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Preface 

Frédéric Chopin is one of my favourite composers, as he combines romantic 

nostalgia with simplicity in the most ingenious manner. While I was working on my 

thesis, I immersed myself in several of his pieces and spent many hours in front of 

my piano, which is the best way for me to relax. During the work on my thesis I fell in 

love with the Piano Sonata No. 2 in B-flat minor, Op. 35, which he wrote in France 

during the years 1837-39. A part of this piece is shown here: 

 

Chopin was plagued by bad health. Above all he had a pulmonary disease that 

probably caused his death at the age of 39.  Chopin was a sensitive, reserved person 

with sudden attacks of melancholy, leading to the suggestion that he might have 

suffered from depression (Karenberg et al., 2007). Moreover, he suffered from 

hallucinations, as exemplified by an incident during a concert at a wealthy merchant’s 

private house in Manchester on August 29th 1848. While he was playing the Sonata 

No. 2, he suddenly stood up and left the room. Later he described this incident in a 

letter with the words: “… I had played the Allegro and the Scherzo … and was about 

to play the March (notes above) when, suddenly, I saw emerging from the half-open 

case of my piano those cursed creatures…” (Caruncho and Fernández, 2010). 

Episodes like these were not uncommon for Chopin, but he preferred to keep them to 

himself.  

As if specifically intended for this thesis, only shortly before submission of my work, a 

paper entitled “The hallucinations of Frédéric Chopin” was published in the journal 

“Medical Humanities” (Caruncho and Fernández, 2010). In this paper it is postulated 

for the first time that Chopin might have suffered from Temporal Lobe Epilepsy (TLE) 

– the condition of central interest to this thesis. Chopin’s complex hallucinatory 

episodes are reviewed in the article and found to be consistent with seizures typical 

for TLE. Indeed, the attacks described in the paper could be focal seizures, attended 
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by complex visual experiences and/or psychic symptoms. TLE is frequently 

accompanied by anxiety, fear, insomnia, and depression, all symptoms that 

characterised the personality of Chopin. 

Chopin once said “…Time is the best censor, and patience a most excellent teacher”, 

a sentence that also can be extrapolated to this thesis, and, indeed, to other 

important issues in life. 
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Translational research  

“Progress is often made at the interface of disciplines and in an environment of 

intellectual freedom” (Zerhouni et al., 2005). The idea of translational research 

embraces this philosophy. In the narrow sense, translational research can be 

considered as a way of thinking and conducting scientific research with the aim of 

translating new knowledge, mechanisms, and techniques that have been generated 

by basic science research into novel approaches for prevention, diagnosis, and 

treatment of disease, or, in reverse, testing hypotheses generated by clinical 

observation in the lab (Marincola et al., 2003). 

Translational research has become a centrepiece of Research Councils around the 

world. Governmental agencies as, for example, the National Institutes of Health 

(NIH) in the United States and the European Commissions, consider translational 

research a funding priority and annually increase their budgets for health-related 

translational programmes (Zerhouni et al., 2003). Academic centres, foundations, 

hospitals, and industry all establish translational research agendas, and several 

journals (e.g. Translational Medicine and The Journal of Translational Medicine) are 

committed to the subject. Inevitably the question arises: “what this is all about?” and 

“why is the translational approach promising?” The answer is simple.  The rate of 

translation of basic science promises into clinical applications over the past 

decades has been disappointing and inefficient (Contopoulos-Ioannidis et al., 

2003). In addition, it has been confirmed that a large quantity of clinical research 

resulted in the generation of information that was incorrect, obsolete, or even 

hazardous to human health (Antman et al. 1992).  A bidirectional flow of information 

and multidisciplinary competence should be a powerful tool to address these 

inadequacies and one that is necessary in order to progress in our understanding of 

biological systems (Ioannidis et al. 2004). In the light of a growing awareness of the 

extreme complexity in the patterns of aetiology and pathogenesis in common 

diseases, the translational research approach seems, at least, to have a chance of 

providing benefit to human health and wellbeing.  
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Objectives of this thesis 
 
Epilepsy comprises a range of different chronic brain disorders and syndromes 

characterised by spontaneous, recurrent, unprovoked seizures. Worldwide, epilepsy 

affects 50 million people, or between 0.7 and 1 % of the global population, occurring 

in all ages and in all socioeconomic groups (Zarrelli et al., 1999). According to the 

WHO, epilepsy accounts for 1 % of the global burden of disease, equivalent to breast 

cancer in women or lung cancer in men (http://www.who.int).    

Aside from the impairment caused by the seizures themselves, epilepsy also 

interferes to a considerable extent with the normal activities of daily living, 

employment status, reproductive function, and social relationships, and is a 

significant risk factor for depression, serious injury, and death.  

While 2/3 of all epilepsy patients respond successfully to currently available 

antiepileptic drugs (AEDs), 1/3 continues to have recurrent seizures despite 

optimised pharmacological treatment (Kwan and Brodie, 2000). These 

pharmacoresistant cases are mainly represented by patients suffering from Temporal 

Lobe Epilepsy (TLE), traditionally defined by seizure origin in, or involvement of, the 

temporal lobe. These patients should derive benefit from new therapies that will 

produce greater efficacy than current medications. As a prerequisite to fulfilling the 

unmet medical needs of patients with TLE, a clear delineation of the phenotypes, 

genotypes, and molecular pathways that underlie the generation or development of 

epileptic seizures is required. 

Current antiepileptic treatment concepts are mainly based on the principle that 

epileptic seizures arise from abnormal excessive or synchronous neuronal activity in 

the brain. Undeniably, epileptic seizures could not occur without neurons. However, 

evidence has accumulated over recent years that proper neuronal functioning is not 

possible without the most abundant cell type in the brain, the glial cells. Glial cells, 

and especially astrocytes, are critically involved in maintenance of ion and water 

homeostasis, and hence in the pathophysiological mechanisms that lead to neuronal 

hyperexcitability and epilepsy (Seiffert et al., 2006). This makes glial cells an exciting 

subject for novel treatment concepts in epilepsy, especially in pharmacoresistant 

TLE.  

Investigation of the molecular function of glial targets, and searching for genetic 

associations in hypothetical candidate genes, will assist in our understanding of the 
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pathogenic mechanisms in epilepsy, and specifically in subgroups of TLE. To 

contribute to this search is the primary goal of this thesis.  

Detection of novel therapeutic targets for TLE is best performed by a translational 

research approach, as applied in this thesis, including: 

 

1) Phenotype studies that aim to filter out clinically distinct subgroups on the 

basis of demographic data and common phenotypic features from a 

principally unselected TLE population. This facilitates genetic and 

biomedical research, which, in turn, provides a basis for tailored 

pharmacological treatment and improved outcome. 

2) Genetic association studies in TLE subpopulations on candidate genes 

based on plausible a priori hypotheses, derived from biomedical or 

clinical/epidemiological research. 

3) Biomedical research on glial/astrocyte targets in the TLE field, based on 

novel general concepts and on indications derived from own genetic and 

clinical studies. 
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1. Introduction 

 

1.1 The clinical picture of Temporal Lobe Epilepsy 
 
1.1.1 Definition and classification 
The classification of Temporal Lobe Epilepsy (TLE) has been frequently refined over 

the years, and the latest version is most probably only temporary also. These 

intermittent modifications have caused, and still cause, confusion. In the ILAE 

classification of 1985, TLE was defined as recurrent unprovoked seizures with origin 

in the temporal lobe (Proposal for classification of epilepsies and epileptic 

syndromes, 1985) With this definition, TLE was characterised as one of 5 

symptomatic, localisation-related epilepsies, in which seizure semiology and epileptic 

activity in EEG define a link to a circumscribed anatomical region of the brain. 

According to the location where seizures arise, TLE was further divided into lateral 

(or neocortical) temporal lobe epilepsy (LTLE or NTLE) and medial/mesial temporal 

lobe epilepsy (MTLE). One principal pitfall is embodied in this anatomical 

classification, as the site of actual seizure origin may be at considerable distance 

from the region that gives rise to clinical symptoms (Lee et al., 2000). Hence, the 

revised classification of 1989 moved away from the anatomical classification and 

defined TLE on the basis of typical clinical features, and EEG and imaging findings 

(Proposal for revised classification of epilepsies and epileptic syndromes, 1989). 

However, the 1989 classification did not consider the aetiology or pathogenesis of 

TLE. TLE, in fact, denotes a variety of conditions with different aetiological 

backgrounds, most of which still are elusive.  

The latest classification, published just last year, omits TLE as a separate category 

(Berg et al.2010), and instead highlights only familial temporal lobe epilepsies as a 

definite subgroup among electroclinical syndromes of adolescents/adults. In addition, 

mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is included as 

a distinctive constellation. 

The latest classification also encompasses a number of conceptual modifications. 

According to current knowledge, all epileptic seizures involve neuronal networks in 

one or both hemispheres, engaging both cortical and subcortical structures. On the 

basis of this concept, the terms “focal” and “generalised” seizures have been 
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redefined. Thus, until further re-classification “focal” indicates that seizures primarily 

arise in one cerebral hemisphere, either in circumscribed areas, or with a wider 

distribution, while the term “generalised” refers to seizure generation in bilateral 

networks. Furthermore, the distinction between “simple partial” and “complex partial” 

seizures has been discarded, and the term “partial” is now to be used synonymously 

with “focal”. 

These latest modifications may lead to confusion, including with respect to this thesis. 

For practical reasons, both definitions are used in the text of this thesis. 

 
1.1.2 Historical notes 

The English neurologist John Hughlings Jackson (1835-1911) is usually credited with 

being the first to recognise TLE. Through his description of “uncinate group of fits” 

and the “dreamy state” (over-consciousness or heightened intellectual state) in 1880, 

Jackson presented the first characterisation of TLE with medial seizure origin 

(Jackson, 1880; Jackson 1898; Hogan RE et al., 2003). Parallel to the work of 

Jackson, the German neuropsychiatrist and pathologist Wilhelm Sommer (1852-

1900) reported evidence for a causal relationship between epilepsy and lesions in the 

hippocampus in an extensive autopsy material (Sommer, 1880). Sommer’s studies 

were extended by detailed histological observations by the German psychiatrist and 

neurologist Emil Bratz (1867-1934), who was the first to describe the characteristic 

morphological changes in hippocampal sclerosis (HS) (Bratz, 1899). The invention of 

EEG in the early 20th century contributed to increasing further our recognition and 

understanding of TLE. In 1937, the American neurologist Frederic A. Gibbs (1903-

1992) introduced the term “psychomotor attacks” to describe the signs and symptoms 

of seizures with temporal lobe origin, and contributed to the general understanding of 

epilepsy as a state based on paroxysmal cerebral dysrhythmia (Gibbs et al., 1937). 

By the middle of the 20th century, TLE was widely established as a distinctive 

epileptic condition, partly due to the observation of focal temporal sharp waves in 

EEG of patients with clinically characteristic seizures (Jasper and Kershman, 1941). 

The first operations on patients with TLE were performed by Gibbs in 1951 and, 

shortly afterwards, by Falconer in the beginning of the fifties (Bailey and Gibbs, 1951; 

Falconer, 1953). As tissue from operated patients was available for investigation, 

extensive knowledge on pathological features in the epileptic hippocampus could be 

obtained. However, despite intensive research, the distinct role of the hippocampus 
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in the generation of seizures and the development of epilepsy remains unresolved, 

even today.  

 
1.1.3 Epidemiology 
It is often reported that 40 % of epilepsy patients experience complex partial seizures 

(CPS) (according to the previous classification), which are usually associated with 

seizure origin in the temporal lobe (Engel J Jr, et al., 2003). Naturally, this definition 

has limitations, as not all patients with CPS suffer from TLE. Moreover, it is often 

stated that one third of all epilepsy patients have TLE, but there is no conclusive 

evidence that this is correct. 

A prerequisite of all epidemiological studies is clear definition of the population of 

interest. However, as described, TLE comprises a large variety of different entities 

with different aetiological backgrounds, most of which are still elusive. Another 

confusing factor is the frequent changes in definitions and classifications. This 

undermines epidemiological approaches, and means that there are no definitive 

epidemiological data on TLE. As MTLE-HS has recently been described as a 

distinctive entity (Wieser et al., 2004) appropriate epidemiological studies on this 

syndrome should now be possible. However, data about MTLE-HS are usually 

derived from large centres and generally focus upon surgically-treated patients 

and/or the most medically intractable cases. Information on mild forms of MTLE-HS is 

difficult to obtain, complicating the assembly of valid epidemiological data. 

 

1.1.4 Anatomy of the hippocampus  
The hippocampus plays an important role in the consolidation of information from 

short-term memory to long-term memory, and in spatial navigation. The hippocampal 

formation is located in the basomedial part of the temporal lobe of the brain and 

constitutes a major part of the archicortex and the limbic system. A cross section 

perpendicular to the long axis of the structure reveals the internal structure as two 

interlocking “C” shapes, one of which comprises the cornu ammonis (CA), the other 

makes up the dentate gyrus. The CA can be further segregated according to the 

anatomical classification by Lorente de No, (1934), in subregions CA1 – CA4. The 

CA is comprised of several layers as illustrated in figure 1.  
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Figure 1: Main layers in the hippocampus proper
Alveus: most superficial layer and contains commissural fibers of pyramidal cells via the fimbria. 

Stratum Oriens: contains inhibitory basket cells and the basal dendrites of pyramidal neurons 

(innervated by recurrent collaterals and contralateral hippocampus). 

Stratum Pyramidale: contains the somas of pyramidal neurons. Mossy fibers (MFs) also synapse in 

this layer. 

Stratum Lucidum: mossy fibres transverse and terminate in this region. 

Stratum Radiatum: contains the Schaffer collaterals of CA3-1 pathway. 

Stratum Lacunosum-Moleculare: also contains some fibers from the Schaffer collaterals.  

 

The hippocampus has plenty of connections to and from surrounding brain regions. 

Afferent pathways to the hippocampus have their origin in the posterior parietal 

association cortex (area 7) and from the adjacent temporal and occipital regions 

(areas 22, 39, and 40). Most afferences penetrate the hippocampus via the 

entorhinal cortex. Moreover, direct afferences from amygdala also exist, from the 

hypothalamus, the septum region, and from the contralateral hippocampus via fornix.     

The efferences of the hippocampus exit via alveus and fimbria towards the same 

regions from which the afferences originate. 

Pathological changes of the hippocampus are typical for the syndrome of MTLE-HS, 

which is described in the following chapter.  

Large textbooks have been written about the anatomy of the hippocampus. To detail 

the anatomical structure and integration of the hippocampus is not intended at this 

point. A comprehensive survey about hippocampal anatomy can, for example, be 

found in Per Andersen´s textbook entitled Hippocampus (Andersen, ed. 2007).
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1.1.5 Mesial Temporal Lobe Epilepsy with hippocampal sclerosis 

The hippocampus is one of the most studied anatomical regions of the brain, and 

hippocampal sclerosis (HS or Ammon´s horn sclerosis) the most explored 

“epileptogenic lesion”. It is therefore not possible to review here all aspects of the 

extensive literature in this field. Over the years, evidence has accumulated that 

MTLE-HS may constitute a distinctive syndrome. In 2004, a panel consisting of 

leading experts discussed the definition, natural history, pathological features, 

pathogenesis, electroclinical, neurophysiological, neuropsychological, structural, and 

functional imaging features, as well as surgical outcomes in patients with HS and 

mesial seizure origin (MTLE-HS) (Wieser et al., 2004). This resulted in a consensus, 

in which MTLE-HS was considered to represent “a sufficient cluster of signs and 

symptoms to make up a syndromic diagnostic entity”. This chapter focuses only on 

the main aetiological, histopathological, clinical, diagnostic, and treatment features of 

MTLE-HS.  

 

Aetiology and basic mechanisms 
The epileptogenic potential of MTLE-HS is a result of a large variety of changes in 

the hippocampus, foremost being neuronal cell loss, proliferation of glial cells, and 

synaptic reorganisation. However, whether these changes are the causes or 

consequences of epileptic seizures, and the order in which they appear, have been 

issues of debate for decades.  

Retrospective studies of surgically-treated patients have revealed a high occurrence 

of early childhood incidents. These events, also referred as to “initial precipitating 

incidents (IPI)”, include febrile seizures, hypoxia, trauma, and intracranial infections. 

