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1

Efficient Pricing of Energy
Derivatives

Anders B. Trolle

1 Introduction

In order to price, hedge, and risk-manage energy derivatives, it is
critical to understand the dynamics of volatility in energy markets.
Even a cursory look at the data shows that volatility is stochastic. For
instance, over the past decade, the volatility implied from at-the-money
(ATM) options on the front-month crude oil futures contract has var-
ied between 13 percent (at the end of 2013) and 110 percent (at the
end of 2008).1 It is less obvious as to what extent volatility risk can be
hedged by trading in the commodities themselves or, more generally,
their associated futures, forward or swap contracts. In a comprehen-
sive analysis of crude oil data, Trolle and Schwartz (2009) show that
a significant component of volatility implied from options on futures
contracts cannot be hedged by trading in the futures contracts them-
selves. In other words, a significant component of volatility is “unspanned”
by the term structure of futures prices. It appears that unspanned
stochastic volatility (USV) is also an important feature of other energy
commodities.

In this chapter, I present a tractable framework, first developed in Trolle
and Schwartz (2009), for pricing energy derivatives in the presence of
USV. The model has several attractive features: First, it ensures a perfect
fit to the initial futures term structure. Second, it has a fast and accu-
rate Fourier-based pricing formula for European-style options on futures
contracts, enabling efficient calibration to liquid plain-vanilla exchange-
traded derivatives. Third, by specifying shocks to the futures term struc-
ture judiciously, the evolution of the futures curve can be described in
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terms of a low-dimensional affine state vector. This makes the model
ideally suited for pricing complex energy derivatives and real options by
simulation, where early exercise features can be handled using the least
squares Monte Carlo (LSM) approach of Longstaff and Schwartz (2001);
see, for example, Schwartz and Trolle (2010) for a real option application
of the model.

Another source of market incompleteness is discontinuous moves in
spot prices. For instance, Askari and Krichene (2008) and Larsson and
Nossman (2011) find that jumps—in addition to stochastic volatility— is
an important characteristic of crude oil prices. At the end of the chapter, I
outline an extension of the framework that takes jumps in spot prices into
account. The extended model retains the key attributes of the basic USV
model.

Throughout the chapter, I focus on the risk-neutral dynamics of the
model and efficient pricing of derivatives. Through a change of measure,
one can obtain the actual/physical dynamics of the model, which would
be relevant for risk-management applications. The change of measure also
provides information on risk premia associated with volatility risk. I refer
to Trolle and Schwartz (2009) for more discussion of these issues and to
Trolle and Schwartz (2010) for an in-depth analysis of volatility risk premia
in energy markets.

The model is based on the HJM framework of Heath et al. (1992).
Other papers that rely on the HJM framework for modeling com-
modity derivatives include Cortazar and Schwartz (1994), Miltersen
and Schwartz (1998), Crosby (2008), and Andersen (2010). Crosby
(2008) considers jumps, while Andersen (2010) considers stochastic
volatility.

An alternative approach to modeling commodity derivatives relies on
specifying the (typically affine) dynamics of a limited set of state vari-
ables and deriving futures prices endogenously. Examples of this approach
include Gibson and Schwartz (1990), Schwartz (1997), Schwartz and
Smith (2000), and Casassus and Collin-Dufresne (2005). One drawback
of this modeling approach is that it is very difficult to generate USV,
because volatility is almost invariably completely spanned by the futures
term structure.2 In contrast, in the HJM modeling approach, USV arises
naturally.

The chapter is structured as follows: Section 2 lays out notation and
explains different modeling approaches. Section 3 considers a basic HJM
model. Section 4 extends the model with USV. Section 5 describes the
pricing of options on futures contracts. Section 6 shows the effect of
model parameters on volatilities implied from options on futures con-
tracts. Section 7 extends the model with jumps in spot prices. Section 8
concludes the chapter.

