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Some ‘experiments occurriné in sampling theory may be described
as follows: }

Con51der a finite population I and a characteristic of interest
which, with varying amount (value, degree,...) is possessed by all in-
lelduals in I . Let 6(i) be the amount of this characteristic for
individual i . ;

It is known that 6 beloﬁgs to some set 0o of functions on I .

Let o be a sampling plan, i.e. a probability distribution on the
set of finite sequences of elements from I . If this sampling plan is
used and if the characteristics of sampled individuals are determined

without error, then the outcome
X = ((11,6(11)),(12,9(12)3, ,(1n,e(1n)))

is. obtained with probability &(il,iQ,...,in) .
f | :
If E, denotes the experiment obtained by observing x then,

provided 8 1is not too small, E is at least as infOrmative as

aq 2

Ea2 if and only if the sampled subset under is "stochastically

o
1
contained" in the sampled subset under a, .
We shall here, utlllzlng Fhe theory of comparison of statlstlcal
experlments, discuss this and other related results.

|
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1. Introduction

A theory of comparison of expefiments based on mathematical deci-
sion theory has developed during the last thirty years or so. It has
been extensively used, see Le Cam [ 8], in asymptotic theory. There are
so far not many applications to non-asymptotic comparison of statistical
models., Some fairly general re$ults on linear normal models may be found
in Swénéen [12]. The purpose Qf this talk is‘td~present‘some simple ap-
plications on experiments asso%iated with sampling plans. We refer to
Heyer'[s ], Le Cam [ 81, [ 9] %nd Torgersen [13] for expositions bf the

theory of comparison of experiﬁents. The material covered in section 2
in Tofgefsen [14] is adequate %ere.

¢onsider a population 1 Ewhiéh is an, and may be any, enumerable
set. Suppose also that there i% a characteristic of interest which, with
varyiﬁg amount (value, degree,i..),is possessed~by all individuals in 1.
Let é(i)' be the amount of th%s_dharacteristic for'individual 1€e1.
The function 6 on I defined this way is our parameter of intgrest.
We sh?ll assume that it is a p%iori kndwn.that ® belongs to, and may
be an§ element of, a set © of functions on 1 . |

in order to find out about ® we may take a sample from I and

measure the characteristic for each of the individuals in the sample.

! o )
An essential assumption is nowjthat the sampling is carried out according
to a known sampling plan a , i.e. a probability distribution on the

spaceg Ié of finite sequences of elements from I . Before proceeding
let us agree that a probabilitj measure on an enumerable set is defined
for all subsets. We may, in order to retain the possibility of making

no observations at all, include the "empty" sequence @ in I . If

the sampling plan a is used and if the chabacteristics'of the sampled
individuals are measured without errors, then the outcome
(il,e(ii)),...,(in,e(in)) is obtained eith probability

a(il,...,in) : Thus we mwy let our sample space consist of all sequences
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(1155, (g5 0e s (455) where (ip,..,i ) €lg, £1,..0,6 €yoll]

and where f, =f, whenever iy =i§ ]
Let Q%a denote the probability distribution of the oqtcome when
8 prevails and o is used. Thus the sampling plan o determines a
statistical experiment Egy = (Pg, ,:0€0) |
Let (Il’Fl)"°"(In’Fn) ibé the random eutteeme and consider the
statiétics U and X where ? ={I1,..a,In} and X 1is the function
on the set U determined by F%. Now P@a((il,fl),...;(in,fn))=

a(il""’in) or =0 as (fl"f"fn) =(6(il),...,e(iﬁ)) or not.

It follows, as is well known, that (U,X) is sufficient. [Just check
that conditional probabilities?given- (U,X) may be specified indepen-
dently'of 6]l. It is known, see[%],'that (U,X) actually is minimal suf-
ficient, - but we shall not us% this fact here.'The important thing is

that fhe reduction by sufficieﬁcy leads to another, and equivaient
experiment Eﬁ =(§e’a:669) which may be described as follows:

Let U be the class of aﬁl finite subsets of I . If u€eU and
o 1is a sampling plan on 1 tﬂen d 1s the probability distribution
on Ui induced from o by the!set valued map (il,..;,in)->{i1,...in}.
Thus 6 1is the probability distribution of the sampled subset of 1

We may then let the sampl% space, X, of E& consist of all
pairs; (u,x) where ue€u and% x =6|u for some peo . If o 1is
used then the probability, PGJ&((U,X))' of the outcome (u,x) is
(u) or=0 as x=6|u or noti.

It follows that. the structufe of experiments. Ea'
with a structure of probability measures on the set of finite subsets
of the population 1T .

Note that the set of experiments Ea » and hence the set of expe-
riments E; 1is closed under products. More précisely ,EuxEBN-EY

where Y(ki’kZ""’kr) =a(@)8(k1,...,kr)-Fa(kl)B(kz,...,kP) +oeus

+ ... a(kla--o,kr_l)B(kr)-fa(kl,...Kf)8(¢);(k1,??,kr) €Is. so that

may be identified
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few notations and other terms which will be used are listed below:

1]

a population.

#1

the set of finite sequences of elements from 1T.

the class of finite subsets of 1.

the number of elementsiin A or =« -ags A 1is fiﬁite or infinite.
probability distribution on IS.
the probability measuéé on U induced from o by the set
valued maps (il,...,in)-*{il,...;iﬁ} .

the probability distribution on integers induced from o

by the map (ii"'f’iﬁ}+#{i1"”’in} .
»2,) = an ordered n—tupie .
,zn} = the set consisting of all elements z such that

z=z, Or z=z, Or ... Or 233z .

= inf z. i

it :

!

= sgp z:

u({x}) if u is a m@asure and {x} is the one point set

containing x

total variation of yu .

The experiment E is étleast‘asinformative as the expevriment F.
E and F are equalﬂy informative.

the deficiency of E ‘w.r.t. F If E =(Pg:0€0) and

F =(Qe:6€9) then G(E,F) is, Le Cam [77], the smallest
number of the form sgp|H%M-QH where M is a Markov operator

from the band generated by the Pg's to the band genefated

by the ~Qe's.

