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INTRODUCTION 

 

1. OVERWEIGHT AND OBESITY 

The World Health Organisation (WHO) defines overweight and obesity as “abnormal or 

excessive fat accumulation that presents a risk to health” (1). In 2005, WHO projections 

indicated that globally there were approximately 1.6 billion overweight adults (age 15+) and 

at least 400 million obese adults. Obesity is an increasing health problem not only in Western 

industrialized nations but also in low- and middle-income countries, particularly in urban 

settings. Recent data from the Nord-Trøndelag Health Study (HUNT3) in Norway showed 

that more than 20 % of the participants were obese; this represented a three-fold increase for 

women and a doubling of the numbers for men since the 1980s (unpublished). The increase 

was highest in the younger age categories.  

Overweight and obesity are major risk factors for a number of diseases, including type 2 

diabetes, cardiovascular diseases, gall bladder disease and osteoarthritis.  Also, according to 

the World Cancer Research Fund/American Institute of Cancer Research’s Second Expert 

Report from 2007 there are convincing data indicating that obesity is a risk factor for 

development of cancer in the oesophagus, pancreas, colon, rectum, endometrium and kidneys, 

as well as for postmenopausal breast cancer (2).   

According to the “thrifty gene hypothesis” proposed by Neel in 1962, we are 

evolutionarily programmed to maximize energy storage, so that these reserves can be tapped 

during times of food shortage (3). In an affluent society, an imbalance of the intake and 

consumption of energy often occurs and is probably the most common cause of overweight 

and obesity.  Treatment of overweight and obesity largely relies on lifestyle intervention in 

the form of reduced energy consumption and increased physical activity. However, according 

to Wing and Phelan only approximately 20% of overweight individuals are successful at 

maintaining a 10% weight loss over one year (4), making prevention an important issue.  

The pharmaceutical industry searches intently for pharmacological agents for the 

treatment of obesity. There are only two drugs on the Norwegian market today but both have 

limited effect and possibly harmful side effects. Orlistat (Xenical™ and Alli™) inhibits 

gastrointestinal lipases, thus reducing the uptake of fats from the diet. Sibutramin 

(Reductil™) is a selective serotonin-norepinephrine reuptake inhibitor and works by 

suppressing of appetite. Rimonabant (Acomplia™) works by selectively blocking the 

cannabinoid receptor 1 but was recently suspended from the European market due to serious 



 7 

psychiatric side effects. Under development for the treatment of obesity and/or metabolic 

syndrome (MS) are dual peroxisome proliferator-activated receptors- (PPAR-) �/� agonists 

and pan-PPAR (�/�/�) agonists (5). Other future mechanisms of actions may involve targeting 

adenosine monophosphate- (AMP-) activated protein kinase (AMPK) or uncoupling proteins 

(UCP), inhibiting lipogenesis, regulating appetite, activating adiponectin receptors (6) or 

increasing the activity of brown adipose tissue (BAT).   

 

2. INSULIN RESISTANCE 

There is a close association between obesity and insulin resistance. Together with 

increased waist circumference, high blood pressure, elevated plasma triacylglycerol (TAG) 

and reduced high-density lipoprotein (HDL) cholesterol, these signs comprise the MS, which 

is associated with an increased risk of cardiovascular disease. Resistance to the actions of 

insulin is compensated by an increased secretion of insulin by the pancreatic beta-cells 

(hyperinsulinemia), and may lead to glucose intolerance and eventually to type 2 diabetes 

mellitus. Type 2 diabetes mellitus is on the rise in all age groups of the population and also 

among adolescents. Insulin resistance and diabetes lead to harmful alternations in plasma 

lipids, and are strong, independent risk factors for the development of cardiovascular diseases.  

The mechanisms underlying insulin resistance are complex and not yet fully 

understood. Skeletal muscle, adipose tissue and the liver are the organs most affected by 

insulin resistance. Several theories for skeletal muscle insulin resistance have been proposed, 

including substrate competition between glucose and fatty acids, and a connection between 

intramyocellular TAG (IMTG) accumulation, insulin signalling and muscle oxidative capacity 

as reviewed elsewhere (7). There have been several reports on the correlation between IMTG 

content, insulin resistance and insulin signalling. However, this theory is in contradiction with 

the observation that well trained athletes have high IMTG and are insulin sensitive (8).  

Recent evidence does not suggest that IMTG itself causes insulin resistance but rather that 

lipid metabolites such as long-chain fatty acyl-CoA (LCFA-CoA), diacylglycerol (DAG) and 

ceramide are active players (7).  

“Metabolic flexibility” is a new term that connotes the ability of skeletal muscle to 

switch between oxidation of lipids and glucose, burning lipids during fasting and glucose in 

insulin-stimulated conditions (9). Reduced metabolic flexibility has been associated with 

increased accumulation of intramyocellular TAG and insulin resistance, although the 

importance of this is controversial (9;10).  
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3. ADIPOSE TISSUE 

Adipose tissue is a vital organ consisting of two main tissue types – white adipose 

tissue (WAT) and brown adipose tissue (BAT) - which collaborate in energy partitioning 

towards storage or thermogenesis, respectively.  

 

3.1 White adipose tissue 

WAT is the most flexible organ with regard to hyperplastic and hypertrophic expansion 

(11), and has several other functions in addition to the storage of excess energy (table 3.1).  

 

Table 3.1 Major functions of white adipose tissue. 

   Storage of energy in the form of triacylglycerol

   Insulation (thermal, mechanical and electrical)

   Depot of cholesterol, vitamins D and E

   Synthesis and secretion of adipokines

   Release of free fatty acids

   Provide essential fatty acids

   Source of metabolic water

�

 

In mammals, WAT is organized in distinct depots throughout the body (table 3.2), and 

also diffusely around or within organs. Adipocytes may also “infiltrate” organs such as the 

skin, skeletal muscles, liver, synovia, parathyroid and parotid glands, lymph nodes, bone 

marrow, pancreas and thymus (12).  
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Table 3.2 Main white adipose tissue depots (12).   
 
 

   Subcutaneous adipose tissue

Abdominal subcutaneous adipose tissue

Gluteo-femoral subcutaneous adipose tissue

Mammary subcutaneous adipose tissue

In rodents: anterior and posterior subcutaneous tissue

   Visceral adipose tissue

Mediastinal

Mesenteric

Omental

Perirenal

Retroperitoneal

Perigonadal

 

 

White adipose tissue includes several cell types besides white adipocytes (table 3.3), 

all of which have different functions. Obesity is associated with increased infiltration of 

immune cells, particularly macrophages leading to local and systemic low-grade 

inflammation, contributing to the development of insulin resistance (13-16). Cinti et al. have 

shown in obese mice and humans that more than 90% of all macrophages in WAT are 

localized around dead adipocytes, suggesting that the scavenging of adipocyte remnants is an 

important function for WAT macrophages in obese individuals (13).  One interesting theory 

that has received considerable focus in recent years suggests that with the expansion of 

adipose tissue comes the need for increased vascularisation and remodelling of the tissue 

(17;18). Hypoxic conditions may emerge if these processes lag, leading to the activation of 

the transcription factor hypoxia-inducible factor- (HIF-) 1 and to the induction of several 

genes involved in angiogenesis, inflammation and cellular stress.  
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Table 3.3 Cell types in white adipose tissue and their functions (12;19;20).  

 

   Cell type Function in adipose tissue

   Adipocytes Main lipid-storing cells

   Preadipocytes Precursors of brown and white adipocytes

   Macrophages Scavengers of dead adipocyte remnants

   Monocytes Precursors of macrophages and dendritic cells
Phagocyte tissue debris

   Dendritic cells Contribute to and/or reflect local inflammation
Fight local infections

   Mast cells Unknown significance in white adipose tissue

   Fibroblasts Constitutive cells of the connective tissue
Equivalency with preadipocytes and fibroblasts?

   Nerve cells Innervation of adipose tissue

   Vascular endothelial cells Line the inner walls of the capillaries
Secrete factors that promote preadipocyte proliferation

 

 

 

3.2 Brown adipose tissue 

The main functions of BAT are the generation of heat to maintain body temperature, 

arousal of hibernation and dissipation of excess food energy. Brown adipocytes are 

characterised by the presence of uncoupling protein 1 (UCP1), which uncouples the 

mitochondrial respiratory chain of brown adipocytes. The brown appearance is due to the high 

number of mitochondria containing enzymes with dark metals. BAT is most prominently 

found in the interscapular depot in rodents, and also in the perirenal and axillary depots. 

Human newborns have a substantial amount of BAT, enabling their maintenance of body 

temperature without shivering; however the amount gradually decreases during the first year 

of living. It has been a long-standing dogma that adult humans have little or no brown adipose 

tissue. However, advances in nuclear medicine have revealed that BAT is in fact present and 
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active in a significant proportion of the adult man (21). BAT can be found primarily in two 

depots in the neck and supraclavicular region and also in the mediastinum (para-aortic), 

paravertebral and suprarenal regions (21-23). Cypess et al. recently reported that females have 

more BAT than males, and that the amount of BAT correlates negatively with body mass 

index (BMI), especially in elderly people (22). Also, it has been reported that the activity of 

BAT in response to cold is reduced in obese or overweight men (23). Thus, it is of interest to 

explore the potential of certain types of food to activate BAT, and to consider it a potential 

drug target in the treatment of obesity.  

Two homologues to UCP1 have been described - UCP2 and UCP3 - and their roles are 

not fully understood. There is a general consensus that the primary functions of UCP2 and 

UCP3 are not related to thermogenesis. Knock-out mice for UCP2 and UCP3 have normal 

responses to cold exposure and are not obese (24). However, there is also evidence that in 

vivo activation of UCP3 by physiological activators or pharmacological intervention might 

have the capacity to be significantly thermogenic as reviewed elsewhere (24). Other roles that 

have been proposed for UCP2 and UCP3 are attenuation of reactive oxygen species (ROS) 

production and protection against oxidative damage. UCP2 expression has a signalling role in 

pancreatic beta-cells and is involved in attenuation of insulin secretion (24;25).  

 

3.3 Depot variations 

Adipose tissue is a heterogeneous metabolic organ and there are several biological 

differences between the different adipose depots. Adipose tissue located viscerally is 

associated with increased risk of cardiovascular disease, hypertension and type 2 diabetes  

(26). However, increased hip circumference, mostly reflecting subcutaneous fat storage, has 

been associated with lower risk of myocardial infarction in the INTERHEART study (27;28).  

Visceral depots drain directly into the portal vein (29). This increases the exposure of free 

fatty acids (FFAs), as well as adipokines to the liver, which may lead to increased hepatic 

glucose production and very low density lipoprotein (VLDL) secretion (30;31). However, the 

idea that insulin resistance is partly caused by high rates of non-esterified FAs (NEFAs) 

release from visceral adipose tissue (the “portal theory”) is controversial (32).  

Visceral depots are more innervated and hence more sensitive to catecholamine-

induced lipolysis, and less sensitive to insulin (33). There are several differences between 

adipose depots concerning steroid metabolism. Higher expressions of androgen (34) and 

glucocorticoid receptors (35) in visceral than subcutaneous adipocytes have been shown. 

Bujalska et al. (36) have reported that adipose stromal cells from omental fat but not 
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subcutaneous fat express 11�-hydroxysteroid dehydrogenase, which converts cortisone to the 

more potent hydrocortisone (cortisol). However, in papers II and III, we found the lowest 

expressions of Hsd11b2 in the mesenteric and interscapular adipose depots. Differences in 

lipolytic, anti-lipolytic and biochemical pathways between subcutaneous and visceral 

adipocytes are reviewed in (37).  

With regard to adipokine production, here also are several differences between the 

different adipose depots. There is an increased production of interleukin- (IL-) 6, IL-8, 

vascular endothelial growth factor (VEGF), resistin and plasminogen activator inhibitor 1 

(PAI-1) in visceral adipose tissue as compared to subcutaneous adipose tissue (38-40). Fain 

(38) found no significant differences in the release of leptin from human subcutaneous and 

visceral adipose tissue explants. This was contrary to the previous reports from Russel et al. 

(41) and Van Harmelen et al. (42) who found higher leptin mRNA expression and secretion 

from subcutaneous fat as compared to visceral fat. Drolet et al. (43) observed no significant 

differences between the subcutaneous and omental release of adiponectin, contrary to 

Motoshima et al. (44) and Fain (38).  However, they reported that omental (but not 

subcutaneous) adipocyte adiponectin release was reduced in overweight women as compared 

to lean women. Some authors found significantly lower adiponectin mRNA in visceral 

adipose tissue as compared to subcutaneous adipose tissue (45;46), whereas others reported 

no differences (47).   

White adipose tissue is primarily innervated by fibres from the sympathetic nervous 

system (48). Interestingly, Kreier and co-workers have shown selective parasympathetic 

innervation of subcutaneous and intra-abdominal adipose depots in rats, enhancing 

lipogenesis and anabolically modulating insulin sensitivity and glucose metabolism (49).  

The regional differences in adipose tissue function are caused by both intrinsic 

characteristics of the adipocytes or other cell types, and extrinsic, environmental factors. In a 

study by Tran et al., subcutaneous and visceral adipose tissues were transplanted into the 

subcutaneous and visceral adipose depots of mice in a 2x2 design (50). Transplantation of 

subcutaneous fat into a visceral depot improved insulin sensitivity and lowered plasma 

glucose and insulin levels, demonstrating that intrinsic adipocyte factors may be central.  

Sex hormones play a clear role in determining the adipose tissue distribution, with 

testosterone leading to accumulation of visceral fat and estrogen promoting storage of 

subcutaneous fat in the gluteo-femoral area. High levels of growth hormone and insulin also 

promote visceral fat deposition. We show in paper II of this thesis that the replacement of lard 

with marine n-3 FAs in the diets of rats fed a high-fat diet causes a redistribution of adipose 
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tissue away from the visceral depots. The PPAR� agonist drugs redistribute fat to the 

subcutaneous depot and away from the visceral depots (51-54), whereas glucocorticoid drugs 

(as well as high levels of endogenous glucocorticoids) promote visceral fat accumulation (55).  