Copyrighted material – 9781137377340



Copyrighted material – 9781137377340

EFFICIENT PRICING OF ENERGY DERIVATIVES 3

2 Preliminaries

Throughout the chapter, I work under the risk-neutral measure.
Furthermore, I assume that interest rates are deterministic, which is fairly
innocuous when pricing energy derivatives with short and intermediate
maturities.3 Let S(t) denote the time-t spot price of the commodity and let
F(t , T) denote the time-t price of a futures contract maturing at time T . In
commodity markets, the relation between spot and futures prices is deter-
mined by the cost of carry, which reflects interest rates, storage costs, as
well as convenience yields associated with holding the physical commod-
ity instead of a contract for future delivery of the same commodity. In
the case of a constant continuously compounded cost of carry rate, δ, the
relation between spot and futures prices is simply

F(t , T) = S(t)eδ(T−t). (1)

In the absence of arbitrage opportunities, futures prices are martingales
under the risk-neutral measure (see, e.g., Duffie [2001]) from which it

follows that 1
dt Et

[
dS(t)
S(t)

]
= δ. More generally, I let the cost of carry vary

stochastically, reflecting stochastic variation in convenience yields. Let δ(t)
denote the time-t instantaneous spot cost of carry rate. Furthermore,
let y(t , T) denote the time-t instantaneous forward cost of carry rate at
time T , defined such that futures prices are given by

F(t , T) = S(t) exp

{∫ T

t
y(t , u)du

}
. (2)

In the limit as T → t , y(t , t) = δ(t).4 It follows that the term structure
of forward cost of carry rates can be inferred from the term structure of
futures prices.

One strand of the commodity derivatives literature specifies the
dynamics of S(t) and δ(t) and derives futures prices endogenously.
Another strand takes futures prices as given and specifies the dynamics
of the entire futures curve, which is equivalent to specifying the dynamics
of S(t) and the entire forward cost of carry curve. This is the approach
taken in this chapter.

3 A Basic HJM Model

I start with a basic HJM model where S(t) and y(t , T) have the following
dynamics:
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dS(t)

S(t)
= δ(t)dt + σSdW1(t), (3)

dy(t , T) = μy(t , T)dt + σy(t , T)dW2(t), (4)

where W1(t) and W2(t) denote Wiener processes under the risk-neutral
measure with correlation ρ.

For convenience, introduce the process

Y (t , T) =
∫ T

t
y(t , u)du, (5)

the dynamics of which are given by

dY (t , T) =
(

−δ(t) +
∫ T

t
μy(t , u)du

)
dt

+
∫ T

t
σy(t , u)dudW2(t). (6)

Then, from Equation (2), F(t , T) is given by

F(t , T) = S(t)eY (t ,T) (7)

with the following dynamics:

dF(t , T)

F(t , T)
=
(∫ T

t
μy(t , u)du + 1

2

(∫ T

t
σy(t , u)du

)2

+ρσS

∫ T

t
σy(t , u)du

)
dt + σSdW1(t)

+
∫ T

t
σy(t , u)dudW2(t). (8)

Setting the drift in Equation (8) to zero (futures prices are martingales
under the risk-neutral measure) and differentiating w.r.t. T yields

μy(t , T) = −σy(t , T)

(
ρσS +

∫ T

t
σy (t , u)du

)
. (9)

This condition on the drift of y(t , T) is similar to the famous HJM drift
conditions in term structure modeling. It has the important implication
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that the drift cannot be specified exogenously but is determined by the
diffusion term, σy(t , T). This is in contrast to traditional models of com-
modity derivatives, where both the drift and diffusion terms of δ(t) can be
specified independently of each other.

The particular model depends on the choice of σy(t , T). Throughout
the chapter, I consider the following time-homogeneous specification

σy(t , T) = αe−γ (T−t). (10)

This choice has two advantages: First, it implies that long-term forward
cost of carry rates are less volatile than short-term forward cost of carry
rates, which seems intuitive. Second, the evolution of the futures curve
can be described in terms of a low-dimensional affine state vector, as I
now show. From Equation (9), it follows that the drift μy(t , T) is given by

μy(t , T) = −e−γ (T−t)
(
ρασS + α2

γ

)
+ α2

γ
e−2γ (T−t). (11)