§(E,F) v 6(F,E)



Isotonic = monotonically increasing
A map ¢ from a partially ordered set (X,s$) to a partially

ordered set is called monotonically increasing (decreasing)

IN

if w(xl) < w(xz) whenever xléx2 (xlzxz).

2. Comparability of experiments E_

In order to simplify the writing let us agree to write "Ez F"
for "E is at least as informafive as  F". If ~"f;‘F" and "F>E" then
we shall say that E and F are equivalent and write this E~F .
Among the several natural (and fortunately equivalent) ways of
introducing notations of comparison is the randomization (Markov kernel,
tranéition;...) criterion of Le Cam, which states roughly that E =z F
if and only if F may be obtained from E by a randomization.
Applying this fo the discrete experiments Ea~'§é‘ and EB~'§§

we find that EquB if and only if

(1) B, é(({/,y)) = Y MOLy) | (x)) Bydu,x) 3 (v,y) €X
’ (u,x)

for numbers M((v,y)|(u,x))20 3 (u,x),(v,y)€X such that

§OMO(v,y) | (u,x)) =1 5 (u,x)€X
(v,y)

~ Using the definitions of the measures P , (1) may be rewritten:

(2) B(v) = YM((v,8] v)|(u,6|u))&a(u) 5 veuU, 0€0.
u .
Hence: _
(3) 1= ) [IM((v,0] v)|(u,0] u))]@(u) 5 6€0
u v

It follows that ~JM((v,6| v)|(u,6] u)) =1 when g(u)>0.
v -

Say that o satisfy (C) if:

(c) There is a 6° in © with the property that there to each i€l
corresponds at least one 6 in © such that 6(j) =6°(j) or

#0°(3) as j#i or j=i .



Let 8° be as in (C). Assume @&(u®)>0 and put x°=8?|u’.
Put 0°= {0:0€080|u’=x"}., Then 6°€0°. Consider so a pair (v,9)
where veU and 6€0° . If M((v,8|v)|(u®,x%))>0 then, by (3), (v,8]|v)

is necessarily of the form (v,8°|v) i.e. 6|v=6°|v. It follows that
(4) M((v,0]v)|(u?,x" D M((v,8%|v)|(u?,x%)) ;5 veu

Hence, since both sides add up to 1 in v, "=" holds in (4) for each
\Y% GU . Consider now a particular v°%EU such that
M((v?,0°|v®)|(u®,x%))>0 . Then, by (4) with "<" replaced with "=",
M((vo,elvopl(uo,x°))> 0 for each 0#€0° . It follows, using (3), that
6lv® =0°%|v® ; 0€0% If v°$u° then we may choose a i€v®-u® .

By assumption there is a 06€0° such that 9(i)¢66(i) contradicting
8lv’=6°v®. It follows that vgu whenever M((v,eoﬁvﬂ(u,eﬂu”a(u)>0

Define now for each pair (u,v)E_u2 a number T(v]|u) by:

T(vlw = M((v,8°]v)|(u,8°|u)) when a(u)>0 .

(5) T(v|lu) = 0 if wv#u and ad(u) =0
T(ulu) = 1 if @(uw) =1
Then J)T(v|u) = § F(vlw =1 ; ueu..
v veu

Substituting 6:=0° in (2) we find:

(6) B(v) = YT (v]wacu)
v

Define finally a joint distribute 7§ on u2 by: plu,v)=T(v|u)a(u).
Then p has marginals g and B and p({(u,v):u=2v}) =1 . The last
established fact may be recognized as one of several usual and equivalent
ways of expressing that a 1is stochastically larger‘than. B w.r.t. the
inclusion ordering & oﬁ ’U .

Suppose now; conversely, that we have been able to consfruct ajoint

distribution 7 with this property. Specify the conditional distribution

on, T , of obtaining a "last" set v givén that the "first" is u



such that J{F(vju) :vgu} =1 for all wuelU . (If a(u)>0 then this
holds by definition). Define a Markov kernel M from X to X by
M((v,y)|(u,x)) = T(v|u) whenever vgu and y-=x|v . (If vgu or

y #x|v then necessarily M((v,y)|(u,x)) =0 ). It is then easily checked
that M satisfies (2) so that Eé is obtained from Eﬁ by the ran-

domization M .

We collect this as well as some closely related statements in:

Theorem 1 (Comparability criterions).
Suppose 0 satisfy condition (C). above . Then the following four

conditions are all equivalent:

(1) Ey 2 Eg
(1) ga 2 Eg
di) There is a joint distribution p on pairs (I,J)Elg such

that I 1is destribuled as a , J 1is distributed as g and
p({I}2{J}) =1
{i) There is a joint distribution 7 on pairs (U,V)eu2 such

that U is distributed as & , V is distributed as § and

p(uRv) = 1
Remark 1 . Condition (C) is only needed to prove that (i) implies (ii).

The implications (i)=(I)«=(ii)=(ii) hold even if © does not
satisfy (C). This follows from the theorem as stated, by enlarging 0

or directly from an inspection of its proof.

Remark 2 . It follows from wellknown:' results (see the remark after
theorem 7 ) on orderings of probability measures on partially ordered

sets that (I1) , and hence (ii) , may be expressed as follows:

(ii) Eqh(I)2 E;h(Jd)  for each bounded function h such that

B

h(il,...,im)éh(jl,...,jn) whenever {il""’im]s{jl""’jn}



di) al{H) 2z B(H) for any increasing class Hgl

Here a subclass H of U is called increasing if u€H whenever
vEH for some vgu . Trivially H is increasing if and only if H is

of the form H=V§1{u:u2wv} for some sequence WysWoseos in U

Completion of the proof of theorem 1. The eqivalence of (i) and (1)

follo@s fom sufficiency and we saw above that (E)ﬁﬂ(;i); The implication
(ii)%(fi) is trivial so it remains only to show that’(fi)=(ii).
Suppose then that (I1). issatisfied. Let a(ﬁ[{I}) and B(*|{J}) be
the conditiona} distributions of, respectively, I given {I} and
given {J}j. Construct a joint distribution p for I and J such that

the conditional distribution of (I,J) given (U,V) has marginals

a(*|U) and B(*|V) . Then p satisfies (ii)

Associated with each sampling plah a is a "cumulative distribution"

function ®a~' on U defined by: Oz (w) =Y{q(u):ugw} . It is easily

seen that @7 determines @

Ccrollary 2. Suppose O satisfies (C). Then the following conditions

are equivalent:

(i) Eq~ Eq
Gi) 8B

Proof:v By remark 2, ®a=¢§ when Edé'_EB'

[n]

Ordering of sampling plans according to the "distribution functions"
®z corresponds to ordering'by affinities, or what is equivalent in this

case, to ordering by Hellinger transforms. To see this consider func-

1 .2 r

tions 67,67 ,...,6 in © and‘positive numbers  t,,...,t, with sum 1.



