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• ! 

Some experiments occurrlnf ln sampling theory may be described 

fo:)_lows: 

Consider ~ finite population I and a characteristic of interest 
I 

whi~h, with varying amount (value, degree, .•. ) is possessed by all in-
, I 

dividuals in I . Let 8(i) be the amount of this characteristic for 

individual l . 

It is known that e belongs to some set 0 of functions on I . 

Let a be a sampling plan, i.e. a probability distribution on the 

set of finite sequences of elements from I • If this sampling plan is 
I 

used and if the characteristic~ of sampled individuals are determined 

withoat error, then the outcom~ 

is. obtained ·with probability ~<i 1 ,i 2 , ••. ,in) 

If Ea denotes the experim~nt obtained by observing x then, 
I 

provi<fed e is not too small, I Ea1 , is at least as informative as 

Ea2 if and only if the sampled subset under a 1 lS "stochastically 

conta+ned" in the sampled subs~t under a 2 . 

~e shall here, utilizing ~he theory of comparison of statistical 

experiments, discuss this and ~ther related results. 
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1. Introduction 

A theory of compar'ison of exper'iments based on mathemat leal decj_-

sion theory has developed during the last thirty years or so. It has 

been extensively used, see Le Cam [ 8 ], in asymptotic theory. There are 

so far not many applications to non-asymptotic comparisonofstatistical 

models. Some fairly general results on linear normal models may be found 

in Sw~nsen [12]. The purpose ok this talk is to present some simple ap-

plications on experiments associated with sampling plans. We refer to 

Heyer [ 3 ] , Le Cam [ 8 ] , [ g ] ~nd Torgersen [ 13] for expositions of the 
I 
I 

theory of comparison of experiments. The material covered in section 2 

I 

1n Torgersen [14] is adequate ~ere. 

6onsider a population I iwhich is an, and may be any, enumerable 

set. Suppose also that there i$ a characteristic of interest which, with 

varying amount (value, degree,~ .• ) is possessed by all individuals in I. 

Let ® ( i) be the amount of this characteristic for individual i E I. 
I 

The function e on I defined this way is our parameter of interest. 

We shall assume that it is a p~iori known that e belongs to, and may 

be any element of, a set 8 of functions on 
I 

I . 

In order to find out abou-t;: e we may take a sample from I and 

measure the characteristic for each of the individuals in the sampJe. 

An essential assumption is now that the sampling is carried out according 

to a known sampling plan a , .e. a probability distribution on the 

space· I of finite sequences ~f elements from I . Before proceeding 
S I 

let us agree that a probabilitx measure on an enumerable set is defined 

for all subsets. We may, in order to retain the possibility of making 

no observations at all, include the "empty" sequence 0 1n I . If 

the sampling plan a is used and if the characteristics of the sampled 

individuals are measured without errors, then the outcome 

1s obtained eith probability 

a<i 1 , ···,in) : Thus we mwy let our sample spp.ce consist of all sequences 
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Ci1 , ••• ,i )Eis, f 1 , ..• ,£ EU8[I] 
. n n e 

and where f l.l = f v whenever J.l.l = lv • 

Let P denote the probability distribution of the outcome when 8,a 

8 prevails and a is used. Thus the sampling plan a determines a 

statistical experiment Ea = ( P 8 ,a: 8€8) 

Let ( I 1 ,F 1 ), ..• , (In ,F n) :be the random ·QUtcome and consider the 

statistics U and X where U = { I 1 , •• • , In} and X is the function 

U determined by F. Now P8,a«i1 ,f1 ), ••• ,(in,fn)):; on the set 

I 

as ( f 1 , . ~ . , f n) = ( e ( i 1 ) , •.. , e (in.) ) or not . 

It follows, as is well known, that (U,X) is sufficient. [Just check 

that conditional probabilities igiven (U,X) may be specified indepen­

dently of 8]. It is known, see [ i], that (U ,X) actually is minimal suf­

ficie~t, - but we shall not use this fact here. The important thing is 
I 

that the reduction by sufficie~cy leads to another, and equivalent 

experiment Eii = (P 8 , a: 8€8) which may be described as follows: 

Let U be the class of all finite subsets of I • If u E U and 
I 

I 

a lS a sampling plan on I then a is the probability distribution 

on U induced from a by the ~set valued map Ci 1 , ..• ,in)~ {i 1 , ... in}. 

Thus a is the probability distribution of the sampled subset of I . 

We may then let 
I 

the sampl~ 
i 

space 1 X 1 of E-a consist of all 

pairs (u,x) where u E U and! 
I X= 8 I u for some 8 E 8 . If a is 
! 

used then the probability, 'P 8 .a((u,x)) of the outcome (u,x) is 
1 

I 

a ( u) or = 0 as x = 8 I u or not .: 

It follows that. the structure of experiments Ea may be identified 

with a structure of probability measures 6n the set of finite subsets 

of the population I . 

Note that the set of experiments Ea , and hence the set of expe-

riments E­a is closed under products. More precisely Ea x E13 N Ey 

where yCk1 ,k2 , ... ,kr) =a(0)S(k1 , ... ,kr) +aCk1 )S(k 2 , ... ,kr) + ... 

+ ..• aCk1 , ... ,k 1 )S(k) +aCk1 , ... k )S(0);Ck1 , .. 0;k) EI so that r- r r · , r s 
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y(u) = E{aCu1 ) '§Cu 2 ) : u 1 U u 2 = u}; u E U • 

A few notations and other terms which will be used are listed below: 

I =a population. 

N = #I 

I = the set of finite sequences of elements from I. s 

U = the class of finite subsets of I • 
I 

#A = the number of elements i irt A or =co as A lS finite or infinite. 

a,S, ... : probability distribution on Is 

i 

a = the probability measu~e on U induced from a by the set 

valued maps (i1, ... ,i ) ... {i1, ... ,i}. n n 

a = the probability distribution on integers induced from a 

by the map Ci 1 , ... ,in)-+ #{i 1 , ... ,in} • 

( z 1 ,.; . , zn) = an ordered n-tuple 

{z 1 ,:~.,zn} = the set consistirlg of all elements z such that 

AZ. 
i l 

vz. 
. l 
l 

= inf z. 
l l 

= Sl.}.p Z. 
l l 

or z - z - 2 or ... or z = z n 

~(x) = ~({x}) if ~ is a m~asure and {x} is the one point set 
I 

containing x . 

II~ II = total variation of ~ , . 

