
STATISTICAL RESEARCH REPORT 
Institute of Mathematics 

University of Oslo 

ADDITIONAL OBSERVATIONS AND STATISTICAL 

INFORMATION IN THE CASE OF 1-PARAMETER 

EXPONENTIAL DISTRIBUTIONS 

by 

Jon Helgeland 

June 1979 



- I "" 

Contents 

1 Introduction 

2 Multinomial experiments 

3 1-parameter exponential distributions 

3.1 A general upper bound for o(En,En+1 ) 

3.2 An upper bound for o(En,En+1 ) when {P9 } is a 

1-parameter exponential class 

3.3 Lower bounds for o(En,En+1) 

3.4 Lower bounds for o(En,En+1) 

1-parameter exponential class 

4 Some conjectures 

when {Pa} is a 



- 1 -

Summary 

We study the increase ln information by replication of experiments 

E, which are of 1-parameter exponential type. We show that when 

the parameter space is a compact, non-degenerated interval, then 

~ <lim no(En,En+1 ) <lim no(o) < 2. / :rre - --

1 . Introduction 

We define an experiment as a pair <<x,A), CP8 :8E0)) where Cx,A) 

is a measurable space, {P8 } is a family of probability measures 

over <x,A) indexed by some set 0~ the parameter space. 

In order to compare experiments w.r.t. "content of statistical 

information" we use the concept of deficiencies (introduced by 

L. LeCam, [ 3] ) : 

Let E,F be experiments with a common parameter space 0 
' 

and let e: : 0 -+[ 0 , 00>. We say that E is e:-deficient relative 

to F if for any decision space (T,S) where S is finite, and 

any bounded loss function L : 0 x T -+:m. and any decision rule a 

(rel. (T,.S)) in F, there exists a decision rule p in E (rel. 

(T,s)) so that 

( *) 

(where II L8 II :: sup I L8 (t) I). 
t 

In ( *) we may replace II L8 II by 

selves to non-negative L if we replace 

\>'8 

and we may confine our-

"e: " 8 
ln (*) by 

"~e: 8 ". If E is 0-deficient rel. F , we say that E is more infor-

mative than F .(written E >F) and if both E > F and 

F::: E, E and F are said to be equivalent (written E"" F ). The 

infimum over all constants e: > 0 such that E is e:-deficient 

rel. F is written o(E,F) and is called the deficiency of E 
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rel. F. The Ll-distance between E and F is defined by 

Ll(E,F) = o<E,F) v o(E,F). The class of experiments which are equi-

valent to an experiment E, is called the experiment type of E . 

We may define the set of all experiment types E, and OE,Ll) 

becomes a complete metric space ( B3]). 

If F = <x,A,P8 ;8E0) and E = <x,B,P8 jB;8E0) where B is a 

sub-a-algebra of A and P 8 1 B is the restriction of P 8 to B, 

then obviously E < F. One measure of the loss of information 

when observing only B-measurable events is o(E,F), another is 

the insufficiency (LeCam[4]) which is given by 

where the infimum is taken over all families such that 

P; IB = P8 IB and B is sufficient for {P~} ; II o II is t.he total 

variation norm. 

The concept of deficiency has several interpretations that 

each are natural ways of formally defining loss of information. 

We mention here the following theorems (LeCam [ 3 ]) 

(i) Let E = <x,A,P 8 :8E0), F = (Y,B,Q 8 :8E0) £: 0+[0,oo>. 

Assume E is dominated. Then E is £-deficient rel. F if 

and only if to every decision space (T 5 S) which is a Borel-subset 

of a Polish space with the restricted Borel-cr-algebra and to 

every decision rule a in F, there is a decision rule p 1n E 

such that 

(ii) The Markov kernel criterion: 

Let E, F be as above. Assume that Y is a Borel-subset 

of a Polish space and B is the restricted Borel-a-algebra. Then 

E 1s £-deficient rel. F if and only if there exists a Markov 
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kernel M : B x x + [ 0,1] such that 

(A Polish space is a complete separable metric space equipped with 

its Borel-a-algebra, a Markov kernel is a mapping M : B x x + [ 0,1] 

such that 

(a) M ( o I x) is a probability measure for every x E X 

(b) M(B I o) 1.s measurable for every BE B.) 

Assume E,F,e:,T,S are as in (i). and further that P Q ' (o)' (g) 

are Markov kernels from ( 8, V) where V is some a-algebra over 

8. Let L be a bounded and VxS-measurable loss function. 

Then both e ~ P8 pL8 and e 4 Q8aL8 are bounded and V-measu­

rable for all decision rules p and a , and we may define Bayes 

risk by 

= inf APp L 
p 

where A 1.s a probability measure over ( 8, V). For all constants 

e: > o(E ,F), we have that, for all p 1.n E : For some cY, 

( *) P8 pL8 <Q8aL8 +e:I!LII, ve 

=> b~ < AQaL + E! I L II . Then 

oC E,n 1 E 
> lTLlf (b A- AQaL) 

There is a connection between CE-sufficiency ("conditional 

expectation"-sufficiency), i.e. sufficiency in the sense of 

Halmos and Savage) and deficiency: (Bahadur see [12]). 
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If E = <x,B,P8 jB;8E0) and 

F = <x,A,P8 ;8E8) 

where B is a sub-a-algebra of A then: 

(i) B CE-sufficient for F , implies 

(ii) c<E,F> = 0. 