 

4. ADIPOCYTES 

Adipocytes originate from mesenchymal stem cells, as do chondrocytes, myocytes, 

and osteoblasts. Lipid-filled white adipocytes are spherical cells with a diameter ranging from 

15 to 150 �g and can typically store 1 �g of TAG. The unilocular lipid droplet can fill 

approximately 90% of the cell volume, pushing the nucleus and other organelles against the 

cell membrane. Brown adipocytes are rich in mitochondria and have multilocular lipid 

droplets.  

Adipogenesis, the formation of new adipocytes, is a highly regulated, multistep 

process. Three main classes of transcriptional regulators are central in the differentiation 

process: the PPARs, the CCAAT/enhancer-binding proteins (C/EBPs) and the sterol 

regulatory element-binding proteins (SREBPs).  

There are three PPARs; PPAR�, � and �. PPAR� is a master regulator in adipocyte 

differentiation. Polyunsaturated fatty acids (PUFAs) are activators of PPAR� (see chapter 7). 

According to the “lipotoxicity hypothesis”, insulin resistance develops when lipids are stored 

in organs other than adipose tissue, such as the skeletal muscles, liver and pancreas. This 

ectopic fat storage may be due to the high release of NEFAs from hypertrophic adipocytes. 

White adipocytes can be regarded as a lipid sink, storing esterified fatty acids in an inert 

manner, thereby preventing ectopic fat storage. Thus, adequate recruitment and differentiation 

of preadipocytes is important.  

Impaired preadipocyte differentiation has been associated with abdominal obesity 

(56;57). Isakson et al. (58) recently reported that the differentiation capability correlates 

negatively with BMI. This could be due to fewer preadipocytes, or to an inability of the 

preadipocytes to differentiate into hypertrophic adipocytes. Also, Isakson et al. (58) found 

that TNF� prevented the differentiation of preadipocytes to adipocytes. Lacasa et al. have 

previously reported that TNF� released from macrophages promoted a partial trans-

differentiation of the preadipocytes to assume a macrophage-like phenotype (59).  

Trans-differentiation of white adipocytes to brown adipocytes, as well as to secretory 

epithelial cells in the mammary gland cells has been described in mice (60;61).  
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Figure 4.1 Brown adipocytes (left): rich in mitochondria and with multilocular lipid droplets. 

White adipocytes (right): with one large unilocular lipid droplet. The nuclei are the dark 

round structures. Picture from “The Adipose Organ” by Cinti (62).  

 

 

 

 

5. SKELETAL MUSCLE CELLS 

Skeletal muscle is the major site of insulin-stimulated glucose uptake in the body. It 

accounts for approximately 70-80% of insulin-stimulated glucose disposal, and is therefore an 

important site for regulation of insulin sensitivity.  

In paper I, an in vitro human skeletal muscle cell model (figure 5.1) was utilised for 

studying the effects of eicosapentaenoic acid (EPA) on glucose and lipid metabolism. The 

method for isolating satellite cells and differentiating to mature myotubes was established by 

Henry et al., and later modified by Gaster et al. (63-65). Satellite cells were isolated from 

muscle biopsies of the vastus lateralis muscle of healthy volunteers, and differentiation and 

fusion of myoblasts to multinucleated myotubes was induced in vitro.  
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Figure 5.1 Photograph of in vitro human myotubes, utilised in paper I (from A.C. Rustan).  

 

 

 

 

Human skeletal muscle fibres are composed of slow twitch (type I) and fast twitch 

(type II) fibres (66). Slow twitch fibres contract slowly, are predominantly oxidative and use 

mostly fatty acids as fuel. They are insulin sensitive and associated with high endurance. Fast 

twitch fibres are glycolytic (type IIx) or both glycolytic and oxidative (type IIa). They 

contract fast, are less insulin sensitive, and are associated with rapid contractions.  

 

 6. ADIPOKINES 

In 1987, Flier and Spiegelman identified adipose tissue as a site for production of 

adipsin, an endocrine factor markedly down-regulated in obesity (67). It was, however, not 

until the discovery of leptin in 1994 that adipose tissue was firmly established as an endocrine 

organ (68). It is now well recognized that adipose tissue expresses and secretes a large 

number of biologically active proteins, known as adipokines. Adipokines are factors derived 

from all cells located in the adipose tissue, although some prefer to restrict the term to 

adipocyte-derived factors. Adipokines play important roles in the regulation of appetite, 
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insulin sensitivity, immune function, fibrinolysis, and hypertension.  They can act locally in 

the adipose tissue (autocrine/paracrine function), or they can reach the systemic circulation 

and act on receptors in other organs (endocrine function).   

 

Figure 6.1 Some of the adipokines released from white adipose tissue. Abbreviations: ASP, 

acylating stimulation protein; CRP, C-reactive protein; HGF, hepatocyte growth factor; 

MCP, monocyte chemoattractant protein; MIF, macrophage migration inhibitory factor; 

NGF, nerve growth factor; SAA, serum amyloid A; TGF, transforming growth factor; TNF, 

tumour necrosis factor. *Analysed in paper IV in samples from the Oslo Diet and Exercise 

Study (ODES), **previously published on samples from ODES.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1 Leptin  

Leptin, a 16 kDa peptide of 167 amino acids, is the most intensely studied adipokine. 

Leptin is a multipotent adipokine, with several effects in different tissues. Peripheral effects 

have been observed on insulin signalling, reproduction, angiogenesis, haematopoiesis and 
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bone remodelling. Central effects include the regulation of food intake and regulation of body 

weight (69). Quantitatively, the key locus for leptin production is white adipocytes but it is 

also produced in brown adipocytes, the gastric epithelium, hair follicles, ovaries, the placenta 

and osteoblasts (70). Receptors for leptin are expressed in most tissues such as adipose tissue, 

liver, skeletal muscle, hypothalamus, pancreatic beta-cells, placenta and several fetal tissues 

(70;71). Leptin expression and secretion correlate positively with adipocyte size and number. 

Plasma levels of leptin correlate closely with body fat mass, and are thus elevated in obesity. 

However, leptin resistance may occur in parallel (72).  

Actions of leptin on skeletal muscle include stimulation of fatty acid oxidation and 

reduction of intramyocelluar TAG content by activation of AMPK (73;74). 

 

6.2 Adiponectin  

Adiponectin was identified by four independent groups around 1995/96. Scherer and 

co-workers (75) discovered it in a subtractive hybridization screening comparing 3T3-L1 

adipocytes with undifferentiated preadipocytes, and named it adipocyte complement-related 

protein of 30 kDa (Acrp30) due to its structural similarities to complement factor C1q. Hu et 

al. employed a similar approach and termed the protein adipoQ (76). Human adiponectin was 

first cloned by Maeda and co-workers, and named adipose most abundant gene transcript 1 

(apM1) (77). Finally, Tomita et al. isolated adiponectin from human plasma by virtue of its 

affinity for gelatin, and named it gelatin-binding protein of 28 kDa (GBP28) (78). Today, 

adiponectin is the preferred name used by most researchers.  

Human adiponectin is a 244 amino acid protein with MW of approximately 28 kDa, 

and it is an abundant plasma protein. Plasma concentrations range from 3-30 �g/mL, which is 

equivalent to approximately 0.01% of total plasma protein. It is produced primarily by 

adipocytes, although it is also synthesized by other cell types (38;79-84).  Adiponectin is 

secreted in three forms: trimer, hexamer and high molecular weight forms (HMW; 12-36mer) 

as shown in figure 6.2. The ratio of circulating adiponectin complexes is regulated at the level 

of secretion (85), and once secreted, these forms are not interchangeable (86). Also, there is a 

smaller, proteolytic cleavage product present in serum containing the globular head of 

adiponectin, which circulates as a trimer (87-89).  
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Figure 6.2 Different forms of adiponectin observed in serum. Adapted from (88).  

 

 

 

 

 

 

 

 

 

 

 

Adiponectin exhibits a sexual dimorphism, with higher levels in women, and 

Nishizawa et al. reported that androgens decrease plasma adiponectin (90). This could 

partially explain why women are more insulin sensitive than men.  

In contrast to most other known adipokines, adiponectin levels are negatively 

correlated with BMI (91-94) although the correlations are relatively weak in most cross-

sectional and longitudinal studies. Fain et al. have reported that the release of adiponectin 

from visceral adipose tissue as well as isolated adipocytes was lower in individuals with BMI 

45 than with 32 (95). It has also been reported that adiponectin release correlates negatively 

with adipocyte size (96).  

Adiponectin has been found to be negatively associated with fasting insulin levels 

(94;97), plasma TAG concentrations (94), as well as fasting, postprandial and 2-h plasma 

glucose concentrations (94;97). Adiponectin is a predictor of future insulin resistance (98) and 

risk of type 2 diabetes (99). Mice lacking adiponectin show decreased hepatic insulin 

sensitivity and a reduced response to PPAR� agonists (100). Activation of PPAR� by the 

antidiabetic TZD drugs enhances adiponectin gene expression and plasma levels in mice with 

diabetes, whereas adiponectin null mice show reduced responsiveness to TZDs (100;101).  

However, the effect of PPAR� on insulin resistance is not entirely dependent on adiponectin 

(102). There is evidence that HMW adiponectin is the most important form of adiponectin 

with regard to glucose tolerance (85;103) and that impaired multimerization is associated with 

diabetes (104).  

Three receptors for adiponectin have been reported. The transmembrane receptors 

adiponectin receptors (AdipoR) 1 and 2, were discovered and characterized by Yamauchi et 
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al. (105). Later, T-cadherin was described as an extracellular receptor for adiponectin (106). 

AdipoR1 is found predominantly in skeletal muscle but also in the liver and other organs, and 

is a high-affinity receptor for globular adiponectin, as well as a low-affinity receptor for full-

length adiponectin (105). AdipoR2 is most abundant in the liver and is an intermediate-

affinity receptor for both globular and full-length adiponectin. Also, AdipoR1 and 2 are 

expressed in human and rat pancreatic beta-cells (107). Gu et al. (108) found that globular 

adiponectin enhanced insulin secretion from pancreatic beta-cells of rats, whereas Staiger et 

al. (109) found no effect of adiponectin on insulin secretion or beta-cell lipoapoptosis in 

humans. AdipoR1 is highly expressed in human adipose tissue and the expression is reduced 

in obese subjects (110). This suggests that adiponectin acts in a paracrine/autocrine manner 

and the low levels of receptor associated with obesity may further aggravate the negative 

effects of low adiponectin levels in obese subjects.  

It has been shown that osmotin, a protein ubiquitous in fruits and vegetables, is a 

ligand for the yeast homolog of AdipoR, and may be a naturally occurring AdipoR agonist 

(111). It is a highly stable protein that is absorbed in the gastrointestinal tract. In mouse 

C2C12 myocytes, osmotin activated AMPK, and the suppression of AdipoR expression by 

siRNA markedly reduced the phosphorylation of AMPK induced by osmotin. This finding 

increases the likelihood that it will be feasible to develop AdipoR agonists that can be 

absorbed in the gastrointestinal tract.   

The binding of adiponectin to AdipoR1 results in the activation of AMPK, leading to 

increased glucose uptake in the skeletal muscle, decreased hepatic gluconeogenesis and 

increased fatty acid oxidation in the liver and skeletal muscle (112). The effects of AdipoR2 

are mediated via induction of PPAR�, which stimulates fatty acid oxidation (112). Knock-out 

models of AdipoR1 and 2 exhibited quite different phenotypes (113). The AdipoR1-/- mice 

showed increased adiposity and decreased glucose tolerance, whereas the AdipoR2-/- mice 

were lean and resistant to high-fat diet-induced obesity. Adiponectin reverses insulin 

resistance associated with both obesity and lipodystrophy by decreasing the content of TAG 

in skeletal muscle as well as the liver (89).  

In 2004, it was reported by Qi et al. that intracerebroventricular (ICV) administration 

of adiponectin decreased body weight in mice. This was mainly due to increased energy 

expenditure, whereas the feed intake was unaltered. Coope et al. later showed that ICV 

administration of adiponectin reduced feed intake in Wistar rats and that the effect was 

mediated via AdipoR1 (114). Several groups have shown by immuno-histochemistry that both 

AdipoR1 and 2 are present in rat and human hypothalamus (114-117).  ICV injection of 
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adiponectin induced AMPK phosphorylation in the hypothalamus (115). In the hypothalamus, 

AMPK activity is negatively correlated with malonyl-CoA, and accumulation of malonyl-

CoA in the hypothalamus inhibits feed intake (115). The literature is equivocal regarding the 

central effects of adiponectin on feed intake and energy expenditure. Kadowaki’s group has 

reported opposite findings to those of Qi et al. and Coope et al.: they showed that adiponectin 

injections stimulated feed intake and decreased energy expenditure in mice (116). Recently, 

interesting data were reported on the expression of adiponectin and its receptors in the human 

pituitary gland, suggesting the existence of a local system that may modulate this endocrine 

axis (80). Local production of adiponectin in the brain may be important as there is 

conflicting evidence concerning the ability of adiponectin to cross the blood-brain barrier.  

Adiponectin also plays important roles in relation to inflammation, dyslipidemia, 

vascular function and atherosclerosis but this will not be discussed further here.  

 

Figure 6.3 Adiponectin is mainly released from adipose tissue and acts on adiponectin 

receptors in target organs and exerts its effects. 
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6.3 Inflammatory adipokines  

 Obesity may be associated with elevated circulating levels of inflammation markers, 

pro-inflammatory cytokines and chemokines as reviewed in (118-120). This again may lead to 

a chronic low-grade inflammation and cause insulin resistance.  Both adipocytes and other 

cell types in adipose tissue, in particular macrophages, express and release adipokines. Fain 

and co-workers have compared the release of many adipokines from adipocytes and non-

adipocyte cells in adipose tissue (38). Several of the adipokines were predominantly produced 

by the non-adipocyte fraction. Interestingly, more adiponectin was released from non-fat cells 

than from adipocytes, and leptin was almost exclusively produced by the adipocyte fraction. It 

has been shown that large adipocytes exhibit the highest rate of production of several pro-

inflammatory adipokines (121). 

 

7. LIPIDS  

 

7.1 Fatty acids 

Fatty acids consist of a hydrocarbon chain with a carboxyl group at one end. Saturated 

FAs (SFAs) have only single bonds, whereas monounsaturated FAs (MUFAs) and 

polyunsaturated FAs (PUFAs) have one or several double bonds, respectively (figure 7.1).  