Then t1 t2 tr t1 tr
fap ; dP 5 ...dP = fdF 7 _...dP 7 = og(w)
6 a 6% a 8”, a ol a 6r, &
where w ={i:el(i)=62(i)=...=8r(i)} . If 0 satisfies condition (C)

of theorem 1 then any class {u:ugw} where weU is of this form.
It is, however, not difficult to construct examples of noncomparable
sampling plans o and B such that ¢a§¢§.

If E, gEB then Ea is more informative than EB for any deci-

sion problem, in particular for all testing problems. If 0O 1is not too

small then it suffices to consider testing problems by:

I

if and only

Proposition 3. Suppose 0 2n where #n 22 . Then EaZE

B
if E, 1is at least as informative as EB for testing problems.

Proof: Suppose 0 an where #n=2 and that Ea'is-at least as in-
formative as EB for testing problems. Choose a g€ ﬁI and sets
vl,vz,...,vr in U . Let ©g consist of all 6€6 such that

o vV=8|v’; v=1,...,r . Let £z and EE be realized by, respectively,
observing (U,X) and (V,Y) . Define the test §&=8(V,Y) by putting
§ =1 when there is a ve {1,...,r} such that V2v’ and Y|v¥=8|v",
and by putting § =0 otherwise. Then EGS(V,Y)= 0; 6 €0, . By assump-
tion there is a test § =68(U,X) so that Eeaz'Beg . In particular
éd(u,6|u)a(u) =0 when ©0€0, . Suppose u€U  is such that up v ;
v=1,...,r . Then, by assumption, there is a 0€0, such that Blu="8|u
Hence §(u,f|u)a(u) =0 in this case. This yields:

Z{Q(u)nlgvlor u;vzcnn..or ugv iz 16(u,8|uwalu) =B§6==E65=

Y8 (v,8]|v)B(v) =X{B(v)ﬂfgvlor-vgvzor...or vav®} . Hence a(H)2 B(H)

for any increasing class H in (U,g) . The proposition follows nbw

from theorem 1 and the remark. after that  theodrem.
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If 1 is finite then a sampling plan a will be called (population)
symmetric if a(p(il),...,p(in)) =@(i1,...,in) for each sequence

(i i) in I, and each permutation P of I . It is easily seen

SERREEE™
that @(u) depends on u only through #u when o is symmetric.
Conversely any probability distribution m on U such that m(u) depends
on u via #u 1is of the form w=g§ for a symmetric sampling plan o
without replacement.

Let for any sampliﬁg plan o, @ be the probébility distribution
of the number of different elements in the sample sequence (set) wheﬁ
the sample sequence (set) is distributed according to o(3d) .

Thus ‘ . '
8(n) = y{a(u):#u=n} =2{a(ii,...,im): #{ii,...,im}=n} .

If o is symmetric then ¥ is determined by & by:
= - #N—-ia |
a(u) —(#u) (#u)

Clearly any probability distribution on {0,1,2,...,N} is of the
form ¥ for a unique symmetric o without replacement. If both Eg4

and Eg are symmetric then E, = Eq*Eg is symmetric as well and:

N(n-r_ +n-r,)

= N,y _ 1 2 = NyqiS N
O SRIED) TG [u(rf/ri]m%)/( )]

where the summation is over all ordered pairs (rl,rz) of integers in
{0,1,...,n} such that r,+r,zn .
Note also, as is wellknown, that any symmetric sampling plan a

is a mixture of simple random sampling plans without replacement. More

precisely:

where pn(il""’in) =N2i) when il""’in are distinct, while

pn(il,...,im) =0 whenever m=#n . It follows then, since
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E < Eplé... <t that Ey 2E, whenever o and B are symmetric

B :
sampling plans such that & is stochastically greater than f . Suppose
convergely that & is stochastically greater than £ . Then there is

a joint distribution § on {0,1,...,N}2 with marginals & and f and
such that B({(m,n):m2n}) =1 . Put T(n|m) =§§%§§l if Tm>0 .

If &(m)=0, then we may put f(n]m) =1.or =0. as n=m or n=#m .

. - . . . #u"_"‘1= . i '
Define a kernel T from U to U by: T(v|u =(#V)> T(#v|#u) if vgu.

Put T(v]|u)

o N _ -1 =1 -1
IF(v waw = 3 (N m) (m) T"(nlm)a«(m(ﬁ) (N> 7F(n|m)&m) =
u R m. -

m-n n n
-1_ -
= (g) B(n)

0 if \/$u . Let VvEF and'put n=#v . Then

m=n

B(v) . This, together with theorem 1, proves:

Theorem 4. Let © satisfy condition (C) and let o and B beisymmetric
sampling plans. Then ﬁigEB if and only if & is stochastically greater

than § .

Remark. Condition (C) is, by the proof above, not needed for the "if"

part of the statement.

3. Random replacement 3ampling plans

Define (not necessarily symmetric) sampling plans = a

%p,n,m = %n

where p 1is a probability distribution on I such that p(i)> 0 for
all i€l , n 1is a positive integer and n is a probability distribu-
tion on {O,,l}n_1 as follows:

Choose a sequence of 0's and 1's according

€12€ps 00 esE 4

to mw . Then draw individuals 11’12”"’Iﬁ' one after -another such that:

(1) An individual which is drawn at the m-th draw where m<n is

replaced or not as €n =1 or €n =0 .

S (i) I1- is drawn from I such that Pr(I1=i1) =p(i1); i1€.I.