If E is dominated, then (ii) ~ (i). 

In the following we will consider experiments of the form 

n n n n E = <x ,A ,P8 ;eE8) 

where 

i.e. En . 
ls n independent replications of E. It is obvious 

th t En <Em when < d t 1 t · · a n _ m, an a na ura ques lOn arlses: 

How much more informative than En is Em? This may be of inte-

rest in e.g. planning of (replicated) experiments when the exact 

nature of the decision problem is not determined on beforehand. 

Let KE denote the "cost" of performing E, L the loss function. 

Then the risk function is, under the decision rule p 

RE(e) = P8 pL9 + KE. Suppose that 

to En+ 1 when c(En,En+ 1 ) < K 
En+1 

II L II ~ 

-K n' 
E 

~(En,En+1) K K 
u > +1 - . 

- En En 

and 

Then we prefer 

En+1 to En 

That En is better than Em in the above sense means that: 

when 

To any risk function there exists a R 
En 

(which is the 

risk in the same decision problem) such that 
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Example 1 .1. Let E consist in observing x ..... N(8 ,cr) where 

cr is known. Then (Torgersen [9] ) 

~(En En+1) /? 1 
u ' ..... I Tie n· 

If we let K = k + nk1 , then 
En o 

/ ·'2 
Tie = }( is the optimal sample 

size in the above sense. 

Intuitively one may expect that En gets very informative as 

n + oo, and that one additional observation gets more and more 

unimportant. In fact, when 8 is finite, then 

~(En,M ) + 0, when M 1s the experiment a a 

where e itself is observed without uncertainty, and 

c(E) = max 
81=1:82 

c(E)<1.) If 8 

fo (En, M ) + c (E) 
a where 

(If 

is countably infinite, then 

for some c > 0 and a p < 1 . Hm..rever, we need not have convergence 

at all, if e.g. {P8 } has a limit point for setwise convergence, 

then 
o(En,M ) - 2. 

a 

If 8 is uncountable and E 1s dominated, then always 

These results are from Torgersen [11] . 

o(E,M )=2. 
a 

Let now E be an experiment with arbitrary 8 such that 

8 ~ P 8 is ( 1-1). Since the restriction En IF of En to 

finite subsets F c 8 must converge to Ma IF, Ma is the only 
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possible 6-limit for {En}. If now E 1s dominated, 

6(En ,Em) -++ 0 since CIE ,6) is complete. This implies that 
n,m-+oo 

00 

0 ( En+k, En+k+1) -++ 0 and furthermore that r 
k=o n-+oo 

for all a > 1 . 

Th · ff' · n(En,En+ 1 ). e 1nsu 1c1ency may be used to study 

.s:.(En,En+1) . 1 u s1nce a ways n(o)>o(o) - ' but the approximation may 

be poor: If E consists in observing X- N ( e, 1 ) (Example 1 .1) 

then 1 

n(En,En+1) >~TIe- 4n ~ 

This, and the following result are shown by LeCam [4 ]: for all 

n ,k ~ 0, 

( n n+k) < j'W j'E n E ,E _ n n 

where Dn 1s a dimensionality constant for 0, given by: 

The Hellinger distance H 2 - 2 (H (P,Q) = J<ldP- ldQ) for probabi-

lity measure P,Q) induces a metric on e: 

h ( e ' e ' ) = H ( p e 'p e I ) • Put a \l = ~ ' b \l = k' \l = 0 '1 ' 2 ' ••• 

For finite S c 0, diam S < b 1 , .. let {A. } - v- 1 
be a finite covering 

of S by sets of diameter not exceeding a . 
\l 

Say that indices 

1,] are 11 distant" if 

sup{h(8,8'): 8EA., 8' EA.}> b. 
1 J \l 

For each 

and let 

1, let c' . 
1 

= sup C' .• 
1 i 

be the number of indices distant from 1, 

Choose {A.} 
1 

such that C' is minimal, 
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and put c(v) = sup C's 
s 

where the supremum is taken over finite 

S c:: e such that diam S < b 1 . v- Let K = 1 v sup c(v) and put 
n 

2v<n 

Dn = 1 6 log 6 Kn . LeCam also gives an example E such that 

oCEn,En+1 ) -1-+0: 

Example 1 .2. Let <x,A,A) be [0,1] equipped with Lebesgue­

measure A, let e = {0,1 ,2, ... }. Let P8 be given by 

8-1 
i: 2 I ( x ) , for e > 1 

f2k+1 2k+2] k=o 
• e ' 2e " 2 

and Po = A. Let E = <x,A,P8 ;8€0). Then o(En,En+1) 

In fact, for large enough k, let m = k32n. Then 

lim oCE!n Ejn+1) 
e ' e > 1 where e = {1,2, ... ,m+1} and m -m-+oo m m 

denotes the restriction of E to 0 • 
m 

> 1 ' 

Ele 
m 

v . n 

Torgersen treats the case where E is a translation experiment, 

and mentions the following examples: 

Example 1.1. (Continued). 

