binds Cu tightly 

and Fe weakly (13). It also binds haem thereby protecting lipoproteins against haem-

dependent oxidation (13). Albumin-SH reacts quickly with peroxynitrite (ONOO-),

nitrogen dioxide radical (NO2
•), hypochlorous acid (HOCl), peroxyl (RO2

•)- and 

alkoxyl (RO•)- radicals, and slowly with hydrogen peroxide (H2O2) (13). 

1.2.2 Dietary antioxidants 

Epidemiological studies show that a higher intake of fruits and vegetables decreases 

the risk of developing diseases like cardiovascular disease, stroke and certain types of 

cancer (64-68). The mechanisms behind this beneficial effect of fruits and vegetables 

are not fully understood. But we know that plants synthesize different 

phytochemicals that protect them against oxidative damage during photosynthesis 

and other abiotic stresses like drought, heat, cold and frost, effects of radiation levels, 

shade, altitude, soil nutrient and pollution (69). Since these phytochemicals are 

protective against oxidative damage, they are called as plant-antioxidants or dietary 

antioxidants. These antioxidants vary in their structure, physical and chemical 

properties and thus divided into various groups. Most commonly known groups are 

carotenoids, tocopherols, vitamin C and polyphenols.  

Plasma levels of some of these dietary antioxidants in humans are also inversely 

related to prevalence of some of these diseases and mortality (70-79). These diseases 

have oxidative damage and oxidative stress as underlying mechanisms in their 

pathogenesis. It was, thus, hypothesized that (a) these dietary antioxidants may play a 
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role in the prevention of human disease and (b) their mode of action is through their 

antioxidant properties, thereby reducing oxidative damage and development and 

progression of diseases.

The description of some of these dietary antioxidants and mode of their action both in

vitro and in vivo systems is described as follows: 

Carotenoids
Carotenoids are lipid soluble pigments (usually yellow, red or orange) that are 

widespread in plants. They are also present in some microorganisms and animals 

(snails, goldfish, salmon, bird plumage and lobsters) (13). Carotenoids belong to the 

tetraterpenes family, basic structure being a symmetrical tetraterpene skeleton 

containing eight isoprene units. Thus, all carotenoids possess a long conjugated chain 

of double bond and a near bilateral symmetry around the central bond (80). Different 

carotenoids are derived by modifications in the basic structure by hydrogenation, 

dehydrogenation, cyclization or oxidation (80). The class of carotenoids containing 

only carbon and hydrogen atoms are called as carotenes ( -carotene, -carotene and 

lycopene) whereas xanthophylls carry at least one oxygen atom (lutein, zeaxanthin). 

Table 2 presents some of the major carotenoids. Due to the conjugate double bonds, 

carotenoids could exist as cis- or trans- geometric isomers. Trans-isomers are more 

common in nature presumably due to more stability of the long polyunsaturated chain 

in the linear, extended trans-form (80).

Fruits and vegetables constitute the major sources of carotenoids in human diet 

(Table 2). More than 600 different carotenoids have already been identified in nature. 

However, 40 carotenoids are present in a typical human diet and 20 carotenoids have 

been identified in human blood and tissues (81). Major dietary carotenoids include 

the hydrocarbons, -carotene, -carotene and lycopene and the xanthophylls, or 

oxygen-containing carotenoids, -crytoxanthin, lutein and zeaxanthin. 
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Table 2 Structure and dietary sources of some major carotenoids 

Carotenoids Dietary sources 

Lutein

CH3

CH3 CH3

CH3

CH3CH3

CH3 CH3
CH3

CH3OH

OH

spinach, kale, broccoli, 

brussel sprouts 

Zeaxanthin 

CH3

CH3 CH3

CH3

CH3CH3

CH3 CH3
CH3

CH3OH

OH

egg yolks, maize, 

spinach

-cryptoxanthin

CH3

CH3 CH3

CH3

CH3CH3

CH3 CH3
CH3

CH3OH

citrus fruits, avocado, 

papaya, pepper 

-carotene

CH3

CH3 CH3

CH3

CH3CH3

CH3 CH3
CH3

CH3

Carrots, pumpkin, 

maize 

-carotene

CH3

CH3 CH3

CH3

CH3CH3

CH3 CH3
CH3

CH3

Carrots, spinach, 

parsley

Lycopene

CH3

CH3CH3 CH3 CH3

CH3 CH3 CH3

CH3

CH3

Tomato and its 

products, water melon, 

guava
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The tissue and plasma levels of carotenoids vary with diet and bioavailability. The 

bioavailability depends upon how the food is processed and the type of food matrix in 

which carotenoids are located. Processing, such as mechanical homogenisation or 

heat treatment enhances the bioavailability (82). The ingestion of fat along with 

carotenoids also increases their intestinal absorption (82).

Carotenoids are transported by lipoproteins in human plasma. The distribution of 

carotenoids among lipoproteins is, however, dependent upon their physical 

properties: -carotene, -carotene and lycopene (hydrocarbons) tend to be localised 

predominantly in the low density lipoproteins (LDL), lutein and zeaxanthin 

(dihydroxy) are more localised in high density lipoprotein (HDL) whereas -

cryptoxanthin (hydroxy) is equally distributed between LDL and HDL (83). 

Additionally, hydrocarbons (lipophilic) are located in the core of lipoproteins 

whereas xanthophylls (polar) are located on the surface.  Plasma carotenoids were 

measured in 3043 individuals from 16 different regions in Europe and a huge 

variation in plasma levels due to region of residence was observed (84). After region, 

BMI was the second most important predictor followed by smoking status, gender, 

season and alcohol intake for the variation in plasma levels of carotenoids (84).  

The antioxidant action of carotenoids in cell free experiments involves the ability of 

these pigments to physically quench or inactivate singlet oxygen (1O2). In doing so 

ground state oxygen and triplet state of carotenoid is generated. The triplet state of 

carotenoid returns to ground state by dissipating its energy through rotational and 

vibrational interactions with the solvent system (85). The efficacy of carotenoids for 

physical quenching depends upon the number of conjugated bonds that determines 

their lowest triplet energy state, presence of the functional groups in the molecule and 

the type of solvent used (86;87). Among different carotenoids, lycopene showed the 

highest quenching ability of singlet oxygen (1O2) (86). Carotenoids are also shown to 

react with other free radicals including chain-propagating  peroxyl radicals (RO2
•)

which are generated in the process of lipid peroxidation (88). The reaction with free 

radicals is shown to act by three pathways: radical addition, electron transfer or 
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hydrogen abstraction depending upon the physical property of the carotenoids, type 

of reactive species and the environment (polar or non-polar) employed to study these 

reactions (87;88). 

The in vitro experiments have shown that added carotenoids prevent LDL oxidation, 

decrease DNA oxidation in lymphocytes (85). The in vivo studies done with animals 

have demonstrated an antioxidant action of carotenoid as reviewed by Krinsky et al 

(85). However, most experimental animals are very poor absorbers of carotenoids and 

only large pharmacological doses of carotenoids permit their absorption in these 

animals.

The best established role of carotenoids in humans is as a precursor of the fat-soluble 

vitamin A. About 50 carotenoids (not including lycopene) can generate vitamin A, 

the important ones being -carotene, -carotene and -cryptoxanthin (89;90). 

Additionally, the recent report by World Cancer Research Fund (WCRF) (91) 

concluded that foods containing carotenoids probably protect against mouth, 

pharynx, larynx and lung cancer; while foods containing -carotene and lycopene 

probably protect against oesophagus and prostate cancer respectively. The in vivo

protective action of supplemental -carotene has been questioned (92).

Carotenoids can also act as prooxidants in cell models, but the prooxidant action is 

observed under certain circumstances namely high oxygen tension, high carotenoid 

concentration, unbalanced intracellular redox status (93). However, there is no 

evidence to support the hypothesis that dietary carotenoids may act as prooxidants 

within a biological system i.e. at physiological relevant partial pressure of oxygen.

Carotenoids also exhibit other non-antioxidant functions like immunomodulatory 

actions, induction of gap-junctional communication (GJC). During carcinogenesis, 

GJC is lost and this loss may be important for malignant transformation, and its 

restoration may reverse malignant processes (94). Carotenoids stimulate GJC in a 

differential and dose-dependent manner; however the underlying mechanisms are not 

yet understood (94). 
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Vitamin E 
Vitamin E was discovered by Evans and Bishop in 1922 and is a generic name for 

eight different isoforms with biological activity that have been isolated from plant 

sources: -, -, - - tocopherol and -, - - and - tocotrienol (Fig 1) (95). 

Tocopherols differ from tocotrienols only in their aliphatic chain. Tocopherols have a 

phytyl side chain attached to their chromanol nucleus, whereas the tail of tocotrienols 

is unsaturated and forms an isoprenoid chain (95). The various isoforms differ in their 

methyl substituents on the chromanol nucleus as shown in Figure 2. Each tocopherol 

has 3 asymmetric carbon atoms giving 8 optical isomers. Humans absorb all forms of 

vitamin E, but the body maintains only RRR- -tocopherol, formerly called as d- -

tocopherol (96). Dietary sources of Vitamin E are vegetable oils, nuts (especially 

almonds and hazelnuts), wheat-germ and grains (13). 

O

R1

OH

R2

CH3

CH3
CH3

CH3 CH3 CH3

O

R1
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CH3
CH3

CH3 CH3 CH3

Figure 2 Different isomers of vitamin E- tocopherols (A) and tocotrienols (B) 

Vitamin E is a fat-soluble vitamin located in the lipophilic compartment of 

membranes and lipoproteins. This vitamin was discovered as a micronutrient that was 

essential for the reproduction in female rats. In humans, vitamin E deficiency 
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primarily causes neurologic dysfunctions, but the underlying molecular mechanisms 

are unclear (96). Vitamin E is also considered to be one of the most important lipid 

soluble antioxidants.

As an antioxidant, vitamin E is an important inhibitor of lipid peroxidation as it 

scavenges chain propagating lipid peroxyl radicals (RO2
•) much faster than these 

radicals can react with adjacent fatty acid side chains or with membrane proteins. The 

rate constant of this reaction in vitro is 104 M-1s-1, three orders of magnitude higher 

than reaction of peroxyl radicals (RO2
•) with lipids (50 M-1s-1) (97). The importance 

of this function is to maintain the integrity of long-chain polyunsaturated fatty acids 

in the membranes of cells and thus maintain their bioactivity (98). During its action 

as a chain breaking antioxidant, -tocopherol forms a radical, which is resonance 

stabilized due to its chromanol nucleus. This radical is capable of reacting with 

another peroxyl radical (RO2
•) to give non-radical products and thus one molecule of 

-tocopherol is in principle capable of terminating two peroxidation chains (13). The 

tocopherol radical can also be reduced back to tocopherol through hydrophilic 

antioxidant ascorbic acid as shown by Constantinescu et al. (99) and Sharma et al. 

(100).

The non-antioxidant aspect of vitamin E is also studied which includes its 

antiatherosclerotic and anticarcinogenic properties through modulation of cell 

signalling, transcriptional regulation and induction of apoptosis. There is still no 

agreement if vitamin E acts through its antioxidative or non-antioxidative properties 

at physiological levels in humans as reviewed by Traber et al. (98) and Azzi et al. 

(101).

Finally, a review by Brigelius-Flohe et al. (96) analysing the vitamin E function and 

metabolism concludes that the functions of vitamin E are underestimated if only its 

antioxidant properties are considered and further research is required to study the 

essentiality of this vitamin for humans. 
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Ascorbic acid 
Ascorbic acid, also called as vitamin C was isolated by Szent-Györgyi in 1928. 

Ascorbic acid is a water soluble five-membered lactone containing two ionisable –

OH groups, with pKa1 and pKa2 as 4.25 and 11.8 respectively (Figure 2) (102). Its 

acidity (pKa1 = 4.25) exceeds of weak carboxylic acid such as acetic acid (pKa = 

4.75) due to the resonance stabilization of the monoanion form (102). Thus, at 

physiologic pH the monoanion ion form is favoured contributing more than 99% 

(102). Plants and some animals can synthesize ascorbate from glucose but humans, 

other primates, guinea pigs, some fish and fruit bats do not have the enzyme required 

for the terminal step (gulonolactone oxidase) and need ascorbate in the diet (13). 

Dietary sources of this vitamin include citrus fruits, guava, berries, mango, broccoli 

and peppers (13). 

