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Chapter 1

Introduction

ABEL is short for Abstract Building, Experimental Language. That is, the sys-
tem includes a theorem prover, but is more than that; it is first and foremost
meant to be a programming environment. Secondly, Experimental signifies
that ABEL does not primarily aspire to become a mature tool for prac-
tical programming, but rather be in continuous development as a vessel
for research into the areas the project involves. Most recently the research
has been based around constructing an interactive first order logic theorem
prover, for reasoning about programs. The reasoning is based on Ole-Johan
Dahl’s work as detailed in [Dah92], with a few minor differences—most of
them due to the fact that Dahl’s work is intended for human, not computer-
based, reasoning.

1.1 Focus and Goal

My focus in this thesis will be on evaluating the current ABEL system, to
provide background to better be able to decide how to improve the system:
whether there are outright errors, if some things should be changed to help
efficient proof construction, and how to better support automation of proof
construction in the system. I will look at the system as a verification system,
and in that context my goal is to point out what directions further work
on the system would be most reasonable to pursue, or alternatively what
could be done better if designing a new system.

1.1.1 Why Automate?

In several parts of this thesis, my focus will at least partly be on how better
to support automating proof construction and, ultimately, program veri-
fication. The reason for this focus is, of course, that the overall goal of
computer-assisted proof construction for program verification is greater ef-
ficiency, and there is the most to gain in that respect in making the com-
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2 CHAPTER 1. INTRODUCTION

puter do more of the proof work. I find the ABEL system to function quite
well (except for a few details of the user interface) for proof checking, so
the greater potential for improvement must lie in the proof construction.

1.1.2 What this Thesis does not Discuss

I will not focus on minor problems and shortcomings with the user inter-
face. I will to some degree describe fully automatic proof systems, but not
focus on issues that are of little or no consequence to interactive systems.
As we in a system for verification want to automate as much as reason-
ably possible of the proof process, automatic systems are interesting—but
issues pertaining to problems that are best left to the user, are not. How-
ever, I will discuss whether it is reasonable to try to subject certain areas of
proof construction to automation.

1.1.3 On the Contents of this Thesis

I have partitioned this thesis into six main parts: chapter 2 reviews some
of the logical and mathematical theory that is necessary to understand the
workings of theorem provers, and a few different techniques used in mech-
anised theorem proving. Chapter 3 is a user’s guide to the ABEL proof
system—something I missed when I first started my work on the project.
Chapter 4 contains a motivational test run of a number of theorems with the
prover, where I try to get an impression of the strengths and weaknesses
of the ABEL system. Chapter 5 contains some further, larger examples of
theorem proving with the ABEL system, as a background for the heart of
this thesis: chapter 6, where I evaluate the current system, and discuss its
usability as it currently stands. Finally, in chapter 7, I summarise and con-
clude on the presented matter. Additionally, I have included as appendices
two standard modules from the ABEL system that are used in the included
proofs, and a couple of further examples of proofs generated by the system,
one of which is explained in regard to how to use the prover.

Chapters 2 and 3 should give sufficient background for understanding
the rest of the thesis for a reader unfamiliar with theorem proving in gen-
eral and/or the ABEL system specifically.

1.2 The ABEL Language

The ABEL language is based on the (as yet unimplemented) programming
language developed by Ole-Johan Dahl for his research and teaching, and
also used in some of his publications, including [Dah92]. It is a language
with all the basic structures of traditional imperative languages (with a syn-
tax resembling that of the Algol family), but it also includes a part for spe-
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cification, and an extensive applicative type generation system more akin
to those of functional languages like ML and algebraically based ones.

The most up-to-date reference of the language is probably to be found
in [Bas95], p. 87. Brevik includes a reference for the expression language in
[Bre98], p. 36.

1.2.1 The ABEL System

The current incarnation of the ABEL system consists of the base system, in-
cluding parser and type checker, written by Tore Jahn Bastiansen [Bas95]; a
proof system, written by Olav Andree Brevik [Bre98]; and a rewriter, writ-
ten by Leif John Korshavn [Kor98] and Steinar Midtskogen [Mid99]. Fur-
thermore, Bastiansen has worked on the system as part of his as yet un-
finished doctorate thesis. Some articles on the ABEL system, and related
topics, may be found from the ABEL project’s home page, [abe].

1.3 Logical Reasoning

As an interactive proof system, the ABEL system expects the user to un-
derstand the proofs the system generates; hence, the system must perform
proofs in a way similar to how humans do. Thus, our tools for proving
theorems are those of formal logical reasoning: deduction, induction and
term rewriting.

Our tool for handling logical constructs, such as ∧ (logical and), ∨ (lo-
gical or), and⇒ (logical implication), is deduction. We use a system of de-
duction rules; a set of rules for transforming each of the logical constructs.
The ABEL system uses the backwards proof construction (BPC) system,
which is described below.

The method of induction should be known to the reader; as ABEL is a
typed language, we use this tool for handling typed variables and similar
through generator induction.

Finally, term rewriting is a technique for transforming one expression
into another, hopefully simpler. Rewriting uses a set of rules for how to
transform expressions, and searches in this set with matching algorithms
to find a matching rule for a certain expression. This set of rules is dy-
namic; rules are added as functions and lemmas are read and parsed by
the system.

1.4 Terminology

Some of the terminology used in this thesis may be unknown to the reader,
so I will try to explain the most significant terms in the following.
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1.4.1 Sequent

A sequent is the basic unit of a proof, consisting of the antecedent (the as-
sumptions) and consequent (the theorems). We depict it thus:

sequent: antecedent consequent

We call the sequent sign. The antecedent and consequent are (possibly
empty) sets of clauses.

As an example, assume that at some point in a proof we have the fol-
lowing situation: assuming a set of clauses F we conclude the set of clauses
G. The clauses are separated by semicolons. This is depicted as a sequent
like this:

F G

1.4.2 Proof Obligation

When verifying programs with Hoare logic we use a set of rules to gen-
erate a set of expressions to be proved, called proof obligations, for each
language construct (many of the rules for the ABEL language are described
in [Dah92], and an exhaustive list is given in [Lin99] pp. 60-66).

1.4.3 BPC

BPC is short for Backwards Proof Construction, which is the method of
choice for logic reasoning both in [Dah92] and the ABEL system. The other
method for reasoning described in [Dah92] is natural deduction (ND), or
forward proof construction. BPC starts with the theorem at hand and ap-
plies deductive rules backwards until all proof branches are trivially satis-
fied by axioms of the deductive system, while ND starts with the axioms
and tries to construct a proof ending with the theorem that is to be proved.
I will expand on this in chapter 2.

1.4.4 Generator and Observer Functions

We separate the functions in a type module into two groups, generators
and observers. Generators are functions that generate (and return) a new
value of the type. E.g. for integers, 0, S (the successor function) and + are
all generators for the integer type. Observers, on the other hand, take as
argument a value and return a decision for some question, (usually) as a
Boolean value. A function which decide if an integer is positive is an ob-
server for the integer type.
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1.4.5 Proof Construction vs. Proof Checking

These are central terms in the matter at hand. Proof construction is, natur-
ally, the process of constructing a proof, by choosing which rules should
be applied at each point, etc. This is what an automatic theorem prover
does. Proof checking, on the other hand, is the process of checking if a com-
pleted proof is correct. Interactive theorem provers perform a combination
of proof construction and proof checking. Checking a proof is algorithmic-
ally easy and can be done in polynomial time, while constructing a proof
is very hard—actually, as we will see in chapter 2, proof construction is al-
gorithmically impossible; it is not possible to construct an algorithm that
will construct a proof for every true theorem.

1.4.6 ABEL vs. the ABEL System

ABEL is the name of the language, not the concrete system. I will therefore
use ABEL to mean the language, and the ABEL system to mean the present
implementation of the verification system.

1.4.7 Theorem vs. Expression

I will use both the terms theorem and expression for the logical statements a
theorem prover is employed to prove. I will try to stay true to the normal
mathematical convention regarding the use of theorem, in that I will use
theorem to mean the statements we invoke a prover to prove (and which we
believe to be true), and expression to mean statements encountered during
a proof, sometimes for which the matter of truth is more doubtful.

1.4.8 Sequence Operators

Not strictly terminology, but as sequences are used in many of the examples
I will describe the most important of the sequence operators we use.

ε is the empty sequence.

` is right concatenation, the basic generator of sequences in ABEL. Se-
quences in ABEL are visualised as growing towards the right, as op-
posed to the more often used left growth of e.g. the functional lan-
guages ML and Haskell.

a is left concatenation; as right concatenation is the sequence generator, a
adds to the end of a sequence.

à concatenates two sequences.

# is the length of a sequence.
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1.4.9 ASCII Representation

As we use ASCII text for communicating with the ABEL system I have in-
cluded the ASCII representation of the different operators in the following
table:

Symbol ASCII Symbol ASCII
` |- a -|
à |-| ||--
ε e # #

∀ forall ∃ exist



Chapter 2

A Review of Theory

There is no known algorithm for constructing a proof for a theorem; if there
had been, much of the research into theorem proving would be moot, as it
would just be a question of efficiency. Rather, it is known that the prob-
lem of deciding whether an expression is a theorem—often referred to as
THEOREMHOOD—is undecidable: it is actually provably not possible to
design an algorithm that is able to decide in general whether an expression
is a theorem of an axiomatic system of sufficient complexity.

2.1 Undecidability of Proving Theorems

Now, there may seem to be a way out of these problems in the last sen-
tence of the above paragraph: “an axiomatic system of sufficient complex-
ity”. Does this then imply that we can use a system of less complexity? It
has been shown that any system of “interesting” complexity, among them
prominently number theory, has this flaw.

The theory of undecidability stems from the work of Kurt Gödel, argu-
ably one of the most brilliant mathematicians of the 20th century. In 1931
Gödel published his results, showing that in any system of the aforemen-
tioned sufficient complexity there are truths that cannot be proved inside
the system. (See [G3̈1] for the original article, or e.g. [NN58] for a pop-
ularised explanation.) This is the reason why automatic theorem provers
have proved so hard to make: one cannot rely on logical reasoning alone to
complete the proofs, and hence the completion of most automatic systems
has hinged on the development of useful artificial intelligence—and indeed
been one of the most often used example problems in artificial intelligence
research. The failure of artificial intelligence research to produce usable
AI has in turn led to a shift of focus towards interactive provers, geared
mostly towards helping the user with the tedious parts and the bookkeep-
ing of proving (and guaranteeing that no errors are made), instead of trying
to do the whole proof autonomously.

7
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There are several pitfalls a theorem prover must try to avoid. The per-
haps simplest to deal with of the results of the undecidability of THEOR-
EMHOOD is that a proof might stop with the computer unable to find a
way to continue the proof. A rather more sinister problem is that of infinite
recursion—i.e. the problem that there is no known method of discovering
aforehand if a line of reasoning will not turn into a useful result, but rather
continue forever.

Thus, it seems that to be able to construct proofs—or parts of proofs—
autonomously, a computer program must have the ability to backtrack
when a proof branch does not yield any useful result, and to somehow
avoid or stop infinite recursion. An obvious example of the first from the
ABEL system is that the bpc strategy can entail use of the tall rule, which re-
moves a universal quantifier from the theorem part of the sequent. If a line
of reasoning does not work out after having used this command, one might
instead want to try induction over the variable with the now removed uni-
versal quantifier. To avoid needing user intervention, the system then has
to be able to backtrack to the position before the use of tall, or reintroduce
the universal quantifier. An example of the latter is that the bpc strategy
only incorporates those of the BPC rules that are constructive; that is, they
lead to a syntactically simpler expression, so any recursion will stop when
the expression cannot be simplified any more. I will discuss further these
and other problems later in this chapter.

2.1.1 Are Programming Languages Special?

One might surmise that programming languages can be made that are
simple enough to not be inherently incomplete. However, what we usu-
ally mean by programming languages today is Turing-complete languages,
which means they possess enough complexity to fall under the class of in-
complete systems. Specifically, all modern programming languages have
facilities for unbounded recursion, and as shown in e.g. [Hof79], a system
incorporating unbounded recursion must be incomplete.

2.2 Proof Techniques

Several proof techniques has been developed and employed for mechan-
ised proof construction. I will here give a short overview of the primary
techniques.

2.2.1 Resolution

Resolution is commonly considered the most effective method for auto-
matic theorem proving, but does not resemble the way humans do proofs,
and thus is not very well suited for interactive systems.
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T∧ : P ; Q

P∧Q
A∧ : P,Q R

P∧Q R

T∨ : P,Q

P∨Q
A∨ : P R;Q R

P∨Q R

T ⇒ : P Q

P⇒Q
A⇒ : P R;Q R

P⇒Q R

T¬ : P

¬P
A¬ : P

¬P

T∀ :
Px
x′

∀x·P x
′fresh A∀ : P

x
t ,∀x·P Q

∀x·P Q

T∃ : Pxt ,∃x·P
∃x·P

A∃ : P ′xx Q

∃x·P Q
x′ fresh

Figure 2.1: The BPC rules, as implemented in the ABEL prover.

2.2.2 Model Checking

Model checking consists of constructing a model of the problem, and then
testing this model—for (untyped) predicate logic, model checking is equi-
valent to proof by truth tables.

Model checking is effective when concerned with only a small num-
ber of finite states, but in general the search space increases exponentially
with the complexity of the expression. However, combined with other
proof techniques (which reduce the complexity before model checking is
applied), model checking has shown promise. Brevik has performed some
testing with the ABEL system, described in [Bre98] p. 111. He did not have
the time to implement a general model checker, but he tested out some-
thing resembling truth tables for predicate logic, using the BCUT inference
rule:

BCUT :
P xtrue; P xfalse

P

Brevik tested this rule with the proof for associativity of equivalence
for three to 20 variables, and compared this to using BPC rules. He found
model checking to be significantly faster, and a very promising technique
for interactive proof systems based on inference rules.

Model checking has also been implemented successfully in PVS, see
[Sha96a] and [Sha96b].

2.2.3 BPC

Backwards proof construction (BPC) is, as mentioned in the introduction,
the method of choice for logical deduction in the ABEL system’s prover.
The complementary method, called natural deduction (ND), is a system
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for formal reasoning where one starts from the axioms of the system and
tries to build a proof ending with the theorem to be proved. ND is not
equivalence preserving, while BPC, in contrast, is.

It should be quite obvious that BPC lends itself rather more to mechan-
ical proof construction than does ND: programming a computer to find the
right starting axioms for ND and making the right choices along the proof
path to end up at the desired theorem seems to be a very, very hard task,
as opposed to starting with the theorem to be proved and trying to sim-
plify it. Another, more concrete, obstacle to the use of ND is that the BPC
rules (except for two special cases) simplify the sequent, and thus will not
recurse endlessly—while ND constructs an ever more complex sequent if
not hitting the theorem to be proved. Thus, a system based on ND would
need some kind of heuristic to stop a proof branch that seemingly would
not lead to the theorem being proved. However, such a heuristic would
necessarily never be perfect—one can generally never be sure that a proof
branch will not be successful, as the rules that are non-constructive in BPC
is simplifying in ND. The BPC rules are listed in figure 2.1; the ABEL sys-
tem’s bpc strategy consists of all those except T∃ and A∀.

Non-constructive BPC rules

The rules T∃ and A∀ in figure 2.2.3 are called non-constructive: applied
as BPC rules they make the sequent more complex, rather than simplify
it, and may therefore lead to infinite recursion in a proof. This should be
obvious from the definitions, as the rules keep all the parts of the previous
sequent, as well as adding another. Because of this, the bpc strategy cannot
incorporate these rules; indeed, a strategy incorporating those rules would
have to be very carefully constructed regarding to how it applies them,
making sure not to recurse infinitely.

2.2.4 Induction

The induction principle is central in ABEL. All data types are defined by
inductive generator functions, and generator and observer functions (i.e.
functions operating on variables) are usually defined by generator induc-
tion with the case construct.

Generator Induction

Although considered one of the most advanced among proof techniques,
induction is relatively easy to implement. The following equation shows
the general generator induction principle:
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∀(c : C) ◦ F (c) ;

F (x) ∀(g : G) ◦ F (g(. . . , x, . . .))
∀(x : T ) ◦ F (x)

HereC is the set of constant generators for the type T , andG is the non-
constant ones. The example that most easily comes to mind is the natural
numbers; here the only constant generator is 0 and the only non-constant
S, the successor function. Induction over the natural numbers can be rep-
resented as in the following equation:

F (0) ;

F (x) F (S(x))
∀(x : Nat) ◦ F (x)

As shown, simple generator induction consists of proving the expres-
sion first with all constant generators (that is, generators that do not take
arguments, such as 0 of the natural numbers) substituted for the variable
under induction, and then, assuming the expression being proved, proving
it with all non-constant generators applied to the variable under induction.

As we will see in chapter 4, induction and rewriting suffice to prove
many useful theorems.

Generalising a Variable

Even if a variable has lost its universal quantifier, e.g. due to application of
the T∀ BPC rule, it still might be possible to use it for induction. This may
be accomplished by modifying the induction module to be able to do gen-
eralisation automatically, or by providing a separate generalisation facility
which (re)introduces a universal quantifier after testing that the variable is
indeed eligible.

One problem to be aware of if implementing a separate generalisation
facility, is that of divergence: if induction is applied repeatedly to the same
variable the sequent will grow endlessly. In other words, generalisation
is not constructive, and should be treated with similar caution to the BPC
rules T∃ and A∀. However, this is not very difficult to prevent, if one has a
mechanism to make sure to apply induction to a certain variable no more
than once.

2.2.5 Rewriting

Rewriting is a technique many theorem provers employ, whether other-
wise built around a single method of proof construction, like the earlier
automatic systems, or several methods, like PVS and the ABEL system.
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Rewriting simplifies an expression by substituting subexpressions for
(hopefully) simpler, equal expressions. Rewriting of expressions is based
on a convergent system of rewrite rules. To be convergent, the system has
to be terminating; it should not be possible to construct an infinite sequence
of rewrite rules. Furthermore, the system has to be confluent, that is, if
several different rules are at some point applicable, the same expression
(called normal form) should be obtained regardless of the order in which
the rules are applied. More information on term rewriting may be found in
e.g. [Kir].

Some interactive systems, e.g. PVS, perform rewriting automatically
after changes in the sequent has occurred. However, this would lead to
problems if implemented naìvely in the ABEL system, as I have in my tests
encountered proof branches where rewriting destroyed the only possible
route to success.

2.2.6 Strategies/Tacticals

As interactive systems were developed, it became apparent that a method
for combining the basic commands would be valuable. As we will see
in chapter 4, a quite simple command combination can complete proofs
for many simpler theorems. A completely general command combination
would of course amount to an automatic system, which we have seen has
proved very hard to make, but substantial parts of proof can often be com-
pleted with merely one relatively simple command combination.

These combination methods are usually called tacticals or strategies,
and are used in all major current interactive provers. In the ABEL sys-
tem we call them strategies, and this mechanism has constructs to facilitate
elaborate proof schemes with operators to serialize commands, repeat, and
apply rules at multiple positions in a sequent. Brevik has discussed the syn-
tax of strategies in greater depth in his thesis [Bre98], but for easy reference
the following BNF schema excerpt details the syntax we use for strategies
in the ABEL system.

<cmdline> ::= <cmdlist> | (<cmdlist>) | [<cmdlist>]
<cmdlist> ::= <cmd> [, <cmdlist>]∗

<cmd> ::= RULENAME <mposspec> <eqspec>?

| repeat <cmdline>? POS?

<mposspec> ::= <posspec> multi?

<posspec> ::= [-? POS]+ | + | - | *
<eqspec> ::= ‘<hlexpr>‘ | #-? POS | $

RULENAME is some specific rule or command, POS is a position spe-
cification as described below. <hlexpr> is an expression in the host lan-
guage.



2.3. OTHER THEOREM PROVERS 13

Commands listed in parentheses are applied in order; those in brackets
are applied only until one is successful. Positions (where in the sequent the
rule should be applied) may be given as specific numbers: -1 signifies the
first antecedent, +2 (+ is optional) the second consequent; or as +, signifying
any consequent; - signifying any antecedent; and * for any part. multi makes
a rule be applied in all possible parts of the sequent (without multi, a rule is
allied only to one part, regardless if it is applicable to more), while repeat
repeats a rule as long as it is successful.

An example of a very simple strategy—in fact, as we will see, one that
is able prove many of the theorems in chapter 4—is

simpleproof ==
strategy

(induct 1, rewrite, xrewrite)
endstrategy

Another, only slightly more advanced and general example for induct-
ive proofs (which would also have proved all the theorems the above did)
is

inductiveproof ==
strategy

repeat [xrewrite, induct +]
endstrategy

2.3 Other Theorem Provers

There has been made a number of theorem provers, not all of them specific-
ally for verification, and with varying degrees of success. I will in the fol-
lowing mention some of the most influential and interesting, and describe
a few in somewhat more depth.

Most of the systems were made purely for research, often employing
metalanguages (the languages the theorems, lemmas etc. are written in)
that were designed to be simple to implement, not necessarily to use, and
many of them would indeed be cumbersome or awkward in practical use.
However, this is not always the case; it is to be noted that ML, one of
the most prominent of the functional programming languages and the lan-
guage the current incarnation of the ABEL system is implemented in, ori-
ginated as metalanguage for a theorem prover written by Larry C. Paulson
(indeed, ML is an acronym for Meta Language). This prover is a prede-
cessor of Isabelle, described below.
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2.3.1 Automatic Systems

The automatic systems strive to prove theorems without intervention from
humans. As we now know theorem proving is an undecidable problem;
this means these systems have to employ strategies beyond pure logical
reasoning. For this reason, automatic theorem provers have been among
the most prominent areas of application of artificial intelligence research.