While identified in several retrospective studies, no prospective study yet exists that 

confirms these results (Mathern et al., 1995). A large number of mechanisms through 

which epileptogenesis may develop in MTLE-HS have been suggested. These 

include: glutamate neurotoxicity, mitochondrial dysfunction, immunological 

responses, genetic predisposition, and multiple acquired factors. To detail all these 

mechanisms would go far beyond the scope of this thesis. However, a fascinating 

story emerges from novel concepts that bring together glial dysfunction and disease 

development in neurological diseases. With regard to epilepsy, it is suggested that 

modified astroglial function may have an important role in the generation and spread 
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of seizure activity. To study this new idea of glia-mediated epileptogenesis is the 

primary objective of this thesis and is elaborated in detail in subsequent sections.  

 

Main histopathological findings 
The term sclerosis is based on the macroscopic finding of a shrunken, indurated 

hippocampus, and had already been described in the first quarter of the 19th century 

(Bouchet and Cazauvielh, 1825). The principal histological findings of HS can be 

dated back to the descriptions of Sommer and Bratz at the end of the 19th century, as 

previously mentioned (Sommer, 1880; Bratz, 1899). The histopathological hallmarks 

of MTLE-HS include segmental pyramidal neuron loss, glia cell proliferation, and 

dispersion of granular cells. The ILAE commission report on MTLE with HS (Wieser 

et al., 2004) proposed the typical pathological changes in HS, as listed here: 

1.) As minimal criteria, neuronal loss, and gliosis predominantly involve CA1 and end-

folium (CA3 and CA4) with relative sparing of the CA2 and subiculum.  

2.) All hippocampal regions may show cell loss and gliosis to varying degrees. 

3.) Functional and structural glial changes appear. 

4.) Synaptic reorganisation often occurs. 

5.) Dentate (granular cell) dispersion is encountered in more than 50 % of cases. 

6.) Extrahippocampal pathology at other mesial temporal lobe structures, e.g. 

amygdala. 

7.) Other pathological findings may be found, depending on which staining 

techniques are used. 
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Figure 2: Nissl stained coronal sections of human hippocampus formations from autopsy (left) 
and from a patient with MTLE-HS (here referred to as MTLE, right) 

The autopsy hippocampus shows a normal anatomical structure, whereas the MTLE hippocampus is 

smaller due to sclerosis and shows typical histopathological changes as loss of neurons, especially in 

CA1, glial proliferation, and granular cell dispersion in the hilar granular cell layer. 

 

Clinical phenomenology 
The archetypical medical history of patients with MTLE-HS starts with an IPI in early 

childhood, followed by a latent period of variable duration without any apparent 

clinical signs or symptoms, before habitual seizures occur. Habitual seizures often 

arise towards the end of the second decade of life, and tend to occur earlier in MTLE-

HS than in other TLE/MTLE patients. (Davies et al., 1996; Janszky et al., 2004; 

Villanueva et al., 2005). Habitual seizures may initially respond to pharmacological 

treatment, but, over time, become more and more refractory (Semah et al. 1998). 

The progressive nature of this clinical presentation has been the subject of vigorous 

debate. Given that MTLE-HS worsens with time, could this process be affected or 

delayed by any kind of pharmacological or non-pharmacological treatment? Animal 

kindling models support a progressive course, as recurrent seizures lead to synaptic 

reorganisation and neuropathological changes in the hippocampus comparable with 

those of HS in humans (Sutula T et al., 1988). The degree of hippocampal atrophy 

may correlate with changes in magnetic resonance imaging (MRI), further supporting 

the worsening nature of the condition (Cendes F et al., 1993). However, evidence of 

HS is not necessarily related to seizure severity and may occur in individuals who 
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never experience seizures (Kobayashi et al., 2002). It is important to remember that 

benign forms of MTLE-HS also exist, which are readily controllable with common 

AEDs. Most studies, however, generate results from surgically treated MTLE-HS 

individuals, who represent the most pharmacoresistant cases. 

 

Mood disturbance and cognitive impairment 
The mesial temporal region participates in emotional expression and is implicated in 

mood disturbances. Interictal depression is a frequent psychiatric symptom in 

epilepsy and has been related to epilepsy of temporal origin (Mendez et al. 1986; 

Gaitatzis et al., 2004). However, whether depression occurs more frequently in 

MTLE-HS than in other TLEs is still a subject of debate. Some studies implicate 

depressive symptoms more frequently in MTLE-HS, while others find no evidence of 

a specific temporal target region for depressive mood (Quiske et al., 2000; 

Helmstaedter et al., 2004). 

There is ample evidence of cognitive impairment in MTLE-HS. Typically, MTLE is 

associated with impairment of episodic memory, which means that retrieval of newly 

acquired information or consolidation of long-term memory is affected (Hermann et 

al., 1997). Some imaging studies confirm that the degree of memory disturbance 

correlates, to some extent, with the severity of hippocampal atrophy in MTLE-HS 

(Baxendale et al., 1998; Sawrie et al. 2001). Other determinants of memory 

disturbance are age of onset and severity of the epilepsy, additional 

extrahippocampal brain lesions (dual pathology), and use of AEDs. However, data 

concerning the latter aspects are too limited to reach any definitive conclusions.  

In summary, MTLE-HS is most probably associated with mood disturbance and 

memory deficits. However, data assessment is difficult and determining whether 

these features are primary phenomena or secondary sequelae due to psychosocial 

aspects or use of AEDs, is problematic. Further studies are required to provide 

convincing evidence, and possible confounding factors have to be taken into 

account.  

 
Seizure characteristics 
Many descriptions of ictal and postical clinical signs and symptoms in MTLE have 

been published, and, for practical reasons, will be mentioned only superficially here. 
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MTLE is commonly associated with focal seizures (SPS and CPS, according to prior 

classifications). As there are no pathognomonic clinical signs, it is difficult to 

distinguish between seizures associated with MTLE-HS and seizures due to other 

MTLE, despite some studies that propose separability (Saygi S et al., 1994). Ictal 

characteristics can be divided into subjective and objective components.  

Subjective epileptic events are referred to as aura. The majority of MTLE patients 

experience auras (French et al., 1993) Auras may occur as isolated phenomena 

(prior SPS), or occur as a first manifestation of focal seizures that involve larger 

networks (prior CPS) (Sperling et al., 1989). The most frequent aura in MTLE is 

characterised by visceral sensations, often experienced as a rising sensation in the 

epigastric region (Duncan et al., 1987; French et al., 1993). Other aura subtypes 

comprise anxiety, déjà vu and jamais vu, olfactory hallucinations, micropsia and 

macropsia, and feelings of depersonalisation.  

Objective ictal manifestations of MTLE usually involve impairment of consciousness. 

These commonly begin with motor arrest, staring, and pupillary dilatation, before 

evolving to coordinated motor activities, referred as to automatisms. Automatisms are 

often of the oro-alimentary type (chewing, licking, lip-smacking, and tooth grinding), 

or present with stereotyped movements such as gesticulating and fumbling, or, less 

frequently, vocalisation, spitting, and bicycling movements. 

Other objective manifestations, that may have some localizing and lateralizing value, 

and are often associated with seizure spread to suprasylvian brain areas, are head 

and eye deviation, unilateral or contra-lateral tonic or dystonic posturing (Kotagal et 

al., 1989), ictal vomiting (Kramer et al., 1988), unilateral eye blinking (Benbadis et al., 

1996), and language disturbances such as aphasia, speech arrest, or vocalisation 

(Yen et al., 1996). Secondary generalisation occurs in MTLE, but usually shows 

variations of the classic tonic-clonic semiology (Wieser et al., 2004). Postictally, 

patients with MTLE often display visual relaxation, aphasia, confusion, and, 

exceptionally, motor deficits (Theodore et al., 1983). 

The clinical phenomenology and seizure semiology of MTLE-HS form the basis for 

establishing the diagnosis. EEG and imaging is not a centrepiece of this thesis, and 

therefore will not be discussed here.  

The diagnosis of MTLE-HS cannot be established on the basis of one or few criteria. 

It requires a constellation of signs and symptoms, together with EEG and imaging 

findings, neuropsychological data, and careful evaluation of patient history. 
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Treatment and outcome 
To the author’s knowledge, no systematic comparative studies on the 

pharmacological treatment of MTLE-HS have been conducted. Medical treatment, 

therefore, includes most of the current AEDs, preferably those with documented 

effect on focal seizures, such as carbamazepine, oxcarbamazepine, lamotrigine, 

levetiracetam and topiramate, but also valproate, phenytoin, phenobarbital, 

zonisamide, and others. The efficacy of a specific AED at controlling MTLE-HS may 

last for several years, until the condition becomes increasingly refractory (Berg et al., 

2003). The diagnosis of MTLE-HS is often not established until the patient attends a 

tertiary centre due to the lack of effect from medication. For this reason, no definitive 

information exists on the proportion of patients whose condition remains adequately 

controlled by pharmacotherapy.  

For medically resistant patients, surgical anteromesial temporal lobectomy is the 

treatment of choice and has been proven successful (McIntosh et al. 2001; Engel J Jr 

et al., 2003) Surgical treatment of patients with TLE has been reviewed extensively 

with particular focus on predictors of outcome (McIntosh et al., 2001). MTLE-HS has 

been identified as having a better surgical outcome than other forms of TLE (Berkovic 

et al. 1995; Lee et al., 1998). Moreover, a history of febrile convulsions in childhood 

has been reported to be significantly associated with a good seizure control outcome 

(Wieshmann et al., 2008). Febrile seizures are most likely to be associated with 

MTLE-HS, as elaborated in subsequent sections. 

 
1.1.6 Febrile seizures 
Febrile seizures (FS) are the most frequent type of convulsions in childhood. A febrile 

seizure is defined as “an event in infancy or early childhood, usually occurring 

between three months and five years of age, associated with fever but without 

evidence of intracranial infection or other defined cause” (NIH, 1980). FS should be 

distinguished from epilepsy, which is defined by recurrent non-febrile seizures.  

FS are usually grouped into simple and complex types. Simple FS are short, non-

recurrent, generalised tonic-clonic seizures of less than 15 minutes duration. Simple 

FS account for approximately 75 % of all FS and occur, per definitionem, before the 

6th birthday. Complex FS are usually prolonged and often recur up to several times 

within a 24-hour period. They may lead to focal or generalised seizures or even to 

febrile status epilepticus (SE) (Jones et al., 2007) 
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The cumulative incidence of FS shows regional variation, with 2-5 % in Europe and 

USA, 6-9 % in Japan, and, the highest, 14 % in Guam in the Pacific Ocean 

(Stanhope et al., 1972; Tsuboi et al., 1984; Hauser et al., 1994; Hauser et al., 1996) 

These regional epidemiological differences strongly indicate a genetic propensity for 

the occurrence of FS (Hauser et al., 1985; Tsuboi et al. 1991; Vestergaard et al. 

2002). This is supported by family and twin studies that have shown an increased risk 

for relatives, in comparison with the general population (Tsuboi, 1977; Tsuboi et al., 

1991). Either a polygenetic inheritance mode or autosomal dominant inheritance with 

incomplete penetrance has been discussed (Rich et al., 1987; Johnson et al., 1996). 

Although no specific genes that account for the majority of FS cases have been 

identified, family linkage studies have, to date, identified a total of 9 genetic loci 

(FEB1-9) for FS susceptibility (Nakayama et al., 2009). Furthermore, a number of 

association studies have been conducted and revealed 7 genes related to this 

condition (Nakayama et al., 2009; http//www.epigad.org). However, most association 

studies do not fulfil stringent criteria, are statistically underpowered, or lack replication 

(Tan et al., 2004; Nakayama et al., 2009). 

A genetic predisposition accounts for the highest predictive factor for the 

development of FS. However, a variety of other risk factors have been identified, 

including low plasma ferritin levels (Pisacane et al., 1996), high fever, retarded 

development and low birth weight (Vestergaard et al., 2002), and HHV6 or influenza 

A infections (Milichap et al., 2006; Suga S et al. 2007). The pathophysiology of FS is 

unknown. As febrile seizure susceptibility is highest in young children and decreases 

significantly with advancing age, developmental factors probably play an important 

role (Jensen and Baram, 2000). 

 

1.1.7 Febrile seizure-related epilepsies  
Generalised epilepsy with febrile seizures + (GEFS+) 
GEFS+ is an autosomal dominant familial syndrome with high penetrance, 

characterised by heterogeneous, mainly generalised, seizure phenotypes (Scheffer 

et al., 1997). Febrile seizures often persists beyond the usual age of 6 years (FS+), 

and patients may present with afebrile, generalised or focal seizures, and cases 

associated with severe myoclonic epilepsy in infancy (SMEI) have also been 

described. Different gene mutations have been identified, three of which involve 

subunits of the voltage gated sodium channels, SCN1 and SCN2, and two within 
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genes encoding subunits of the GABAA receptor (Wallace et al., 1998; Escayg et al., 

2000; Sugawara et al. 2001; Baulac et al., 2001; Dibbens et al., 2004). However, 

screening for these genes in FS populations has failed to detect an association 

(Nakayama et al., 2003). 

 

Severe myoclonic epilepsy in infancy (Dravet syndrome) 
SMEI is a serious epileptic syndrome that arises in the first year of life, often with 

prolonged, focal seizures often preceded by a relatively mild fever. SMEI is 

associated with developmental delay at around 1 year of age, accompanied by other 

afebrile seizure types, such as myoclonic, atypical absences, as well as ataxia and 

behavioural problems. SMEI may be analogous to GEFS+, and the discovery of 

mutations in the same SCN1A channel genes supports this theory (Ohmori et al., 

2002; Wallace et al., 2003). 

 
1.1.8 Association between MTLE-HS and febrile seizures 
About 13 % of all patients with epilepsy experience FS in childhood, with large 

variation between the different epilepsy syndromes (Hamati-Haddad et al., 1998). 

The strongest association has been postulated to exist between FS and TLE (25 %), 

especially with refractory MTLE-HS (50-80 %) (French et al., 1993; Maher et al., 

1995). This strong association supports the theory that FS may lead to hippocampal 

injury and subsequent unprovoked seizures. However, whether FS precipitate HS, or 

vice versa, (i.e., hippocampal alterations lead to FS), has been a key question for 

several decades. 

Retrospective studies of patients with TLE, and particularly with MTLE-HS, usually 

show a high association with FS in infancy (Cendes et al., 1993; French et al., 1993). 

A large variety of prospective studies, including many MRI studies, have been 

conducted to determine whether FS precipitate hippocampal injury and subsequent 

MTLE-HS. Most prospective studies do not confirm a link between FS and MTLE-HS 

(Camfield et al. 1994; Tarkka et al.; 2003), but other studies indicate the opposite 

(Farrow et al., 2006; Vestergaard et al. 2007). 

Lately, data from genetic studies have contributed to reinforcing a link between FS 

and MTLE-HS. A high incidence of FS in familial MTLE supports a common genetic 

basis (Berkovic et al. 1996; Hedera et al., 2007). Moreover, patients with TLE and a 

history of FS (TLE-FS) have a higher frequency of first grade family members with FS 
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(Briellmann et al., 2001), and mutations have been associated with simple FS, 

hippocampal abnormalities, and TLE (Colosimo E et al., 2007).  

Animal studies have been important tools for investigations of whether FS have the 

potential to result in epilepsy in the absence of genetic or acquired predisposing 

factors. A large variety of animal studies have shown that rodents exposed to 

hyperthermia develop spontaneous unprovoked seizures and pathological changes 

in the hippocampus that are comparable to those in patients with MTLE-HS (Dube et 

al., 2010; Scantlebury et al., 2010; McClelland et al., 2011).  

However, there is no evidence for the theory that complex FS imperatively leads to 

hippocampal alteration and subsequent MTLE, and a simple equation should be 

considered by those who advocate adoption of this idea:  

2-6 % of children in western countries develop febrile seizures, of which complex FS 

account for a fraction (approximately 15 %), suggesting that the incidence of complex 

FS is 1:300. However, MTLE-HS is significantly less frequent. The relationship 

between FS, hippocampal sclerosis, and the development of MTLE is complex, and 

probably depends upon multiple factors, most of which are still elusive. 
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1.2  Genetics of temporal lobe epilepsy 

 

Until the mid 1990s the majority of clinicians and scientists considered TLE to be an 

acquired disorder. However, recent evidence has refuted this concept and today we 

know that genetic factors play an important role. 