O

OH OH

O

OH

OH

(A)

O

O O

O
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OH

(B)

Figure 3 Structures of ascorbic acid (A) and dehydroascorbic acid (B) 

 Deficiency of ascorbic acid causes scurvy with symptoms of spongy, bleeding gums 

leading to tooth loss, poor wound healing and swollen, weakened limbs (103). The 

molecular mechanisms of the antiscorbutic effect of ascorbic acid are largely, but not 

completely understood (103). It is a cofactor of at least eight enzymes involved in 

collagen biosynthesis. Collagen synthesized in the absence of ascorbate is 

insufficiently hydroxylated and does not form fibres properly, giving rise to poor 

wound healing and fragility of blood vessels (13). The current recommended dietary 

allowance (RDA) for ascorbic acid is 60 mg/day for healthy, non-smoking adult 

(103).
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Besides being an antiscorbutic, ascorbic acid is an excellent water-soluble reducing 

agent/antioxidant in biological fluids. It readily scavenges various ROS and RNS, 

such as superoxide anions (O2
•–), hydroperoxyl radical (HO2

•)  , peroxyl radical 

(RO2
•), singlet oxygen (1O2), ozone (O3), peroxynitrite (ONOO-), nitrogen dioxide 

radical (NO2
•) and hypochlorous acid (HOCl), thereby protecting lipids, proteins and 

DNA from oxidative damage (13). Ascorbic acid also regenerates lipophilic 

tocopherol from its radical, produced by scavenging of lipid-soluble radicals 

(99;100). The very low reduction potential of ascorbate and stability and low 

reactivity of the ascorbyl radical formed after scavenging reactive species makes it an 

ideal antioxidant and is also called as the “at the bottom of the pecking order” or 

“terminal water-soluble small molecule antioxidant” (104) . The ascorbyl radical 

either disproportionates to ascorbate and dehydroascorbic acid (DHAA) (Figure 3) or 

is reduced back to ascorbate by NADH-dependent semihydroascorbate reductase. 

DHAA is unstable at physiological pH, with a half life of about 6 min (105) and is 

rapidly and irreversibly hydrolysed to 2,3-diketogulonic acid and leads to the 

depletion of this vitamin. DHAA can, however be reduced back to ascorbate 

enzymatically by GSH-dependent DHAA reductase (106). Other proteins like 

glutaredoxin, thioredoxin reductase, protein dislulphide isomerase can also act as 

DHAA reductases (106;107).

Ascorbate can also act as a prooxidant in vitro. Being a powerful reducing agent, it 

reduces catalytic metal ions Fe (III) and Cu (II) to Fe (II) and Cu (I) respectively. 

These reduced metal ions are required in the Fenton reaction for the production of 

hydroxyl radicals (OH•). The prooxidant activity depends upon the concentration and 

form of metal ions, and a high concentration of free metal ions are required for this 

effect (102;108). The in vivo evidence for metal ion dependent prooxidant action is, 

however, sparse (108). Nevertheless, for patients suffering from iron-overload 

supplemental ascorbic acid could be detrimental and high doses are not recommended 

(109).
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As common for other dietary antioxidants like vitamin E and carotenoids, roles of 

ascorbic acid other than being an antioxidant are explored. Recent findings on the 

specific requirement of ascorbate for the activity of several 2-oxoacid-dependent 

dioxygenases involved in cell signalling and the activation of transcription factors 

opens new fascinating area for future research (109;110).

Polyphenols
Polyphenols represent a wide variety of compounds and are characterised by having 

more than two –OH groups. The different classes of polyphenols are hydroxybenzoic 

acids, hydroxycinnamic acids, anthocyanins, proanthocyanins, flavonols, flavones, 

flavanols, flavanones, isoflavones, stilbenes, and lignans (Table 3) (111-113). The 

total dietary intake is about 1 g/day and is much higher than other known 

antioxidants, about 10 times higher than ascorbic acid and 100 times higher than 

vitamin E and carotenoids (114). Bioavailability of polyphenols differs greatly; the 

absorption is accompanied by extensive conjugation and metabolism such that the 

forms appearing in the blood are usually different from the forms found in food as 

reviewed by Scalbert et al. (114) and Manach et al. (111). The plasma concentrations 

of total metabolites ranged from 0-4 μmol/L with an intake of 50 mg aglycone 

equivalents (111). 
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Table 3 Structures and dietary sources of different polyphenols. 

Polyphenols Examples Food sources 

Hydroxybenzoic acid  

R1

OH

R2

O

OH

Gallic acid Tea

Hydroxycinnamic acid

R1

OH

R2

O

OH

Caffeic acid 

Chlorogenic acid 

p-coumaric acid 

Coffee, white grapes 

Apples, cherries, pears 

White grapes, tomatoes, 

spinach

Anthocyanins

O
+

OH

R1

OH

R2
OH

OH

Cyanidin

Malvidin

Cherries, raspberry 

Strawberries,

blackberries, grapes 

Flavonols

O

OH

R2

R3
OH

OH O

R1

Quercetin

Myricetin

Kaempferol 

Onions, lettuce 

Cranberry, grapes 

Endive, leek, broccoli 
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Polyphenols Examples Food sources 

Flavanoles

O

OH

OH

R1

R3

OH

R2

Epicatechin

Gallocatechin

Green tea 

Apple, cocoa 

Flavones

O

OOH

OH

R2

R1

R3

Apigenin

Luteolin

Diosmetin 

Parsley

Celery

Sweet pepper 

Flavanones

O

OOH

OH

R2

R3

R1

Naringenin

Hesperedin

Citrus foods 

Prunes

Isoflavones

O

OR1

OH

OH

Genistin

Daidzein

Soybeans

Legumes 
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Polyphenols Examples Food sources 

Stilbenes

OH

H

H

OH

RO

Resveratrol Red grapes 

Lignans

CH2OH

OH

H3CO

CH2OH

OCH3

OH

secoisolariciresinol linseed 

In vitro, most polyphenols exert antioxidant effects, inhibiting lipid peroxidation by 

acting as chain-breaking peroxyl radical (RO2
•) scavengers. In addition, phenols often 

scavenge other reactive species such as hydroxyl radicals (OH•), nitrogen dioxide 

radical (NO2
•), dintrogen trioxide (N2O3), peroxynitrous acid (ONOOH) and 

hypochlorous acid (HOCl) (13). Some can react with superoxide anions (O2
•–),

mostly the di- and polyphenols. The number of phenolic groups and their relative 

positions are key determinants of antioxidant activity as the phenolic groups can 

accept an electron to form relatively stable phenoxyl radicals. Some polyphenols with 

adjacent –OH groups can also act as metal chelators and can bind transition metal 

ions especially Fe and Cu often in forms poorly active in promoting free-radical 

reactions (13). This chelating ability of polyphenols can interfere with uptake of 

metals from the diet.

The in vitro effects of polyphenols on the DNA oxidation are both harmful and 

beneficial (115). Polyphenols can have harmful effects in the presence of transition 

metal ions such as Cu (II) and Fe (II). Polyphenols reduce these metal ions and the 
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reduced forms catalyze the formation of free radicals like hydroxyl (OH•) which 

cause DNA oxidation. Such breakage of DNA has been considered both beneficial 

(cytotoxic and apoptotic effects on tumor cells) and toxic (mutagenic effects on 

normal cells) (115).

Some, but not all, in vivo studies in animals (polyphenol compounds) and humans 

(polyphenol-rich foods or beverages) have demonstrated their protective effect 

against DNA damage and reduced susceptibility to LDL oxidation (115;116).

Besides being antioxidants, they also exert antithrombotic effects (115). 

Intervention with supplemental antioxidants 
Foods containing phytochemicals such as carotenoids, ascorbic acid, vitamin E and 

quercetin are protective against some cancers (91). However, the majority of studies 

find that antioxidant supplements ( -carotene, -tocopherol and ascorbic acid) do not 

decrease the risk of oxidative stress related diseases and mortality. A meta-analysis 

by Bjelakovic et al. (117) and a recent report from WCRF (91) have shown that 

antioxidant supplements may increase total mortality and risk of developing lung 

cancer, respectively.

Possible explanations for these apparent conflicting results between dietary and 

supplemental antioxidants could be: The beneficial effect could be due to multiple 

antioxidants present together and working simultaneously in a network (as in fruits 

and vegetables) rather than single antioxidants. Thus, it is suggested that low doses of 

many antioxidants may contribute to a positive antioxidant defence network, while 

large doses of one or a few antioxidants as typically used in supplements may have 

prooxidant effects. For example in Supplemantation en Vitamines et Mineraux 

AntioXydants (SU.VI.MAX) study (118) and Antioxidant Supplementation in 

Atherosclerosis Prevention (ASAP) study (119), the intervention group received low 

doses of -tocopherol, ascorbic acid , -carotene and a protective effect against 

cancer and atherosclerosis was observed in men.  
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1.3 Assessment of antioxidant and oxidative stress 
biomarkers in clinical studies 

An imbalance between reactive species and defence system causes oxidative stress. 

The assessment of this oxidative stress can be approached by measuring reactive 

species produced either directly or the damage produced by them i.e., oxidative 

damage. The decrease in the antioxidant defence due to their utilization during 

oxidative stress is another approach for this assessment. 

1.3.1 Measuring reactive species 

The measurement of reactive species can be done by two approaches: 

Trapping of these reactive species and measuring the trapped species by a 

technique called as electron spin resonance (ESR) or electron paramagnetic 

resonance (EPR).

Measuring the oxidative damage done by reactive species, i.e., the amount of 

oxidative damage. 

Trapping of reactive species 
ESR is a spectroscopic technique that detects unpaired electrons and is thus specific 

for free radicals. The free radicals like superoxide anion (O2
•–) and hydroxyl (OH•)

are, however, highly reactive with reaction time of microseconds to nanoseconds and 

this technique is not sensitive enough to detect them directly in living systems. These 

radicals are trapped by a trap molecule, forming more stable radicals that accumulate 

to a level permitting their detection by ESR (120). The ideal trap should react rapidly 

and specifically with the radical one wishes to detect, to produce a product that is 

chemically stable, not metabolized by living systems, and has a unique ESR spectrum 

(13). A wide range of traps are available for the use in animals and cell cultures 

(13;121). Examples of some of these trap molecules include -phenyl-tert-

butylnitrone (PBN), 5,5-dimethyl-1-pyrroline N-oxide (DMPO).  
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Whole-body ESR techniques are being used on animals (122) but currently not on 

humans due to lack of human safety data for new probes. For humans, traps have 

been used ex vivo on body fluids and tissues like biopsies, blood and other tissue 

samples (120). Although the traps are added in ex vivo samples, it is impossible to 

detect free radicals like hydroxyl (OH•) with a reaction time of nanoseconds. ESR of 

ex vivo samples probably detects secondary radicals resulting from the reaction of 

these reactive species with biomolecules. Some of the examples are lipid derived 

radicals such as alkoxyl (RO•)- and peroxyl (RO2
•)- radicals (120). Ascorbic acid also 

reacts with a large number of reactive species generating radical 

semidehydroascorbate radical (123). This radical can be detected by ESR and have 

been used as an indication of free radical production in organs, plasma and skin 

(100;124;125). Among the in vivo ESR in humans, aromatic free radical traps like 

salicylate and phenylalanine have been used to detect hydroxyl radicals (OH•) with

some success as reviewed by Halliwell et al. (120).

The potential limitations in the use of spin trapping technique are efficiency of radical 

trapping, selectivity and availability of spin traps, the limited stability of spin adducts, 

possible formation of artifactual spin adducts and under estimation due to removal of 

products giving ESR signal (126). For example, when DMPO is used to trap 

hydroxyl radicals (OH•), any ascorbate present can directly reduce the adduct between 

DMPO and hydroxyl radicals (DMPO-OH•) to an ESR-silent species. With the 

development of new and better spin traps going on, ESR can be a very effective and 

powerful technique in studying processes involving free radicals. 

Measuring oxidative damage 
An alternative to trapping is the method in which the reactive species are not 

measured themselves but the damage caused by them. When reactive species attack 

biomolecules, the oxidized products formed can be used as biomarkers to measure 

this damage. Most human studies focus on the measurement of oxidative damage 

rather than the total reactive species generated because of limited applicability to 

humans of the latter technique. Moreover, it is the damage that matters rather than the 
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total amount of free radicals generated. Criteria for a valid biomarker as described by 

Halliwell et al. (120) and Griffiths et al. (127) are: 

Fundamental criterion 

The biomarker predicts the later development of disease. 

Technical criteria 

The biomarker should detect a major part or at least a fixed percentage of total 

oxidative damage to the target molecule in vivo.

It must employ validated measurement technology and is measurable within 

the limits of detection (LOD) of the method. 

The coefficient of variation between different assays of the same sample 

should be very small in comparison with the differences between subjects or 

the effect of experimental manipulations (e.g. antioxidant supplementation) 

upon a subject. 

It should be free of confounding factors from dietary intake. 

It should ideally be stable on storage, not being lost, or formed artefactually, in 

stored samples. 

For human use, it is preferable if it can be measured in easily obtainable 

samples, e.g. blood, urine, saliva, skin biopsy. 

Validation of biomarkers requires two steps. The fundamental validation showing 

that the changes in the biomarker reflect the development of the disease. The 

analytical validation includes development of methods, elimination of 

methodological artefacts, analysis of reference materials and quality control (13).

Markers of oxidative stress in vivo can be classified into three major groups: markers 

of oxidative damage to lipids, proteins and DNA. 
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Lipids
The lipid rich sites in vivo are the lipid-carrying lipoproteins and cellular membranes. 