Boyer-Moore

A classic system, made by Robert S. Boyer and J. Strother Moore, and de-
scribed in e.g. [BM79]. Automatic in execution, but in the authors’ opinion
very much dependent on the introduction of helpful lemmas aforehand
by the user. The lemmas must themselves be proved, so one prepares the
system for a complex proof by making it prove simpler lemmas, each suc-
cessively relying on those proved previously, and starting with ones the
system manages to prove from its built-in axioms. Because of this, Boyer
and Moore further write, the user has to be fairly adept at logic to find the
lemmas that need to be proven by the system. The Boyer-Moore prover
therefore in effect does much the same as the ABEL system—it takes care
of the tedious, completely mechanical parts of proof construction, and it
guarantees that the generated proof do not contain errors.

Argonne/Otter

Groups at the Argonne National Laboratory started working with auto-
matic theorem provers in the early 1960s, and research there is still going
strong, now with the system called Otter. Otter is an automated deduct-
ive prover designed to prove theorems in first-order logic with equality.
Two other systems are currently also developed at Argonne; EQP, which
searches for equational proofs, and MACE, which searches for models and
counter-examples. All can be tested online using a system called Son of
BirdBrain, see [arg].

Larry Wos and William McCune have been the primary researchers
in the Argonne theorem proving efforts, McCune being the primary de-
veloper behind Otter. Further information on the history of Otter and the
theorem proving effort at Argonne can be found in Rusty Lusk’s paper
[Lus92], and on the web at [arg].

SPIKE

SPIKE is an inductive prover, and seemingly rather basic at that. It uses
induction and rewriting as methods, but only uses implicitly quantification
of the variables, and will therefore quite easily diverge. [Wal96] exemplifies
divergence by showing SPIKE alone trying to prove the theorem S(x+x) =
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S(x)+x. (The axiom for addition in SPIKE is x+S(y) = S(x+y).) Trying to
prove this theorem SPIKE repeatedly applies induction to x, but is unable
to simplify the generated expressions by rewriting.

The divergence critic described in [Wal96] discovers this divergence,
and guesses lemmas that hopefully are both helpful and may be proved
without themselves causing divergence. This divergence critic functions re-
markably well, and has been applied with success also to the Boyer-Moore
system. However, divergence is not a problem for the ABEL system, as in-
duction is (and should be) only allowed to be applied once to a variable in
any one proof branch.

2.3.2 Interactive Systems

With the lack of success for automatic theorem provers, research shifted to
interactive modes of operation, where the system assists the user in con-
structing the proof. Some systems are little more than proof checkers that
make sure all proof steps taken by the user are sound, while others, like
PVS, provide the user with a few high-level commands that do most of the
work.

PVS

Like the ABEL system, PVS1 is an interactive system; it is the system with
the greatest resemblance to ours that I will discuss. A difference to the
ABEL system is that the language used in PVS is a pure specification lan-
guage, while ABEL is also meant as a language for implementation. A
reference for the PVS language may be found in [SORSC99a]. PVS is de-
veloped by SRI International.

The PVS prover, described in [SORSC99b], has an interface somewhat
similar to the ABEL system, with commands for logical reasoning and in-
duction. Rewriting is done automatically. Where PVS differs the most from
our system is in the focus on high-level strategies for practical proving. PVS
combines all the commands for logical reasoning (similar to the ABEL sys-
tem’s BPC rules) into the two strategies split and flatten, and the powerful
strategy grind, which incorporates split and flatten. split contains all the
rules that cause splitting of the sequent, while flatten contains those that
do not cause splitting. Brevik discusses this in [Bre98] as compared to the
functioning of his prover, and has implemented split and flatten (in [Bre98]
pp. 131-132) as ABEL strategies.

PVS has been used in practice in the specification and partial verifica-
tion of the Rockwell-Collins AAMP5 processor design [MS95], and in the
verification of a SRT divider [RSS99].

1URL: http://pvs.csl.sri.com/
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Isabelle

Isabelle is the name of the system currently being developed by Lawrence
C. Paulson and others at the University of Cambridge and the Technical
University of München. Isabelle’s ancestry goes back to LCF, an automatic
prover developed by Paulson in the 1970s; incidentally, the system where
the ML programming language originated (as a metalanguage).

Although it has a heritage from automatic provers, Isabelle is now, in
similarity to PVS and the ABEL system, interactive, and incorporates sev-
eral proof techniques.

Isabelle has been used for proving properties of the Kerberos authentic-
ation system.

2.4 How do Humans Construct Proofs?

One very interesting question, especially in the construction of automatic
theorem provers and research into artificial intelligence is, how do we hu-
mans construct proofs? Do we have techniques that somehow defy the
undecidability of proof construction, or do we just use experience and the
capability of the human brain—which still vastly outperforms computers?
This last issue is of course one of the most central and most difficult ques-
tions of artificial intelligence research, pondered since Turing first came up
with his model for a universal computing machine, so I will not try to an-
swer it here.

It is worth a note, though, that one of the ways humans seem to outper-
form computers the most, is in the ability to draw on previous experience—
such as in choosing which of a number of proof techniques applicable at
some point in a proof that seems most promising. My personal opinion is
that this alone may justify at least a large part of the difference in the proof
construction capability between humans and computers.



Chapter 3

A User’s Guide to the ABEL
proof system

The ABEL system is divided into several parts: the base system, which
among other things handles the command interpretation and translation of
ABEL program code into internal structures; the type checker; the rewriter;
the prover. In using the system, one mostly comes in contact with the base
system’s toplevel and parser, and the prover; the rewriter has its user in-
terface through the commands rewrite, xrewrite and rewruleset, and type
checking is done automatically.

3.1 The Base System Commands

context : Loads a module into the current context. Standard modules in-
clude Int, Seq, Set and Group.

eval : Evaluates an expression in the host language.

help : Provides simple help on commands.

print : Displays useful information; currently the number of rewrite steps,
the rewrite rules and the latest rewrite steps are supported.

prove : Invokes the prover module to prove one or more expressions given
as arguments.

rewrite : Invokes the rewrite module to rewrite an expression given as an
argument.

rewruleset : Manages the rewrite ruleset; with this command one can list,
add and delete rewrite rules.

set : Sets a system variable; when not given an argument lists all set vari-
ables.

17
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quit, exit, bye, return : Quits to the next level up, or if at toplevel, quits the
ABEL system.

3.2 The Prover

3.2.1 The Commands

The prover introduces a number of commands in addition to what is ac-
cessible in the base system. The base system commands (with the obvious
exception of prove) work as described above, where not noted otherwise
below.

assert : Asserts to the system that a subexpression is true. This can be done
if one does not want to continue a proof branch, e.g. if one sees that
the current subexpression is trivially true, but the system seems un-
able to prove it.

disclaim : Reverts asserts; without arguments lists all asserted subexpres-
sions.

induct : Invokes the induction module; takes as compulsory argument the
part of the consequent to be used.

next : Changes to the next expression.

open : Opens a strategy file.

postpone : Postpones the current proof branch. Using this command the
user can cycle through all the proof branches.

prev : Changes to the previous expression (the opposite of next).

printproof : Prints the proof steps together with what rules were used. Ap-
plications of strategies are not included in the printout, but rather the
rules the strategies resulted in.

prune : “Prunes” off a whole proof branch. If a proof branch has gone in
the wrong direction, instead of performing multiple undo commands,
using this command on can remove the whole branch and start anew
at the last branching point.

rewrite : Invokes the rewriter on the current subexpression. When invoked
from the prover (as opposed to the toplevel), this command does not
take an expression as argument, but works (as all prover commands)
on the current expression.

xrewrite : Invokes an improved rewriter (described in section 4.1).
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ruleset : Lists, adds or deletes rulesets.

strategy : Stores a new strategy in a file.

undo : Reverts the last action.

view : Lists the sequence of successfully applied rules.

3.2.2 The Rules

cut : As detailed in [Bre98] p. 111, Brevik has implemented this rule to
facilitate a form of model checking.

split : A strategy consisting of all the constructive BPC rules that causes
splitting in the sequent: tand, aor, aimpl, tif and aif.

flatten : A strategy of the constructive BPC rules that does not cause split-
ting in the sequent: aand, tor, timpl, anot, tnot, teqv, aeqv, aexist and
tall.

bpc : The bpc strategy is implemented as a combination of first the flatten
strategy, and then split, repeated until neither is successful.

3.2.3 The Command Language

multi : Applies a command on every applicable part of the current sequent.

repeat : Repeats a command list until the proof is completed or the com-
mand list fails. Takes an optional integer argument for how many
times to repeat.

(): Parentheses put around a list of proof rules or commands (separated by
comma) executes the rules in sequence.

[] : Square brackets put around a list of proof rules or commands (separated
by comma) executes the rules in sequence until one succeeds.

3.3 The ABEL Language

While the imperative parts of ABEL clearly shows its ancestry in the AL-
GOL family, some of the applicative constructs for type generation are syn-
tactically alike to the equivalent constructs in ML and similar functional
languages. I will not describe the full language, as much of it should be
obvious. However, there are some parts which merit some explanation. I
will use figure 3.1 as example code for this.
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Tree ==
module

include Int

typevar T

type Tree{T} by ETree, NETree

func nil : ETree{T}
func leaf : T −→ NETree{T}
func tree : Tree{T} * Tree{T} −→ Tree{T}

oneone genbas Tree == nil, leaf, tree

func del : Tree{T} * T −→ Tree{T}
func ˆ_sub_ˆ : Tree{T} * Tree{T} −→ Bool

def del(t, x) ==
case t of nil −→ nil

| leaf(y) −→ if x = y then nil else t fi
| tree(u, v) −→ tree(del(u, x), del(v, x)) fo

def s _sub_ t == (s = t) ∨
case t of nil −→ false

| leaf(x) −→ false
| tree(u, v) −→ s _sub_ u ∨ s _sub_ v fo

endmodule

Figure 3.1: The Tree module
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3.3.1 The Module

The facility in ABEL for modularisation is the module construct. Its syntax
is, as we see in figure 3.1, first the module’s name, then ==, and then the
module block, with module as start tag and endmodule as end.

This module uses functions from the Int module, hence it uses the in-
clude declaration to include this module. It then proceeds to introduce
the Tree type, by declaring its generators (nil, leaf and tree). The generator
functions are only declared, not defined. The oneone genbas declaration
declares these functions as the Tree type’s generator basis.

After this comes the rest of the functions of the module. Ordinary func-
tions are introduced by first declaring their type signature with func, and
then their implementation with def.

3.3.2 case

The case construct is used in almost all generator and observer functions.
It bears a syntactic resemblance to the ML case construct, but in ABEL it
dispatches only on type generators. Let us as an example look at the del
function of figure 3.1; here there are three branches, one for each of the
generators nil, leaf and tree.

3.3.3 Infix Function Declaration

Another thing to note in figure 3.1 is the declaration of the infix function
_sub_; in the func statement, ˆ declares the placement of the arguments.

3.4 A Sample Proof

Now let us see how a simple proof session might be conducted. We use the
simple theorem ∀(x, y : Nat)x+ Sy = S(x+ y) for illustration.

First we instruct the system to prove this theorem:

ABEL> prove forall(x,y:Nat) x + S y = S (x + y)

The system acknowledges this by printing:

1:

True (empty)
|-----
# 1) forall(x:Nat,y:Nat) x + S y = S (x + y)

Now, induction seems a plausible path forward, so we use the induct
command, and give as argument ’1’, as this is the number of the (only) part
of the consequent to be used.
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PROVER> induct 1
This yields 2 subgoals:

1.1:

True (empty)
|-----
# 1) forall(y:Nat) 0 + S y = S (0 + y)

1.2:

#-1) forall(y:Nat) x + S y = S (x + y)
|-----
# 1) forall(y:Nat) S x + S y = S ((S x) + y)

The induction generates these two sequents, 1.1 and 1.2, as new sub-
goals. The system chooses 1.1 as the new current sequent, and announce
this by printing it again:

1.1:

True (empty)
|-----
# 1) forall(y:Nat) 0 + S y = S (0 + y)

After this we only need two rewrites to complete the proof:

PROVER> xrewrite

1.1:

True (empty)
|-----
# 1) true
Which is trivially true!

Changing current to ’1.2’.

1.2:

#-1) forall(y:Nat) x + S y = S (x + y)
|-----
# 1) forall(y:Nat) S x + S y = S ((S x) + y)

PROVER> xrewrite
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1.2:

#-1) forall(y:Nat) x + S y = S (x + y)
|-----
# 1) true
Which is trivially true!

The proof consists of 5 nodes.

Q.E.D.

This concludes the proof of this expression.
You might store a strategy for the proof by using the
’strategy’ command.
(’exit’ terminates the prover.)

To see the whole proof we can use the printproof command:

PROVER> printproof
1) ||-- forall(x:Nat,y:Nat) x + S y = S (x + y) (induct 2,4)
2) ||-- forall(y:Nat) 0 + S y = S (0 + y) (xrewrite 3)
3) ||-- true (TRIV)
4) forall(y:Nat) x + S y = S (x + y)

||-- forall(y:Nat) S x + S y = S ((S x) + y) (xrewrite 5)
5) forall(y:Nat) x + S y = S (x + y) ||-- true (TRIV)
The proof consists of 5 nodes.

Q.E.D.

3.5 A Larger Proof

Now we will see how to do a slightly larger proof, which use the Tree mod-
ule in figure 3.1. The proof involves induction over the Tree type, which
here generates three branches—one for each of the generators, nil, leaf and
tree. The theorem we want to prove is:

∀t : Tree, x : T · del(del(t, x), x) = del(t, x)

We start by introducing the module and the theorem:

ABEL> context Tree
Parsing: /hom/martint/src/hovedfag/Abel/AbelSrc/Tree.abl
Checking: /hom/martint/src/hovedfag/Abel/AbelSrc/Tree.abl
Added rewrite rules for Tree
ABEL> prove forall(t:Tree{T},x:T) del(del(t, x), x) = del(t, x)
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1:

True (empty)
|-----
# 1) forall(t:Tree{T},x:T) del (del (t,x),x) = del (t,x)

Now we have to choose what command to use. We try the rewriter, but
find that it cannot do anything, so we try bpc instead:

PROVER> xrewrite
Gives no changes.

PROVER> bpc

1:

True (empty)
|-----
# 1) del (del (t,x),x) = del (t,x)

PROVER> xrewrite
Gives no changes.

Here, bpc removed the universal quantifier, but the rewriter could not
change the resulting formula; and, obviously, neither can induction nor the
non-constructive BPC-rules. We therefore go back and try another route.

PROVER> undo
Undoing the last proof-step.

1:

True (empty)
|-----
# 1) forall(t:Tree{T},x:T) del (del (t,x),x) = del (t,x)

PROVER> induct 1
This yields 3 subgoals:

1.1:

True (empty)
|-----
# 1) forall(x:T) del (del (nil,x),x) = del (nil,x)

1.2:
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True (empty)
|-----
# 1) forall(x:T) del (del (leaf t’el,x),x) = del (leaf t’el,x)

1.3:

#-1) forall(x:T) del (del (t,x),x) = del (t,x)
|-----
# 1) forall(x:T) del (del (tree (t,t),x),x) = del (tree (t,t),x)

Here in 1.2 we see how the induction subsystem generates fresh vari-
able names: it appends “’el” to the original variable name.

1.1:

True (empty)
|-----
# 1) forall(x:T) del (del (nil,x),x) = del (nil,x)

PROVER> xrewrite

1.1:

True (empty)
|-----
# 1) true
Which is trivially true!

Changing current to ’1.2’.

1.2:

True (empty)
|-----
# 1) forall(x:T) del (del (leaf t’el,x),x) = del (leaf t’el,x)

It seems induction was indeed a better choice than the bpc application
we had to revert. Now we have to prove the second branch from the in-
duction:

PROVER> xrewrite

1.2:

True (empty)
|-----
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# 1) forall(x:T)
if x = t’el

then x = t’el
else if x = t’el

then x = t’el
else if x = t’el then false else true fi

fi
fi

PROVER> bpc

1.2.2.2.2:

#-1) ~ (x = t’el)
|-----
# 1) true, # 2) x = t’el
Which is trivially true!

Changing current to ’1.3’.

1.3:

#-1) forall(x:T) del (del (t,x),x) = del (t,x)
|-----
# 1) forall(x:T) del (del (tree (t,t),x),x) = del (tree (t,t),x)

The tif rule took care of that, so now we only have the induction step
left, which the rewriter proves:

PROVER> xrewrite

1.3:

#-1) forall(x:T) del (del (t,x),x) = del (t,x)
|-----
# 1) true
Which is trivially true!

The proof consists of 22 nodes.

Q.E.D.

printproof prints out all the rules used in the proof, unraveling the rules
applied in the bpc applications:

PROVER> printproof
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1) ||-- forall(t:Tree{T},x:T) del (del (t,x),x) = del (t,x)
(induct 2,4,21)

2) ||-- forall(x:T) del (del (nil,x),x) = del (nil,x)
(xrewrite 3)

3) ||-- true (TRIV)
4) ||-- forall(x:T) del (del (leaf t’el,x),x) = del (leaf t’el,x)

(xrewrite 5)
5) ||-- forall(x:T) if x = t’el

then x = t’el
else if x = t’el

then x = t’el
else if x = t’el then false else true fi

fi
fi (tall 6)

6) ||-- if x = t’el then x = t’el
else if x = t’el then x = t’el
else if x = t’el then false else true fi fi

fi (tif 7,9)
7) ||-- x = t’el => x = t’el (timpl 8)
8) x = t’el ||-- x = t’el (TRIV)
9) ||-- ~ (x = t’el) =>

if x = t’el then x = t’el
else if x = t’el then false else true fi fi (timpl 10)

10) ~ (x = t’el) ||-- if x = t’el then x = t’el
else if x = t’el then false else true fi fi (anot 11)

11) ||-- if x = t’el then x = t’el
else if x = t’el then false else true fi fi,
x = t’el (tif 12,14)

12) ||-- x = t’el => x = t’el, x = t’el (timpl 13)
13) x = t’el ||-- x = t’el (TRIV)
14) ||-- ~ (x = t’el) => if x = t’el then false

else true fi, x = t’el (timpl 15)
15) ~ (x = t’el) ||-- if x = t’el then false

else true fi, x = t’el (anot 16)
16) ||-- if x = t’el then false else true fi, x = t’el

(tif 17,19)
17) ||-- x = t’el => false, x = t’el (timpl 18)
18) x = t’el ||-- x = t’el (TRIV)
19) ||-- ~ (x = t’el) => true, x = t’el (timpl 20)
20) ~ (x = t’el) ||-- true, x = t’el (TRIV)
21) forall(x:T) del (del (t,x),x) = del (t,x)

||-- forall(x:T) del (del (tree (t,t),x),x) = del (tree (t,t),x)
(xrewrite 22)

22) forall(x:T) del (del (t,x),x) = del (t,x) ||-- true (TRIV)
The proof consists of 22 nodes.

Q.E.D.

As we see the proof was fairly straightforward, but still needed some
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user guidance in choosing whether to treat the universal quantifier by in-
duction or BPC.



Chapter 4

A First Test of the ABEL System

As a starting point for this thesis, I tested the ABEL system’s prover mod-
ule with a list of theorems found in [Wal96] (p. 226). That article describes
the functioning of a “divergence critic”—a system that proposes (hopefully
useful) lemmas when the proof construction of its accompanying theorem
prover diverges—for SPIKE ([BKR92]), an automatic, inductive theorem
prover (as described in section 2.3.1). The mentioned list lists theorems
SPIKE managed to prove when augmented by the critic, and the lemmas
the critic proposed that made SPIKE able to complete the proofs.

4.1 xrewrite

As described in this chapter, none of the theorems pose serious trouble for
the ABEL system. However, this was not quite the case when I first did
these tests; the introduction of the xrewrite command (written by Jo Tot-
land), and its ability to construct rewrite rules from the antecedent of the
current sequent, thereby providing instantiation capabilities that were not
previously present in the system, is the single reason why the system is
now able to complete all the proofs. I will give a few examples of where
this made a difference in the following.

4.2 Implementation

The theorems to be tested uses a number of functions; I have implemen-
ted those functions not included in the ABEL system’s standard Int and Seq
modules (included in appendix A). To use these functions, I encapsulated
them in a module on a file suitably situated in the ABEL system’s file hier-
archy and used the context command in the system’s toplevel to load them.
The module can be found in subsection 4.3.1. The functions use the Int and
Seq modules; the module also introduces the general type variable T.

29
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A number of the functions that are used in the theorems are described
in [Wal96] by case-free axioms; these I have implemented as prescribed, by
translating into case statements in ABEL (which are described in section
3.3. The others I implemented as best I could, keeping proof construction
(and especially induction) in mind. The only functions I have not imple-
mented myself of those used in the theorems, are those already present in
the standard modules: the integer successor function S from the Int mod-
ule; and the standard sequence operators ` (right concatenation), a (left
concatenation), à (concatenation of two sequences, @ is used in [Wal96]),
and # (length) from the Seq module.

4.3 Source Code

Here follows the ABEL code I used in these tests, the functions and the
theorems.

4.3.1 Functions

Here are presented the functions I needed to implement for the tests, that is,
the functions used in [Wal96] that is not already implemented in the ABEL
system. I made a module to hold the functions and a general type variable
T; the “func g : T” and oneone genbas T == g” statements below are ad-hoc
workarounds to make the module syntactically right, and has no practical
effect. I also used the standard ABEL modules Int and Seq, which can be
found in appendix A.

Functions in ABEL is defined by first stating their type profile with the
func keyword, and then their implementation with the def keyword. All
the following functions are implemented by type induction with the case
construct, which in syntax resembles the case construct found in e.g. ML.
It matches an expression against the expressions of the different branches
sequentially, choosing the branch for which it first finds a match.

