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Consider a sample, x1 , ••• ,Xh , of size n from the distri

bution: 

and 

P(X = K) = pK 

where p = 1-q is an unknown parameter. 

It is shown that, provided n > 2 = and K ~ 2 , this experi-

ment does not admit a complete and sufficient statistic. We 

provide answers to the following problems: 

Which fw1ctions of (X1 , ••• ,Xn) minimizes at a given 

value of p , the variance among all unbiased estimators of 

their expectations? 

Which functions of (~1 , ••• ,Xn) are UMVU estimators of 

their expectations? 

Which functions of p have UMVU estimators? 

Suppose a function of p does have an UMVU estimator. 

How do we find it? 

How must n be chosen so that a given function of p has 

an UMVU estimator based on n observations? 



Introduction 

Consider a sample 1 x1 , ••• ,Xh, of size n from the distri

bution: 

and 

P(X = x) = pxq; x = 0,1, ••• ,K-1 

K P(X = K) = p 

where p = 1-q is an unknovm parameter. 

It is shown that, provided n ~ 2 and K ~ 2 , this experi

ment does not admit a complete and sufficient statistic. We 

provide answers to the following problems: 

Which functions of (x1 , ••• ,Xh) minimizes at a given value 

of p , the variance among all unbiased estimators of their 

expectations? 

Which functions of (x1 , ••• ,xn) are UMVU estimators of 

their expectations? 

Which functions of p have UMVU estimators? 

Suppose a function of p does have an UMVU a estimator. 

How do we find it? 

How must n be chosen so that a given function of p has 

an ill1VU estimator based on n observations? 

The basic results on UMVU estimation in Lehmann and Scheffe 

[1950 ; Completeness, similar regions and unbiased estimation. 

Sankhya 10, 305-340] and in Bahadur [1957; On unbiased estimates 

of Q~iformly minimum variance. Sankhya 18, 211-224] are used 

constantly and without explicit references. 



G .. 1. 

Uniformly minimrun variance unbiased estimators based on samples f~~ 

a right truncated and rigpt accumulated geometric distribution. 

Consider a factory producing items of a certain kind. The 

items are produced, one after another, on a machine. The output, 

from this machine is, provided failure does not occurs, K items 

a day. Failure, however, implies repair which makes further 

production impossible on the day of occurence. Repair will always 

be completed before the next workday, i.e. we assume that the 

machine is in working condition at the start of every workday. 

Finally it will be assumed that the conditional probability of 

failure during the production of the x-th item given that no 

previous failure has occured is q = 1-p, x = 1,2, ••• ,K. 

Let X denote the total number of items produced on a given 

day. Then - by the above assumptions -

P(X = x) = pxq; x = 0,1, ••• ,K-1 

and 

P(X = K) = pK 

We will assume below that p E ]0,1[ is totally unknovm. 

This assumption is, however, not at all essential - any infinite 

subset of [0,1] may replace ]0,1[ as parameter set in most of 

the following considerations. 

Let us first consider the experiment (If obtained by observing 

the number X of items produced on a single day. Clearly our 

experiment is a sub experiment of the complete experiment obtained 

by observing a geometrically distributed random variable Y· such 
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that P(Y = y) = pY q; y = 0,1, 2,... • It follows that ~ is 

complete and it is easily seen that a function g of p has an 

unbiased (and hence an UMVU) estimator if and only if g is 

a polynomial of degree ~ K. (Note that X is binomial when 

K = 1.) 

It will be convenient to write the distribution of X as: 

P(X = x) == pKqa(x)P t(x)- Ka(x); x = O, 1 , ••• ,K 

where a(x) = 1 or 0 as x < K or x = K and t(x) = xa(x). 

Consider now the outputs x1 , ••• ,~ on n workdays with the 

same number K. Assun1ing independence the experiment obtained is 

~ n and the joint distribution of x1' ••• ,x.n_ is given by: 

where an(x1 , ••• ,~) = a(x1 )+ ••• +a(~) and 

tn(x1, ••• ,xn) = t(x1 )+ ••• +t(~). 