 

Figure 7.1 Structures of some fatty acids (122).  
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The �-position of the fatty acid is the carbon next to the carboxyl group. The methyl 

end is denoted � or n. SFAs are derived from the diet or synthesized de novo in the human 

body. A double bond in the n-9 position can be introduced by the action of the enzyme 

stearoyl-coenzyme A-desaturase (SCD). The preferred substrates for SCD are palmitoyl- 

(16:0) and stearoyl-CoA (18:0) (123). However, the human body is incapable of introducing 

double bonds distal to n-7 position. Thus, n-6 and n-3 fatty acids are essential and must be 

provided in the diet. Linoleic acid (18:2, n-6) and �-linolenic acid (18:3, n-3) are produced by 

plants such as soy, corn, safflower, canola, and algae. Both n-6 and n-3 fatty acids can be 

chain-elongated and desaturated (figure 7.2). Fatty acids with 20 C-atoms or more are termed 

very long chain- (VLC-) FAs.  

 

Figure 7.2 In vivo elongation and desaturation of n-6 and n-3 fatty acids (122).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Most fatty acids are synthesized in the cytosolic compartment of hepatocytes. De novo 

synthesis of fatty acids in adipocytes and myotubes are generally of little importance on a 

mixed diet. Acetyl-CoA is generated from glucose catabolism in mitochondria. Acetyl-CoA is 

converted to malonyl-CoA via the action of acetyl-CoA carboxylase (ACC). The fatty acyl 

chain grows by two carbon units in a stepwise manner by the actions of the multienzyme 
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complex fatty acid synthase (FAS), and stops when the acyl chain is 16 carbon atoms long 

(palmitate) (124).  

 

7.2 Marine n-3 fatty acids  

The VLC-PUFAs EPA and DHA are obtained from fatty fish, fish oil and cod liver 

oil, or from in vivo elongation and desaturation of �-linolenic acid as shown in figure 7.2. N-6 

and n-3 PUFAs of chain length 20 are precursors to the bioactive eicosanoids, which include 

prostaglandins, prostacyclins, leukotriens and thromboxans. Some of the effects of n-3 LC-

PUFAs are mediated via eicosanoids.  

There is strong evidence for the efficacy of n-3 long chain (LC)-PUFAs in the 

prevention of heart disease (table 7.1).  

 

Table 7.1 Effects of LC-PUFAs on dyslipidemia and cardiovascular disease (125;126).  

 

   Dyslipidemia Cardiovascular disease

   Reduction of plasma NEFAs Lower incidence of ischaemic heart disease

   Reduction of plasma TAG Anti-arrhythmic effects

   Increase of plasma HDL Blood-pressure lowering effects

Slower progression of atherosclerosis

Anti-thrombotic effects

 

 

Studies in animals have shown that replacement of some of the dietary fat with VLC-

n-3 PUFAs prevents the development of insulin resistance caused by high-fat feeding (127-

129). In contrast, the evidence in humans with type 2 diabetes is equivocal. Some but not all 

studies have found reduced metabolic control. Puhakainen et al. found that n-3 FAs increased 

gluconeogenesis from glycerol but found no deterioration of metabolic control (130). 

Decreased insulin secretion has also been implicated (131-133).  Mostad et al. reported a 

moderate increase in blood glucose and insulin sensitivity in type 2 diabetics in an 

intervention study with high doses of fish oil for nine weeks (134). The fish oil group showed 

increased fat utilization and reduced glucose utilization after 9 weeks. This switch in substrate 
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metabolism has also been observed by others (131;135;136). Type 2 diabetics can benefit 

from the TAG lowering effects of n-3 PUFAs but are generally not recommended to ingest in 

high doses.  

Interestingly, there may be a connection between n-3 PUFA intake and type 1 

diabetes. In a Norwegian case-control study, children with type 1 diabetes were less likely to 

have been given cod liver oil during infancy than children without diabetes (137). Dietary 

intake of n-3 PUFAs was associated with reduced risk of islet autoimmunity in children at 

increased genetic risk for type 1 diabetes (138).  

Long chain n-3 PUFAs are natural ligands for all three PPAR nuclear receptors. PPAR 

heterodimerises with retinoid X receptor, a receptor for 9-cis-retinoic acid, and binds to PPAR 

response elements (PPREs) in the DNA. PPAR� is predominantly expressed in tissues with 

high capacity for fatty acid oxidation, such as liver and skeletal muscle but also in adipocytes. 

It regulates genes involved in mitochondrial and peroxisomal FA oxidation (139;140). PPAR� 

is mainly present in adipose tissue where it plays a central role in adipocyte differentiation 

and fat storage. Activation of PPAR� in adipocytes may promote fatty acid oxidation 

opposing fat storage (141).   

 

Figure 7.3 The PPARs may use fatty acids as ligands and regulate metabolic processes in 

liver, skeletal muscle and adipose tissue (141).  
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The potent lipid-lowering properties of VLC n-3 PUFAs are due to their ability to 

increase expression of genes involved in peroxisomal and mitochondrial fatty acid oxidation 

while decreasing expression of lipogenic enzymes (142;143). In liver, PUFAs alters 

expression lipogenic enzymes by interfering with expression (144;145) and proteolytic 

maturation of SREBP1 (146;147). The exact mechanisms behind the repression of lipogenic 

enzymes in adipose tissue are more uncertain. The increase of hepatic �-oxidation mediated 

by PUFAs is due to activation of PPAR�, as demonstrated by studies in PPAR� knock-out 

mice (148;149)  

Part of the metabolic effect of n-3 LC-PUFAs occurs via stimulation of AMPK (150). 

AMPK is a sensor of the cellular metabolic status and is activated by physiological and 

pathological stresses that deplete cellular ATP, including hypoxia, exercise and muscle 

contraction. Also, leptin and adiponectin activate AMPK. It controls partitioning between 

lipid oxidation and lipogenesis by inhibiting lipogenesis while stimulating �-oxidation. This 

occurs via inhibition by AMPK of acetyl-CoA carboxylase, resulting in a decrease in 

malonyl-CoA. Malonyl-CoA is a key lipogenic intermediate and inhibits mitochondrial 

carnitine-palmitoyl transferase (CPT) -1. Moreover, AMPK inhibits gluconeogenesis in liver 

and stimulates glucose uptake in skeletal muscle (151). Activation of hypothalmic AMPK 

increases food intake and body weight (151). The much used anti-diabetic drug metformin is 

an activator of AMPK in skeletal muscle (151-153).  

SCD is the rate-limiting enzyme in the biosynthesis of MUFAs, and it is well 

documented that SCD is down-regulated by PUFAs (123). Hepatic AMPK activity was 

increased in SCD1 knock-out mice, implicating SCD1 in the regulation of hepatic �-oxidation 

mice (154). SCD is involved in the formation of ceramide in oxidative myofibres, thus down-

regulation of SCD may improve insulin signalling (155).  Furthermore, SCD1 knock-out mice 

exhibit reduced adiposity and increased energy expenditure. Basal thermogenesis as well as 

lipolysis and fatty acid oxidation were increased (156).  

N-3 LC-PUFAs may inhibit progression and relapse, and/or reduce severity of some 

inflammatory diseases such as rheumatoid arthritis, Systemic lupus erythematosus and 

inflammatory bowel disease (157). Prostaglandins and thromboxans produced from EPA 

instead of arachidonic acid (AA; 20:4, n-6) are generally less potent and less pro-

inflammatory. Moreover, it was recently reported that actions of lipo-oxygenase on DHA 

generate resolvins and protectins, a novel family of lipid mediators which have anti-

inflammatory pro-resolving effects, and protects against tissue damage (158).  
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7.3 Tetradecylthioacetic acid (TTA) 

Tetradecylthioacetic acid is a synthetic, 3-thia substituted fatty acid analogue (CH3-

(CH2)13-S-CH2-COOH). The sulphur atom makes TTA a poor substrate for �-oxidation, so 

TTA undergoes sulphur- and �-oxidation instead. Otherwise it is metabolised as a normal 

saturated fatty acid; it is converted to its CoA-ester and incorporated into different cellular 

lipid classes (159;160).  

TTA is a pan-PPAR activator in both rodents and humans, and activates all three 

subtypes in a cell and species specific manner (161-163). In a human keratinocyte cell line, 

TTA activated PPARs in the following order: PPAR� >> PPAR� > PPAR� (162). In the 

murine embryonic fibroblast cell line NIH-3T3, however, the order was PPAR� >> PPAR� > 

PPAR� (164). TTA prevents high fat diet-induced insulin resistance and adiposity (164). The 

pleiotrophic effects of TTA suggest that pan-PPAR agonists may have a potential in the 

treatment of lipid related diseases. The effects of TTA in rats are summarized in table 7.2.  

 

Table 7.2 Some effects of TTA in rats (165;166).  

 

   Adipose tissue Liver

   Reduction in epididymal adipose tissue mass Reduction in triacylglycerol synthesis rate

   Reduction in retroperitoneal adipose tissue mass Increased CD36 (FAT) mRNA

   Plasma Increase in mitochondrial �-oxidation

   Reduction in free fatty acids Increase in ketone body formation

   Reduction in triacylglycerol Increase in HMG-CoA synthase

   Reduction in cholesterol
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8. LIPID METABOLISM 

 

8.1 Hepatic lipogenesis and �-oxidation 

Fatty acids are activated by acyl-CoA synthetases (ACSs) present in the outer 

mitochondrial membrane, and can 1) enter the mitochondrion or peroxisome for oxidation or 

2) be converted to complex lipids; TAG, cholesterol esters or other cellular lipids (figure 8.1).  

For TAG synthesis, acyl-CoA enters the phosphatidic acid pathway and three acyl-

chains are stepwise added to the glycerol backbone.  

For oxidation, acyl-CoAs are converted to acyl-carnitine by the action of CPT-1 and 

transported across the inner mitochondrial membrane by facilitated diffusion, into the 

mitochondrion. By the action of CPT-2 on the inner surface of the inner mitochondrial 

membrane, carnitine is removed and acyl-CoA is available for metabolism. The first step of 

mitochondrial �-oxidation is catalyzed by acyl-CoA dehydrogenase, whereas in the 

peroxisome, �-oxidation is initialized by acyl-CoA oxidase (ACO) (167). Hepatic activities of 

ACS, CPT-2 and ACO were measured in paper II of this thesis.  

The main role of peroxisomal �-oxidation is to shorten or otherwise convert fatty acids 

for further oxidation by the mitochondrial enzymes. VLC-FAs are primarily oxidised in the 

peroxisomes, as they are poor substrates for the mitochondrial ACSs and CPTs.  
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Figure 8.1 Some aspects of fatty acid metabolism. Free fatty acids (FFAs) are taken up into 

the cells mainly by protein carriers in the plasma membrane and transported intracelluarly 

by fatty acid binding proteins (FABPs). Fatty acids can be activated to acyl-CoA, and shuttled 

to the mitochondria or peroxisomes for �-oxidation, or to the endoplasmatic reticulum for 

esterification to complex lipids. Acyl-CoA and certain FFAs may also bind to nuclear 

receptors and regulate gene expression, be  converted to signal molecules, directly or 

indirectly modulate various proteins, or be chain-elongated or desaturated (122).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.2 Triacylglycerol storage and lipolysis in adipose tissue 

Adipose tissue releases NEFAs to the extracellular space under conditions such as 

fasting and uncontrolled diabetes. NEFAs circulate in plasma bound to albumin and are taken 

up by energy-demanding organs such as skeletal muscle and liver. Lipolysis is in the fasting 

state initiated by adipose triglyceride lipase (ATGL), which cleaves the first of the three fatty 
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acids in TAG (168;169). The second fatty acid is cleaved off by hormone-sensitive lipase 

(HSL), and the third by monoacylglycerol lipase (170).  

After a meal, insulin levels rise and activates lipoprotein lipase (LPL) in the 

endothelial cells of the capillaries in adipose tissue. LPL hydrolyzes TAG in the lipoprotein 

particles to NEFAs outside the adipocyte. The fatty acids are stored as TAG in the lipid 

droplets of adipocytes after esterification to glycerol-3-phosphate, by the actions of glycerol-

3-phosphate acyltransferase (GPAT), phosphatidate phosphohydrolase (PAP) and 

diacylglycerol acyltransferase (DGAT) (124).   

 

9.  THE OSLO DIET AND EXERCISE STUDY (ODES) 

 Paper IV is based on the ODES study; a 1-year intervention study investigating the 

effects of dietary and/or exercise intervention. A detailed description of the study design and 

population and intervention principles and primary outcome variables is given by the ODES 

investigators (171). The primary aims of the study were to investigate the effects of the 

interventions on fibrinogen, fibrinolytic activity, coagulation factor VII and platelet volume 

(172). A series of secondary outcome variables have since been monitored (173-178) 

 The basis for recruitment to the ODES study was a screening among 40-year olds in 

Oslo which started in 1981 and lasted until 1999. In 1990, 660 women and men fulfilled the 

inclusion criteria (among until then 20,000 screened individuals) and were invited to 

participate in the study. 198 men and 21 women were included (aged 41-50), of which 

approximately 50% of the study subjects met Adult Treatment Panel III criteria for MS (179). 

The participants were randomly allocated to one of four groups (table 8.1) and received either 

dietary advice and/or participated in an exercise program for one year, or constituted the 

control group which received no intervention. Fasting blood samples were drawn at baseline 

and after 1 year of intervention, and were used for the analyses presented in paper IV. 

Participants in both groups receiving dietary counselling lost a healthy amount of weight 

during the year long intervention, and in all three intervention groups the mean waist-

circumference was reduced. The interventions led to positive effects on parameters such as 

blood pressure, plasma lipids and haemostatic variables.  
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Table 8.1 The 2x2 factorial design of ODES. The participants were randomly allocated to 

receive no intervention (control group), either diet or exercise intervention, or both 

interventions.  
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AIMS OF PRESENT STUDIES 

 

The questions raised in the present thesis were: 

 

1) How does incubation with the marine polyunsaturated n-3 fatty acid EPA influence 

glucose and lipid metabolism in a human skeletal muscle model? 

2) What are the effects of partly substituting lard with marine polyunsaturated fatty acids 

or the synthetic fatty acid tetradecylthioacetic acid (TTA) on adipose tissue content, 

distribution and gene expression?   