Gii) If Il""’Im has been drawn then stop whenever m=n or if

m<n and each element of I has been drawn without being re-
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placed. If otherwise then Im+1 is drawn from the remaining part A

of the population such that Pr(Im+1=im+1) =p(im+1)/p(A) 5 im+1€/\‘.

Using theorem 1 we get the following intuitively reasonable

sufficient condition for comparability:

Proposition 5. Let p and n be fixed. Then E  <Ej ' ‘whenever n
m m

is stochastically larger (for the pointwise ordering on {0,1}n-1)

than LA

Remark 1. Let n=3 . It is then easily seen that .a6 is
——= , . | 80,1
stochastically larger than ﬁ6 when N22 -; Thus the converse of

1, 0
the above statement is, even if we restrict attention to independent

and uniformly destributed drawings, not true.

Remark 2. Suppose N =#] € and that p is the uniform distribu=~

tion on 1 . Then, by theorem 4 and the proposition, E, h(#i)gEu' h(#I)
m

whenever n 1is stochastically larger than w' and h is monotogically_
increasing. If, in addition, the drawings are independent (i.e. n and
m' are product measures) then this proves a very particular case of a
conjecture by Karlin [5]. A discussion of fhe relationship of the

problems and results in [5] to the theory of comparison of experiments

may be found in the appendix.

Proof. Note first that c%(il""’in) =E, (ii""’in) where € is
. Se

distributed according to w and GE is the one point distribution in €.
Hence &“(u)=:E&6€(u) ; uelu. Suppdse now that we kngw that 568- is.
"stochastically contained" in Eae'whengver € 2¢ ,'iThe terminologi is
consistent with the following convention: Let P and Q beprobability
distributions on X and let R be a relation on X . Then P is sto-
chastically in relation R to Q if PP(XP,XQ)612)= 1 for random

variables Xp and XQ with, respectively, distributions“ P and Q ].
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Let h be an isotonic function on (U,g) . Then Xh(u)a(S (u) 1is mo-
u 5

notonically decreasing in e . Hence Jh(uwagn(u) =22h(u)oa(S (u)n(e) <

_ u eu € _
ZZh(u)a5€(u)n'(e) =Yh(way (u) . It follows that @&, isstochastically
Eu u .

contained in &n, . It suffices therefore to show that is sto-

a
e
chastically contained in &gy , when e€2¢' . We shall show this by
€
showing that the sampling plans as ;ee{O,l}n-l ‘may .all be imbedded
€ . .
within a single stochastic framework. This framework shall consist of

independent I-valued random variables ~Vu V3 u=1,2,... 5 v=1,2,...n
. 9 .

such that each Vu v has distribution p . Before proceeding, let us
, 5 ,

for each m-tuple (i i_) with m<n and for each sequence

1221y

€ P, of 0's and 1's put A(il,...,im;ei5...,em) =

ELTEEE
I —{1v:v$m-&€v=0} . Thus A(ll""’lmfgl”"’em). is precisely the
elements left in I after i1 9s e ’i‘m has been drawn and the replacement '

policy (81,...,€m) has been used.

Define, for given € , recurcively randomvariables R1 ,R2 >+ -R_ by:
(1) R1 = 1
(ii) If Ri""’Rm are given where m<n and Rm<°= then R 41
is the smallest integer "p21 such that
v € AV v ) when
H,m+1 1’R1’f." m’Rm’el’f"’?m
A(Vl’Rl""’Vm’Rm’el""’enR'¢@ . Put Rm+1=-w otherwise.

The quantities R _,I ~ and v depend on € . Use the notations

R;, Ih and V! when € 1is replaced by e' . Suppose now that ez¢

Then we have for each m£n .

(8) : Rm' Rm

[\

i""’Im are also defined

and A(I'l,.-..,I;n,s'i,...,e;n)g_A(Il,...,Im,ei,...,em)

(s§8) If 1',...,I'" are defined then I
1 m .

(§58) If I'i,...,I'm are defined then I ,...,I  are also defined

and '{Ii,...,Im}g{I',...,I;n} .
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Proofs of (§), (8§) and (§8§§). The statements are trivial if m=1 .

The general case follows by induction on m . Suppose (§), (§88) and

(§88) hold with m replaced by m-1 where m=2=2 . |

Put A =A(I ,...,I ye;5.0056) and A;(=A(I'i,...,I']<,e’1‘,...,e}<) .

By the induction hypothesis: A' _gA

1
m-15 An-1 whenever Rm<°° . Suppose

then that R'<w . Then V ;3 u=1,2,... have already reached A ‘
m myu : ] “m=-1

' : fa o oAt ot 1. 1 _naC
when A _, 1is reached. This proves (8). Now. A = m-1 N e,=0}

_ . . - ; C . » 1 i ‘ -
and Am',m-in{Im'em 0}~ . This shows that AmgAm whenever €n 1.

If Em.:o: then, since ¢'<¢, eb.=0 . The only case which then
| .

-needs particular attention is the case A&-13 Im;tlh . This, however
is an impossibility since RhE;Rm . Hence (8§) is established.
It remains to show that I €{r',...,I'} ..Assuming I_ =T we see,

‘ m 1 m _

m m

as above, that Inléﬁél . This, however, implies that Im has been

-1

drawn and not replaced in the sequence I&""’Ih—i . Hence

1 ', [y 1. 1 . .
Im €{Il,...,Im_1} ={Il""’Im} . This proves (§§§).
It is now easily seen that (Il""’Iv) is distributed according
to ag - (Just consider the conditional probability of obtaining the
>
sequence il,..,,im'; m<v given that.-il,...,im_1 has been obtained).
Our claims concerning the sampling plans ag follow now from (§§§)

and theorem 1.

4, Deficiencies and distances.

Let us proceed to the slightly more difficult problem about defi-s

. Thus we shall try to find out how

ciencies between experiments E,

much do we loose (inrisk say), under the least favorable conditions

for comparison by basing our decisions on E, instead of E

B

Following Le Cam [ 7] we shall limit ourselves to decision problems

with bounded loss functions. Clearly:
B
] 0a 0B

- ﬁeEII: 2|§e_(u,e]u)-§ =(u,0|u)| =||a- B|| where ||a=E|| may be
u & ,
replaced by “3-—?” when o and B are symmetric. It follows that
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(S(EOL,EB)§||6Z-B'|| .in general and that G(Ea,EB)éllﬁ-'EH in the symmetfic

case. We shall, however, see that these upper bounds may be very bad.