It follows that the joint distribution is exponential and 

it is easily seen that Au= an(X) and Tn = bn(X), together, 

constitutes a minimal sufficient statistic. The yoint distri

bution of Au'Tn is given by: 

where 

t = 0,1, ••• ,(K-1)a,a = 0,1, ••• ,n 

CK(a,t) == #[(x1 , ••• ,xa)~O ~ xi~ K-1; i = 1, •• qa 

x 1+.u+Xa = t} 



G.3. 

when t = 0,1, ••• ,(K-1)a, a= 1,2, ••• ,n 

and 

Note that CK(a,t) ~ 1 whenever it is defined. 

In the case "K = 1 11 this reduces to the experiment 

consisting of n independent binomial trials, each having 

11 success 11probability q. In this case An is a complete 

sufficient statistic and we know that a function g of p has 

an unbiased estimator if and only if it is a polynomial of degree 

< n. 

It remains to discuss the case K ~ 2. 

It will be shown that, provided n ~ 2, the pair (An,Tn) 

is not complete, and consequently - by minimal sufficiency - that 

the model does not admit any complete and sufficient statistic. 

Let us first determine the set of statistics 5(An,Tn) which 

minimizes the variance at a given value p0 E ]0,1[ within the 

class of all unbiased estimators of Ep&(An,Tn). As a preliminary 

result we establish: 

Proposition G1. 

minimizes the variance at p 
0 

within 

the class of all unbiased estimators of E 8 (AT ) p n n if ar1d only 

if any function y(a,t) : t = 0,1, ••• ,(K-1)a, a= 1, ••• ,n 

satisfying the identity: 

0 
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also satisfies: 

( ) ( ) nX a t-Ka 
~ y a,t 5 a,t p0 q0 p0 = 0 

t,a 

where q = 1-p • 
0 0 

Proof: By the proof of theorem in Lehmarm and Stein [ J 

5 (An Tn) minimizes the variance at p0 within the class of 

unbiased estimators of EP5(~Tn) if and only if 5(~,Tn) is 

uncorrelated at p0 with any unbiased estimator of zero - and 

by some rechristening of constants - this is precisely the 

criterion above. 

It will be more convenient to rewrite this criterion as: 

Proposition G.2. 

5(~,Tn) minimizes the variance at p0 within the class of 

all unbiased estimators of ~5(~,Tn) if and only if any 

function y(a,t) : t = 0,1, ••• ,(K-1)a, a= O, ••• ,n satisfying 

the identity: 

satisfies: 

where z 
0 

=-

~ Y (a,t)z(K-1 )a-t(1+z)a = 0 
a,t 



J?roof: Follows easily by substituting 

identities appearing in proposition G.1. 

z=-.1... p in the 

For each pair (a,t) where t = 0,1, ••• ,(K-1)a and 

a= 0,1, ••• ,n put fa,t(z) = z(K-1)a-t(1+z)a. Then: 

G.5. 

0 

t' = t-(K-1) provided a~ 1 and t ~ K. (i.e. a~ 2 and 

t ~ K.) 

The set of all real valued functions y(a,t~:t = 0,1, ••• , 

(K-1 )a, a = 0, ••• ,n may be identified with RN where 

n 
N = 1 + :E f (K-1 )a+1 ] 

a=1 

= n+1+(K-1) n(n+i) 
2 

Let r denote the subspace of RN consisting of all functions 

v(a,t); t = 0,1, ••• ,(K-1)a, a= o, ••• ,n satisfying the identity: 

:E v(a,t)fa,t(z) - 0 
a,t z 



To each point (a, t) such that a ~ 1 and t ~ K 

corresponds an element 

!; (a, t) = 1 == -
a,t 

; of r defined by: 
a,t 

s (a-1, t-K+1) =- s (a-1, t-K) 
a,t a,t 

G.6. 