3) Do long term changes in diet and/or physical activity lead to altered plasma 

concentrations of adipokines?  
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SUMMARY OF PAPERS 

 

Paper I: Eicosapentaenoic acid (20:5 n-3) increases fatty acid and glucose uptake in  

cultured human skeletal muscle cells 

The aim was to study the effects of chronic (24 h) incubation of the marine 

polyunsaturated fatty acid EPA on glucose and lipid metabolism in an in vitro model of 

human myotubes. The effects of EPA were compared with those of oleic acid (OA; a common 

monounsaturated fatty acid) and a fatty acid-free control (containing BSA).  

EPA promoted increased uptake and oxidation of glucose, despite markedly increased 

fatty acid uptake and synthesis of complex lipids. Fatty acid �-oxidation was unchanged, and 

complete oxidation (CO2) decreased in EPA-incubated cells. The mechanisms may involve 

GLUT1 and CD36/FAT (fatty acid transporter), as mRNA levels of these transporters were 

increased in cells preincubated with EPA.  

 

Paper II: Marine n-3 fatty acids promote size-reduction of visceral adipose depots, 

without altering body weight and composition, in male Wistar rats fed a high-fat diet 

We investigated the effects of marine polyunsaturated n-3 FAs on adipose tissue 

content, distribution and gene expression.  

By the use of MRI, we found that the volumes of all three visceral adipose depots 

analysed were lower in the n-3 FA group as compared to the lard group, while the percentage 

of total body fat was the same. Thus, our findings suggested that feeding with n-3 FAs led to a 

redistribution of adipose tissue away from the visceral compartment. We observed enhanced 

mRNA levels of several inflammatory cytokines and chemokines in the adipose tissues of the 

n-3 FA fed animals as compared with the lard-fed animals. The biological significance of 

these findings is however hard to interpret. Fasting insulin levels were markedly lower in the 

n-3 FA group as compared to the lard group, suggesting insulin resistance and 

hyperinsulinemia in the lard group.  However, no differences between the two groups were 

found for in vitro glucose uptake in soleus muscle strips and epitrochlearis, or glycogen 

content of soleus and epitrochlearis muscle.  
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Paper III: Dietary supplementation of tetradecylthioacetic acid increases feed intake but  

reduces body weight gain and adipose depot sizes in rats fed high-fat diets 

The synthetic fatty acid analogue tetradecylthioacetic acid (TTA) is a sulphur-

substituted, saturated fatty acid, and resistant to �-oxidation. TTA may activate all PPAR, and 

is known to reduce plasma lipids and enhance lipid metabolism, as well as reduce adipose 

tissue sizes in rats fed high-fat diets.  

We further explored the effects of TTA on weight gain, feed intake and adipose tissue 

distribution and gene expression. Despite a higher feed-intake, rats fed TTA gained less body 

weight than lard-fed rats, and had markedly decreased subcutaneous, epididymal, perirenal 

and mesenteric adipose depots. Plasma lipids were reduced and fatty acid �-oxidation in liver 

and heart were enhanced in the TTA-fed rats. Hepatic UCP3 was expressed ectopically at 

both protein and mRNA levels, whereas Ucp1 mRNA was increased in epididymal and 

mesenteric adipose depots in the TTA group compared to the lard group. Our data support the 

hypothesis that TTA-feeding may increase hepatic fatty acid �-oxidation, thereby diminishing 

storage of fat in adipose tissues. The increased expression of Ucp3 in liver and Ucp1 in 

visceral adipose tissues may together promote enhanced energy dissipation and reduced 

weight gain in rats fed a high-fat diet.  

 

Paper IV: Effects of long-term exercise and diet intervention on plasma adipokine  

concentrations 

This paper is based on samples from the Oslo Diet and Exercise Study; a one-year  

long diet and exercise intervention study (2x2 factorial design). We tested the hypothesis that 

long-term lifestyle changes and moderate weight loss would reduce the plasma concentrations 

of adipokines involved in inflammation, angiogenesis, and chemotaxis and would increase 

adiponectin concentrations. We selected nine adipokines: adiponectin, IL-6, IL-8, MCP-1, 

TNF-�, HGF, NGF, CRP and resistin. Data on leptin and PAI-1 were published previously 

but were included in the paper for comparison.  

We found that plasma adiponectin levels remained unchanged, whereas body mass  

index (BMI) and fat mass were reduced after improvements in dietary habits and an increase 

in physical activity. However, adiponectin concentrations were reduced in the control group. 

Minor changes were found for the other adipokines. We found no correlation between 

adiponectin concentrations and BMI at baseline but for the one-year changes, there was a 

significant negative correlation. Neither baseline nor changes in plasma adiponectin and PAI-

1 concentrations were significantly correlated to the other adipokines. Concentrations of and 
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changes in the other plasma adipokines were significantly correlated, suggesting mutually 

related pathways.  
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DISCUSSION 

 

1. Methodological considerations 

The culture of human myotubes utilised in paper I is widely used and well 

characterized. We combined the use of radio-labelled tracer studies with gene expression 

analyses and Western blotting for protein. Analyses on three levels; gene transcripts and 

protein expression, and functional studies, describe different processes in the cells, thus 

providing a more complete picture than when only one level is monitored. The insulin 

responses on glucose uptake and glycogen synthesis are relatively modest in this cell model, 

leading us to suspect that they mostly differentiate to type II muscle fibres. The effect of EPA 

on glucose uptake appears to be mediated by GLUT1, as the mRNA level of this glucose 

transporter was increased. The mechanisms behind this effect of EPA on GLUT1 expression 

and basal glucose uptake remain to be elucidated. Furthermore, it would have been 

informative to establish whether the increased incorporation of [1-14C]OA into TAG 

following preincubation with EPA led to increased mass of cellular TAG.  

In papers II and III, rats were fed a high-fat diet for seven weeks, and the main focus 

of the studies were to evaluate the effects of marine PUFAs and TTA on adipose tissue 

distribution and gene expression. As our main focus was on adipose tissues, we selected genes 

expression assays most relevant for this tissue. Gene expression levels of nuclear receptors, 

adipokines, uncoupling proteins, AMPK, lipid droplet associated proteins and genes involved 

in lipid metabolism were analysed. Since fatty acid oxidation is not prominent in adipose 

tissue in the case of a mixed diet, only few genes related to that were included.  

We observed increased mRNA levels of several cytokines and chemokines in the 

visceral adipose depots of the n-3 FA-fed animals in paper II. This may suggest altered cell 

composition and it could have been informative to have included macrophage markers, e.g. 

CD68, f4/80 or MIP-1�.  However, these markers may not be dependable markers of 

macrophage infiltration but rather  markers of inflammation (58).  

  In paper III, we speculated that the observed ectopic expression of both gene and 

protein UCP3 in the liver and markedly increased Ucp1 mRNA in the visceral adipose depots, 

promoted enhanced energy dissipation and thereby reduced weight gain in the TTA-fed 

animals. In order to claim this with certainty, indirect calorimetry would be necessary. 

Histological evaluation of the visceral adipose tissues in order to evaluate if TTA induced 

BAT formation would also have been informative.  
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We utilized MRI in addition to dissections and weighing to estimate the sizes of the 

distinct adipose depots in papers II and III. We observed high correlations between the 

estimates by the two methods for all depots, except the mesenteric. Dissecting out the 

mesenteric adipose can be difficult due to the anatomical nature of the depot and we believe 

MRI is a reliable alternative. A higher strength for detecting differences in subcutaneous 

adipose tissue depot sizes could have been obtained if we had dissected and analysed with 

MRI a larger portion of depot. That would have enabled us to claim with more certainty 

whether there was redistribution of adipose tissue to the subcutaneous depot in the n-3 FA-

group. 

The ODES was a well-designed and well-controlled intervention study, with beneficial 

results on weight, waist circumference and other cardiovascular risk factors. The interventions 

were moderate and long-term compared to others studies in the literature. We knew from a 

previous report on the ODES-study that there were significant effects of the interventions on 

plasma leptin concentrations (176), and tested our hypothesis that plasma levels of other 

adipokines would also be altered in paper IV. We found a significant effect of diet 

intervention of total adiponectin. It would have been interesting to know if the fall in plasma 

concentration of adiponectin during the one-year study in the control group, was due to a 

reduction of LMW or HMW adiponectin. At the time of the study, no satisfactory method for 

determination of HMW adiponectin was available.   

The ODES study had a 2x2 factorial design. With a 2x2 factorial design, the separate 

effects as well as the interaction effects of the two interventions can be studied. In this 

context, interaction is the modification of the effect of one intervention by the influence of the 

other intervention. We found a significant interaction effect between the diet and exercise 

interventions of TNF�. Both interventions alone increased TNF� plasma concentrations, but 

when the interventions were combined there was no significant effect. With a 2x2 factorial 

design, a higher strength for detecting effects of the single interventions is obtained. E.g. for 

studying the effect of diet intervention, both the diet group and the diet+exercise group can be 

tested against the control group, thereby increasing n.   

Statistical power analyses were performed when designing the ODES study, and were 

not performed prior to adipokines analyses. Power calculations were made with the primary 

end-points euglobin clot lysis time, fibrinogen, coagulation factor VII, and platelet volume (as 

a measure of platelet activity). 
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2. Fatty acids and insulin sensitivity 

In paper I, we reported effects of incubation with EPA on glucose and fatty acid 

metabolism in human myotubes. EPA increased glucose uptake and oxidation in human 

myotubes after 24 h incubation with EPA. This enhanced glucose metabolism occurred 

despite increased uptake of OA and incorporation to TAG, which occurred contrary to our 

expectations. Increased IMTG content is associated with insulin resistance. However, because 

IMTG content is also increased in athletes with high sensitivity to insulin (8), it may not be 

IMTG storage per se that is detrimental to insulin signalling. Sequestration of cytosolic FFAs 

in IMTG stores may represent a cytoprotective mechanism.  

In paper II, the only indication of improved insulin sensitivity in the n-3 FA-group was 

lower fasting plasma insulin levels than the lard group. We found no differences in glucose 

uptake and glycogen uptake in epitrochlearis muscles and soleus muscle strips, and hepatic 

and adipose tissue insulin sensitivity was not evaluated. However, we observed a 4-fold 

increase in Adipoq (adiponectin) mRNA in the mesenteric adipose depot of n-3 FA-fed 

animals, but this was not reflected in plasma or extract concentrations of adiponectin. In a 

study by Phillips et al., SAT, not VAT, was the major contributor to increased circulating 

adiponectin levels in response to treatment with the PPAR� agonist pioglitazone (180).  There 

may be local autocrine or paracrine effects of enhanced adiponectin in the mesenteric adipose 

depot, as adiponectin receptors are expressed in adipocytes.  

 

3. Adipose tissue 

In paper II, there were no differences between the two groups in body composition 

after 7 weeks of feeding. The volumes of the visceral adipose depots, as estimated by MRI, 

were reduced in the n-3 FA-group, thus redistribution of fat away from the visceral 

compartment took place. Redistribution from subcutaneous to visceral fat has been observed 

in both animals and humans treated with TZDs, which are PPAR�-agonists. Because n-3 FAs 

are also PPAR�-agonists, the redistribution effect observed in paper II can probably be 

attributed to PPAR� activation. This may be a favourable effect of n-3 FAs, as visceral fat 

storage can be regarded as “ectopic”.  

We observed that Scd1 was significantly reduced in the epididymal, perirenal and 

interscapular depots, as well in the liver of the n-3 FA-fed rats. This is in accordance with 

previous observations that PUFAs repress the SCD gene expression (123;181). In the recent 

years, other functions besides desaturation of fatty acids have been shown for SCD. SCD 

deficiency in mice has been reported to increase AMPK activity and beta-oxidation in liver 
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AMPK (154), and enhance thermogenesis (182). Also, SCD deficiency reduced ceramide 

production in skeletal muscle (155). Hence, it is possible that some of the effects of n-3 FA-

feeding are due to down-regulation of Scd1. 

Our finding of increased expression of several cytokines and chemokines in visceral 

depots of n-3 animals was opposite of what we expected, considering n-3 PUFAs anti-

inflammatory properties. Because gene expression analyses have limitations, further 

elucidation of the mechanisms causing this local increase is needed.  

In paper III, we showed that 7 weeks of dietary supplementation with TTA increased 

feed intake but reduced weight gain compared to lard-feeding. Transdifferentiation of white 

adipocytes to brown adipocytes has previously been described (61) and may occur with TTA-

feeding. Because there are no other markers for BAT than UCP1, histological evaluation of 

the adipose tissue is warranted.  

 

4. Adipokines 

Attie and Scherer have proposed that leptin and adiponectin have evolved to 

counteract the “thrifty genes” (183). However, leptin may not be very effective since leptin 

resistance develops during early stages of obesity. Also, with starvation and low leptin levels, 

the inhibitory effect of leptin on appetite and feed intake is lifted, promoting reduced loss of 

adipose tissue.  

The evolutionary role of adiponectin is somewhat puzzling. The peripheral effects of 

leptin and adiponectin have several similarities, such as increasing insulin sensitivity and fatty 

acid oxidation via activation of AMPK. However, when fat mass increases, adiponectin levels 

fall, while leptin levels increase. Centrally, leptin and adiponectin have opposite effects on 

AMPK. Leptin inhibit hypothalamic AMPK, whereas adiponectin activates it (184). 

Kadowaki argues that adiponectin is a starvation gene (185), promoting fat storage when 

facing starvation and loss of fat mass, based on their finding that adiponectin stimulates 

appetite. Conversely, other groups have report increased energy expenditure and reduced or 

unaltered feed intake in response to ICV injections of adiponectin. It is still unknown if and 

how adiponectin crosses the blood brain barrier (BBB) in humans, and plasma and 

cerebrospinal fluid (CSF) adiponectin may not even be correlated. Adiponectin is detectable 

at very low concentrations in the CSF (~1/1,000 of serum concentration) (117;186), and 

Spranger et al. have shown that adiponectin does not cross the BBB in mice (187). Hence, the 

small amounts of adiponectin detectable in the CSF may stem from local production, given 
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the recent evidence of pituitary expression of adiponectin. Further elucidation of the central 

actions of adiponectin is necessary.  