E ~ F The experiment 
I • 

E is at least as informative as the .experiment F. 
I 

E and F are equal~y informative. 

cSCE,F) = the deficiency of E 'w. r. t. F . If E = (Pe :8E8) and 

F=CQ8 :8E8) then cSCE,F) is, Le Cam [ 7 ] 
' 

the smallest 

number of the form s¥PIIP9M-QII where M lS a Markov operator 

from the band generated by the Pe Is to the band generated 

by the Qe Is • 

ME,n = o<E,n va<F,E) 
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Isotonic = monotonically increasing 

A map w from a partially ordered set (X,~) to a partially 

ordered set 1s called monotonically increasing (decreasing) 

2. Comparability of experiments Ea 

In order to simplify the writing let us agree to write 11 E ~ F11 

for II E is at least as informative as . F11 • If II r ~ F11 and II F ;;: t 11 then 

we shall say that E and F are equivalent and write this E ""F • 

Among the several natural (and fortunately equivalent) ways of 

introducing notations of comparison.is the.randomization (Markov kernel, 

transition, ... ) criterion of Le Cam, which states roughly that E ~ F 

if and only if F may be obtained from E .bY a randomization. 

Applying this to the discrete experiments E "''t... and Ea"' Eo a a, 1-' 1-' 

we find that Ea;;: E8 if and only if 

( 1) 'P 9 , i3 < < v, y) ) = . I M < < v ,y ) 1 c u, x) ) 'PeaC u, x) c v, y) .e. x 
(u,x) 

for numbers M((v,y)l (u,x))~ 0 Cu , x ) , ( v , y ) E X such that 

( 2) 

( 3 ) 

I M((v,y)ICu,x)) =1 
(v,y) 

(u,x) EX 

Using the definitions of the measures P, (1) may be rewritten: 

S(v) = IM< (v,el v) I (u,el u) )O.(u) 
u 

Hence: 

1 I [ I M < < v , e 1 v > 1 < u, e 1 u) na c u) ee8 
u v 

It follows that l:MC(v,elv)l(u,elu)) =1 when ():(u)>O. 
v 

Say that 8 satisfy (C) if: 

(C) There is a e 0 1n 8 with the property that there to each iEI 

corresponds at least one e 1n 8 such that e( j) = e 0 ( j) or 

~ e 0 ( j ) as j ~ i or J :: i . 



- 6 -

Let eo be as in (C). Assume a(u 0 )>0 

Put e 0 = {e:eEe&elu 0 =x 0 }. Then e 0 E e 0 • Consider so a palr (v,e) 

where vEU and eee 0 • If M.((v,elv) 1Cu 0 ,x 0 ))>0 then, by (3), (v,elv) 

is necessarily of the form ( v, e 0 I v) l. e. e I v·==e 0 I v . It follows that 

( 4) M c c v , e 1 v ) 1 c u o , x o )) ~ M c c v , e o 1 v ) 1 c u ~ , x o ) ) ; v E u 

Hence, since both sides _add up to i ln v, "=" holds ln ( 4) for each 

v EU . Consider now a particul~r v 0 EU such that 

M((v 0 ,e 0 lv 0 )ICu 0 ,x 0 ))> 0 • Then, by (4) with "::;;" replaced with "-" - ' 

for each e E 0 ° . It follows, using '( 3), that 

e I v 0 = e 0 I v? ; e E e 0 • If v 0 ~u 0 then we may choosea iEv 0 -u 0 

By assumption there lS a 8Ee 0 such that e(i)~e 0 (i) contradicting 

elv 0 = e 0 lv 0 • It follows that vcu whenever M((v,e 0 lv>ICu,e 0 lu))Ci(u)> 0 . 

Define now for each pair (u,v) EU 2 a number f<vlu) by: 

rcvlu) M ( ( v 'e 0 I v) I ( u 'e 0 I u)) when a ( u) > 0 

( 5 ) fcvlu) = 0 if v~u and a(u) = 0 

f<ulu) -· 1 if a(u) = 1 

Then Ircvlu) = I fCvlu) = 1 u E U •• 
v v~ 

Substituting e =eo ln ( 2 ) we find: 

( 6 ) 6Cv) = Ir<vlu)a(u) 
v 

Define finally a joint distribute p on_ u2 by: p( u 'v) = f( v I u) (i( u) . 

Then p has marginals a and S and p( { ( u, v): u~v}) = 1 . The last 

established fact may be recognized as one of several usual and equivalent 

ways of expressing that a: is stochastically larger than 6 w. r. t. the 

inclusion ordering ~ on U . 

Suppose now; conversely, that we have been able to construct a joint 

distribution p with this property. Specify the conditional distribution 

On, f , of obtaining a "last" set V given that the "first" lS U 
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such that I{F<v:ju): v~u} = 1 for all uEU . (If a(u)>O then this 

holds by definition). Define a Markov kernel M from ~ to ~ by 

M((v,y)ICu,x)) = f<vlu) whenever v~u and y=xlv. (If v$u or 

y;txjv then necessarily M((v,y)ICu,x)) =0 ). It is then easily checked 

that M satisfies (2) so that ~ ts is obtained from E- by the ran­
() 

domization M • 

We collect this as well as some closely related statements 1n: 

Theorem 1 (Comparability criterions). 

Suppose 8 satisfy condition (C) above. Then the following four 

conditions are all equivalent: 

( i) 

<I) 

(ii) 

(ii) 

Ea ~ Ee 
E'a: ~ Es 
There 1s a joint distribution p on pairs (I,J)EI 2 

s such 

that I is destribuled as a , J is distributed as B and 

p ( { I } ~ { J} ) = 1 

There is a joint distribution p on pa1rs (U,V) EU 2 such 

that u is distributed as a ' v is distributed as s and 

p (U$V) = 1 

Remark 1 . Condition (C) is only needed to prove that (i) implies (ii). 

The implications (i)~(I)4=(ii}~(ii) hold even if 8 does not 

satisfy (C). This follows from the theorem as state~ by enlarging 8 

or directly from an inspection of its proof. 

Remark 2 . It follows from wellknown · results (see the remark after 

theorem 7 

sets that 

(ii) 

on orderings of probability measures on partially ordered 

( rr) ' and hence ( ii) ' may be expressed as follows: 

for each bounded function h such that 

I 
. I 
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Cii) a{H) ~ BCH) for any increasing class HI§.U 

Here a subclass H of U is called increasing if uEH whenever 

v E H for some v~ . Trivially H is increasing if and only if H is 
00 

of the form H = ~.1 { u: u~ w } 
\)- . \) 

for some sequence ln u . 

Completion pf the proof of theorem 1. The eqivalence of (i) and CI) 

follows fom sufficiency and we saw above that CI)~ii) ~ The implication 

(ii) =>(ii) is trivia'l so it remains only to show that (ii) =>(ii) . 