s (a' , t ' ) = 0 whe n 
a,t 

(a ' , t ' ) I ( (a, t ) , ( a-1 , t- K+ 1 ) , ( a-1 , t- K) l 

These functions are obviously linearily independent. Hence: 

dim r ~ ~ [(K-1 )a- (K-1) J = (K-1) n(n;1) 
a=2 

On the other hand r = V .1. where V consists of all 

functions fa,t(z); t = 0,1, ••• ,(K-1)a, a= 1, ••• ,n. Hence 

dim. r = N-dim V 

By the row-rank = column rank theorem dim V is the 

dimension of the linear space spanned by the polynomials 

fa,t; t = 0,1, ••• ,(K-1)a, a= O, ••• ,n. Hence- since the polyno-

mials nK 1,z, ••• ,z are linear combinations of the polynomials 

fa,t; t = O, ••• ,(K-1)a, a= O, ••• ,n- dim V = nK+1. It follows 

that: 

dim f = N-nK-1 = (K-1) n(n;1) 

This imply that the functions !; : t ;:;:;: K, a ~ 2 spans r. a,t 

Theorem G. 3. 

minimizes the variance at p0 = 1-q 
0 

within the 



G.?. 

class of all unbiased estimators of ~5(An,Tn) if and only if 

(§) 5 (a, t) 

when t ~ K and a ~ 2. 

Remark 1. The spac8 of estimators &(J\,Tn) which minimizes the 

variance at p0 within the class of all unbiased estimators of 

Ep&(Au,Tn) is- by (§)-isomorphic to the Kn+1 dimensional 

space of real valued functions on f(a,t) : a~ t = 0 or 

1 ~ a ~ n and 0 ~ t < K J • This is as it should be since a 

real valued function g of p has ru1 unbiased estimator (and 

among them there is a unique one minimizing the variance at p0 ) 

if and only if g is a polynomial of degree ~ n K • 

Remark 2. By (§) - any statistic &(An,Tn) which minimizes 

the variance at two values of p within the class of all unbiased 

estimators of Ep &(An,Tn) is an UMVU estimator. 

Proof of the theorem. By the considerations above &(Au,Tn) 

minimizes the variance at p0 within the class of unbiased 

estimators of EP5(An,Tn) if and only if: 

~ 
a,t 

where z0 = - ~ , when t ~ K and a ~ 2; i.e. if and only if P 0 o o 

[&(a0 ,t0 )-5(a0 -1,t 0-K+1)]p0 = 5(a0 ,t0 )-&(a0 -1,tc-K); t ~ K, 

a~ 2. 0 
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We have also obtained the following characterizations of the 

unbiased estimators of zero. 

Theorem G. 4. 

A statistic ~(Au,Tn) is an unbiased estimator of zero if 

and only if the function (a,t) --> (-1)Ka-t~(a,t)(~)CK(a,t) 

belongs to r ~ It follows that the functions 

(a,t) -> (-1 )Ka-t(~)-1 cK(a,t)- 1 r;a t (a,t) : a0 ;;;:: 2 
0' 0 

t ~ K 
0 

spans the space of unbiased estimators of zero. 

Corollary G.5. 

The space of unbiased estimators of zero considered as a sub 

space of RN has dimension = dim r _ n~n-12 ~K-12 In particular - 2 • 
t,n does not admit a complete and sufficient statistic when 

K > 2 and > n ·;;:· 2. 

The algebra of U11VU estimators is now easily obtained: 

Theorem G. 6. 

& (~, Tn) is an UMVU estimator of its expectation if 

and oliy if 5 ( 1 , 0) = 5 (a, t) when 1 ~ a < n or (a = n and 

t > Kl 
-------------------- -------

l?roof: Follows from remark 2 after theorem G.3. 0 

Corollary G. 7. 