Essay ==
module

include Int
include Seq

type T
func g : T

oneone genbas T == g
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func dbl : Nat −→ Nat (* double the argument *)
func even : Nat −→ Bool (* is the argument even? *)
func odd : Nat −→ Bool (* is the argument odd? *)
func even’ : Nat −→ Bool (* another implementation of even *)
func odd’ : Nat −→ Bool (* another implementation of odd *)
func half : Nat −→ Nat (* half the argument *)
func rot : Nat * Seq{T} −→ Seq{T} (* rotate second argument by first *)
func rev : Seq{T} −→ Seq{T} (* reverse the argument *)
func qrev : Seq{T} * Seq{T} −→ Seq{T} (* reverse first argument at

the end of the second *)
func nth : Nat * Seq{T} −→ Seq{T} (* the nth argument of the seq *)
func isort : Seq{Int} −→ Seq{Int} (* sort by insertion sort *)
func sorted : Seq{Int} −→ Bool (* is the argument sorted? *)

def dbl(x) == case x of Z −→ 0 | S(x) −→ S(S(dbl(x))) fo
def even(x) == case x of Z −→ true | S(Z) −→ false | S(S(x)) −→ even(x) fo
def odd(x) == case x of Z −→ false | S(Z) −→ true | S(S(x)) −→ odd(x) fo
def even’(x) == case x of Z −→ true | S(x) −→ odd’(x) fo
def odd’(x) == case x of Z −→ false | S(x) −→ even’(x) fo
def half(x) == case x of Z −→ 0 | S(x) −→

case x of Z −→ 0 | S(x) −→ S(half(x)) fo fo
def rot(n, s) == case n of Z −→ s | S(n’) −→

case s of e −→ e | s’`x −→ rot(n’, x−|s’) fo fo

def rev(s) == case s of e −→ e | s’`x −→ x −| rev(s’) fo
def qrev(s, r) == case s of e −→ r | s`x −→ qrev(s, r`x) fo
def nth(i, s) == case i of Z −→ s | S(i) −→

case s of e −→ e | s`x −→ nth(i, s) fo fo

func insert : Int * Seq{Int} −→ Seq{Int}
def insert(x, s) ==

case s of e −→ e`x
| s’`y −→ if x<y then s`x else insert(x, s’)`y fi fo

def isort(s) == case s of e −→ e | s`x −→ insert(x, isort(s)) fo
def sorted(s) ==

case s of e −→ true | e`x −→ true | s`x −→
case s of s’`y −→ if y<x then sorted(s) else false fi

| _ −→ false fo fo
endmodule
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4.3.2 Theorems

Here are the theorems from [Wal96], translated to ABEL syntax. I have,
as mentioned in the introduction, reworked the theorems which include
sequence operations to accommodate for the reversal of sequence concat-
enation, in that right concatenation is the sequence generator in ABEL, as
opposed to left concatenation in SPIKE.

1. ∀(x:Nat) S(x) + x = S(x + x)

2. ∀(x:Nat) dbl(x) = x + x ≤> dbl(0) = 0

3. ∀(x:Nat) dbl(S(x)) = S(S(dbl(x)))

4. ∀(x,y:Seq{T}) #(x`|y) = #(y`|x)

5. ∀(x,y:Seq{T}) #(x`|y) = #x + #y

6. ∀(x:Seq{T}) #(x`|x) = dbl(#x)

7. ∀(x:Nat) even(x+x)

8. ∀(x:Nat) odd(S(x)+x)

9. ∀(x:Nat) even’(x+x)

10. ∀(x:Nat) odd’(S(x)+x)

11. ∀(x:Nat) even’(x) ⇒ half(x) + half(x) = x

12. ∀(x:Nat) half(x+x) = x

13. ∀(x:Nat) half(S(x)+x) = x

14. ∀(x:Seq{T}) rot(#x, x) = x
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15. ∀(x:Seq{T}) #(rot(#x, x)) = #x

16. ∀(x:Seq{T}, y:T) rot (# x,(e ` y) `| x) = rot (# x, x) ` y

17. ∀(x:Seq{T}) #(rev(x)) = #x

18. ∀(x:Seq{T}) rev(rev(x)) = x

19. ∀(x:Seq{T},y:T) rev (e ` y `| rev x) = x ` y

20. ∀(x:Seq{T},y:T) rev (e ` y `| rev x) = rev (rev x) ` y

21. ∀(x,y:Seq{T}) # (rev (x `| y)) = # x + # y

22. ∀(x:Seq{T}) #(qrev(x, e)) = #x

23. ∀(x,y:Seq{T}) qrev(x, y) = y `| rev(x)

24. ∀(x,y:Seq{T}) #(qrev(x, y)) = #x + #y

25. ∀(x:Seq{T}) qrev(qrev(x, e), e) = x

26. ∀(x:Seq{T}) rev(qrev(x, e)) = x

27. ∀(x:Seq{T}) qrev(rev(x), e) = x

28. ∀(i,j:Nat, x:Seq{T}) nth(i, nth(j, x)) = nth(j, nth(i, x))

29. ∀(i,j,k:Nat, x:Seq{T}) nth(i, nth(j, nth(k, x))) = nth(k, nth(j, nth(i, x)))

30. ∀(x:Seq{Int}) #(isort(x)) = #x

31. ∀(x:Seq{Int}) sorted(isort(x))
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4.4 Results

SPIKE, the proof system that [Wal96] uses, is an automatic theorem prover,
while the proof module of the ABEL system is interactive—that is, part
of what the system in [Wal96] does, is left to the user by design in the
ABEL system. This means that our system does not complete all the proofs
without help, but in some of the proofs I experienced that our proof system
have much less need than SPIKE (without the divergence critic) for help,
be it introduction of new lemmas or user intervention in choosing between
using induction or BPC rules.

One of the problems I encountered with the ABEL system is that to ap-
ply induction to a variable the variable has to be bound in a universal quan-
tifier. The BPC rule T∀, which is included in the bpc strategy, may remove
such quantifiers in an application of bpc, making it necessary to investigate
which BPC rules were used with printproof, revert the bpc application with
undo, before reapplying the BPC rules except tall and at last being able to
use induction. If there was a generalisation facility in the system, the user
would not need to do that rather tedious sequence of manual operations.

I have not included the whole proof sessions, just the printout from the
printproof command; as this printout often contains too long lines I have
reformatted it somewhat to fit the page. printproof prints the proof steps
starting with the theorem to be proved, and includes at each steps the rule
used and what sequents resulted from this application. I will use the first
proof as an example for a more detailed explanation below.

4.4.1 S(x) + x = S(x+ x)

1) ||-- forall(x:Nat) S x + x = S (x + x) (induct 2,4)
2) ||-- 1 + 0 = S (0 + 0) (rewrite 3)
3) ||-- true (TRIV)
4) S x + x = S (x + x)

||-- S (S x) + S x = S ((S x) + S x) (rewrite 5)
5) S x + x = S (x + x) ||-- S x + x = S (x + x) (TRIV)
The proof consists of 5 nodes.

Q.E.D.

Here we see that the first rule used was induct, which produced se-
quents 2 (the base step) and 4 (the induction step). The rewriter managed
to rewrite each of these into trivial sequents (3 and 5). As there was then
no non-trivial sequents left, the proof was declared successful. This should
be seen as a quite straightforward proof; all the user needs to do is try re-
write repeatedly, using induct when rewrite does not give any changes to
the sequent.
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It is worth to note that addition in SPIKE is defined by x+S(x) = S(x+
x), while in ABEL it is defined the other way around, i.e. S(x)+x = S(x+x).
However, the ABEL system’s proof for x+S(x) = S(x+x) is similar to the
proof above.

4.4.2 (x : Nat)dbl(x) = x+ x <=> dbl(0) = 0

1) ||-- forall(x:Nat) dbl x = x + x <=> dbl 0 = 0 (teqv 2)
2) ||-- ((forall(x:Nat) dbl x = x + x) => dbl 0 = 0) /\

(dbl 0 = 0 => (forall(x:Nat) dbl x = x + x)) (tand 3,6)
3) ||-- (forall(x:Nat) dbl x = x + x) => dbl 0 = 0 (timpl 4)
4) forall(x:Nat) dbl x = x + x ||-- dbl 0 = 0 (rewrite 5)
5) forall(x:Nat) dbl x = x + x ||-- true (TRIV)
6) ||-- dbl 0 = 0 => (forall(x:Nat) dbl x = x + x) (rewrite 7)
7) ||-- forall(x:Nat) dbl x = x + x (induct 8,10)
8) ||-- dbl 0 = 0 + 0 (rewrite 9)
9) ||-- true (TRIV)
10) dbl x = x + x ||-- dbl (S x) = S x + S x (rewrite 11)
11) dbl x = x + x ||-- dbl x = x + x (TRIV)
The proof consists of 11 nodes.

Q.E.D.

As we see, ABEL manages to also construct this proof with few prob-
lems. One thing to be noticed is that induction does not work at step 1; the
bpc strategy had to be applied first to take care of the equivalence. The com-
mand sequence used here was (bpc, rewrite, rewrite, induct 1, rewrite, re-
write). The printproof command prints out all the rules applied in a strategy
application rather than just the strategy.

4.4.3 dbl(S(x)) = S(S(dbl(x)))

1) ||-- forall(x:Nat) dbl (S x) =
S (S (dbl x)) (rewrite 2)

2) ||-- true (TRIV)
The proof consists of 2 nodes.

Q.E.D.

The rewriter proves this theorem in one step. The simple proof of this
theorem is not very surprising, as this is precisely the way that I have im-
plemented dbl.

4.4.4 len(x@y) = len(y@x)

1) ||-- forall(x:Seq{T},y:Seq{T}) # (x |-| y) = # (y |-| x)
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(induct 2,8)
2) ||-- forall(y:Seq{T}) # (e |-| y) = # (y |-| e) (xrewrite 3)
3) ||-- forall(y:Seq{T}) # (e |-| y) = # y (induct 4,6)
4) ||-- # (e |-| e) = # e (xrewrite 5)
5) ||-- true (TRIV)
6) # (e |-| y) = # y ||-- # (e |-| (y |- y’el)) = # (y |- y’el)

(xrewrite 7)
7) # (e |-| y) = # y ||-- true (TRIV)
8) forall(y:Seq{T}) # (x |-| y) = # (y |-| x)

||-- forall(y:Seq{T}) # ((x |- x’el) |-| y) = # (y |-| (x |- x’el))
(xrewrite 9)

9) forall(y:Seq{T}) # (x |-| y) = # (y |-| x) ||-- true (TRIV)
The proof consists of 9 nodes.

Q.E.D.

The preceding theorems were proved with only use of Korshavn and
Midtskogen’s rewriter (rewrite), but this proof I am not able to complete
without the improved version (xrewrite), as the following proof attempt
shows:

1) ||-- forall(x:Seq{T},y:Seq{T}) # (x |-| y) =
# (y |-| x) (induct 2,8)

2) ||-- forall(y:Seq{T}) # (e |-| y) = # (y |-| e)
(rewrite 3)

3) ||-- forall(y:Seq{T}) # (e |-| y) = # y (induct 4,6)
4) ||-- # (e |-| e) = # e (rewrite 5)
5) ||-- true (TRIV)
6) # (e |-| y) = # y ||-- # (e |-| (y |- y’el)) =

# (y |- y’el) (rewrite 7)
7) # (e |-| y) = # y ||-- # (e |-| y) = # y (TRIV)
8) forall(y:Seq{T}) # (x |-| y) = # (y |-| x)

||-- forall(y:Seq{T}) # ((x |- x’el) |-| y) =
# (y |-| (x |- x’el)) (rewrite 9)

9) forall(y:Seq{T}) # (x |-| y) = # (y |-| x)
||-- forall(y:Seq{T}) # ((x |- x’el) |-| y) =
S (# (y |-| x)) (induct 10,14)

10) forall(y:Seq{T}) # (x |-| y) = # (y |-| x)
||-- # ((x |- x’el) |-| e) = S (# (e |-| x)) (rewrite 11)

11) forall(y:Seq{T}) # (x |-| y) = # (y |-| x)
||-- # x = # (e |-| x) (aall 12)

12) # (x |-| e) = # (e |-| x),
forall(y:Seq{T}) # (x |-| y) = # (y |-| x)
||-- # x = # (e |-| x) (rewrite 13)

13) # x = # (e |-| x),
forall(y:Seq{T}) # (x |-| y) = # (y |-| x)
||-- # x = # (e |-| x) (TRIV)

14) forall(y:Seq{T}) # (x |-| y) = # (y |-| x),
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# ((x |- x’el) |-| y) = S (# (y |-| x))
||-- # ((x |- x’el) |-| (y |- y’el)) =
S (# ((y |- y’el) |-| x)) (rewrite 15)

15) forall(y:Seq{T}) # (x |-| y) = # (y |-| x),
# ((x |- x’el) |-| y) = S (# (y |-| x))
||-- # ((x |- x’el) |-| y) = # ((y |- y’el) |-| x)
(aall 16)

16) # ((x |- x’el) |-| y) = S (# (y |-| x)),
# (x |-| (y |- y’el)) = # ((y |- y’el) |-| x),
forall(y:Seq{T}) # (x |-| y) = # (y |-| x)
||-- # ((x |- x’el) |-| y) = # ((y |- y’el) |-| x)
(rewrite 17)

17) # ((x |- x’el) |-| y) = S (# (y |-| x)),
S (# (x |-| y)) = # ((y |- y’el) |-| x),
forall(y:Seq{T}) # (x |-| y) = # (y |-| x)
||-- # ((x |- x’el) |-| y) = # ((y |- y’el) |-| x)

As we see, the two proof attempts diverge at step 9, where xrewrite man-
ages to rewrite the consequent to true by constructing a rewrite rule from
the antecedent; in other words, the first proof attempt uses the induction
hypothesis.

4.4.5 len(x@y) = len(x) + len(y)

1) ||-- forall(x:Seq{T},y:Seq{T}) # (x |-| y) = # x + # y
(induct 2,8)

2) ||-- forall(y:Seq{T}) # (e |-| y) = # e + # y (xrewrite 3)
3) ||-- forall(y:Seq{T}) # (e |-| y) = # y (induct 4,6)
4) ||-- # (e |-| e) = # e (xrewrite 5)
5) ||-- true (TRIV)
6) # (e |-| y) = # y ||-- # (e |-| (y |- y’el)) =

# (y |- y’el) (xrewrite 7)
7) # (e |-| y) = # y ||-- true (TRIV)
8) forall(y:Seq{T}) # (x |-| y) = # x + # y

||-- forall(y:Seq{T}) # ((x |- x’el) |-| y) =
# (x |- x’el) + # y (xrewrite 9)

9) forall(y:Seq{T}) # (x |-| y) = # x + # y ||-- true (TRIV)
The proof consists of 9 nodes.

Q.E.D.

Here again the xrewrite command makes the construction of this proof
relatively simple, while as shown below, with only rewrite the proof both
is longer, and flounders on the last step. It should be noted that xrewrite of
sequent 12 below leads to completion of the proof.

1) ||-- forall(x:Seq{T},y:Seq{T})
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# (x |-| y) = # x + # y (induct 2,8)
2) ||-- forall(y:Seq{T})

# (e |-| y) = # e + # y (rewrite 3)
3) ||-- forall(y:Seq{T})

# (e |-| y) = # y (induct 4,6)
4) ||-- # (e |-| e) = # e (rewrite 5)
5) ||-- true (TRIV)
6) # (e |-| y) = # y

||-- # (e |-| (y |- y’el)) =
# (y |- y’el) (rewrite 7)

7) # (e |-| y) = # y ||-- # (e |-| y) = # y (TRIV)
8) forall(y:Seq{T}) # (x |-| y) = # x + # y

||-- forall(y:Seq{T}) # ((x |- x’el) |-| y) =
# (x |- x’el) + # y (rewrite 9)

9) forall(y:Seq{T}) # (x |-| y) = # x + # y
||-- forall(y:Seq{T}) # ((x |- x’el) |-| y) =

S (# x) + # y (induct 10,12)
10) forall(y:Seq{T}) # (x |-| y) = # x + # y

||-- # ((x |- x’el) |-| e) =
S (# x) + # e (rewrite 11)

11) forall(y:Seq{T}) # (x |-| y) = # x + # y
||-- true (TRIV)

12) forall(y:Seq{T}) # (x |-| y) = # x + # y;
# ((x |- x’el) |-| y) = S (# x) + # y
||-- # ((x |- x’el) |-| (y |- y’el)) =

S (# x) + # (y |- y’el) (rewrite 13)
13) forall(y:Seq{T}) # (x |-| y) = # x + # y;

# ((x |- x’el) |-| y) = S (# x) + # y
||-- # ((x |- x’el) |-| y) = S ((# x) + # y)

4.4.6 len(x@x) = dbl(len(x))

1) ||-- forall(x:Seq{T}) # (x |-| x) = dbl (# x) (induct 2,4)
2) ||-- # (e |-| e) = dbl (# e) (rewrite 3)
3) ||-- true (TRIV)
4) # (x |-| x) = dbl (# x) ||-- # ((x |- x’el) |-| (x |- x’el)) =

dbl (# (x |- x’el)) (xrewrite 5)
5) # (x |-| x) = dbl (# x) ||-- true (TRIV)
The proof consists of 5 nodes.

Q.E.D.

Again, straightforward when using xrewrite, but I am unable to com-
plete the proof with just rewrite. The above proof shows the reason for this
quite clearly: the prover does not realize that sequent 4 is trivially true by
instantiating x in the antecedent with x |- x’el ; therefore we need the
antecedent instantiation capabilities of xrewrite to complete the last proof
step.
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4.4.7 even(x+ x)

This and the following three theorems are easily proved in five steps each,
using rewrite.

1) ||-- forall(x:Nat) even (x + x) (induct 2,4)
2) ||-- even (0 + 0) (rewrite 3)
3) ||-- true (TRIV)
4) even (x + x) ||-- even ((S x) + S x) (rewrite 5)
5) even (x + x) ||-- even (x + x) (TRIV)
The proof consists of 5 nodes.

Q.E.D.

4.4.8 odd(S(x) + x)

1) ||-- forall(x:Nat) odd ((S x) + x) (induct 2,4)
2) ||-- odd (1 + 0) (rewrite 3)
3) ||-- true (TRIV)
4) odd ((S x) + x) ||-- odd ((S (S x)) + S x) (rewrite 5)
5) odd ((S x) + x) ||-- odd ((S x) + x) (TRIV)
The proof consists of 5 nodes.

Q.E.D.

4.4.9 even′(x+ x)

1) ||-- forall(x:Nat) even’ (x + x) (induct 2,4)
2) ||-- even’ (0 + 0) (rewrite 3)
3) ||-- true (TRIV)
4) even’ (x + x) ||-- even’ ((S x) + S x) (rewrite 5)
5) even’ (x + x) ||-- even’ (x + x) (TRIV)
The proof consists of 5 nodes.

Q.E.D.

4.4.10 odd′(S(x) + x)

1) ||-- forall(x:Nat) odd’ ((S x) + x) (induct 2,4)
2) ||-- odd’ (1 + 0) (rewrite 3)
3) ||-- true (TRIV)
4) odd’ ((S x) + x) ||-- odd’ ((S (S x)) + S x) (rewrite 5)
5) odd’ ((S x) + x) ||-- odd’ ((S x) + x) (TRIV)
The proof consists of 5 nodes.
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Q.E.D.

4.4.11 even′(x)− > half(x) + half(x) = x

1) ||-- forall(x:Nat) even’ x => half x + half x = x
(induct 2,4)

2) ||-- even’ 0 => half 0 + half 0 = 0 (rewrite 3)
3) ||-- true (TRIV)
4) even’ x => half x + half x = x ||-- even’ (S x) =>

half (S x) + half (S x) = S x (xrewrite 5)
5) even’ x => half x + half x = x ||-- true (TRIV)
The proof consists of 5 nodes.

Q.E.D.

This proof is equally simple to the preceding four, except I had to use
xrewrite in the last rewriting step. Using only rewrite, I did not manage to
prove the induction step, as shown below.

1) ||-- forall(x:Nat) even’ x => half x + half x = x
(induct 2,4)

2) ||-- even’ 0 => half 0 + half 0 = 0 (rewrite 3)
3) ||-- true (TRIV)
4) even’ x => half x + half x = x ||-- even’ (S x) =>

half (S x) + half (S x) = S x (rewrite 5)
5) even’ x => half x + half x = x ||-- odd’ x =>

half (S x) + half (S x) = S x (timpl 6)
6) even’ x => half x + half x = x, odd’ x

||-- half (S x) + half (S x) = S x (aimpl 7,9)
7) ~ (even’ x), odd’ x ||-- half (S x) + half (S x) = S x

(anot 8)
8) odd’ x ||-- half (S x) + half (S x) = S x, even’ x
9) half x + half x = x, odd’ x

||-- half (S x) + half (S x) = S x

4.4.12 half(x+ x) = x

The two next proofs is similar to the above series of simple proofs, in that
they do not require xrewrite.

1) ||-- forall(x:Nat) half (x + x) = x (induct 2,4)
2) ||-- half (0 + 0) = 0 (rewrite 3)
3) ||-- true (TRIV)
4) half (x + x) = x ||-- half ((S x) + S x) = S x (rewrite 5)
5) half (x + x) = x ||-- half (x + x) = x (TRIV)
The proof consists of 5 nodes.

Q.E.D.
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4.4.13 half(S(x) + x) = x

1) ||-- forall(x:Nat) half ((S x) + x) = x (induct 2,4)
2) ||-- half (1 + 0) = 0 (rewrite 3)
3) ||-- true (TRIV)
4) half ((S x) + x) = x ||-- half ((S (S x)) + S x) = S x

(rewrite 5)
5) half ((S x) + x) = x ||-- half ((S x) + x) = x (TRIV)
The proof consists of 5 nodes.

Q.E.D.