Integrating Equation (4) and using the fact that e−γ (T−u) =
e−γ (T−t)e−γ (t−u), one obtains

y(t , T) = y(0, T) + e−γ (T−t)x(t) + α2

2γ 2
e−2γT (e2γ t − 1

)
, (12)

where

x(t) = −
∫ t

0

(
ρασS + α2

γ

)
e−γ (t−u)du +

∫ t

0
αe−γ (t−u)dW2(u). (13)

It follows that x(t) has the mean-reverting dynamics

dx(t) = γ (θ − x(t))dt + αdW2(t), x(0) = 0, (14)

where θ = − (ρασS/γ + α2/γ 2
)
. Finally, from Equation (2) and using

the fact that F(0,T)
F(0,t) = exp

{∫ T
t y(0, u)du

}
, futures prices are given by

F(t , T) = S(t)
F(0, T)

F(0, t)
exp {B(T − t)x(t) + A(t , T)}, (15)

where

B(T − t) = 1

γ

(
1 − e−γ (T−t)

)
(16)
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A(t , T) = α2

4γ 3

(
1 − e2γ t ) (e−2γT − e−2γ t

)
. (17)

This model is the HJM equivalent of the two-factor Gibson and Schwartz
(1990) model, in which the dynamics of S(t) are given by Equation (3)
and δ(t) (or, alternatively, the convenience yield) follows a mean-reverting
Gaussian process. To see the equivalence, note that δ(t) is obtained by
setting T = t in Equation (12). It is straightforward to show that the
dynamics of δ(t) are given by

dδ(t) = γ (θδ(t) − δ(t))dt + αdW2(t), x(0) = 0, (18)

with

θδ(t) = 1

γ

dy(0, t)

dt
+ y(0, t) − ρασS

γ
− α2

2γ 2

(
1 − e−2γ t ) . (19)

Therefore, the present model implies dynamics of S(t) and δ(t) that are
similar to Gibson and Schwartz (1990), with the exception that the mean-
reversion level is time-dependent, due to the model matching the initial
futures curve.

4 Stochastic Volatility

The basic HJM model has constant volatility and is not suited for the
pricing of options and other nonlinear derivatives. I now extend the
framework with stochastic volatility. The resulting model is equivalent to
the SV1 model in Trolle and Schwartz (2009). S(t) and y(t , T) have the
following dynamics:

dS(t)

S(t)
= δ(t)dt + σS

√
v(t)dW1(t) (20)

dy(t , T) = μy(t , T)dt + σy(t , T)
√

v(t)dW2(t) (21)

dv(t) = κ(θ − v(t))dt + σv

√
v(t)dW3(t), (22)

where W1(t), W2(t), and W3(t), denote correlated Wiener processes under
the risk-neutral measure, with ρ12, ρ13, and ρ23 denoting pairwise corre-
lations. This is the most general correlation structure that preserves the
tractability of the model.

The model features unspanned stochastic volatility. The dynamics of
futures prices are given by

Copyrighted material – 9781137377340
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dF(t , T)

F(t , T)
= √v(t)

(
σSdW1(t) +

∫ T

t
σy(t , u)dudW2(t)

)
. (23)

Volatility of futures prices depends on v(t), but since futures prices are
only exposed to W1(t) and W2(t), while v(t) is only exposed to W3(t),
it is immediately clear that volatility risk cannot be completely hedged by
trading in futures (or spot) contracts. To the extent that W1(t) and W2(t)
are correlated with W3(t) (i.e., ρ13 and/or ρ23 are nonzero), volatility con-
tains a spanned component, and volatility risk is partly hedgeable. If these
correlations are both zero, volatility risk is completely unhedgeable.