( i) Let E consist in observation of X ..... Nk ( t;, 2:) where 2: 

is known, positive definite, t; unknown vector. Then 

where rk is the cumulative distribution function of the xk­

distribution. 

( ii) Let E consist in observation of X ..... R <0, e] , 

8 E 0 = <O,oo>. Then 

that 

o(En,En+r) ..... ~ r 
e n 

In the light of these results 5 it seems reasonable to guess 
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c -( 1 +o( 1)) 
n 

for 0 uncountable and E "nice". We will show that in the 1-para-

meter exponential case, with 0 a nondegenerate compact interval 

We will be referring to wellknown results about these experiments, 

see [5,8]. 

About the notation: We will (usually) employlower indices to 

index experiments, and upper indices to index components of vectors. 

v. 
(x 1 l n) , ••• ,X , ••• ,X means 

1 i-1 i+1 n (X , ... ,X ,X , ... ,X) and 

X,IXI~c 
x<c) = {0 

otherwise 

means 

w 
L(Xn1Pn) -+ 

The symbols P0 (A), bin (n,p), N(~,cr), xk denote respectively 

the Poisson, binomial, normal (with variance cr 2 ), and chi-square 

(with k-degrees of freedom) - distributions. 
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2. Multinomial experiments 

In this section we will consider the experiments En con-

sisting in observation of the i.i.d. variables Y1 , ... ,Yn' where 

Yi assumes the values 1, ... ,s with probabilities e1 , ... ,es, 

8 E 0 = K which is the standard simplex in lRs (i.e. s 

{x E [0, 1 ]s : !: x. = 1 } ) . By sufficiency we get En "" ~ where fl1 
1 

consists in observation of the s-nomial variable 

2 1 U b d f ~ (En, En+1 ) . . . pper oun or u 

The Markov kernel criterion provides a tool for finding upper 

bounds for deficiencies. In our case, we may define a Markov 

kernel M thus: Yn+1 assumes the value v with probability ev, 

we may predict this value by letting with probability 

A = 1 Xv. This means 0v n n 

m<ylx) = { 
v v 

X /n ; y = x + e 

0 otherwise 

where e v = { 0 , ... , 1 , ... , 0} , for x E { 0,1 , .. ·, n} s , Ex v , = n and 

yE{0,1, .• ,n+1}s, !:yv = n+1. 

f 8 Cy) = I mCylx)P8 Cx) =I vm<ylx)P8 (x) 
x y=x+e 

v y -1 
n 

Then (q is the density of Q) 
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The last membrum is 

= < s-1 
n+1" 

The first membrum is 

< 

< 

= 1-e" ]1. • 2 = 
(n+1)a" 

It follows that 

~(En,En+1) < 2 s-1 
u n+1" 

This must also hold for all experiments E where the a-algebra 

has at most 2s elements. One may attempt to approximate more 

general experiments by multinomial ones in order to extend these 

results. However, we have the following: 
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Example 1 .2. (Continued.) 
.... 

Ej 8 has a sufficient a-algebra B generated by the partition 

B m 
m m 

= { [ 0 , 1 I 2 >, [ 1 I 2m, 2 I 2m>, ... } since 

through I [ 0 , 1 I 2m>' .. · · Then card( B) 

p 6 (x) only depends on 
2m = 2 , so that 

o(Enje En+1 je ) < o(fn fn) 
m' m m' m 

2m 
where fm is the 2 -nomial experiment. Since 

o (En I e , En I 0 ) + 1 , we see that if E is s-nomial, then 
m m+1 m+oo s 

X 

The above calculations were first carried out in the binomial 

case, and Torgersen noted the validity in the general case. 

3. 1-parameter exponential distributions 

3 • 1 • An upper bound for c ( ~' En+1) in a general case. 

Let E = <x, A, P 8 ; e E0 > where {Pe} is a homogenous family 
dP 

dominated by some a-finite measure lJ . Let f = _ji. 
' 

and let 
e dlJ 

1 n X , ... ,X n n denote the observations from En. We will now con-

struct a Markov-kernel from En to En+1, in the following intui-
.... 

tive way: We first estimate a density f for 
..... 
X randomly, according to this. We then draw a 

P8 , and draw 

IE{1, ... ,n+1}, 

1 I-1 " I+1 n 
and use Xn, ... ,Xn , X, Xn , ... ,Xn as a new set of observations. 

The last step "distributes the error among the components" of 

En+1 . This method is an analogue of the method for the multino-

mial case, but here we cannot use reduction by sufficiency. 