4.4.14 rot(len(x), x) = x

1) ||-- forall(x:Seq{T}) rot (# x,x) = x (induct 2,4)
2) ||-- rot (# e,e) = e (rewrite 3)
3) ||-- true (TRIV)
4) rot (# x,x) = x ||-- rot (# (x |- x’el),x |- x’el) =

x |- x’el (xrewrite 5)
5) rot (# x,x) = x ||-- true (TRIV)
The proof consists of 5 nodes.

Q.E.D.

Here again, the ability of xrewrite to make rewrite rules from the ante-
cedent is what makes the last rewrite step able to complete the proof; in-
deed, they all are provable using the command list (induct 1, rewrite, xre-
write).

The rest of the theorems are easily proved using xrewrite; most of them
are proved with the command sequence (induct 1, rewrite, xrewrite), while
some need another induction. That is, all can be proved using the com-
mand

repeat [xrewrite, induct +]

which (as described in section 2.2.6) repeatedly tries xrewrite, and then, if
no rewriting is possible, induct in any (but only one) part of the consequent.

4.4.15 len(rot(len(x), x)) = len(x)

1) ||-- forall(x:Seq{T}) # (rot (# x,x)) = # x (induct 2,4)
2) ||-- # (rot (# e,e)) = # e (rewrite 3)
3) ||-- true (TRIV)
4) # (rot (# x,x)) = # x ||-- # (rot (# (x |- x’el),x |- x’el)) =

# (x |- x’el) (xrewrite 5)
5) # (rot (# x,x)) = # x ||-- true (TRIV)
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The proof consists of 5 nodes.

Q.E.D.

4.4.16 rot(len(x), x@[y]) = y :: rot(len(x), x)

Here—and in the rest of the theorems incorporating sequence operations—
all the sequence operators are mirrored, as described at the start of this
chapter, to accommodate the fact that right concatenation is the sequence
generator in ABEL, while left concatenation is in SPIKE.

1) ||-- forall(x:Seq{T},y:T) rot (# x,e |- y |-| x) =
rot (# x,x) |- y (induct 2,4)

2) ||-- forall(y:T) rot (# e,e |- y |-| e) = rot (# e,e) |- y
(rewrite 3)

3) ||-- true (TRIV)
4) forall(y:T) rot (# x,e |- y |-| x) = rot (# x,x) |- y

||-- forall(y:T) rot (# (x |- x’el),e |- y |-| (x |- x’el)) =
rot (# (x |- x’el),x |- x’el) |- y (xrewrite 5)

5) forall(y:T) rot (# x,e |- y |-| x) = rot (# x,x) |- y
||-- true (TRIV)

The proof consists of 5 nodes.

Q.E.D.

4.4.17 len(rev(x)) = len(x)

1) ||-- forall(x:Seq{T}) # (rev x) = # x (induct 2,4)
2) ||-- # (rev e) = # e (rewrite 3)
3) ||-- true (TRIV)
4) # (rev x) = # x ||-- # (rev (x |- x’el)) = # (x |- x’el)

(xrewrite 5)
5) # (rev x) = # x ||-- true (TRIV)
The proof consists of 5 nodes.

Q.E.D.

4.4.18 rev(rev(x)) = x

1) ||-- forall(x:Seq{T}) rev (rev x) = x (induct 2,4)
2) ||-- rev (rev e) = e (rewrite 3)
3) ||-- true (TRIV)
4) rev (rev x) = x ||-- rev (rev (x |- x’el)) = x |- x’el

(xrewrite 5)
5) rev (rev x) = x ||-- true (TRIV)
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The proof consists of 5 nodes.

Q.E.D.

4.4.19 rev(rev(x)@[y]) = y :: x

1) ||-- forall(x:Seq{T},y:T) rev ((e |- y) |-| rev x) = x |- y
(induct 2,4)

2) ||-- forall(y:T) rev ((e |- y) |-| rev e) = e |- y (rewrite 3)
3) ||-- true (TRIV)
4) forall(y:T) rev ((e |- y) |-| rev x) = x |- y

||-- forall(y:T) rev ((e |- y) |-| rev (x |- x’el)) = x |- x’el |- y
(xrewrite 5)

5) forall(y:T) rev ((e |- y) |-| rev x) = x |- y
||-- true (TRIV)

The proof consists of 5 nodes.

Q.E.D.

4.4.20 rev(rev(x)@[y]) = y :: rev(rev(x))

1) ||-- forall(x:Seq{T},y:T) rev ((e |- y) |-| rev x) =
rev (rev x) |- y (induct 2,4)

2) ||-- forall(y:T) rev ((e |- y) |-| rev e) =
rev (rev e) |- y (rewrite 3)

3) ||-- true (TRIV)
4) forall(y:T) rev ((e |- y) |-| rev x) = rev (rev x) |- y

||-- forall(y:T) rev ((e |- y) |-| rev (x |- x’el)) =
rev (rev (x |- x’el)) |- y (xrewrite 5)

5) forall(y:T) rev ((e |- y) |-| rev x) = rev (rev x) |- y
||-- true (TRIV)

The proof consists of 5 nodes.

Q.E.D.

4.4.21 len(rev(x@y)) = len(x) + len(y)

1) ||-- forall(x:Seq{T},y:Seq{T}) # (rev (x |-| y)) =
# x + # y (induct 2,8)

2) ||-- forall(y:Seq{T}) # (rev (e |-| y)) = # e + # y
(rewrite 3)

3) ||-- forall(y:Seq{T}) # (rev (e |-| y)) = # y (induct 4,6)
4) ||-- # (rev (e |-| e)) = # e (rewrite 5)
5) ||-- true (TRIV)
6) # (rev (e |-| y)) = # y ||-- # (rev (e |-| (y |- y’el))) =

# (y |- y’el) (xrewrite 7)
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7) # (rev (e |-| y)) = # y ||-- true (TRIV)
8) forall(y:Seq{T}) # (rev (x |-| y)) = # x + # y

||-- forall(y:Seq{T}) # (rev ((x |- x’el) |-| y)) =
# (x |- x’el) + # y (xrewrite 9)

9) forall(y:Seq{T}) # (rev (x |-| y)) = # x + # y
||-- true (TRIV)

The proof consists of 9 nodes.

Q.E.D.

4.4.22 len(qrev(x, [])) = len(x)

1) ||-- forall(x:Seq{T}) # (qrev (x,e)) = # x (induct 2,4)
2) ||-- # (qrev (e,e)) = # e (rewrite 3)
3) ||-- true (TRIV)
4) # (qrev (x,e)) = # x ||-- # (qrev (x |- x’el,e)) =

# (x |- x’el) (xrewrite 5)
5) # (qrev (x,e)) = # x ||-- true (TRIV)
The proof consists of 5 nodes.

Q.E.D.

4.4.23 qrev(x, y) = rev(x)@y

1) ||-- forall(x:Seq{T},y:Seq{T}) qrev (x,y) = y |-| rev x
(induct 2,4)

2) ||-- forall(y:Seq{T}) qrev (e,y) = y |-| rev e (rewrite 3)
3) ||-- true (TRIV)
4) forall(y:Seq{T}) qrev (x,y) = y |-| rev x

||-- forall(y:Seq{T}) qrev (x |- x’el,y) = y |-| rev (x |- x’el)
(xrewrite 5)

5) forall(y:Seq{T}) qrev (x,y) = y |-| rev x ||-- true (TRIV)
The proof consists of 5 nodes.

Q.E.D.

4.4.24 len(qrev(x, y)) = len(x) + len(y)

1) ||-- forall(x:Seq{T},y:Seq{T}) # (qrev (x,y)) = # x + # y
(induct 2,4)

2) ||-- forall(y:Seq{T}) # (qrev (e,y)) = # e + # y (rewrite 3)
3) ||-- true (TRIV)
4) forall(y:Seq{T}) # (qrev (x,y)) = # x + # y

||-- forall(y:Seq{T}) # (qrev (x |- x’el,y)) =
# (x |- x’el) + # y (xrewrite 5)

5) forall(y:Seq{T}) # (qrev (x,y)) = # x + # y
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||-- true (TRIV)
The proof consists of 5 nodes.

Q.E.D.

4.4.25 qrev(qrev(x, []), []) = x

1) ||-- forall(x:Seq{T}) qrev (qrev (x,e),e) = x (induct 2,4)
2) ||-- qrev (qrev (e,e),e) = e (rewrite 3)
3) ||-- true (TRIV)
4) qrev (qrev (x,e),e) = x ||-- qrev (qrev (x |- x’el,e),e) =

x |- x’el (xrewrite 5)
5) qrev (qrev (x,e),e) = x ||-- true (TRIV)
The proof consists of 5 nodes.

Q.E.D.

4.4.26 rev(qrev(x, [])) = x

1) ||-- forall(x:Seq{T}) rev (qrev (x,e)) = x (induct 2,4)
2) ||-- rev (qrev (e,e)) = e (rewrite 3)
3) ||-- true (TRIV)
4) rev (qrev (x,e)) = x ||-- rev (qrev (x |- x’el,e)) =

x |- x’el (xrewrite 5)
5) rev (qrev (x,e)) = x ||-- true (TRIV)
The proof consists of 5 nodes.

Q.E.D.

4.4.27 qrev(rev(x), []) = x

1) ||-- forall(x:Seq{T}) qrev (rev x,e) = x (induct 2,4)
2) ||-- qrev (rev e,e) = e (rewrite 3)
3) ||-- true (TRIV)
4) qrev (rev x,e) = x ||-- qrev (rev (x |- x’el),e) =

x |- x’el (xrewrite 5)
5) qrev (rev x,e) = x ||-- true (TRIV)
The proof consists of 5 nodes.

Q.E.D.

4.4.28 nth(i, nth(j, x)) = nth(j, nth(i, x))

1) ||-- forall(i:Nat,j:Nat,x:Seq{T}) nth (i,nth (j,x)) =
nth (j,nth (i,x)) (induct 2,4)
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2) ||-- forall(j:Nat,x:Seq{T}) nth (0,nth (j,x)) =
nth (j,nth (0,x)) (rewrite 3)

3) ||-- true (TRIV)
4) forall(j:Nat,x:Seq{T}) nth (i,nth (j,x)) = nth (j,nth (i,x))

||-- forall(j:Nat,x:Seq{T}) nth (S i,nth (j,x)) =
nth (j,nth (S i,x)) (xrewrite 5)

5) forall(j:Nat,x:Seq{T}) nth (i,nth (j,x)) = nth (j,nth (i,x))
||-- true (TRIV)

The proof consists of 5 nodes.

Q.E.D.

4.4.29 nth(i, nth(j, nth(k, x))) = nth(k, nth(j, nth(i, x)))

1) ||-- forall(i:Nat,j:Nat,k:Nat,x:Seq{T})
nth (i,nth (j,nth (k,x))) = nth (k,nth (j,nth (i,x)))
(induct 2,8)

2) ||-- forall(j:Nat,k:Nat,x:Seq{T}) nth (0,nth (j,nth (k,x))) =
nth (k,nth (j,nth (0,x))) (rewrite 3)

3) ||-- forall(j:Nat,k:Nat,x:Seq{T}) nth (j,nth (k,x)) =
nth (k,nth (j,x)) (induct 4,6)

4) ||-- forall(k:Nat,x:Seq{T}) nth (0,nth (k,x)) =
nth (k,nth (0,x)) (xrewrite 5)

5) ||-- true (TRIV)
6) forall(k:Nat,x:Seq{T}) nth (j,nth (k,x)) = nth (k,nth (j,x))

||-- forall(k:Nat,x:Seq{T}) nth (S j,nth (k,x)) =
nth (k,nth (S j,x)) (xrewrite 7)

7) forall(k:Nat,x:Seq{T}) nth (j,nth (k,x)) =
nth (k,nth (j,x)) ||-- true (TRIV)

8) forall(j:Nat,k:Nat,x:Seq{T}) nth (i,nth (j,nth (k,x))) =
nth (k,nth (j,nth (i,x))) ||-- forall(j:Nat,k:Nat,x:Seq{T})
nth (S i,nth (j,nth (k,x))) = nth (k,nth (j,nth (S i,x)))
(xrewrite 9)

9) forall(j:Nat,k:Nat,x:Seq{T}) nth (i,nth (j,nth (k,x))) =
nth (k,nth (j,nth (i,x))) ||-- true (TRIV)

The proof consists of 9 nodes.

Q.E.D.

4.4.30 len(isort(x)) = len(x)

1) ||-- forall(x:Seq{Int}) # (isort x) = # x (induct 2,4)
2) ||-- # (isort e) = # e (rewrite 3)
3) ||-- true (TRIV)
4) # (isort x) = # x ||-- # (isort (x |- x’el)) = # (x |- x’el)

(xrewrite 5)
5) # (isort x) = # x ||-- true (TRIV)
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The proof consists of 5 nodes.

Q.E.D.

4.4.31 sorted(isort(x))

1) ||-- forall(x:Seq{Int}) sorted (isort x) (induct 2,4)
2) ||-- sorted (isort e) (rewrite 3)
3) ||-- true (TRIV)
4) sorted (isort x) ||-- sorted (isort (x |- x’el))

(xrewrite 5)
5) sorted (isort x) ||-- true (TRIV)
The proof consists of 5 nodes.

Q.E.D.

4.5 Conclusions from the Tests

As mentioned above there is some rather fundamental differences between
SPIKE and the ABEL system, due to the fact that SPIKE is an automatic
system, while the other is an interactive one. This means, amongst others,
that the user of the ABEL system has somewhat equivalent tasks (although
not the same) to the “divergence critic” described in [Wal96]; namely, to see
when the system gets stuck, and help it along by using diverse techniques
and strategies. It also means that while the ABEL system has to take care
to keep the proof as simple and clean as possible to make it as easy as
possible for the user to follow the reasoning, SPIKE and other automatic
provers have the potential benefit of the possibility to reason in a way unfit
for human reading. Notwithstanding, it is of course a goal that the proof
system should do as much as possible without the need of user interference.

Nevertheless, we see that by using only simple commands all the the-
orems can be easily proved with the ABEL system. No real logical insight
on the part of the user was needed in the previous examples.

Compared to the results in [Wal96], the ABEL system fared as well as
could be hoped; the command sequences needed to complete the proofs
are quite simple, and as we shall see later, can to a relatively high degree be
automated.
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Chapter 5

Some Further Proof Examples

In this chapter I will present a few examples of what I hope is realistic
verification-related proofs. Some are from exams in the course IN 217 (Pro-
gram Specification and Verification) at the Department of Informatics, Uni-
versity of Oslo1; some from the compendium to IN 217. One of the design
premises for the ABEL system was that the system was to be a tool for use
in this course.

All of these proofs are constructed in insignificant time by the system;
the execution time is far dominated by the time it takes the user to operate
the system.

5.1 A Simple Switching Loop

I found this example in the solution for assignment 3-b in the 1993 exam
for IN 217. It is the proof of invariance for the following loop:

for k := 2 to n do a[1] :=: a[k] od

Here, the :=: operator is parallel assignment (swapping)—after a state-
ment of “x :=: y”, x has y’s previous value, and y has x’s. The rest of the
syntax should be trivial.

We have as invariant I :

a = a0[k − 1] a a0[1..k − 2] à a0[k..n]

and the Hoare logic rule SFOR gives us the premise:

{s ≤ k ≤ n ∧ I} a[1] :=: a[k] {Ikk+1}
1The assignments can be found on the web at

http://www.ifi.uio.no/studinf/eksamen/eksoppg/in217/
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This gives us the following verification obligation:

∀(a : Seq{T}, a0 : Seq{T}, k : Int, n : Int) 2 ≤ k ≤ n∧
a = a0[k − 1] a a0[1..k − 2] à a0[k..n]⇒

a[1→ a[k]][k → a[1]] = a0[k] a a0[1..k − 1] à a0[k + 1..n]

This seems to me to be a somewhat realistic example of verification lem-
mas, albeit a bit simple. As the following proof shows, this lemma was
proved in nine steps with the command repeat [xrewrite, induct +].

1) ||-- forall(a:Seq{T},a0:Seq{T},k:Int,n:Int) 2 <= k /\ k
<= n /\ a = a0[k - 1] -| a0[1 .. k - 2] |-| a0[k .. n] =>
a[1 -> a[k]][k -> a[1]] = a0[k] -| a0[1 .. k - 1] |-|
a0[k + 1 .. n] (xrewrite 2)

2) ||-- forall(a:Seq{T},a0:Seq{T},k:Int,n:Int)
(2 < k \/ 2 = k) /\ (k < n \/ k = n) /\ a = a0[k - 1] -|
a0[1 .. k - 2] |-| a0[k .. n] => a[1 -> a[k]][k -> a[1]] =
a0[k] -| a0[1 .. k - 1] |-| a0[k + 1 .. n] (induct 3,8)

3) ||-- forall(a0:Seq{T},k:Int,n:Int) (2 < k \/ 2 = k) /\
(k < n \/ k = n) /\ e = a0[k - 1] -| a0[1 .. k - 2] |-|
a0[k .. n] => e[1 -> e[k]][k -> e[1]] =
a0[k] -| a0[1 .. k - 1] |-| a0[k + 1 .. n] (induct 4,6)

4) ||-- forall(k:Int,n:Int) (2 < k \/ 2 = k) /\
(k < n \/ k = n) /\ e = e[k - 1] -| e[1 .. k - 2] |-|
e[k .. n] => e[1 -> e[k]][k -> e[1]] = e[k] -|
e[1 .. k - 1] |-| e[k + 1 .. n] (xrewrite 5)

5) ||-- true (TRIV)
6) forall(k:Int,n:Int) (2 < k \/ 2 = k) /\

(k < n \/ k = n) /\ e = a0[k - 1] -| a0[1 .. k - 2] |-|
a0[k .. n] => e[1 -> e[k]][k -> e[1]] = a0[k] -|
a0[1 .. k - 1] |-| a0[k + 1 .. n] ||-- forall(k:Int,n:Int)
(2 < k \/ 2 = k) /\ (k < n \/ k = n) /\ e =
(a0 |- a0’el)[k - 1] -| (a0 |- a0’el)[1 .. k - 2] |-|
(a0 |- a0’el)[k .. n] => e[1 -> e[k]][k -> e[1]] =
(a0 |- a0’el)[k] -| (a0 |- a0’el)[1 .. k - 1] |-|
(a0 |- a0’el)[k + 1 .. n] (xrewrite 7)

7) forall(k:Int,n:Int) (2 < k \/ 2 = k) /\ (k < n \/ k = n) /\
e = a0[k - 1] -| a0[1 .. k - 2] |-| a0[k .. n] =>
e[1 -> e[k]][k -> e[1]] = a0[k] -| a0[1 .. k - 1] |-|
a0[k + 1 .. n] ||-- true (TRIV)

8) forall(a0:Seq{T},k:Int,n:Int) (2 < k \/ 2 = k) /\
(k < n \/ k = n) /\ a = a0[k - 1] -| a0[1 .. k - 2] |-|
a0[k .. n] => a[1 -> a[k]][k -> a[1]] = a0[k] -|
a0[1 .. k - 1] |-| a0[k + 1 .. n]
||-- forall(a0:Seq{T},k:Int,n:Int) (2 < k \/ 2 = k) /\
(k < n \/ k = n) /\ a |- a’el = a0[k - 1] -|
a0[1 .. k - 2] |-| a0[k .. n] =>
(a |- a’el)[1 -> (a |- a’el)[k]][k -> (a |- a’el)[1]] =
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a0[k] -| a0[1 .. k - 1] |-| a0[k + 1 .. n] (xrewrite 9)
9) forall(a0:Seq{T},k:Int,n:Int) (2 < k \/ 2 = k) /\

(k < n \/ k = n) /\ a = a0[k - 1] -| a0[1 .. k - 2] |-|
a0[k .. n] => a[1 -> a[k]][k -> a[1]] = a0[k] -|
a0[1 .. k - 1] |-| a0[k + 1 .. n] ||-- true (TRIV)

The proof consists of 9 nodes.

Q.E.D.

The sequent grows rather large, partly because the ABEL system re-
writes x ≤ y into (x < y) ∨ (x = y). As we see, two inductions was needed
to complete this proof. However, if one inducts over k (currently one has
to put the variable textually first in the universal quantifier to do this), the
proof is completed in eight steps with just one induction. This exemplifies
the need for a facility for specifying which variable to induct over.

5.2 Transitivity of the Sub-Tree Relation

This proof proves transitivity of the _sub_ function from figure 3.1. The
first proof shows induction over the Tree type’s three generators, while the
second shows that using BPC from the start here generates a smaller proof.

The lemma to be proved:

∀(s, r, t : Tree{T}) s _sub_ r ∧ r _sub_ t⇒ s _sub_ t

First, starting with induction:

1) ||-- forall(s:Tree{T},r:Tree{T},t:Tree{T})
s _sub_ r /\ r _sub_ t => s _sub_ t (induct 2,8,14)

2) ||-- forall(r:Tree{T},t:Tree{T}) nil _sub_ r /\
r _sub_ t => nil _sub_ t (tall 3)

3) ||-- forall(t:Tree{T}) nil _sub_ r /\ r _sub_ t =>
nil _sub_ t (tall 4)

4) ||-- nil _sub_ r /\ r _sub_ t => nil _sub_ t (timpl 5)
5) nil _sub_ r /\ r _sub_ t ||-- nil _sub_ t (aand 6)
6) nil _sub_ r, r _sub_ t ||-- nil _sub_ t (xrewrite 7)
7) nil _sub_ r, r _sub_ t ||-- true (TRIV)
8) ||-- forall(r:Tree{T},t:Tree{T}) leaf s’el _sub_ r /\

r _sub_ t => leaf s’el _sub_ t (tall 9)
9) ||-- forall(t:Tree{T}) leaf s’el _sub_ r /\

r _sub_ t => leaf s’el _sub_ t (tall 10)
10) ||-- leaf s’el _sub_ r /\ r _sub_ t =>

leaf s’el _sub_ t (timpl 11)
11) leaf s’el _sub_ r /\ r _sub_ t ||--

leaf s’el _sub_ t (aand 12)
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12) leaf s’el _sub_ r, r _sub_ t ||--
leaf s’el _sub_ t (xrewrite 13)

13) leaf s’el _sub_ r, r _sub_ t ||-- true (TRIV)
14) forall(r:Tree{T},t:Tree{T}) s _sub_ r /\ r _sub_ t =>

s _sub_ t ||-- forall(r:Tree{T},t:Tree{T}) tree (s,s) _sub_ r /\
r _sub_ t => tree (s,s) _sub_ t (xrewrite 15)

15) forall(r:Tree{T},t:Tree{T}) s _sub_ r /\
r _sub_ t => s _sub_ t ||-- true (TRIV)

The proof consists of 15 nodes.