5 (A_n, Tn) is an UJYIVU estimator of its expectation if 

and only if it is measurable w.r.t. the set algebra generated by 



the K +1 events: 

Coxolla.ry G. 8. 

.A function g of p has an UMVU estimator if and only 

if it is of the form: 

where d,d0 , ••• ,dK are constants. The UMVU 

given by Ct) is 

estimator of g 

+d I[ .] +d K-1 l~=n,Tn~K-1 K. 

Corollary G. 9. 

Let Un denote the space of expectations of UMVU 

estimators based on :n observations. Suppose n > m ~ 1. Then 

Un n Um consists of all functions of the form constant: +qn~(q) 

where t:p is a polynomial of degree ~ K-1-(n-m). Finite inter-. 

sections of sets Un may be reduced to this case since: 

r 
n un. = un n um where 

i=1 l 

m =min ni. 
i 

n=maxn. 
. l 
l 

and 
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the K +1 events: 

Corollary G.B. 

A function g of p has an UMVU 

if it is of the form: 

estimator if and only 

where d,d0 , ••• ,dK are constants. The UMVU 

given by Ct) is 

estimator of g 

+d I[ ] +d K-1 l~=n,Tn=K-1 K. 

Corollary G. 9. 

Let Un denote the space of expectations of UMVU 

estimators based on n observations. Suppose n > m ~ 1. Then 

Un n Um consists of all functions of the form constant,. +q11(f)(q) 

where cp is a polynomial of degree ~ K -1- (n-m). Finite inter-

sections of sets Un may be reduced to this case since: 

m =min ni. 
i 

where n = max n. 
i l 

and 
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Remark: Let g be a non constant function of p which has an 

UMVU estimator based on n observations for some n. Then 

we may write: 

Suppose first that n ~ 2. If c I 0 then g does not 

have a UMVU estimator based on m observations for any m I n. 

If c = 0, then g have a UMVU estimator based on m 

observations if and .only if n-[K-1-max [ i : 0 ~ i ~ K-1, 

c i I 0 J ] ~ m ~ n +min { i : 0 < i ~ K-1 , c i I 0 } • 

Suppose next that n = 1. Then we may rewrite g as: 

( ) [ I I K-1] g p ::a q co + ••• +cK-1q - +cK 

Hence g has a UMVU 

if and on1y if 

estimator based on m observations 

m ~ min [ i : 0 ~ i ~ K-1 , c i r I 0} 

It follows that the set of positive integers m such that 

g has an U}NU estimator based on m observations is an 

interval with at most K-1 points. 
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Proof: By corollary G.S, Un is the space of all fnnctions g 

of the form: 

Hence - since deg g ~ mK < nK :::: o. It follows that m 
- c q 

is a factor in the polynomial m dp +dK-cK. Hence 
mK o = d1 +drcK = d+dK-cK, so that m is a factor in q 

d (pmK_1) • Consider first the case m ~ 2. Then d = 0 so that 

n-m K-1] _ [ K-1 q [c0 +c q+ ••• +9K_1q ; d0 +d1q+ ••• +dK_1q ]. This imply 

that c. = 0 when i >K-1-(n-m). Suppose next that m = 1. It 
]_ 

follows from the identity: 

that 

form: 

c. = 0 when i > K -n = K -1-(n-m). 
]_ 

We have - so far - shown that any g E Un n Um 

g(p) = constant +qn~(q) where 

is of the 

cp is a polynomial of degree ~ K-1-(n-m), and it is easily 

seen that - conversely - any g of this form is in Un n Um• 
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Finally let n > m > 1 ~ 1 and consider a function g in 

un n ul' i.e. g is of the form 

g(p) = constant +qn~(q) where 

~ is a polynomial of degree ~ K -1- (n-1). Then qn-m cp (q) is 

a polynomial of degree ~ K -1-(m-1), i.e. g E U • Hence 
ill 

un n um n ul = un n ul' and this proves the last statement. 
0 