Suppose then that CIT). is satisfied. Let a<·i{I}) and BC•I{J}) be 

the conditiona.l distributions of, respectively, I given {I} and 

given {J}, • Construct a joint distribution p for I and J such that 

the conditional distribution of (I,J) given (U,V) has marginals 

aC·IU) and BC•IV). Then p satisfies (ii) 

[J 

Associated with each sampling plan a is a "cumulative distribution" 

function (ba on U defined by : ~ cz ( w ) = I { Ci ( u ) : u ~w } It is easily 

seen that ~a determines a . 

Corollary 2. Suppose 8 sat·isfies (C). Then the following conditions 

are equivalent: 

( i) 

(ii) 

(iii) 

Proof: By remark 2, ~- = ~­a B when E ,... E 
a B 

[J 

Ordering of sampling plans according to the "distribution functions" 

~a corresponds' to ordering by affinities, or what is equivalent in this 

case, to ordering by Hellinger transforms. To see this consider func-

tions 1 2 r e ,e , ... ,e ln 8 and positive numbers t 1 , ••. ,tr withsum 1. 
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Then t t t 
fdP 11 dP 22 •.. dP r 

8 , ex 8 1 a er, a 

t1 t 
= fdP 1 ... dP; = <lla(w) 

8,a 8 1 a 

If G satisfies condition (C) 

of theorem 1 then any class {u:u~w} where wEU is of this form. 

It is, however, not difficult to construct examples of noncomparable 

sampling plans a and S such that 

E a is more informative than E8 for any deci-

sion problem, ln particular for all testing problems. If G is not too 

small then it suffices to consider testing problems by: 

Proposition 3. Suppose G ;;: n I where # n ~ 2 • Then Ect~ E S if and only 

if Ea is at 'least as informative as Es for testing problems. 

Proof: Suppose G ;;: n I where #n=2 and that 

formative as ES for testing problems. Choose a 

Ea. lS ·at least as in­

a E n.J and sets 

1 2 r v , v , ... , v ln U • Let G0 consist of all e E G such that 

Blvv;z!81vv; v=1, ... ,r. Let Ea; and EB be realized by, respectively, 

observing (U,X) and (V,Y) • Define the test ~ = lCV,Y) by putting 

o = 1 when there is a vE {1, ... ,r} such that V$,vv and Ylvv = 8lvv, 

and by putting o = 0 

tion there is a test 

Io<u,8lu)a(u) = 0 when 
u 

otherwise. Then E 8~CV,Y) 

o = oCU,X) so that E8 o = 
= 0; 8 E G0 • By assump-

..... 
E8 o . In particular 

8 E G0 • Suppose u E U . is such that u~ vv ; 

v = 1' ... 'r . Then' by assumption' there is a 8 EGo such that e I u = e I u 

Hence 6(u,81u)a(u) = 0 in this case. This yields: 

I{a(u) :u~v1 or u~v 2 or ..• or u~vr}~LoCu,elu)a(u) = E8o = E8l = 

· 1 2 r 
I 8 ( v, 81 v) S ( v) = I { S ( v) : v $_V or v 3 v or •.. or v ~ v } • Hence a (H)~ B (H) 

for any increasing class H ln (U,~ . The proposition follows no1:J 

from theorem 1 and t-he remark after that theorem. 

0 
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If I is finite then a. sampling plan ~ will be called (population) 

symmetric if a(p(i 1 ), ... ,P(in)) =aCi1 , ... ,in) for each sequence 

Is and each permutation p of I . It is easily seen 

that a(u) depends on u only through #u when a is symmetric. 

Conversely any probability distribution n on U such that rr ( u) depends 

on u vla #u is of the form rr= a for a symmetric sampling plan a 

without replacement. 

Let for any sampling plan aJ a be the probability distribution 

of the number of different elements in the sample sequence (set) when 

the sample sequence (set) is distributed according to a(a) . 

Thus 

If a is symmetric then ~ lS determined by a by: 

Clearly any probability dist0ibution on {0,1,2, ... ,N} lS of the 

form IT for a unique symmetric a without replacement. If both Ea 

and EB are symmetric then Ey = EaxEB lS symmetric as well and: 

where the summation is over all ordered palrs Cr1 ,r2 ) o·f integers ln 

{0,1, ... ,n} such that r 1+r2;;:n. 

Note also, as is wellknown, that any symmetric sampling plan a 

lS a mixture of simple random sampling plans without replacement. More 

precisely: 

where when i 1 , •.. ,in are distinct, while 

Pn ( i 1 , ... , :i:m) = 0 whenever m ~ n . It follows then, since 
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E Po ;;:; Ep1 ;;:; ••• ;;:; E Pn that Ea ;;: E S whenever a and S are symmetric 

sampling plans such that ~ is stochastically greater than S . Suppose 

conversely that ~ is stochastically greater than ~ • Then there is 

a joint distribution f5' on { 0,1, ... ,N} 2 with marginals IT and E and 

such that p({(m,n):m;;:n}) =1. Put f(njm)- p~~;) if ri(m)>O. 

If (tfm) = 0 , then we may put f(n jm) = 1 or =0. as n=m or n;t: m . 

Define a kernel r from U to U by: f(vju) = (~~)-l f(#vj#u) if v~u. 
Put f(vju)=O if v$u. Let vEF and put n=#v. Then 

lf c vI ul ac ul = JJ~=~) (~ r i" en I ml i!Cml (~r = ( ~r li'cn I mli'i:Cml = 

(N )-1_ . 
= n S(n) = S(v) This, together with theorem 1, proves: 

Theorem 4. Let 8 satisfy condition (C) and let· a and S be symmetric 

sampling plans. Then Ea.;;: ES if and only if ~ is stochastically greater 

than 13 • 

Remark. Condition (C) is, by the proof above, not needed for the "if" 

part of the statement. 

3. Random replacement samElihg plans 

Define (not necessarily symmetric) sampling· plans a - a p,n,n - n 

where p is a probability distribution on I such that p(i)> 0 for 

all i E I n lS a positive integer and · n is a probability distribu-

tion on {O,l}n-1 as follows: 

Choose a sequence of O's and 1's according 

to n . Then draw individuals I 1 ,I 2 , ••• ,In one after ·another such that: 

( i) An individual which lS drawn at the m~th draw where m<n 

replaced or not as s = 1 or s = 0 • m m 

(ii) I 1 lS drawn from I such that Pr(I 1 =i 1 ) =pCi 1 ); i 1E I. 