Q.E.D.

This proof went relatively easy, but what happens if we try starting with
bpc?

1) ||-- forall(s:Tree{T},r:Tree{T},t:Tree{T}) s _sub_ r /\
r _sub_ t => s _sub_ t (tall 2)

2) ||-- forall(r:Tree{T},t:Tree{T}) s _sub_ r /\
r _sub_ t => s _sub_ t (tall 3)

3) ||-- forall(t:Tree{T}) s _sub_ r /\ r _sub_ t =>
s _sub_ t (tall 4)

4) ||-- s _sub_ r /\ r _sub_ t => s _sub_ t (timpl 5)
5) s _sub_ r /\ r _sub_ t ||-- s _sub_ t (aand 6)
6) s _sub_ r, r _sub_ t ||-- s _sub_ t (xrewrite 7)
7) s _sub_ r, r _sub_ t ||-- true (TRIV)
The proof consists of 7 nodes.

Q.E.D.

Starting with bpc the proof is less than half the length compared to
starting with induction—while normally, using induction leads to a shorter
proof. Here, the difference in length is due to that xrewrite is able to prove
the transitivity in one step once bpc has “massaged” the sequent. How-
ever, I cannot see a simple way for the user to see before starting which
proof strategy would yield the shortest proof here—and anyway, deciding
this would probably take longer time than just trying it out.

5.3 Sequential Search for a Given Value

The following four subproofs are to be found in Example 29, p. 69 in [Lin99]
(Introduction to Hoare logic and abstract types), the compendium used to
supplement [Dah92] as curriculum for the previously mentioned course
IN 217. The proofs are taken from the verification of the following loop for
sequential search (for a given x) through an array, here adorned with Hoare
sentences:
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s := 0;
{s = 0}

L: for k := 1 to n do
{PRE}
if A[k] = x then

s := k;
exit L

fi
{POST}

od
{if 1 ≤ s ≤ n then A[s] = x else ∀(i : Nat) i ≤ n⇒ A[i] 6= x fi}

The example proposes the following pre- and postinvariants for the
loop, as shown above:

Preinvariant:

PRE: if 1 ≤ s ≤ n then A[s] = x else ∀(i : Nat) i < k ⇒ A[i] 6= x fi

Post invariant:

POST: if 1 ≤ s ≤ n then A[s] = x else ∀(i : Nat) i ≤ k ⇒ A[i] 6= x fi

Proof Burdens The FOR rule (from Hoare logic) applied to the code above
results in three proof obligations:

1. {1 ≤ k ≤ n ∧ PRE} if . . .fi{POST}

2. 1 ≤ k < n ∧ POST⇒ PREkk+1

3. 1 > n ∧ PREk1 ⇒ POSTkn

5.3.1 Proof obligation 1

The Hoare logic rule TDSHIF (top down short if) applied to proof obliga-
tion 1 above produces two new obligations,

1.1. {1 ≤ k ≤ n ∧ PRE ∧A[k] = x}s := k; exitL{POST}

1.2. 1 ≤ k ≤ n ∧ PRE ∧A[k] 6= x⇒ POST

By the Hoare rule SEQ (sequence of statements) we may further trans-
form obligation 1.1 into the two obligations

1.1.1. {1 ≤ k ≤ n ∧ PRE ∧A[k] = x} s := k {A[s] = x ∧ 1 ≤ s ≤ n}
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1.1.2. {A[s] = x ∧ 1 ≤ s ≤ n} exit L {POST}

Obligation 1.1.2 is trivially proved, so I will not include its proof here.
Obligation 1.1.1 is transformed by use of AS (assignment) and CQL (left
consequence) into

∀(k, n, s, x : Nat, A : Seq{Nat}) 1 ≤ k ≤ n∧
if 1 ≤ s ≤ n then A[s] = x else ∀(i : Nat) i < k ⇒ A[i] 6= x fi∧

A[k] = x⇒
A[k] = x ∧ 1 ≤ k ≤ n

Written out in ABEL, obligation 1.2 becomes

∀(k, n, s, x : Nat, A : Seq{Nat}) 1 ≤ k ≤ n∧
if 1 ≤ s ≤ n then A[s] = x else ∀(i : Nat) i < k ⇒ A[i] 6= x fi∧

A[k] 6= x⇒ if 1 ≤ s ≤ n then A[s] = x else ∀(i : Nat) i ≤ k ⇒ A[i] 6= x fi

Obligation 1.1.1

This proof obligation can be successfully proved in the ABEL system both
inductively and using BPC reasoning. More succinctly, both the command
repeat [xrewrite, induct +] and repeat [xrewrite, bpc] leads to success. As
can be witnessed from the following, using induction leads to significantly
fewer steps compared to BPC; however, using BPC takes less execution
time.

Induction:

1) ||-- forall(k:Nat,n:Nat,s:Nat,x:Nat,A:Seq{Nat})
1 <= k /\ k <= n /\
if 1 <= s /\ s <= n

then A[s] = x
else forall(i:Nat) i < k => A[i] =/= x

fi /\ A[k] = x => A[k] = x /\ 1 <= k /\ k <= n (xrewrite 2)
2) ||-- forall(k:Nat,n:Nat,s:Nat,x:Nat,A:Seq{Nat})

(1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ A[k] = x => A[k] = x /\ (1 < k \/ 1 = k) /\
(k < n \/ k = n) (induct 3,5)

3) ||-- forall(n:Nat,s:Nat,x:Nat,A:Seq{Nat})
(1 < 0 \/ 1 = 0) /\ (0 < n \/ 0 = n) /\
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if (1 < s \/ 1 = s) /\ (s < n \/ s = n)
then A[s] = x
else forall(i:Nat) i < 0 =>

if A[i] = x then false else true fi
fi /\ A[0] = x => A[0] = x /\ (1 < 0 \/ 1 = 0) /\
(0 < n \/ 0 = n) (xrewrite 4)

4) ||-- true (TRIV)
5) forall(n:Nat,s:Nat,x:Nat,A:Seq{Nat})

(1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ A[k] = x => A[k] = x /\ (1 < k \/ 1 = k)
/\ (k < n \/ k = n) ||--
forall(n:Nat,s:Nat,x:Nat,A:Seq{Nat})
(1 < S k \/ 1 = S k) /\ (S k < n \/ S

k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < S k =>

if A[i] = x then false else true fi
fi /\ A[S k] = x => A[S k] = x /\ (1 < S k \/ 1 = S k) /\
(S k < n \/ S k = n) (xrewrite 6)

6) forall(n:Nat,s:Nat,x:Nat,A:Seq{Nat})
(1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ A[k] = x => A[k] = x /\ (1 < k \/ 1 = k) /\
(k < n \/ k = n) ||-- true (TRIV)

The proof consists of 6 nodes.

Q.E.D.

The proof used 0.11 seconds when executed on a Sun Ultra 1 with 184
MB RAM and 167 MHz UltraSPARC CPU, running Solaris 7. This com-
puter was also used for all the subsequent timings.

BPC:

1) ||-- forall(k:Nat,n:Nat,s:Nat,x:Nat,A:Seq{Nat})
1 <= k /\ k <= n /\
if 1 <= s /\ s <= n

then A[s] = x
else forall(i:Nat) i < k => A[i] =/= x

fi /\ A[k] = x => A[k] = x /\ 1 <= k /\ k <= n (xrewrite 2)
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2) ||-- forall(k:Nat,n:Nat,s:Nat,x:Nat,A:Seq{Nat})
(1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ A[k] = x => A[k] = x /\ (1 < k \/ 1 = k) /\
(k < n \/ k = n) (tall 3)

3) ||-- forall(n:Nat,s:Nat,x:Nat,A:Seq{Nat})
(1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ A[k] = x => A[k] = x /\ (1 < k \/ 1 = k) /\
(k < n \/ k = n) (tall 4)

4) ||-- forall(s:Nat,x:Nat,A:Seq{Nat})
(1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ A[k] = x => A[k] = x /\ (1 < k \/ 1 = k) /\
(k < n \/ k = n) (tall 5)

5) ||-- forall(x:Nat,A:Seq{Nat})
(1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ A[k] = x => A[k] = x /\ (1 < k \/ 1 = k) /\
(k < n \/ k = n) (tall 6)

6) ||-- forall(A:Seq{Nat})
(1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ A[k] = x => A[k] = x /\ (1 < k \/ 1 = k) /\
(k < n \/ k = n) (tall 7)

7) ||-- (1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ A[k] = x => A[k] = x /\ (1 < k \/ 1 = k) /\
(k < n \/ k = n) (timpl 8)

8) (1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)
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then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ A[k] = x ||-- A[k] = x /\ (1 < k \/ 1 = k) /\
(k < n \/ k = n) (aand 9)

9) (1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi,
A[k] = x ||-- A[k] = x /\ (1 < k \/ 1 = k) /\
(k < n \/ k = n) (aand 10)

10) (1 < k \/ 1 = k) /\ (k < n \/ k = n),
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi,
A[k] = x ||-- A[k] = x /\ (1 < k \/ 1 = k) /\
(k < n \/ k = n) (aand 11)

11) 1 < k \/ 1 = k,
k < n \/ k = n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi,
A[k] = x ||-- A[k] = x /\ (1 < k \/ 1 = k) /\
(k < n \/ k = n) (tand 12,15)

12) 1 < k \/ 1 = k,
k < n \/ k = n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi,
A[k] = x ||-- A[k] = x /\ (1 < k \/ 1 = k) (tand 13,14)

13) 1 < k \/ 1 = k,
k < n \/ k = n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi,
A[k] = x ||-- A[k] = x (TRIV)

14) 1 < k \/ 1 = k,
k < n \/ k = n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)
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then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi,
A[k] = x ||-- 1 < k \/ 1 = k (TRIV)

15) 1 < k \/ 1 = k,
k < n \/ k = n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi,
A[k] = x ||-- k < n \/ k = n (TRIV)

The proof consists of 15 nodes.

Q.E.D.

This proof took 0.05 seconds, less than half of the inductive proof. It
was done with the command sequence (xrewrite, bpc), while the inductive
proof was done with (xrewrite, induct 1, xrewrite, xrewrite) (one rewrite per
induction step). That is, the inductive proof is shorter in the number of
steps, while the deductive proof takes less time.

Obligation 1.2

For clarity, here is the obligation repeated:

∀(k, n, s, x : Nat, A : Seq{Nat}) 1 ≤ k ≤ n∧
if 1 ≤ s ≤ n then A[s] = x else ∀(i : Nat) i < k ⇒ A[i] 6= x fi∧

A[k] 6= x⇒ if 1 ≤ s ≤ n then A[s] = x else ∀(i : Nat) i ≤ k ⇒ A[i] 6= x fi

This is a typical loop verification theorem of a somewhat inductive
nature; we want to prove that given some conditions (here, 1 ≤ k and
k ≤ n), an expression including the relation i < k implies the same ex-
pression with i ≤ k. That is, given that the loop test succeeds and another
iteration of the loop is executed, the loop invariant holds with a counter
(here i) increased by one.

1) ||-- forall(k:Nat,n:Nat,s:Nat,A:Seq{Nat},x:Nat)
1 <= k /\ k <= n /\
if 1 <= s /\ s <= n

then A[s] = x
else forall(i:Nat) i < k => A[i] =/= x

fi /\ A[k] =/= x =>
if 1 <= s /\ s <= n
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then A[s] = x
else forall(i:Nat)
i <= k => A[i] =/= x fi (xrewrite 2)

2) ||-- forall(k:Nat,n:Nat,s:Nat,A:Seq{Nat},x:Nat)
(1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ if A[k] = x then false else true fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi (induct 3,5)

3) ||-- forall(n:Nat,s:Nat,A:Seq{Nat},x:Nat)
(1 < 0 \/ 1 = 0) /\ (0 < n \/ 0 = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 0 =>

if A[i] = x then false else true fi
fi /\ if A[0] = x then false else true fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 0 \/ i = 0 =>

if A[i] = x then false else true fi
fi (xrewrite 4)

4) ||-- true (TRIV)
5) forall(n:Nat,s:Nat,A:Seq{Nat},x:Nat)

(1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ if A[k] = x then false else true fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi ||-- forall(n:Nat,s:Nat,A:Seq{Nat},x:Nat)
(1 < S k \/ 1 = S k) /\ (S k < n \/ S k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < S k =>

if A[i] = x then false else true fi
fi /\ if A[S k] = x then false else true fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < S k \/ i = S k =>
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if A[i] = x then false else true fi
fi (induct 6,8)

6) forall(n:Nat,s:Nat,A:Seq{Nat},x:Nat)
(1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ if A[k] = x then false else true fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi ||-- forall(s:Nat,A:Seq{Nat},x:Nat)
(1 < S k \/ 1 = S k) /\ (S k < 0 \/ S k =
0) /\
if (1 < s \/ 1 = s) /\ (s < 0 \/ s = 0)

then A[s] = x
else forall(i:Nat) i < S k =>

if A[i] = x then false else true fi
fi /\ if A[S k] = x then false else true fi =>
if (1 < s \/ 1 = s) /\ (s < 0 \/ s = 0)

then A[s] = x
else forall(i:Nat) i < S k \/ i = S k =>

if A[i] = x then false else true fi
fi (xrewrite 7)

7) forall(n:Nat,s:Nat,A:Seq{Nat},x:Nat)
(1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ if A[k] = x then false else true fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi ||-- true (TRIV)

8) forall(n:Nat,s:Nat,A:Seq{Nat},x:Nat)
(1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ if A[k] = x then false else true fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
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fi,
forall(s:Nat,A:Seq{Nat},x:Nat)
(1 < S k \/ 1 = S k) /\ (S k < n \/ S k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < S k =>

if A[i] = x then false else true fi
fi /\ if A[S k] = x then false else true fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < S k \/ i = S k =>

if A[i] = x then false else true fi
fi ||-- forall(s:Nat,A:Seq{Nat},x:Nat)
(1 < S k \/ 1 = S k) /\ (S k < S n \/ S k = S n) /\
if (1 < s \/ 1 = s) /\ (s < S n \/ s = S n)

then A[s] = x
else forall(i:Nat) i < S k =>

if A[i] = x then false else true fi
fi /\ if A[S k] = x then false else true fi =>
if (1 < s \/ 1 = s) /\ (s < S n \/ s = S n)

then A[s] = x
else forall(i:Nat) i < S k \/ i = S k =>

if A[i] = x then false else true fi
fi (xrewrite 9)

9) forall(n:Nat,s:Nat,A:Seq{Nat},x:Nat)
(1 < k \/ 1 = k) /\ (k < n \/ k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k =>

if A[i] = x then false else true fi
fi /\ if A[k] = x then false else true fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi,
forall(s:Nat,A:Seq{Nat},x:Nat)
(0 < k \/ 0 = k) /\ (S k < n \/ S k = n) /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < S k =>

if A[i] = x then false else true fi
fi /\ if A[S k] = x then false else true fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < S k \/ i = S k =>

if A[i] = x then false else true fi
fi ||-- true (TRIV)

The proof consists of 9 nodes.
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Q.E.D.

Execution time for this proof was 0.40 seconds on the same Ultra 1 as
above. This proof seems long because of the sheer amount of text, but is
only nine steps—the lenght is derived from the way the rewriter inflates
expressions by e.g. rewriting x ≤ y to x < y ∨ x = y, and the assumptions
introduced by the two inductions.

This proof can also be performed deductively with bpc; this proof runs
rather long at 211 steps, so I will not include it. With BPC deduction this
proof took 1.24 seconds. As this proof may seem superficially similar to the
last, it seems hard for the user to make quick guesses on whether induction
or deduction will prove fastest for a certain theorem.

One issue to note with regard to proving this theorem with bpc is that
the simple command repeat [xrewrite, bpc] does not work—at one point
(specifically, branch 1.2), applying xrewrite leads to a sequent I have not
been able to make the system prove.

5.3.2 Proof obligation 2

This obligation is the proof of loop invariance when the loop criterion is
true (i.e. the loop body has been executed at least once, and will be executed
again). It can be proved both using inductive and BPC reasoning, i.e. both
using repeat [xrewrite, induct +] and repeat [xrewrite, bpc].

The theorem:

∀(k, n, s, x : Nat, A : Seq{Nat}) 1 ≤ k < n∧
if 1 ≤ s ≤ n then A[s] = x else (∀(i : Nat) i ≤ k ⇒ A[i] 6= x) fi⇒
if 1 ≤ s ≤ n then A[s] = x else (∀(i : Nat) i < k + 1⇒ A[i] 6= x) fi

As i ≤ k is equivalent to i < k + 1, the implication is quite trivial.
However, the ABEL system has do “dig down” to these terms before being
able to prove that, hence BPC proof is (as described below) quite long.

1) ||-- forall(k:Nat,n:Nat,s:Nat,A:Seq{Nat},x:Nat)
1 <= k /\ k < n /\
if 1 <= s /\ s <= n

then A[s] = x
else forall(i:Nat) i <= k => A[i] =/= x

fi =>
if 1 <= s /\ s <= n

then A[s] = x
else forall(i:Nat) i < k + 1 => A[i] =/= x

fi (xrewrite 2)
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2) ||-- forall(k:Nat,n:Nat,s:Nat,A:Seq{Nat},x:Nat)
(1 < k \/ 1 = k) /\ k < n /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi
fi (induct 3,5)

3) ||-- forall(n:Nat,s:Nat,A:Seq{Nat},x:Nat)
(1 < 0 \/ 1 = 0) /\ 0 < n /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 0 \/ i = 0 =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 0 + 1 =>

if A[i] = x then false else true fi
fi (xrewrite 4)

4) ||-- true (TRIV)
5) forall(n:Nat,s:Nat,A:Seq{Nat},x:Nat)

(1 < k \/ 1 = k) /\ k < n /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi
fi ||-- forall(n:Nat,s:Nat,A:Seq{Nat},x:Nat)
(1 < S k \/ 1 = S k) /\ S k < n /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < S k \/ i = S k =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < S k + 1 =>

if A[i] = x then false else true fi
fi (xrewrite 6)

6) forall(n:Nat,s:Nat,A:Seq{Nat},x:Nat)
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(1 < k \/ 1 = k) /\ k < n /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi
fi ||-- true (TRIV)

The proof consists of 6 nodes.

Q.E.D.

In this proof induction is the faster technique—the system proves the
obligation inductively in six steps, using just one induction. The proof gen-
eration had an execution time of 0.37 seconds, while the system uses 176
steps and 0.92 seconds for BPC. That is, BPC is here about 2.5 times slower
than induction. I have included the BPC proof in appendix B.2.