By going through the same steps as in Section 3, one can derive the
condition on μy(t , T) that must hold to ensure absence of arbitrage
opportunities. This condition is given by (see also Trolle and Schwartz
[2009]):

μy(t , T) = −v(t)σy (t , T)

(
ρ12σS +

∫ T

t
σy (t , u)du

)
. (24)

To model the dynamic of the futures curve in terms of a low-dimensional
affine state vector, I again assume that σy (t , T) is given by Equation (10).
In this case, y(t , T) is given by

y(t , T) = y(0, T) + αe−γ (T−t)x(t) + αe−2γ (T−t)φ(t), (25)

where

x(t) = −
∫ t

0

(
ρ12σS + α

γ

)
e−γ (t−u)v(u)du

+
∫ t

0
e−γ (t−u)

√
v(u)dW2(u) (26)

φ(t) =
∫ t

0

α

γ
e−2γ (t−u)v(u)du, (27)

with the following dynamics:

dx(t) =
(

−γ x(t) −
(
α

γ
+ ρ12σS

)
v(t)

)
dt

+√v(t)dW2(t), x(0) = 0 (28)
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dφ(t) =
(

−2γφ(t) + α

γ
v(t)

)
dt , φ(0) = 0. (29)

Consequently, futures prices are given by

F(t , T) = S(t)
F(0, T)

F(0, t)
exp {B(T − t)x(t) + C(T − t)φ(t)}, (30)

where

B(T − t) = α

γ

(
1 − e−γ (T−t)

)
, (31)

C(T − t) = α

2γ

(
1 − e−2γ (T−t)

)
. (32)

Obtaining the expression for δ(t) from Equation (25), the dynamics of the
log spot price, s(t) ≡ log(S(t)), are given by

ds(t) =
(

y(0, t) + α(x(t) + φ(t)) − 1

2
σ 2

S v(t)

)
dt

+ σS

√
v(t)dW1(t). (33)

It follows that futures prices are exponentially affine in s(t), x(t), and φ(t),
which, along with v(t), jointly constitute an affine state vector. Note that
φ(t) is an “auxiliary,” locally deterministic, state variable that captures the
path information of v(t). By augmenting the state vector with this variable,
the model becomes Markovian.

Trolle and Schwartz (2009) consider extensions of the framework with
multiple volatility factors. Those models are able to capture the empirical
observation that some shocks to volatility are transitory, while others are
more persistent.

5 Option Pricing

The pricing of European options on futures contracts is highly tractable.
I continue with the case in which σy(t , T) is given by Equation (10). For
most exchange-traded products, options expire slightly before the expiry
of the underlying futures contract.5 Let C(t , T0, T1, K) denote the time-t
price of a European call option expiring at time T0 with strike K on a
futures contract expiring at time T1. Such an option can be priced quasi-
analytically within the framework of this chapter. First, the dynamics of
the log futures price, f (t , T1) ≡ log(F(t , T1)), are given by

Copyrighted material – 9781137377340
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df (t , T1) = −1

2

(
σ 2

S + B(T1 − t)2 + 2ρ12σSB(T1 − t)
)

v(t)dt

+ √v(t) (σSdW1(t) + B(T1 − t)dW2(t)) . (34)

Next, using standard arguments, one can show that the characteristic
function of f (T0, T1) defined as

ψ(u, t , T0, T1) ≡ Et

[
eiuf (T0,T1)

]
, i = √−1 (35)

has the exponentially affine solution

ψ(u, t , T0, T1) = eM(T0−t)+N(T0−t)v(t)+iuf (t ,T1), (36)

where M(τ ) and N(τ ) solve the following system of ordinary differential
equations (ODEs)

dM(τ )

dτ
= N(τ )κθ (37)

dN(τ )

dτ
= N(τ ) (−κ + iuσv (ρ13σS + ρ23B(T1 − T0 + τ )))

+ 1

2
N(τ )2σ 2

v − 1

2
(u2 + iu)

(
σ 2

S + B(T1 − T0 + τ )2

+ 2ρ12σSB(T1 − T0 + τ )
)

(38)

subject to the boundary conditions M(0) = 0 and N(0) = 0.
Finally, following Carr and Madan (1999), one can show that the

Fourier transform of the modified call price

Ĉ(t , T0, T1, K) = eϕlog(K)C(t , T0, T1, K)

can be expressed in terms of the characteristic function of f (T0, T1).6

Consequently, the modified call price (and from that the original call
price) can be obtained by applying the Fourier inversion theorem. In
particular, C(t , T0, T1, K) is given by

C(t , T0, T1, K) = P(t , T0)
e−ϕlog(K)

π

×
∫ ∞

0
Re

[
e−iulog(K)ψ(u − (ϕ + 1)i, t , T0, T1)

ϕ2 + ϕ − u2 + i(2ϕ + 1)u

]
du,
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where P(t , T0) denotes the time-t price of a zero-coupon bond maturing
at time T0.