Formally, let us assume: {P 8 } homogeneous, and B contains 

all the singletons {x}, x E x, 
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and there exists a 1 

that the function 

(*) 1 n 'l" 1 n (x , •.. ,x ,y) j.+r(x , ... ,x )(y) 

is simultaneously measurable and 

for all n 
X EX • 

Define the following Markov kernels 

where ox is the one-point (Dirac) measure in x, and 

~<Aix> = J f(x)(y)d~(y). 
A 

We see that Mr ( xn I X) = 1 ' v X n , 

and that for all A E Bn+1 

""r I J 1 r-1 r n ) Mn(A x) = IA(x , ... ,x ,y,x , ... ,x )f(x (y)d~(y) 

which is measurable in x by the Torelli theorem. Put 

1 n+1 
= ~ 'fir 

Mn n+1 L n 
r=1 

(obviously a Markov kernel). 

a rectangle,then (Tii is the i-th projection) 

When R E Bn+1 is 

P~M~(R) = Jno 1 <TI1 R) ... < J 1(x)(y)d~(y)) ... o n(Tin+ 1 R)~(x) 
X X TI R X 

J 1 ,.... 1 v r · n+1 r n+1 n+1 
= f 8 <y > ••• f<y ... y ... y > <y > ••• f 8 <y )dll 

R 

by Tonelli's theorem. It follows immediately that 

dPnM 
1 n+1 ""' 1 vr n+1 r n+1 

f e < yi) e n I f(y ... y ... y ) (y ) 
n+1(y) = II n+1 r 

dll r=1 fa<Y ) 1 

and that 

II PnM -Pn+1 II = I 1 n+1 f(Y1 ... ~r ... yn+1) (Yr) -1 I 
6 n 8 . Ee n+1 f f e (Yr) 
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where the expectation is taken w.r.t. Pn+1 
e . By the Markov kernel 

criterion, we now get: 

Lemma 3.1 .1 . If E is an experiment satisfying condition ( *), 

then "" 1 Vr n+1 r f(Y , ... ,Y , ...• Y )(Y) I 
-1 

fe<Yr) 

where the are i.i.d. "" p • e 

3. 2 U b d f ~cEn,En+1) pper oun or u is an 1-parameter 

exponential family. 

Let E = ((X,A),CP8 :eE0)) where ecm. and 

( 1 ) 

where l..l is some cr-fini te measure on (X~ A), T and h > 0 random 

variables and A: 0 +TI<. The set of 8's such that (1) defines, 

for a suitable A, a probability measure, 1s the natural parameter 

space of {P8} , and this is an interval I. In the interior of 

A is analytic. 'For all e, A( 8) > 0, and we can without 

loss of generality assume 0 E I and write 

0 E G. 

We can now formulate the following result: 

Proposition 3.2.1 Let E = <<x,A>,CP8 :eEG)) where 

= e 
c(8)+8T , e E e c m. 

Let G be a bounded set, and assume that an endpoint 81 of the 

natural parameter set is a limit point of 0 only if c has con-

tinuous one-sided derivatives up to 4, order in e1 , 

and c"<e ):~=O 0 • Then 
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Examples: The conditions above are fulfilled when E consists 

in observation of: 

( i) where 0 < p < p1 < 1 o-

( ii) X ...... P (A.) , !.. E A where !\. is bounded away from 0 and oo. 
0 

(iii) X ...... N(~,o) , with a known, ~ E e which is bounded. The 

exact deficiency 1s [ 9], 

O(En,En+1),..,//2 .:!_ ( ~ 0.48/n) 
e1r n 

and this holds even for unbounded e. It is seen that our method 

gives a bound that is 4 times too large, but with correct rate, 

and we have to assume an unnecessary boundedness condition for e. 

Proof of the proposition: We may assume that e is a compact 

interval. Furthermore, T is sufficient for E, so if E consist 

in observation of T, then o(En,En+1 ) = o(En,En+1 ). We can ac-

cordingly assume that CX,A) = (~,B) and put 

dP8 
f 8 (t) = dP (t) = exp(c(8)+8t), 8 E e. For 8 E I 0 we have 

0 
E8T = -c'(8), var8T = -c"(8). If c 11 (8) = 0 for some e, then 

all P8 must be concentrated in 0. In that case 

totally non-informative experiment) a~d obviously 

E,..., M. (the 
1 

En ...... En+1 . 

Assume therefore that c" ( 8) < 0 for 8 E I 0 • If I 0 = ¢, then e 

1s just one point, so that En ...... En+1 , so we may assume that 

I o n~ * )LI• 
In the course of the proof we shall have to construct an 

estimator for the unknown parameter~ and to this end it is conve­

nient to reparametrize the experiment as follows: Define ~: I 0 +m 

by ~ ( 8) = -c 1 ( 8) = E8 T. Then ~ is a diffeomorphism from I 0 

onto its image J 0 , and can be extended to an open interval 

I' => G if e contains an endpoint 8 0 of I as indicated in the 

proposition. Since the deficiency between experiments stays 
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unchanged under (1-1)-transformations of the parameter set, we 

can view E as an experiment over N where N is the image of 

0 under ~ and thus a compact interval. Put 

-1 
T0 = c o ~ , defined on an open interval J' such that N c J' . 