5.3.3 Proof obligation 3

This proof shows a somewhat lengthy sequence of BPC rule applications.
The proof obligation is:

∀(k, n, s : Nat, A : Seq{T}, x : Nat) 1 > n∧
if 1 ≤ s ≤ n then A[s] = x else ∀(i : Nat) i < 1⇒ A[i] 6= x fi⇒
if 1 ≤ s ≤ n then A[s] = x else ∀(i : Nat) i ≤ n⇒ A[i] 6= x fi

Again, this theorem is quite trivial if the quantifiers are dealt with.
Handling the complexity of the theorem seems to be what makes the proof
so long; a significant number of BPC rules has to be applied to do away
with this complexity. This is reflected in that the theorem was proved with
the simple command combination repeat [xrewrite, bpc]. An inductive
proof was somewhat harder to find; by using two BPC rules the system
completed the proof with the following command sequence (this proof is
not included):

xrewrite, induct 1, xrewrite, induct 1, xrewrite, induct 1, induct 1,
timpl 1, induct 1, xrewrite, aall -1 ‘0‘, xrewrite, xrewrite, xrewrite,
xrewrite, xrewrite, xrewrite

Here follows the deductive proof:
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1) ||-- forall(k:Nat,n:Nat,s:Nat,A:Seq{Nat},x:Nat) 1 > n /\
if 1 <= s /\ s <= n

then A[s] = x
else forall(i:Nat) i < 1 => A[i] =/= x

fi =>
if 1 <= s /\ s <= n then A[s] = x else

forall(i:Nat) i <= n => A[i] =/= x fi (xrewrite 2)
2) ||-- forall(n:Nat,s:Nat,A:Seq{Nat},x:Nat) n < 1 /\

if (1 < s \/ 1 = s) /\ (s < n \/ s = n)
then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < n \/ i = n =>

if A[i] = x then false else true fi
fi (tall 3)

3) ||-- forall(s:Nat,A:Seq{Nat},x:Nat) n < 1 /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < n \/ i = n =>

if A[i] = x then false else true fi
fi (tall 4)

4) ||-- forall(A:Seq{Nat},x:Nat) n < 1 /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < n \/ i = n =>

if A[i] = x then false else true fi
fi (tall 5)

5) ||-- forall(x:Nat) n < 1 /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < n \/ i = n =>
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if A[i] = x then false else true fi
fi (tall 6)

6) ||-- n < 1 /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < n \/ i = n =>

if A[i] = x then false else true fi
fi (timpl 7)

7) n < 1 /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi ||-- if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < n \/ i = n =>

if A[i] = x then false else true fi
fi (aand 8)

8) n < 1,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi ||-- if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < n \/ i = n =>

if A[i] = x then false else true fi
fi (tif 9,62)

9) n < 1,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi ||-- (1 < s \/ 1 = s) /\ (s < n \/ s = n) =>
A[s] = x (timpl 10)

10) n < 1,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi,
(1 < s \/ 1 = s) /\ (s < n \/ s = n)
||-- A[s] = x (aand 11)

11) n < 1,
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if (1 < s \/ 1 = s) /\ (s < n \/ s = n)
then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi,
1 < s \/ 1 = s,
s < n \/ s = n ||-- A[s] = x (aor 12,37)

12) n < 1,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi,
1 < s,
s < n \/ s = n ||-- A[s] = x (aor 13,25)

13) n < 1,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi,
1 < s,
s < n ||-- A[s] = x (aif 14)

14) n < 1,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x (aimpl 15,24)

15) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x (anot 16)

16) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (tand 17,19)

17) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x, 1 < s \/ 1 = s (tor 18)

18) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
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(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x, 1 < s, 1 = s (TRIV)

19) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x, s < n \/ s = n (aimpl 20,22)

20) n < 1, ~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 < s, s < n ||-- A[s] = x, s < n \/ s = n (tor 21)

21) n < 1, ~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 < s, s < n ||-- A[s] = x, s < n, s = n (TRIV)

22) n < 1,
forall(i:Nat) i < 1 => if A[i] = x then false else true fi,
1 < s,
s < n ||-- A[s] = x, s < n \/ s = n (tor 23)

23) n < 1,
forall(i:Nat) i < 1 => if A[i] = x then false else true fi,
1 < s,
s < n ||-- A[s] = x, s < n, s = n (TRIV)

24) n < 1,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x (TRIV)

25) n < 1,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi,
1 < s,
s = n ||-- A[s] = x (aif 26)

26) n < 1,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x (aimpl 27,36)

27) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x (anot 28)

28) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
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1 < s, s = n ||-- A[s] = x,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (tand 29,31)

29) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x, 1 < s \/ 1 = s (tor 30)

30) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x, 1 < s, 1 = s (TRIV)

31) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x, s < n \/ s = n (aimpl 32,34)

32) n < 1, ~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 < s, s = n ||-- A[s] = x, s < n \/ s = n (tor 33)

33) n < 1, ~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 < s, s = n ||-- A[s] = x, s < n, s = n (TRIV)

34) n < 1,
forall(i:Nat) i < 1 => if A[i] = x then false else true fi,
1 < s,
s = n ||-- A[s] = x, s < n \/ s = n (tor 35)

35) n < 1,
forall(i:Nat) i < 1 => if A[i] = x then false else true fi,
1 < s,
s = n ||-- A[s] = x, s < n, s = n (TRIV)

36) n < 1,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x (TRIV)

37) n < 1,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi,
1 = s,
s < n \/ s = n ||-- A[s] = x (aor 38,50)

38) n < 1,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi,
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1 = s,
s < n ||-- A[s] = x (aif 39)

39) n < 1,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x (aimpl 40,49)

40) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x (anot 41)

41) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 = s, s < n ||-- A[s] = x,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (tand 42,44)

42) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x, 1 < s \/ 1 = s (tor 43)

43) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x, 1 < s, 1 = s (TRIV)

44) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x, s < n \/ s = n (aimpl 45,47)

45) n < 1, ~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 = s, s < n ||-- A[s] = x, s < n \/ s = n (tor 46)

46) n < 1, ~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 = s, s < n ||-- A[s] = x, s < n, s = n (TRIV)

47) n < 1,
forall(i:Nat) i < 1 => if A[i] = x then false else true fi,
1 = s,
s < n ||-- A[s] = x, s < n \/ s = n (tor 48)

48) n < 1,
forall(i:Nat) i < 1 => if A[i] = x then false else true fi,
1 = s,
s < n ||-- A[s] = x, s < n, s = n (TRIV)

49) n < 1,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>



5.3. SEQUENTIAL SEARCH FOR A GIVEN VALUE 71

(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x (TRIV)

50) n < 1,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi,
1 = s,
s = n ||-- A[s] = x (aif 51)

51) n < 1,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x (aimpl 52,61)

52) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x (anot 53)

53) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 = s, s = n ||-- A[s] = x,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (tand 54,56)

54) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x, 1 < s \/ 1 = s (tor 55)

55) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x, 1 < s, 1 = s (TRIV)

56) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x, s < n \/ s = n (aimpl 57,59)

57) n < 1, ~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 = s, s = n ||-- A[s] = x, s < n \/ s = n (tor 58)

58) n < 1, ~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 = s, s = n ||-- A[s] = x, s < n, s = n (TRIV)

59) n < 1,
forall(i:Nat) i < 1 => if A[i] = x then false else true fi,
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1 = s,
s = n ||-- A[s] = x, s < n \/ s = n (tor 60)

60) n < 1,
forall(i:Nat) i < 1 => if A[i] = x then false else true fi,
1 = s,
s = n ||-- A[s] = x, s < n, s = n (TRIV)

61) n < 1,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x (TRIV)

62) n < 1,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < 1 =>

if A[i] = x then false else true fi
fi ||-- ~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < n \/ i = n =>

if A[i] = x then false else true fi) (aif 63)
63) n < 1,

(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi)
||-- ~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < n \/ i = n =>

if A[i] = x then false else true fi) (timpl 64)
64) n < 1,

(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))
||-- forall(i:Nat) i < n \/ i = n =>
if A[i] = x then false else true fi (anot 65)

65) n < 1,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi)
||-- forall(i:Nat) i < n \/ i = n =>
if A[i] = x then false else true fi,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (tall 66)

66) n < 1,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi)
||-- i < n \/ i = n => if A[i] = x then false else true fi,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (timpl 67)

67) n < 1,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
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~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i < n \/ i = n ||-- if A[i] = x then false else true fi,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (tand 68,92)

68) n < 1,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i < n \/ i = n ||-- if A[i] = x then false else true fi,
1 < s \/ 1 = s (tor 69)

69) n < 1,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i < n \/ i = n ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (aor 70,90)

70) n < 1,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i < n ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (aimpl 71,88)

71) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i < n ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (anot 72)

72) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i < n ||-- if A[i] = x then false else true fi,
1 < s,
1 = s,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (tand 73,86)

73) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i < n ||-- if A[i] = x then false else true fi,
1 < s, 1 = s, 1 < s \/ 1 = s (tor 74)

74) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i < n ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (aimpl 75,80)

75) n < 1, ~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
i < n ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (anot 76)

76) n < 1, (1 < s \/ 1 = s) /\ (s < n \/ s = n), i < n
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||-- if A[i] = x then false else true fi, 1 < s,
1 = s (aand 77)

77) n < 1, 1 < s \/ 1 = s, s < n \/ s = n, i < n
||-- if A[i] = x then false else true fi, 1 < s,
1 = s (aor 78,79)

78) n < 1, 1 < s, s < n \/ s = n, i < n
||-- if A[i] = x then false else true fi,
1 < s, 1 = s (TRIV)

79) n < 1, 1 = s, s < n \/ s = n, i < n
||-- if A[i] = x then false else true fi,
1 < s, 1 = s (TRIV)

80) n < 1, forall(i:Nat) i < 1 =>
if A[i] = x then false else true fi, i < n
||-- if A[i] = x then false else true fi,
1 < s, 1 = s (tif 81,84)

81) n < 1, forall(i:Nat) i < 1 =>
if A[i] = x then false else true fi, i < n
||-- A[i] = x => false, 1 < s, 1 = s (timpl 82)

82) n < 1,
forall(i:Nat) i < 1 => if A[i] = x then false else true fi,
i < n,
A[i] = x ||-- 1 < s, 1 = s (xrewrite 83)

83) n < 1,
forall(i:Nat) i < 1 => if A[i] = x then false else true fi,
i < n,
A[i] = x ||-- true, 1 = s (TRIV)

84) n < 1, forall(i:Nat) i < 1 =>
if A[i] = x then false else true fi, i < n
||-- ~ (A[i] = x) => true, 1 < s, 1 = s (xrewrite 85)

85) n < 1, forall(i:Nat) i < 1 =>
if A[i] = x then false else true fi,
i < n ||-- true, 1 = s (TRIV)

86) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i < n ||-- if A[i] = x then false else true fi,
1 < s, 1 = s, s < n \/ s = n (xrewrite 87)

87) n < 1,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i < n ||-- if A[i] = x then false else true fi,
true, 1 = s (TRIV)

88) n < 1,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i < n ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (xrewrite 89)

89) n < 1,
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A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i < n ||-- true, 1 = s (TRIV)

90) n < 1,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i = n ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (xrewrite 91)

91) n < 1,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i = n ||-- 1 < s, true (TRIV)

92) n < 1,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i < n \/ i = n ||-- if A[i] = x then false else true fi,
s < n \/ s = n (xrewrite 93)

93) n < 1,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < 1 => if A[i] = x then false else true fi),
i < n \/ i = n ||-- if A[i] = x then false else true fi,
true (TRIV)

The proof consists of 93 nodes.

Q.E.D.

This proof was executed in 0.58 seconds on the aforementioned Ultra 1,
while a (mostly) inductive proof with the command sequence mentioned
above took 0.48 seconds.

5.4 Concluding Remarks

This concludes the tests of the ABEL proof system. We have seen that the
verification proofs for even quite simple program code segments runs fairly
long textually, but that the complexity of the expressions to be proved are
in mostly their length, and hence they can often be proved with simple
command sequences. We have also seen that even though deductive proofs
with the bpc strategy generally runs textually longer, their execution time
is comparable to those of inductive proofs. We have also seen that even
with seemingly simple theorems like those discussed in this chapter, not
all of them may be proved in a completely automatic fashion.
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Chapter 6

Evaluation

In this chapter the previously described theory, examples and system tests
are used to evaluate the ABEL system as it currently stands. First described
are some concrete problems I have encountered. Following that is a discus-
sion on how to avoid having to prove the same expression multiple times.
Finally is a discussion on two topics that are of interest in developing the
ABEL system into a verification system: strategies for further automating
of proof construction, and how to discover programming errors in the code
that is to be verified.

6.1 Problems in the ABEL System

During my testing of the system I identified a number of problems con-
cerning the following:

BPC: Sometimes one wishes to perform a number of BPC steps, followed
by induction. However, the bpc strategy will in this case also use the
tall rule, removing the universal quantifier needed for induction. In
addition, the non-constructive rules pose problems in incorporating
them in strategies.

Induction: The problems I have found with the induction module mostly
relates to the user interface, not the core induction facility. Neverthe-
less, finding remedies for these deficiencies would significantly help
the usability of the system.

Existential quantifiers: I find existential quantifiers difficult to handle in
the system in any way that does not rely completely on user inven-
tion. I will discuss whether the system may in any way do more in
the handling of these.

These problems will be examined in the following, as well as some re-
lated topics.

77
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6.1.1 The bpc Strategy

The BPC rule T∀ may, if the bpc strategy is applied uncritically, remove
a universal quantifier one later finds to be needed for induction. This is
not strictly a problem pertaining to the bpc strategy, but rather with its
interplay with the induction module.

I have identified two realistic remedies: either provide a generalisation
operator, which binds a variable in a universal quantifier if possible as de-
scribed in chapter 2; or extend the undo command to be able to revert parts
of strategy applications—i.e. the offending tall application. As it now is, the
user might have to use printproof to see the applied BPC rules, then undo
the whole bpc application, and finally reapply the sequence of used rules
up until tall before being able to perform the induction.

6.1.2 The Induction Module

The system currently only allows induction over the textually first occur-
ring variable. Induction over any of the variables bound in an outer ∀ (or
a sequence of ∀s, as that can be converted to a single ∀) should be allowed,
as their ordering is arbitrary; either by the induction command accepting
an argument of which variable to induct over, or by the system providing
a command to rearrange the ordering of the variables bound by the ∀. The
first of these alternatives seems to be the better in regard to usability.

Generalisation could perhaps be useful in situations in addition to the
one mentioned above, involving the BPC tall rule. To avoid the problems
with generalisation described in section 2.2.4, this facility could be coupled
to the induction—in practice making the induction facility able to general-
ise variables if needed before performing the induction. Furthermore, in-
duction should only be applied once to a variable in any one proof branch,
so there should be a way to avoid generalising a variable that has already
undergone induction.

6.1.3 The Existential Quantifier

One of the seemingly hardest things to prove without extensive reliance
on the user is a theorem containing an existentially quantified variable.
Constructing a proof for such a theorem often entails finding a value for
the quantified variable for which the theorem is true, but simply searching
sequentially for this value is hardly an acceptable strategy for types with
infinite value space. Furthermore some such values, especially when the
natural numbers are concerned, can seem intuitively obvious to the user,
while being very hard to discover automatically.

The ABEL system has one operation only to deal with existential quan-
tifiers, the BPC rule T∃. This rule is not constructive: it makes the sequent
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more complex, and hence must be treated with caution if included in a
strategy. This rule takes as an optional argument a term to use for instan-
tiation. Without such a term the system chooses a free variable for instan-
tiation, but this rarely leads the proof any nearer success. Hence, the user
is relied upon to supply a term for which the quantified expression is true.
Because of this, the texist rule is not part of the bpc strategy.

Automating Existential Proof Construction?

As mentioned above, one obvious strategy for automated proof of theor-
ems with existentially quantified variables is to search through the value
space of the variable for a value for which the theorem can be proved.
However, one soon realizes that this in most instances would entail the
generation of a quite enormous amount of proof branches, as the further
proof would have to be tried with each possible value until it is proved or
the value space exhausted. A simple, linear search through the value space
seems hardly to be ideal, unless the space is small—it could work well for
the boolean type, with only two variables, and in some cases also for e.g.
numbers (integers, natural numbers, etc.) if solutions involve low numbers
(as it seems natural to start the search from 0), but it seems hard to make
a general decision as to when, and for how long, one should try searching
through the value space.

Another method is to try using the terms (of the correct type) already
present in the sequent, as one of these often is the right one. However, this
is not, evidently, a general strategy.

This seems to be one of the “interesting” areas of proof construction
that are best left to the user; here the human intuition more than in most of
the other parts of theorem proving comes into its right as inherently more
effective than currently available computers.

The Relevance to Program Verification

When evaluating a system like the ABEL system—with the ultimate goal
of being an environment for program verification—a timely question to ask
when dealing with unresolved problems is, how often does this problem
occur in actual use? If the existential quantifier appears often in realistic
proof obligations we should naturally strive to make the system handle
them better, but if it occurs only rarely, maybe the effort is better spent on
other issues.

A review of a number of verification proofs—some given in various
forms as exams assignments in the course IN 217 (Program Specification
and Verification) at the Department of Informatics at the University of Oslo,
others in Dahl’s book [Dah92]—shows that existential quantifiers in fact do
not appear very often in program verification. The proofs included in this
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thesis is, I hope, also somewhat indicative; the only proof with an existen-
tial quantifier I have included can be found in Appendix B.1.

6.2 Recurring Subproofs

One way of improving the proving capabilities and speed of a theorem
prover is to save proven sequents as rewrite rules (to true) in a database
for later use when encountering this expression again. However, this is
not completely trivial—the whole environment of assumptions, including
loaded modules, will have to be saved in some way. If the loaded modules
are saved as references, the system will need to be able to identify, upon
deciding to use a saved sequent, if a module is changed to be inconsistent
with the version in use when saving this sequent.

However, significant simplification of the proof process may be accom-
plished without those problems, if one keep the saving of proved expres-
sions to within the proof under construction. In that case, the environment
of loaded modules will be the same, and assumptions will also be some-
what easier dealt with.

As using these saved expressions involves searching for a matching ex-
pression, and may be viewed as rewrite rules from the expression to true,
it seems the rewriter could be the place to put something like this. The
rewriter already uses hashing to speed up matching of rules ([Mid99] p.
38), and this functionality might possibly be used to also search in saved
theorems with no or only minor modifications.

6.2.1 What Should be Saved?

We are then left with the question of exactly what to save—there is the
complete spectrum from only the starting theorem to every expression en-
countered during a (successful) proof to choose from. How many expres-
sions to include is for a large part a question of efficiency in implement-
ation. However, it seems at least the head expressions of proof branches
should be included, as this is a middle way between all or just one; and as
it seems a plausible that those expressions, and the branches they head, is
what one would want to eliminate with this saving functionality.

6.2.2 Saving and Reusing Command Sequences

There is another possibility for tackling recurring expressions in proofs,
which also could help proving of expressions that are similar to earlier
proved expressions, but which the rewriter nevertheless fails to match. This
facility would make it possible to tell the system to apply the same proof
sequence as that which proved an earlier completed proof branch.
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6.3 Advanced Strategies

As described in section 2.2.6 in chapter 2, the strategy mechanism imple-
mented in the ABEL system supports well the relatively straightforward
command sequences required to complete the proofs of chapter 4. Here, I
will discuss how we can construct more advanced strategies, with the aims
of both automating more of the proof construction process, and construct-
ing more general tools in the hope of requiring less user proficiency in the-
orem proving. More to the point, we want to investigate the possibility of
constructing a strategy that makes a “sensible” choice between using BPC
and induction, to complete the proofs of chapters 4 and 5 without further
user intervention.

Induction seems to give shorter proofs more often, so we might try

repeat [xrewrite, induct +, bpc]

to use induction as far as possible (the plus sign signifies any one part of
the consequent), and only when induction fails try BPC. This will obviously
complete many proofs, including all where rewriting and induction alone
suffice. It does however not seem obvious to me from the examples that
this will accomplish much more than the same without bpc.

[repeat [xrewrite, induct +], undo, repeat [xrewrite, bpc]]

This command sequence includes a simple case of rollback—if the in-
ductive strategy does not work we try BPC reasoning instead. However,
this strategy is not significantly more powerful than separate strategies for
inductive and BPC-based proofs; many proofs require a combination of in-
duction and BPC, not just a choice of either one exclusively. But if we just
apply repeat to the above command we will go into an infinite rule as soon
as the inductive proof attempt fails, forever undoing and redoing the fail-
ing induction.

What we need is a means to revert to some specific place in the proof
tree and continue execution from there. This is not supported in the current
command language; I will address this below.

6.3.1 How to Choose the Right Rule

At some points in any non-trivial proof there is more than one rule that can
be applied. The way a strategy is programmed decides which path to take,
but what if this choice leads to a dead end, where another rule would lead
to success? An example I have mentioned before is the BPC rule T∀, which
instantiates a universal quantifier in the consequent—where induction also
might be applied. Sometimes use of the bpc strategy leads to a fairly long
row of BPC rules, with T∀ at or near the end. If then the proof branch fails
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and the user want to try induction instead of T∀, one has to use printproof
to see the BPC rules applied, use undo or prune to undo the whole row of
BPC rules applied, and then apply all the desired BPC rules by hand up
until T∀. There are several possible solutions to this; I will explore two in
the following.

6.3.2 Partial Undo

The first, and simpler solution is to extend the undo command to be able to
revert just some of the steps of a previously applied strategy. This would
necessitate some means of identifying the point in the proof at which one
would wish to stop the reverting—one possible method is to modify print-
proof to give each step identifying marks the user could provide as an ar-
gument to undo. Implementing this seems conceptually trivial, so I will not
discuss it further.

6.3.3 Automated Rollback

The second possible solution I will discuss is to make strategies that tries
to revert back to the most likely split point—a generalisation of the above
attempt to first try proof through induction, then through BPC.

As the only way to find if a branch of a proof will lead to success is to try
it out, an automatic theorem prover needs the ability to go back to points
earlier in the proof tree where choice were made between more than one
applicable rule. Now, as the present ABEL system is an interactive proof
helper, not an automatic prover, we do not need a fully successful rollback
mechanism; however, as the aim of strategies is to lessen the work of the
user of the system, it is a goal to make proof construction as automatic as
reasonably possible, or at least provide the means for the user to automate.
I.e. we want to provide a strategy mechanism that supports automating of
proofs as much as possible.

Let us examine some possible strategies with rollback. The simplest,
and most obvious, is to try all the rules (in some ordering, which would
need to take heed of things like the non-constructive BPC rules), and use
undo if none work:

repeat [all rules in some ordering, undo]

However, unless some nondeterminism was built into the order of ap-
plication of the rules this strategy is bound to loop endlessly, as the last
successful rule would just be reverted and reapplied endlessly. Addition-
ally, the undo would only revert the last proof step, while the branching
point we need to reach very well could be further back. Obviously, we
need something more elaborate, making sure not to reapply reverted rules.
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Let us examine an attempt at a strategy for proofs using both induc-
tion and BPC reasoning, and incorporating undo to repeatedly try the other
when one fails:

repeat [xrewrite, induct 1], undo, repeat [xrewrite, bpc]

The reasoning behind this command sequence is first to try inductive
proof, then BPC reasoning if inductive does not succeed. This command
sequence will work, however there is no repetition at the top level, so it
will not greatly reduce the work load for the user. To be really useful such
a command sequence would have to step back one induction application at
a time and try the bpc strategy at each intermediary step. Conversely the
sequence should do the same when BPC fails, going back one step at a time
and try induction.

6.3.4 A Rollback Mechanism Proposal

In strategy programming the purpose of a rollback mechanism must be
to go back to a certain command in a proof and make that command fail,
so as to continue with the next command in a square bracket list (which,
we recall, is a list of alternatives tried in order until one succeeds). It is
conceivable that this can be be accomplished by having a marking operator,
which puts a mark in the proof tree or something similar, and extending the
undo (or possibly prune) command to take as argument such a mark, and
make the command associated with that mark fail. An example follows:

[m1 : [c1, undo m1], c2]

Here c1 would be a command sequence. If c1 fails to complete the proof
undo would prune off this proof branch and instead try c2.

This kind of control is crucial to the development of more automatic
strategies, as I have experienced that no simple strategy without rollback
could complete all the proofs in this thesis.