Lipids can be oxidized, halogenated or nitrated by different reactive species apart 

from hydrogen peroxide (H2O2), nitric oxide (NO•) and  superoxide anion (O2
•–) (13).

Lipid peroxidation is thought to proceed by radical mediated abstraction of a 

hydrogen atom from a methylene carbon on a polyunsaturated fatty acid (PUFA) or a 

PUFA side chain (128). It is a complex process and a wide range of products are 

formed in variable amounts (128). Lipid peroxidation plays a significant pathological 

role especially in atherosclerosis (8). The extent of lipid peroxidation can be 

determined by measuring the losses of PUFAs, the amounts of primary peroxidation 

products like hydroperoxides, conjugated-dienes, isoprostanes and the amounts of 

secondary products, such as hydrocarbon gases (13;127). 

Isoprostanes
The best available biomarker of lipid peroxidation appears to be the isoprostanes 

(IPs). They are prostaglandin-like compounds formed from PUFA with at least three 

double bonds such as linolenic acid and arachidonic acid (produce F2-IPs);

eicosapentaenoic acid (produce F3-IPs) and docosahexaenoic acid (produce F4-IPs).

Most of the work is done on F2-IPs and their metabolites. The most abundant F2-IP is 

8-isoprostagladin F2  (8-iso-PGF2 ). They are measured by gas chromatography-mass 

spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS) or 

immunoassays, the latter being less reliable. GC-MS techniques are quite established 

but the sample preparation techniques are quite tedious (129). LC-MS techniques do 

not require derivatization step and are less prone to artifacts (129). F2-IPs can be 

measured in plasma, urine and other body fluids with urine generally considered as a 

better matrix due to following reasons. The correct storage of plasma and tissues 

samples is important as artefactual lipid oxidation and IP formation can occur unless 

antioxidants like butylated hydroxytoluene (BHT) are added (13). In plasma and 

tissues most IPs are esterified with phospholipids and it is important to identify 

between free and total IPs (13). Another disadvantage in plasma is that it is not 

possible to measure them over a period of time due to their short half-life 
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(approximately 18 minutes) in plasma (127). These challenges can be overcome by 

measuring IPs in urine. However, local kidney peroxidation could be a problem for 

urinary F2-IP measurement. This can be overcome by measuring both 8-iso-PGF2

and its metabolite 2,3-dinor-5,6-dihydro-8-iso-PGF2  in urine (13;130). Other factors 

like fasted samples can increase the F2-IPs levels in urine and thus these samples are 

to be regarded with caution (13). Additionally, 24-hour urine sample collection and 

standardization of F2-IPs concentrations with creatinine are suggested (9).

Increased levels of IPs in plasma / urine are observed in animals and humans 

associated with oxidative stress, including renal, cardiovascular, lung, 

neurodegenerative diseases, diabetes, hypertension (120;131) . Modulation of IPs by 

antioxidant supplementation is also reported (127;132-134). Different PUFAs 

generate different IPs, giving a possibility to follow the peroxidation of individual 

PUFAs in vivo.

Aldehydes
Many aldehydes and carbonyls are generated during lipid peroxidation, including 

malondialdehyde (MDA) and 4-hydroxynonenal. The concentrations of free 

aldehydes in vivo are probably low, because they are readily conjugated to proteins. 

Spectrophotometric, chromatographic and antibodies based methods are used 

(13;127). The most commonly measured aldehyde in plasma or urine is MDA, 

usually measured by thiobarbituric acid (TBA) test. MDA is heated with TBA under 

acidic conditions, forming an adduct which is detected spectrophotometrically at 532 

nm (127). The test is highly unspecific as many others compounds not related to lipid 

peroxidation reacts with TBA forming the similar chromogen (13;127). Measuring 

the fluorescence of MDA-TBA adduct instead will improve the specificity. However, 

the assay becomes even more specific by performing a chromatographic separation of 

MDA-TBA from interfering chromogens (127). Use of MDA as a biomarker for lipid 

peroxidation has a number of limitations as reviewed elsewhere (13;127). One of the 

important limitation include that the formation of MDA could be due to other 
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processes and not always due to lipid peroxidation. The test is, however, still widely 

used due to the low cost and easy to perform  

Peroxides
Lipid peroxidation also generates different peroxides and a number of different 

assays measuring total and individual peroxides are available (13). Some of the 

assays available are iodine liberation, ferrous oxidation xylenol orange (FOX), 

cyclooxygenase (COX), derivatives of reactive oxygen species (d-ROMs). d-ROMs 

are the indirect way of measuring hydroperoxides in plasma/serum. The 

hydroperoxides are decomposed in presence of metal ions forming RO• and RO2
•

radicals. These radicals oxidize the chromgen N,N,-diethylparaphenylendiamine, 

thereby changing its colour from pink to red, which is measured spectrophometrically 

(135). The hydroperoxides in biological samples also arise from the attack of reactive 

species on other organic molecules. Thus, d-ROMs are not a specific biomarker of 

lipid peroxidation but a more general biomarker for oxidative stress. Hayashi et al. 

(136)  have measured d-ROMs in serum of smokers and non-smokers and found that 

the smokers have higher levels of plasma d-ROMs. 

Conjugated dienes
The oxidation of PUFAs form conjugated dienes that absorb ultraviolet (UV) light in 

the 230-235 nm wavelength range (13). Measurement of dienes is useful in pure 

lipids detecting an early stage lipid peroxidation. However, an application of this 

technique to human body fluids or their extracts results in an overestimation due to 

presence of other substances that also absorb strongly in the same UV range. 

Although extraction of lipids before their measurement could solve this problem, the 

dienes can also arise from other sources besides lipid peroxidation such as diet or 

microbial metabolism in the gut (13). Thus, the validity of this biomarker for lipid 

peroxidation is questionable. 
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Breath analysis 
Exhaled air contains F2-IPs, aldehydes and a range of hydrocarbons including ethane 

and pentane (120). Ethane is derived from n-3 PUFAs and pentane from n-6 PUFAs. 

Both gases can be measured by GC. The expired gas is passed through an absorbent 

at low temperatures to bind and concentrate the hydrocarbons, which are desorbed 

and measured (13). Hydrocarbons are however minor end products of peroxidation 

and their formation are affected by the transition metal ions to decompose peroxides, 

O2 concentrations and altered liver metabolism (13;127). Other disadvantages of this 

biomarker are that other sources including presence of bacteria and environmental 

factors like air contamination due to motor vehicles can contribute to hydrocarbons 

(13;127). Contamination of pentane due to the presence of another hydrocarbon 

isoprene can give erroneous results (13;127). This can be solved by measuring ethane 

instead of pentane. Exhaled hydrocarbons are also difficult to measure routinely in 

large human studies, requiring cumbersome equipments.  Increased exhalation with 

age, hyperoxia, smoking, scleroderma and some lung diseases has been demonstrated 

in some human studies (9;13). 

DNA
Oxidative DNA damage seems to relate to an increased risk of cancer development 

with age. At molecular level, DNA damage can take many forms, ranging from 

specifically oxidized purine and pyrimidine bases (more than 20 such oxidative 

lesions have been identified) to gross DNA changes such as strand breaks, sister 

chromatid exchange and the formation of micronuclei (137;138). The DNA oxidation 

products formed depend upon the type of reactive species involved, its rate of 

production and the ability of the cell to repair the damage (137). The oxidative DNA 

damage can be measured as steady state damage in accessible cells like leukocytes, 

colonic endothelium and buccal cells (137). The steady state damage reflects the 

balance between damage and repair, and an increase in oxidative DNA damage could 

be due to increased damage and/or decreased repair. Another approach is to measure 

the total in vivo oxidative DNA damage by measuring products of DNA repair that 

are excreted in urine (13).
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Oxidized nucleosides/bases
Among the most commonly measured biomarkers of total oxidative DNA damage is 

the modified nucleoside 8-oxo-7,8-dihydro-2´-deoxyguanosine (8-oxo-dGuo) or base 

8-oxo-7,8-dihydroguanine (8-oxo-dGua) , considered to be a biologically important 

lesion. The mutagenic and carcinogenic potential of any modified DNA base is 

reflected in its miscoding properties. The presence of 8-oxo-dGuo residues in DNA 

can lead to GC to TA transversion, and if not repaired can lead to mutagenesis and 

may be carcinogensis (127). Other less studied oxidized bases like 2-hydroxy-

adenine, 8-hydroxy-adenine and 5-OH-Cyt have also shown to be mutagenic (127).  

The techniques for the measurement of 8-oxo-dGuo in cells and urine are usually 

chromatographic employing liquid chromatography-electrochemical detection (LC-

ED) or GC-MS or liquid chromatography-tandem mass spectrometry (LC-MS-MS), 

comet assay and immunoassay (127;139). The results from different techniques vary 

over a range of three orders of magnitude in cells and the European standards 

Committee on Oxidative DNA Damage (ESCODD, 1997) has been testing ability of 

different laboratories using different method to measure 8-oxo-dGuo in standard 

samples, calf thymus DNA, pig liver, oligonucleotides, HeLa cells and in 

lymphocytes isolated from blood of volunteers (139).  

Chromatographic 
The chromatographic based techniques measure 8-oxo-dGuo in both cells and urine. 

In cells, LC-ED is capable of measuring 8-oxo-dGuo with high accuracy but there is 

a lack of consensus on basal levels measured (127;139). Advantages with GC-MS are 

that many different modified purines and pyrimidines can be detected but GC-MS 

failed to detect a dose response of induced 8-oxo-dGuo and cannot reliably measure 

low levels of damage (127;139). New techniques like LC-MS-MS, although quite 

specific has yet not proved capable of measuring low levels of oxidative DNA 

damage. The limitations with chromatographic methods include artefactual oxidation 

during sample preparation, low limits of detection and lack of specificity (especially 

in HPLC-ED) (127). The artefactual oxidation can be avoided by use of antioxidants, 
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eliminating traces of oxygen, room temperature derivatisation, and use of repair 

endonucleases to liberate base products instead of acid hydrolysis (127). It is also 

important to accurately measure unoxidized base (dGuo) as the concentration of 8-

oxo DGuo is expressed relative to dGuo.

Besides measuring in cells, urinary 8-oxo-dGua and 8-oxo-dGuo can be used to 

assess oxidative DNA damage. It is assumed that the products of oxidative DNA 

damage are excreted in urine and represents the primary product of repair in vivo. The 

advantage of analysing in urine is that the levels of 8-oxo-dGuo and 8-oxo-dGua do 

not depend upon the diet in humans and are not susceptible to oxidation (127). GC 

with isotope dilution MS and LC-MS-MS are the techniques that are currently being 

used for their analysis (140). The limitation of this biomarker  is its specificity i.e., 

processes other than repair processes can also contribute to 8-oxo-dGua and 8-oxo-

dGuo levels in urine (127).

Comet assay 
An alternative approach to measure DNA damage in cells is by comet assay. This 

technique can be applied to any type of cells provided they have been isolated from 

tissue without degradation (127). In human studies, lymphocytes are used as 

surrogate tissues. Comet assay is a simple, fast and sensitive technique that measures 

both DNA strand breaks and oxidized bases (127). The DNA strand breaks are 

measured by subjecting the isolated nucleoids from lysed cells to alkaline 

electrophoresis. The negatively charged DNA are attracted to the anode but only the 

loops of DNA possessing a break are free to migrate, presenting the image of a comet 

with a tail (127) called as comet images. The quantitation of these images is done by 

computer image analysis or a visual scoring system (class 0 no tail, class 4 all DNA 

in the tail). The calibration is achieved against X-ray irradiated cells, where the 

frequency of strand breaks introduced is known. The measurement of oxidized bases, 

however, requires an additional step of DNA incubation with bacterial repair 

endonucleases. The endonucleases recognise and remove damaged bases and make 

nicks at the resulting abasic sites in the DNA (127). Endonuclease III detects 
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oxidized pyrimidines and formamidopyrimidine DNA glycosylase (FPG) recognises 

altered purines including 8-oxo-dGuo (127). These repair enzymes (endonuclease III 

or FPG) are added to isolated nucleiods and parallel gels (with and without enzymes) 

are run. The comet scores are subtracted, calculating the degree of oxidative damage.  

Advantage of this assay as compared to chromatographic techniques is that there is 

little chance for artefactual oxidation. The potential problems with assay can be 

calibration, linearity, lesions occurring in close proximity with in one DNA loop will 

be registered as one lesion leading to underestimation or unspecificity of FPG leading 

to overestimation (127). 

Immunoassay 
The enzyme-linked immunoabsorbent assays (ELISA) have also been used to assess 

8-oxo-dGuo.  Both polyclonal and monoclonal antibodies are commercially available 

(140). These assays are much simpler, more reproducible, robust and versatile in 

comparison to chromatographic methods. The baseline values in healthy individuals 

are also consistent between different laboratories (120;127). Since DNA extraction 

and hydrolysis are required prior to ELISA, the artefactual oxidation should be 

avoided. On comparing chromatographic methods and ELISA a poor correlation is 

observed, additionally the latter giving two to four times higher values than the 

former (127;140). The main reason is the cross-reactivity of antibodies employed in 

ELISA towards other species in urine (127;140).