We can thus assume that E is given by the densities 

f~ (t) 
= dPs Ct) 

dP~ 0 (t) 

w.r.t. Lebesgue measure. 

and 

For ~ E JO ' E T = ~ 
t; 

vart;T = - c"(Tl(~)) = 

= e 

(-c'(Tl(f;)))' 

T r c s > 

To and Tl are analytic in Jo, and if 

, ~ E N 

1 
= 
T~(~) 

~0 = £;(8o) 

of J = s I then, since s<3> is continuous in 8o 

is an endpoint 

and 

s ' ( e o ) * 0 , T 1 and To must have continous 3-order derivatives ln 

so. If c( 4 ) is continuous ln 6 0 , then A= expo c must be too, 

( 4) f 4 8T 4 but for 6 E I 0 , A (8) = T e dP 0 = A(8)E8 r , so that 

bounded near e 0 • Fatou 1 s lemma then gives ES 0 T
4 ~ lim 

8-+6o 
): ESjTjr is bounded when S-+- So for r< 4. Since 81~ 

is convex in S, we have for S between S 0 and S1, 81 E I 0 , 

It follows from Lebesgues' dominated convergence theorem that 

J jTjreeTdP 0 ~JJTireS 0 TdPo which entails that EsiTir is 
8-+8o 

continous in S 0 for r < 4. 

Let T = CT1 , ... ,Tn) be the observations from En. Then 
n n n 

A 

is a reasonable estimator for t;, and E t; = t; t; n 
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1 for all sEN. Now put, if N = [a,bl, 

~n = 

A A 

sn 

a 

s EN n 

s < a n 

b s > b n 

We will now use lemma 3.1 .1 and put 1 n f(t, ... ,t )(t) = 

' 
obviously is measurable in 1 n (t, ... ,t ,t). 

<Ps<t> = < lnfs>'<t> = -r'<s><t-t;) 

¢s<t> = f~<t>lfs<t> 

If s, s + fl E N, so 

Let 

where BF;,fl = for some s ' between s and 

We see that 

Put 

1 -l 
lh and let 
"'n~s' 

£ > 0. 

Then the expression from 3.1 .1 becomes 

f (t), which 
A 

sn 
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Let N£ = Nn <~-e:,~+£> 

1 
+ n+1 

n+1 r 
1 

f~i(T~+ 1 )-f~(T~+ 1 ) 
n 

" 
In the first membrum we can replace ~ by t , 
the index ~: 

-1 

I 1 n+ 1 r i ¢n 1 I'Y • 

< E n+1 L ¢(Tn+1) :r' + n ¢(T~+1) 
1 L 1 

f .(Ti+1) t1 n 
n 

i 
f(Tn+1) 

(:~r Jl 
1 

and we supress 

< _2 __ 1_ 

Since E~ITI 4 is continuous and N is compact, sup n A3 -o 
~ ~ n-+oo 

n A 2 < nE I B . ( T i 1 ) I I ~ i I 3 I ( I ~ i I ) . 
- ~1 n+ n <-£,£> n 

n 

We have 

~I EN • 
£ 

Since T 1 is ( 1-1 ) and e ~ e eT is convex, we have 
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where 

Since ¢, ¢' and ¢ 11 are linear 1.n T with continuous coeffi-

cients, the second factor above is bounded by 

for all choices of ~ EN. 

If we put 

we see that 
I f~'.'l 

H > ~ I ( ~~) 
~ - f N 

and that 
~ E: 

which i's bounded on N. 

This implies that (H~ and 6. are independent) 

sup nA~ + 0. 
F,; 

The following will become useful when dealing with A1 : 

Lemma 3 . 2 . 2 . ( See ( 6 ] , 11 . 4 . A. ) 

If F ,F are d.F.'s on JR and g :JR -.JR 1.s continuous, n 
w 

g ~ 0 , F n -1> F, then: 

J gdF n -+ f gdF ~ g uniformly integrable in ( F ) • 
n 

Lemma 3. 2. 3. (See [ 7 ] , 5. 2 .1 . ) 

Let k be a compact metric space, f,fEC(K). 
n 

If fn· converges 

continuously to f (i.e. x -+X==> f (x )-+f(x)) then f -+f n n n n 

uniformly. 
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We now put 

n+1 -i 

E~ I n!1 
i <Pnl c~ = l: <P (Tn+1) Tv 1 1 

n+1"' r-T C2 E~ln!1 i <Pn 
= l: <P (Tn+1) T1 I ~ 1 

cl E I 1 [nf i 2 n+1 . 2] 
1 = ~ n(n+1)T1 <P(Tn+1) t <P(T~+1) " 1 

2 = -n 

Let now E; -+ s. n If we can show that n c 2 -+ 0, it follows from 
~n 

lemma 3.2.3 that sup~nc~-+ 0. 

and since A1 < c1 + C2 , the proposition will be proved. We first 

show the following assertions: 

(i) 

(ii) 

(iii) 

( iv) 

1 n+1 
rn l: 

1 

1 

/n(n+1) 

1 
n(n+1) 

In (iii) and (iv) we can replace 1¢1 by <P· 

0 

0. 

We recall that s ~EsiTir is continuous, and therefore bounded, 

for r < 4. 