The pricing approach here differs from the one in Trolle and Schwartz
(2009) and has two advantages: First, it permits the use of the computa-
tionally efficient fast Fourier transform algorithm. Second, it only requires
the evaluation of one integral (as opposed to two integrals).

Note that most exchange-traded options are American, whereas our
pricing formula is for European options.7 With a large number of options,
calibration in real time is only feasible in the case of European options,
necessitating a conversion of American prices to European prices prior to
calibration. Trolle and Schwartz (2009) outline one approach for doing
this, and show that it introduces minimal biases, at least for short-to-
medium-term options that are at or out of the money.

6 Interpreting Model Parameters

Trolle and Schwartz (2009) conduct an extensive empirical analysis of the
model using a panel data set of New York Mercantile Exchange (NYMEX)
crude oil derivatives from January 1990 to May 2006 (4,082 business
days). Each business day in the sample, they observe a volatility sur-
face implied from options on crude oil futures contracts. Maturities are
up to one year, and moneyness—defined as the option strike divided
by the price of the underlying futures contract—is between 0.78 and
1.22. Given that the data set contains both cross-sections and time-series
information, Trolle and Schwartz (2009) are able to estimate both the
risk-neutral dynamics (from the cross-sections) and physical dynamics
(from the time series) of the model.8 Here, I focus on the risk-neutral
dynamics, for which they obtain the following parameter values: κ =
1.0125, θ = 0.9877,9 σv = 2.8051, σS = 0.2289, α = 0.1373, γ = 0.7796,
ρ12 = −0.8797, ρ31 = −0.0912, and ρ32 = −0.1128. Note that ρ31 and
ρ32 are relatively close to zero, implying that volatility is predominantly
unspanned by the futures contracts.

Parameters σS, α, γ , and ρ12 impact the term structure of volatility.
Panel A in Figure 1.1 shows the impact on the term structure of instan-
taneous futures volatility, while Panel B shows the impact on the term
structure of implied volatility. The time-t instantaneous volatility of a
futures contract with maturity T − t is given by

σF (t , T) = √v(t)
√
σ 2

S + B(T − t)2 + 2ρ12σSB(T − t). (39)

For the baseline set of parameters, where ρ12 is large and negative, the
volatility term structure is downward-sloping. This is sometimes referred
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Maturity

Panel A: Term structure of instantaneous futures volatility

Panel B: Term structure of implied volatility

0.1
0.5 1 1.5 20

Maturity

0.5 1 1.5 20

0.15

0.2

0.25

0.1

0.15

0.2

0.25

Baseline
σS = 0.30
α = 0.20
γ = 2.00
ρ12 = 0

Figure 1.1 Impact of σS , α, γ , and ρ12 on volatility term structure.
This figure shows how σS , α, γ , and ρ12 impact the volatility term structure. Panel
A shows the impact on the term structure of instantaneous futures volatility. Panel
B shows the impact on the term structure of implied volatility. Baseline parameters
of the model are those obtained by Trolle and Schwartz (2009) (σS = 0.2289, α =
0.1373, γ = 0.7796, and ρ12 = −0.8797) and v(t) = θ .

to as the “Samuelson effect” (see Samuelson [1965]). Increasing σS causes
an almost parallel upward shift in the volatility term structure. Changing
α affects the slope of the volatility term structure; in combination with
ρ12 being large and negative, increasing α makes the volatility term
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structure more downward-sloping. A futures contract with an infinite

maturity has an instantaneous volatility of
√

v(t)
√
σ 2

S + α2

γ 2 + 2ρ12σSα
γ

,

and γ affects how fast the term structure approaches this level;
increasing γ increases the speed of convergence. Finally, increasing
ρ12 increases the slope of the volatility term structure, and for
ρ12 = 0 the term structure is upward-sloping instead of downward-
sloping.