Proteins
Oxidative protein damage is studied to lesser extent as compared to lipid peroxidation 

and DNA oxidation. It could be due to the complexity since 20 different amino acids 

can be attacked by reactive species forming different oxidative products (127). Free 

radical attack on proteins can generate amino-acid radicals, which may crosslink or 

react with O2 to give peroxyl radicals (RO2
•) resulting in a variety of reactive species 

(120). Of the 20 amino acids, aromatic and sulphydryl containing residues have 

considered to be most susceptible to oxidation. Markers of protein oxidation include 
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protein carbonyls derivatives, oxidized amino acid side chains, protein fragments, and 

formation of advanced glycation end products (AGEs) (137). 

Protein carbonyls 
Protein carbonyls are formed by the oxidative cleavage of the peptide main chain or 

by oxidation of the following amino acid side chains: arginine, lysine, praline and 

threonine (137). Additionally some lipid peroxidation products including HNE and 

MDA can form adduct with amino acids generating carbonyls (137). The techniques 

employed to measure carbonyls are immunodetection by ELISA, western blot and 

chromatographic (127). Proteins carbonyls are first derivatized by 2,4-dinitro 

hydrazine (2,4-DNPH) to yield the corresponding 2,4-dinitrophenyl hydrazones 

(127). Hydrazones can be separated by HPLC and detected by UV or 

immunochemically by commercially available antibodies.  

Protein carbonyls are a generic and not specific marker of protein oxidation. Since 

carbonyls are usually formed by oxidative mechanisms, and this assessment of 

protein modification can provide a reasonable index of oxidative stress index. Protein 

carbonyls have been most strongly linked with aging and in Alzheimer diseases 

(137).

Other biomarkers from the amino acid oxidation products include kynurenines (from 

tryptophan), bityrosines, valine and leucine hydroxides, L-dihydroxyphenylalanine (l-

DOPA), ortho-tyrosine, 3-nitro tyrosine (attack of ONOO- upon proteins) (127). 

Although studied to lesser extent, the oxidative damage to proteins could be 

important as the changes in the proteins can alter the function of receptors, enzymes 

and can cause secondary damage to other biomolecules like inactivation of DNA 

repair enzymes (120).

Oxidative stress biomarkers- conclusion    
Oxidative biomarkers for measuring oxidative damage are in the establishing phase 

and the results are showing that some are better than others. The final conclusions 
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about biomarkers of lipids, proteins and DNA oxidation) are taken from the ESSCOD 

recommendation (127) that are as follows: 

For lipid oxidation biomarkers, determination of lipid peroxides and IPs is 

considered suitable with further work necessary on urinary IP metabolites and 

hydrocarbon gases. Measurement of TBARS, MDA and conjugated dienes is 

considered inappropriate. 

For DNA oxidation biomarker, measuring 8-oxoGua in DNA is suitable, but 

further work is required on other oxidized base analysis, enzyme sites in the 

comet assay and 8-oxo-dGuo measurement in urine by chromatography or 

ELISA. Strand break analysis alone is inappropriate. 

Protein oxidation biomarkers are in earlier stages of validation. The suitable 

candidates, however, include nitrated amino acids, protein-bound tyrosine 

oxidation products, protein-bound tryptophan products, and methionine 

sulphoxide.

1.3.2 Decrement in antioxidant defence 

Another approach is to measure the decrement in the antioxidant defence as increased 

production of free radicals will result in the more utilisation of various endogenous- 

and dietary- antioxidants. Some of these are described below. 

Glutathione
It is well accepted that cellular concentrations of GSH and its oxidized form-GSSG 

are related to oxidative stress, and that the level of GSH and GSSG reflect the degree 

of oxidative stress in different pathophysiological conditions (25;30;141).

Measurements of total GSH, free GSH and GSSG have been used extensively to 

estimate oxidative stress or the redox environment of cells. Many researchers have 

estimated oxidative stress by using the ratio [GSH]/[GSSG]. This is convenient for 

many measurements since the absolute concentrations are not needed. Recently, the 
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redox state of the GSSG/2GSH couple calculated with the Nernst equation was 

suggested to describe the redox environment of biological fluids, cell organelles, 

cells, or tissue (141). Redox state is considered to be better parameter as compared to 

the ratio since it takes into account the correct stiochiometry involving GSH and 

GSSG, which is a two-electron process. The redox (reduction) potential of this couple 

calculated by Nernst equation given by: 

Ehc = -240 - (59.1/2) log ([GSH]2/[GSSG]) mV 

There are many redox couples in a cell that work together to maintain the redox 

environment, but Schafer and Buettner (141) suggest that the redox state of the 

GSSG/2GSH couple can serve as an important indicator of redox environment since 

it is the most abundant redox couple in the cell. Additionally, decrease in GSH redox 

potential has been observed with aging, smoking, and diabetes (142;143)..   

GSH can be measured in whole blood, erythrocyte, plasma, leukocytes, platelets and 

various tissues. The total concentration of GSH in whole blood and serum/plasma is 

about 2 mM and 5 M, respectively. Erythrocytes constitute 40-50% of the blood 

volume and contribute about 99 % of GSH in whole blood. Whole blood analysis of 

GSH therefore almost exclusively reflects erythrocyte GSH.

The ratio of GSH and oxidized forms of GSH is different in erythrocytes as compared 

to plasma (144;145). In erythrocytes, the major form of GSH is the reduced free form 

of GSH, which accounts for about 76 % of the total GSH. GSSG represents 8 % and 

PSSG accounts for about 16 % (145). In plasma, the reduced free from of GSH 

represents about 62 % of the total, whereas GSSG and mixed disulfides represent 18 

% and protein-bound represents about 20 % (144). Thus, the redox state of GSH is 

more oxidized in plasma as compared to the erythrocytes (146).  

Both chromatographic and enzymatic methods are available for the measurement of 

GSH and GSSG (147;148). The reported concentrations of total GSH (sum of free 

GSSG + 2H+ + 2e- 2GS
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GSH, GSSG, mixed GSH disulphides and protein bound GSH), free GSH and GSSG 

in blood, erythrocytes, leukocytes, platelets and plasma vary considerably. The 

reasons for this variation are as follows: 

GSH can be easily oxidized during sample preparation 

 GGT which is found in plasma and most cells can degrade GSH if the 

enzyme is not inhibited during sample preparation 

 Plasma values are easily increased by incidental and non-reproducible 

leakage from erythrocytes having 1000-times higher GSH and GSSG 

concentration than plasma. 

The challenges for the determination of GSH and GSSG in blood and erythrocytes 

have been discussed elsewhere (149-152). The precautions for the determination of 

GSH and GSSG in plasma are discussed by Jones et al. and Sakhi et al. (153;154).

A major conclusion of these articles is that it is essential to inhibit GGT mediated 

degradation of GSH by either serine borate or acivine, and to stop artificial oxidation 

of GSH by blocking the thiol group of GSH before the precipitation of proteins with 

an acid.

A number of different sample preparation and analytical methods are available, and a 

variety of GSH forms may be measured. The nomenclature that has been used to 

describe these different forms of GSH is inconsistent. For example, total GSH may in 

some texts refer to the sum of free reduced GSH and GSSG, while in other texts it 

reflects the sum of all forms of GSH (i.e. also including PSSG and GSH bound to 

other small molecular weight thiols). Thus, it is important to define which GSH form 

is being measured. 

Total antioxidant capacity 
Antioxidants form an intricate network in the protection against reactive species and 

analysing only one antioxidant may give an in complete overview. This provides the 
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rationale for analysing all the antioxidants present in the sample by measuring total 

antioxidant capacity (TAC). TAC is usually measured in plasma /serum. The main 

determinants of the plasma /serum TAC are urate (60%), ascorbate and protein thiols 

(155).

Several different assays are available to measure TAC. Assays involving oxidants 

that are not necessarily pro-oxidants are ferric ion reducing antioxidant power 

(FRAP), Trolox equivalence antioxidant capacity (TEAC) and cyclic voltammetry 

whereas assays involving oxidants that are necessarily pro-oxidants are total radical 

trapping antioxidant parameter (TRAP), oxygen radical absorbance capacity (ORAC) 

(156).

Anticoagulant and storage of samples are critical factors that affect the TAC. This is 

due to ascorbate, which is among the major contributors to TAC and decays rapidly 

on storage. The use of TAC as an indicator of the antioxidant defence has been 

contradicting due to its increases under the enhanced oxidative stress conditions 

(127). This is mainly due to high contribution of uric acid in plasma, obscuring the 

changes in the concentrations of other antioxidants and thus limiting its usefulness. 

Measurement of dietary antioxidants- carotenoids, vitamin E and 
ascorbic acid 
Plasma levels of various carotenoids, vitamin E and ascorbic acid are decreased in 

smokers and various oxidative stress related diseases as compared to healthy controls, 

and thus can be used as biomarkers for oxidative stress. However, their plasma/serum 

levels are affected by diet, and thus it is important to have a control over changes in 

dietary patterns during the measurement period.  

Carotenoids
Carotenoids are usually measured in plasma/serum. HPLC with ultraviolet (UV) 

detection is the most common method employed for their determination (157). 

Carotenoids are highly lipophilic and require organic solvents like isopropanol, 

hexane for their extraction from the plasma samples.Carotenoids are light sensitive 
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and must be protected during sample preparation. The type of anticoagulant used in 

blood sampling tubes also effect the concentration of carotenoids. The plasma 

concentration of total carotenoids is approximately 1-3 μmol/L (84). 

Non-invasive method for measuring carotenoids in skin and eye using Raman 

spectroscopy are also developed (158). The method is shown to be precise, specific, 

sensitive and well suitable for clinical as well as field studies (159). The only 

disadvantage with this method is that only total, and not individual, carotenoid 

concentration can be measured.

Vitamin E 
Vitamin E isomers are usually measured in plasma/serum. Vitamin E exhibit native 

fluorescence and thus HPLC with fluorescence detection is the commonly employed 

technique for their determination. For biological samples, reversed phase 

chromatography is employed and the separation of all the vitamin E isomers is 

achieved by only some (160;161) but not all columns. Protection from light and type 

of anticoagulant in blood sampling tubes should be considered during sample 

preparation. EDTA plasma is considered to be most suitable for their determination 

(162). The concentration in plasma is 15-40 μmol/L: Being lipid soluble, it is more 

accurate to express vitamin E concentration as the molar ratio of vitamin 

E/cholesterol (163). 

Ascorbic acid 
Ascorbic acid is oxidized to DHAA and the ratio of DHAA/total ascorbic acid can be 

used as a biomarker for oxidative stress. Ascorbic acid and DHAA are usually 

measured in plasma, using HPLC with UV detection. Ascorbic acid can be easily 

oxidized at neutral or alkaline pH and thus acidification of plasma should be done 

immediately (164). The type of anticoagulant also effects its concentration and 

heparin plasma is most suitable for its determination (164). The concentration of 

ascorbic acid in plasma is approximately 30-80 μmol/L. 
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1.4 Cancer and oxidative stress 

It is evident that elevated levels of ROS/RNS can lead to cancer (10). The specific 

mechanism by which oxidative stress contributes to the development of 

carcinogenesis is not fully understood. The most common explanation, however, is 

the DNA oxidative damage by ROS/RNS. Cancer development is a micro-

evolutionary and multistage process and requires the cumulative action of multiple 

events that occur in one cell alone (165). These events include a three stage model: a 

permanent change in one somatic cell genetic material (initiation); the expansion of 

the mutated cell alone (promotion); and the malignant conversion into cancer 

(progression) (165). ROS/RNS can stimulate carcinogenesis by acting at all three 

stages.

Initiation
Initiation involves a non-lethal mutation in DNA producing an altered cell. Oxidative 

DNA damage occurs through the attack of ROS/RNS especially OH• (10). The yield 

of the individual DNA modifications is highly dependent on which reactive species 

are involved (166). Thus, 1O2 induces prefentially 8-oxodGuo whereas OH• attack 

upon DNA generates a whole series of DNA damage by a variety of mechanisms 

(165;166). These include sugar and base modifications, strand breaks and DNA-

protein cross-links. Modified DNA bases (pyrimidine and purine) are one of the most 

common lesions and 8-oxodGuo represents one of the most studied lesions due to its 

mutagenic properties. Some RNS deaminate DNA bases to mutagenic lesions such as 

ONOO- forms 8-nitroguanine (8-NG) in DNA. 8-NG rapidly detaches from the DNA, 

leaving potentially mutagenic apurinic sites (10). The damage caused by ROS/RNS 

can still be repaired by interrupting temporarily their cell cycle stage G1, S or G2 

(check points), repairing the damage, and resume division (167). However, a very 

small part of the oxidative DNA lesions escape repair and represents an important 

mutagenic potential that accumulates with age (168). Higher doses of ROS/RNS 

increase the chance that the DNA lesions may not be effectively encountered by 

DNA repair. Thus, exposure of mammalian cells to various reactive species increases 
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mutagenesis. The contribution of reactive species to carcinogenesis becomes even 

more important if DNA base changes occur in certain oncogenes and tumour 

suppressor genes.