Now 

which has zero expectation and bounded 3. order moment, so (i) 

follows from Lyapunvov's th~orem. 
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We have 1 c ( t) ; 41 2 ( t) + T" ( ~ )( t-t) - T' { F;) ... E; 1 1 so that 

which has continuous expectation under Pt. Since l( + 1( 
n 

pointwise, it follows from the (generalized) Lebesgue dominated 

convergence theorem, that Etlil is also continuous. Also, 

varf; lit I must be bounded, so that 
n n 

n+1 · 
(Ti)j 

pt 

~ r <1lt Et lit (T) I) n 
0 and Cii) is proved. _..., 

1 n n n 

To prove (iii) and (iv), we note that the summands have bounded 

PE; -expectations, and by the general Markov inequality, we get for 
n 

all E > 0 

PE; [ 
1 

/n{n+1) n 

1 (. ) 1 
£ Et < 

- £ n 

Now 
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EZ = EI~<T~lE[fn I <j>(Tl)) 2 

n T i 
j*i 1 

Ef; l~t; (Ti) I 
Et;l<l>t;l 

E n n 
--+ E Z = 

T I 
1 (f;n) n+oo -r1<s) 

so that z lS uniformly integrable in p€.: • This must also hold n n 
for IYni' and since "" (T) E£ <l>t; = 0 ~ we must have 

,n n 

1 n+1 
(Ti) 

p€.: p€.: 

I ~s n 0 I<) y n 0 ~ Es Yn n c 2 - 0. n+1 ---+ - = n sn 1 n n 

Remark: A trivial corollary is that under the conditions in 

proposition 3.2.1, 

lim 
n+oo 

for fixed r > 1 . 

3.3 Lower bounds for o(En,En+1 ). 

Let E, F be experiments over 0 ~ and let A be a prior 

distribution on 0. Under certain regularity conditions we may 

interpret o(E~F) as the maximal difference in achievable Bayes-

risk. In this situation there is another way of "measuring" the 

"information content" of an experiment; we examine the posterior 

distributions, and an experiment that gives "concentrated" posterior 

distributions must obviously be an informative one. 

Let us define: 

If 1.1 is a measure on OR, B) then the concentration function 

(see [ 2]) is 

{ 
t t sup l.l[x- 2 ,x+ 2 l 

xE:R 

0 

t > 0 

; t < 0 
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i.e. Qll (.e) is the "maximal concentration of ll on a closed inter-

val of length .t". According to ([2], 1.1 .4 and 1.1 .5) Q is a 
ll 

right-continuous distribution function and the supremum is achieved, 

in say such 

that 

Then 

,.... 
< lim Q (t ) < lim Q c.e ) = Qll(.t) where ll n - ll n 

If now ll(• jx) is a (X,A)-measurable Borel probability measure, 

then for a fixed .t> 0, Qll(•jx)(.t) =lim Qll(•jx)(.tn) which is 

A-measurable since Qll(• !x)(tn) must be. 

Let E = (X,A,P8 : e E 0) where e E B,and all e 1-+ P8 (A) measu­

rable. Let the decision space (T,S) be closed intervals of 

length t (with the obvious a-algebra induced from m2 ). Let the 

loss-function be 

= { 
- 1 8Et 

1 e¢t 

and let A be a prior distribution, with A ( • I x) as posterior 

distribution. Then the posterior Bayes-risk equals 1- 2QA(• jx)(.t) 

and the Bayes-risk bA = 1- 2A P QA(• jx)(.t). 

This is seen as follows: 

Let p be a decision-rule. We can, aecording to ( [ 6 ] , 27. 2. B) 

specify X(•jx) as a A-measurable measure over e, where 

but 

so that 

APpL = JcJL8(t)X(dejx))(APxp)dx x dt) 

~~0 JL8 (t)A(d8jx) = 1- 2QA(• jx)(l) 

b A = J ( 1 - 2 Q A ( • I x) (.e) ) A P ( dx) • 
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3. 4. Lower bound for o (En, En+r) when E is a t-parameter 

exponential experiment 

In this section we will use posterior concentration ·functions 

to prove: 

Proposition 3.4.1. Let E = ((X,A) ,P9: a E 0) where 

; 8E0c::JR 

(for sui table cr-fini te 11, h > 0 and T random variables) 

and 0 contains a non-degenerate interval. If e is identifiable 

(i.e. T is not a. s. constant) and r < n 8 , 0 < 8 < ~, then 
n-

n+r Re lim n cS (En E n) > 2 
r ' - 'Ire n-+oo n 

n+r 
Otherwise, o(En,E n)= 0. 

An immediate corollary of proposition 3.2.1 is 

Corollary 3.4.2. If, in addition to the conditions of proposition 

3. 4.1 , 0 c: K c: I 0 where K is a compact, I the natural parameter 

space of (P 8 >8c:0 , e identifiable, then 

~~ ( 1-+ o( 1 ) ) < n o (En, En+1 ) < 2 ( 1 + o( 1 ) ) . 

Examples: 

(i) If En consists in observing X--bin(n,p) p€ [0,1], 

we have 

( ii) If E consists in observing X ...... NU;, 1), E E 0 which has 

non-empty interior, then 
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(here 0 may be unbounded) . 