6.4 How to Discover Errors

As mentioned earlier, the ABEL system is not meant as a theorem prover for
mathematical theorems, but rather for verification of programming code.
This is an important distinction: mathematicians generally only attempt
to prove theorems they believe are true, while verification systems should
try to find, and point to as accurately as possible, errors in program code.
Hence the prover part of a verification system should be able to in some
way proclaim an expression false, or at least unprovable, and preferably do
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this in a way that is as helpful as possible for identifying the unverifiable
code.

The issue of when to stop and proclaim that an expression is not a
theorem is extremely difficult; in fact it is undecidable, as can be shown
from the theory of incompleteness of axiomatic systems—a consequence of
Gödel’s theorem of incompleteness is that there exists theorems that can-
not be proven to be true. As the system does not have built-in support for
dis-proving an expression, we can, at least in principle, never say that an
expression is not a theorem, but only that the system is unable to complete
a proof for the expression.

Nevertheless, I will in the following explore what error-detection cap-
abilities may be expected in a program verification system.

6.4.1 Proof Branch Exhaustion

If the prover exhausts all possible proof branches, that is, all applicable
rules at all possible points in the proof tree have been tried, the system
can pronounce to be unable to prove the given expression. This does not
change if rules that accept user input like T∃ are applicable at some point; it
should be the user’s responsibility to explore possible applications of such
rules.

Proof branch exhaustion can obviously only be expected to occur where
there is a lessening of complexity in the theorems; the constructive BPC
rules are such a system, while ND are not; proof systems relying on ND or
similar deduction systems can generally never expect to exhaust all proof
branches.

6.4.2 Loops

If using non-constructive rules one can get loops in the proof, where the
non-constructive rules introduce complexity, while constructive rules re-
moves it again, bringing the proof back to an earlier encountered expres-
sion. This could be detected (although the trivial method of saving all ex-
pressions and searching for matches might have a performance impact),
but what the proper handling of this is does not seem obvious to me—
as the non-constructive rules mostly require user insight to lead the proof
nearer completion, the user should probably be consulted as to whether to
fail the proof upon discovery of loops.

6.4.3 Other Errors

Other errors, many of a semantic nature (syntax errors should be handled
by the parser, and never reach the prover) should also be handled in a way
that supports identification of the offending program code. One example
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is incompletely specified functions—a function f defined by generator in-
duction with the case construct is not required to handle all generators. If
f then is called in the program code to handle a generator for which it is not
defined, the system should be able to identify this as the actual problem.

6.4.4 What to Do When Failing

An unproved proof obligation implies that the proof for some part of a pro-
gram fails, and this program code has to be rewritten. A proof obligation
generator doing Hoare analysis is not implemented in the current ABEL
system, but it seems unlikely that it should pose serious problems hav-
ing such a generator do proof obligation generation in a way that allows
tracking back from a failed proof obligation to the program code section
the obligation was generated for. If e.g. the entrance proof obligation for a
loop fails, this gives the user relatively good information on what has to be
changed.

As we have seen, in practical verification we have to treat unprovable
expressions as faults. That is, we should not consider what is in reality
theorems, just what we (or rather our system) can prove.
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Chapter 7

Conclusions

We have seen that the ABEL system, as it currently stands, seems able
to prove some realistic verification proof obligations, without requiring
deep understanding of theorem proving on the user’s part. The proofs
are quite lengthy, even from relatively simple program code, but may often
be proved with rather simple command combinations. We can therefore
conclude that the ABEL system’s prover functions well as a proof checker
and proof construction helper, and could probably with relatively few ad-
ditions and modification be used in a system for effective, real-life program
verification.

We have seen some proposals on how to improve the user’s proof con-
struction efficiency with a system such as the ABEL system. Most of these
proposals deal with further automating of the proof construction process,
to reduce the system’s reliance on user guidance.

We have seen that a means to incorporate rollback into command se-
quences would enhance the power of the strategy mechanism, making it
easier to program strategies that could fully automate the construction of
all the example proofs we have examined in this thesis.

The tests presented has shown us that the theorems generated from pro-
gram verification for the most part may easily be handled with at most a
few different high-level strategies for repeated application of induction or
BPC rules (or combinations thereof). However, more advanced theorems
do indeed occur, and require adeptness at proving in the user.

7.1 The Current System

The ABEL system as it now stands supports, as we have seen, theorem
proving quite well, and the parts presently implemented would not need
much augmentation to be used in a verification system. However, the sys-
tem is presently no more than a theorem prover, and a few larger subsys-
tems will have to be implemented to make it a true verification system.
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As shown in chapter 5, verification proofs with the system often run
rather long in the number of steps, even for quite simple proof obligations.
However, the proofs may often be completed with simple strategies, and
does not take very long to execute. Hence, it seems viable in practical veri-
fication to let the system try a few simpler strategies, and only if none of
them succeed prompt the user for guidance.

7.1.1 What is Missing

While proving of theorems is, as we have seen, quite well supported by
the current ABEL system, what is still missing is the ability to process pro-
gram source code and generate verification proof obligations. While the
system has a parser and type-checker for the applicative parts of the ABEL
language, it lacks support for the imperative parts. Neither is functionality
implemented for the processing of Hoare sentences. (Hoare analysis was
implemented in older versions of the system, but is not (yet) in the current.)
In order to become a full-fledged verification tool the system will have to
be extended in both these areas.

Additionally, there should be functionality in the prover for failing a
proof—at minimum the user should be able to declare a proof a failure, but
it would be preferable if the system could recognise failures as described in
section 6.4. The system should then be able to trace a failed proof obligation
back to the source code for which the obligation was generated.

7.1.2 What Could be Improved

We saw in section 6.3 that with some amendment, the command language
could support construction of strategies with more detailed control of op-
eration at failure. This would seemingly facilitate strategies that could
autonomously complete proofs for many simpler theorems where the proof
cannot be completed by induction or deduction alone. We have seen that
the proof obligations generated from verification of programs are often
somewhat large, but with a simple structure, requiring long, yet relatively
simple and tedious proofs. Even though the command sequences for the
shown proofs are not very long in isolation, one has to keep in mind that the
program code those were generated for were very simple, and that a real-
istic program would contain thousands of such, and more complex, parts.
Hence, near complete automation of proving such theorems would be de-
sirable in a verification system. Nevertheless, the system should still be
interactive, as there will be occasions when the user will have to help.

Furthermore, we have seen that an amendment to the undo command,
to make it possible to revert parts of an applied command sequence or
strategy (i.e. the last step(s) listed in printproof), would help usability in
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that it would allow reverting of an application of tall without reverting the
whole application of the bpc (or other) strategy it was part of.

Finally, we have seen that the induction facility of the current system
should be extended with an optional argument of the variable to be used
for the induction. Presently only induction on the textually first variable
in a universal quantifier is possible; while induction on the first variable
does of course not always lead to the shortest proof. However, it is not
sufficient to use the tall rule to remove the quantified variables preceding
the variable one wants to use for induction, as one could very well need to
apply induction to these outer variables at a later stage.

7.1.3 A Note on Development of Software

The current implementation of the ABEL project has grown to a size where
I find it very difficult to get to know the inside workings of the system.
One of the main reasons for this is a total lack of documentation. Even if the
various parts of the system (and, most importantly, their interfaces) are well
designed, the lack of documentation makes it very difficult to understand
how to use the system to implement new functionality.

Bastiansen writes in [Bas95] that one hopes the modularisation proper-
ties of Standard ML are powerful enough. I think they proved adequate
for the ABEL system; the most problems I have had with the code, besides
the lack of documentation, is its sheer complexity and size—coupled with,
among other things, the unfortunate ML tradition of using variable names
of no more than three characters, which I think is not a good practice in
functions of several hundred lines.

7.2 The Road Ahead

If further development of the system is undertaken, there is several starting
points, as described above. A proof obligation generator implementing
processing of Hoare logic is probably a relatively free-standing task for one
or two cand.scient. theses. Implementing support for the imperative parts
of the ABEL language should also be a reasonable undertakement.

However, it is not obvious to me that this line of research, i.e. verific-
ation of a language resembling the traditional ALGOL family, is a goal
worthy of further pursuit. IN 217, the course to which the ABEL project
has traditionally been (more or less) tightly coupled, and in which the sys-
tem has occasionally been used, has now been changed (and has changed
name to INF 220, Formal Modelling and Execution of Communicating Pro-
cesses) to teach formal modelling with Maude [CDE+]. Additionally, in
general the research in verification has shifted towards formal specification
languages (which are refined down to executable code). Those specification
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languages are either of a middle level, like the PVS language, where serious
theorem proving is still needed; or designed to be very high-level and easy
to prove correct, like the B method ([Wor96], [bco]) and TLA+ ([Lam]).

The course IN 305 (Parallel programming and operating systems) uses
Hoare logic to verify parallel programs, and a possible direction of further
development of the ABEL system would be to implement a system for use
in this course.

However, I think a natural continuation of the ABEL project, and, I be-
lieve, an interesting line of research, would be to let the system evolve with
the INF 220 course. The ABEL project has drawn on IN 217 in the past in
a way that has been beneficiary for both the project and the course, and I
believe it would likewise be beneficiary for a future project to draw on INF
220. Unless INF 220 is modified, that would mean the construction of a
system for a language similar to Maude.
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Appendix A

Standard Modules from the
ABEL System

Here are two standard modules from the ABEL system which are used in
the examples in this thesis, Int and Seq.

A.1 The Int Module

The Int module implements the integer type, and some functions.

Int ==
module

(* The integer type *)
type Int by Neg, Zero, Pos

where NPos = Neg + Zero,
NZro = Neg + Pos,
Nat = Zero + Pos

func Z : Zero
func S : Nat −→ Pos
func N : Pos −→ Neg

oneone genbas Int == Z, S, N

(* Producers *)
func succ : Int −→ Int
func pred : Int −→ Int
func neg : Int −→ Int
func abs : Int −→ Nat
func ˆ+ˆ : Int * Int −→ Int
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func ˆ−ˆ : Int * Int −→ Int
func ˆ*ˆ : Int * Int −→ Int
func ˆ_mod_ˆ : Int * Pos −→ Nat
func ˆ/ˆ : Int * NZro −→ Int

(* Observers *)
func ˆ≤ˆ : Int * Int −→ Bool
func ˆ<ˆ : Int * Int −→ Bool
func ˆ≥ˆ : Int * Int −→ Bool
func ˆ>ˆ : Int * Int −→ Bool

def succ(x) == case x of
Z −→ S(Z)

| S(x’) −→ S(S(x’))
| N(S(Z)) −→ Z
| N(S(S(x’))) −→ N(S(x’))
fo

def pred(x) == case x of Z −→ N(S(Z))
| S(x’) −→ x’ | N(x’) −→ N(S(x’)) fo

def neg x == case x of Z −→ Z | S(x) −→ N(S(x)) | N(x) −→ x fo

def abs(x) == case x of Z −→ Z | S(x) −→ S(x) | N(x) −→ x fo

def x + y == case x of
Z −→ y

| S(x’) −→ case y of
Z −→ x

| S(y’) −→ S(S((x’+y’) qua Nat ))
| N(y’) −→ x−y’
fo

| N(x’) −→ case y of
Z −→ x

| S(y’) −→ y−x’
| N(y’) −→ N((x’+y’) qua Pos)
fo

fo

def x − y == case x of
Z −→ neg y

| S(x’) −→ case y of
Z −→ S(x’)

| S(y’) −→ x’−y’
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| N(y’) −→ x+y’
fo

| N(x’) −→ case y of
Z −→ x

| S(y’) −→ pred(x−y’)
| N(y’) −→ x+y’
fo

fo

def x * y == case y of
Z −→ Z

| S(y’) −→ (x*y’)+x
| N(y’) −→ neg(x*y’)
fo

def x _mod_ y == case y of S(y) −→ case x of
Z −→ Z

| S(x’) −→ let v == x’ _mod_ S y in
if v = y then Z else S(v) fi ni

| N(x’) −→ let v == x’ _mod_ S y in
if v = Z then Z else S(y − v) fi ni

fo fo

def x / y == case y of
S(y’) −→

case x of
Z −→ Z

| S(x’) −→
let v == x’ / y in

if (x’ _mod_ y) = y’ then S v else v fi ni
| N(x’) −→ neg(x’/y)
fo

| N(y’) −→ neg(x / y’)
fo

lemmas(x,y:Int) (x+y)=(y+x)

def x < y ==
case x of

Z −→ case y of N x’ −→ false
| S(x’) −→ true | Z −→ false fo

| S(x’) −→ case y of S y’ −→ x’ < y’
| N y’ −→ false | Z −→ false fo

| N(x’) −→ case y of N y’ −→ y’ < x’
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| S y’ −→ true | Z −→ true fo
fo

def x ≤ y == (x < y) \/ (x = y)
def x ≥ y == y ≤ x
def x > y == y < x

endmodule

A.2 The Seq Module

The Seq module implements the sequence type, and some functions.

Seq ==
module

include Int

typevar T

type Seq{T} by ESeq, NESeq

func e : ESeq{T}
func ˆ`ˆ : Seq{T} * T −→ NESeq{T}

oneone genbas Seq == e, ˆ`ˆ

func ˆ −| ˆ : T * Seq{T} −→ NESeq{T}
func ˆ `| ˆ : Seq{T} * Seq{T} −→ Seq{T}
func # : Seq{T} −→ Nat
func rt : NESeq{T} −→ T
func lr : NESeq{T} −→ Seq{T}
func lt : NESeq{T} −→ T
func rr : NESeq{T} −→ Seq{T}

def x −| q == case q of e −→ e ` x | q’ ` y −→ (x −| q’) ` y fo
def q `| r == case r of e −→ q | r’ ` x −→ (q `| r’) ` x fo
def # q == case q of e −→ Z | q ` x −→ S(#q) fo
def rt(q ` x) == x
def lr(q ` x) == q
def lt(q ` x) == case q of e −→ x | q’`x −→ lt(q) fo
def rr(q ` x) == case q of e −→ e | q’` _ −→ rr(q) ` x fo

func ˆ_has_ˆ : Seq{T} * T −→ Bool
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func norep : Seq{T} −→ Bool
func sub : Seq{T} * Seq{T} −→ Bool
func head : Seq{T} * Seq{T} −→ Bool
func tail : Seq{T} * Seq{T} −→ Bool
func segm : Seq{T} −→ Seq{T} −→ Bool

def q _has_ x == case q of e −→ false
| q’ ` y −→ (x = y) \/ (q’ _has_ x) fo

def norep(q) == case q of e −→ true
| q’ ` x −→ ¬(q’ _has_ x) ∧ norep(q’)

fo
def sub(q,r) == case q of e −→ true | q’ ` x −→

case r of e −→ false | r’ ` y −→
if x = y then sub(q’,r’) else sub(q,r’) fi fo fo

def head(q,r) == (q = r) \/ case r of e −→ false
| r’ ` x −→ head(q,r’) fo

def tail(q,r) == case q of e −→ true | q’ ` x −→
case r of e −→ false | r’ ` y −→

(x = y) \/ tail(q’,r’) fo fo
def segm q r == case r of e −→ q = e | r’ ` x −→

(tail(q,r)) \/ (segm q r’) fo

func{T,U} map: (T −→ U) −→ Seq{T} −→ Seq{U}
def map f q == case q of e −→ e | q`x −→ map f q ` f x fo

func{T,U} foldl,foldr: (U * T −→ U) −→ U −→ Seq{T} −→ U
def foldl f x q == case q of e −→ x | r ` y −→ f(foldl f x r,y) fo
def foldr f x q == case q of e −→ x | r ` y −→ foldr f (f(x,y)) r fo

func tabulate : (Nat * (Int −→ T)) −→ Seq{T}
def tabulate (n,f) == case n of Z −→ e | S n’ −→ tabulate(n’,f)`f n’ fo

func ˆ[ˆ] : NESeq{T} * Pos −→ T
def (q`x)[S i] == if i= #q then x else q[S i] fi

func sb : NESeq{T} * Pos * Pos −→ T
def sb(q`x,S i,l) == if i = l then x else sb(q,S i,(pred l) as Pos) fi

func ˆ[ˆ−>ˆ] : NESeq{T} * Pos * T −→ NESeq{T}
def (q`x)[S i −> y] ==

if i = #q then q`y else (q as NESeq{T})[S i −> y] ` x fi

func ˆ[ˆ..ˆ] : Seq{T} * Pos * Nat −→ Seq{T}
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def q[i..j] ==
case q of e −→ e

| q`x −→ if i>j then e
else if j > #q then q[i..(pred j) qua Nat]`x
else q[i..(pred j) qua Nat] fi fi fo

(* Higher order *)

func sort : (T * T −→ Bool) −→ Seq{T} −→ Seq{T}
func ins : (T * T −→ Bool) −→ Seq{T} * T −→ Seq{T}

def ins less (q,x) == case q of
e −→ e`x

| q’`y −→ if less(x,y) then
ins less (q’,x) ` y

else q`x fi fo

def sort less q == case q of e −→ e
| q`x −→ ins less (sort less q,x) fo

endmodule



Appendix B

Additional Proofs

B.1 Proof of an Existentially Quantified Variable

The following is a proof of a theorem I found in the IN 217 exam from 1995.
It demonstrates proving a theorem containing an existentially quantified
variable. I have included the whole proof transcript to show a further ex-
ample, in addition to those in chapter 3, of how a proof session with the
ABEL system might typically be conducted. The theorem to be proved is:

∀(q : Seq{T}, x : Int)∃(i : Nat)((1 ≤ i) ∧ (i ≤ #q) ∧ x = q[i]) = (x ∈ set(q))

ABEL> prove forall(q:Seq{Int},x:Int) exist(i:Nat)
((1 <= i) /\ (i <= # q) /\ x = q[i]) = (x _in_ set(q))

1:

True (empty)
|-----
# 1) forall(q:Seq{Int},x:Int) (exist(i:Nat)

(1 <= i /\ i <= # q /\ x = q[i] <=> x _in_ set q))

PROVER> xrewrite

1:

True (empty)
|-----
# 1) forall(q:Seq{Int},x:Int) (exist(i:Nat)

((1 < i \/ 1 = i) /\ (i < # q \/
i = # q) /\ x = q[i] <=> x _in_ set q))

PROVER> induct 1
This yields 2 subgoals:
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1.1:

True (empty)
|-----
# 1) forall(x:Int) (exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < # e \/ i = # e) /\ x = e[i] <=> x _in_ set e))

1.2:

#-1) forall(x:Int) (exist(i:Nat) ((1 < i \/ 1 = i) /\
(i < # q \/ i = # q) /\ x = q[i] <=> x _in_ set q))

|-----
# 1) forall(x:Int) (exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < # (q |- q’el) \/ i = # (q |- q’el)) /\
x = (q |- q’el)[i] <=> x _in_ set (q |- q’el)))

1.1:

True (empty)
|-----
# 1) forall(x:Int) (exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < # e \/ i = # e) /\ x = e[i] <=> x _in_ set e))

PROVER> xrewrite

1.1:

True (empty)
|-----
# 1) forall(x:Int) (exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < 0 \/ i = 0) /\ x = e[i] <=> false))

PROVER> induct 1
This yields 3 subgoals:

1.1.1:

True (empty)
|-----
# 1) exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < 0 \/ i = 0) /\ 0 = e[i] <=> false)

1.1.2:

#-1) exist(i:Nat) ((1 < i \/ 1 = i) /\



B.1. PROOF OF ∃ 103

(i < 0 \/ i = 0) /\ x = e[i] <=> false)
|-----
# 1) exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < 0 \/ i = 0) /\ S x = e[i] <=> false)

1.1.3:

#-1) exist(i:Nat) ((1 < i \/ 1 = i) /\
(i < 0 \/ i = 0) /\ x = e[i] <=> false)

|-----
# 1) exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < 0 \/ i = 0) /\ N x = e[i] <=> false)

1.1.1:

True (empty)
|-----
# 1) exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < 0 \/ i = 0) /\ 0 = e[i] <=> false)

PROVER> xrewrite
Gives no changes.

PROVER> texist 1

1.1.1:

True (empty)
|-----
# 1) ((1 < i \/ 1 = i) /\ (i < 0 \/ i = 0) /\

0 = e[i] <=> false) \/ (exist(i:Nat) ((1 < i \/ 1 = i)
/\ (i < 0 \/ i = 0) /\ 0 = e[i] <=> false))

PROVER> xrewrite
Gives no changes.

PROVER> bpc
This yields 4 subgoals:

1.1.1.1.1.1:

#-1) 1 < i, #-2) i < 0, #-3) 0 = e[i]
|-----
# 1) exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < 0 \/ i = 0) /\ 0 = e[i] <=> false)
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PROVER> xrewrite

1.1.1.1.1.1:

#-1) 1 < i, #-2) i < 0, #-3) 0 = e[i]
|-----
# 1) false

PROVER> undo
Undoing the last proof-step.

1.1.1.1.1.1:

#-1) 1 < i, #-2) i < 0, #-3) 0 = e[i]
|-----
# 1) exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < 0 \/ i = 0) /\ 0 = e[i] <=> false)

PROVER> undo
Undoing the last proof-step.

1.1.1:

True (empty)
|-----
# 1) ((1 < i \/ 1 = i) /\ (i < 0 \/ i = 0) /\

0 = e[i] <=> false) \/
(exist(i:Nat) ((1 < i \/ 1 = i) /\
(i < 0 \/ i = 0) /\ 0 = e[i] <=> false))

PROVER> tor 1

1.1.1:

True (empty)
|-----
# 1) (1 < i \/ 1 = i) /\ (i < 0 \/ i = 0) /\

0 = e[i] <=> false,
# 2) exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < 0 \/ i = 0) /\ 0 = e[i] <=> false)

PROVER> xrewrite
Gives no changes.