 

1.2.1 Historical notes 
In 400 BC, Hippocrates wrote the following on epilepsy in his manuscript On the 

Sacred Disease: “It begins to be formed while the foetus is still in utero” (Page TE et 

al., 1967). Taking into account that general medical knowledge was still in its infancy, 

this statement could be considered the first noted recognition of inherited 

components in epilepsy. Unfortunately, the realisation that epilepsy can be passed 

from one generation to the next, led to the implementation of marriage restrictions for 

people suffering from epilepsy. Even as recently as December 1999, India for 

example had a law regarding epilepsy and marriages in its Hindu marriage act, 

constituting that marriage could only be solemnised “if, at the time of marriage, 

neither party suffers from recurrent attacks of insanity or epilepsy”. 

A pioneer of the “modern” epilepsy genetics field was the American neurologist and 

former president of the ILAE, William Gordon Lennox (1884-1960). Lennox started 

investigating twins and families with epilepsy in the mid-1930s and his enthusiastic 

recruitment of twin pairs with epilepsy, resulted in the publication in 1960 of his 

classic manuscript entitled “The genetics of epilepsy” (Lennox and Lennox, 1960) 

With his assembly of 225 twin pairs, Lennox was able to prove the existence of 

heritable genetic factors in epilepsy. The notably higher concordance rate in 

monozygotic, compared with dizygotic twins in different epilepsy phenotypes was 

probably his most important observation (Vadlamudi et al., 2004). Lennox also 

understood that genetic factors alone could not explain his findings, and he 

anticipated the presence of exogenous factors, in conjunction with heritable factors, 

being of causative importance in epilepsy. With his observations, Lennox paved the 

way for the “multifactorial concept of inheritance” of the epilepsies, which is still alive 

today. 
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1.2.2 Genetic classification of the epilepsies 
Classifications that attempt to encompass the genetic background of the epilepsies 

commonly apply the following categorisation (Johnson et al., 2001; Reid et al., 2009): 

1) Epileptic seizures arising in the context of multi-organ hereditary disorders. 

These include chromosome disorders, neurocutaneous disorders, 

neurodegenerative disorders, genetic disorders of cortical development, and a 

large assortment of metabolic diseases.  

2) Idiopathic epilepsies with simple Mendelian inheritance. These are rare (1-2 %) 

epilepsies, based on a single mutant gene, and can be passed on to the next 

generation in several ways: autosomal dominant or recessive, X-linked 

dominant or recessive, Y-linked or mitochondrial. Most mutations in epilepsies 

have been found in different ion channel genes. 

3) Idiopathic epilepsies associated with cytogenetic (chromosomal) abnormalities. 

These are epilepsies based on de novo gene mutations, without heritable 

factors. 

4) Epilepsies with complex inheritance, involving multiple contributing factors. 

These epilepsies account for at least 50 % of all epilepsies, and include most 

forms of idiopathic generalised epilepsies, as well as partial epilepsies, and 

also encompass the TLE. 

 

All these categories may, in the broadest sense, include TLE cases. However, most 

TLE cases involve complex inheritance patterns and, therefore, belong in category 4. 

However, there is a growing list of several forms of familial temporal lobe epilepsies 

(FTLE) that could, at least in part, be consistent with category 2. For practical 

reasons, FTLE will be discussed here first.  
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1.2.3 Familial temporal lobe epilepsy (FTLE) 
A family history of epilepsy is not uncommon in patients with TLE. However, familial 

TLE do not comprise a single syndrome. Different forms of familial TLE exist, and it is 

crucial to conduct a detailed family anamnesis in order to define the familial epilepsy 

syndrome. Familial forms of TLE are now included in the latest classification of 

epileptic syndromes by the ILAE (Berg et al., 2010). Familial and sporadic (non-

familial) TLE cannot be distinguished on the basis of their clinical presentations, as 

there are no specific phenotypic characteristics. Hence, the family history has to be 

apparent. In the absence of any other suspected generalised or dominant partial 

epilepsy, at least two family members have to be affected to for a diagnosis of a 

familial form of TLE to be established. 

FTLE can be subdivided into two main, genetically distinct syndromes: mesial 

(FMTLE) and lateral/neocortical (FLTLE), depending on seizure onset, semiology, 

and MRI features. 

 

Familial lateral temporal lobe epilepsy (FLTLE) 
FLTLE is also termed autosomal-dominant partial epilepsy with auditory features 

(ADPEAF), and was first described by Ottman et al. in 1995 (Ottman et al., 1995). 

Clinically, this condition presents with auditory auras, characterised by ringing or 

humming sounds, followed by early ictal aphasia. Onset is in the first three decades 

of life. There is no association with febrile seizures, and MRI is usually normal. The 

course of the disease is benign (Winawer et al., 2000). Linkage analysis has revealed 

a locus on chromosome 10q24, and this later emerged as the locus of the leucine 

rich glioma-inactivated gene 1 (LGI1) (Kalachikov et al., 2002).  Similar families, 

mapping to the same region, have been described by Norwegian epileptologists, but 

with a somewhat different clinical picture, with prominent visual symptoms and 

sensory dysphasia due to lateral temporal lobe origin (Poza et al., 1999; Brodtkorb et 

al., 2002). To date, a total of 25 mutations in LGI1 associated with FLTLE have been 

identified (Nobile et al., 2009). 

LGI1 was initially described as a candidate tumour suppressor gene for glioma 

(Senechal et al., 2005), but more recently was identified as a subunit of the 

presynaptic Kv1 voltage gated potassium channel, preventing its inactivation (Schulte 

et al., 2006). LGI1 has been isolated from the brain where it serves as a ligand for 

two epilepsy-related receptors, ADAM22 and ADAM23 (Fukata et al., 2010). An 
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implication in epilepsy has been proved by loss of LGI1 in mice (LGI1 -/-), which 

causes lethal epilepsy. Interestingly, LGI1 has very recently been identified as an 

autoantigen, associated with limbic encephalitis/autoimmune synaptic 

encephalopathy (Lai et al., 2010), a condition often associated with seizures and 

neuropsychiatric symptoms. To address this issue in detail would, however, go 

beyond the scope of this thesis.   

 

Familial mesial temporal lobe epilepsy (FMTLE) 
A familial form of TLE with mesial seizure onset (FMTLE) was first recognised in twin 

studies by Berkovic et al (Berkovic et al., 1994; Berkovic et al., 1998), as a result of 

the observation of high concordance rates in monozygotic twins compared with 

dizygotic twins, and was reinforced by observations in non-twin families (Berkovic et 

al., 1996). 

Although there seems to be no clear cut consensus in the literature regarding sub-

classification of FMTLE, three subtypes are currently considered (Gambardella et al., 

2009): benign FMTLE without HS or FS, FMTLE associated with HS, and FMTLE 

associated with FS.  

 

Benign FMTLE without hippocampal sclerosis or febrile seizures  
Patients in this category of FMTLE typically present with early adulthood epilepsy 

onset, and with auras including psychiatric (predominantly déjà vu and jamais vu) 

and autonomic features (Berkovic et al., 1996). CPS and secondary generalisation 

are rare in this phenotype, and EEG recordings often do not show any epileptic 

activity. Patients have no signs of HS in MRI, and no history of childhood FS. The 

course of this TLE subtype is benign and the prognosis considered excellent, and 

therefore this condition is probably under-diagnosed. Despite the report of a probable 

linkage to chromosome 4q in a single pedigree (Hedera et al., 2007), the genetic 

basis of FMTLE is largely unknown. 

 

FMTLE associated with HS 
The identification of FMTLE associated with HS and/or FS, has altered the view that 

hippocampal sclerosis is exclusively associated with sporadic/ acquired forms of TLE. 

In 2003, Kobayashi et al. first described a relationship between FMTLE, HS and FS, 
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with large intrafamilial and interfamilial phenotypic heterogeneity with respect to 

severity of the epilepsy, history of FS, and presence of HS (Kobayashi et al., 2003).  

In 2/3 of families, the course is rather mild, while 1/3 present with severe, treatment-

refractory seizures. Approximately 10 % of patients have a history of FS, and the 

mean age of epilepsy onset is 10 years. Seizure semiology frequently includes CPS, 

with oro-alimentary automatisms, and, postictally, patients often are plagued by 

confusion. In accordance with benign FMTLE, secondary generalisation is rare. MRI 

reveals a broad variation in HS, from mild to severe, and the severity of hippocampal 

abnormalities have been reported to show a relationship with the clinical picture 

(Kobayashi et al., 2003).  

Interestingly, MRI findings of HS have also been observed in asymptomatic family 

members, which suggest that the HS itself might be inherited, rather than that the 

epilepsy leads to hippocampal alteration (Kobayashi et al., 2003). Histological studies 

of the HS in this subgroup of FMTLE patients have not shown any differences from 

sporadic MTLE. Taken together, these observations indicate that it is highly probable 

that at least some HS is based on a complex interaction between genetic and 

environmental factors. 

 

FMTLE associated with FS 
To date, reports have been published regarding two large FMTLE family clusters of 

FMTLE associated with FS (Baulac et al., 2001; Claes et al., 2004). The phenotype 

of the FMTLE in members of both families was characterised by onset before age of 

20 years, and none of the family members show signs of HS by MRI. The clinical 

course is benign, and, typically, the predominant clinical feature in members of these 

families is FS, while TLE occurs less often. Digenetic inheritance was proposed for 

one of the families, with gene loci on 18qter and 1q25-31 (Baulac et al., 2001), 

whereas in the second family linkage on 12q22-23.3 was shown (Claes et al., 2004). 

Other variants of FMTLE associated with FS have been demonstrated by 

identification of sodium channel mutations (SCN1A and SCN1B), which usually 

cause childhood febrile seizures, and rather infrequent MTLE and HS in a few family 

members (Scheffer et al., 2007; Colosimo et al. 2007).  

These should not be confused with the syndrome GEFS+, which is another epilepsy 

phenotype associated with sodium channel mutations, and is discussed later in this 

thesis.  
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It is important that this summary regarding our knowledge on familial forms of TLE, 

does not give the impression that TLE typically occurs in families. These familial 

syndromes account for only a fraction of TLE cases, and the TLE phenotype usually 

appears sporadically, without any indicators of inheritance. However, the growing list 

of family studies and increasing knowledge about the aetiology of complex diseases 

suggest that genetic factors are, indeed, involved in TLE and provide a good reason 

to move our focus away from the paradigm that TLE is merely an acquired disorder.  

TLE are complex disorders, in which a plethora of genes are probably involved, 

affected by environmental factors, and complicated further by post-transcriptional 

modifications. In order to learn more about the aetiology and pathogenesis of TLE, 

which is a prerequisite for establishing cures for patients, it is important both to 

broaden the spectrum of genetic tools used for investigation and, at the same time, 

dissect the sub-groups of the TLE, as based on phenotypic characteristics.  

Linkage analysis in large family pedigrees indicated autosomal dominant inheritance 

for the syndromes described above. However, as the majority of TLE cases, do not 

occur within families, linkage analysis has clear limitations. In this context, it should 

be noted that genetic variants may contribute to increased susceptibility to 

development of TLE. Identification of susceptibility genes can be performed by 

population-based association studies using candidate gene approaches. This has 

been one of the major tasks of this thesis, and is expounded in detail in subsequent 

sections. 

 
1.2.4 Genetic association studies in TLE  
Genetic changes may contribute to disease development in humans. On the one 

hand, rare mutations may occur that have extensive effects on the phenotype, 

typically leading to monogenic diseases. On the other hand, common genetic 

variants with limited phenotypic effects might also result in disease (Cordell et al., 

2005). A single nucleotide polymorphism (SNP) is a DNA sequence variation 

occurring when a single nucleotide (adenine, guanine, cytosine, or thymine) in the 

genome differs between members of the same biological species. These variations in 

the DNA sequence can affect the development of diseases.  

For a variation to be considered a SNP, it should occur in at least 1 % of the 

population. SNPs can occur in coding (gene) and non-coding regions of the genome.  
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As well as SNPs, other modifications in the genetic information may influence 

phenotype and confer disease susceptibility. These include rare variants with 

occurrence < 1% in the general population, copy number variations, and epigenetic 

modifications. The latter will be discussed later in more detail. 

Genetic association studies are designed to compare the frequency of specific alleles 

(in the narrow sense SNPs) in affected cases with those in unaffected control 

subjects. An allele is said to be associated with the disease when its frequency differs 

between cases and controls more than would be predicted by chance (Lander et al., 

1994). 

A large number of genetic association studies have been conducted on different 

epilepsy entities, candidate genes, and populations (Hirschhorn et al., 2002). Until 

recently, there was lack of systematic databases summarizing which candidate 

genes in which epilepsies have been investigated.  This gap has been filled by the 

establishment of an online repository of data relating to genetic association studies in 

epilepsies, the Epilepsy Genetic Association Database (http://www.epiGAD.org), 

which is supported by the ILAE Genetics Commission. To date, the database 

contains 212 susceptibility gene studies, of which approximately 25 % are related to 

TLE. The most important and most widely discussed susceptibility genes in TLE are 

summarised in table 1. 
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Table 1: Summary of the most relevant genes tested for association with TLE 
Gene Number of studies 

(positive/negative) 

Allele Relevant studies Postulated function 

Interleukin-�� 6 (2/4) C511T - Kanemoto et al., 2000 

- Heils et al.,2000 

- Buono et al., 2001 

- Proinflammatory 

cytokine.  

- Interleukin 

receptors found in 

the hippocampus 

Prodynorphin 10 (4/6) L-allele  - Stögmann et al., 2002 

- Salzmann et al., 2008 

- Cavalleri et al. 2005 

- Opioid polypeptide 

hormone.  

- Involved with 

chemical signal 

transduction 

- Endogenous 

anticonvulsant? 

Apolipoprotein E  8 (3/5) �� 

 

- Briellmann et al., 2000 

- Cavalleri et al.,2005 

- Involved in 

catabolism of 

triglyceride-rich 

lipoprotein 

constituents 

GABA (B) 

receptors 

9 (2/7) G1465A - Gambardella et al., 

2003 

- Cavalleri et al., 2005 

- Metabotropic GABA 

receptors   

- hyperpolarizing 

neuron via opening 

of K+ channels 

Prion protein 

(PRNP) 

5 (2/3) N171S - Walz et al., 2003 

- Cavalleri et al., 2005 

- Express major prion 

protein 

- unknown function 

Negative association studies in italic font; source: Tan et al., 2004 and http://www.epiGAD.org 

 

1.2.5 Genome-wide association studies in TLE 
The first genome-wide association study (GWAS) in the epilepsies has only recently 

been published (Kasperaviciute et al., 2010). This large GWAS included 3445 

patients with partial epilepsies, of which 919 were diagnosed with mesial temporal 

lobe epilepsy. No significant genome-wide association was identified, leading to the 

conclusion that the genetic architecture of the partial epilepsies is likely to be highly 

complex. The consortium behind this study has suggested establishing further 

association studies, including GWAS, but in more homogenous and narrowly-defined 
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cohorts, with sample sizes that generate adequate power. This is challenging for 

several reasons, but particularly because population stratification may evolve when 

large samples are collected from different geographical regions.  

 
1.2.6 Genetic association studies carried out in this thesis 

Most genetic association studies involving TLE populations have not provided 

compelling results (Tan et al., 2004). One reason for this is that the TLE are 

genetically complex disorders, probably influenced by variation in several 

susceptibility genes. Another challenge is selection of appropriate candidate genes 

that have a high degree of biological plausibility. 

Many of the candidate genes investigated in epilepsies are those encoding neuronal 

ion channels or receptor proteins, based on the concept that alterations in these 

substrates may contribute to changes in membrane potential and lead to neuronal 

hyperexcitability. 

A rather newer concept is that altered glial function may also play an important role, 

and lead to hyperexcitability of neuronal tissue. Astrocytes, in particular have been 

suggested to promote epileptogenesis and disease progression in epilepsy and other 

neurological conditions (Binder and Steinhäuser, 2006; Seifert G et al., 2006, Eid et 

al., 2008). Further details on the concepts of glia mediated epileptogenesis are 

elaborated in section 1.3. This thesis describes 3 novel candidate genes investigated 

in 2 different association studies. The first association study (Paper II) focussed on 

the glial target genes AQP4 and KCNJ10, and the second study (Paper III) had  the 

extracellular matrix enzyme, matrix metalloproteinase-9 gene, MMP-9 as its subject.  