(iii) If I 1 , ..• ,Im has been drawn then stop whenever m = n or if 

m < n and each element of I has been drawn without being re-

is 
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placed. If otherwise then Im+ 1 is drawn from the remaining part A 

of the population such that Pr ( Im+ 1 = irh+ 1 ) = p ( im+ 1 ) /p (A) ; im+1 E A .• 

Using theorem 1 we get the following intuitively reasonable 

suffi~ient condition for comparability: 

Proposition 5. Let p and n be fixed. Then Ea ;;;; Ea whenever n 
n n' 

is stochastically larger (for the pointwise ordering on {0,1}n- 1 ) 

than n' 

Remark 1. Let n=3 . It is then easily seen that a o· . . o, 1 
is 

stochastically larger than a when N ~ 2 · • 
0 1 0 

Thus the converse of 

' the above statement is, even if we restrict attention to independent 

and uniformly destributed drawings, not true. 

Remark 2. Suppose N = #I <.co and that p is the uniform distribu~ 

tion on I . Then, by theorem 4 and the proposition, Ea h(#I) ~ Ea l"l,(~I) 
n n' 

whenever n is. stochastically larger than n' and h. 1s monotonically 

increasing. If, in addition, the drawings are independent (i.e. n and 

n' are product measures) then this proves a very particular case of a 

conjecture by Karlin [ 5 ] • A discussion of the relationship of the 

problems and results in [ 5 ] to the theory of compa~ison of experiments 

may be found in the appendix. 

Proof. Note first that ~Ci 1 , •.• ,in) = Ea.r Ci 1 , ••• ,in) where E: is 
. u E: 

distributed according to n and oE: is the one point distribution 1n E: • 

Hence a (u) = Ea 0 (u) ; u E U. Suppose now that we knew that a.r 
n E: us 

is 

"stochastically contained" in a whenever 
os' 

[The terminologi is 

consistent with the following convention: Let P and Q . be·probabil i ty 

distributions on X and let R be a relation on X • Then P is sto-

chastically in relation R to Q if for random 

variables XP and XQ with, respectively, distributions P and Q ] • 
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Let h be an isotonic function on (U,i,) • Then Ih(u)a 0 (u) is mo-
u E: 

notonically decreasing ln e: • Hence Ih(u)arr(u) = LLh(u)a 0 (u)rr(e:) ~ 
U E:U E: 

LLh(u)ac; (u)rr' (e:) = Ih(u)arr' (u) . It follows that arr is stochastically 
Eu E u 

contained in a I • It suffices therefore to show that as is sta-
rr ue: 

chastically contained in as ) when 
u e:' 

e: ;;: e:' • We shall show this by 

showing that the sampling plang a 0 
E: 

n-1 
; e:EW,1} may all be imbedded 

within a single stochastic framework. This framework shall consist of 

independent I-valued random variables V ; ].1=1~2, ••• , v=1,2, •.• n 
]l,V 

such that each V has distribution p . Before proceeding, let us 
]l,V 

for each m-tuple Ci1 , ... ,im) with m<n and for each sequence 

of O's and 1's put 

I - { i · v <m "& e: = 0 } • Thus v. = v is precisely the 

elements left in I after 
. . 
l 1 , ... , J,.m has been drawn and the replacement 

policy Ce: 1 , ... ,e:m) has been used. 

(i) 

(ii) 

Define, for given e: , recurcively random variables R1 ,R2 , ••• Rn by: 

R = 1 1 

If R1 , ... ,Rm are given where m<n and Rm < oo then Rm+ 1 

is the smallest integer J.1;;: 1 such that 

V E A( V V ) when 
Jl,m+1 1,R1 , ... , m,Rm,e: 1 , ... ,e:m 

ACV1 R ,V R ) 7! 0 • Put R ::oo otherwise. 
'1'""" m, m'e:1, ... ,e:m m+ 1 

The quantities R ,I and v depend on e: • Use the notations m m 

R' I' and m' m v' when e: is replaced by 

Then we have for each m ~ n . 

( § ) R I ;;: R m m 

( § §) If are defined then 

e:' . Suppose now that e:;;: e:' 

are also defined 

and ACI'1 , ... ,I'.,e:'1 , ... ,e:' )s;;;ACI 1 , ... ,I ,e: 1 , ... ,e: .) 
m m - m m 

(§ § §) If I~, ..• ,I~ are defined then I 1 , ... ,Im are also defined 

and { I 1 , ... , I } !;; { I'1 , ... , I' } 
m - m 

• 
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Proofs of ( §), ( § §) and ( § § §) • The statements are trivial if m=1 . 

The general case follows by induction on m. Suppose (§), (§§) and 

( § § §) hold with m replaced by m-1 where m ~ 2 . 

Put and AI -A(I' I' •. I) 
k - 1 ' ••• ' k' € 1 ' ••• ' E:k • 

By the induction hypothesis: A' c A whenever m-1 = m-1 
I 

R <oo • Suppose 
m 

then that .R' < oo • Then m v ;].1=1,2, ... 
m,].l 

have already reached A ·m-1 

when A' is reached. This proves (§). Now I · I I 1 C A =A n{I :€ =0} m m-1 · m m m-1 
·c A = A 1 n {I : E: = 0} . This shows that m , m- m m and A' s; A whenever Em = 1 . m- m 

If E: = 0 then, since £ 1 ~ E: , £ 1 = 0 . The only case which then m 1 - m 

.needs particular attention is the case A~_ 1 3 Im ;e I~ • This, however 

is an impossibility since R' ~ R • Hence ( § §) is established. m- m 

It remains to show that I € { I'1 , ... , I' } .. Assuming I ;I! I' m m m m we see, 

as above, that Im ~ A~_ 1 . This, however, implies that I has been 
m 

drawn and not replaced in the sequence I~, ••• ,I~_ 1 . Hence 

Im E{I'1 , ... ,I~_ 1 } 5{I'1 , ... ,I~} • This proves(§§§). 

It 1s now easily seen that CI 1 , ••. ,Iv) is distributed according 

to a 0 . (Just consider the conditional probability of obtaining the 
. € 

sequence i 1 , ... , im ; m ;;;;v given that i 1 , .•. , im_ 1 has been obtained). 

Our claims concerning the sampling plans an follow now from (§§§) 

and theorem 1. 
0 

4. Deficiencies ~nd distances. 

Let us proceed to the slightly more difficult problem about defi7 

ciencies between experiments Ea • Thus we shall try to find out how 

much do we loose (~nrisk say), under the l~ast favorable conditions 

for comparison by basing our decisions on Ea instead of 

Following Le Cam [ 71 we shall limit ourselves to decisi6n problems 

with bounded loss functions. Clearly: 

IIP8o:- P8gll = tlfi8o:<u,eju)-P8scu,e!u)j = !Ia- 611 where !Ia- 811 may be 

replaced by llri - Sll when a and S are symmetric. It follows that 
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case. We shall, however, see that these upper bounds may be very bad. 

