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ABSTRACT 

It is shovm that in the case when we can estimate 

or know the variance, the use of Daniels' halfnormal 

plot corresponds to a certain stepwise procedure where 

we at each step use an optimal or almost optimal test. 

Results are also obtained that indieates that stepwise 
regression analysis can be described in a similar wayo 
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1. Introduction. Daniels' [4] half-normal plot has found wide 

use in statistical practice, but the theoretical properties of the 

procedure is not very well kno-vm, see, e ~g. Birnbaum [ 3 J~ Daniels 

used the plot to simultaneously estimate the variance and to deter-

mine the non-null effects in 2p-q experiments. L'1 this paper we 

shall assume that the variance is k:novm or that we have an indepen-

dent estimate of the variance. We shall then show that use of the 

half-normal plot corresponds to a certain stepwise procedure where 

we at each step use an optimal test. Since we do assume that we 

know or can estimate the v.s..riance, we are only halfway to understand 

the theoretical properties of the half-normal plot. But even this 

case corresponds to situations in practice. Though we rarely know 

the variance, we can always estimate it using higher-order inter-

actions. 

~Ve shall also give a result which indicates that the technique 

used in step'v-Jise regression analysis can be described as a stepwise 

method where we at each step use an optimal test. 

2. The case with knovm variance. 

pendent normal random variables with 

Let 

EX. = 
l 

be p in de-

i=1, ••• ,p and 

common known variance a2 • The problem is to decide which (if any) 

of the ~--s are different from zero. This we shall do in a step­
l 

wise mm1ner by first determining if the ~· with the largest 
l 

absolute value is different from zero. If this is the conclusion, 

the next step is to dE:termine if the IJ.. with the largest absolute 
l 

value of the remaining p-1 IJ..-s is different from zero, and we 
l 

continue like this until the conclusion is that the remaining ~.-s 
l 

are not different from zero. We now proceed to the formal descript-

ion of the method. 
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Step 1. Let lf-l \ (1 ) < ••• < lfll (p) be the ordered absolute 

values of Consider the following hypothesis testing 

problem with p alternatives 

( 1 ) 

H1 : f..l 1 = • • • =IJ.p = 0 against K11 : \1-1. 1 \ = \1-1. \ (p) >0 or •• e or 

K1p: \1-lp \= \1-l \ (p) > 0 G 

A test of this problem has p elements where 

is the probability that the alternative K1i is accepted when x 

is observedo For a general treatment of hypothesis testing problems 

with p alternatives see, e.g., Spj0tvoll [10]. 

We shall find the test which maximizes the minimum power or the 

average power (see [10] pp. 4-5 for the definition of average power) 

over alternatives with max b. > 0 • First con-
j 

sider the problem 

* or or K • 1 1 - = 11 = 0, \IJ. \ = 6. • ••• 1p" ~1- ••• ~p-1 . p 

For each alternative * K1i we use a least favorable distribution 

with probability 1.. of the point with 1-li = -b. and 1.. of the 2 2 

point with \J.i = il • Then the ratio of the density of the obser-

* vations at K1i and the density under H1 is 

(2) i exp(-i ~-) lexp(- x. 62 ) + exp(x. ~)l 
0 2 l a l 0 2 

By [10~ Theorem 1 and remark on p~ 10] the test which maximizes the 

&verag~ power over the alternatives 

alternative corresponding to the i 

is given by accepting ~he 

for which (2) is maxi-

mized, if this ma~imum is big enough. It easily seen by differenti­

ation that (2) increases with x. when x. > 0 and decreases with 
l l 

x. when x. < 0 • Furthennore (2) is s~~etric in xl. around zero. 
l l 
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Hence (2) is maximized for the i which satisfy lx. I =max \x. I 
l j J 

and (2) greater than a constant is the same as max \xj \ greater 
j 

than a constant. 

The level a. test which maximizes the average power over the 

alternatives therefore rejects H~ if 
I 

(3) max \X. I > crm(a/2 ,p) , 
.; J 
J 

where m(a/2,p) is the upper a/2-point of the distribution of the 

maximmn of p independent standard normal random variables. 

Table 24 in [9] contains these a.-points for p from 1 to 30 

and for the usual a-values. 

with 

\X. I = max \XJ. 1 • 
l j 

is accepted. 

If (3) holds the alternative 

This test also maximizes the average power over all alternatives 

with \1--LI(p) 2: t::, ~ since it is easily seen that it has its smallest 

power over these alternatives for one of the alternatives 

* * K1i, ••• ,K1p. Any other test has smaller average power over these 

alternatives. 

Because of the symmetri of the problem the minimum powers over 

the alternatives * K1i are equal, it therefore follows that the 

test also maximizes the minimum power over alternatives with 

\1--L\(p) > 1::. (see also [10]1 the Corollory p. 10). 