 

Genetic association study with AQP4 and KCNJ10 as candidate genes 
It has been recently demonstrated that ion homeostasis in the brain depends not only 

on proper ion channel function, but also on water transport, mediated by specific 

water channels. In particular, deletion of the glial water channel aquaporin-4 (AQP4) 

or its anchoring protein, alpha-syntrophin, interferes with K+ clearance from the 

extracellular space (ECS) after high frequency stimulation in slices or in vivo (Amiry-

Moghaddam et al., 2003; Binder and Steinhäuser, 2006), as well as after 

mechanically-induced spreading depression (Padmawar et al., 2005). The finding 

that AQP4 is co-localised with the inwardly rectifying K+ channel Kir4.1 (Nagelhus et 

al., 1999) led to the suggestion that AQP4 and Kir4.1 form a coupled water and K+ 
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transport unit (Amiry-Moghaddam et al., 2003; Nagelhus et al., 2004). The 

expression of this unit is compromised in TLE, as judged by the partial loss of AQP4 

and its anchoring complex from astrocyte endfoot membranes in the hippocampi of 

patients suffering from this condition (Eid et al., 2005). 

As deficiencies in K+ clearance would be expected to perturb neuronal excitability 

and increase the propensity to seizures, we investigated whether polymorphisms 

occur in those genes encoding AQP4 and the potassium channel Kir4.1 that are 

associated with TLE and its subgroups MTLE-HS and/or TLE-FS. To this end, we 

resequenced AQP4 to identify new SNPs in the TLE subgroups and also included 

known SNPs within AQP4 and KCNJ10 from HapMap (http://www.hapmap.org) and 

dbSNP (http://www.ncbi.nlm.nih.gov) databases.  

The timeliness of this study was underscored by previous data that suggest a 

possible association between variations in the human KCNJ10 gene and seizure 

susceptibility (Buono et al., 2004; Lenzen et al., 2005), and mutations in the KCNJ10 

gene, that are associated with the EAST/SeSAME syndrome, characterised by 

epilepsy (Bockenhauer et al., 2009; Scholl et al. 2009). 

 
Genetic association study with MMP-9 as candidate gene 
One elemental characteristic of the human brain is its capacity to undergo lifelong 

morphological and functional changes. These processes, also referred to as 

remodelling, include cortical reorganisation, synapse formation, and neurogenesis. 

Remodelling occurs during brain development and learning, but also serves as an 

adaptive mechanism to compensate for lost function (Bruel-Jungerman et al., 2007; 

Parent, 2007; Eisch et al., 2008). Studies of the hippocampus have identifed a 

relationship between synaptic remodelling and epilepsy. (Parent, 2007; Abrous et al., 

2005; Kempermann et al., 2004). In TLE, especially in cases with HS, remodelling 

may result in defective synaptic rearrangement of neuronal circuits and thus promote 

epileptogenesis and disease progression (Pitkanen and Lukasiuk, 2009).  

 A relatively recent discovery is the identification of matrix metalloproteinase-9 (MMP-

9) as a possible key factor in the development of aberrant synaptic plasticity and 

dendritic pruning in animal models of TLE (Wilczynski et al., 2008)  

MMP-9 is a member of the family of the matrix metalloproteinases (MMP), which 

constitute zinc-dependent extracellular or membrane-bound endopeptidases. Their 
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primary function is cleavage of extracellular matrix (ECM) proteins, and thus they are 

involved in processes of physiological tissue remodelling (Werb, 1997). 

MMP-9 has been implicated in various central nervous system (CNS) pathologies 

including stroke (Park et al., 2009), traumatic brain injury (Hayashi et al., 2009), 

cerebral arteriovenous malformations (Chen Y et al., 2008) influenza-associated 

encephalopathy (Ichiyama et al., 2007), systemic lupus erythematosus with CNS 

affection (Trysberg et al. 2004), and in meningitis, where it has been identified as a 

risk factor for developing neurological sequalae (Leppert et al., 2000).  

In addition, recent studies have indicated a physiological role for MMP-9 in neuronal 

plasticity, including learning and memory, as well as long-term-potentiation (Nagy O 

et al., 2006). It has been suggested that MMP-9 may have an initial detrimental 

effect, leading to neuronal cell loss, but also a subsequent beneficial (restorative or 

neuroprotective) effect (Zlokovic, 2006; Michaluk and Kaczmarek, 2007). 

Regarding a possible role in epileptogenesis, MMP-9 is believed to cleave 

extracellular matrix molecules in and around the synaptic cleft. Thus, MMP-9 

activation may be an essential step in the cascade of events leading to new synapse 

formation, and therefore could be critical for the sequence of events that underlies 

the development of seizures. 

Transgenic rats that over-express MMP-9 have been found to develop increased 

susceptibility to seizures, whilst deletion of the MMP-9 gene in mice leads to 

alleviation of seizures (Wilczynski et al., 2008). 

Based on these findings, we hypothesised that particular polymorphisms of the MMP-

9 gene could contribute to the development of TLE, or subgroups of this condition, 

notably MTLE-HS and TLE-FS. 

Despite a broad selection of SNPs in the MMP-9 gene and strong adherence to the 

general guidelines for establishing genetic association studies, we were unable to 

find any association with TLE or its subgroups. However, the possibility that TLE is 

associated with changes in MMP-9 expression or regulation could not be ruled out 

and should be the subjects of further research. 
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1.3 Alterations of glial cell function in temporal lobe epilepsy 
 

1.3.1 Glia – research milestones 
Glia cells (from glia, Greek for “glue”), also termed neuroglia or simply glia, are non-

neuronal cells and represent the most numerous cell type in the CNS. Glia was first 

described by the German doctor and pathologist Rudolf Ludwig Karl Virchow (1821 – 

1902), whom, contrary to the accepted dogma of the time, argued that the brain 

contains connective tissue. In a series of papers published in 1856 and his textbook 

(1858), Virchow introduced the term Nervenkitt, later translated to nerve-glue or glia 

(Virchow, 1862, Somjen, 1988). 

Glial cells are subdivided into three main groups: Oligodendroglia, which are involved 

in the production of myelin and “insulation” of nerve cell axons; microglia, which are 

part of the CNS immune system; and astroglia or astrocytes, which were thus named 

due to their characteristic star shape by the Spanish neuroscientist and pathologist, 

�����	
	����
	�����	– 1934).  

For decades astrocytes have been considered as relatively passive cells, the 

existence of which was mainly justified by their role as “servants to neurons”. They 

were considered to have three functions: i) to act simply as glue holding nerve cells in 

place, ii) to be involved in scar formation in the CNS, and iii) to have a nutritive 

function in relation to neurons. They were regarded as electronically silent and 

deficient in ion channels and transmitter receptors. 

In recent years, this view has altered radically. We have learned that astrocytes form 

an intimately connected network with neurons, and serve as active communication 

elements with a large variation of integrative functions in the CNS. Knowledge about 

astrocytes is crucial for understanding normal brain functioning, and astrocytes 

provide a promising new area for treatment of neurological diseases, including 

epilepsy. 

Before elaborating further on astrocyte function and dysfunction, it is important to 

note that astrocytes are not one single cell type. Quite the contrary, different cells 

with astroglial properties exist both intermingled in a given brain region, and, with 

varying distribution, in different brain areas. To date, classification into two main 

astrocyte cell types has been established. These are termed GluT cells and GluR 

cells, based on their segregated expression of glutamate transporters (GluT cells) 
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and ionotropic glutamate receptors (GluR cells), respectively. These astrocyte 

subtypes have dissimilar electrophysiological and anatomical properties, and show 

diverse immunoreactivity to different markers (Jabs R et al., 2008). Although both cell 

types are referred to as astrocytes, their functional impacts should be considered to 

differ. However, which separate tasks the respective astrocyte subtypes perform is 

incompletely understood.  

Astrocytes express a large range of ion channels and receptors, comparable with 

those from neurons (Verkhratsky and Steinhäuser, 2000; Seifert et al., 2004). 

However, the “quality and quantity” of receptors and channels varies between 

neurons and astrocytes. Neurons, for example, show a strong expression of Na+ 

channels and a relatively weak expression of K+ channels, while in astrocytes, K+ 

channels greatly predominate. 

One of these channels is Kir4.1, which belongs to the family of inwardly rectifying 

potassium channels.  Kir.4.1 is co-localised with the astrocyte water channel AQP4 in 

glial cells (Nagelhus et al., 1999) and it has been suggested that AQP4 and Kir4.1 

channels work in concert to  maintain K+ and water homeostasis in the CNS 

(Nagelhus et al., 1999; Nagelhus et al., 2004, Soe et al., 2009). Notably, deletion or 

mislocalization of AQP4 delays K+ clearance from activated synapses and increases 

severity of seizures (Amiry-Moghaddam et al., 2003; Binder et al., 2006).  As these 

channels are a major focus of this thesis, their roles in epilepsy are discussed in 

more details in subsequent sections.  

In contrast with mature neurons, astrocytes are usually coupled in networks of gap 

junctions, mainly formed by connexins 30 and 43, through which astrocytes can 

“communicate” with each other and dissipate molecules like K+ and glutamate (Theis 

et al., 2005). Deletion of these connexins delays K+ clearance from activated 

synapses (Walraff et al., 2006). Gap junctions also contribute to the transmission of 

intercellular Ca2+ waves in astrocytes, which may be important for release of 

transmitters such as glutamate. 

A further crucial function of astrocytes is the clearance of transmitters released by 

active neurons. Astrocytes express glutamate transporters (EAAT1 and EAAT2; in 

rodents termed GLAST and GLT-1), which take up glutamate from the ECS, and thus 

prevent glutamate accumulation that might otherwise lead to excitation and/or 

excitotoxicity (Bergles et al., 1999; Danbolt et al., 2001). 
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Another feature of astrocytes, which is still somewhat controversial, is the property 

that is currently subsumed in the concept of “gliotransmission”. Gliotransmission is 

the ability of astrocytes to release chemical transmitters, including glutamate and 

ATP. This ability was first described in a classical study by Parpura and colleagues in 

1994, in which glutamate release from astrocytes was demonstrated in astrocyte-

neuron co-cultures (Parpura et al., 1994; Volterra and Meldolesi, 2005).  Following 

this groundbreaking study, a series of further studies demonstrated that 

gliotransmitter release is probably dependent on an increase in intracellular Ca2+ 

concentrations in astrocytes. The release was proposed to be orchesterated by G-

protein coupled neurotransmitter receptors, which, via phosphorylase C, effect 

release of Ca2+ from internal stores in astrocytes (Haydon, 2001). Indeed, this 

proposal has been strongly supported by several studies that have shown that 

stimulation of neuronal afferents induces an elevation in Ca2+ concentrations within 

astrocytes (Porter et al., 1996), which then can spread to adjacent astrocytes 

(Charles et al., 1991). This means that astrocytes comprise a chemical form of 

excitability that is linked to neuronal activity in a bidirectional fashion (Haydon, 2001). 

Calcium-dependent transmitter release is a mechanism that, until recently, was 

considered to be only available to neurons. 

It is still unclear which functions are involved in these astrocyte mechanisms, but it 

does seem certain that astrocytes have the ability to influence and modulate 

neuronal activity (Angulo et al., 2004). On the basis of these various interactions and 

effects associated with astrocytes, it seems plausible that altered astrocyte function 

may contribute to disease development and progression in different neurological 

diseases, including epilepsy. 

 

1.3.2 Astrocytes and epilepsy 
Current antiepileptic treatment concepts are mainly based on the principle that 

epileptic seizures arise from abnormal excessive or synchronous neuronal activity in 

the brain (Rogawski et al., 2004). Phenobarbital, for example, is an effective GABA 

receptor agonist that increases the efficacy of inhibitory synapses. Another example 

is phenytoin, a sodium channel blocker that reduces the rate and/or amplitude of 

action potentials in neurons, and hence inhibits high-frequency neuronal firing. 

Valproate attenuates excitability via a combination of several mechanisms, as 
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reviewed in (Johnston, 1984; Löscher, 1993), all of which are believed to have an 

impact on neuronal functions alone. 

While 2/3 of all epilepsy patients respond successfully to currently available AEDs, 

the remaining 1/3 continue to suffer recurrent seizures, despite per se optimised 

pharmacological treatments (Kwan and Brodie, 2000). These pharmacoresistant 

cases are mainly represented by patients suffering from TLE. In order to fulfil the 

unmet medical needs of patients with pharmacoresistant TLE, alternative 

pharmacological treatment strategies should be a goal of epilepsy researchers and 

epileptologists. During recent years, evidence has accumulated that indicates that 

proper neuronal function is not possible without glial cells. Glial cells, especially 

astrocytes, are critically involved in the maintenance of homeostasis for ions and 

water, and hence in the pathophysiological mechanisms that lead to neuronal 

hyperexcitability and epilepsy. This makes glial cells an exciting subject for novel 

treatment concepts in epilepsy, especially for pharmacoresistant TLE (Jabs et al., 

2008). 

The hippocampal seizure focus in TLE has been the subject of most studies on the 

aetiology and pathogenesis of the epilepsies. The rationale for this is the need for 

novel treatment strategies for patients with TLE due to high pharmacoresistance. In 

addition, the availability of tissue from surgically-treated TLE patients and the wealth 

of experience on use of animal models of TLE are further reasons for extensive 

research in this field.  

 
1.3.3 Roles of the inwardly rectifying potassium channel Kir4.1 
Glial cells are characterised by strongly negative resting membrane potentials and 

highly selective membrane permeability to potassium ions (K+) (Kuffler et al., 1966).  

These fundamental properties are maintained by profuse expression of K+ channels, 

of which inwardly rectifying K+ (Kir) channels predominate. Kir channels are 

responsible for the main K+ conductance and sustain the resting membrane potential 

of glial cells close to the equilibrium potential of potassium, as demonstrated by a 

variety of electrophysiological studies (Sontheimer et al., 1994; Verkhratsky and 

Steinhäuser, 2000).  

In contrast with the vast majority of K+ channels, Kir channels are characterised by 

their ability to conduct more efficiently inwards than outwards. They are reliant on the 
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outward K+ concentration [K+]out  and are modulated by intracellular factors and 

secondary messengers (Doupnik et al., 1995). 

The Kir channel family is generally divided into seven subfamilies (Kir1.0 - Kir7.0), 

with a total of between 16 and 20 members (Nichols et al., 1997; Olsen and 

Sontheimer, 2008). 

Kir channels form tetrameric structures, assembled from homomeric or heteromeric 

Kir subunits, which implies further functional diversity (Krapivinsky et al., 1995). 

Based on different biophysical properties, Kir channels segregate into different 

subtypes (Butt et al., 2006). Glial cells may express all subtypes of Kir channels. 

However, the most abundant Kir channel in glial cells, and functionally the most 

important by far, is Kir4.1, which belongs to the subtype of ATP-dependent Kir 

channels. 

Kir4.1 has been detected in astrocytes, oligodendrocytes, cerebellar Bergmann glia 

cells, and retinal Müller cells (Takumi et al., 1995; Ishii et al., 1997; Schroder et al., 

2000; Kalsi et al., 2004). 

As early as 1980 the idea was proposed that K+ could be redistributed by Kir 

channels along the membrane of a single cell, or a network of cells connected via 

gap junctions from a region with high [K+] to a region with lower [K+] (Orkand et al., 

1980). This spatial buffering hypothesis was strengthened by the finding that Kir4.1 

expression varies within a given brain region. In fact, Kir4.1 shows distinct subcellular 

localisation, consistent with a specific role in transport of K+ by glia between neurons 

and blood vessels. Kir4.1 is predominantly localised at distant astrocyte processes 

surrounding synapses or blood vessels (Nagelhus et al., 1999, Higashi et al., 2001). 

This polar distribution of Kir4.1 strengthens the hypothesis that potassium released 

by active neurons, is taken up into the astroglial syncytium and then distributed to 

blood vessels at the glia-vascular interface, as illustrated in figure 3. 

 

K+ buffering is a fundamental property of normal brain functioning. All neuronal 

activity, strictly every single action potential, leads to release of K+ from neuronal 

tissue into the ECS. Without a rapid and effective buffering mechanism, any increase 

in extracellular K+ concentration could compromise neuronal firing and normal brain 

functioning.  

Lack of Kir4.1 channels will result in depolarization of glia, increased excitability and 

propensity to seizures (Kofuji et al., 2000; Djukic et al., 2007), as shown in Kir4.1 -/- 
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mice. Interestingly, not only is K+ buffering markedly impaired in these mice (Chever 

et al., 2010; Haj-Yasein et al., in press), but also uptake of the excitatory 

neurotransmitter glutamate (Djukic B, 2007). Glutamate is most effectively taken up 

by astrocytes at negative resting potentials. Hence, impaired expression of Kir4.1 

leads to reduced glutamate uptake and increased propensity to seizures.  