If' for example a and 8 are mutually singular, then lla -811 =I lei -S:II = 2 

while the deficiencies 

than 10-100 . 

We shall now, ln order to get lower bounds for deficiencies., consider 

the prbblem of estimating the restrictions ialw1 ,elw2 , ... ,elwr) of 8 

to given nonempty subsets w1 , ... ,wr of I . If our proposals for 

these restrictions are respectively, t 1 ,t 2 , ... ,tr then we put the 

loss = 0 or = 1 according to whether at least one of the restrictions 

have been correctly estimated o~ not. Let ~ be realized by (U,X) 

where U E U is distributed according to a while X = 8 I U when 8 

prevails. Choose a e0 E 0 and define an estimator p = ( p1 , ... , Pr) by 

putting U=>. w = \) The risk 

at 8€0 is then IUi(u):u~w1,u~w2 , •.. ,uiwr} or 0 as 

0 
e I w ;t 8 I w ; v = 1 , 2 , ... , r or not . 

\) \) 

Assuming that there is a 8 E 0 such that B(i) ;t e°Ci) for all l 

we see that maximum risk is C =1-L{CZ(u):uifWjf or ••. or u~wr} 

Suppose now that there was a decision rule with smaller maximum risk. 

Restrict, fol? the moment, 8 to some finite subset e of 0 • If A.-0 is 

a least favorable prior distribution on G then any Bayes solution 

for :x. 0 is minimax. Thus we may assume that there is a nonrandomized 

decision rule p with risk < 0 for all 8 E 0 . Let V1 consist of 

all sets u E U which does not contain any set w1J and put v2 = U - V 1 . 

The risk at e may then be decomposed as I 1 + I 2 where 

Is = I{ a c u > : i5 v c u , 8 1 u > ;t e 1 wv ; v=1, •.. ,r, uE V} • Our assumption implies s 

that I 1 <C= I{a(u):uEV1 } for all -8 E 0 • Hence, for all 8 E 0 , 

the·re is a u E v1 such that Pv (u,e I u) = e I w\) for some v . If uE V 1 

then there are points i 1 , ... ,i such that u, u,r i E wv- u ; v = 1 , ... , r . u,v 
Put for each pair (u,x): p~{u,x) = -pt(u,x) (iu,t) . Then 0 = 

U { G u, v : u E V1 , v E {1 , ... , r}} where 0 \) = { e : e E e ' g*{j ( u ' e I u ) = e ( i v' )} • u, . u, 
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It follows that there is a finite subset { i 1 , ... , im} of (w1u ... u wr) -u 

and functions f . 'f . ' ... 'f . 8~ h th t l 1 l 2 lm on - sue a 
- .m -
8= U8 

v=1 v 

G = {8:8(i )=f. (8)} and each f. depends v v lv lv on e E 8 via 

where 

el w • 
\) 

We may without loss of generality assume that are distinct. 

There are several conditions which we may impose on 8 in order 

to ensure the impossibility of this. Suppose,. for example, that 

# I= N < oo, G = 'I'J N where # ~ = k > N . Then the constuction above implies 

. . N-1 N · ~ V1: . - . N-1 N-1 . . . 
the contradlctlon: Nk <k = #8 ::;; L # 8 :;;mk · ::;; Nk . Slmllarly lf 

v=1 v 

fii = oo and 8~'TJt where #7J1 =00 • lti ~~at ease e may be chosen as follow:3. 

Choose 
0 00 . 

8 E?h and let 'Yf be some subset of ?] 1 containing 

k> #{w1u ... Uwr} elements. Then the above arguments lead to the 

following contradiction: 

#{wj_U ... uwr}km- 1 <km =#G::;; I·#ec...,~~k- 1 ~#fw1u·~.-.uwr}km- 1 
v=1 

Altogether we have shown that e is the minimax risk whenever 

8~ 'f/I where #~ ~ 1 +#I . Hence, since the loss function is nonnegative 

and bounded by 1 

where H = { u : u E U and for 

some i} . As any increasing class of sets is a limit of such families 

we find that : 

where the sup lS over all 

increasing classes ln (U,~) . Using a result of Strassen [10] we 

find the following criterions for deficiency 

Theorem 7. Suppose 0~?'JI where #'TJ~ 1 +#I . Let a and B be sam-

piing plans and let E~O • Then the following conditions are all 

equivalent : 

(i) o<Ea,Es) = o<Ec;,f.~)::;; E 

(ii) S(H)- cHH) ::;; ~ for any increasing class H of sets ln (U ,<i) 
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G.ii) fhdS- fhda ~~II h II for any isotonic function h on ( U ,ll) 

(iv) There is a joint distribution p on u2 with marginals a 

and B such that p({(u,v): u~v});:;: 1- ~ 

Remark. The equivalence of conditions (ii), (iii) and (iv) and the 

fact that these conditions imply (i) does not require any condition 

on 0. It should be apparent from Strassen [11] and the proof below 

that these equivalences hold if (U,~) is replaced by quite general 

partially ordered sets. This has, when E= 0 , been noted by several 

authors. 

PI~oof: If (ii) holds, then (iii) follows by writing fhd(S-cO = 

llhll 
I <i3- a) c h ;:;: t) dt and by noting that r h;:;: t J is an increasing class 
0 

of sets. Applying (iii) to indicator functions we recover (ii). 

Thus (ii)<=>(iii) . By Theorem 11 ln Strassen [1·1] condition (iv) is 

equivalent to the condition that s< H) ::;:; a( {u : Uj&V for some v E H}) + ~ 

for each subclass H of U • Clearly nothing is lost by restricting 

attention to isotonic subclasses of (U,~) , and then this is merely 

a restatement of (ii). 

Suppose that ]5 is as in (iv). Put f(v lu) = p(u,v)/a(u) when 

(i"(u) > 0 . Put rev I u) = 1 OP 0 as v=u or v~u when (i(u) = 0 . 

Define a function A from U to [ 0,1] by: A(u) = }:{FCvlu) : v}i u} 

Extend X= {(u,x): uEU, x = elu for some 8E 0} · to a set x by 

joining a point ~ not belonging to X • Define finally a Harkov 

kermel M from 
1\ 1\ 
X to X such that M((v,y) I (u,x)) = f<vl u) when 

(u,x)E~ ,.v.u and y=xlv. Then, necessarily, MC~ICu,x)) =1-A(u). 