PROVER> undo
Undoing the last proof-step.
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1.1.1:

True (empty)
|-----
# 1) ((1 < i \/ 1 = i) /\ (i < 0 \/ i = 0) /\

0 = e[i] <=> false) \/
(exist(i:Nat) ((1 < i \/ 1 = i) /\
(i < 0 \/ i = 0) /\ 0 = e[i] <=> false))

PROVER> undo
Undoing the last proof-step.

1.1.1:

True (empty)
|-----
# 1) exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < 0 \/ i = 0) /\ 0 = e[i] <=> false)

PROVER> texist 1 ‘2‘

1.1.1:

True (empty)
|-----
# 1) exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < 0 \/ i = 0) /\ 0 = e[i] <=> false),
# 2) (1 < 2 \/ 1 = 2) /\ (2 < 0 \/ 2 = 0) /\

0 = e[2] <=> false

PROVER> xrewrite

1.1.1:

True (empty)
|-----
# 1) exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < 0 \/ i = 0) /\ 0 = e[i] <=> false),
# 2) true
Which is trivially true!

Changing current to ’1.1.2’.

1.1.2:
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#-1) exist(i:Nat) ((1 < i \/ 1 = i) /\
(i < 0 \/ i = 0) /\ x = e[i] <=> false)

|-----
# 1) exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < 0 \/ i = 0) /\ S x = e[i] <=> false)

PROVER> xrewrite

1.1.2:

#-1) exist(i:Nat) ((1 < i \/ 1 = i) /\
(i < 0 \/ i = 0) /\ x = e[i] <=> false)

|-----
# 1) true
Which is trivially true!

Changing current to ’1.1.3’.

1.1.3:

#-1) exist(i:Nat) ((1 < i \/ 1 = i) /\
(i < 0 \/ i = 0) /\ x = e[i] <=> false)

|-----
# 1) exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < 0 \/ i = 0) /\ N x = e[i] <=> false)

PROVER> texist 1 ‘2‘

1.1.3:

#-1) exist(i:Nat) ((1 < i \/ 1 = i) /\
(i < 0 \/ i = 0) /\ x = e[i] <=> false)

|-----
# 1) exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < 0 \/ i = 0) /\ N x = e[i] <=> false),
# 2) (1 < 2 \/ 1 = 2) /\ (2 < 0 \/ 2 = 0) /\

N x = e[2] <=> false

PROVER> xrewrite

1.1.3:

#-1) exist(i:Nat) ((1 < i \/ 1 = i) /\
(i < 0 \/ i = 0) /\ x = e[i] <=> false)

|-----
# 1) exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < 0 \/ i = 0) /\ N x = e[i] <=> false),
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# 2) true
Which is trivially true!

Changing current to ’1.2’.

1.2:

#-1) forall(x:Int) (exist(i:Nat) ((1 < i \/ 1 = i) /\
(i < # q \/ i = # q) /\ x = q[i] <=> x _in_ set q))

|-----
# 1) forall(x:Int) (exist(i:Nat) ((1 < i \/ 1 = i) /\

(i < # (q |- q’el) \/ i = # (q |- q’el)) /\
x = (q |- q’el)[i] <=> x _in_ set (q |- q’el)))

PROVER> xrewrite

1.2:

#-1) forall(x:Int) (exist(i:Nat) ((1 < i \/ 1 = i) /\
(i < # q \/ i = # q) /\ x = q[i] <=> x _in_ set q))

|-----
# 1) true
Which is trivially true!

The proof consists of 14 nodes.

Q.E.D.

We see that overall this is an inductive proof; sequent 1 is split into 1.1
and 1.2 by induction. Furthermore we see in branch 1.1.1 that several at-
tempts is made using different techniques before the branch succeeds after
application of texist with substitution of ‘2‘ for the existentially quantified
variable. This substitution is also used in the application of texist in branch
1.2.

This proof can be performed quickly if one knows what to do; execution
time on a modern computer is insignificant compared to the time the user
needs to figure out the next step.

B.2 A lengthy BPC proof

Here I show a proof that runs rather long; it shows that the bpc strategy can
produce long proofs with relatively little work for the user. The theorem is
from Example 29 in [Lin99], and is
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∀(k, n, s, x : Nat, A : Seq{T})1 ≤ k ∧ k < n∧
if 1 ≤ s ∧ s ≤ n then A[s] = x else ∀(i : Nat)i ≤ k ⇒ A[i] 6= x fi⇒
if 1 ≤ s ∧ s ≤ n then A[s] = x else ∀(i : Nat)i < k + 1⇒ A[i] 6= x fi

1) ||-- forall(k:Nat,n:Nat,s:Nat,A:Seq{Nat},x:Nat)
1 <= k /\ k < n /\
if 1 <= s /\ s <= n

then A[s] = x
else forall(i:Nat) i <= k => A[i] =/= x

fi =>
if 1 <= s /\ s <= n

then A[s] = x
else forall(i:Nat) i < k + 1 => A[i] =/= x

fi (xrewrite 2)
2) ||-- forall(k:Nat,n:Nat,s:Nat,A:Seq{Nat},x:Nat)

(1 < k \/ 1 = k) /\ k < n /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi
fi (tall 3)

3) ||-- forall(n:Nat,s:Nat,A:Seq{Nat},x:Nat)
(1 < k \/ 1 = k) /\ k < n /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi
fi (tall 4)

4) ||-- forall(s:Nat,A:Seq{Nat},x:Nat)
(1 < k \/ 1 = k) /\ k < n /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
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else forall(i:Nat) i < k + 1 =>
if A[i] = x then false else true fi

fi (tall 5)
5) ||-- forall(A:Seq{Nat},x:Nat)

(1 < k \/ 1 = k) /\ k < n /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi
fi (tall 6)

6) ||-- forall(x:Nat) (1 < k \/ 1 = k) /\ k < n /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi
fi (tall 7)

7) ||-- (1 < k \/ 1 = k) /\ k < n /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi =>
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi
fi (timpl 8)

8) (1 < k \/ 1 = k) /\ k < n /\
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi ||-- if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi
fi (aand 9)

9) (1 < k \/ 1 = k) /\ k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)
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then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi ||-- if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi
fi (aand 10)

10) 1 < k \/ 1 = k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi ||-- if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi
fi (aor 11,94)

11) 1 < k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi ||-- if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi
fi (tif 12,65)

12) 1 < k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi ||-- (1 < s \/ 1 = s) /\ (s < n \/ s = n) =>
A[s] = x (timpl 13)

13) 1 < k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi,
(1 < s \/ 1 = s) /\ (s < n \/ s = n)
||-- A[s] = x (aand 14)

14) 1 < k,
k < n,
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if (1 < s \/ 1 = s) /\ (s < n \/ s = n)
then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi,
1 < s \/ 1 = s,
s < n \/ s = n ||-- A[s] = x (aor 15,40)

15) 1 < k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi,
1 < s,
s < n \/ s = n ||-- A[s] = x (aor 16,28)

16) 1 < k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi,
1 < s,
s < n ||-- A[s] = x (aif 17)

17) 1 < k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i =
k => if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x (aimpl 18,27)

18) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i =
k => if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x (anot 19)

19) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i =
k => if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x, (1 < s \/ 1 = s) /\ (s < n \/ s = n)
(tand 20,22)
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20) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i =
k => if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x, 1 < s \/ 1 = s (tor 21)

21) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i =
k => if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x, 1 < s, 1 = s (TRIV)

22) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i =
k => if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x, s < n \/ s = n (aimpl 23,25)

23) 1 < k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 < s,
s < n ||-- A[s] = x, s < n \/ s = n (tor 24)

24) 1 < k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 < s,
s < n ||-- A[s] = x, s < n, s = n (TRIV)

25) 1 < k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
1 < s,
s < n ||-- A[s] = x, s < n \/ s = n (tor 26)

26) 1 < k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
1 < s,
s < n ||-- A[s] = x, s < n, s = n (TRIV)

27) 1 < k,
k < n,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
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1 < s,
s < n ||-- A[s] = x (TRIV)

28) 1 < k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi,
1 < s,
s = n ||-- A[s] = x (aif 29)

29) 1 < k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x (aimpl 30,39)

30) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x (anot 31)

31) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x, (1 < s \/ 1 = s) /\
(s < n \/ s = n) (tand 32,34)

32) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x, 1 < s \/ 1 = s (tor 33)

33) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x, 1 < s, 1 = s (TRIV)
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34) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x, s < n \/ s = n (aimpl 35,37)

35) 1 < k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 < s,
s = n ||-- A[s] = x, s < n \/ s = n (tor 36)

36) 1 < k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 < s,
s = n ||-- A[s] = x, s < n, s = n (TRIV)

37) 1 < k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
1 < s,
s = n ||-- A[s] = x, s < n \/ s = n (tor 38)

38) 1 < k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
1 < s,
s = n ||-- A[s] = x, s < n, s = n (TRIV)

39) 1 < k,
k < n,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x (TRIV)

40) 1 < k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi,
1 = s,
s < n \/ s = n ||-- A[s] = x (aor 41,53)

41) 1 < k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)
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then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi,
1 = s,
s < n ||-- A[s] = x (aif 42)

42) 1 < k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x (aimpl 43,52)

43) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x (anot 44)

44) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x, (1 < s \/ 1 = s) /\
(s < n \/ s = n) (tand 45,47)

45) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x, 1 < s \/ 1 = s (tor 46)

46) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x, 1 < s, 1 = s (TRIV)

47) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
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1 = s,
s < n ||-- A[s] = x, s < n \/ s = n (aimpl 48,50)

48) 1 < k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 = s,
s < n ||-- A[s] = x, s < n \/ s = n (tor 49)

49) 1 < k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 = s,
s < n ||-- A[s] = x, s < n, s = n (TRIV)

50) 1 < k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
1 = s,
s < n ||-- A[s] = x, s < n \/ s = n (tor 51)

51) 1 < k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
1 = s,
s < n ||-- A[s] = x, s < n, s = n (TRIV)

52) 1 < k,
k < n,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x (TRIV)

53) 1 < k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi,
1 = s,
s = n ||-- A[s] = x (aif 54)

54) 1 < k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x (aimpl 55,64)
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55) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x (anot 56)

56) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x, (1 < s \/ 1 = s) /\
(s < n \/ s = n) (tand 57,59)

57) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x, 1 < s \/ 1 = s (tor 58)

58) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x, 1 < s, 1 = s (TRIV)

59) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x, s < n \/ s = n (aimpl 60,62)

60) 1 < k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 = s,
s = n ||-- A[s] = x, s < n \/ s = n (tor 61)

61) 1 < k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 = s,
s = n ||-- A[s] = x, s < n, s = n (TRIV)

62) 1 < k,
k < n,
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forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
1 = s,
s = n ||-- A[s] = x, s < n \/ s = n (tor 63)

63) 1 < k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
1 = s,
s = n ||-- A[s] = x, s < n, s = n (TRIV)

64) 1 < k,
k < n,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x (TRIV)

65) 1 < k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi ||-- ~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi) (aif 66)
66) 1 < k,

k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi)
||-- ~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi) (timpl 67)
67) 1 < k,

k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))
||-- forall(i:Nat) i < k + 1 =>
if A[i] = x then false else true fi (anot 68)

68) 1 < k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
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(forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi)

||-- forall(i:Nat) i < k + 1 =>
if A[i] = x then false else true fi,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (tall 69)

69) 1 < k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi)
||-- i < k + 1 => if A[i] = x then false else true fi,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (timpl 70)

70) 1 < k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (tand 71,92)

71) 1 < k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s \/ 1 = s (tor 72)

72) 1 < k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (aimpl 73,90)

73) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (anot 74)

74) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>
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if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s,
1 = s,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (tand 75,88)

75) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s, 1 < s \/ 1 = s (tor 76)

76) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (aimpl 77,82)

77) 1 < k, k < n, ~ (~ (((1 < s) \/ 1 = s) /\
(s < n \/ s = n))), i < k + 1
||-- if A[i] = x then false else true fi,
1 < s, 1 = s (anot 78)

78) 1 < k, k < n, (1 < s \/ 1 = s) /\
(s < n \/ s = n), i < k + 1
||-- if A[i] = x then false else true fi,
1 < s, 1 = s (aand 79)

79) 1 < k, k < n, 1 < s \/ 1 = s, s < n \/ s = n,
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (aor 80,81)

80) 1 < k, k < n, 1 < s, s < n \/ s = n,
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (TRIV)

81) 1 < k, k < n, 1 = s, s < n \/ s = n,
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (TRIV)

82) 1 < k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (tif 83,86)

83) 1 < k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
i < k + 1 ||-- A[i] = x => false, 1 < s, 1 = s (timpl 84)

84) 1 < k,
k < n,
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forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
i < k + 1,
A[i] = x ||-- 1 < s, 1 = s (xrewrite 85)

85) 1 < k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
i < k + 1,
A[i] = x ||-- true, 1 = s (TRIV)

86) 1 < k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
i < k + 1 ||-- ~ (A[i] = x) => true,
1 < s, 1 = s (xrewrite 87)

87) 1 < k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
i < k + 1 ||-- true, 1 = s (TRIV)

88) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s, s < n \/ s = n (xrewrite 89)

89) 1 < k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
true, 1 = s (TRIV)

90) 1 < k,
k < n,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (xrewrite 91)

91) 1 < k,
k < n,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
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i < k + 1 ||-- true, 1 = s (TRIV)
92) 1 < k,

k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
s < n \/ s = n (xrewrite 93)

93) 1 < k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||--
if A[i] = x then false else true fi, true (TRIV)

94) 1 = k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi ||-- if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi
fi (tif 95,148)

95) 1 = k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi ||-- (1 < s \/ 1 = s) /\
(s < n \/ s = n) => A[s] = x (timpl 96)

96) 1 = k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi,
(1 < s \/ 1 = s) /\ (s < n \/ s = n)
||-- A[s] = x (aand 97)

97) 1 = k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
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else forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi

fi,
1 < s \/ 1 = s,
s < n \/ s = n ||-- A[s] = x (aor 98,123)

98) 1 = k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi,
1 < s,
s < n \/ s = n ||-- A[s] = x (aor 99,111)

99) 1 = k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi,
1 < s,
s < n ||-- A[s] = x (aif 100)

100) 1 = k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x (aimpl 101,110)

101) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x (anot 102)

102) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x, (1 < s \/ 1 = s) /\
(s < n \/ s = n) (tand 103,105)

103) 1 = k,
k < n,
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~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x, 1 < s \/ 1 = s (tor 104)

104) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x, 1 < s, 1 = s (TRIV)

105) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x, s < n \/ s = n (aimpl 106,108)

106) 1 = k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 < s,
s < n ||-- A[s] = x, s < n \/ s = n (tor 107)

107) 1 = k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 < s,
s < n ||-- A[s] = x, s < n, s = n (TRIV)

108) 1 = k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
1 < s,
s < n ||-- A[s] = x, s < n \/ s = n (tor 109)

109) 1 = k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
1 < s,
s < n ||-- A[s] = x, s < n, s = n (TRIV)

110) 1 = k,
k < n,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s < n ||-- A[s] = x (TRIV)
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111) 1 = k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi,
1 < s,
s = n ||-- A[s] = x (aif 112)

112) 1 = k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x (aimpl 113,122)

113) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x (anot 114)

114) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x, (1 < s \/ 1 = s) /\
(s < n \/ s = n) (tand 115,117)

115) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x, 1 < s \/ 1 = s (tor 116)

116) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x, 1 < s, 1 = s (TRIV)

117) 1 = k,
k < n,
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~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x, s < n \/ s = n (aimpl 118,120)

118) 1 = k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 < s,
s = n ||-- A[s] = x, s < n \/ s = n (tor 119)

119) 1 = k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 < s,
s = n ||-- A[s] = x, s < n, s = n (TRIV)

120) 1 = k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
1 < s,
s = n ||-- A[s] = x, s < n \/ s = n (tor 121)

121) 1 = k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
1 < s,
s = n ||-- A[s] = x, s < n, s = n (TRIV)

122) 1 = k,
k < n,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 < s,
s = n ||-- A[s] = x (TRIV)

123) 1 = k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi,
1 = s,
s < n \/ s = n ||-- A[s] = x (aor 124,136)

124) 1 = k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>
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if A[i] = x then false else true fi
fi,
1 = s,
s < n ||-- A[s] = x (aif 125)

125) 1 = k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x (aimpl 126,135)

126) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x (anot 127)

127) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x, (1 < s \/ 1 = s) /\
(s < n \/ s = n) (tand 128,130)

128) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x, 1 < s \/ 1 = s (tor 129)

129) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x, 1 < s, 1 = s (TRIV)

130) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x, s < n \/ s = n (aimpl 131,133)
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131) 1 = k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 = s,
s < n ||-- A[s] = x, s < n \/ s = n (tor 132)

132) 1 = k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 = s,
s < n ||-- A[s] = x, s < n, s = n (TRIV)

133) 1 = k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
1 = s,
s < n ||-- A[s] = x, s < n \/ s = n (tor 134)

134) 1 = k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
1 = s,
s < n ||-- A[s] = x, s < n, s = n (TRIV)

135) 1 = k,
k < n,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s < n ||-- A[s] = x (TRIV)

136) 1 = k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi,
1 = s,
s = n ||-- A[s] = x (aif 137)

137) 1 = k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x (aimpl 138,147)

138) 1 = k,
k < n,
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~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x (anot 139)

139) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x, (1 < s \/ 1 = s) /\
(s < n \/ s = n) (tand 140,142)

140) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x, 1 < s \/ 1 = s (tor 141)

141) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x, 1 < s, 1 = s (TRIV)

142) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x, s < n \/ s = n (aimpl 143,145)

143) 1 = k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 = s,
s = n ||-- A[s] = x, s < n \/ s = n (tor 144)

144) 1 = k,
k < n,
~ (~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))),
1 = s,
s = n ||-- A[s] = x, s < n, s = n (TRIV)

145) 1 = k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
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1 = s,
s = n ||-- A[s] = x, s < n \/ s = n (tor 146)

146) 1 = k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
1 = s,
s = n ||-- A[s] = x, s < n, s = n (TRIV)

147) 1 = k,
k < n,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
1 = s,
s = n ||-- A[s] = x (TRIV)

148) 1 = k,
k < n,
if (1 < s \/ 1 = s) /\ (s < n \/ s = n)

then A[s] = x
else forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi
fi ||-- ~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi) (aif 149)
149) 1 = k,

k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi)
||-- ~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k + 1 =>

if A[i] = x then false else true fi) (timpl 150)
150) 1 = k,

k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n))
||-- forall(i:Nat) i < k + 1 =>
if A[i] = x then false else true fi (anot 151)

151) 1 = k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi)
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||-- forall(i:Nat) i < k + 1 =>
if A[i] = x then false else true fi,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (tall 152)

152) 1 = k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi)
||-- i < k + 1 => if A[i] = x then false else true fi,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (timpl 153)

153) 1 = k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (tand 154,175)

154) 1 = k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s \/ 1 = s (tor 155)

155) 1 = k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (aimpl 156,173)

156) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)),
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (anot 157)

157) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
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1 < s,
1 = s,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) (tand 158,171)

158) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s, 1 < s \/ 1 = s (tor 159)

159) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (aimpl 160,165)

160) 1 = k, k < n, ~ (~ (((1 < s) \/ 1 = s) /\
(s < n \/ s = n))), i < k + 1
||-- if A[i] = x then false else true fi,
1 < s, 1 = s (anot 161)

161) 1 = k, k < n, (1 < s \/ 1 = s) /\
(s < n \/ s = n), i < k + 1
||-- if A[i] = x then false else true fi,
1 < s, 1 = s (aand 162)

162) 1 = k, k < n, 1 < s \/ 1 = s, s < n \/ s = n,
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (aor 163,164)

163) 1 = k, k < n, 1 < s, s < n \/ s = n,
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (TRIV)

164) 1 = k, k < n, 1 = s, s < n \/ s = n,
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (TRIV)

165) 1 = k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (tif 166,169)

166) 1 = k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
i < k + 1 ||-- A[i] = x => false, 1 < s, 1 = s (timpl 167)

167) 1 = k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
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i < k + 1,
A[i] = x ||-- 1 < s, 1 = s (xrewrite 168)

168) 1 = k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
i < k + 1,
A[i] = x ||-- true (TRIV)

169) 1 = k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
i < k + 1 ||-- ~ (A[i] = x) => true,
1 < s, 1 = s (xrewrite 170)

170) 1 = k,
k < n,
forall(i:Nat) i < k \/ i = k =>
if A[i] = x then false else true fi,
i < k + 1 ||-- true (TRIV)

171) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s, s < n \/ s = n (xrewrite 172)

172) 1 = k,
k < n,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
true (TRIV)

173) 1 = k,
k < n,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
1 < s, 1 = s (xrewrite 174)

174) 1 = k,
k < n,
A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- true (TRIV)

175) 1 = k,
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k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
s < n \/ s = n (xrewrite 176)

176) 1 = k,
k < n,
(1 < s \/ 1 = s) /\ (s < n \/ s = n) => A[s] = x,
~ (((1 < s) \/ 1 = s) /\ (s < n \/ s = n)) =>
(forall(i:Nat) i < k \/ i = k =>

if A[i] = x then false else true fi),
i < k + 1 ||-- if A[i] = x then false else true fi,
true (TRIV)

The proof consists of 176 nodes.

Q.E.D.

As mentioned, even though this proof runs relatively long at 176 steps,
it is easily done in a minute or two if the user knows what to do; the user’s
work in this case is limited to applying a sequence of bpc and xrewrite. This
proof is however not automatable by the simplest strategy for BPC proofs
(with the command repeat [xrewrite, bpc]); at one point (branch 1.2 when
performing the proof; step 94 above) bpc fails if xrewrite is applied first.

This proof is not very complicated; its length derives from from the
size of the theorem. Consequently, performing this proof manually would
presumably not be very difficult step for step, but would nevertheless be
rather long-winded because of the sheer number of steps and the work
necessary to be sure not to make trivial errors.