 

Even subtle changes in Kir4.1 function could result in defective regulation of [K+] and 

thus present an attractive mechanistic hypothesis for an association between genetic 

variation and seizure susceptibility. Recent genetic studies have indicated an 

association between missense variations in the gene encoding Kir4.1, KCNJ10, and 

seizure susceptibility in both mice and humans (Buono et al., 2004; Ferraro et al., 

2004). Bouno et al. detected a non-synonymous SNP (rs1130183) in the human 

KCNJ10 gene (Arg271Cys) that was associated with seizure resistance in groups of 

patients with either focal or generalised epilepsy (Buono et al., 2004). In addition, the 

recent identification of a syndrome characterised by epilepsy caused by mutations in 

KCNJ10, emphasises the importance of Kir4.1 in cerebral [K+] regulation and the 

potential for KCNJ10 as a seizure-susceptibility gene (Bockenhauer et al., 2009; 

Scholl et al. 2009). 
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Figure 3: Presumed mechanism of potassium spatial buffering by the astrocyte membrane 
channel Kir4.1. 
A: Potassium efflux from synaptic terminal during neuronal activity; B: Uptake of potassium by 

astrocyte Kir4.1 channels and possibly a concomitant water influx via water channel AQP4 to dissipate 

imbalance of ion concentration; C: Potassium is spatially redistributed by buffer currents and 

preferentially released to the perivascular space due to clustering of Kir4.1 channels in astrocyte 

endfeet.  D: Defective Kir4.1 and/or AQP4 leads to increased extracellular potassium concentration 

and depolarisation of neuronal tissue. Perturbed K+ clearance may play a role in epileptogenesis. 
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1.3.4 Roles of the water channel aquaporin-4 
Water homeostasis is a fundamental property of all living organisms. Thus, the 

mechanisms of how water passes cell membranes are of fundamental interest. For 

about 200 years, diffusion, first recognised by the French physiologist René Joachim 

Henri Dutrochet (1776-1847), was believed (albeit debated) to be the basic way by 

which water passed through the lipid bilayer of plasma membranes. This view was 

revolutionised by the detection of specific transmembrane water channels, later 

named aquaporins, in 1991 (Preston and Agre, 1991). For this discovery, Peter Agre 

was awarded the Nobel Prize in Chemistry in 2003. As with diffusion, the transport of 

water through aquaporins is energy-independent and driven by an osmotic gradient 

across the plasma membrane. However, the velocity of water flux through aquaporins 

greatly exceeds that of diffusion. To date, 13 mammalian members of the aquaporin 

family have been characterised, with localisation in different organs. In the CNS, 3 

water channels have been detected, AQP1, AQP4, and AQP9. Aquaporin 1 is 

expressed in the epithelium of the choroid plexus and is most probably relevant for 

cerebrospinal fluid (CSF) secretion (Nielsen et al., 1993). Aquaporin 9 is permeable 

not only to water, but also to a range of other molecules. AQP9 is expressed in 

tanocytes of the third ventricle ependyma, and also in astrocytes and neurons. AQP9 

may be involved in brain energy metabolism, but its exact role is still unclear (Badaut 

et al., 2004). The role of aquaporin-4 (AQP4) has been studied in most detail and is 

also of principal interest in the context of this thesis. 

AQP4 mRNA was originally detected in brain by Jung et al. in 1994 (Jung et al., 

1994), and the protein was later shown to be expressed in astrocytes, with a polar 

distribution in perivascular endfeet and in the glia limitans towards the pial surface 

(Nielsen et al. 1997; Amiry-Moghaddam, 2004), figure 4. This distribution, with the 

highest density towards the brain-liquid interfaces, implies an important role in water 

homeostasis in the brain.  
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Figure 4: Distribution of AQP4 in the astrocyte membrane in the brain.  
AQP4 is strongly enhanced in the astrocyte membrane towards the basal lamina surrounding blood 

vessels and towards the pial surface. Arrows indicate hypothetic water flux via AQP4 (Amiry-

Moghaddam, 2004). 

 

AQP4 regulates brain oedema formation and resolution in a range of neurological 

conditions, such as stroke, glioblastoma multiforme, brain abscesses, and 

hydrocephalus (Manley et al., 2000; Amiry-Moghaddam et al., 2003; Bloch et al., 

2005; Papadopoulos and Verkman, 2005). AQP4 has also been implicated in K+ 

clearance, neuronal excitability and epilepsy (Eid et al., 2005; Binder et al., 2006), 

but its precise roles in brain are still elusive. It has been shown that the ECS shrinks 

significantly during neuronal depolarisarion (Dietzel et al., 1982). Shrinkage of the 

ECS could occur via AQP4 mediated water transport into perisynaptic astrocyte 

processes. The observation that the ECS at the same time increases in the neuropil 

distant to active synapses (Niermann et al., 2001), led to the theory that perisynaptic 

uptake of water is followed by efflux of water at a distant astrocyte membrane 

compartment. 
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1.3.5 Functional association between Kir4.1 and AQP4 

AQP4 and Kir4.1 have entirely distinct functions, in as much as they selectively 

transport water and K+, respectively. However, based on the close spatial relationship 

between these proteins in glial membrane domains, it was suggested that there is an 

obligatory coupling between water transport and K+ clearance in the CNS (Nagelhus 

et al., 1999). In support of this hypothesis, high frequency stimulation of thalamic 

afferents to layer IV in acute cortical slices induces water fluxes to the superficial 

cortical layers, along with K+, as recorded by K+-sensitive microelectrodes (Niermann 

et al., 2001). Testifying to the interdependence of these transport processes, deletion 

of AQP4 (Binder et al., 2006) or elimination of the endfoot pool of this water channel 

(Amiry-Moghaddam et al., 2003) delays K+ clearance and increases the severity of 

seizures  The functional relationship between AQP4 and Kir4.1 is, however, debated. 

Verkman’s group failed to show altered Kir4.1 channel function in AQP4 deficient 

mice (Zhang and Verkman, 2008). On the contrary, Soe et al reported that Kir4.1 

channels are sensitive to cell volume changes and thus dependent on AQP4 (Soe et 

al., 2009). Moreover, a functional and molecular interaction between AQP4 and the 

Na+/K+ATPase (Illarionova et al., 2010) could also underly the effects of AQP4 

deletion/mislocalization on extracellular K+ kinetics.  Recently, AQP4 deletion was 

shown to delay recovery of extracellular K+ in the hippocampal stratum pyramidale, 

whereas K+ flux to stratum radiatum was enhanced (Strohschein et al., 2011). 

Impaired K+ uptake by the Na+/K+ATPase and facilitated K+ buffering by increased 

gap junctional coupling, were suggested to account for these opposite effects on K+ 

dynamics.     

Studies in humans support the idea that certain forms of epilepsy are linked to 

perturbations in water and K+ homeostasis. Most notably, the K+ buffering capacity in 

MTLE-HS hippocampi is reduced in comparison with non-MTLE-HS hippocampi 

(Bordey and Sontheimer, 1998). This change is most pronounced in the CA1 region, 

where patch clamp experiments have demonstrated impaired uptake of K+ into 

astrocytes through inwardly rectifying K+ channels (Hinterkeuser et al., 2000). In 

addition to altered potassium ion kinetics, there is strong evidence that water 

accumulates in sclerotic hippocampi, as shown in MRI and in diffusion-weighted 

imaging of patients with MTLE-HS (Hugg et al., 1999). These functional changes 

mesh nicely with the finding that patients with MTLE-HS display a partial loss of 

AQP4 from astrocyte endfoot membranes (Eid et al., 2005). 



 

49 
 

1.3.6 The dystrophin-associated protein complex (DAPC) - an anchoring site for 
Kir4.1 and AQP4? 
Dystrophin is a rod-shaped cytoplasmic protein and a vital part of a large protein 

complex, the dystrophin-associated protein complex (DAPC). The DAPC includes 

dystrophin and a number of dystrophin-associated proteins, which together connect 

the cytoskeleton to the surrounding extracellular matrix through the cell membrane. 

The dystrophin gene, with locus Xp21, has a length of 2.4 megabases and is the 

largest gene of the human genome. Mutations in the dystrophin gene are associated 

with neurological diseases, such as Duchenne and Becker muscular dystrophies. 

The dystrophin gene transcribes various isoforms (i.e., proteins of varying lengths 

containing different segments of the basic dystrophin sequence, which are encoded 

by different mRNAs, generated mainly by unique, tissue-specific promoters, but also 

by alternative splicing or use of different polyA-addition signals). The full length 

isoform of dystrophin is Dp427 (427 kDa), which is found mainly in skeletal muscle. In 

the brain, the predominant isoform is Dp71, which is expressed in astrocytes 

(Lederfein et al., 1992). 

Altered DAPC has recently been implicated in animal models of status epilepticus 

(SE), indicating that dysfunction of dystrophin induced by SE may result in 

endothelial and astroglial damage, with breakdown of the blood-brain barrier (BBB) 

and increased vascular permeability as part of the pathogenesis of epilepsy (Sheen 

et al., 2010). Moreover, epilepsy is reported to occur at a higher incidence in patients 

with Duchenne and Becker muscular dystrophies (Goodwin et al., 1997; Tsao et al., 

2006). This could indicate that alterations in the DAPC may lead to an increased 

propensity to seizures.  

Nevertheless, little is known about the role of the DAPC/dystrophin-glycoprotein 

complex (DGC) in the human CNS physiology and pathophysiology, or the epileptic 

brain. Altered anchoring via DAPC may cause lack of Kir4.1 and also other important 

channels, such as the brain water channel, aquaporin-4 (AQP4), and thus critical for 

epilepsy development. 

 

There is accumulating evidence that both AQP4 and Kir4.1 are anchored to the 

DAPC, supporting their co-active function in water and potassium homeostasis in the 

brain. This theory was originally generated by results obtained from double 

immunogold labelling in retinal Müller cell membranes that revealed co-enrichment of 
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Kir4.1 and AQP4 in vitreal and perivascular endfeet membranes (Nagelhus et al, 

1999). Their close vicinity strengthens the theory that both channels are attached to 

the DAPC. Both channels are arranged in a polar distribution, with highest density in 

astrocyte perivascular endfeet and in astrocyte processes that form the glia limitans. 

Further evidence for DAPC association with AQP4 comes from strains of mice that 

lack dystrophin (mdx mice), which display strongly reduced perivascular AQP4 

expression (Liu et al., 1999; Nico et al. 2003).  

 

Kir4.1 is localised in glial cells by its association with the DAPC through a PDZ 

domain-mediated interaction, as shown in immunoprecipitation experiments in mouse 

brain as well as in cultured cortical astrocytes (Connors et al., 2004), see figure 4. 

Further support for a functional interaction between AQP4 and Kir4.1 has been 

obtained from studies on alpha-syntrophin -/- mice, which display serious mislocation 

of AQP4 and also delayed K+ clearance, despite unchanged expression of Kir4.1 

(Amiry-Mogghadam et al., 2003). Furthermore, it has been shown that KO of 

dystrophin 71, another member of the DAPC, results in decreased AQP4 and Kir4.1 

expression (Dalloz et al., 2003).  

Taken together, these data suggest an anatomical and functional entity between 

AQP4 and Kir4.1. 

 

 



 

51 
 

 
Figure 5: Diagram showing the presumed molecular basis for anchoring of AQP4 and Kir4.1 in 
the perivascular and subpial astrocyte membrane.  

The dystrophin complex is anchored to the basal lamina via laminin and agrin and is presumed to bind 

AQP4 and Kir4.1 by way of alpha-syntrophin or other syntrophins. Other molecules involved in 

anchoring are the PDZ binding domain and beta-dystroglycan. H1 indicates the coiled-coil motif 

interaction between Dp71 (the major dystrophin isoform in brain) and alpha-dystrobrevin (Amiry-

Moghaddam et al., 2004).  
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2.  Material and methods 

 

2.1 Phenotype studies on a Norwegian TLE population 
 
2.1.1 Study population and data assembly 
The original collection of patient data was carried out between 2000 and 2004 at 

seven tertiary Norwegian Medical Centres in a cooperative project (GenEpa), and 

was initially supported by GlaxoSmithKline. Hospitals involved in data assembly 

were the former Rikshospitalet University Hospital and the former Ullevål University 

Hospital, since merged to Oslo University Hospital; the former National Centre for 

Epilepsy, Sandvika; St Olav University Hospital, Trondheim; Haukeland University 

Hospital, Bergen; and Akershus University Hospital, Lørenskog. The aim of the 

initiative was to accrue a large dataset of Caucasian epilepsy cases and ethnically-

matched controls, and to associate DNA sequence allelic variations in candidate 

genes with epilepsy phenotypes. After discontinuation of the GenEpA initiative an 

agreement was made between GSK and the principal investigator of the Norwegian 

GenEpa group, Professor Leif Gjerstad, which enabled handling of the GenEpA 

raw data within the framework of this thesis.  

In total, 218 patients with TLE (according to the ILAE criteria, classification 1989) 

were included in the study. Inclusion criteria for all individuals were: age > 18 years; 

Caucasian race, with at least three of four grandparents of Scandinavian origin. The 

controls had no known familial relation to the TLE patients (typically spouse or 

partner). Standardised evaluation forms were used for all TLE patients and 

controls.MRI (typically 1 or 1.5 T, with sagittal and axial T1, axial and coronal T2, and 

Fluid-Attenuated Inversion Recovery (FLAIR) was performed in all 218 patients in 

order to differentiate cases with hippocampal sclerosis (MTLE-HS) from the 

remainder of the TLE patients (including patients with neocortical TLE and MTLE 

patients without HS). We identified 56 patients with MTLE-HS and 162 cases with 

other TLE. 102 patients had a history of febrile seizures, while 105 did not report any 

febrile convulsions in childhood. For 7 patients febrile seizure status was 

inconclusive.  
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2.1.2 Explorative study variables – phenotype factors 
Patient groups were compared with respect to seizure semiology, age at epilepsy 

onset, appearance of FS in the patients and in first-grade family members, 

comorbidity with psychiatric and somatic diseases, and years of formal education. 

Demographic data (including ethnic background of 4 grandparents) were evaluated in 

all patients and controls. General medical history, including former and present 

antiepileptic medication, with duration of use and efficacy, were assembled. 

Diagnostic criteria for TLE, as described by the ILAE, were adhered to when 

establishing the diagnosis (epilepsy onset, seizure semiology, seizure type and 

frequency, etc., see also http://www.ILAE.org). Patient histories of febrile seizures 

were obtained from medical records and anamnesis. Family histories of epilepsy 

and/or febrile seizures were collated. Neurological examinations were performed on 

all patients. Data from EEG, performed at any time, and MRI, performed within 5 

years of study enrolment, were collected. Within both case and control subjects, 

additional phenotypic factors were measured, such as height, weight, and waist 

circumference. A short questionnaire on general medical history, mood disorders, 

and educational status was completed for all participants. 

 

2.1.3 Statistical analysis of phenotype data 
The two clinical/ epidemiological investigations performed as part of this thesis, were 

studies on different subgroups of patients in a mixed TLE population. In the broadest 

sense, both studies could be classified as pilot studies. To our knowledge, few, if any, 

studies on mixed cohorts of operated and non-operated TLE patients have been 

previously performed. In the first study (paper I), data were described by proportions 

and medians with ranges. Crude associations between variables were investigated 

using chi-square tests or Fisher’s exact tests (when number of observations was too 

small for one or both variables). Due to the “pilot character” of the study, we did not 

correct for multiple testing.  

In our second study, we tested whether a certain group of patients, TLE-FS, could be 

segregated from other TLEs. This is the first study that has systematically evaluated 

this patient group. This study should also be regarded as a pilot study, and therefore 

we did not adjust for multiple testing. Categorical variables were described by 

proportions and continuous variables by medians and ranges. Associations between 

variables were studied using chi-square tests or Fisher's exact tests. Crude 
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associations between the two patient subgroups and age of epilepsy onset were 

assessed using the Cochran–Armitage test for trend. To correct for possible 

confounding, caused by overrepresentation of MTLE-HS in TLE-FS, multiple logistic 

regression models were adjusted for MTLE-HS and the results expressed as odds 

ratios (OR) with 95 % confidence intervals (CI). P-values < 0.05 were considered 

statistically significant. Given the relatively large sample size, we were able to fit 

multivariate models and adjust for possible confounders in addition to simple 

univariate analyses (chi-square tests). However, most of our results are highly 

statistically significant even when compared at a stricter significance level of 1 % (i.e., 

p < 0.01). 
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2.2 Genetic association studies in a Norwegian TLE population 

2.2.1 Study population and data assembly 
The study population and data assembly for genetic studies are identical to those for 

the phenotype studies, as described in section 2.1.1. 