If, for example & and § are mutually singular, then |[a-B||=|G-B| =2
while the deficiencies G(Ea,EB) and 6(EB,Ea) may both be, say, less
than 107109,

We shall now, in order to get laower bounds for deficiencies, consider
the problem of estimating:the‘restrictions» €e|w1,e|w2,..},e|wr) of 9
to given nonempty subsets WyseeesW, of 1 . If our proposals for
these restrictions are respectively, tl’tZ""’tr then we put the
loss =0 or =1 according to whether at least one of the restrictions
have been correctly estimated or not. Let E& be realized by (U,X)
where UE€U 1is distributed according to & while X =6|U when 8
prevails: Choose a Goee and define an estimator o =(p1,...,pr) by
°

putting p (U,X) =X|wv or 6 |w, as URw

o or UQ‘ﬁ) . The risk

v
at 0€0 1is then 2{&(u):u$_wl,u§u2,...,u?ﬁwr}' or 0 as
60|wv¢e|wv;v=1,2,...,r or not. |

Assuming that there is a 6 €0 such that 6(i) ¢60(i) for all 1
we see that maximum risk'is C‘=1 —X{d(u):uQWf Or.:. OP ugh%}
Suppose now that there was a decision rule with smaller maximum risk.
Restrict, for the moment, 6 to some finite subset 5 of o . If Xo is
a least.favorable‘prior distribution on @& then any Bayes solution

for A is minimax. Thus we may assume that there is a nonrandomized

0
decision rule 'S with risk <C for all 9€0 . Let 01 consist of
all sets u€lU which does not contain any set Wy and put vzéu -Dq.
The risk at 6 may then be decomposed as 21 +22 where |

ZS =Z{&(u5 $ 0y (u,e|wze|w, 3 v=l,...,0r, uEl@} . Our assumption implies

that 21<C==2{a(u):u€1a} for all 6€6 . Hence, for all 6€0,

there iz a llElH_ such that Bv(u,elu) ielwv for some v . If ueD1

then‘there are points lu,l""’lu,r such that 1u,v€wv—u;v=1,...,r
Put for each pair (u,x):pﬁ(u,x) = b‘t(u,x)(iu t) . Then @ =
Y .
. T ~ _ . x.. _ .
U{éu,v'uei%’ ve{l,...,r}}  where Ou,v -{6.665,gv(u,elu) ‘Q(lu,v)}'
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It follows that there is a finite subset {il,..;,im} of(wiu...uwr)-u

: ~ ~ 011 S
and functions fi ,fi ,...,fi on O such that 0= ¥.0 where
1 2 m v=1V

:{e:e(iv)=fiv(6)} and each fiv depends on €0 via 0w, -
We may without loss of generality assume that ii""’im are distinct.
There are several conditions which we may impose on O in order

to ensure the impossibility of this. Suppose, for eXample, that
#1=N<>, §=7?N where #q k>N . Then the cdnstuction above impliés

the contradiction: kN e "#O Z# é <NkN -1 . Similarly if

#1 -~ and @g'rh‘” where #'yh oo, Iﬁ that—- case @ may be chosen as follows.
Oz n® - L.

Choose © €1h. and letv7? be some subset of‘?’1 containing

k> #{wlu...Uwr} elements. Then the above arguments lead to the

following contradiction:
v m-1 _ m. S —1 ; - m-1
#{wiU...UwP}k Z pSm S#{wlu};}UwP}k e,

Altogether we have shown that €@ is the minimax risk whenever
@g?r where #q;j_+#1 . Hence, since the loss function is nonnegative

and bounded by 1

%G(EOL,EB) =%6(fa,f-6-) 2B(H) -a(H) where #H ={u:u€el and us,'?wi for
some 1} . As any increasing class of sets is a limit of such families

we find that

6(Ea’EB) =6(fa,féd 2 2sup[B(H) - a(H)] where the sup 1is over all
increasing classes in- (U,g) . Using a result of Strassen [10] we

find the folloWing criterions for deficiency

Theorem 7. Suppose 92771 where #n;j_+#1 . Let o and B be sam-
pling plans and let €20 . Then the following conditions are all
equivalent

(1) 8(Ey,Ep) = 8(Eg,Ep) s e

(1ii) B(H) - a(H) < % for any increasing class H of sets in (U,g)
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Gii) J/hdB - [hda §%||h” for any isotonic function h on (U,g)
2

with marginals @

(iv) There is a joint distribution 7 on U

and B such that p({(u,v) :ugv})z21- %

Remark. The equivalence of conditions (ii), (iii) and (iv) and the
fact that these‘conditions imply (i) does not require any condition
on 0. It should be apparent from Strassen [411] and the proof below
that tﬁese equivalences hold if (u,g) is replaced by quite general
partially‘ordered sets. This has, when '850‘, been noted by several

authors.

Proof: If (ii) holds, then (iii) follows by writing jhd(§-6)=

linl
[ (B-8)(hz2t)dt and by noting that [h2t] is an increasing class
0

of sets. Applying (iii) to indicator functions we recover (ii).

Thus (ii)=(iii) . By Theorem 11 in Strassen [11j condition (iv) is
equivalent to the condition that B(H) <3({u:ugv for some veH})+ %
for each subclass H of U . Clearly nothing is lost by restricting
attention to isotonic subclasses of (U,g) , and theﬁ this is merely
a restatement of (ii).

Suppose that p is as in (iv). Put T(v]|u) ;E(u,v)/&(u) when
(u) >0 . Put T(v|u)=1 or 0 as v=u or v#u when &(u) =0 .
Define a function A from U to [0,1] Dby: _A(u) =Z{I"'(vlu) :vg ul
Extend X ={(u,x) :u€U, x=06|u for some 6H€ O} to a set Q by
joining a point ¢ not belonging to X . Define finally .a Markov
kermel M from §‘< to )/2 such that M((v,y)|(u,x)) =T(v|u) when

(u,x)€X ,,vgu and y=x|v . Then, necessarily, M(z|(u,x)) =1- ACu) .