Proof of the proposition: If 8 is non-identifiable, then En is 

the totally non-informative experiment, so that En"" En+ 1 . In the 

other case we can assume without loss of generality that 0€ 0°. 

Then m 
m(c(8)-c(0))+8 LT. = e 1 l. 

Introduce the new parameter h by 

e =h 
Then 

c(8)- c(O) 

where h 1 f'V h 3 
6.( =) = - c"(8)( -) 

{n 6 rn for sufficiently small ~~~, for 

some e between 8 and e, ): 
0 

i mh 2 h ~ h } exp f "'2rl(-c"(O)) + /n r(Ti+c' (0)) + m/1(/rl) 

Let the prior density An have density w.r.t. Lebesgue-measure 

where q c > 0 and 
. 1 

and such that c = c 0 < q < 6' n n 

1 0 for all n>N for N. It to = [ -c c ] c: 8 some l.S easy see 
vn n' n 

that the posterior distribution 

for It I 

H <~IX ) n m 

c (X ) nm m 

< c ' n 
where 

in (where X = CX1 , ••• ,Xm)) is given by m m m 
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' 
1 

'[2 = ---
-c"(O) 

; = -c'(O). 

Let(forfixed X) f,g EL1((-c,c]) be m m m n n 

Let II a II 

This is seen as follows: Assume first that II fm II ;:: II fmgm II . Then 

lin !: 11 - 11 ::::11 II = ll<rrfn - rM> + <rM - ~~~~ n> II 
< ll_f:-_:r&__ll + II fg II I 1 - 1 I < l!f-_fgU + I'' fg 11-11 f II I lfTfl rT111 II f g II - lff'll I f I 

llf_:_f_gJJ llf&::yjj 
~ lfTfl + ~ 0 

The case II f II < II f g II m m m is treated in the same way. Furthermore, 

llf-fg" < ~',f£fr" =I fl1-gj . 
II f II vllf g II - f f 

The above inequality entails that the difference between the dis-

tribution functions 

H (R,jX ) and n m , 
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most 
c h 
Jn 

I (m-n)~( 1=) 
-1 ldr <hi X > 2 ~n e n m 

-c ·n 

c 3 c ~ (_.Jl) 
< 2e rn J~l___n:l dF Ch!X ) - nln n m 

-c n 
c a 

c 3 o<_n> 
< (...ll) (2oe rn ) - rn 

1 
0 = 6 sup I c"' ( t) I I m-n I < oo. 

lt1<5l -rn 
Let Qm(o IXm)' Q~(oiXm) 

Hn ( o 1 Xm) and F n ( a I Xm) . 

be the concentration functions of 

Then, for all !t and X : m 

c 3 
2 sup I H (~I X ) - F (~I X ) I < ( Jri> K 

It I <c n m n m - n n 
- n 

where 

c )3 o<_n 
Kn = 2 o e In Now obviously 

o < D n 13 , so that 

c 3 

o<fri> = 0 ( 1) 3q+S- .f. n . 

We see that by choosing q suitably small, we get 

3 c 3 
3q + s - 2 < -1 ~ a<~> = o(l) ~ K n n 

1 = o<-> n 

It is easy to see that F (oiX) will achieve maximal concen-n m 

tration over closed intervals of length 2~ in the interval 

Jm' where 

{ 
[c -2~,c ] 

' if llmn +~>c n n n 

Jm = [-c -c +2~] 
' if llmn < -c + ~ n' n n 

llmn+[-~,~1 otherwise. ' 
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By substituting ~ = we obtain 

cj>{Q.) 1 -:fb-2 
and = exp(- 2 ) 

' I2TI 

J' 1 (J -ll ) = m cr m mn mn 

I 
1 ([-c ,c ] -ll ) . = m crmn n n mn 

1 ' illmn I ' lllnnl 

{0 Let y = mn otherwise. 

For sufficiently large n, 

and 

< c /2 - n 

y = 1 mn must entail 

E(o)Ymn > E[)$ -)$/!$] Ymn 

m nn n 

When Y = 1 , we have mn 

1 
< 

1 

fcJ> 
- c n 24l(--)-1 

I 2crmn 
n 

X 

where <P(x) = f <P • 

-oo 

= 1 + o(-1 ) 
nz 

This is because <I> has moments of arbitrary order, so that 

r x ( 1 -<I> ( x)) - 0, V r, and 
x+oo 
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n c 2 [ 1 

2<P(-n-)-1 
2amn 

q > 0. 

= 2 

c 
n2 ( 1-<P (--n-)) 

2a mn 
en 

2<P(--)-1 
2a mn 

~Ia ~Ia mn mn 

' 

E(o)Y > E( I "'- (1+0(11n2)) I "'). Y mn ~ ~ mn 

It is easy to see that 

1 = -- + 
ann 

-~Ia -~Ia mn mn 

r 
n 

where a 
n 

is between and 1 Accordingly, 

~Ia ~Ia 

f mn I nn 
cp - "' = 

-~Ia mn 

E(o)Ymn > 

-~Ia nn 

a 
nn 

< s < 
n 

1 ~ 

Ia '[2 
n 

,Q, 

a ' mn 

Since ra 1 1 
m"" n~ -+ a = - + n '[2 K2 

ly large 1 < 
en 

that n, 2 ' 
so 

Ia 
tla ~Ia 

~( I mn ¢ _ J nn cp ) _. 