 

2.2.2 Explorative study variables - genotype factors 
Allelic sequence variations in candidate genes were investigated by genetic 

association studies, as summarised in table 2. 

 

Table 2: Candidate genes chosen for genetic association studies 
Candidate 
gene 
 

Gene product 
 

Locus Length in 
bp 

SNP detection 

AQP4 Water channel 

aquaporin-4 

 

18q11.2-

q12.1  

13,706  Comprehensive search for DNA 

variation was conducted by PCR. 

Resequencing of the 22 

overlapping PCR amplicons, 

covering the whole AQP4 gene, 

revealed 51 putative SNPs.  

 

KCNJ10 Inwardly rectifying 

potassium channel, 

Kir4.1 

 

1q23.2 32,854  43 SNPs from KCNJ10 were 

chosen from HapMap 

(www.hapmap.org) and dbSNP 

(www.ncbi.nlm.nih.gov/SNP) 

 

MMP-9 Extracellular enzyme 

matrix 

metalloproteinase-9 

 

20q11.2-

q13.1 

7,536 40 SNP from the MMP-9 gene 

were used in the assay design. The 

SNPs were chosen from HapMap 

(www.hapmap.org) and dbSNP 

(www.ncbi.nlm.nih.gov/SNP) 
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2.2.3 Case-control constellations tested for association 
The following case-control constellations were tested in all association studies 

performed in this thesis:  

a)  Temporal lobe epilepsy (TLE) versus healthy control subjects 

b)  Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) versus 

healthy control subjects 

c)  MTLE-HS versus other TLE (without MTLE-HS) 

d)  TLE with a history of febrile seizures versus healthy control subjects 

e)  TLE with a history of febrile seizures versus TLE without a history of febrile 

seizures 

 

 

2.2.4 Validation and characterisation of SNPs 
SNP genotyping on all cases and controls was performed using the MassARRAY 

system from Sequenom, www.sequenom.com (San Diego, USA). All SNPs with a 

known allele frequency in Caucasian populations were included in the initial primer 

design. Genotypes were assigned in real-time (Tang et al., 1999) by using the 

MassARRAY SpectroTYPER RT v3.4 software (Sequenom) based on the mass 

peaks present. All results were manually inspected, using the MassARRAY 

TyperAnalyzer v3.3 software (Sequenom). 

 

2.2.5 Statistical data analyses 

Analysis of single SNPs and haplotypes in cases versus control groups 

HaploView 4.0 software package (Barrett et al., 2005) was used for defining 

haplotype blocks and for investigating possible associations between single SNPs 

and haplotypes within blocks. The criterion for block definition was that suggested by 

Gabriel et al., 2002. Both nominal p-values and p-values corrected for multiple testing 

were considered. The boundary used for indicating significance was set to 5 % for 

the single SNPs and haplotypes. Multiple corrections of the p-values were 

determined by repeating 10,000 random permutations of the case/control status. 
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Explorative data analysis 
Prior to the modelling, allele combinations (AA, AB, BB) for each SNP were recoded 

into 0–1 dummy predictor variables (one dummy predictor for each allele present in 

the SNP). 
 
Multivariate data analysis for SNP selection 
Together with a categorical response variable (indicating the case/control status of 

each subject in the dataset), the dummy predictors were included in a multivariate 

variable selection approach based on Partial least squares (PLS) methodology 

(Westerhuis et al., 1998; Nocairi et al., 2005). The PLS methodology is useful for 

establishing low dimensional subspaces of predictors in regression and classification 

problems and prevents overfitted models in situations where the number of predictors 

islarge in comparison with the number of subjects investigated. In order to assure 

additional sparseness (avoiding models influenced by unimportant SNPs), we used 

the Powered PLS (Indahl, 2005) in combination with the jackknife approach (Martens 

and Martens, 2001). Full (leave-one-out) cross validation was used to estimate the 

appropriate subspace dimension, as well as the importance of the individual SNPs. In 

order to minimise the number of SNPs required for prediction of case/control status, 

the candidate SNPs found to be most significant by combining the Powered PLS and 

jackknife approaches were re-investigated by linear discriminant analysis (LDA) 

(Hastie et al., 2001). LDA is a well-established statistical approach for solving 

classification problems. A group centre (prototype subject) is estimated for each 

group (here we have considered two groups, subjects and controls). Classification of 

a subject is obtained by assigning it to the group corresponding to the closest group 

centre according to a metric that is estimated as common within the group’s 

covariance structure. 

 

Predictive modelling and significance 
The precision (associative strength) of the LDA-model defining the appropriate 

covariance metric from the final set of selected SNPs was measured as the 

percentage of correctly classified individuals computed by full cross validation. The 

boundary used for indicating model significance was set to 5 % (corrected for multiple 

testing of models). The significance numbers were estimated by 10,000 random 

permutations of the case/control status. 
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2.2.6 Probing non-coding SNPs for potential function 
It is generally hypothesised that many disease-associated sequence variants in non-

coding regions could influence the phenotype by altering gene regulation. In this 

respect, it is common to use evolutionary conservation as a guide for indicating non-

coding regions with potential biological function (McCauley et al., 2007). Thus, for 

TLE-associated non-coding SNPs, we manually inspected the level of sequence 

conservation at their genomic locations using multiz28way alignments provided by 

the UCSC genome browser (Bejerano et al., 2005; Karolchik et al., 2008). 

Specifically, we looked for short (minimum 5nt) and conserved [all bases identical at 

the orthologous sites in monkey (rheMac2), mouse (mm8), dog (canFam2), and 

opossum (monDom5)] motifs that covered the SNP position. In addition to sequence 

conservation, we analysed whether any of the TLE-associated SNPs overlapped with 

known transcriptional enhancers (a genomic data track, provided by the UCSC 

genome browser). 
 
2.2.7 Critical consideration of patient selection, data assessment, and 
interpretation 
 
Phenotype definition problems and selection bias 
Phenotype definition is a principal challenge in complex diseases like the epilepsies, 

and should always be an important concern in the early planning and design of any 

genetic association study. The specificity of the phenotype should be as high as 

possible. However, this task seems to pose particular difficulties, especially in the 

epilepsies, due to the sometimes subtle clinical presentation. The common clinical 

feature in epilepsies is the seizure, a mostly transient event, often never observed by 

the physician, and sometimes not observable at all. In these cases, diagnosis has to 

be established on other, indirect features, such as age at onset, seizure frequency, 

comorbidity, EEG findings, MRI results etc. From the opposite perspective, the same 

underlying disease entity may present a large variety of different types of seizures; 

the seizure itself usually does not always provide any further information about the 

aetiology and pathogenesis of the disease. 

Another major issue for most genetic association studies is recruitment of a large 

number of subjects, which often requires collaboration between centres from different 
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geographical regions. This may lead to population stratification, due to mixing of 

genetically disparate subjects.  

Another problem may arise from dissimilar routines in diagnostics and in data 

ascertainment.  

 

In the studies described in this thesis, patients were recruited from seven different 

Norwegian hospitals, which may have affected phenotype specificity and could have 

introduced heterogeneity into the data. In this respect, it may be advantageous that 

most centres involved in subject selection are classified as tertiary centres, which 

implies a high level of competence in reaching a diagnosis and in phenotype 

selection. However, patients attending those facilities are often pre-selected, as they 

usually represent the most medicament-refractory and severe cases.  

Every subject included in the studies described, had to be diagnosed according to 

highly rigid standards that were applied to ensure consistency and narrowness in 

phenotype definition. Cases in our study were chosen as specified in the 1989 ILAE 

classification (Proposal for revised classification of epilepsies and epileptic 

syndromes, 1989).  

 
Population stratification and genetic heterogeneity 
Population stratification 

Population stratification is defined as the presence of a systematic difference in allele 

frequencies between sub-populations within a population due to different ancestry.  

One major pitfall of genetic association studies is that population descriptions are 

sometimes vague. When exploring a set of genetic association studies, a large 

variety of population descriptions can be found. These range from use of racial group 

designations, to national labels, to geographic descriptors. Unclear assignment as 

non-random group sampling provides further confusion. These methodological 

failures often lead to population stratification, and result in replication attempts being 

almost impossible. Thus, there has been increasing focus on the use of a precise 

population description in genetic association studies (Kaplan et al., 2003; Fullerton et 

al., 2010).  

Populations used in European association studies are often classified as 

“Caucasian”. In its original sense the term Caucasian (Caucasoid, Europoid) refers to 

the general physical type of populations from Europe, North Africa, and large parts of 
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Asia. In common use, especially in American English, the term is usually restricted to 

Europeans and other light-skinned populations within and around Europe, and may 

be considered equivalent to the varying definitions of white people.   

Inconsequent use of terminology contributes to population stratification and lack of 

replicability in genetic association studies. Being aware of this issue, the population in 

our studies met stringent definition criteria, as described in the Methods section. 

 

Genetic heterogeneity 

Genetic heterogeneity is defined as the phenomenon that a single phenotype may be 

caused by any one of a multiple number of alleles or non-allelic (locus) mutations. 

One of the major difficulties in complex disease is the potential for genetic 

heterogeneity and differential interaction with a plethora of modifying genes.  This 

issue is particularly serious for case - control designs in genetic association studies.  

It is the rule, rather than the exception, that datasets contain assortments of different 

aetiologies. Restricting ascertainment to a single ethnic group facilitates a reduction 

in this issue. 

Even our own TLE dataset is not free from heterogeneity. TLE, by definition, contains 

a number of different aetiologies. For that reason, phenotype studies were conducted 

in an attempt to segregate particular subgroups of the TLE (papers I and IV). We 

found that the phenotype of TLE patients with hippocampal sclerosis (MTLE-HS) and 

the phenotype of TLE patients who had experienced febrile seizures in childhood 

(TLE-FS) could be segregated from other TLE, indicative of the existence of a 

specific aetiopathology.  In our genetic studies, we looked specifically at genetic 

associations in these subgroups. Consequently, our phenotype study also served as 

a quality control for our genetic association studies. 

 
Interpretation problems of genetic association studies 
Despite a growing consensus that complex diseases, such as TLE, probably rely on 

a convoluted interplay between several, if not many, different genes, the idea still 

persists that diseases are usually caused by, at most, one single gene. This single 

gene is believed to be mainly responsible for the development of the disease, while 

others, so called modifier genes, may regulate/alter its expression and hence lead to 

penetrance variations (Greenberg et al., 2011).  
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The rationale for this gross oversimplification may be the fact that the analysis of 

such a complicated genetic interplay poses extreme challenges to our human 

conceptual skills, as well as data processing and interpretation. In multiple gene 

association studies or GWAS, the quantity of data generated is of such an immense 

dimension that difficulties arise even for single gene interpretation.  In our association 

study, we established a multivariate analysis to explore specifically the possibility of 

allele combinations predicting disease. Since our study dealt with only 2 genes, the 

approach is rather simple, but is, nevertheless, more advanced than a simple single 

SNP association analysis. Tools for calculation and interpretation of gene-gene 

interactions in multiple gene association studies or GWAS are necessary to find 

common denominators of complex diseases like TLE.  

 
2.2.8 Regulatory and Ethical Considerations 
Handling of clinical patient data and blood/DNA was conducted in accordance with all 

applicable regulations, including, where relevant, the Declaration of Helsinki, June 

1964, as modified by the 48th World Medical Association, Republic of South Africa, 

October 1996. 

 
Ethics Committee 
The protocol was reviewed and approved by the regional ethical committee (REC) 

before patient recruitment. 

The REC reviewed and approved informed consent forms (ICF) and any other written 

information provided to the patient prior to any enrolment of patients. 

 
Informed Consent 
The Study Physician or his/her designee informed the subjects of all aspects 

pertaining to the subject’s participation in the study. 

The process for obtaining informed consent was in accordance with all applicable 

REC and regulatory requirements. The investigator, or his/her designee, and the 

subject both had to sign and date the ICF before the subject could participate in the 

study.   



 

62 
 

Data Security 
Access to the data at the study site, DNA extraction laboratory, DNA Screening 

Centre, and the National Hospital of Oslo Norway was strictly controlled.  Data 

containing the personal identification of the patients were kept in a separate file at the 

study site.  The personal patient information was not transmitted to the extraction 

laboratory, the screening centre, or to any other third party. 

 
 



 

63 
 

2.3 Immunohistochemical studies on human hippcampal slices 

2.3.1 Human subjects and definition issues 
Patients with medication-refractory TLE were selected for surgery after phased 

clinical and electrophysiological assessment at Yale New Haven Hospital. Yale New 

Haven Hospital has a long tradition in evaluating epilepsy patients, and the 

Departments of Laboratory Medicine and Neurosurgery at Yale University School of 

Medicine embrace one of the world’s largest brain banks for histopathological and 

molecular biological analyses of tissue derived from epilepsy patients. Patients 

selected for surgery underwent anteromedial temporal lobectomy, including resection 

of the hippocampus, according to standard procedures (Spencer and Spencer, 

1991). Tissue used in this study was obtained after informed consent and with 

approval of the institutional human investigations’ committee at Yale University.  
Hippocampal slices from TLE patients with hippocampal sclerosis (MTLE) and from 

those without sclerosis (non-MTLE) were randomly selected for this study. Random 

selection in this context means that the patients were not chosen on the basis of any 

clinical characteristics, but only on the basis of standard histology, showing either 

hippocampal sclerosis or not. Hippocampal sclerosis is defined by neuronal loss in 

distinct subfields of the hippocampus formation, mainly CA1 and the hilus, with 

relative sparing of CA2, in addition to astrocyte proliferation, granular cell dispersion, 

et ceteral. A somewhat critical point, which is often neglected, is the fact that tissue 

obtained from patients without hippocampal sclerosis is commonly described as 

“healthy” (non-sclerotic) control tissue. In fact, this is not absolutely correct.  This 

control group may represent a mixed population of patients with different pathological 

features; some may present with mesial temporal mass lesions, while others may not 

show any obvious histopathological alterations at all. The only feature shared by this 

control population is seizure focus in the mesial temporal lobe. As the general 

research society usually does not distinguish between these entities, some authors 

have formulated nomenclatures to discriminate between them: The Yale group 

usually distinguishes between MaMTLE (mesial temporal lobe epilepsy on the basis 

of mass lesion) and PMTLE (pseudo-MTLE, without any obvious pathological 

changes in the hippocampus). For practical reasons, differentiation between MTLE 

and non-MTLE predominates and was also used in our histopathological study. 
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However, strictly speaking, differentiation should also be between subgroups within 

non-MTLE, especially for quantitative analyses, in order to minimise confounders. 

 
2.3.2 Preparation of hippocampal slices 
Immediately after resection, the hippocampus was cut into 5 mm coronal slices. 

Slices were obtained from the mid-anterior portion of the hippocampus and were 

immersed (1 h) in a fixative containing 4 % formaldehyde and 15 % (vol/vol) 

saturated picric acid in 0.1 M phosphate buffer, pH 7.4 phosphate buffer (PB). They 

were then transferred to 5 % acrolein (Sigma Chemical Co, St. Louis, Mo) in PB (3 

h). Coronal sections were cut on a Vibratome and stored in a cryoprotection solution 

(FD Neuro Technologies, Catonsville, Md) at -20°C until further processing for Nissl 

staining and immunohistochemistry.   

 
2.3.3 Immunohistochemistry  
Vibratome sections of 50 μm thickness were incubated free-floating in the respective 

antibody solutions and processed according to the avidin biotin peroxidase protocol 

(Hsu et al., 1981) using the Vectastain Elite Kit (Vector Laboratories, Burlingame, 

Calif.) with diaminobenzidine as chromogen. The immunostained sections were 

mounted on gelatin-coated glass slides for examination by light microscopy The 

same method was also used to confirm specificity of the Kir4.1 antibody in fixed 

mouse tissue from cKir4.1-/- and wild-type mice. 
Rabbit affinity-purified polyclonal antibodies against Kir4.1 (#APC-035, Alomone 

�����	 ������
���	 �����
�	 ���	 �!"�
	 $�&���*�=	 @�	 \	 �*	 �	ºC), dystrophin (#ab15277, 

^�&���	�����$=!��	_`�	�	�!"�
	$�&���*�=	��	\	�*	��	ºC), and �-syntrophin (Syn259 

kindly provided by S.C. Froehner, University of Washington, Seattle (Peters et al., 

1997)�	 {	 �!"�
	 $�&���*�=	 ��	 \	 �*	 ��	ºC), were used and mouse monoclonal 

��*$�|=$��	�!�$��*	}-dystroglycan (#B-DG-�~�	�|�|&��*���	���	�!"�
	$�&���*�=	@�	\	

at 4 ºC). 
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2.3.4 Semi-quantitative analysis 
Semi-quantitative analysis, using bright field microscopy, was used in order to 

determine differences in Kir4.1 astrocyte immunoreactivity between MTLE and non-

MTLE hippocampal specimens. Representative areas throughout all layers in the 

respective hippocampal subregions and in the hilus were marked, and 

immunoreactive astrocytes were counted per area. Mann-Whitney U-tests were used 

for statistical comparisons and a P value of <0.05 was considered statistically 

significant.  