We find succsesively: llfi8 8-r8 ~Mil= I IS'Cv)-l:_M((v,el v)ICu,elu))a(u)l + 
' ,. v u 

IM<sl<u,elu))a(u) =IIs<v)- I r<vlu)a(u)l +1:(1-A(u))a(u) = 
u v u 5.v u 

= 2 l:US'Cu,v) : u~v}::;:; E . TI1us (iv) implies, without any assumption 
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on 8 • The proof 1s now completed by noting that, under the 

stated condition on 8 , the lower bound-established immediately 

before the formulation of this theorem yields the implication ( i) ~c ii): 

0 

If a and (3 are symmetric then comparison may, as we might expect, 

be ex pres sed in terms of ~ and ~. 

Corollary 8. Let a and (3 be symmetric sampling plans and put N =#I 

Then cbnditions (ii), (iii) and (iv) of theorem.6, are, without any 

assumption on 8 , equivalent to each of the folloing conditions: 

(iiI ) 

(iii' ) 

( i VI ) 

Proof: 

~[m,N] -~[m,w] ;;:;~ ;m=0,1, ..• ,N 

for any isotonic nonnegative 

function h on {0,1, .•. ,N} 

There is a joint distribution 

marginals l1 and 
:::r 
B such that 

= p on 
2 

{0,1, ••• ,N} 

- E ~({(m,n):m~n})~1- 2 

with 

The equivalence of ( ii' ) , (iii' ) and ( i v 1 ) follows by the 

remark after theorem 7. Suppose these conditions are satisfied. Let 

h be a nonegative isotonic function on (U,~). Then Eah(U) = Eag(#U) 

and ESh(U) = Egg(#U) 

Clearly 11-gll ;;:;llhll and 

where 
N -1 

g(m) = E(h(U) I #U=m) = Cn) I {h(u) :#u=m} 

g is isotonic since 

N )- 1 . ( N )- 1 1 g(m+1) = (m+1 _ I{h(u) :#u=m+1}~- rn+1 'u:#u~m+1 iii+'I I{h(v}:v. u, #v=m} = 

( N )- 1 1 m+1 m+ 1 CN-m)L{h(v):#v=m} = g(rn); rn=0,1, ..• ,N-1 • Hence, by (iii'), 

ESh(U)- Eah(U) = ESg(#U)- Eag(#U);;:; ~ !igli;;:; ~ lih.il • Thus condition (iii) 

of theorem 7 is established. Conversely, suppose (iii) of theorem 7 

(and hence (ii)) is satisfied. Let m;;:; N and put H = {u:#U~m} 

Then H is isotonic. Hence ~[m,N] - ![m,N] = B(H)- a (H);;:;~ 

Thus (ii') holds. 

0 
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Ex:ample 9. ( Approx irna t i .:m by f:ixe,j s L~o r.samp ling pli.!hG). 

Let a be a symmetric sampling plan and let wk be the sampling 

plan consisting of drawing "randomly" without replacement k elements, 

1.e. - N) .. 1 wk ( u) = ( k 

Thus, if ~(r) = (~) 

p ~ 0' o(E ,Ea) ~ 0 
wk 

Note also that 

when flu=k • Then oCEa,E ) = 2tt[O,k-1] 
Wk 

while 

so that oCEa,E ) + o(E · ,Ea) = 2lla - wkll 
wk wk . 

pr( 1-p)N-r ;r=0,1, ... ,N where pE]0,1[ then, 

although II a- wkll -+ 2 

the best approximation, w.r.t~ b. 
' 

to Ea by a 

as 

fixed size sampling plan E is obtained by letting k be a median 
wk 

ln ~ . Thus it is, in general, not expected sample size but the 

median samplesize which yields the approximation. 

Example 10. (Inequalities for symmetric sampling plans). 

Define for each finite subset u of I a vector 

l;;(u) N = ( I;; 1 ( u) , I;; 2 ( u ) , ... , I;; N ( u )) E R N by : I;; i ( u) = (flu]- 1 or :::0 as 

or not ; i = 1 , ... , N . Then I I;; • ( u) e ( i) 
i=1 l 

i Eu is the arithmetic 

average of the observed 6-values after repetitions in the s~~le 

sequence have been removed. If the sampling is without replacement 
N 

then I l;;.(u)6(i) is just the arithmetic average ft[6Ci 1 )+ ••• +6(in)]. 
i=1 1 

Consider now a convex function ~ on [-1,1]N • ~uppose the random 

sample sequence I= CI 1 , ... ,In) is distributed according to the 

symmetric sampling plan a . Let K· ;iE I 
l 

be the absolute frequency 

of individual 1 in the sequence CI 1 , •.. ,In) . By symmetry the dis-

tribution of K. 
l 

given U ={I} does not depend on 
. 
l as long as l 

1 1 . 
is restricted to U . In particular E(nK·I {I}=u) =flu I E(K.!ni{I}:::u)-

1 . jEu J 
(flu) - 1 when i E u . Writing K = (K1 , •.. ,KN) we find 

~;;(U) =E[(K/n)!UJ 

Hence, by Jensen's inequality: 

( 1 ) E<o ( K I n ) ~ Eq> ( 1;; ( U ) ) 
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Consider another symmetric sampling plan !3 and let 11 be a joint 

distribution for the random pair (U,V) satisfying condition (iv) of 

theorem 7 with £ = 2 sup [B[m,N] -a[m,N]] • Then, by convexity: 
m 

EBtp(l::(v) IU) ~ L I.P(r;(v))Pr(V=viU) - lltpll I Pr(V=viU) ~ 
v !!U v iU 

tp(l:r;Cv)P:t>CV=vjU,v~U )Pr(V~UIUl-lltpiiPrCV$U[U) . Now, by symmetry, p 

may, and shall, be chosen so that ~(n(u),n(v)) =~(u,v) for any per­

mutations n of I . It follows that Pr(V=vl U,vaU) only depends on 

the Cardinali ties of V and U as long as VCS U • 

Hence l:r;Cv)Pr(V=viU,vaU) = r;CU) so ·that 
v 

E i3 tp( r; ( v) ) I U) ~ tp ( r; ( U) ) Pr ( V • U I U) - II <P II Pr ( V ~ U I U) = 

tp ( r; ( U) ) - Pr ( V $ U I U) [ tp ( r; ( U) ) + II tp:IJ J ~ tp ( r; ( U) ) - 2 Pr ( V * U I U) lltp II 

It follows that: 

Combining (1) and (2) we get: 

In particular; for any convex function 1jJ on [mine. ,maxe. ] 
. l . l 

·:t l 

(4) 
1 fl . 1 1 

EstiJ<n.v~1 e<Iv)) ~ Esl/J<flD bei) ~Eal/J<nu bei) -

2 111/J II max ( s -a )( [ m ' N ]) • 
m 

The left most inequalities in ( 3) and ( 4) may trivially, be 

replaced by equalities when !3 is without replacement •. 