We investigated the effects of long-term diet and exercise intervention on plasma 

concentrations of 9 adipokines in paper IV. We knew from previous publications that that the 

interventions had been effective in reducing fat mass as well plasma leptin levels. The 

negative correlation between BMI and circulating adiponectin is generally weak in most 

cross-sectional and longitudinal studies, and in paper IV we found no significant correlation at 

baseline. However, changes in adiponectin and BMI during the one year intervention period, 

correlated negatively. Given the large interindividual variations in adiponectin, plasma levels 

are undoubtedly determined to a large degree by other factors than fat mass alone, in contrast 

to leptin which correlates more closely. We found a positive effect of diet intervention on 

adiponectin concentrations. After adjustment for change in body fat %, the effect remained 

positive but lost statistical significance. It was puzzling that adiponectin levels fell so much 

(28.5%) during one year only in a high risk population like the control group of the ODES. 

Our finding was in accordance with other investigators (98;188). The exact mechanisms 

regulating adiponectin production in adipose tissue remain unclear, but it has been shown that 

large adipocytes produce less adiponectin than smaller cells (96). We may speculate that 

adipocytes reach a threshold related to degree of lipid-loading or physical size, where 

adiponectin production decreases.  

 

5. Concluding remarks 

The main conclusions from the present study can be summarized as follows:  

- Preincubation of EPA with cultured human myotubes increased glucose uptake and 

oxidation, despite markedly increased fatty acid uptake and synthesis of complex 

lipids. The mechanism may involve increased expression of CD36/FAT and GLUT1. 

Despite the enhanced fatty acid uptake and synthesis of complex lipids, the insulin 

responses after EPA preincubation were maintained for glucose uptake and oxidation, 

and increased for oleate uptake and distribution to complex lipids.  

- Partly substituting lard with marine polyunsaturated fatty acids in rats fed a high-fat 

diet lead to a redistribution of adipose tissue away from the visceral compartment, 

without altering body weight and composition. The enhanced gene expression of Il6 

and Tnf in visceral adipose depots of the n-3 FA-fed animals was not reflected by 

altered plasma levels, suggesting that the effect was local in the adipose tissue. Fasting 

plasma insulin concentrations were lower in the n-3 FA-group, which may indicate 
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better insulin sensitivity. However, as no differences in glucose uptake were observed 

in skeletal muscle, improvement in insulin sensitivity may lie in other insulin sensitive 

organs.  

- Supplementation of TTA increased feed intake but reduced body weight gain and 

adipose depot sizes in rats fed high-fat diets. The increased expressions of Ucp3 in 

liver and Ucp1 in visceral adipose depots may suggest that TTA has promoted 

enhanced energy dissipation, resulting in reduced weight gain in the TTA-group.   

-  Diet intervention had a significant positive effect on adiponectin concentrations, and 

was largely explained by a reduction in fat mass. Both baseline concentrations and 

changes in plasma concentrations of adiponectin and PAI-1 were not correlated with 

other adipokines, suggesting unrelated pathways.  

 

6. Future prospects 

Adipose tissue has received much attention by researchers over the last two decades and 

the field is evolving rapidly.  

- Further characterization of the different adipose depots and elucidation of intrinsic and 

environmental factors causing these differences is needed. Moreover, studies on 

inflammation in relation to expanding adipose tissue and further exploration of the 

hypoxia-hypothesis are warranted.  

- The mechanisms underlying the effects of VLC n-3 PUFAs in adipose tissue are far 

from clear and should be examined in new studies on rodents as well as humans. 

- The possibility for the use of pan-PPAR agonists and selective PPAR modulators in 

the treatment of lipid related-diseases is undoubtedly a current focus of the 

pharmaceutical industry.  

- The biology of BAT in adult humans is still relatively unexplored. Some but not all 

the knowledge from rodents can be transferred to the human situation. With increased 

understanding of the role of BAT, we will know if it has potential as a therapeutic 

target in obesity and other lipid-related diseases.  

- The mechanisms linking adiposity, increased adipocyte cell size and adiponectin 

release remain unsolved and should be focused on. Also, the central effects of 

adiponectin, as well as the functions of adiponectin receptors in organs like the 

pancreas and adipose tissue, need to be clarified.  

- TTA-induced increase in feed intake and reduction of body fat deserve more attention 

by monitoring whole body energy expenditure by calorimetry. 
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We evaluated the effects of partly substituting lard with marine n-3 fatty acids (FA) on body composition and weight, adipose tissue distribution

and gene expression in five adipose depots of male Wistar rats fed a high-fat diet. Rats were fed diets including lard (19·5% lard) or n-3 FA

(9·1% lard and 10·4% Triomare) for 7 weeks. Feed consumption and weight gain were similar, whereas plasma lipid concentrations were lower in

the n-3 FA group. Magnetic resonance imaging revealed smaller visceral (mesenteric, perirenal and epididymal) adipose depots in the n-3 FA-fed

animals (35, 44 and 32% reductions, respectively). n-3 FA feeding increased mRNA expression of cytokines as well as chemokines in several

adipose depots. Expression of Adipoq and Pparg was enhanced in the mesenteric adipose depots of the n-3 FA-fed rats, and fasting plasma insulin

levels were lowered. Expression of the lipogenic enzymes Acaca and Fasn was increased in the visceral adipose depots, whereas Dgat1 was reduced

in the perirenal and epididymal depots.Cpt2mRNA expression was almost doubled in themesenteric depot and liver. Carcass analyses showed similar

body fat (%) in the two feeding groups, indicating that n-3 FA feeding led to redistribution of fat away from the visceral compartment.

Marine n-3 fatty acids: Body composition: Visceral adipose depots: Gene expression

Numerous studies in animals, populations and clinical trials
have revealed beneficial effects of n-3 very-long-chain
PUFA in health and disease. Marine oils contain high pro-
portions of the n-3 very-long-chain PUFA EPA and DHA.
Dietary intake of these fatty acids (FA) may delay the devel-
opment of atherosclerosis and reduce the risk of CVD.
Moreover, dietary intake of n-3 FA decreases postprandial
concentrations of NEFA and plasma VLDL concen-
trations(1–3). Experiments in cell models have elucidated the
mechanisms behind the lipid-lowering effects. Incubation of
cultured rat hepatocytes with EPA reduces cholesterol and
TAG esterification by inhibiting acyl coenzyme A:cholesterol
acyltransferase and acyl coenzyme A:1,2 diacylglycerol
acyltransferase, respectively(4,5). This, in turn, inhibits syn-
thesis and secretion of VLDL(5,6). The TAG-lowering effect
of marine n-3 FA is also mediated via stimulation of FA
oxidation in liver and to a smaller extent in skeletal

muscle(7). Replacing dietary saturated fat with n-3 FA has
been shown to promote decreased whole-body lipid utilisation
and increased carbohydrate utilisation in rats(8).

The risk of developing type 2 diabetes mellitus and CVD is
markedly enhanced with visceral adiposity as compared with
subcutaneous distribution of fat(9). There are regional differ-
ences between adipose tissue depots with respect to expression
of enzymes in lipolytic and anti-lipolytic pathways, uptake
and release of NEFA, as well as adipokine production(10).
Several studies have shown that n-3 FA feeding reduces
the size of perirenal and epididymal white adipose
depots(1,11–13). Rustan et al. showed that this effect was
associated with a reduction in adipocyte size in these
depots(1). Belzung et al. showed in high-fat-fed rats that n-3
FA selectively limited the hypertrophy of retroperitoneal and
epididymal adipose depots, with no effect on other major
depots and no hyperplasia in the retroperitoneal depot(11).
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Abbreviations: AOAC, Association of Official Analytical Chemists; CRP, C-reactive protein; FA, fatty acid; I, intensity; MR, magnetic resonance; MRI, magnetic

resonance imaging; ROI, region of interest; TZD, thiazolidinedione.

British Journal of Nutrition (2009), page 1 of 12 doi:10.1017/S0007114509353210
q The Authors 2009



More knowledge is needed about the effect of dietary fat on
whole-body fat distribution and adipose tissue depot functions.
In the present study we report results from a feeding exper-

iment with rats, where we aimed to elucidate the effects of
long-term dietary supply of marine n-3 FA on whole-body
composition, as well as sizes and functions of adipose tissues
evaluated by gene expression analysis. The reference group
was fed a lard-enriched high-fat diet, whereas the n-3 FA
group had one-third of the lard substituted with concentrated
EPA and DHA. We also provide gene expression analyses
for forty-four genes involved in energy metabolism and
inflammation for five different adipose depots (subcutaneous,
mesenteric, perirenal, epididymal and interscapular), as well
as the liver. Interscapular adipose tissue may under certain
conditions contain a high proportion of brown adipose
tissue(14), whereas the other depots primarily consist of
white adipose tissue. We also performed some metabolic
assays and plasma analyses of lipids and adipokines, and
carcass analyses to evaluate the effect of n-3 FA feeding on
whole-body composition. To our knowledge, we are the
first to report a comprehensive study of genes involved in
lipogenesis and lipid metabolism, as well as adipokines, in
an n-3 FA feeding study.

Materials and methods

Animals

Male rats of the Wistar strain (SPF, Mol) were purchased from
Møllegaard Breeding Centre (Ejby, Denmark). The rats were
fed ad libitum a low-fat reference diet (chow) for 1 week,
before a high-fat feeding regimen with two semi-synthetic
diets (see below) for 49 d. The body weights of the animals
were within the range 211–265 g at the start of the experimen-
tal feeding, approximately aged 7 weeks. The rats were
randomly divided into two groups with ten animals in
each group and housed in individual cages. The temperature
in the animal quarters was 21 ^ 18C, the humidity
was 55 ^ 10% and the dark period was from 19.00 to
07.00 hours. The rats were given free access to tap water.
The protocol was approved by the National Animal Research
Authority.

Diets

Each animal group was offered one of two semi-synthetic
diets: lard (19·5% lard, Erica Lard; Ten Kate Vetten BV,
Musselkanaal, The Netherlands) or n-3 FA (9·1% lard and
10·4% Triomare (EPAX5500); Pronova Biocare, Lysaker,
Norway). Triomar contained .55% of total n-3 FA as
TAG: EPA, 300mg/g; DHA, 190mg/g; total n-3 FA,
580mg/g (total n-3: EPA, DHA, 18 : 3, 18 : 4, 20 : 4, 21 : 5,
22 : 5). This dose represents about 3·6% of total energy
intake of the rats and is comparable with traditional Inuit
intakes of marine FA(15). In addition, 1·5% of soyabean oil
(Mills Soyaolje; Denofa Lilleborg, Fredrikstad, Norway) was
provided to both dietary groups to avoid essential FA
deficiency. The dietary composition (g/100 g) was: maize
starch, 31·5; fat, 21·5; sucrose, 20; casein, 20; salt mixture,
5; vitamin mixture, 1·5; cellulose, 1. The diets provided
approximately 40% of the energy from fat. The diets were

kept at 2208C and given to the rats in portions sufficient
for 1 d supply.
The FA composition of the experimental diets is given in

Table 1. The n-3 FA diet included 17·4% EPA and 10·1%
DHA, whereas the lard diet included 0·03% or less of these
very-long-chain n-3 PUFA. The lard diet was particularly rich
in the MUFA oleic acid (18 : 1n-9; 36·2% of the total FA), and
also consisted of a high amount of the SFA palmitic acid
(16 : 0; 25·3%) and stearic acid (18 : 0; 13·1%). For determi-
nation of FA composition, lipids were extracted by a mixture
of chloroform and methanol(16). The extracts were added
heneicosanoic acid (21 : 0) as internal standard. To remove
neutral sterols and non-saponifiable material, the extracts were
heated in 0·5 M-KOH in an ethanol–water solution. Recovered
FA were re-esterified using BF3–methanol. The methyl esters
were quantified by GLC as previously described(17).

Experimental protocol

The rats were offered 20 g/d of the experimental diets in a tray
that allowed no spilling of the pasty diet, and individual daily
feed intake was recorded. The intake of n-3 FA was on aver-
age 1·25 g/d in the n-3 FA group calculated from analysis of
FA composition of the diet (Table 1) and an average feed
intake of 18 g/animal per d. Body weight was registered
twice weekly. At the end of the feeding period, five animals
in each group were used for the estimation of adipose depot
volumes by magnetic resonance imaging (MRI), dissection

Table 1. Fatty acid composition of the experimental diets (% total fatty
acids)*

Fatty acid Lard n-3

14 : 0 1·6 0·9
15 : 0 0·07 0·06
16 : 0 25·3 14·5
16 : 1n-7 1·9 1·5
16 : 1n-9 0·2 0·1
17 : 0 0·3 0·4
18 : 0 13·1 8·8
18 : 1n-7 2·6 2·8
18 : 1n-9 36·2 22·4
18 : 2n-6 15 10·1
18 : 3n-3 1·3 1·3
18 : 3n-6 0·02 0·1
18 : 4n-3 0 1·4
20 : 0 0·2 0·2
20 : 1n-7 0·04 0·1
20 : 1n-9 0·6 0·9
20 : 1n-11 0·02 0·07
20 : 2n-6 0·3 0·3
20 : 3n-6 0·09 0·1
20 : 3n-9 0·03 0·06
20 : 4n-3 0 0·6
20 : 4n-6 0·2 1·0
20 : 5n-3 0·01 17·4
22 : 0 0·05 0·1
22 : 1 0 0·4
22 : 4n-6 0·08 0·1
22 : 5n-3 0·9 1·6
22 : 5n-6 0 0·3
22 : 6n-3 0·03 10·1
24 : 1n-9 0 0·8

*Data are presented as the average of three measurements.
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and carcass analysis, whereas the other five rats were used
for other analyses of plasma and several tissues.