We find succsesively: |[|P, a" Py gMll=1 |B(v)-} M (.(V,GI v) | (u,0lu))au)| +
? > v u

M (| (u,8|u))d) = §|B(v)- | Tlvjwau| + §(1-A(u))a(u) =
u ‘ Y% ugxv u

e . Thus (iv) implies, without any assumption

=2 ){pu,v) : ugv}

IA
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on 0O . The proof is now completed by noting that, under the
stated condition on 06 , the lower bound-established immediately'
before the formulation of this theorem yiéldstheimplication (1) =(ii):

m}

If o and B are symmetric then comparison may, as we might expect,

be expressed in terms of # and B.

Corollary 8. Let o and B be symmetric sampling plans and put N'=#I

Then conditions (ii), (iii) and (iv) of theorem 6, are, without any

assumption on 0 , equivalent to each of the folloing conditions:
(ii") Blm,N] - 8[m,w] S 5m=0,1,...,N

Gii') JhdB - [nd¥ < 2|| || for any isotonic nonnegative
function h on {0,1,...,N}

=

(iv'") There is a joint distribution {§ on {O,l,....,N}2 with

marginals & and g‘such that B({(m,n):m2n})z1- %

Proof: The equivalence of (ii'), (iii') and (iv')'follows by the
remark after theorem 7. Suppose these conditions are satisfied. Let
h be a nonegative isotonic function on (U,g) Then Euh(U) =Eag(#U)

and  Egh(U) = Ezg(#0) where g(m) -E(h(U)l#U m) —( ) Z{h(u) #u=m)

Clearly lle]l<|ih]] and g is isotonic since

-1 -1
g(m+1):=( N) Z{h(u):#u=m+1}g{'N) ) —£~2{h(v) VSLl #v= m} =

m+l m+l wiguzml m+1

-1 :
(Hgi) m+1(N -m))y{h(v):#v=m} = g(m); m=0,1,...,N=-1 . Hence? by (iii'),

€ € ' . s ..
Ezh(U) - Egh(U) -Egg(#U)-Eag(#U):§§.Hg|§ 51lh|] . Thus condition (ii)
of theorem 7 is established. Conversely, suppose (1iii) of theorem 7
(and hence (ii)) is satisfied. Let nlgN"aﬁd put H = {u:guzm} .

Then H is isotohic. Hence E[m,N] - a[m,N] = B(H)=8 (H)s % .

Thus (ii') holds.



- 19 -

Example 9. (Approximation by fixed size sampling plans).

Let o be a symmetric sampling plan and let Wy be the sampling
plan consisting of drawing "randomly" without replacement k elements,
. - /Nyl } o= :
i.e. wk(u)-(k) when #u=k . Then G(Ea,Ewk)-2d[O,k 11 while

6(Ewk,Ea) = 28[k+1,N] so that s(EOL,EIWk)+ G(Ewk,Ea) = 2lla - wyll .

Thus, if &(r) =(§) pr(l—p)N_P ;r=0,1,...,N where p€l0,1[ then, as
p-0, G(Ewk,Ea)—»O although ||la- wyl| =2

Note also that the best approximation, w.r.t. A , to E, by a
fixed size sampling plan Ewk is obtained by letting k be a median
in & . Thus it is, in general, not expected sample size but the

median samplesize which yields the approximation.

Example 10. (Inequalities for symmetric sampling plans).

Define for each finite subset u of I a vector
£(w) = (c (w),0, (.. ,0 (W)ERN  by: . (uw) =[#ul™" or =0 as

N
i€u or not; i=1,...,N . Then ) Ci(u)e(i) is the arithmetic
i=1

average of the observed 0-values after repetitions in the Sampile
sequence have been removed. If the'sampling is without replacement

thenv‘lf1 Ci(u)e(i) is just the arithmetic average %[e(i1)+“;+euh)].
= . |
Consider now a convex function ¢ on [-1,1]N . Suppose thé randqm
sample sequence I =(Il""’In) is distributed according to the
symmetric sampling plan o . Let Ky ;1€ 1 be the absolute frequency
of individual i in the sequence (Il""’In) . By symmetry the dis-
tribution of Ki_ given U={I} does not depend on i as long as i
is restricted to U . In particular E(%Ki|{l}=u) =#% _2

- _ : J€
(#u) 1 when. i1€u . Writing K =(K1,...,KN)_ we find.

. B(Kn|{I}=u) =
o
£ (U) = E[(K/n)|U]

Hence, by Jensen's inequality:

(1) Ep(K/n) 2 Ep(z (U))
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Consider another symmetric sampling plan B and let § be a joint
distribution for the random pair (U,V) satisfying condition (iv) of
theorem 7 with € =2 s%p[g[m,N] -ﬁ[m,N]] . Then, by convexity:
Ezo(z(v)IU) 2 ] @(z(v))Pr(V=v|U) - ||of| % Pp(V=v|U) 2

vegl vgU
cp(ic(v)Pp(vW]U,ng)Pr(VgU|U>-||<o||Pr(v¢U[U) . Now, by symmetry, 5
may, and shall, be chosen so that p(n(u),n(v)) =p(u,v) for any per-
mutations w of I . It follows that Pr(V=v|U,vgU) only depends on

the cardinalities of v and U as long as vgU .

Hence z;(v)Pr(V=v]U,ngD = ¢z (U) so ‘that
v

Eéw(g(v))ﬂn 29(g (U Pr(VgU|U) - ||o||Pr(VEU|U) =

©(z(U)) - Pe(VU|U) [0z (U)) +||o]|]12 (g (U)) - 2Pr(VE U|U) [lo]|
It follows that:
(2) Eém(c(U))z Ezo(z (U)) - ellol]
Combining (1) and (2) we get:

(3 Eze(X/n) 2 Ego(z(U)) 2 Ego(z(U)) - 2max G -8)([m,ND |lo]]

In particular; for any convex function ¢ on [minei,maxei]
. -1 1
n

!

(1) Eg(i

S 0(I ))z2 E-B-w(;m lEjei) ;an(ﬁ %ei) -

1

2 || ||m%x (B-8)([m,N]) .