Semi-quantitative analyses in light microscopy are challenging and prone to 

confounding factors. Areas of interest in the tissue sections should be marked by a 

person other than the investigator. The investigator should not know whether the 

probe belongs to the case (MTLE) or the control (non-MTLE) group. Although these 

principles were adhered to in our analysis, as the pathological changes in MTLE are 

relatively obvious, blinding is difficult to achieve. Moreover, enumerating objects of 

interest (astrocytes in the case of our study) depends on the alertness and 

experience of the investigator, and on the visual acuity of the investigator. Thus, 

different investigators may achieve different results, and the approach is, therefore, 

rather subjective. 

It is important to keep in mind that data obtained from human hippocampus tissue 

are, in all likelihood, not representative for the general TLE population, as patients 

selected for operation embody a kind of “end point” of a long-standing epileptogenic 

course. The most characteristic features of the sclerotic hippocampus, which are 

neuronal cell loss and gliosis, are accompanied by a multitude of molecular changes 

in glia, including the changes reported in this thesis. However, the aspect which 

remains elusive is the timeline of the impact of these changes and whether they 

represent causes or consequences of the epileptogenic process. 
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3.  Summary of results 

3.1 Paper I 

Heuser K, Taubøll E, Nagelhus EA, Cvancarova M, Ottersen OP, Gjerstad L. 

Phenotypic characteristics of temporal lobe epilepsy: the impact of 
hippocampal sclerosis.  
Acta Neurol Scand Suppl. 2009;(189):8-13 

 

The aim of this introductory study was to explore phenotypic characteristics of 

patients with MTLE-HS and to compare them with other TLE patients who did not 

present with hippocampal sclerosis.  

The study was established on the basis of a large database, including 218 

Norwegian TLE patients, generated from standardised patient record forms which, in 

turn, had been derived from the GenEpA project (see Materials and Methods).  

We identified phenotypic characteristics that distinguish MTLE-HS from other TLE, 

and thus reinforce the theory that MTLE-HS may constitute a unique entity. This 

study provided a basis for the subsequent genetic association studies on subgroups 

of TLE and also served as quality control regarding our study population.
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3.2 Paper II 

Heuser K, Nagelhus EA, Taubøll E, Indahl U, Berg PR, Lien S, Nakken S, Gjerstad L, 

Ottersen OP.  

Variants of the genes encoding AQP4 and Kir4.1 are associated with 
subgroups of patients with temporal lobe epilepsy.  
Epilepsy Res. 2010 Jan;88(1):55-64 

 

This candidate gene study aimed to investigate whether variants of the genes 

encoding AQP4 and Kir4.1 are associated with TLE or subgroups of TLE. For that 

purpose, DNA from 218 Norwegian patients with TLE and 181 ethnically-matched, 

healthy controls were included and single nucleotide polymorphisms (SNPs) for 

KCNJ10 (Kir4.1 gene) and AQP4 were identified via HapMap and/or resequencing. 

For the TLE cohort as a whole, explorative multivariate analysis indicated a 

combination of several associated SNPs in KCNJ10 and AQP4 genes. However, the 

strongest association was found by single SNP and explorative multivariate analysis 

in the TLE-FS subgroup, with seven SNPs in KCNJ10 and one SNP between 

KCNJ10 and the neighbouring gene, KCNJ9.  

We concluded that variants of the KCNJ10/KCNJ9 and AQP4 genes are likely to be 

associated with TLE, particularly TLE-FS. 
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3.3 Paper III 

Heuser K, Hoddevik EH, Taubøll E, Gjerstad L, Indahl U, Kaczmarek L, Berg PR, 

Lien S, Nagelhus EA, Ottersen OP.  

Temporal lobe epilepsy and matrix metalloproteinase-9: a tempting relation but 
negative genetic association.  
Seizure. 2010 Jul;19(6):335-8. 

 

Matrix metalloproteinase-9 (MMP-9), a proteinase that cleaves extracellular matrix 

molecules, has been proposed as having a critical role in aberrant synaptic formation 

in the hippocampi of patients with TLE.  

This case-control study was designed to identify possible variants of the MMP-9 gene 

associated with TLE. A genetic association analysis was conducted in which 218 

Norwegian patients with TLE and 181 ethnically-matched controls were compared. 

We also studied associations within two subgroups of TLE-- MTLE-HS and TLE-FS. 

SNPs were selected from HapMap and dbSNP databases for the MMP-9 gene on 

chromosome 20, and standard haplotype analysis and multivariate explorative 

analysis were used. 

We found no statistically significant associations between the selected SNPs in the 

MMP-9 gene with TLE, or subgroups thereof. 
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3.4 Paper IV 

Heuser K, Cvancarova M, Gjerstad L, Taubøll E.  

Is Temporal Lobe Epilepsy with childhood febrile seizures a distinctive entity? 
A comparative study. 
Seizure. 2011 Mar;20(2):163-6 

 

Sufficient evidence exists to conclude a genetic propensity for the occurrence of FS, 

and various studies confirm a link to TLE. These studies were reinforced by data from 

our own association study, outlined in paper II, which indicated genetic variants in 

TLE-FS. The aim of this paper was to test the hypothesis that TLE with childhood 

febrile seizures (TLE-FS) represents a distinctive subgroup among the TLE. 

On this basis, the question arose whether TLE-FS displays a phenotype that can be 

distinguished from other TLE. To address this issue, we compared clinical and 

epidemiological features from 102 TLE-FS patients with those of 105 TLE patients 

without FS. We also conducted logistic regression analysis to adjust for possible 

confounders caused by overrepresentation of patients with MTLE-HS in the TLE-FS 

group. This was reasonable, as MTLE-HS had been identified as a distinguishable 

subgroup in paper I.  

We identified several clinical features significantly associated with TLE-FS, and 

concluded that TLE-FS is a phenotype that can be delineated from other TLE.  
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3.5 Paper V 

Heuser K, Eid T, Lauritzen F, Thoren AE, Vindedal GF, Taubøll E, Gjerstad L, 

Spencer DD, Ottersen OP, Nagelhus EA, de Lanerolle NC..  

Loss of Kir4.1 potassium channels in hippocampus of patients with mesial 
temporal lobe epilepsy 
Manuscript submitted 

 

Malfunction or lack of the astrocyte potassium channel Kir4.1 is assumed to be 

associated with epilepsy. To investigate the distribution of Kir4.1, 

immunohistochemistry was used in hippocampus specimens from patients with 

refractory MTLE-HS and compared with equivalent specimens from patients with TLE 

without hippocampal sclerosis. Immunohistochemistry was also conducted in the 

same patient material on molecules presumed to be involved in astrocyte membrane 

anchoring of Kir4.1, such as dystrophin, alpha-1-syntrophin, and beta dystroglycan. 

We found that Kir4.1 immunoreactivity in astrocytes was significantly reduced in 

patients with hippocampal sclerosis, in comparison with patients without sclerosis. 

The loss of astrocytic Kir4.1 immunoreactivity was most pronounced perivascularly, 

and was restricted to gliotic areas. Loss of Kir4.1 expression was associated with 


|��	|�	=
�*�|�\$�	��=	�-syntrophin, suggesting disruption of the dystrophin-

associated protein complex. In contrast, differences between MTLE and non-MTLE 

were not observed for beta dystroglycan staining. 

The changes identified in patients with hippocampal sclerosis are likely to interfere 

with K+ homeostasis and may contribute to the epileptogenicity of the sclerotic 

hippocampus.  
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4.  Discussion 

 

4.1 Which tools should be chosen for unravelling complex 
diseases?  
 

Complex diseases cover a broad spectrum of human health. Genes are likely to 

control disease risk, and interactions between genes, or between genes and the 

environment, may also play an important role. Advances in human genetics could 

assist in optimising management of complex diseases, help to assess risk factors, aid 

in disease prevention, and be used to assess prognosis. Genetic studies have 

proved highly successful at detecting simple Mendelian diseases, where single gene 

mutations have large effects, but progress has been slow when it comes to detection 

of genetic factors in complex diseases, including the large majority of idiopathic 

epilepsies.  

Several genes have been discovered as being causative for rare epilepsy forms or 

related syndromes. However, to date, there is no consistent evidence that these 

genes contribute to a predisposition to the common epilepsies, such as TLE.  

An almost dogmatic consideration over the past two decades has been the belief that 

epilepsies are highly likely to be diseases of neuronal ion channels and/or receptors, 

which led to the term “neuronal channelopathies”. This assumption has probably 

prejudiced the search for alternative target genes in epilepsy and also restricted, at 

least in part, additional scientific approaches. 

However, the “neuronal channelopathy hypothesis” is currently under 

reconsideration, based on the fact that the search for causative neuronal ion channel 

genes proved unsuccessful for common epilepsies like TLE (Tan et al, 2004).  

The primary intention of this thesis was to investigate whether alternative “non-

neuronal” factors, more specifically the astrocyte targets AQP4 and Kir4.1 and the 

extracellular enzyme MMP9, could be involved in the development of TLE. 

Phenotype-genotype studies are auspicious for unravelling the genetic basis of 

complex diseases, including epilepsy. But such studies require a clear delineation of 

phenotypes. Thus, one objective of this thesis was to determine whether subgroups 

of TLE exist that could be delineated on the basis of clinical and demographic 

variables. This facilitated a quality control regarding our Norwegian TLE population, 
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and also formed the basis for our genetic case-control studies. Two subgroups were 

identified, and their classification resulted in the production of papers I and IV. As 

elaborated in the introduction, there is ample evidence in the literature for MTLE-HS 

to be considered a distinctive syndrome. However, the case differs for the subgroup 

of TLE patients who experience febrile seizures in childhood (TLE-FS). Despite a few 

indications in the literature, we found no earlier systematic approach for identifying 

TLE-FS as a separable subgroup. 

 

4.2 Does MTLE-HS represent a distinct disease entity? 
 

Clinical aspects of TLE have been studied extensively. However, there is a lack of 

analyses of phenotypic differences between MTLE-HS and other TLE-patients in a 

mixed cohort of operated and non-operated patients. Studies based solely on 

surgically-treated patients do not include the whole spectrum of MTLE-HS patients, 

as they concentrate only upon the most severe and medically-resistant cases. These 

gaps in our knowledge were addressed by the complementary study described in 

paper I.  

We found phenotypic differences between MTLE-HS and other TLEs with respect to 

seizure type and semiology, interictal depression, and age at epilepsy onset, as well 

as frequency and family history of febrile seizures. These findings suggest dissimilar 

biological backgrounds and support the existence of a specific aetiopathology in 

MTLE-HS.  

In our material, 26 % (56 patients) were diagnosed with MTLE-HS, in contrast to 74 

% (162) with other TLEs. At first glance, the number of MTLE-HS cases seems low. 

However, a plausible explanation for this may be found in our study design: Most 

literature referring to MTLE-HS frequencies are based on histological evaluation of 

patients that have been operated for the condition. These studies generally report a 

proportion of 50 % MTLE-HS cases. Close study of the literature, however, indicates 

a variation from 10 % (Goldsmith et al., 2002) to over 50 % (Semah et al., 1998). We 

believe that the wide range of incidence values is a reflection of the challenge of data 

ascertainment in epileptic disorders. Notably, deficiencies in patient reporting and in 

the diagnosis of seizures are known confounders, as are selection biases and 

classification problems (Sander et al., 1987).   



 

73 
 

4.3 Does TLE-FS represent a distinct disease entity? 

 

Sufficient evidence exists to conclude that there is a genetic propensity for the 

occurrence of FS, and an array of studies confirm a link to TLE, as elaborated in the 

introduction. Although specific genetic associations have not been found for the vast 

majority of FS and TLE, there is a growing consensus of opinion that genetics does 

have a role in both conditions. As both TLE and FS encompass strong clinical 

features, the combination of both in an individual may be a predictor for a genetic 

basis itself, and it is therefore reasonable to search for susceptibility genes and also 

phenotypic characteristics at the intersection of both conditions. 
The study conducted in paper IV was motivated by findings from our association 

study that indicated genetic variation among TLE patients who have had febrile 

seizures in childhood (TLE-FS) when compared with TLE without FS  (Heuser et al., 

2010) As a result of these findings we wanted to test the hypothesis that TLE-FS 

represents a further subgroup among the TLE. A literature search for supporting 

evidence identified a few other studies that indicated TLE-FS to be a unique entity, 

distinct from afebrile TLE (Umbricht et al., 1995; Abou-Khalil et al., 2007; Wieshmann 

UC et al., 2008). However, to the best of our knowledge, our study is the first 

systematic investigation of the phenotype of TLE-FS.  

We identified TLE-FS as a phenotype that can be delineated from other TLE on the 

basis of clinical and demographic features. Thus, TLE-FS may be considered to 

constitute a distinctive entity. However, none of the clinical characteristics could be 

regarded as specific. Further research, including genetic, clinical and animal studies, 

is needed in order to reach a firm conclusion. 

 

4.4 Alternative routes for epileptogenesis – might these occur via 
glial cells? 
 

As elaborated in the introduction, there is now a wealth of evidence that 

demonstrates that glial cells play an important role in the aetiology and pathogenesis 

of brain diseases, including the epilepsies.  

Normal brain function is critically dependent on efficient mechanisms for clearance of 

excess K+ from the ECS (Kofuji and Newman, 2004). A build-up of extracellular K+ 
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makes neurons hyperexcitable and may rapidly translate into epileptic seizures. 

Electrophysiological data suggest that MTLE may be associated with deficient K+ 

handling and have indicated possible perturbations of K+ transport through the family 

of inwardly rectifying K+ channels (Bordey and Sontheimer, 1998; Hinterkeuser et al., 

2000). 
Within the scope of this thesis, we have demonstrated that Kir4.1 is lost from 

perivascular endfeet in hippocampi of MTLE patients. This loss occurs specifically in 

sclerotic hippocampi and is most pronounced in area CA1 and the hilus (figure 6). 

Loss of Kir4.1 shows a precise spatial coupling to regions of neuronal loss and 

gliosis. Thus, vessels typically lose their Kir4.1 immunopositive sheath as soon as 

they enter a sclerotic region. 
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Figure 6: Distribution of Kir4.1 immunoreactivity in coronal sections of the hippocampus in 
patients with TLE.  
Shown is Kir4.1 labelling in subfields of the hippocampal formation from patients without hippocampal 

sclerosis (non-MTLE) (A, C, E, G) and from patients with hippocampal sclerosis (MTLE) (B, D, F, H). 

In non-MTLE cases Kir4.1 immunoreactivity resided in astrocytic somata (arrowheads in C, E, G), 

processes (double arrowheads in C), and perivascular endfeet (arrows in C, E, G). Hippocampi from 

patients with MTLE showed substantial loss of astrocytic Kir4.1 immunoreactivity in areas with 

neuronal loss and gliosis (D, F). Thus, the sclerotic CA1 were almost devoid of Kir4.1 labelling (F). The 

hilus showed changes that were somewhat less extensive than those observed in CA1 (D). Loss of 

perivascular Kir4.1 immunoreactivity was associated with reduced labelling of astrocytes. The 

subiculum in MTLE (H) displayed a labelling pattern on a par with that observed in non-MTLE (G). The 

sclerotic area in CA1 in MTLE is marked with dashed line (B). Vertical panels (C, E, and G) and (D, F, 

and H) are high-magnification fields of the respective areas in A and B. Scale bars: A, B, 1 mm; B-F, 

��	���	��	��	���	��� 
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Our data also provide some insights into the mechanisms that underlie the observed 

loss of Kir4.1. Notably, the immunocytochemical analyses revealed that the changes 

in Kir4.1 distribution are associated with parallel changes in the distribution of 

=
�*�|�\$�	��=	�-syntrophin. The most salient explanation of this finding is that the 


|��	 |�	 `$����	 $�	 ��&|�=��
	 *|	 �	 =$����*$|�	 |�	 *\�	 �^���	 |�	 �\$&\	 �-syntrophin is 

known to be a member (Kofuji and Newman, 2004).  If valid, this explanation implies 

that Kir4.1 is anchored to the DAPC, as has been reported previously (Waite et al., 

2009). The changes incurred by disruption of local anchoring mechanisms may have 

been accentuated by alterations at the transcriptional or translational level, as 

indicated by the reduced number of Kir4.1 positive astrocytes in the gliotic areas.  