Promotion
The promotion stage is characterised by the clonal expansion of mutated cells by the 

induction of cell proliferation and /or inhibition of programmed cell death (apoptosis) 

(167). This stage is still reversible and the cells proceeding towards progression 

requires optimal production of ROS and continuous presence of tumour promotion 

stimulus (167). A high level of oxidative stress is cytotoxic to the cell and halts 

proliferation by inducing apoptosis. A low level of oxidative stress can in fact 

stimulate the cell division in the promotion stage and thus stimulate the promotion of 

tumour growth (167).  

Progression
Progression is the third and irreversible stage of the carcinogenesis process, leading 

to the transition of the cell from benign to malignant (167). This stage involves 

accelerated cell growth, tissue invasion, increased genetic instability and metastasis 

(165).

ROS can increase proliferation in tumour cells by decreasing gap juctional 

communication (GJC), thus, corrupting the contact growth inhibition signals (10). 

ROS is also involved in another important step in tumour progression, angiogenesis. 

Angiogenesis generates new blood supplies that feed the malignant cells as required 

for the growth of any tumour (167). The ROS involvement include generation of 

reactive oxygen intermediates by cancer cells, damage to vascular basement 

membranes mediated by endothelial injury or perturbation, and direct activation of 

latent matrix metalloproteinases (165). The experimental tumours have also increased 

levels of inducible nitric oxide synthase (iNOS) and the nitric oxide (NO•) released 

increase vascular permeability enhancing tumour progression and angiogenesis (165). 
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1.5 Oxidative stress and head and neck squamous cell 
carcinoma

The head and neck cancer include cancers of the oral cavity (lip, the base of tongue, 

gum, floor of mouth and palate) pharynx (oropharynx, hypopharynx and 

nasopharynx) and larynx (Figure 4) (169).

Ninety percent of these cancers are squamous cell carcinomas (91). Worldwide, head 

and neck cancers are the seventh most common cancers (91), with approximately 

540 000 new cases annually and 271 000 deaths (170). In Norway 400-500 new cases 

are registered each year (171). Despite advances in treatment, five-year survival rates 

has improved marginally and are around 50-60 % over the past 20 years (91). While 

the primary cancers have been successfully treated, the development of second 

primary tumours (SPT), relatively high median age of 50 years or more and co-

morbidities are the important factors determining survival in these patients (91;172). 

The incidence of this cancer is about three times more in men as compared to women 

and more in African-American people than in white people (91;173). HNSCC has 

strong link to oxidative damage as major risk factors include tobacco use and alcohol 

consumption in developed countries and betel quid chewing and bidi smoking in 

many developing countries (91;174;175). Other factors include dietary habits, 

papillomavirus infection and polymorphisms of GSH S-transferase (91;174;176-178). 

Figure 4 Different regions of head and neck 

cancer. The figure is taken with permission from 

the following site: 

http://training.seer.cancer.gov/ss_module06_head_n

eck/unit02_sec02_anatomy.html 
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The geographic area with the highest incidence from oral and pharyngeal cancers are 

south-central Asia, Europe, Oceania and southern Africa, while for laryngeal cancer 

are South America, south-central and western Asia, and southern, central and western 

Europe (91).

1.5.1 Smoking and alcohol 

Smoking and alcohol are the established risk factors and contributes to about 90 % in 

the development of HNSCC cancer (91). While smoking rates are declining in the 

developed world, they are increasing in the developing world. Striking variations in 

head and neck cancer sites and incidence seen among different regions, cultures, and 

demographic groups are due in large part to differentiating patterns of tobacco and 

alcohol abuse (174;179). Alcohol is an important independent promoter of 

carcinogenesis and is a contributive factor in at least 75 % of HNSCC cases (173). 

Alcohol appears to have an effect on risk of HNSCC independent of tobacco 

smoking, but these effects are consistently significant only at the highest level of 

alcohol consumption (173). It also appears that alcohol consumption potentiates the 

carcinogenic effect of tobacco at every level of tobacco use (173).

Smoking and oxidative stress 
Cigarette smoke contains approximately 1017 oxidant molecules per puff (180). The 

free radicals in cigarette smoke are produced (a) during the burning of tobacco and 

the smoking process and (b) generated when the gas phase and the constituents from 

the particulate matter are oxidized in the smoke aerosol or dissolved in oxygenated 

aqueous solutions or biological media (181). Analysis of both particulate phase, gas-

phase in cigarette smoke have detected different oxidants like superoxide anion (O2
•–

), quinones, hydrogen peroxide (H2O2), redox active metals (iron and copper), other 

heavy metals (cadmium, lead, mercury and arsenic), nitric oxide (NO•) and different 

nitroso carbon-centered radicals (181).
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Most of these species are highly reactive and increase oxidative damage in smokers. 

Free radicals from cigarette smoke have shown to cause peroxidation of the PUFA in 

cell membranes (182).  Isoprostanes are increased in exhaled air, plasma and urine in 

several studies (180;182). A dose-response relationship was observed between the 

number of cigarettes and urinary 8-iso-PGF2 (180). Increased levels of MDA have 

been found associated with current smoking status in population based studies (180). 

Biomarkers for protein oxidation, 3-nitrotyrosine is elevated in plasma and platelets 

of chronic smokers (183;184). The acute effects of smoking (an effect measured 

during the 24 hours after smoke exposure) increases markers of oxidative stress in 

humans, animals and in-vitro models as reviewed by van der Vaart et al. (182) The 

exposure to oxidant chemicals in smoke are also associated with depletion of 

endogenous levels of antioxidants. Cigarette smoking decreases plasma total 

antioxidant capacity, serum levels of ascorbic acid, -tocopherol, different 

carotenoids ( -carotene, -carotene, -cryptoxanthin, lutein/zeaxanthin)

(180;185;186). Diet also influences the levels of these antioxidants. After correcting 

for dietary intake, plasma ascorbic acid and -carotene still showed an inverse 

relationship with cigarette consumption (180;186). Plasma levels of GSH and 

cysteine decreased in smokers as compared to non-smokers (187). Serum selenium 

and erythrocyte GPx activities were also lower in smokers (185). 

Thus, smoking increases oxidative damage and stress in biological systems. 

Alcohol and oxidative stress
The toxicity of alcohol abuse is mediated through high intake of ethanol. The 

metabolic pathways of ethanol could produce free radicals that affect the antioxidant 

system (188). Ethanol ingestion causes an increase in free radical generation in the 

liver by induction of microsomal cytochrome p-450, conversion of xanthine 

dehydrogenase into xanthine oxidase in cytosol and increases one electron reduction 

in mitichondria increasing levels of superoxide anion (O2
•–) and hydrogen peroxide 

(H2O2) (188).
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The ESR in combination with spin trapping method has revealed that ethanol 

oxidation results mainly (more than 80%) in the formation of a free radical identified 

as 1-hydroxylethyl radical (HER) (189). HER have shown to have a high reactivity 

towards ascorbic acid, GSH, -tocopherol and DNA (Nakao and Augusto et al 1998, 

Stoyanovsky et al 1998). The elevation of oxidized LDL, advanced glyoxidation end 

products and acetaldehyde protein adducts have been observed in heavy alcoholic 

drinkers (188). A decrease level of GSH in liver has been observed both in ethanol 

fed animals as well as patients with alcoholism (188;190) . Lower levels of -

tocopherol in plasma and liver have been observed in humans and rodents after 

chronic alcohol intake, and the lowering of the -tocopherol is inversely correlated 

with the detection of lipid peroxidation markers (190). The enteral alcohol model has 

shown a marked decline in enzymatic activity and protein concentrations of various 

enzymes involved in antioxidant defence (190). 

Thus, alcohol abuse also increases oxidative stress. 

There is a strong association between heavy alcohol use and cigarette smoking. 

More than 80% of alcohol dependent patients are reported to smoke cigarettes 

(191;192). In head and neck cancer patients, the combined effect of high alcohol 

consumption in current smokers is more than additive indicating a positive synergy 

(91;173).

1.5.2 Diet and HNSCC 

Although smoking and drinking are the major risk factors for developing HNSCC, 

diet rich in fruits and vegetables have also shown to play an important role. The role 

of diet on the development and risk of HNSCC has been studied extensively. 

Recently the report from WCRF (91)  have clearly indicated that non-starchy 

vegetables, fruits and food rich in carotenoids probably protect against mouth, 

pharynx, larynx and lung cancer. Meta-analysis and several review articles also 

conclude that the consumption of fruit and vegetables is associated with a reduced 

risk of oral and pharyngeal cancer (64;65;193). The preventive effect of fruits and 
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vegetables is also seen in smokers, drinkers and those with both smoking and 

drinking habits (194). Other dietary factors apart from fruits and vegetables like meat, 

saturated fat have shown to increase the risk of HNSCC but the results are still 

inconclusive (91).

The mechanisms behind the protective effect of fruits and vegetables are not fully 

understood as described earlier. Probable mechanisms are their antioxidant role, 

modulation of carcinogenic metabolism, affecting cell transformation and 

differentiation, inhibition of cell proliferation and oncogene expression. 
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2. Study aims  

This work is part of a project where the overall goal is to explore which biomarkers 

of antioxidant defence and oxidative stress are associated with survival in HNSCC 

patients; and can diet rich in fruits and vegetables, modulating these biomarkers, 

improve survival in these patients. This study particularly has focussed on the low 

molecular weight plasma endogenous and dietary antioxidants.

The specific aims are 

to develop and evaluate improved sensitive chromatographic techniques for 

measuring plasma GSH and GSSG 

to establish which food groups contribute to the total antioxidant intake in 

Norwegian healthy individuals and to study whether intake of dietary 

antioxidants correlates with low molecular weight plasma antioxidants. 

to study which low molecular weight plasma antioxidants are affected by 

radiotherapy and their association with survival in HNSCC patients 



68



69

3. Summary of papers 

Paper I: Simultaneous quantification of reduced and oxidized glutathione in 

plasma using a two dimensional chromatographic system with parallel porous 

graphitized carbon columns coupled with fluorescence and coulometric 

electrochemical detection 

In Paper I, a fully validated, accurate and precise chromatographic method for the 

simultaneous quantification of GSH and GSSG in human plasma was developed. The 

developed method avoids artificial oxidation and degradation of GSH during sample 

preparation. In order to achieve this, we have used the commercially available 

Stabilyte tubes to generate plasma from blood. The special feature of these tubes is 

that the anticoagulant is acidic citrate resulting in a final plasma pH of 5.3, thereby 

stabilizing GSH and avoiding oxidation of GSH during plasma formation. After 

blood collection, serine borate buffer was immediately added to inhibit GGT. The 

buffer also contains bathophenanthroline disulphonate (BPDS) to chelate metal ions 

that otherwise can catalyze oxidation of GSH. In addition, we block the very reactive 

–SH group of GSH within 2 min after plasma generation with monobromobimane 

(MBB) to stop unwanted formation of disulphides. GSH bound to MBB, GSMBB, 

was detected with a fluorescence detector (FLD). GSSG was detected with an 

electrochemical detector (ED) optimized to provide lowest possible limits of 

detection (LOD). By combining both FLD and ED via column switching, we were 

able to detect both GSH and GSSG in a single run. The derivatized samples were 

stable up to 8 months in -80 C. A HypercarbTM column that does not require ion pair 

reagent for the retention of GSSG under reversed phase conditions was used. The 

column is stable in the pH range of 1-14 such that 100 μl of strong acidic supernatant 

could be injected without any column deterioration.  

Paper II: Simultaneous and robust trace analysis of reduced and oxidized 

glutathione in minute plasma samples using dual mode fluorescence detection 

and column switching HPLC 
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 In this work we have further developed the method presented in paper I, increasing 

both sensitivity and selectivity such that GSH and GSSG can be analyzed in 50 μL 

human plasma. In cases where blood/plasma volume is quite limited, the assay can 

detect GSH and GSSG in 5 μL plasma if 80% of the sample is injected into the 

HPLC system. The factors causing the oxidation and degradation of GSH during 

sample preparation have been taken care of and were similar as described in paper I. 

The plasma was generated in Stabilyte tubes and the –SH group of GSH was blocked 

with MBB within 2 min of plasma generation. GSH was detected as a MBB 

derivative by FLD. In this method, the GSSG was detected by FLD after on-line 

postcolumn derivatization with ortho-phthalaldehyde (OPA) at a pH of 12.4. The 

important factors involved in derivatization, namely coil volume, OPA concentration 

in mobile phase 2 and coil temperature were optimized to obtain lowest possible 

LOD for GSSG. The sensitivity for GSSG was improved by a factor of 20 as 

compared to method in paper I. The method is fully validated, performs well, is very 

robust for endogenous plasma concentrations of GSSG, and is currently in use for 

determination of GSH, GSSG and its redox potential in different clinical studies. 