The left most inequalities in (3) and (4) may trivially, be.
replaced by equalities when B 1is without replacement.

(4) generalizes various generalizations (See Lanke [ 6 ] and
Marshall & Olkin [10]1) of the basic inequalitiesrfor sampling with'

and without replacement in Hoeffding [4 1I.
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Appendix. A discussion of the relationship of the problems in

Karlin [5] to the theory of comparison of experiments.

The sampling plans ap,n,n where p 1is the uniform distibution
on I and n is a product measure on {O,l}n-1 was considered in
Karlin [ 5]. We shall, in order to discuss the felationship between
example 5 and some results in [5], need a few concepts.

Note first that each sequence (il""’in) in IS determines its
empirical probability distribution H('I(il,..;,in)) .on 1 where
H(il(il,...,in)) =#{vy vsn:iy=i}/n . Identify this distribution
with the "probability" vector (H(il(il,...,in);iﬁ 1) .

Let Hy be the uniform distribution on 1 , e, Hy (1) =1/N
i €I . The ordered pair (HO,H('I(il,...,in)) determines a dichotomy
D(il""’in) . If o is a sampling plan then the a-mixture, |
EqD1 :Ea(il,...,in)D(ii,...,in) , 1s well defined. Let also, for
each sampling plan a , S, be the probability distribution of the

random probability vector (H(i|I) ;i€ 1) when IE€ I is distributed

according to o . Note that Sa determines § and @ by:
alu) =Sa({x:xi>0¢=i€u}) s WE U

and v
a(n) = 8o ({x:#{i:x;>0}=n}) ;n=0,1,2,...

Let us from here on, for simplicity, restrict attention’to
symmetric sampling plans assigning mass zero to the empty sequence.
Note that if a has this property then E H(i|*) =% ;iE I . Let, for
each 1i€1, NH(i|+*)S, be the distibution on I having density

NH(1

*) w.r.t. S Then F =(S ,NH(i|+)S, ;i€ I) is an experi-

a ° a.
ment whose parameter set contains N +1 points.

Let now o and B be symmetric sampling plans realized by observing, -

respectively, I  and Ji in Zs . Consider the following conditions:
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C,: Dy2 Dy a.s. for some joint distribution of (I,J)
C3: EDJz EDI

Then C1=Cb=>c3 since Ci ;y 1=1,2,3, 1s equivalent to respectively

E @(d) 2 E o(I) ;0€0;; i=1,2,3, where:
o, ={w:w(i1,...,in) Ew(H(i|i1,...,in) 3 1€1)

where 1y 1s Schur convex}

®, = {oro(i ;.01 ) Ew(H(ilil,...,in) ; i€1)

where Y 1is symmetric and convex}

O, = {o:(i ,.0.u,i) Egg(H(i]il,,..,in))

where g 1is convex}

Consider also the following classes of functions on

IS:

o ={0: ¢ is symmetric & 20(i,j,ig,..:5i ) S@(i,i,ig...i)
+ (D(j,j,i3..-in)‘
whenever i’j’i3""’irnezs} ,:

@Z ={p: » 1is symmetric &

Lo(i,isig,0005i du0, 20
13 J

whenever i,j,i3,...in€IS & Zwi =0}

and .
oy = {o: w(il,...,in) Eg(#{il,...,in}) where

g(0) z2g(1)2g(2)z--" }
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The classes ¢K and ¢Z was considered by, respectively,

Karlin [ 5] and Van Zwet [15]. The ordening C1 is considered in
Marshall and Olkin [10]. According to the.terminology there, o

dominates B if and only if C is satisfied.

1
By trying out N-tuples w; 31 €1 such that

Jw; =0 and #{i:w; %0} 2 we see that

c
‘(I)Z =<I>K

It is also easy to see that

°,50

#= K

while (il,...,in)~+g(#{i1,...,in}) is in ®, if and only g 1is

Z
convex and monotonically decreasing.

Any @ EQK' defines a function of the relative frequencies which
became Schur convex after symmetrizétion. On the other hand sym-
metric and convex functions of the relative.frequencies are in Dy -

implies ordering by

Furthermore o, %(DZ so that ordering by o,

mixtures.

Note that ordering by ¢# is equivalent to ordering by ¢K
whenever we restrict attention to symmetric sampling plans with a
fixed number n §3. of drawings (The number of drawings éorresponding
to the sample (il,...,in)els is n). Thus, by proposition 5, C1

holds for a = and . B= when w is stochastically

o =0
pPsn,m psn,n’

greater than n' and n s3:. v

"Identify now each product measﬁre ‘m on {0,1}1'1_1 with the
vector m= ("1’"2""’"n-1)' where LA v=1,2,...,n-1v is the
probability that,thé v-th‘individual drawn is replacéd before
the (v+1)-th is drawn. |

Let o = where p 1is the uniform distribution on I

o
n,m P,Ni,m

and n<N . In [5] Karlin conjectured'thaf Ean “w;Ean nﬂp;wGQK, if
b b

and only if w 2n'., By the remark after the example the "only if"
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does not hold in general. The "if" however appears still to be open
although important progress was made by Van Zwet who proved that

Enxi,.”,lfszﬁ,ﬁp for all veED, ‘and all = =(n1,n2,.‘.,nn_1)

We do not know if Karlin's conjecture implies the more general
conjecture - namely that C1 holds for a =an,n and B =an,“,
when mw2n' . It appears however that several of the statements in

Karlin's paper may be phrased in terms of condition C1 . As an

example we prove the following:

P siti 6. =
roposition Suppose C1 holds for g an,l,l,...,l and
B :an,O,l,...,l whenever n<nyaN . Then C1 holds also for
= and = .
% ~%,1,...,1 n B 0‘r1,,1'r1,...,nbn..1 for all. "1"f""n-1
provided n g ngAN .
Remark: The proposition, as well as its proof, is modelled after

lemma 3.1 and its proof in Karlin [§5 ]..