If we do not reject the hypothesis H1 , we stop the step-wise 

procedure and the conclusion is that we crumot reject the hypothesis 

that all the 1--l· l 
are equal to zero. If we reject the con~lusion 

is that the 1-J.i corresponding to the index of IX. I = max \X. I is L) 
l j J 

different for zero and also the largest in absolute value of the 
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Step 2~ We now assume that the conclusion of the first step is 

correct$ Then we want to find out if any of the remaining p-1 

f..L.-s 
l 

are different from zero. Denote the remaining f..L.-s ' l 

and the corresponding random variables X1, ••• ,Xp~ 1 $ 

Th n X f v ' e 1 , • e • , Ap _1 are independent normal with and 

V X t 2 (If ar .=cr. 
J 

the conclusion of step 1 is wrong then 

Xi,···~xp~ 1 are not independent but the p-1 smallest observation 

from a random sample of p). Now consider the problem 

• • • =IJ.' p-1 ::::: 0 against or ••• or 

(4) 
K2~p-1: [f-L~-1 \=\f..L' t(p-1) ' 

where \1-1' I ( 1 ) < ••• < \1-1' \ (p- 1 ) are the ordered absolute values 

of This is analogous to the problem (1) with p-1 

instead of p • The test which maximizes the minimum and average 

power over alternatives with \P' \(p- 1 ) 2: 6. rejects when 

(5) ma..x \X.' I > om(o./2 ,p-1) , 
j J 

and accepts the alternative 

\X. f I • 
l 

corresponding to the largest 

If H2 is not rejected then the conclusion is that 1-J(p) ~ 0 

and p(1) = = p(p-1) = 0 , and the stepwise procedure stops. 

If H2 is rejected, then the conclusion is that f..L(p) ~ 0 , 

1-J(p-1) ~ 0 ~ and we have to proceed to step 3 to test the hypothesis 

H3 that the remaining p-2 IJ.i-s are equal to zero. We proceed 

like this until all hypotheses H. 
l 

som hypothesis H. 
l 

is not rejected. 

are rejected or we stop because 

If Hk is the first hypothesis 

which is not rejected, then the conclusion of the whole procedure is 

that \1-1\ (i) f; 0 , i=p, p-'l , p-k+1 and we cannot reject the hypo-

thesis \I-ll ( 1 ) = = \IJ. \ (p-k) = 0 • 
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30 Unknown variance~ Let the situation be as in Section 2, but 

let the variance o2 be unlm.own. Suppose that we have a:n estimate 

2 s of o2 such that vs2;o2 has a chi-square distribution with \) 

degrees of freedom and is independent of x1 , ••• ,xp . It seems 

natural when we use a step-wise procedure analogous to that of 

Section to replace the test statistics (3) and (5) by 

(6) max \Xj \ > S m(a/2,p,v) 
j 

and 

(7) ma:"'C lX. \ > S m (a/ 2, p-1 ~ v) , 
j J 

respectively~ where m(a/2,p,v) is the upper a/2-point of the 

distribution of 

max X. 
J 

s 
when all EX. = 0 • 

J 
To our knowledge this distribution is not tabu-

lated. If the number v of degrees of freedom is large m(a/2,p,v) 

should be close to m(a/2,p) , otherwise one should expect that 

It seems difficult to show an optimality property of the tests 

(6) and (7) in the same 'Hay as of the tests (3) and (5). They may 

not be optimal in the same sense as (3) m1d (5) as is indicated by 

a counterexample in Lehn1ann [8, pp. 1003-1006] for a situation which 

is somewhat similar to the one here. 

4. Properties of the proposed stepwise procedure.. We shall 
~ ~ 

discuss the properties in relation to the situation where o2 is 

kno"WJ.'l, but the same results and conclusions also hold when o2 is 

unknovvn. The following holds 

P{ The conclusion is f-.t 1 = • • • =\-lp = 0 when l-l1 = • • • =f-.lp == 0 l 

= 1-lp == 0 l == 1 -a 
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(8) P!One or more ~i declared different from zero when 

~ 1 = .... =!-LP = ol = P! \XI(p) > m(a./2,p) 1~ 1 = .... = ~P = ol = 

(9) PlTwo or more 11 declared different from zero when r-"i 

\P\( 1 )= ••• =IPI(:p-1 ) = 0, \P\(p) > 0\ = P!The largest of p-1 

independent N(O,a2 ) variables is greater than crm(a/2,p-1)} <a~ 

Here we have used that m(a.~p) < m(a,q_) when p < q_ • 

(10) Plk+1 or more pi 

\P \(1 )= =\1-1\(p-k) = 0 

P!~~e largest of p-k 

than crm(a/2,p-k)! =::;a 

declared different from zero when 

and 11-1\(j) > 0 j = p-k+1,.. qp.l = 

independent N(O~cr 2 ) variables is greater 

In fact (10) contains (8) and (9) as special cases. The bound a 

in ( 10) carwo t be improved upon, when \P I ( j) ~ o:::; , j = p-k+1 , ..... , p 

the probability in (10) gets as close to a as we wish. 