Paper III: Intakes of antioxidants in coffee, wine, and vegetables are correlated 

with plasma carotenoids in humans 

The objective of this study was to determine the contribution of various food groups 

to total antioxidant intake, and to assess the correlations of the total antioxidant intake 

from various food groups with plasma antioxidants. We collected 7-d weighed 

dietary records in a group of 61 adults with corresponding plasma samples, and used 

data from a nationwide survey of 2672 Norwegian adults based on an extensive food 

frequency questionnaire (FFQ). No plasma samples were collected in the nationwide 

survey. The total intake of antioxidants was approximately 17 mmol/d with -

carotene, -tocopherol, and ascorbic acid contributing <10%. The intake of coffee 

contributed approximately 11.1 mmol or 64%, followed by fruits and berries (1.8 

mmol), tea (1.4 mmol), wine (0.8 mmol), cereals (i.e., all grain containing foods; 0.8 

mmol), and vegetables (0.4 mmol). The strongest correlations between intake of 



71

antioxidants from various food groups and plasma antioxidants were for carotenoids; 

tocopherols and thiols showed much lower correlations. The intake of total 

antioxidants was significantly correlated with lutein, zeaxanthin, and lycopene, 

whereas noncoffee antioxidant intake was significantly correlated with plasma lutein 

and -carotene. Intakes of coffee, wine and vegetables were significantly correlated 

with zeaxanthin, -carotene and -carotene respectively. 

Paper IV: Post-radiotherapy plasma total glutathione is associated to outcome in 

patients with head and neck squamous cell carcinoma 

In paper IV, four plasma thiols, namely GSH, cysteine, homocysteine and cysteinyl 

glycine, were measured in healthy controls (n= 51) and head and neck squamous cell 

carcinoma (HNSCC) patients (n= 29). The method employed in present study reduces 

disulphides prior to derivatization and protein precipitation. Thus, the total thiols 

measured in present study included free reduced thiols (TSH), disulphides (TSST), 

mixed disulphides (TSSX) and protein bound disulphides (TSSP). Patients received 

external beam radiation to a dose of 60-70 Gy for 5-7 weeks. The blood samples were 

taken immediately after the end of radiotherapy. Among thiols, total GSH was 

significantly lower and total homocysteine was significantly higher in patients as 

compared to controls. The differences were, however, not significant after adjusting 

for gender, smoking and BMI. The 29 HNSCC patients were followed for 36 months 

after the end of radiotherapy and 14 patients died during this period. Among patients, 

post-radiotherapy plasma total GSH was significantly higher in survivors than in non-

survivors. There were no significant differences between the levels of other thiols 

(total cysteine, homocysteine or cysteinyl-glycine) in these two groups. Plasma total 

GSH was also associated to survival in these patients, and the patients with lowest 

total GSH levels had the lowest overall survival. 

Paper V: Post-radiotherapy plasma lutein, -carotene and -carotene are 

positively associated with survival in patients with head and neck squamous cell 

carcinoma.
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The aim of our study was to compare plasma dietary antioxidants, namely 

tocopherols and carotenoids (i.e. biomarkers of dietary intake of fruits and 

vegetables), in 29 HNSCC patients with 51 healthy controls, and to explore the 

possibility that these antioxidants may be related to survival among HNSCC patients. 

Patients received external beam radiation to a dose of 60-70 Gy for 5-7 weeks. The 

blood samples were taken immediately after the end of radiotherapy. We observed 

that among dietary antioxidants, post-radiotherapy plasma carotenoids (lutein, 

zeaxanthin, -carotene, -carotene, lycopene and total) were lower in HNSCC 

patients than controls. Among the patients, 18 died and 11 were still alive during 

median follow-up of 55 months for survivors. The survival analysis showed 

significant positive association of plasma carotenoids (lutein, -carotene and -

carotene) with both overall and progression free survival in HNSCC patients. We 

found no significant differences between plasma tocpherols in patients as compared 

to controls. Further, none of the tocopherols were associated to survival in patients. 

This may indicate that increased intake of fruits and vegetables, reflected by plasma 

carotenoids, may reduce risk of premature death or recurrence of tumor in these 

patients.

Paper VI: Pre-radiotherapy plasma carotenoids and markers of oxidative stress 

are associated with survival in head and neck squamous cell carcinoma patients

The aim of this study was to compare plasma levels of antioxidants and markers of 

oxidative stress in HNSCC patients with healthy controls, the effect of radiotherapy 

on these biomarkers and their association to survival in HNSCC patients. Seventy 

eight HNSCC patients were included in this study. Follow-up samples at the end of 

radiotherapy were obtained in 60 patients. The control group comprised of 100 

healthy individuals matched with respect to age range, gender and smoking with 

HNSCC patients. Antioxidants, both endogenous and dietary, and oxidative stress 

markers were measured in plasma samples of controls and patients. Dietary 

antioxidants included 6 carotenoids (lutein, zeaxanthin, -cryptoxanthin, -carotene,

-carotene and lycopene), 4 tocopherols ( -, -, - and -tocopherol) and ascorbic 
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acid. The endogenous antioxidants measured were GSH redox potential, total GSH 

and cysteine. In addition, total antioxidant capacity was measured by FRAP and 

FRAP without uric acid. Among oxidative stress parameters, d-ROMs, GGT, ratio 

oxidized/total ascorbic acid were measured. 

 All dietary antioxidants (carotenoids, tocopherols and ascorbic acid), total 

antioxidant capacity (FRAP, FRAP without uric acid) and total cysteine were 

significantly lower in HNSCC patients as compared to controls and dietary 

antioxidants decreased during radiotherapy. Among oxidative stress biomarkers, d-

ROMs were significantly higher than controls and increased during radiotherapy. 

During the median follow-up time of 28 months for survivors, 23 patients died due to 

HNSCC, one patient died of lung cancer and one patient died of unknown cause. 

Among dietary antioxidants, pre-radiotherapy plasma levels of carotenoids (lutein, -

cryptoxanthin, -carotene and total), were positively associated to progression free- 

and overall- survival. No significant associations were observed between pre-

radiotherapy plasma levels of other biomarkers with survival. However, the patients 

with a high relative decrease in plasma levels of FRAP and a high relative increase in 

plasma levels of d-ROMs during radiotherapy had a higher survival rate.

In conclusion, we observed that patients with high pre-radiotherapy plasma 

carotenoids (i.e., biomarkers of fruits and vegetables) are associated with a prolonged 

survival. Further, increase in oxidative stress during treatment also increases survival 

in these patients. Thus, the therapeutic potential of optimizing antioxidant status and 

oxidative stress by increasing intake of fruits and vegetables should be explored 

further.
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4. General discussion 

We have described the average daily intake of antioxidants in the Norwegian healthy 

individuals. It was found that coffee was the major contributor (64-68 %) to the daily 

antioxidant intake in Norwegian diet. The intake of total antioxidants from different 

food groups was significantly correlated with plasma carotenoids. Other plasma 

antioxidants like tocopherols and thiols showed much lower correlations. These 

plasma antioxidants (carotenoids, tocopherols and thiols) were also studied in head 

and neck squamous cell carcinoma (HNSCC) patients, both before and after the end 

of radiotherapy. Among antioxidant biomarkers, several dietary antioxidants were 

found to be significantly lower as compared to healthy controls. HNSCC patients 

receive high dose of radiation therapy. The usual therapeutic radiation dose schedule 

includes 2 Gy/day, 10 Gy/week, for a total of 50-70 Gy in 6 weeks. The plasma 

dietary antioxidants decreased and oxidative stress biomarkers increased significantly 

after the radiotherapy in these patients. Among plasma dietary antioxidants, 

carotenoids, both before and after radiotherapy, were found to be significantly and 

positively associated with survival. Among endogenous antioxidants, post-

radiotherapy plasma total GSH was significantly and positively associated with 

survival. Relative decreases in total antioxidant capacity FRAP and relative increases 

in oxidative stress biomarker d-ROMs during radiotherapy were also significantly 

associated with survival. 

4.1 Methods for assessment of antioxidant and oxidative 
stress status 

There are no single biomarkers available that can define the complete antioxidant and 

oxidative stress status in humans. Thus, a number of biomarkers are measured in 

different sample matrixes to study antioxidant and oxidative stress status both in 

healthy individuals and patients. The feasibility in a clinical study and accuracy in the 

measurement of the chosen biomarkers are important factors. The purpose/aim and 
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the study population in the clinical trials are also deciding factors in choosing the 

biomarker. Our aim was to study antioxidant intake, correlation of antioxidant intake 

to in vivo antioxidants, effect of radiotherapy on in vivo antioxidants and association 

of in vivo antioxidants to survival in HNSCC patients. Thus, we have chosen 

biomarkers that could enlighten these aspects in healthy individuals and patients. All 

the biomarkers were measured in plasma as the status of biomarkers in this biological 

fluid could both reflect the oxidative stress in less accessible tissues and systemic 

oxidative stress in the whole body. Further, the plasma levels of dietary antioxidants 

have shown to be correlated to the intakes of fruits and vegetables (195;196). The 

antioxidants status was studied by measuring both endogenous and dietary 

antioxidants. Among endogenous biomarkers, methods were developed for the 

determination of plasma reduced GSH, GSSG, total GSH and total cysteine. The 

dietary antioxidants are studied by measuring 6 different carotenoids, 4 different 

tocopherols and ascorbic acid. Total antioxidant capacity was measured by FRAP and 

FRAP after removing uric acid. The oxidative stress was studied by measuring d-

ROMs, GGT and ratio oxidized/total ascorbic acid. Not all biomarkers were 

measured in all the clinical studies as some of the methods for the measurement of 

biomarkers were not available and were developed simultaneously.  

4.1.1   Endogenous antioxidants- Glutathione method development 

Reduced and oxidized GSH 
Among endogenous antioxidants, GSH is considered to be one of the major 

nonprotein thiol involved in the antioxidant cellular defence. This tripepetide is 

involved enzymatically in reduction of hydroperoxides and nonenzymatically to 

maintain vitamin E and ascorbic acid in reduced and functional forms (197). In doing 

so GSH is oxidized to GSSG, which is either reduced enzymatically by GR or 

excreted from cells into extracellular fluids. During severe oxidative stress and 

detoxification reactions involving GSH, the concentration of GSH may decrease and 

the concentration of GSSG may increase in the affected cells. This results in a 
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decreased export of GSH and an increased export of GSSG to plasma, thereby 

altering the GSH redox state of the plasma pool. Thus, the altered plasma GSH and 

GSSG concentrations can, thus, reflect GSH/GSSG status and oxidative stress in 

other less accessible tissues (197). Measurement of GSH/GSSG in plasma is not 

straightforward as a number of factors can affect the accuracy in its measurement. 

Sample handling 
 The factors affecting the accuracy in the measurement of GSH include mainly the 

sample handling as shown in paper I. GSH, being an antioxidant, is easily oxidized 

during the centrifugation of whole blood in order to get the plasma. This was clearly 

observed when we used different anticoagulant tubes for the preparation of plasma 

from the whole blood. It was observed that pH of the blood sampling tube was 

important in stopping the oxidation of GSH. The lower the pH the lesser was the 

oxidation. Stabilyte tubes have shown to preserve the ratio of GSH to GSSG as 

compared to tubes containing EDTA, heparin and citrate anticoagulants. The 

anticoagulant used in Stablilyte tubes is acidic citrate such that the pH of the plasma 

prepared from these tubes was 5.3 whereas the pH of the other tubes was 7.4. One 

could suspect that there could be the leakage of GSH from erythrocytes in Stabilyte 

as compared to other tubes as erythrocytes contain 1000 times more GSH than 

plasma. Any leakage of GSH from erythrocytes, either as reduced or oxidized form, 

will increase the total GSH level in plasma as the total GSH measured by the our 

method measures all the forms of GSH after reducing them to GSH. The total GSH 

was similar in all the tubes and we concluded that the high levels of reduced GSH in 

the plasma of Stabilyte were not due to the leakage from erythrocytes. Similar results 

for reduced GSH have been observed by Williams et al. (198). GSSG concentration 

was significantly higher in other anticoagulant tubes as compared to Stabilyte but still 

could not account for the lower GSH concentrations. The reason could be that the 

GSH makes disulphides with cysteine and proteins that we do not measure with this 

method (199-202). 
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Another factor that could affect GSH concentration is the enzyme GGT. GGT cleaves 

GSH at the -glutamyl bond into amino acid glutamate and dipepetide cysteinyl 

glycine, thereby reducing its concentration. Andersson et al. (203) have shown that 

total GSH was 53 % lower in plasma when GGT was not inhibited. After blood 

collection, serine borate buffer was immediately added to inhibit GGT. The inhibition 

is produced by formation of serine-borate complex which binds at the -glutamyl

binding site of the light subunit of GGT (204). The serine borate buffer used also 

contained BPDS to chelate metal ions that otherwise can catalyze oxidation of GSH 

(147;148;200).