Plasma analysis

The rats were anaesthetised with 20mg pentobarbital
intraperitoneally (50mg/ml). Blood was collected by aortic
puncture, mixed with 0·1% EDTA and immediately chilled
on ice. Plasma was prepared and stored at 2708C before
analyses. Plasma lipids were measured enzymically on the
Technicon Axon system (Miles, Tarrytown, NY, USA) using
the following kits: TAG (Bayer, Tarrytown, NY, USA), phos-
pholipids (PAP150; BioMerieux, Lyon, France), total
cholesterol (Bayer) and NEFA (NEFA C; Wako Chemicals,
Dalton, OH, USA). Plasma glucose was measured enzymically
on the Technicon Axon system (Miles, NY) using the
Gluco-quant kit (Roche, Mannheim, Germany). Plasma
levels of TNFa, IL-6, IL-10, C-reactive protein (CRP) and
insulin were measured using commercial ELISA. Samples
were analysed in duplicates, and the intra-assay CV were as
follows: TNFa (Bender MedSystems, Vienna, Austria),
12·4%; IL-6 (Bender MedSystems), 8·1%; CRP (Alpha
Diagnostic International, San Antonio, TX, USA), 1·8%;
insulin (Linco Research, St Charles, MO, USA), 3·5%.
Plasma levels of IL-10 (BioSource International, Camarillo,
CA, USA) were below the detection limit of the assay.
Leptin and adiponectin were measured by competitive RIA
(Linco Research) with the use of [125I]leptin and [125I]adipo-
nectin, respectively, as tracers. The intra-assay CV were
4·4% for leptin and 7·7% for adiponectin.

Dissection

From killed rats, mesenteric adipose tissue was obtained by
stripping out the whole mesenterium from the duodenum to
the appendix. Subcutaneous fat was dissected from the lower
abdominal part on the left side in an area of about 2 £ 2 cm.
Epididymal fat was taken from the region around the testis
and epididymis on the right-hand side. Perirenal fat included
the depot located around the right kidney and suprarenal
gland in addition to the abdominal pelvic depot as described
by Murano et al. (18). The interscapular adipose depots were
obtained by dissecting the white superficial and the deeper
brown fat between the shoulder blades.

Magnetic resonance imaging

The rats were killed with pentobarbital intraperitoneal injec-
tions and mounted in a supine position in a plastic bed in a
home-built, solenoid-type double Cu sheet induction coil,
30 cm long and 100mm diameter with an unloaded Q-factor
of 435. The coil was positioned transversely in the middle
of the coil of a General Electric SIGNA 1.5 T clinical
magnetic resonance (MR) scanner (General Electric Medical
Systems, Milwaukee, WI, USA). An external attenuator was
used in addition to the internal attenuation to reduce the
transmission signal amplitude to a suitable value.
The rats were scanned in sagittal, coronal and axial planes

with a fast spin echo (FSE) T1 sequence, TE/TR ¼ 13/100ms
(where TE is the echo time after excitation and TR the MR
sequence repetition time). To enhance the signals from fat,

the frequency was centred on the fat peak, ffat about
63 880 220Hz. The forty sagittal and coronal slices were
interleaved with a thickness of 2mm, an image acquisition
matrix of 256 £ 160 and a field of view (FOV) of
250 £ 156mm. The sixty-four axial image slices were inter-
leaved with a thickness of 4mm, an acquisition matrix
of 256 £ 256 and a FOV of 80 £ 80mm. Only one excita-
tion (per specific MR sequence; number of excitations
(NEX) ¼ 1) was used, giving a total scan time of approxi-
mately 10min per rat.

Magnetic resonance imaging analysis

Interactive data language (IDL) software (RSI International
(UK) Ltd, Crowthorne, Berkshire, UK) was used to develop
a program where calculations were carried out over voxels
satisfying certain inclusion criteria within specified regions
of interest (ROI). The calculations involved counting and
averaging over the voxels (the three-dimensional analogue
of a pixel), and the inclusion criteria were usually values
above certain thresholds. The voxels satisfying the criteria
were depicted through a coloured overlay region over the
original MR image within the present ROI. Preliminary
measurements over regions with essentially no fat or pure
fat established an intensity (I) scale for fat content in the
different fat depots. The width of the intensity distribution
in the fat depot ROI was much larger than the width measured
in homogeneous adipose tissues, the latter giving a quasi-
Gaussian high-intensity peak with a width of only 3–4% of
the peak intensity value. We assumed the low-intensity tail
above the fat threshold to be due mainly to partial volume
effects, and evaluated the fat content by linear interpolation
of the established intensity scale. We used a threshold, I25,
corresponding to approximately 25% fat on this scale, to
evaluate the number of voxels (Nvox) with intensity larger
than I25 in the present ROI, each multiplied by the fat content,
I/Ifat, in this low-intensity region. The fat threshold value I25
produced overlay images that seemed to coincide with regions
characterised as fat by visual inspection. The total tissue (fat
and non-fat) threshold was chosen to be the voxel intensity
value giving an overlay image coinciding maximally with
the outline of the MR image of the animal. Sagittal and coro-
nal slices were imaged with identical MRI settings and
threshold values. Because axial slices were imaged with
different resolution and thickness as compared with the
sagittal and coronal slices, we used different threshold
values providing similar results for total tissue and total
body fat as the evaluation in the other two planes.
In addition to the total fat content, MRI volumes of the

following fat depots were evaluated: interscapular, perirenal,
mesenteric, subcutaneous abdominal, and epididymal.
The sagittal, coronal or axial plane images were chosen for
evaluation depending on in which plane the boundaries of
the fat depot were most clearly depicted. In some cases
images from two, or even all three planes were analysed for
comparison.

Carcass analysis

After MRI analysis, the five rats from each feeding group
were separately autoclaved at 1218C for about 30min and
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transferred to a custom-made homogeniser. Water containing
a foam-reducing agent (Antifoam E100 conc.; Bayer Chemi-
cals AG, Leverkusen, Germany) was added (1:1) before
starting the homogeniser. After 2min in the blender, the
constituents were completely homogenised. Total fat percen-
tage was determined by extracting the lipids from a part of
the homogenate with petroleum ether at 1008C, and weighing
the extracted material (Tecatore application note AN 77/85
1985.03.15, Association of Official Analytical Chemists
(AOAC) method 960.39 and AOAC method 945.16)(19).
Protein was determined by the Kjeldahl method (Tecatore
application note: Determination of Kjeldahl Protein in
Fish and Fish-products using the Kjeltec Auto system
1983.02.01 ASN 56/83 (Cu catalyst), AOAC method
981.10(19)). Water was determined by desiccation of a
freeze-dried part of each homogenate, and ash was determined
by heating the dried material to 5508C for 18–20 h totally and
weighing the remains.

Glucose transport and glycogen content in soleus muscle

Glucose uptake and glycogen content were measured in
epitrochlearis muscles and in soleus muscle strips as described
by Jensen et al. (20).

Hepatic enzyme activities

The livers were homogenised and fractionated(21), and the
activities of acyl-CoA synthetase(22), carnitine palmitoyltrans-
ferase-II(23) and acyl-CoA oxidase(24) were determined in the
post-nuclear fractions.

Adipose tissue and gene expression analyses

Mesenteric, subcutaneous, perirenal, epididymal and
interscapular adipose tissue depots and liver were collected
from each rat and snap-frozen in liquid N2 before storage at
2708C. The tissues were pulverised with an ice-cold steel
pestle and mortar. Total RNA was isolated from 100mg
tissue using the RNeasy Lipid Tissue Mini Kit from Qiagen
(Venlo, The Netherlands). RNA was quantified by spectropho-
tometry (NanoDrop 1000; NanoDrop Technologies, Waltham,
MA, USA), and the integrity was evaluated by capillary
electrophoresis (Agilent 2100 Bioanalyser; Agilent Technol-
ogies, Inc., Santa Clara, CA, USA). Total RNA (400 ng)
was reversely transcribed in 20ml reactions using the High
Capacity cDNA Reverse Transcription Kit with RNase inhibi-
tor (Applied Biosystems, Foster City, CA, USA) according to
the manufacturer’s directions. Real-time PCR was performed
with custom-made 384-well microfluidic cards (TaqMan
Low Density Arrays; Applied Biosystems). Forty-four genes
of interest were selected, as well as four endogenous controls,
and analysed in duplicates. Official symbols and full names of
the genes, as well as Applied BioSystems’ product codes, are
given in Table 2. The expression values of each gene in all
samples were normalised against the average of the endogen-
ous controls. 18S and Arbp varied significantly between the
lard and n-3 groups in mesenteric fat, and were therefore
excluded as endogenous controls in this depot.

Adipose tissue extraction and adipokine protein analyses

Approximately 0·1 g frozen, comminuted adipose tissue
was mixed with 0·4ml lysis buffer (1 M-2-amino-2-hydroxy-
methyl-propane-1,3-diol (Tris)-HCl, 1 M-NaCl, 85%
glycerol), 0·5 M-EDTA (pH 8) and Complete protease inhibitor
cocktail (Roche, Basel, Switzerland), and immediately
homogenised for 1min using an Ultra-Turrax device. Samples
were centrifuged for 15min at 3000 g, the floating fat layers
were discarded and the aqueous portions of the samples were
centrifuged for another 15min at 15 000 g. Total protein concen-
trations were measured using a Multiskan Plus reader (Titertek,
Labsystem, Helsinki, Finland). All samples were diluted to a
total protein concentration of 0·5mg/ml. Concentrations of adi-
ponectin, monocyte chemoattractant protein 1, leptin, IL-1b,
IL-6, TNFa and plasminogen activator inhibitor-1 (total) were
measured using a rat adipocyte LINCOplex kit (RADPCYT-
82K; Linco Research) according to the manufacturer’s protocol.
The samples were analysed in tetra- or pentaplicates using a
Bio-Plex 200 instrument (Bio-Rad, Richmond, CA, USA).

Statistics

Values are reported as mean values and standard deviations
for ten animals per group in Fig. 1, and mean values with
their standard errors from four or five animals per group in
the remaining Figs. 2–6 and Tables 2 and 4. Independent-
samples t tests were used to compare the lard and n-3 FA
groups. Significant differences in MRI volumes between the
two diet groups were found by t tests. Correlation coefficients
were calculated between dissection weights and volumes
(determined by MRI) of adipose depots (Table 3). A 5%
level of significance was applied in all analyses.

Results

Animals and diets

Both experimental diets contained the same amount of energy
(per g), and the rats were individually offered 20 g/d of the
respective diets throughout the 7-week feeding period.
There were no differences in average weight gain in the two
groups of animals (Fig. 1(a)). The average amount of feed
consumed by the rats in the n-3 FA group and the reference
lard group was also indistinguishable (Fig. 1(b)). To determine
if there were differences in body composition in the two
dietary groups, we performed carcass analyses with no signifi-
cant differences in the content of fat, protein, ash or water
between the two groups after 7 weeks of feeding (Fig. 1(c)).

Plasma analyses

Plasma concentrations of TAG, phospholipids and cholesterol
were decreased by 56, 41 and 40%, respectively, after 7 weeks
of feeding in the n-3 FA-fed as compared with the lard-fed
animals (Fig. 2(a)). Plasma NEFA were reduced non-
significantly in the n-3 FA group. There were no significant
differences in plasma levels of adiponectin, leptin, CRP,
TNFa, IL-6 or IL-10 between the groups (data not shown).
Plasma insulin concentrations were markedly lower (72%)
in the n-3 FA-fed animals (Fig. 2(b)), whereas plasma glucose
concentrations were similar in both groups (data not shown).
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Glucose uptake and glycogen content in skeletal muscle

To investigate the insulin response of skeletal muscle after the
experimental feeding, glucose uptake was measured in vitro in
epitrochlearis muscles and in soleus muscle strips. There were
no significant differences in either basal or insulin-stimulated
glucose uptake in soleus muscle strips (Fig. 3) and epitro-
chlearis (data not shown) between the two dietary groups.
The amount of glycogen in the epitrochlearis muscle was
measured as 155 (SEM 9) mmol/kg dry weight in the n-3 FA
group and 173 (SEM 8) mmol/kg in the lard group. In soleus,

the glycogen content was 122 (SEM 16) and 130 (SEM 12)
mmol/kg dry weight in the n-3 FA-fed group and lard-fed
group, respectively, with no significant differences in muscle
glycogen content between the two groups.

Hepatic enzyme activity

The hepatic enzyme activities of acyl-CoA synthetase,
acyl-CoA oxidase and carnitine palmitoyltransferase-II were
significantly increased in the n-3 FA group as compared
with the lard group, by 92, 17 and 68%, respectively (Fig. 4).

Table 2. Official symbol, official full name and Applied Biosystems’ product code for the forty-four genes selected, as well as the four endogenous
controls

Official gene symbol Official full name
Applied BioSystems’
product code*

Acaca Acetyl-coenzyme A carboxylase a Rn00573474_m1 Acaca
Acbd3 Acyl-coenzyme A binding domain containing 3 Rn00788231_m1 Acbd3
Ace Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 Rn00561094_m1 Ace
Acsl1 Acyl-CoA synthetase long-chain family member 1 Rn00563137_m1 Acsl1
Adfp Adipose differentiation related protein Rn01472318_m1 Adfp
Adipoq Adiponectin Rn00595250_m1 Adipoq
Apln Apelin, AGTRL1 ligand Rn00581093_m1 Apln
Ccl2 Chemokine (C-C motif) ligand 2; also named MCP-1 Rn00580555_m1 Ccl2
Cpt1a Carnitine palmitoyltransferase 1a, liver Rn00580702_m1 Cpt1a
Cpt2 Carnitine palmitoyltransferase 2 Rn00563995_m1 Cpt2
Cxcl1 Chemokine (C-X-C motif) ligand 1; also named CINC-1; GRO1 Rn00578225_m1 Cxcl1
Dgat1 Diacylglycerol O-acyltransferase 1 Rn00584870_m1 Dgat1
Fabp4 Fatty acid binding protein 4, adipocyte Rn00670361_m1 Fabp4
Fabp5 Fatty acid binding protein 5, epidermal Rn00821817_g1 Fabp5
Fasn Fatty acid synthase Rn00569117_m1 Fasn
Hgf Hepatocyte growth factor Rn00566673_m1 Hgf
Hsd11b2 Hydroxysteroid 11-b dehydrogenase 2 Rn00492539_m1 Hsd11b2
Il10 Interleukin 10 Rn00563409_m1 Il10
Il1b Interleukin 1b Rn00580432_m1 Il1b
Il6 Interleukin 6 Rn00561420_m1 Il6
Lep Leptin Rn00565158_m1 Lep
Lipe Lipase, hormone sensitive Rn00563444_m1 Lipe
Lpl Lipoprotein lipase Rn00561482_m1 Lpl
Mt1a Metallothionein 1a Rn00821759_g1 Mt1a
Nr1h3 Nuclear receptor subfamily 1, group H, member 3; also named LXR a Rn00581185_m1 Nr1h3
Pbef1 Pre-B-cell colony enhancing factor 1; also named visfatin Rn00822046_m1 Pbef1
Pklr Pyruvate kinase, liver and red blood cell Rn00561764_m1 Pklr
Plin Perilipin Rn00558672_m1 Plin
Ppara Peroxisome proliferator activated receptor a Rn00566193_m1 Ppara
Pparg Peroxisome proliferator activated receptor g Rn00440945_m1 Pparg
Prkaa1 Protein kinase, AMP-activated, a 1 catalytic subunit Rn00569558_m1 Prkaa1
Prkaa2 Protein kinase, AMP-activated, a 2 catalytic subunit; also named AMPK Rn00576935_m1 Prkaa2
Rbp4 Retinol binding protein 4, plasma Rn01451318_m1 Rbp4
Retn Resistin Rn00595224_m1 Retn
RGD1652323 Similar to fatty acid translocase/CD36 Rn00580728_m1