Proof: Consider for each m<ng, the statement Sm':C1 holds
for = d =
o OLn,l,...,l an 8 an,ni,...,nn_l for a}l LE T AL |

whenever n <mAN . Clearly S1 is true. Suppose Sm—l' is
established. Let ns<maAN and w(il"f"ih) =w(H(9|i1,...,in); vET)
where ¢ 1s Schur convex. We must, in order to establish Sm,

show that

E, L @(I) SE, (D)

NyMyseeesTn_q Nylyeee,

If n<m-1 then this follows from Sm Thus we may, and shall,

-1°

assume that n=m . Let us, for this proof, write Ey for

RSN and -use superscript (v) on E to indicate that
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individual v is removed from the population.

Conditioning w.r.t. the first drawn individual and the decision

on whether this individual should be replaced or not we find:

E“w(Il,”.,%8-=(nl/N)EE“[w(in,.”,Im)|Il=v is not replaced]

+ ((1-n1)/N)§En[mﬁhIZ,.“,ImHI1=v is replaced]‘=

!(nl/N)éEazr..,“mrfpﬁhlz,.uwlm)<£

((1-m )/N)EENQ,...,Hm 1w(v,I2,...,Im) =

=n,E p(I

v)
1 MyseeesT 2>..-,I ) + ((1—n /N)E E w(v,Iz,...,Im)

2,0.0,“ j
w:tlexe ‘-p(lz,OOO,l ) - Eq)(\)’lz,loc,l ) L]
N\)

i L yeeesi )< (G yeees] : i ySD¢s i)
wrlte (ll, ,lm) (]1, ’jm) When (ll,to_n ,lm)-_D(]l,“"jm)'

Then (i,iz,...,im)-<(i,j2,...,jm) when (i,,.e.,i ) <(iyseeeyd )

and i ¢{12,...,im,j2,...,jm) . Hence, by the induction hypothesis,
the last sum is

< ((1—n1)/N)2B§vi NCICTS SIS SR R
R

(1'7&)E051’...,1@(Ii>12a°'°9In3 <(1- "1)E1 1’”.’1q)(I1,Iz,...Im)

Note next that @(iz,...,im) is a Schur convex function of
H(v|i2,...?im) s vET. [Let (i2,...,im)'<(j2,.-.,jm) gnd let K
Lv be, respectively, the absolute frequency of v w.r.t. (i s...,1_)

and (j2,...;jm) . Thus, using the terminology in [10],

K= (K 5.00,Ky) is majorized by L =(Ly,...,Ly).

N
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Let K(l) gK(z); oo ;K(N) and L(l); L(2)z...;L(N) be, respectively,

(Kl""’KN) and (L ) ordered in decreasing order. Let e

i,s.- N t

be the m-tuple whose t-th element is 1 and having all other

elements equal to zero. Then:
Nw(lz,...,lm) =§w(K(1),.¢;,K(N)) + et) <
%w((L(i)""’L(N))) te) =NPi,,. 5] )

The last inequality follows from Fulkerson and Ryser [ 2 ]. This
resuit'may also be found as lemma D.2 in Chapter 5 in Marshall and

Olkin [10].] Using the induction hypothesis once more we find that

the first term is gnlEl;...,1w(I2,.;.,Im)=n1E1,.'.’1m(11,...,1m)
It follows that E“m(Il,...,Im) é"iEl,...,lw(Il""’Im) +
(1—n1)E1,'..’1w(11,...,1m) =E1,1’.'.’1w(11,...,lm) . Thus Sm_ holds.

Hence, by induction, Sn holds.
0

Referfing to Karlin [ 5] we may now, by substituting the proposi-
tion above for lemma 3.1 in [ 5] and then copying part (i) of
theorem 3.1 and its proof, deduce that C1 holds for dzan 1 1

: b e 2

n-1

and B:un’nl""’ﬁn—l for all "1"'{’"n-1 when (N/N-1) < n/(n-3).

According to a theorem of Muirhead, seelMarshall and Olkin [10],

condition C1 for sampling plans o and B implies:
(8) Eaa(ll)a(lz)...a(ln) ZEBa(Ii)a(IQ)..fa(In)

for all nonnegative functions a on 1. It follows directly from
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Van Zwet [15] that (8) holds for ¢ =a and

n,1,1,.0.,1 B=an 0,1,...,1

when n <N . Assuming, which we without loss of generality may,

that Ja(v)=1 we see that (§) in this case may be written:
v

N

(ss) - ) a(v) (1-a(v)nd é(l-% n-1 |
v=1 ‘
1
n-1,n-1

Now (Za(v)(l-a(v)) ) +1;-ca(v) as ‘n-fw . Thqs k§§) does not

hold for arbitrarily large n when a(Q): %' for at leaét one v

Let us cqmplete these comments by showing diréctly that (§§8) holds

when n <N . | |
Restrict a to.the set of probability distributions on T .

Consider Q =z‘a(\))(1—al(\)))n-1 as a function of a(1),a(2),...,a(N-1)..

We must show that Q =mgx:Q(a)= Q(%3...,%)i. Suppose, aq is

a probability distribution on 1 such that a0f17.:0 <al(2) .

Then the derivative at 0 of the function a(l)(l—a(l))n—1>+

a0 (1-a0)n‘1 w.r.t. a(1) at 0 is
3V v

ne~-1z

(a%(2)-a(1))(1-a0(2)+a(1n)™ 1 &
) AV)

0)1’1—2

5 which is positive. It follows that the minimal

1—(1—nag)(1—a

0 is 1. we may then without loss of

support of any maximizing a
generality assume that a0(1) ;aO(Z);,..zaO(N)> 0 .

P l,0sxs1  we find

Putting U(x) = (1-nx)(1-x
3Q/3a(v) =U(a(v))-U(a(N)) . Hence U(éo(v)) = Ual(N)) ; vel .
Now U obtains its maximum at x=2/n and is strictly decreasing
(increasing) as x< %(x>~%) . This imply that either

a0(N) =... =a0(s+1) <al(s)=...=a0(1) for some s <N or

alc1)

a0(2)=...=a0(N) =%'.,In the latter case 0Q =(1—ﬁ
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we are through. The first case, however, can't occure when ns<N .

=] Ly
Sl

To see this note that aY(N)< ﬁé , that U(x)20 as x2

1.2

and that al(N) <z H<<a0(1) . Thus we obtain the contradiction:

0 <Ua%N)) =ual1)) <o .
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