Stepvdse procedure where we at each step use an optimal (in some 

sense) procedure is vJGll known is statistical literature~ see, e.gq 

Anderson [2] and Lehmann [7]. Anderson is also able to show that 

his procedure has some optimality properties when one considers the 

procedure as a whole and not only each individual step. Both the 

Anderson and the Lel~~ann procedure has the de~ect that one proceeds 

to the next step if a hypothesis is not rejected. At the next step 

one then assumes that the hypothesis is true. Cleexly, there are 

cases when the hypothesis is not true, but where we have a very 

high probability of not rejecting and hence falsely going to the 

next step. In the present procedure we continue only if a hypothesis 

is rejected3 and the maximum probability of going wrongly to the 

next step is then a small number a • 
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5. A stepwise procedure in regression analysis. Let the nx1 
~ 

random y be N(X'~,cr2 I) ' where X' is a knovm nxp matrix of 

rank p • The px1 vector p is unknovm. The variance 2 is (J 

knowD~ The least square estimate 
A 

13 = (XX' )- 1xY 

of !3 is N(p,A cr2) where A= (XX')-1 • The problem is to deter-

mine which of the elements Q Q of the veoctor Q 
f-'1~···~t-'p f-' are differ-

en t from zero.. ~·o do this we shall proceed in a way similar to 

what was done in Section 2. 

Step 1. Let be the elements of The conditional 
A A A A 

distribution of [3. 
l given P(i) = (~~,..,.~[3i-1'[3i+1'u-,[3p)t is a 

"' 
normal distribution with expectation Pi+ di(f3(i)-P(i)) and 

2 2 variance ci o , where di and ci C2ill be found from the matrix 

A (see, e.g., [1] p. 28). Now consider the problem 

-B = 0 against K11.: .... -, p 

or ••• or K1p: IPp \/cp = mc:-x \f3j \/cj • 
J 

max 
j 

lf:3 -\/c · 
J J 

This is similar to the problem (1) in Section 2. As in Section 2 

we first consider the problem 

* H1 : ~ 1 = ... =Pp = 0 against K1i: \~ 1 \/c 1 =A, P2= .... =Pp = 0 

* or ••• or K1p: \Pp \/cp = !::., p1= ••• = pp-i = 0 • 

* Again we use for each alternative K1i a least favorable distri-

bution with prob::i,bility ~of the points with (3./c. =+b. • 
l l -

We can 
A A 

write the density of p1 , ••• ,pp as the product of the conditional 

density of ~- given the others, times the marginal density of 
l 

the remaining p-1 pj-s • Then~ since the latter is the same both 

* and K1i , it follows that the ratio of the densities of 



* under K1i 

ditional densities of 

density is N(~. + d! 
l l 

.... 
p. 

l 
A 

P(i)' 
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under 

c1 
2 

is equal to the ratio of the con-
-){-

K1i and H1 • The conditional 

cr2) since ~(i) = 0 both under 

* H1 and K1i ., Using the least favorable distribution we find that 

the ratio is 

Ar·guing as after (2) in Section 2 we find that the test which maxi-

mizes the average power over the alternatives 

·when 

max l 
j 

.... 
f3 .-d'. f3c,\ 

J J -~~ \ > constant 9 c. 
J 

* 

* K1i rejects 

and accepts the alternative K1 i corresponding to the index i 

which satisfy 

=max 
j 

This test does not generally maximize the average power over alter-

natives with m~~ \Pj 1/cj = ~ • 
J 

A 

It can be seen that there exist 
A 

alternatives to H1 where E(Pi - dl P(i)) == 0 and for such 

alternatives the power is equal to the level of the test. 

In the situation when A is diagonal, however~ the test maxi-

mizes the average power over all alternatives with 

Then the test is to reject 
.... 

I f3-; I 
crm(a/2,p) max ---"-- > 

j c. 
J 

and accept the alternative 
... 

I f3 · I l 
c. 

l 
" 

H 1 when 

with 

max 
j 

\f3-l/c.=~. 
J J 
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This is the procedure usually employed by stepwise methods in re­

gression ru1alysis (see, e.g., [5]), whether A is diagonal or not. 

If H1 is rejected one proceeds to step 2 with p-1 of 

~ 1 ~··~'Pp-i , and goes through a similar procedure. One continues 

until at some step the null hypothesis is not rejected. 

If o is unknown, it should be replaced by an estimate as in 

Section 2. 

Draper 1 Guttmru1 and Kanemasu [6] have studied what happens at 

a,."l individual step in stepwise regression analysis and their results 

indicate that m(a/2,p,v) is not far from the upper a/(2p)~point 

of the t-distribution with v degrees of freedom. 
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