Thus, the Stabilyte tubes were chosen for the measurement of reduced, oxidized and 

total GSH in plasma in the clinical study presented in paper VI. The clinical studies 

presented in the paper III and IV, however, did not use Stabilyte tubes as the method 

was not completely developed. We have, thus, measured only total GSH in first 

clinical study with HNSCC as total GSH is much more stable in different 

anticoagulants as shown in paper I. 

The blood taken in these tubes could be stored up to 40 min at room temperature 

without any significant increase in the GSH levels.

Detection
After the plasma preparation, the –SH group of GSH was still prone to oxidation as 

the acidification of samples with different acids slows GSH oxidation but it does not 

prevent it completely (149;205). Thus, it was important to block the –SH group of 

GSH in plasma before storage. Since GSH does not contain any native 

spectrophotometric or fluorescence properties we have blocked the –SH group of 

GSH with monobromobimane (MBB). MBB not only blocks the –SH group of GSH 

but it imparts it with the fluorescence properties such that GSH was detected by a 

fluorescence detector with high sensitivity. GSSG also has very poor and non-

specific spectrophotometric or fluorescence properties and the concentration of 

GSSG in plasma is in the nmol/L range. GSSG could be determined either indirectly 

by subtraction method or directly by electrochemical detector (ED) or mass 
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spectrometry (MS) detector. For the indirect method, the GSSG is reduced either 

chemically or enzymatically to GSH. The reduced GSH is then measured by reacting 

it with thiol specific fluorescence probe. The plasma contains different forms of 

bound GSH apart from GSSG, which are also reduced in this process thereby 

reporting higher GSSG concentrations. The concentration of GSSG in plasma is in 

nmol/L and after reduction the increase in reduced GSH is very less which is difficult 

to measure with accuracy. Among the direct methods, GSSG could be measured by 

ED and MS detector. The limit of detection with both detectors is in the pmol range 

as shown in Table 2 in paper II. The ED used in paper I contains an array of 8 

electrochemical cells. The advantage of such a series of cells was that increasing 

potential could be applied to the cells, which will oxidize the impurities in the sample 

matrix and increase the specificity for GSSG. The availability and the price of the 

detector were also deciding factors in choice of the detector. We have, thus, chosen 

ED for detection of GSSG in paper I.

After analyzing plasma samples for GSH and GSSG in other clinical studies, we were 

able to see the limitations with the developed method. The limitations were frequent 

changing of the precolumn/analytical column 1 due to the large injection volume in 

order to reach the required sensitivity for the detection of GSSG. The second 

limitation was the specificity of GSSG in some plasma samples. GSSG being an 

oxidized product requires high electrochemical potential in order to be further 

oxidized. At high potentials, many other compounds in the plasma could be oxidized. 

The series of 8 electrochemical cells used for the detection of GSSG oxidized most of 

the interferences. However, in some plasma samples all the impurities were not 

removed and interfered with the GSSG detection. We have, thus, developed the 

existing method and improved both the sensitivity and specificity for GSSG such that 

injection volume was reduced to 10 μL (paper II). The ED was replaced by an on-line 

postcolumn reactor and a fluorescence detector (FLD). The fluorescence probe used 

in the detection of GSSG was ortho-phthalaldehyde (OPA). OPA is a thiol specific 

fluorescence probe and GSSG usually does not react with these reagents due to lack 

of free –SH group. Cohn and Lyle (206) reported for the first time that GSSG reacted 
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with OPA at a very high pH, namely 12. Hissin and Hilf et al. (207) confirmed the 

results and developed a method for the measurement of GSH and GSSG in a test 

tube. The method suffered with the contamination from other organic compounds in 

the sample as OPA at pH 12 reacted with other compounds besides GSSG. It was 

then suggested to perform a chromatographic separation of GSSG prior to reaction 

with OPA (208). The relative fluorescence intensities of other amino acids like 

glutamic acid, cysteine, cystine, leucine and glycine were less than 1% as compared 

to GSSG thereby showing high specificity of OPA for GSSG at pH 12 (207) . After 

replacing ED with on-line postcolumn reactor and a FLD, several important 

postcolumn reaction parameters, namely coil volume, concentration of OPA in 

mobile phase and temperature for postcolumn reactor were optimized to provide 

lowest possible LOD for GSSG (paper II). The sensitivity for GSSG was, thus, 

improved by a factor of 20 as compared to method in paper I and we were able to 

measure GSH and GSSG simultaneously in 50 μL or less plasma volume. The current 

method was, thus, used for the analysis of plasma GSH and GSSG in paper VI. 

Total Glutathione 
GSH exists in different forms in plasma and blood. The different forms are following: 

reduced GSH, GSH bound to other thiols like cysteine, oxidized form GSSG, GSH 

bound to protein. The distribution of these forms is different in blood and plasma as 

shown by Mills et al. (145) and Mansoor et al. (144). The method for the total GSH 

used in the clinical studies (papers III, IV and VI) includes the reduction of all the 

bounded forms of GSH to the reduced form prior to derivatization and protein 

precipitation. A homocysteine kit was used for the determination of GSH in plasma. 

The commercially available homocysteine kit is validated only for the determination 

of plasma homocysteine but could also be used for the determination of total GSH in 

plasma. Thus, the kit was further validated for the total GSH determination in plasma. 

Different anticoagulants were also tested for the sample collection for total GSH. 

Results have shown that Stabilyte, heparin and EDTA sampling tubes could be used 

for total GSH.
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4.1.2 Dietary antioxidants 

The methods for the determination of dietary antioxidants, namely carotenoids 

(lutein, zeaxanthin, -cryptoxanthin, -carotene, -carotene and lycopene) and 

tocopherols ( -, -, - and -tocopherol) were developed and validated in our 

laboratory.  Different anticoagulants were tested and the results are as follows: For 

carotenoids, EDTA, heparin and serum anticoagulants can be used (data not shown). 

For tocopherols, serum and EDTA anticoagulants are appropriate anticoagulants 

(162). The blood samples from controls and patients in papers IV, V and VI were 

collected in different anticoagulants tubes. The control values were, thus, corrected 

for the appropriate dilution factor due to different volumes of anticoagulants and 

eventual effect of anticoagulants on these biomarkers before statistical analyses. The 

ascorbic acid method was developed by Karlsen et al. (209) and the blood sample 

preparation and analysis was done accordingly as described. FRAP was measured as 

described by Benzie et al. (155) and Halvorsen et al. (210).

4.1.3 Oxidative stress parameters 

The oxidative stress was measured by measuring increase in the d-ROMs, GGT and 

ratio of oxidized/total ascorbic acid. The blood samples for d-ROMs, GGT, oxidized 

ascorbic acid (DHAA) and total ascorbic acid were taken and analyzed that avoided 

any artefact formation.

The biomarkers of DNA, proteins and lipids oxidation were not measured due to 

unavailability of these analytical methods in our laboratory. A large variation in the 

values of these biomarkers has been observed depending upon the method employed 

for measurement (127). Additionally, the type of biomarkers that are representative 

for studying oxidation of DNA, proteins and lipids were not fully established at the 

time of initiation of these studies, such that appropriate sample handling was not 

accomplished either.
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4.2 Sources of antioxidants in healthy Norwegian 
individuals

Among healthy Norwegian individuals, the main dietary contribution to total 

antioxidant intake is coffee (Paper III). These results were observed in 61 individuals 

with 7-day weighed dietary record and were consistent with a much larger nationwide 

survey including 2672 Norwegian adults. The diets in 2672 Norwegian adults were 

characterized using an extensive, self-administered FFQ. The mean daily intake of 

coffee was ca 480 mL and accounted for 64-68 % in both the studies. Although it is 

reported that coffee contains high amount of antioxidants but such a high contribution 

of coffee to antioxidant intake in Norwegian population is not observed before. 

Similar results were observed in a study done by Pulido et al. (211) where coffee 

contributed to 66 % to antioxidant intake in Spanish population. Pellegrini et al. (212) 

have also shown that coffee and tea were the major contributor to antioxidant intake 

in Italian women. 

 Coffee contains several different antioxidants such as caffeine, polyphenols 

including chlorogenic acid (an ester of caffeic acid and quinic acid), volatile aroma 

compounds and various heterocyclic compounds (213). Both caffeic acid and 

chlorogenic acid are absorbed in humans, and plasma antioxidants increase after 

coffee intake (214-216). Epidemiological studies and meta-analysis have also shown 

that coffee is associated with reduced risk of type 2 diabetes, Parkinson disease, 

cirrhosis, liver cancer (217;218). The results showing association between coffee 

intake and risk or mortality due to CVD have not been conclusive (213;217;219). The 

effect of coffee intake in CVD is dependent upon the dose (U-shaped association with 

coffee intake) and type of coffee (filtered, boiled) consumed (213;217;219). In 

conclusion, a moderate intake of 3-5 cups/day filtered coffee could be protective. 

After coffee, fruits and berries were the next contributor to total antioxidant intake. 

Fruits and berries are rich in different polyphenols, carotenoids, vitamins and 

minerals. Intakes of most common dietary antioxidants, namely -carotene, -
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tocopherol and ascorbic acid are also shown to be correlated to antioxidant intake 

from fruits and vegetables (paper III).

The correlation of total antioxidant intake from different food groups and plasma 

antioxidants was studied. Among the plasma antioxidants measured, only carotenoids 

(lutein, zeaxanthin, -carotene, -carotene and lycopene) showed significant 

correlations. As these 5 carotenoids are only minor contributors to the total intake of 

antioxidants; other dietary antioxidants may theoretically save, recharge or salvage 

these carotenoids when they have been used in a redox reaction in accordance with 

the hypothesis that many antioxidants may interact in a network (95;220). Valtuena et 

al. (221) have also shown that plasma -carotene is more strongly associated to 

intakes of ascorbic acid and E rather than -carotene intake itself. The authors 

suggested that it may reflect either sharing of dietary sources (primarily ascorbic 

acid) and/or a protection of plasma -carotene by other antioxidants. The other 

plasma antioxidants like tocopherols and thiols showed much lower correlations with 

total antioxidant intake from different food groups. These observations might suggest 

that the plasma tocopherols and thiols are not in complete equilibrium with plasma 

carotenoids, which could be due to different chemical reactivities or 

compartmentalization of the plasma pools. Besides, our study included healthy 

individuals having relatively low systemic oxidative stress. Stronger correlations and 

antioxidant networking including tocopherols and thiols might be more important 

and, thus, be observed in clinical situations with prolonged oxidative stress.

Thus, in Norwegian healthy individuals the main contributors to antioxidant intake 

are coffee, fruits and berries. Among different low molecular weight plasma 

antioxidants, carotenoids have shown strongest correlations with total antioxidant 

intake from different food groups.     
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4.3 Plasma antioxidants in head and neck cancer patients 

The assessment of plasma antioxidants in HNSCC patients were studied in two 

clinical studies 1 and 2. The first was a pilot study with 29 HNSCC patients and 51 

healthy controls. The patients received external beam radiotherapy to a total dose of 

60-70 Gy during the treatment period of 5-7 weeks (papers IV and V). The main 

purpose of this study was to investigate how the plasma antioxidants status of the 

patients after the end of radiotherapy and being cured of cancer was associated to 

survival. Hence, post-radiotherapy blood sample were taken at two different time 

points, immediately after the end of radiotherapy and 6-weeks after the end of 

radiotherapy. The levels were compared to healthy controls. In the clinical study 2 

(paper VI), we wanted to find out how radiotherapy affects the plasma antioxidant 

levels and how pre-radiotherapy plasma antioxidant status is related to survival in 

these patients. This information is quite important since it is speculated that the 

adverse effects of radiotherapy could be reduced by giving antioxidants to the 

patients during the radiotherapy. The purpose of radiotherapy is to kill the cancer by 

increasing the amount of free radicals. The antioxidant supplementation during 

radiation therapy poses a conundrum for the radiation oncologist, as antioxidants that 

protect normal cells from reactive oxygen species may provide the same benefits to 

cancer cells and reduce the efficacy of treatment (222;223). Thus, it is quite important 

to know what actually happens to plasma endogenous and dietary antioxidants before 

and after radiotherapy and how these antioxidants are related to survival in these 

patients. Hence, in the second clinical study 78 patients were included and blood 

samples were taken both before and after the end of the radiotherapy. Patients in this 

study also received a total dose of 50-70 Gy for 5-7 weeks.

The populations in both the studies were quite similar with respect to the type of 

cancer, age and radiation therapy dose. However, the study presented in paper VI had 

more men and non-smokers; more patients received assisted enteral nutrition and 

were operated before radiotherapy as shown in Table 4. The assisted nutrition 

received by patients in the clinical study 2 was also fortified with -carotene (130 
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μg/100 mL) whereas the assisted nutrition given to patients in the first clinical study 

did not contain any carotenoids. 
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Table 4 Different basic parameters in clinical studies 1 and 2. In the first clinical 

study, only post-radiotherapy samples were available whereas in the second 

clinical study both pre- and post- radiotherapy samples were taken.