The volatility smiles implied from options on futures contracts reflect
the risk-neutral distributions of log futures returns. Figures 1.2–1.5 show
how parameters σv , ρ13, ρ23, and κ impact the implied volatility smiles at

Moneyness

1 month

Baseline
συ = 2.00
συ = 4.00

3 months

6 months 12 months

0.8 0.9 1 1.1 1.2

Moneyness

0.8 0.9 1 1.1 1.2

Moneyness

0.8 0.9 1 1.1 1.2

Moneyness

0.8 0.9 1 1.1 1.2
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

Figure 1.2 Impact of σv on implied volatility smiles.
This figure shows how σv impacts the implied volatility smiles at option maturities
of 1, 3, 6, and 12 months. Baseline parameters of the model are those obtained by
Trolle and Schwartz (2009) (σv = 2.8051) and v(t) = θ . Moneyness is defined as
an option strike divided by the price of the underlying futures contract.
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maturities of 1, 3, 6, and 12 months. At the baseline parameters, there are
pronounced volatility smiles at all horizons. This is due to the high value
of σv , which induces significant excess kurtosis in the distribution of log
returns. Also, the volatility smiles are skewed to the left at all horizons.
This is due to the negative correlation between futures returns and inno-
vations to volatility (caused by the negative values of ρ13 and ρ23), which
induces negative skewness in the distribution of log returns. Figure 1.2
shows how the curvature of the implied volatility smiles are impacted by
σv . Figures 1.3 and 1.4 show how the skewness of the implied volatility
smiles is impacted by ρ13 and ρ23. ρ13 has an impact at all maturities,
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Figure 1.3 Impact of ρ13 on implied volatility smiles.
This figure shows howρ13 impacts the implied volatility smiles at option maturities
of 1, 3, 6, and 12 months. Baseline parameters of the model are those obtained by
Trolle and Schwartz (2009) (ρ13 = −0.0912) and v(t) = θ . Moneyness is defined
as an option strike divided by the price of the underlying futures contract.
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Figure 1.4 Impact of ρ23 on implied volatility smiles.
This figure shows howρ23 impacts the implied volatility smiles at option maturities
of 1, 3, 6, and 12 months. Baseline parameters of the model are those obtained by
Trolle and Schwartz (2009) (ρ23 = −0.1128) and v(t) = θ . Moneyness is defined
as an option strike divided by the price of the underlying futures contract.

while the impact of ρ23 increases with maturity. Finally, Figure 1.5 shows
how the implied volatility smiles are affected by κ . It is well known that
in a stochastic volatility framework, the implied volatility smiles flatten
out as the option maturity goes to zero or infinity. The maturity at which
implied volatility smiles are most pronounced depends on the degree of
mean-reversion in volatility; see Das and Sundaram (1999) for an analysis
of the term structure of conditional moments in stochastic volatility mod-
els. Figure 1.5 shows that increasing κ makes longer-term smiles less
pronounced.
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Figure 1.5 Impact of κ on implied volatility smiles.
This figure shows how κ impacts the implied volatility smiles at option maturities
of 1, 3, 6, and 12 months. Baseline parameters of the model are those obtained by
Trolle and Schwartz (2009) (κ = 1.0125) and v(t) = θ . Moneyness is defined as an
option strike divided by the price of the underlying futures contract.

7 Jumps

Several papers have documented jumps in energy prices; see, for example,
Askari and Krichene (2008) and Larsson and Nossman (2011) for the
crude oil market. In this section, I outline an extension of the framework
that takes jumps in spot prices into account. I replace Equation (20) by

dS(t)

S(t−)
= δ(t)dt + σS

√
v(t)dW1(t) + (ez − 1

)
dq(t) − μλdt , (40)

where q(t) is a Poisson jump counter (assumed independent from the
Wiener processes) with instantaneous intensity λ.10 Conditional on a
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jump occurring, z is the size of the jump in the log spot price and has
the distribution

z ∼ N(μz , σ 2
z ). (41)

μ is the expected percentage jump in the spot price and is given by

μ = E
[
ez − 1

] = eμz + 1
2σ

2
z − 1. (42)

In this extended model, the dynamics of futures prices are given by

dF(t , T)

F(t−, T)
= √v(t)

(
σSdW1(t) +

∫ T

t
σy(t , u)dudW2(t)

)
+ (ez − 1

)
dq(t) − μλdt . (43)

There are now two sources of market incompleteness: the USV component
and the jump component.

