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ABSTRACT

It is well known that if there exists a right
invariant probability measure over an invariant
set of alternatives, then a uniformly most powerful
invariant test maximizes the average power over
these alternatives., This result is generalized to
the case when there exists only a right invariant
measure over the set of alternatives, The method
of proof is very similar to the proof of the Hunt-
Stein theorem; instead of averaging over the group
we average over the get of alternatives.



1e_Introduction. It is well known that most powerful invariant
tests have a number of optimum properties (see e.g., [5]). Among
these is the property that if there exists a right invariant pro-
bability measure over an invariant set of alternatives, then the
uniformly most powerful invariant test maximizes the average power
over these alternatives. Blackwell and Girschick ([1], pp. 233-
2%6) have given an example that suggest that in a certain sense
this may also hold in cases when there doesn't exist any invariant
probability measure over the set of alternatives., In this note we
shall prove a general result corresponding to the example of
Blackwell and Girschick,
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2._The_theorem. TLet J 8

distributions over a Fuclidean space (}:,by) dominated by a

{p 6 €0l be a family of

i

o-finite measure W , and let G be a group of transformations of
(¥ ,4) such that the induced group G of transformations of Q

leaves  invariant, Iet Py = dPe/dp .

Theorem. TLet G be transitive over  , and let 8, be a

given element of Q . Define g, by 56_16 = 8, Let g7 be a

o

o-field of subsets of Q such that for any A € oﬁ7the set of

pairs (x,8) with ggx €A is in Q¢Xf3 and for any C €% and

Z €T the set (g is in ¥, Let v be o-finite right invari-

ant measure over (.

Then given any tegt function o , there exists an almost in-

variant test function { such that for any sequence w1 < ub Cons

oo
such that w < Q, v(gﬂ) <o n§1 w =0Q and
(1) 1i Y (ontue) 0 f 11 g €T
im = or a g
s CN)

we have




. 1 : . 1
iigb;REET f Eq¥(X)av(8) > 1lim sup STy JEew(X)dv(e) .
wl’l wn

Proof. Tet
= 14 1 5
v = L sup byl Jolapg (x)auG)lav(e)
w

n

Introduce the notation P, =Py -
0

We have, see [4, Problem 16, p, 2527,
[oGIpg()anx) = Jole e, ()autx)

and hence

Y = lin sup | {ﬁ?j w(ggx)av(e)}p, (x)au(x) .
W
n
Let Uy be defined by

1
v, (%) = o(g,x)av(e)
n v(@n5g‘ 0
n
then 2% is measurable and between O and 1 ,

There exists a subsequence *an* of {wn} such that
i

(2) v = 1im |y, (o)p, (x)au(x) .

By the weak compactness theorem for test functions [4, p. 354 ]
there exists a test function ¢ and a subsequence {wn } of
i
{wn,} such that
i

Lin [ 4, (Ip, ()an() = | ¥y Goanx)

By (2)
v = Jupg(an(x)

If we can prove that ¢ is almost invariant, we would have

Lim sup gra—y) | J¥G)pg (0auG)lav(e) =
1%

n
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Lin sup [ oy [ e(ge)ar@)heg (x)a (o)

Wi

i

lim sup I -;7 {f w(X)dv(e)}Po(X)Q¢(X>

Un

[ vp, ()a (x) =

[

and the theorem follows,

Using a technique similar to that of [4, pp.

336-7] we prove

that V(x) is almost invariant by proving that for all x and

(3) ¥, (gx) -y, (x)»>0.
1

i

Tor fixed x and any integer m , let Q be partitioned into

mutually exclusive sets

B = o a < oggx) <oy +4) k=0,.00,m

where a, = (k=1)/m . It is seen from the definition of the sets

Bk that
1 v(Bw ) o o
Z k"‘?;"('u?‘;—"’ Z \T(_Tf o (ggx)av (o) < Z
k=0 k=0 kau) k=0

and analogously that

V(Bﬁwwa
% “—515"7

m m = =1
K“ B \)(( :Bkg )m w Tl) 1
1), J @(gen)av(®) - ) A TTVW) =@
k=0 o = -1 k=0 1
Bkg
from which it follows that
B v@oe)w(EBE e ),
() 1, (et ] < ), 2y L) &
We have
Iv(B1 W )-v(B g '1nwn)| Iv(Bﬁﬁwn)~v(kawn§)| v(wnAwnEA)

v(wn) v(wn)

= v(mn) *

g



By (1) this tends to zero when n =, From (4) it is now seen
that (3) holds, This completes the proof.

To see what condition (1) means, consider the Ffollowing
example, Let Q Dbe the real line, G +the translation group, V
the Lebesgue measure and w_ = [-n, n] . Then

St < L
and (1) is satisfied., If G was a group of positive scale changes
and Q the positive part of the real line, we could let Vv(C) be
equal to the Lebesgue measure of log ¢ . Then v is right in-

veriant, and with ® = [n“1, n] (1) would be satisfied.

3e. Relation to other vesults, Lehmann [5] has given four
conditions under which the uniformly most powerful invariant test”
has a number of optimum properties. His condition (ii) is not
gsatisfied for our problem, and hence his results cannot be used.

To see this consider the following situation. ILet P i=1,2

be tests such that

y ‘ f%~a if n-i is even
STy £ Bgo, (X)av(o) = | 1-5a if n-i is oda

n
where a 1is a number between O and .20 , Then

i=1,2

(5) 1im sup ?T%"T J Eemi(X)dv(O) = 1=a , 1 =1,2
n
wl’l
and

i 1 F & = -
(6) 1im sup STEZT j Eoig(@1+®2)}dV(e> = 1-3a ,
Let ¢ be a test such that

e T n o (x .
(7) 1lim sup TKEET ] Lowi(k)dv(0> = 1-2a ,

@
n




Then P, and ®, are both better than ¢1 in the sense that (5)
is greater than (7). But %(m1+m2) is not as good as { since
(6) is less than (7)., This means that Lehmann's condition (ii) is
not satisfied,

One of the optimality properties of the uniformly most power-
ful invariant test is that it maximizes the minimum power over
certain alternatives. That fact does not guarantee that there does
not exist a test which has less minimum power than the best in-
variant test but has power which exceeds the power of the best in-
variant test by a fixed amount over most of the alternative. It
follows from the theorem that this cannot happen.

TLehmann and Stein [3] proved that the uniformly most powerful
invariant test is admissible if G is a group of translations or
scale changes. Tox and Perng [2] and Perng [6] have shown that if
one of the conditions in [3] is not satisfied then the uniformly
most powerful invariant test is not necessarily admissible. But
it follows from our theorem that although the uniformly most power-

ful invariant test may not be admissible, it will maximize the

average power.
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