(4) generalizes various generalizations (See Lanke [ 6] and 

Marshall & Olkin [10]) of the basic inequalities for sampling with 

and without replacement in Hoeffding [4 ]. 
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Appendix. A discussion of the relationship of the problems in 

Karlin [5] to the theory of comparison of experiments. 

The sampling plans a where p is the uniform distibution 
p,n,n 

I d d t {o,l} n-1 'd d . on an n lS a pro uc measure on was consl ere ln 

Karlin [ 5 ]. We shall, in order to discuss the relationship between 

example 5 and some results in [5], need a few concepts. 

Note first that each sequence Ci 1 , ... ,in) ln I 8 determines its 

empirical probability distribution H ( • J ( i 1 , ... , in)) on I where 

HCiJCi 1 , ... ,in)) =#{v: v ;;:;n: iv=i}/n. Identify this distribution 

with the "probability" vector (HCiiCi1 , ... ,in);iE I) . 

Let H0 be the uniform distribution on I , l.e. H0 Ci) = 1/N ; 

lEI . The ordered pair CH 0 ,H(• ICi 1 , ..• ,in)) determines a dichotomy 

D ( i 1 , ..• , in) . If a lS a sampling plan then the a-mixture, 

EaDI = IaCi1 , ..• ,in)D(i1 , ... ,in) , is well defined. Let also, for 

each sampling plan a , Sa be the probability distribution of the 

random probability vector (H( iII) ; i E I) when IE Is ls distributed 

according to a • Note that Sa determines a .and ~ by: 

and 

1Hn) =Sa({x:#{i:xi>O}=n}) ;n=0,1,2, ... 

Let us from here on, for simplicity, restridt attention to 

symmetric sampling plans assigning mass zero to the empty sequence. 

Note that if a has this property· then EaH( i I •) = ~ ; i E I . Let, for 

each i E I , NH (i I • ) Sa 

NHCil·l w.r.t. Sa 

be the distibution on I ha~ing density 

Then ~-= (Sa,NHCil• )Sa ; iE I) is an experi-

ment whose parameter set contains N + 1 points. 

Let now a and S be symmetric sampling plans realized by observing• · 

respectively, I · and Ji in Is Consider the following conditions: 



Cl: 

C2: 

C3: 

and 

- ~~ 2 -

DJ ~Dr a.s. for some joint distribution of (I,J) 

Fs ~ Fa 

EDJ ~ ED1 

since C. 
l 

i=1,2,3, lS equivalent to respectively 

E <PUJ) ;;; E c.p( I) ; <.p E ~i ; i = 1 , 2 , 3 , where : 

where ~ is Schur convex} 

cX~2 = {<.p:<.pCi1 , .•• ,in) ::~CHCiji 1 , ••• ,in) 

where 1jJ is symmetric and convex} 

cX~ 3 ={<.p:<.p(i 1 , ••• ,in) ::~g(H(iji 1 , ••• ,in)) 
l 

where g lS convex} 

iE I ) 

iE I ) 

Consider also the following classes of functions on 

<I>K = { <.p: <.p 

cl)Z = {<.p: ~ is symmetric & 

l:<PCi,j,i 3 , ••• ,i )w.w. ;;;o 
. . n l J 
l] 

whenever i,j,i 3 , ••• i EI & rw. = 0} n s l 

g(O);?;g(1);?;g(2);?;--· } 

I : s 
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The classes ~K and ~Z was considered by, respectively, 

Karlin [ 5 ] and Van Zwet [15]. The ordeving c1 is considered 1n 

Marshall and Olkin [ 10 ] . According to the.terminology there, a 

dominates B if and only if c1 1s satisfied. 

By trying out N-tuples w. ; i E I such that 
l 

}:wi = 0 and #{i : wi ;t 0} :;; 2 we see that 

<I>z = <I>K 

It is also easy to see that 

while Ci 1 , ... ,in),.........g(#{i 1 , .•• ,in}) is in ~Z if and only g 1s 

convex and monotonically decreasing. 

Any ~ Eci>K defines a function of the relative frequencies which 

became Schur convex after symmetrization. On the other hand sym-

metric and convex functions of the relative frequencies are in ci>K . 

Furthermore <t> 3 ~<I>z so that ordering by <I>z implies ordering by 

mixtures. 

Note that orderihg by ~# is equivalent to ordering by ~K 

whenever we restrict attention to symmetric sampling plans with a 

fixed number n:;; 3 of drawings (The number of drawings corresponding 

to the sample (i1 , ... ,in)Eis is n). Thus, by proposition 5, C1 

holds for a = a p,n,n 
and s-a - p,n,n' when n is stochastically 

greater than n 1 and n :;; 3 • 

Identify now each product measure n on {O,i}n-l with the 

vector n · v=1,2, ••• ,n-1 is the 
\) ' 

probability that the v-th individual drawn is replaced before 

the (v+1)-th is drawn. 

Let a :;: a where p is the uniform distribution on n,n p,n,n 

and n:;; N . In [ 5 ] Karlin conjectured that Ea ~;;;Ea ,(p; ~E<I>K' n,n n,n 

and only if n ;;; n'. By the remark after the example the "only if" 

I 

if 
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does not hold in general. The "if" however appears still to be open 

although important progress was made by Van Zwet who proved that 

E q>;;;;E q> 
n, ( 1 , . . . , 1 ) n , rr 

We do not know if Karlin's conjecture implies the more general 

conjecture - namely that holds for a =a n,rr and 8 =a , n,rr 

when rr G; rr 1 • It appears however that several of the statements 1n 

Karlin's paper may be phrased in terms of condition c1 . As an 

example we prove the following: 

Proposition 6. Suppose c1 holds for a= a and n,1,1, .•. ,1 

8 =a n,0,1, ... ,1 whenever n :;; n 0A N . Then holds also for 

a =a n,1, ... ,1 and 8 =a 
n,rr1' ••• ,rrn-1 

for all 

provided n :;; n 0 AN 

Remark: The proposition, as well as its proof, is modelled after 

lemma 3.1 and its proof in Karlin [5]. 