RGD1562323_predicted Cd36
Scd1 Stearoyl-coenzyme A desaturase 1 Rn00594894_g1 Scd1
Serpine1 Serine (or cysteine) peptidase inhibitor, clade E, member 1; also named PAI-1 Rn00561717_m1 Serpine1
Slc27a1 Solute carrier family 27 (fatty acid transporter), member 1; also named FATP-1 Rn00585821_m1 Slc27a1
Slc2a4 Solute carrier family 2 (facilitated glucose transporter), member 4; also named GLUT-4 Rn00562597_m1 Slc2a4
Tgfb1 Transforming growth factor, b 1 Rn00572010_m1 Tgfb1
Tnf Tumour necrosis factor Rn99999017_m1 Tnf
Ucp1 Uncoupling protein 1 Rn00562126_m1 Ucp1
Ucp2 Uncoupling protein 2 Rn00571166_m1 Ucp2
Ucp3 Uncoupling protein 3 Rn00565874_m1 Ucp3
Arbp† Acidic ribosomal phosphoprotein P0 Rn00821065_g1 Arbp
Gapdh† Glyceraldehyde-3-phosphate dehydrogenase Rn99999916_s1 Gapdh
Ppif† Peptidylprolyl isomerase F (cyclophilin F) Rn00597197_m1 Ppif
18S† Hs99999901_s1

AGTRL1, angiotensin receptor-like 1; CINC-1; cytokine-induced neutrophil chemoattractant 1; GRO1, growth-related oncogene 1; MCP-1, monocyte chemoattractant protein 1;
LXR, liver X receptor; AMPK, AMP-activated protein kinase; PAI-1, plasminogen activator inhibitor-1.

* Applied BioSystems, Foster City, CA, USA.
†Endogenous controls.
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Adipose tissue depots

Five adipose tissue depots were dissected and weighed, and
volumes were estimated using MRI on killed whole animals
(Fig. 5). Dissection weights of the perirenal and epididymal
depots were significantly reduced by 51 and 31% after n-3
FA feeding as compared with the lard feeding, respectively,
whereas the volume estimated by MRI was reduced by 43
and 32% in these depots. There was no significant difference
in dissection weights of the mesenteric adipose depots.
Estimated MRI volume of the mesenteric depot was, however,
significantly reduced by 35%. There were no significant
differences between the two feeding groups in weight or

volume of interscapular and subcutaneous adipose depots.
The correlation coefficients between estimated volume and
dissection weight of the fat depots were significant and in
the range 0·67–0·84 for subcutaneous, perirenal, epididymal
and interscapular fat, whereas it was 0·39 and non-significant
for the mesenteric depot (Table 3). Representative MR images
of the different adipose depots are shown in Fig. 6.

Adipose tissue extracts

The concentrations of several adipokines (adiponectin,
monocyte chemoattractant protein 1, leptin, IL-1b, IL-6,
TNFa and plasminogen activator inhibitor-1 (total)) were
determined in aqueous extracts from the five different adipose
tissue depots. No statistically significant differences were
observed between the two dietary groups (data not shown).
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fatty acids) during the 7 weeks of feeding. Values are means for ten rats per
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Table 3. Correlation coefficients between depot volume estimated by
magnetic resonance imaging and depot weight obtained by dissection

Fat depot Correlation coefficient P

Subcutaneous 0·81 ,0·001
Mesenteric 0·39 0·15
Perirenal 0·84 ,0·001
Epidymal 0·82 ,0·001
Interscapular 0·67 0·006
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acids) after 7 weeks of feeding. Values are means for five rats per group,

with standard errors represented by vertical bars. Mean value was signifi-

cantly different from that of the lard group: * P,0·05, *** P#0·001 (t test).
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Gene expression analysis

The effects of n-3 FA feeding on mRNA expression of
forty-four selected genes in five adipose depots and liver are
presented in Table 4. Several cytokines and chemokines
(Il10, Il1b, Il6, Cxcl1, Ccl2, Mt1a, Retn, Tnf) were signifi-
cantly increased (1·5- to 13-fold) in the five depots in the
n-3 FA-fed as compared with the lard-fed animals. The
adipogenic transcription factor Pparg was increased 4-fold
in the mesenteric depot in the n-3 FA group. The lipogenic
enzymes Acaca and Fasn, as well as Fabp5, were enhanced
in the mesenteric, perirenal (Fasn not significantly) and epidi-
dymal depots, whereas they were reduced in the interscapular
depot containing significant amounts of brown adipose tissue.
Dgat1 was reduced in the perirenal and epididymal depots.
Scd1 was significantly reduced in the epididymal, perirenal
and interscapular depots, as well in the liver of the n-3
FA-fed rats. Ucp2 mRNA expression was doubled in the
subcutaneous depots of n-3 FA-fed rats, whereas Ucp3 was

reduced in the perirenal adipose depots. mRNA expression
of Cpt2, which is involved in FA transport and b-oxidation
in mitochondria, was almost doubled in the mesenteric depot
and liver, and reduced in the epididymal depot. Expression
of Adfp, which is a lipid droplet-associated protein, was 2- to
3-fold increased in the epididymal and perirenal depots. The
insulin-sensitising adipokine Adipoq (adiponectin) was 4-fold
increased in the mesenteric depot. We observed that the
RNA yield was lower, and the quality higher, from the mesen-
teric depots of the n-3 FA-fed rats compared with the lard-fed
animals. This may reflect some contamination by pancreatic
tissue in the lard-fed rats because we observed expression of
the pancreatic markers Ela1 and Prss1 in some mesenteric
adipose tissue samples(25).

Discussion

By using MRI, we showed that the mesenteric adipose depots
are significantly smaller in the n-3 FA-fed animals as com-
pared with lard-fed animals. Also epididymal and perirenal
adipose depots were reduced in n-3 FA-fed animals in agree-
ment with previous reports(1,12,13). The mesenteric, perirenal
and epididymal depots are all located in the visceral compart-
ment inside the peritoneal cavity. A reduction in size of these
depots is important because visceral adiposity is associated
with the metabolic syndrome and is a risk factor for develop-
ing CVD and type 2 diabetes mellitus(9,26–28).

Waist:hip ratio or waist circumference is emerging as a
better risk marker for CVD than BMI because the latter
does not take into account the distribution of body fat. Results
from the INTERHEART study show a protective effect of an
increased hip circumference (reflecting subcutaneous storage
of fat on the hips and thighs) related to risk of myocardial
infarction(9,26). Dietary marine oils limit the TAG accumu-
lation in perirenal and epididymal adipose tissue, reducing
hypertrophy of the adipocytes(11,13). Rustan et al. (1) have pre-
viously shown that n-3 FA feeding of rats reduced adipocyte
cell volume in perirenal and epididymal adipose depots,
whereas the cell volume was unaltered in the mesenteric and
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subcutaneous depots. Although we found the visceral adipose
depots to be reduced in the n-3 FA-fed rats, we found no
differences between the two groups in total weight gain,
which is in agreement with Kusunoki et al. (29) and
Pérez-Matute et al. (30). Moreover, there were no differences
between the two groups in body composition as determined
by our whole-body carcass analysis.
By dissecting out and weighing the mesenteric, perirenal,

interscapular and epididymal adipose depots, as well as subcu-
taneous adipose tissue on the left side of the lower abdominal
part, we accounted for approximately 28% of total body fat in
the rats. Carcass analyses showed similar body fat percentage
in the two groups. Thus, our finding of smaller mesenteric,
perirenal and epididymal adipose depots in the n-3 FA-fed
group suggests that n-3 FA feeding promoted a redistribution

of adipose tissue, rather than a reduction in the total amount of
fat. Both the dissection and MRI analysis included only the
lower abdominal part on the left side of the subcutaneous
depots, thereby providing low sensitivity for detecting differ-
ences in the two dietary groups in this depot. It is therefore
possible that the animals in the n-3 FA group had more subcu-
taneous fat in total than the lard-fed group, because the MRI-
estimated volume of the left abdominal subcutaneous adipose
depot was higher (not statistically significant) in the n-3
FA-fed animals. In addition, expression of the lipolytic
enzyme Lipe was reduced by 60% in the subcutaneous
depot. Studies on thiazolidinediones (TZD) have shown that
the weight gain following treatment is due primarily to
enhanced subcutaneous adiposity, accompanied by reduced
visceral adiposity and intrahepatic TAG accumulation(31,32).

(a) (b)

Perirenal/retroperitoneal
fat

Axillary fat

Axillary fat

Interscapular
fat

Retroperitoneal fat

Mesenteric fat

50 mm50 mm

10 mm
10 mm

50 mm 50 mm

Subcutaneous
fat

(c) (d)

(e) (f)

Fig. 6. Magnetic resonance (MR) images of adipose depots of representative rats in different planes after 7 weeks of feeding. Coronal MR images from the lard

(a) and n-3 fatty acid (b) groups, showing perirenal/retroperitoneal, axillary and subcutaneous adipose depots. Sagittal MR images of left sections of the lard

(c) and n-3 fatty acid (d) groups showing mesenteric and retroperitoneal adipose tissue depots. Axial MR images of the lard (e) and n-3 fatty acid

(f) groups showing axillary and interscapular fat. Sections corresponding to the sagittal (2mm) and axial (4mm) slices are shown in (a), sections corresponding to

the coronal (2mm) and axial (4mm) slices are shown in (c) and sections corresponding to the coronal (2mm) and sagittal (2mm) slices are shown in (e).
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Table 4. Effects of 7 weeks of n-3 fatty acid (FA) feeding on mRNA expression levels in five adipose depots and liver†

(Mean values with their standard errors for four to five rats per group)

Subcutaneous Mesenteric Perirenal Epididymal Interscapular Liver

Gene Diet Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

Acaca Lard 1·00 0·05 1·00 0·11 1·00 0·15 1·00 0·09 1·00 0·08 1·00 0·18
n-3 FA 1·72*** 0·15 3·60* 0·91 1·97* 0·30 1·78* 0·31 0·55** 0·11 0·56 0·04

Acbd3 Lard 1·00 0·12 1·00 0·06 1·00 0·16 1·00 0·06 1·00 0·08 1·00 0·05
n-3 FA 0·92 0·12 1·22 0·14 1·07 0·06 0·81* 0·05 0·75* 0·04 0·88 0·05

Ace Lard 1·00 0·12 1·00 0·61 1·00 0·18 1·00 0·24 1·00 0·09 1·00‡ 0·01
n-3 FA 1·11 0·47 1·24 0·48 0·62 0·08 0·52 0·02 0·69* 0·05 1·69 0·33

Acsl1 Lard 1·00 0·23 1·00 0·22 1·00 0·19 1·00 0·11 1·00 0·05 1·00 0·08
n-3 FA 0·71 0·09 3·41* 1·05 0·72 0·06 0·70* 0·03 1·00 0·10 1·16 0·05

Adfp Lard 1·00 0·24 1·00 0·20 1·00 0·16 1·00 0·08 1·00 0·15 1·00 0·19
n-3 FA 2·55 0·71 2·39 0·64 2·52** 0·27 2·27*** 0·19 1·08 0·17 0·76 0·17

Adipoq Lard 1·00 0·21 1·00 0·20 1·00 0·13 1·00 0·09 1·00 0·06 1·00‡ 0·07
n-3 FA 0·53 0·14 4·11* 1·30 0·83 0·08 0·85 0·03 1·05 0·06 2·09 1·11

Apln Lard 1·00 0·17 1·00 0·24 1·00 0·15 1·00 0·24 1·00 0·26 1·00‡ 0·06
n-3 FA 0·75 0·14 2·40* 0·48 0·51* 0·03 0·52 0·09 1·32 0·16 1·03 0·08

Ccl2 Lard 1·00 0·48 1·00 0·22 1·00 0·05 1·00 0·15 1·00 0·36 1·00‡ 0·19
n-3 FA 0·58 0·16 7·33* 2·67 2·49** 0·39 1·69* 0·18 3·62 1·89 0·70 0·07

Cd36 § Lard 1·00 0·19 1·00 0·26 1·00 0·15 1·00 0·07 1·00 0·10 1·00 0·27
n-3 FA 0·46* 0·09 2·91 0·85 0·92 0·04 0·93 0·10 1·08 0·13 1·64 0·10

Cpt1a Lard 1·00 0·17 1·00 0·08 1·00 0·16 1·00 0·17 1·00 0·27 1·00 0·20
n-3 FA 1·73 0·63 0·96 0·05 1·04 0·06 0·84 0·05 0·85 0·12 1·28 0·06

Cpt2 Lard 1·00 0·13 1·00 0·09 1·00 0·06 1·00 0·06 1·00 0·10 1·00 0·04
n-3 FA 1·34 0·37 1·83* 0·34 0·83 0·12 0·80* 0·03 0·89 0·12 1·78*** 0·06

Cxcl1 Lard 1·00 0·43 1·00 0·17 1·00 0·23 1·00 0·22 1·00‡ 0·14 1·00 0·63
n-3 FA 0·91 0·66 11·56* 4·39 1·46 0·47 1·14 0·15 1·34 0·20 0·38 0·17

Dgat1 Lard 1·00 0·15 1·00 0·05 1·00 0·11 1·00 0·07 1·00 0·08 1·00 0·05
n-3 FA 0·70 0·07 3·22 1·08 0·71* 0·03 0·80* 0·03 1·03 0·13 1·16 0·05