Although the precise mechanism remains to be established, the loss of Kir4.1 from 

the hippocampus of MTLE patients is a finding of considerable interest, as this loss 

may be an important contributing factor to epileptogenesis. Our finding complements 

previous electrophysiological observations in MTLE hippocampi that have indicated 

deficiencies in K+ homeostasis. Recent data from our own laboratory clearly show 

that deletion of Kir4.1 in mice delays K+ clearance and interferes with K+ spatial 

buffering (Haj-Yasein et al., in press). Mice with deletion of Kir4.1 succumb to severe 

seizures at an early age (Djukic et al., 2007). Taken together, the available data 

indicate that the loss of Kir4.1 could be a key step in the cascade of events that 

culminate in the development of chronic epilepsy.  

 

4.5 Alterations in the dystrophin associated protein complex 
(DAPC) - associated with loss of Kir4.1? 
 

The changes in Kir4.1 labelling illustrated were mimicked by changes in dystrophin 

labelling. Notably, the perivascular labelling for dystrophin was lost once the vessels 

entered the gliotic areas in CA1 or hilus. Vessels in the granule cell layer and 

subiculum were associated with strong dystrophin immunolabelling in MTLE as well 

as in non-MTLE hippocampi.  

����

$�!	 �$*\	 *\�	 ��*$�|=
	 *|	 �-syntrophin produced a pattern that was strikingly 

similar to that found after application of the antibody to dystrophin, and this was true 
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for sections obtained from MTLE patients as well as for sections from non-MTLE 

patients.  

Interestingly, labelling for beta-dystroglycan did not show any differences between 

MTLE and non-MTLE cases and no changes in the sclerotic hippocampal subfields. 

���	�$�=$�!	*\�*	=
�*�|�\$�	��=	�-�
�*�|�\$�	���	
|�*	�\$
�	}-dystroglycan persists is 

consistent with the idea that MTLE is associated with activation of an intracellular 

protease that cleaves dystrophin. It is interesting in this regard that excitotoxicity has 

been shown to induce activation of calpain, an enzyme with a known affinity for 

dystrophin (Araujo et al., 2010; Yoshida et al., 1992). Attesting to the clinical 

significance of Kir4.1, the human Kir4.1 gene (KCNJ10) is associated with epileptic 

disorders (Buono et al., 2004; Heuser et al., 2010). Moreover, it was recently 

reported that mutations in the KCNJ10 gene give rise to a syndrome consisting of 

epilepsy, ataxia, sensorineural deafness, and tubulopathy (EAST/SeSAME 

syndrome) (Scholl et al 2009; Bockenhauer et al., 2009) 

There is one basic limitation when investigating astrocyte targets that should be 

taken into consideration. Due to the fact that the interactions between neurons and 

glial cells are not fully understood, it is difficult to determine whether changes in glial 

cells in epileptic tissue are causes or consequences of the disease. 

 

4.6 Why do genetic association studies fail? 
 

Genetic association studies are regarded as powerful tools for discovering common 

variants in complex and common diseases. However, association studies have 

performed relatively poorly to date as has been widely described, including a cross-

disciplinary review that showed consequent replication in not more than 6 out of 600 

associations (Hirschhorn et al., 2002).  

This rather sobering realisation has led to the implementation of stricter requirements 

for adequate methodological approaches in genetic association studies over recent 

years, including in the epilepsy field (Tan et al., 2004).  

Medical journals have become more restrictive at publishing association studies that 

do not fulfil requirements such as clear population definitions, correction for 

population stratification, selection of appropriate control subjects (ethnically-matched, 

from the same geographical region etc.), sufficient sample size, and high biological 
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plausibility (the validity of the study has to be demonstrated in a meaningful scientific 

context) for the choice of the candidate gene.  

In particular, it is currently almost impossible to publish negative association studies. 

This restrictiveness is not necessarily advantageous, as it bears the risk of 

publication bias. Another important weakness that may evolve from insisting on a 

substantial sample size is that rare idiopathic diseases, including rare epilepsy forms, 

may not be considered for investigation, even though such studies may provide 

valuable information that is of relevance to specific issues. Furthermore, studies with 

large sample sizes often require collaboration across geographical and thus “genetic 

borders”, which may dilute phenotype specificity. 

The latter is a major challenge for archetypical GWAS with large sample sizes, which 

have become increasingly common in recent years. Although GWAS are considered 

highly promising and successful (Hindorff et al., 2009), they are not completely 

sacred, and the theory that GWAS would solve all the problems encountered in 

single gene association studies has not been proved after all. Indeed, the enormous 

quantities of data that are generated by GWAS seem almost impossible to handle, 

and separating the few “true” signals from the extensive background noise is a 

serious challenge. Methodological technology has not kept pace with the flood of 

genotyping data; exploring gene-gene interactions (epistasis) involves a heavy 

computational burden, and things get even worse when environmental factors are 

added in to the equation.  In fact, the abundance of data GWAS provides, may have 

confused our discrimination between true scientific and false discoveries. As GWAS 

seem to be in danger of becoming placeholders for all other approaches to detecting 

genetic risk factors for complex/common diseases, these difficulties should not be 

forgotten in our enthusiasm.  

In my opinion, single gene or few-gene association studies still have a place in 

genetic research, as long as the appropriate criteria are maintained. These guidelines 

were, on the whole, intended to adhere to in the protocol for our association studies, 

as is reflected by the following: we aimed to use a phenotype that had been defined 

as clearly as possible; we had an a priori hypothesis and a strong biological 

plausibility for our candidate genes; population stratification was minimised by using 

only Norwegian subjects with Norwegian ancestors for both cases and controls. In 

addition, and to meet some of the challenges illustrated above, we conducted 

phenotype studies to achieve statistical support for the selection of TLE subgroups 
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used in our association analyses and used multivariate analysis in searching for 

disease-predicting allele combinations. Although we were unable to identify any 

polymorphisms of the human MMP-9 gene that were associated with TLE or the 

subgroups TLE-FS and MTLE-HS (Heuser et al., 2010), our search for associated 

variants of the AQP4 and KCNJ10 gene proved successful (Heuser et al., 2010).  

However, our sample size was rather moderate, and bias caused by selection, self 

reporting, population stratification, and genetic heterogeneity may have resulted in 

type I errors in our Kir4.1/AQP-4 study. For similar reasons, the negative results of 

our MMP-9 association study may be a type II error. 

  

Association studies are based on the theory that common, low penetrance genetic 

variants could cause, or be associated with, common diseases. Indeed, some studies 

have identified a large set of genetic variants that contribute to a great variety of traits 

and common diseases. However, disappointingly, both individual and cumulative 

effects are far too small to explain earlier estimates of heritability.  Hence the 

“common variant – common disease” theory” for complex diseases has to be 

reconsidered.  

As highlighted by Maher, 2008, the search for heritability factors may fail due to: 

1) Limitations regarding the design of association studies, as outlined above.  

2) There may be hundreds or thousands of common variants with low penetrance 

that invoke heritability. We lack sufficient modelling skills to assess their cumulative 

effect, and it is doubtful whether such a model would have any relevant 

consequences for clinical practice. 

3) The DNA architecture contains multiple large stretches of DNA, ranging from 

thousands to millions of bases, which are deleted or duplicated. These segments, 

also termed copy number variations (CNV), may account for genetic variability. As 

with other types of genetic variation, they probably also play a role in the heritability 

of diseases (Stefansson et al., 2008). Technology for detecting CNV is currently 

being tested by a consortium called the CNV project (Wellcome Trust Sanger 

Institute, Cambridge, UK; http://www.sanger.ac.uk/humgen/cnv).  

4) Epistasis can be defined as the phenomenon of the interaction of genes. Effects of 

one gene can be modified by one or several other genes. Epistasis has been 

recognised as fundamentally important to understanding the functions of genetic 

pathways and evolutionary dynamics of complex genetic systems (Phillips P, 2008). 
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Little is known about these gene-gene interactions, and no technology exists to aid 

the search for effects caused by epistasis. 

5) Epigenetics: the mechanisms of epigenetics are discussed in more detail in the 

subsequent section. 

6) Another possible explanation for the unsuccessful search for inheritability in 

complex diseases may be simply the fact that our thinking is fundamentally wrong, 

and that other, currently unconsidered, factors are responsible or of greater 

importance. 

 

4.7 What makes us what we are? 
 

It is important to remember that we are not our genes. Our genome cannot fully 

determine everything that we are, think, do, look like, and neither can it be entirely 

blamed for our susceptibility to diseases. The functionality of our cells, our organism, 

and, in a broader term, our “body and mind”, depends on more than on a helix of 

acidic base-paired nucleotides. But what else makes us what we are? At this point in 

the discussion it may be tempting to drift off into religious or philosophical 

considerations. Although this may be particularly interesting, I prefer to leave this 

question unanswered. To return to applied science, the rapidly progressing field of 

epigenetics cannot be omitted from the discussion. Although already defined in 1939 

(that is, 14 years prior to the discovery of the molecular structure of the DNA) by the 

English biologist and geneticist Conrad Hal Waddington (1905-1975) as “the causal 

interactions between genes and their products, which bring the phenotype into 

being”, this field is really just at the beginning of its scientific journey. This is attested 

by the over tenfold increase in the amount of publications on this topic within the past 

decade (Portela et al., 2010). Epigenetics refers to the dynamic chemical 

modifications that occur to our DNA, as well as its subsequent association with 

regulatory proteins (Esteller M, 2008). To describe even the best recognised 

epigenetic modifications, such as DNA methylation, histone modifications, and 

nucleosome positioning, would go far beyond the scope of this thesis. All human cells 

share the same genetic information, but brain cells definitely have other duties than 

cells of, for example, the intestinal mucosa. This means that not every gene can be 

active in every cell all the time.  
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As genetics (from Greek genetikos/ genesis = origin) can be considered as the origin 

of life, it can also be claimed to be the origin of all living organisms, of the individual, 

the human with all its different characteristics, including the diseased one. This latter 

consideration is the reason why disease classifications consistently fail, due to the 

challenging act of drawing a line between disease and non-disease, and, probably 

even more difficult, in separating disease entities from each other. 

Genetic factors probably profile a continuum from healthy to diseased, and, in our 

context, from a “normal” brain, via a slightly excitable brain, to the hyperexcitable 

(epileptic) one. Moreover, environmental factors may cause disease under certain 

circumstances, such as, for example, a definite genetic predisposition.  

Recent advances in molecular genetics have added important value to our 

understanding of complex diseases, including the epilepsies. The discovery of 

monogenetic epilepsies has contributed to our knowledge of underlying 

aetiopathogenetic mechanisms of different epilepsy forms. Genetic tests have 

become available for different specific autosomal dominant familial epilepsies, and 

thus influence our clinical diagnostic practices. There is good reason to believe that 

considerable progress will also be made for common epilepsies with a complex 

genetic background, such as TLE and FS. 

However, to end with a quotation from Leonardo da Vinci: “All our knowledge has its 

origin in our perceptions”. Whether human perception or intelligence will ever be 

sufficient to uncover and understand the complex relationships between genes, gene 

products, external factors, and disease development currently remains unanswered. 
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5.  Conclusion 

 

�  We conclude that it is possible to delineate phenotype subgroups among the TLE 

on the basis of demographic and clinical variables. 

 

o We confirmed that patients with MTLE-HS constitute a sufficient cluster of 

signs and symptoms to represent a distinctive syndromic entity. 

 

o We identified that TLE patients who suffered from early childhood febrile 

seizures (TLE-FS) represent a phenotype distinguishable from other TLE 

patients. 

 

�  We conclude that variants of the KCNJ10 (Kir 4.1) gene and AQP4 gene are 

associated with TLE, particularly the subgroup of TLE-FS, supporting the 

suggestion that TLE-FS may constitute a unique entity, and that perturbations in 

water and K+ transport are involved in the aetiopathogenesis of TLE. 

 

�  We conclude that there is significant loss of the potassium channel, Kir4.1, in the 

sclerotic hippocampus of patients with MTLE-HS, and that this loss may 

contribute to epileptogenesis in MTLE. 

 

�  We hypothesise that deficient Kir4.1 in MTLE-HS is a consequence of altered 

anchoring via the dystrophin associated glycoprotein complex (DAPC).  
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6.  Future studies 
 

Within the period in which this thesis has been developed, we established an 

international network of research groups from both Europe and the USA. Parts of the 

research described in this thesis have, as noted, been conducted together with our 

collaborators at the Departments of Laboratory Medicine and Neurosurgery at Yale 

University School of Medicine, New Haven, CT, USA. Since then, this collaboration 

has been strengthened. In addition, we have established partnerships with groups in 

Bonn, Germany, Kuopio, Finland, and Utrecht, The Netherlands. Together with these 

European collaborators, we have formulated a framework for future projects, some of 

which are outlined below. 

 
Risk factors for temporal lobe epilepsy; gene association studies of different 
temporal lobe epilepsy subtypes in large TLE cohorts 
We plan to establish a set of association studies in well-defined subgroups of TLE, 

such as TLE-FS, MTLE-HS, drug-resistant TLE, and TLE patients with family 

members with TLE or other epilepsy types. These studies will focus on targets in 

brain glia. In order to increase statistical power and to exclude rare familial TLE 

subtypes, cohorts with large numbers of patients and matched-controls will be 

recruited from collaborating centres. 

 

Receptor-mediated Ca2+ signalling and gliotransmitter release 
Glial function is intimately regulated by cellular calcium signalling that underlies the 

specific form of "glial calcium excitability" (Nedergard and Verkhratsky, 2010). It has 

been shown that increased Ca2+ signalling in astrocytes results in paroxysmal 

depolarisation shifts (Tian et al., 2005), which characterises all focal epilepsies 

neurophysiologically, indicating a key role for astrocytes in seizure activity. 

Recent, two-photon imaging data from our own laboratory, show that AQP4 facilitates 

glial Ca2+ signalling in vivo and in cortical slices (Thrane et al., 2011). This might, 

therefore, contribute to glial Ca2+ hyperactivity, and hence the observed deleterious 

effects in the affected brain tissue. Our hypothesis is that glial cells in patients with 

MTLE-HS express pathologically increased Ca2+ signalling, leading to elevated 
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glutamate release and epilepsy. If confirmed, this could pave the way towards 

completely new treatment strategies for this serious condition. 

 

Defining factors that promote epileptogenesis in mouse models of MTLE-HS 
We predict that AQP4-deficient mice are less prone to development of seizures than 

wild type mice and display reduced astroglial Ca2+ activity. We will use wild type mice 

and mice deficient in AQP4 or alpha-syntrophin (lacking perivascular AQP4) in order 

to determine whether AQP4 modulates the development of epileptogenic insults. 

Specifically, mice will be monitored for the development of spontaneous seizures and 

we will assess astroglial Ca2+ activity. 

 

Assessment of the time course of alterations in Kir4.1 expression after status 
epilepticus (SE) in mouse model of MTLE-HS 
In the chronical phase after SE, ‘classical’ astrocytes with passive current patterns 

are no longer present in the sclerotic CA1 region, closely resembling the situation in 

human HS. This suggests the hypothesis that impairment of Kir4.1 function starts 

shortly after SE, during the latent period, and causes subsequent generation of 

spontaneous recurrent seizures. Quantitative assessment of Kir4.1 expression of 

astrocytes post SE will be conducted. Preliminary data show that astrocytes 

increasingly lose gap junction coupling during this period. Whether this alteration is 

accompanied by reduced expression of Kir4.1 is therefore of interest. 

 

Subgroup-specific pharmacoresistance in TLE  

Patients with TLE frequently display pharmcoresistance and often require temporal 

lobectomy in order to achieve seizure control. One of the most important future tasks 

in overcoming medical intractability is identification of distinguishable entities among 

the TLE and tailoring pharmacological treatment to the respective TLE groups. 
The extent to which different phenotypes of TLE are associated with 

pharmacoresistance to particular antiepileptic drugs (AEDs) has only been 

rudimentarily investigated.  

Our TLE patient database contains detailed information about use of AED, including 

start and stop dates for 16 different AEDs, a rating scale for response to treatment, 

and other information. These data could serve as a useful basis for a comparative 

approach.
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