Proof: Consider for each the statement holds 

for a =a n,1, •.. ,1 and for all 8 =a 
n ' rri ' • • • ' rr n- 1 

whenever n ;:S mAN Clearly s1 is true. Suppose S is m-1 

established. Let n :;; mAN 

where is Schur convex. We must, in order to establish 

show that 

If n :;;m-1 then this follows from s m-1· Thus we may, and 

assume that n=m . Let us, for this proof, write Err for 

~ 
n,rr1' ... ,rrn-1 

and use superscript ( \) ) on E to indicate 

s ' m 

shall, 

that 
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individual v is removed from the pop~lation. 

Condit~oning w.r.t. the first drawn individual and the decision 

on whether this individual should be replaced or not we find: 

where 

En(j)( I 1 , •.• ,Im) = Cn 1 /N)l:En[(j)(v,I2 , .•. ,Im) I I 1=v lS not replaced] 
v 

+ ((1-n1 )/N)l:En[(j),(v,I2 , ••• ,Im)II1=v lS replaced] = 
v 

(n1 /N)l:E (j)(v,I2 ,ooo,I) + · n2 ,. o., n 1 m v m-

' < v) ((1-n1 )/N)L.E · .. (j)(v,I2 , •• o,I) = n2 , •.. ,n 1 m v m-

(v) 
=n 1E (p(I2 , •• o,I) + ((1-n1)/N)LE (j)(v,I2 , .. o,I) 

n2, •.• ,nm-1 . m v n2, ••• ,nm-1 m 

~c· . ) 1, < . . ) (j) l 2 , .• o , lm = N L. I.P v , l 2 , •.• , lm , 
v 

Write (i 1 , ••• ,im)<(j 1 , ••• ,jm) when D(. . ) ~ DC. . ) • 
l1, ••. ,lm- J1'o••,Jm 

and i ¢ {i2 ,.o.,im,j 2 , ••• ,jm) • Hence, by the induction hypothesis, 

the last sum is 

S ((1-n1 )/N)l:E1(v 1) 1(j)(v,I 2 , ••• ,I ) = 
' ' • • • m v 

(1-n.)E0 .1 1(j)(I1 ,I2 ,ooo,I)S(1-n1 )E11 1(j)(I1 ,r2 , ••• I) 
l , , ••• , m , , ••• , m 

Note next that (p{i 2 , ••• ,im) lS a Schur convex function of 

H ( v I i 2 , ••• , im) ; v E I . [Let and let K v 

Lv be, respectively, the absolute frequency of v w.r.t. Ci 2 , .•. ,im) 

and (j 2 , •. o~jm) . Thus, using th~ terminology in [10], 

K = (K1 , ••• ,KN) is majorized by L = (Li, o •• ,LN). 
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Let K( 1 ) ~ K( 2 )~ ... ~ K(N) and L(l)~ L( 2 )~ ... ~L(N) be, respectively, 

be the m-tuple whose t-th element lS 1 and having all other 

elements equal to zero. Then: 

The last inequality follows from Fulkerson and Ryser [ 2]. This 

result may also be found as lemma D.2 in Chapter 5 in Marshall and 

Olkin [10].] Using the induction hypothesis once more we find that 

the first term is sn 1 E1 · 10CI 2 , ... ,I )=n1 E1 1~CI 1 , ... ,I) . 
, ••• , m , ••• , m 

It follows that E ~(I 1 , ... ,I) :;;n 1 E1 1~CI 1 , ... ,I) + n m , ••• , m 

(1-n 1 )E1 1~CI 1 , ... ,I) =E1 1 1·q>(I 1 , ... ,I) . Thus S holds. , ..• , m , , ••• , m m 

Hence, by induction, S holds. 
no 

0 

Referring to Karlin [ 5] we may now, by substituting the propos1-

tion above for lemma 3.1 in [ 5] and then topying part (i) of 

theorem 3.1 and its proof, deduce that holds for a=a · n,1 ... ,1 

and s=a 
n 'n 1 ' •.• 'nn -1 

for all n 1' • · • 'nn-1 when n-1 (N/N-1) :;; n/(n-3). 

According to a theorem of Muirhead, see Marshall and Olkin [10], 

condition c1 for sampling plans a and B implies: 

for all nonnegative functions a on I. It follows directly from 
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Van Zwet [ 15] that ( §) holds for a =a and n,1,1, ••. ,1· (3 =a n,0,1, ... ,1 

when n ~ N . Assuming, which we without loss of generality may, 

that Ia(v)=1 we see that (§) in this case may be written: 
v 

( § §) 
N n-1 1 1 
I a(v)(1-a(v)) ~ (1-N)n-

v=1 

Now 

1 
n-1 n-1 <Ia(v)(1-a(v)) ) t1-Aa(v) as n-. oo • Thus (§§) does not 

. v 

hold for arbitrarily large n when 1 
a(v)~ N for at least one v . 

Let us complete these comments by showing directly that (§§) holds 

when n ~ N . 

Restrict a to the set of probability distributions ~n I . 

Consider n-1 Q = Ia(v)(1-a(v)) as a function of a(1),a(2), •.• ,a(N-1) .. 

We must show that - 1 1 0 Q = m~x Q(a) = Q(N, .•• 'N) • Suppose a is 

a probability distribution on I such that a0(1) ::::0 < an(2) . 

Then the derivative at 0 of the function n-1 a(1)(1-a(1)) + 

N 
(a 0 (2)-a(1))(1-a0(2)+a(1))n- 1 + I aO (1-ao)n-l w.r.t. a(1) at 0 1s 

v=3 v v 

0 0 n-2 1-(1-na2 )(1-a2 ) which is positive. It follows that the minimal 

support of any maximizing a 0 lS I . We may then without loss of 

Putting 
· n-1 

U (X) = ( 1-nx) ( 1-X) ; 0 ~ X ~ 1 we find 

3Q/3a(v) = U(a(v) )-U(a(N)) . Hence U(aO(v)) = U(aO(N)) v E 1 . 

Now U obtains its maximum at x=2/n and is strictly decreasing 

(increasing) as x < 2.c x > 3.) • This imply that either 
n n 

a 0 ( N) = . • . = a 0 ( s + 1 ) < a 0 ( s ) = ••. =a 0 ( 1 ) for some s < N or 

a 0 (1) =a0(2)= ..• =aO(N) =~. In the latter case Q = (1-ft)n- 1 and 
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we are through. The first case, however, can't occure when n ~ N . 

To see this note that a 0 (N) < ~ ;:;;~ , that U(x) ~ 0 
1 

as x ~­n 

and that aO(N) < l <..?. < a 0 (1) • Thus we obtain the contradiction: 
n n 
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