Fabp4 Lard 1·00 0·20 1·00 0·19 1·00 0·16 1·00 0·10 1·00 0·04 1·00 0·09
n-3 FA 0·53 0·11 3·89 1·33 0·94 0·07 0·87 0·05 0·97 0·13 1·21 0·39

Fabp5 Lard 1·00 0·17 1·00 0·24 1·00 0·16 1·00 0·13 1·00 0·11 1·00 0·24
n-3 FA 8·47 7·06 1·82* 0·28 1·51* 0·07 1·66** 0·14 0·60** 0·03 0·46 0·05

Fasn Lard 1·00 0·30 1·00 0·19 1·00 0·20 1·00 0·14 1·00 0·06 1·00 0·46
n-3 FA 2·68 0·98 3·77* 1·13 1·98 0·40 2·10* 0·43 0·40*** 0·08 0·15 0·03

Hgf Lard 1·00 0·21 1·00 0·23 1·00 0·13 1·00 0·10 1·00‡ 0·26 1·00 0·15
n-3 FA 0·40* 0·10 1·67 0·25 1·16 0·09 1·30 0·10 1·23 0·16 1·01 0·04

Hsd11b2 Lard 1·00 0·22 1·00‡ 0·12 1·00 0·27 1·00 0·09 1·00‡ 0·12 1·00 0·15
n-3 FA 0·54 0·22 3·68* 1·05 0·69 0·09 0·99 0·10 1·98 1·24 0·77 0·23

Il10 Lard 1·00 0·32 1·00‡ 0·18 1·00 0·19 1·00 0·22 1·00‡ 0·41 1·00‡ 0·22
n-3 FA 0·38 0·05 13·55 9·98 1·78 0·44 1·73* 0·20 0·90 0·46 1·07 0·15

Il1b Lard 1·00 0·34 1·00 0·26 1·00 0·24 1·00 0·28 1·00‡ 0·12 1·00 0·14
n-3 FA 0·65 0·25 2·23* 0·35 4·89*** 0·71 2·02 0·40 1·08 0·06 1·45* 0·04

Il6 Lard 1·00‡ 0·81 1·00 0·32 1·00 0·26 1·00 0·22 1·00‡ 0·28 1·00‡ 0·26
n-3 FA 0·57 0·48 13·13* 4·36 3·55 1·33 1·96* 0·24 3·28 1·08 1·63 0·96

Lep Lard 1·00 0·22 1·00 0·27 1·00 0·09 1·00 0·13 1·00 0·14 1·00‡ 0·25
n-3 FA 0·50 0·12 3·35 1·23 0·70 0·07* 0·65 0·09 0·67 0·16 7·25** 0·20

Lipe Lard 1·00‡ 0·11 1·00‡ 0·10 1·00 0·18 1·00 0·24 1·00‡ 0·25 NQ‡
n-3 FA 0·40** 0·05 3·30* 1·00 0·93 0·12 0·84 0·09 0·63 0·06 NQ

Lpl Lard 1·00 0·12 1·00 0·22 1·00 0·13 1·00 0·09 1·00 0·13 1·00 0·18
n-3 FA 0·97 0·09 3·31* 1·00 0·89 0·10 0·77* 0·05 1·01 0·08 0·87 0·17

Mt1a Lard 1·00 0·16 1·00 0·34 1·00 0·16 1·00 0·14 1·00 0·49 1·00 0·28
n-3 FA 1·70 0·34 1·29 0·35 2·28** 0·26 1·52* 0·17 0·81 0·15 2·66 0·70

Nr1h3 Lard 1·00 0·17 1·00 0·13 1·00 0·12 1·00 0·08 1·00 0·29 1·00 0·12
n-3 FA 0·46* 0·06 2·31 0·58 1·03 0·07 0·95 0·04 0·52 0·04 0·90 0·07

Pbef Lard 1·00 0·12 1·00 0·24 1·00 0·06 1·00 0·07 1·00 0·12 1·00 0·08
n-3 FA 1·96 0·57 2·58 0·68 0·92 0·03 1·02 0·10 0·82 0·16 1·99 0·33

Pklr Lard 1·00‡ 0·39 1·00‡ 0·45 1·00‡ 0·25 1·00‡ 0·55 1·00‡ 0·30 1·00 0·05
n-3 FA 0·33 0·07 0·24 0·08 1·72 0·77 0·04 0·02 1·82 1·13 0·47*** 0·01

Plin Lard 1·00 0·21 1·00 0·17 1·00 0·17 1·00 0·10 1·00 0·03 1·00‡ 0·12
n-3 FA 0·50 0·13 3·73 1·32 0·70 0·05 0·73* 0·03 1·04 0·12 1·97 1·14

Ppara Lard 1·00 0·09 1·00 0·16 1·00 0·10 1·00 0·06 1·00 0·19 1·00 0·13
n-3 FA 0·91 0·13 1·24 0·39 0·93 0·30 0·70** 0·06 0·98 0·10 0·81 0·08

Pparg Lard 1·00 0·27 1·00 0·14 1·00 0·17 1·00 0·11 1·00 0·17 1·00 0·28
n-3 FA 0·36 0·10 3·42* 1·05 0·77 0·02 0·83 0·03 0·89 0·08 1·94 0·28

Prkaa1 Lard 1·00 0·13 1·00 0·17 1·00 0·10 1·00 0·08 1·00 0·07 1·00 0·15
n-3 FA 0·71 0·03 1·70 0·31 0·89 0·05 0·89 0·03 0·94 0·16 1·18 0·11

Prkaa2 Lard 1·00 0·19 1·00 0·27 1·00 0·19 1·00 0·10 1·00 0·24 1·00 0·04
n-3 FA 3·53* 1·19 1·14 0·33 0·48* 0·03 0·72* 0·04 0·58 0·07 1·37* 0·10
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Because n-3 FA also activate Pparg, we suggest that there
might be redistribution of adipose tissue from the visceral
depots to the subcutaneous depot in the n-3 FA-fed animals.
The lower correlation coefficients between dissection

weight and volume estimated by MRI for the mesenteric fat
as compared with the other adipose tissue depots may reflect
the difficulty of dissecting out this depot precisely. Fissoune
et al. reported MRI measurements of two adipose tissue
depots in mice, but did not validate against dissection
weights as we have done(33). MRI might represent a reliable
non-invasive method and a more precise alternative to
dissection in certain situations.
Expression of the adipogenic transcription factor Pparg was

increased 3·4-fold in the mesenteric depot of n-3 FA-fed
animals. As observed for the TZD, the n-3 FA EPA and
DHA are good agonists for PPARg(34,35), contrary to SFA
predominantly found in lard. Activation of PPARg is import-
ant for adipocyte differentiation(36). Our finding that Pparg
expression is increased in response to dietary n-3 FA is
supported by Chambrier et al. who showed that EPA induced
PPARg gene expression in isolated human adipocytes(37). This
has also been shown in human skeletal muscle cells(38).
PPARg activation may promote fat accumulation in subcu-
taneous depots, with reduced or unchanged visceral
storage(39). Also, some ex vivo preadipocyte studies have
shown that abdominal subcutaneous preadipocytes differen-
tiate in response to TZD more readily than cells from visceral
depots of the same subjects(39). A point to consider for all
genes, and nuclear receptors in particular, is that gene
expression levels provide limited information on their

activities. The presence of cofactors, heterodimerisation,
ligand availability and translocation to the nucleus are also
of importance.
It is unexpected that Acaca (encoding acetyl-coenzyme

A carboxylase a) expression, was increased in all four white
adipose depots in the n-3 FA-fed animals, and Fasn (encoding
FA synthase) was increased in the mesenteric and epididymal
adipose depots. This may suggest enhanced synthesis of FA in
these depots. However, Dgat1 expression (encoding diacylgly-
cerol acyltransferase) was reduced in the perirenal and epidi-
dymal adipose depots of the n-3 FA-fed animals. This is in
line with decreased fat accumulation in these depots. It is
possible that the simultaneous increase in the expression of
the lipogenic enzymes Acaca and Fasn, with reduced Dgat1
expression, reflects increased turnover with futile cycling of
FA. Guan et al. have shown that glycerol kinase, which is
normally not expressed in adipocytes, was induced by TZD
in adipocytes, and propose a futile fuel cycle as a mechanism
for TZD action(40) although this is controversial(41).

The hepatic activities of carnitine palmitoyltransferase-II
and acyl-CoA oxidase were increased in the animals fed the
n-3 FA diet, which might suggest that FA oxidation was
elevated in these animals as compared with lard-fed rats. In
addition, hepatic Cpt2 mRNA was increased in the n-3 FA
group in accordance with Halvorsen et al. (42). Increased hepa-
tic mitochondrial oxidation of FA may partially explain the
reduction in plasma TAG observed in the n-3 FA group(7,43).
We observed that the mRNA levels of several cytokines and

chemokines such as Il1b, Tnfa, Tgfb1, Il6, Cxcl1, Ccl2 and
Retn, and Il10, were increased in the mesenteric, perirenal

Table 4. Continued

Subcutaneous Mesenteric Perirenal Epididymal Interscapular Liver

Gene Diet Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

Rbp4 Lard 1·00 0·21 1·00 0·22 1·00 0·13 1·00 0·13 1·00 0·07 1·00 0·09
n-3 FA 0·40 0·12 3·74* 1·16 0·89 0·10 0·83 0·05 0·92 0·16 0·95 0·02

Retn Lard 1·00 0·49 1·00 0·29 1·00 0·20 1·00 0·13 1·00 0·06 1·00‡ 0·28
n-3 FA 0·92 0·38 2·97* 0·81 0·95 0·09 0·96 0·11 0·63** 0·08 0·97 0·37

Scd1 Lard 1·00 0·27 1·00 0·19 1·00 0·11 1·00 0·08 1·00 0·20 1·00 0·15
n-3 FA 0·54 0·10 0·87 0·38 0·18*** 0·05 0·17*** 0·07 0·20** 0·04 0·28** 0·08

Serpine1 Lard 1·00 0·26 1·00 0·21 1·00 0·26 1·00 0·15 1·00 0·15 1·00 0·17
n-3 FA 1·11 0·42 6·99 2·94 0·91 0·16 0·85 0·11 0·59 0·19 1·49 0·48

Slc27a1 Lard 1·00 0·08 1·00 0·12 1·00 0·13 1·00 0·10 1·00 0·11 1·00 0·07
n-3 FA 0·77 0·14 2·17* 0·36 1·16 0·14 1·25 0·11 0·48** 0·08 0·91 0·03

Slc2a4 Lard 1·00 0·21 1·00 0·16 1·00 0·12 1·00 0·09 1·00 0·03 1·00‡ 0·12
n-3 FA 0·45* 0·05 4·08 1·42 0·95 0·07 1·05 0·08 0·52*** 0·04 0·69 0·10

Tgfb1 Lard 1·00 0·18 1·00 0·33 1·00 0·10 1·00 0·10 1·00 0·11 1·00 0·08
n-3 FA 0·56 0·04 1·16 0·18 2·04*** 0·05 1·74*** 0·06 0·93 0·05 1·05 0·03

Tnf Lard 1·00‡ 0·10 1·00 0·27 1·00 0·13 1·00 0·11 1·00‡ 0·14 1·00‡ 0·13
n-3 FA 1·23 0·13 1·57 0·43 1·86** 0·16 1·27 0·09 1·18 0·19 1·87 0·44

Ucp1 Lard 1·00‡ 0·43 1·00‡ 0·30 1·00 0·64 1·00‡ 0·54 1·00 0·09 1·00‡ 0·07
n-3 FA 0·09 0·03 2·25 0·88 4·30 3·92 1·43 0·70 1·03 0·25 0·09 0·00

Ucp2 Lard 1·00 0·15 1·00 0·35 1·00 0·15 1·00 0·06 1·00 0·19 1·00 0·07
n-3 FA 2·13* 0·52 1·17 0·19 1·28 0·06 1·08 0·06 1·20 0·18 0·94 0·04

Ucp3 Lard 1·00 0·28 1·00 0·29 1·00 0·11 1·00 0·12 1·00 0·15 NQ‡
n-3 FA 1·39 0·44 2·74 1·17 0·50** 0·04 0·75 0·11 0·96 0·10 NQ

NQ, gene expression level not quantifiable.
Mean value was significantly different from that of the lard group: * P,0·05, ** P,0·01, *** P,0·001 (t test).
† The fold increase or reduction in the n-3 FA group as compared with the lard group is shown. Expression levels of target genes were normalised against the endogenous

controls 18S, Arbp, Ppif and Gapdh. In the mesenteric adipose depot, 18S and Arbp varied significantly between the animals fed lard and n-3 FA, and were therefore
excluded as endogenous controls. For explanation of gene symbols, see Table 2.

‡Genes expressed at very low levels (Ct .30).
§ The official gene symbol for Cd36 is RGD1652323.
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and/or epididymal adipose depots of the n-3 FA-fed animals as
compared with the lard-fed animals. The metabolism of
cytokines and chemokines is complex, and several of these
proteins have both pro- and anti-inflammatory properties(44).
The biological effect of these findings is therefore difficult
to interpret. For example, we do not know if cytokines
secreted from skeletal muscle during exercise, such as IL-6,
are beneficial or harmful(45,46). The effect of n-3 FA feeding
appears to be autocrine or paracrine in adipose tissue because
we did not observe altered concentrations in plasma of TNFa,
IL-6, IL-10, nor of the acute-phase protein CRP, after n-3 FA
feeding. This could also be due to a low contribution by
adipose tissue to the plasma pool of these factors. Moreover,
it is possible that the increased expression of cytokines and
chemokines reflects a lower proportion of adipocytes relative
to leucocytes located in the adipose tissue(47,48), as well as a
dilution of nuclear material in hypertrophic adipose tissue.
The effects observed in the present study may be due to an

increased proportion of EPA and/or DHA, or to the reduction
in content of SFA, although it is most likely that the effects are
due to n-3 FA.
In conclusion, by substituting some dietary lard with very-

long-chain n-3 FA, the volumes of the visceral adipose
depots (mesenteric, perirenal and epididymal) in rats were
markedly reduced. This occurred without affecting total
body weight and body composition, suggesting that n-3 FA
feeding redistributed fat within the body. The gene expression
of several cytokines and chemokines was increased in
different adipose depots, with unaltered plasma concentrations
of the corresponding proteins.
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