-tla -~Ia mn nn 

if m .AP(Y =1)-+1. n mn Also, 

r 
cp((3n ) where - ' n 

and 

and 

we may 

1 

l2rre 
0 

8 -+ ~ra n 

choose ~ra 

1 
1 + 't 2 

K2 

From the remark on P·3, it follows that 

For 

= 1 ' 

1 ~ o(En En+r) > ~ E (Q (2~IX ) - Q (2~IX )) 2 r ' - r A pm m m n m 
n 

> ~ E ( Q i ( 0 ) -Q ( 0 ) ) - ~ E I Q ( 0 ) -Q i ( 0 ) I 
r m n r m m 

sufficient-

and obtain 
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c 3 

the last membrum is less than K (_n) n = o ( 1 ) 
n rn r as 

If we can show that 

but since K is arbitrary, the proposition follows. 

We will now use the following result, which is a consequence 

of Chebychev's inequality (and also of the Chernoff root-theorem 

for large deviations (see [10])): 

< inf Ep et(X-a) 
t>o 

where x1 , ... ,Xn are i.i.d. 

Put 

Then 

c -Q. 
X. = ±cr 2 (T 1 -i;) 

1. mn m a = a =a-n- rn n m a€<0,1>. 

Ep et(X~a) = J exp{(±tcr 2 +h/ID)T+tcr 2 1;-ta+ c(h/ID)-c(O)}dP0 
h 

whenever h/ /D ± tcr 2 l.S 

small enough 

= exp f(a,t,h). Now 

Now > I hi 
0'2 

when a n T21fi 

c -Q. 
a = A. n In> c n m n 

0'2 
mn 

4 
+ t 2 - 0 - + t.(h//n)- t.(h/ln±tcr 2 ) • 

2-r 2 

Q. 1 
--~ A.(1 - -) > 
T21fi c 2 n 1+ !_ n -K2 m 

The left side converges to A., and the right to 1 
< 1 ' so 
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the inequality holds for all large enough n, with 

_1 __ < A.< 1. 

Put This minimizes the quadratic part of 

and 

(uniformly in h). This implies that 

inf f (a , t, h) < f (a , t , h) 
o< t< t n n n 

0 

for all t > 0 
0 

From the cited inequality it follows that, for n > N which is 

independent of h ; 

m m Ph ( ± lJ > c -51,) < exp { -mf ( a , t , h) } =:;. A. P ( ± lJ > c - 5I,) mn n - n n n mn n 

f 

< 
Cn h h 2 h T 2 rr 2 h 

y J exp{ (m-n)~( c)- --- m~( E + t cr 2 ) - m --<a + ~ J.::'n) 2 }dh n rn 2K2 vn n mn 20 q n L ru 

= y n 

where 

-c 
n 

!C I n 

which is bounded. 

Accordingly, 

c 3 

< (m+r)Kn (~) . 
rn 

It is thus seen that the integral is bounded. 
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Now 

t2 m T2 
0 a2 -+ a2 0 and -+- > > 

2 n K2 mn 
0 mn 

(c -t)2 
m a 2 :>._2 n :>._2c2 A.2c2n2q q > 0 = n"" = n m n 

a 2m T2 
ln n n ~) ;Q - (- -+ - 00 

2a 2 a2 n 
mn mn 

=> n A. Pm( Ill I n mn 
> c -Q.) 

n 
-+ 0. 

Q.E.D. 

Remark: We might suspect that deficiencies are determined by 

decision problems of little practical interest, and that accord-

ly they are unrealistic measures of "loss of information 11 • Take 

as an example the experiments En consisting in observation of 

X,..... bin(n,p), and let our problem be that of estimating p. For 

a quadratic loss function it is easily seen (see e.g. [1 ]) that 

the difference in minimaxrisk between En and En+1 is 

0(-1 ) -- o(~{En,En+ 1 )). H 'f h 1 f t' u owever, 1 we use t e oss unc 1on 
n2 

, otherwise 

we obtain the deficiency as difference 1n Bayes-risk (with the 

prior distribution being approximately N(80 ,~ )), as follows 

from the above proof. 
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4. Some conjectures 

As mentioned before, we may expect that 

wide class of experiments f . and it would be natural to try to 

extend our results. One direction which is likely to be successful 

is to multiparameter exponential families. Another is the class 

of experiments fulfilling certain "Cramer-type 11 regularity condi-

tions. To establish our upper bound we have essentially used 

(i) that the density can be expanded in a Taylor formula where 

the coefficients have bounded moments. 

(ii) The existence of a anice" estimator such that 

In rather general situations~ similar estimators exist, e.g. 

the maximum likelihood estimator. 

The proof for the lower bound also essentially uses (i). 

A case where we may expect to establish (i) and (ii) is when 

f is a general translation experiment. 
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