Variables Study 1 (paper 

IV and V) 

Post-

radiotherapy

n = 29 

Study 2 

(paper VI) 

Post-

radiotherapy

n = 60 

Study 2 (paper 

VI)

Pre-

radiotherapy

n = 78

Age (years)* 64 (43-90)  62 (37-85) 63 (34-85) 

BMI* 24 (17-31) 25 (16-40) 25 (16-40) 

Male 22 (76%) 56 (93%) 69 (88%) Gender

Female 7 4 9 

Non-smoker 6 (23%) 25 (42%) 28 (36%) Smoking status 

Smoker 20 35 50 

Stage 1 and 2 7 (24%) 20 (33%) 26 (33%) Disease stage 

Stage 3 and 4 22 40 52 

Surgery before 

radiotherapy

6 (21%) 22 (37%) 30 (39%) Treatment 

Radiotherapy 23 38 48 

Assisted

nutrition

8 (28%) 24 (40%) 24 (40%) Nutrition form 

Oral diet 21 36 36 

* Values are presented as median (range) 
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4.3.1 Dietary antioxidants 

Plasma levels, effect of radiotherapy and survival 
The levels of pre- and post- radiotherapy plasma dietary antioxidants in HNSCC 

patients were compared to healthy controls (papers V and VI). The levels of several 

pre-radiotherapy dietary antioxidants including carotenoids were significantly lower 

in HNSCC patients than matched controls as shown in paper VI. This could be due to 

low intake of fruits and vegetables and other life style factors including smoking. 

Reports have also shown that low intakes of fruits and vegetables (91;193), low 

dietary intakes of carotenoids (194;224) and lower pre-diagnostic plasma -carotene

levels (225;226) are associated with increased risk of developing HNSCC. Post-

radiotherapy antioxidants were also significantly lower than controls as shown in 

paper V. Since the blood samples in paper V were taken at the end of radiotherapy, 

lower levels of the antioxidants in patients could be due to other additional factors 

such as (1) eating problems due to the adverse effects of radiotherapy and (2) 

utilization of antioxidants during radiotherapy. After correcting either for various 

confounding factors such as BMI (representing food intake and physical activity), 

smoking and age or using matched controls, the results were still significant for 

carotenoids. This indicates that the food intake did not account for the observed 

difference. A low intake of fruits and vegetables both before and during the 

radiotherapy seems to be the most plausible explanation for the lower carotenoid 

plasma levels in patients. Steward et al. (227) have also shown that the patients that 

have been treated for early-stage oral cavity carcinoma and are free of cancer have a 

much lower mean daily intake of fruits and vegetables and dietary antioxidants than 

matched controls.  

In paper VI, we have further studied the effect of radiotherapy on these antioxidants. 

During radiotherapy we observed a significant decline in plasma levels of 

carotenoids, tocopherols and ascorbic acid. Among carotenoids, -carotene showed a 

non-significant decrease (p = 0.4). In paper VI, 24 patients received assisted enteral 

nutrition fortified with -carotene (130 μg/ml). Subgroup analysis in patients without 
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assisted enteral nutrition revealed a borderline decline also for -carotene (p = 0.06). 

It has also been shown that the half-lives of serum carotenoids during depletion 

(intake of low carotenoid diet) are 4-11 weeks (228). Thus, the decrease in plasma 

carotenoids during radiotherapy (a period of 5-7 weeks) could be due to low intake of 

fruits and vegetables during treatment period and utilization of these antioxidants 

during that period.

The survival was studied with both post-radiotherapy (paper V) and pre-radiotherapy 

plasma antioxidant levels (paper VI). Our results showed that among dietary 

antioxidants, 3 post-radiotherapy plasma carotenoids (lutein, -carotene and -

carotene) were significantly and positively associated with survival in these patients 

after correcting for BMI (paper V). None of the tocopherols were associated to 

survival. These 3 carotenoids were also found to be most reliable for assessing 

changes in fruit and vegetable intakes (229-235). Paper III has also shown that 

antioxidant intake in different food groups is correlated to plasma carotenoids and not 

tocopherols in healthy individuals. Since the patients have lower intake of fruits and 

vegetables as reflected through their plasma carotenoid levels and data shown 

elsewhere (227;236), we suggest that increasing the intake of this food group may 

reduce risk of premature death or recurrence of tumor in HNSCC patients. 

 In paper VI, we have explored how the pre-radiotherapy plasma levels are associated 

to survival. Results have shown that plasma carotenoids (lutein, -carotene and -

cryptoxanthin and total) are significantly and positively associated to survival. Other 

dietary antioxidants such as tocopherols and ascorbic acid have shown no significant 

associations with the survival. Recent report from WCRF has also concluded that 

foods containing carotenoids probably protect against mouth, pharynx, larynx and 

lung cancer (91). In elderly subjects the plasma carotene concentration was associated 

with a lower overall mortality risk (70). This risk was also observed for both cancer 

and cardiovascular mortality. Unlike our study, Mayne et al. (237) has shown that 

among carotenoids, only plasma lycopene is associated to overall survival in early 

stage head and neck cancer patients. The study population was, however, different 
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from our study as one of the inclusion criteria in the study was that the patients had 

completed their treatment and considered free of cancer at any site. Hence, many 

deaths related to treatment toxicity and other causes were not recorded.

In conclusion, plasma levels of both pre- and post- radiotherapy carotenoids 

(biomarkers of fruits and vegetables) in HNSCC patients are lower than healthy 

controls, decrease during radiotherapy and have shown positive associations with 

overall and progression free survival.

4.3.2 Endogenous antioxidants 

Plasma levels, effect of radiotherapy and survival 
Among endogenous antioxidants, we measured plasma GSH in papers IV and VI. In 

paper IV the method for the determination of both reduced and oxidized was not 

available and thus we have only measured plasma total GSH. Both in papers IV and 

V, the total GSH was not significantly lower in patients as compared to healthy 

controls. The post-radiotherapy plasma levels of total GSH measured in HNSCC 

patients in paper VI (mean total GSH = 5.63 μM) were, however, higher than those in 

paper IV (mean total GSH = 3.68 μM) showing that the patients in the paper VI have 

a better endogenous antioxidant status. In both papers, same method for the analysis 

of total GSH is employed. The reason for better plasma GSH status of patients in the 

clinical study 2 could be due to following reasons. In the clinical study 2 there were 

fewer smokers, fewer advanced stage (III and IV) patients and more patients received 

assisted nutrition as compared to study 1. Additionally, more patients in clinical study 

2 were operated before radiotherapy as compared to clinical study 1. The 

postoperative radiotherapy has shown to have a significant positive association with 

both progression free- and overall- survival, log rank p = 0.03 and 0.005, 

respectively. Thus, patients in clinical study 2 were better followed up as compared to 

patients in study 1. Another reason for high total GSH concentration in paper VI 

could be that plasma in clinical study 2 was collected in Stabilyte tubes and serine 

borate buffer that inhibits the enzyme gamma glutamyl transpeptidase (GGT) was 
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added. The enzyme GGT cleaves GSH thereby reducing its concentration in samples. 

Serine borate binds GGT thereby inhibiting its activity.

The effect of radiotherapy on plasma GSH redox potential and total GSH was studied 

in paper VI. Although dietary antioxidants decreased significantly after radiotherapy, 

we observed no decrease in endogenous antioxidants. Similar results are shown by 

Mukndan et al. (238) and Bhuvarahamurthy et al. (239) where they have studied 

plasma reduced GSH before and after radiation therapy in uterine cervix cancer 

patients. However, Jadhav et al. (240) have shown decreased levels of plasma 

GSH+GSSG after one fraction of radiation therapy in cervix cancer. This difference 

could be due to the fact that they measured GSH+GSSG only after one fraction of 

radiation therapy and not after completing the whole treatment.

The association of plasma GSH levels with survival is studied in papers IV and VI. 

Paper IV has shown that the patients with post-radiotherapy plasma total GSH levels 

over median has longest overall survival rate. The pre-radiotherapy GSH redox 

potential and total GSH have shown no association with survival in paper VI. 

4.3.3 Total antioxidant capacity (TAC) 

Plasma levels, effect of radiotherapy and survival 
Plasma TAC was measured by FRAP and FRAP without uric acid (paper VI). Uric 

acid accounts for about 60 % antioxidant capacity in FRAP (155). The roles of uric 

acid as an antioxidant is still inconclusive and thus we have measured both FRAP and 

FRAP without uric acid. Both FRAP and FRAP without uric acid were significantly 

lower in HNSCC patients than healthy controls. However, none of them decreased 

significantly during radiotherapy. Similar effect of radiotherapy on TAC measured by 

TRAP was shown by Erhola et al. (241) in lung cancer patients. To our knowledge no 

data is available showing effect of radiotherapy on TAC in HNSCC patients. Pre-

radiotherapy plasma TAC was not associated with survival. However, relative 

decreases in FRAP showed a positive association with survival. The effect could be 
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due to decrease in uric acid levels as FRAP without uric acid showed a borderline 

association with survival (HR 0.53, 95 % CI 0.23-1.21, p = 0.13).

4.3.4 Oxidative stress biomarkers 

Plasma levels, effect of radiotherapy and survival 
The oxidative stress biomarkers measured in plasma were d-ROMs, GGT and ratio 

oxidized/total ascorbic acid (paper VI). d-ROMs were significantly higher in patients 

as compared to controls and increased significantly during radiotherapy also. Another 

marker of oxidative stress GGT also increased significantly during radiotherapy. We 

observed no significant association between pre-radiotherapy plasma levels of 

markers of oxidative stress and survival. However, a high relative increase in d-

ROMs during radiotherapy was significantly and positively associated with survival 

in patients. These results indicate that the patients that are responding to radiotherapy 

and increase oxidative stress during treatment have a prolonged survival. Thus, care 

must be taken if antioxidant administration is considered during the treatment period.  

4.4 Future perspectives   

We measured dietary antioxidants with different chemical properties in order to study 

their association with antioxidant intake in healthy subjects and with survival in 

HNSCC patients. The results show that plasma carotenoids were significantly 

associated to total antioxidant intake from different food groups in healthy 

individuals and were positively associated to survival in HNSCC patients. Among 

endogenous antioxidants, we have studied only glutathione and found no strong 

associations. Thus, other endogenous antioxidants like different enzymes involved in 

antioxidant defence like superoxide dismutase, catalase, glutathione peroxidase and 

glutathione reductase could be studied in this population.

Since plasma carotenoids (biomarkers of fruits and vegetables) have shown strongest 

effects in our studies, intervention trials with increasing fruits and vegetables intake 
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in these patients at an appropriate timing and studying survival could be conducted. 

This group of patients suffer from a lot of eating problems and thus intervention in 

the form of juice or soups could be suggested. Nutritional counselling, especially 

during the treatment period will motivate the patients to maintain their fruit and 

vegetable intake and thus should be integrated in the regular treatment schedule. 
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5. Conclusions 

A sensitive and specific chromatographic method for the simultaneous 

determination of GSH and GSSG in plasma using dual mode fluorescence 

detection has been developed. Use of Stabilyte blood sampling tubes for 

plasma preparation, inhibition of GGT and blocking the –SH group of GSH 

with monobromobimane, are important factors for maintaining GSH and 

GSSG ratio in plasma. The specificity and sensitivity of this assay allows 

analysis after fingertip sampling, blood sampling from infants or multiple 

blood sampling from experimental animals without sacrificing the animal. 

Coffee intake, followed by fruits and berries are the major contributors to 

antioxidant intake in healthy Norwegian individuals. Several plasma 

carotenoids are correlated to total antioxidant intake (FRAP) by different food 

groups (coffee, tea, wine, cereal, fruits and vegetables).

In HNSCC patients, both pre- and post- radiotherapy plasma carotenoids were 

significantly lower in patients compared to healthy controls. All plasma 

dietary antioxidants (carotenoids, tocopherols and ascorbic acid) decreased 

significantly during radiotherapy. No effect of radiotherapy was observed on 

endogenous antioxidants. Oxidative stress, measured by d-ROMs and GGT 

increased significantly during radiotherapy. Among the different antioxidants 

measured, pre-radiotherapy plasma carotenoids have shown strongest positive 

association with survival in these patients. Additionally, the relative increases 

in plasma levels of d-ROMs and relative decreases in plasma levels of total 

antioxidant capacity (FRAP) during radiotherapy were also associated with a 

prolonged survival in these patients. 

Our data show that high levels of both pre- and post- radiotherapy plasma 

carotenoids are beneficial for survival in HNSCC patients. Plasma carotenoids 

are biomarkers of fruits and vegetable intake. This may suggest that HNSCC 
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patients should be advised to increase their intake of fruits and vegetables rich 

in carotenoids, both before and after radiotherapy. However, since a reduced 

risk of disease relapse was observed in individuals experiencing a greater 

degree of oxidative stress during treatment period, our data may suggest that 

administration of antioxidants should not be combined with radiotherapy. The 

effects of carotenoid-rich fruits and vegetables before, during and after the 

radiotherapy on survival in HNSCC patients should be studied in future 

intervention trials.
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