With σy(t , T) given by Equation (10), it is still the case that futures
prices are exponentially affine in the three state variables s(t), x(t), and
φ(t), which, along with v(t), jointly constitute an affine state vector. Only
now, the dynamics of s(t) are given by

ds(t) =
(

y(0, t) − μλ+ α(x(t) + φ(t)) − 1

2
σ 2

S v(t)

)
dt

+ σS

√
v(t)dW1(t) + zdq(t). (44)

Option pricing proceeds as in Section 5; only now, Equation (37) needs to
be replaced by

dM(τ )

dτ
= N(τ )κθ +

(
eiuμz − 1

2 u2σ 2
z − 1 − iuμ

)
λ. (45)

When fitting the model to an implied volatility surface, the effect of the
jump component is most pronounced at short option maturities. In par-
ticular, a negative mean jump size, μz , will add negative skewness to the
implied volatility smiles. For typical parameter values, the effect of the
jump component decays fairly rapidly as option maturity increases; see,
for example, the discussion in Gatheral (2006) in the context of equity
index options.

Many extensions that preserve the tractability of the model are pos-
sible. The jump intensity could be made an affine function of variance,
λ(t) = λ0 + λvv(t). This captures the fact that jumps are more likely to
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occur when the market is more volatile. Also, following Duffie et al. (2000)
for equity options, the variance process could be extended with (posi-
tive) jumps, possibly correlated with jumps in spot prices. Larsson and
Nossman (2011) show that this is an important characteristic of the time
series of crude oil prices.

8 Conclusion

In this chapter, I presented a tractable framework, first developed in Trolle
and Schwartz (2009), for pricing energy derivatives in the presence of
USV. Among the model features are (i) a perfect fit to the initial futures
term structure, (ii) a fast and accurate Fourier-based pricing formula for
European-style options on futures contracts, enabling efficient calibration
to liquid plain-vanilla exchange-traded derivatives, and (iii) the evolution
of the futures curve being described in terms of a low-dimensional affine
state vector, making the model ideally suited for pricing complex energy
derivatives and real options by simulation, where early exercise features
can be handled using the LSM approach of Longstaff and Schwartz (2001).
I also consider an extension of the framework that takes jumps in spot
prices into account.

Notes

1. Throughout the chapter, implied volatilities are obtained using the Black
(1976) model.

2. Following Collin-Dufresne and Goldstein (2002), one could derive parameter
restrictions such that volatility is unspanned, but such restrictions are highly
nonlinear and severely impact model flexibility.

3. In these cases, the pricing error that arises from not explicitly modeling
stochastic interest rates is negligible, since the volatility of interest rates is
typically orders of magnitudes smaller than the volatility of futures returns,
and the correlation between interest rates and futures returns tends to be
relatively low.

4. Because of the assumption that interest rates are deterministic, I do not dis-
tinguish between forward and future cost of carry; see Miltersen and Schwartz
(1998).

5. For instance, in the case of crude oil, regular options expire three business days
prior to the expiration of the underlying futures contract.

6. The control parameter ϕ must be chosen to ensure that the modified option
price is square integrable, which is a sufficient condition for its Fourier
transform to exist.

7. In some cases, such as crude oil, European options trade side by side with
American options. In these cases, American options tend to be the most liquid.
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8. The latter requires a specification of the change of measure from risk-neutral
to physical.

9. Note that in the model, σS, α, κθ , and σv are not simultaneously identified; see,
e.g., the discussion of invariant affine transformations in Dai and Singleton
(2000). Trolle and Schwartz (2009) normalize κθ to one.

10. The S(t)-process is right-continuous. The value of S right before a jump at
time t is the left limit S(t−) = limu↑t S(u).
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