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ABSTRACT 

A survey is given of the development of statistical models 

for life history data based on counting processes. This develop­

ment was initiated 1>y Aa,l.en' s 1975 thesis from Berkeley. We rev;i.e\'1 

nonparametric estimation and testing procedures for counting pro­

cess intensiti-es, kernel function smoothing, parametric inference 

and various regression techniques, including a generalization of 

the Cox regression model for censored survival data. 

Key words; Censoring, intensity, lYJarkov chain, r.artingale, multi­

plicative intensity model, multivariate counting process, nonpara­

metric inference, parametric inference, regression models, 

stochastic integra,!, survival analysis. 
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J. INTRODUCTION 

Life history analysis (or event-history analysis) finds app­

lications in actuarial science, demography, epidemiology, medical 

research, reliability analysis, micro-sociology, and possibly 

other fields. In this theory, individual life histories are seen 

as independent sample paths of stochastic processes moving between 

states in a discrete state-space. The states of the processes 

correspond to various statuses for an individual, an insurance 

policy, a technical component, or whatever we are studying while 

transitions between the states correspond to occurrence of the 

events of interest. Most often the object of study is the ~ or 

!Etensity at which an event occurs. Thus, typically a statistical 

model for life history data includes a specification of how the 

various intensities depend on _time and on individual characteris­

tics and outside events that are being observed. The study of the 

simplest situation, in which there are only the two states "alive .. 

and "dead" (or· "functioning" and "not functioning"), is often 

called life-table analysis, survival analysis, or failure time 

analysis. In this case the intensity of the event "death" is 

simply the hazard rate function for the survival time distribu­

tion. 

A special feature of this field of statistics is that one is 

rarely able to observe complete life-histories. This phenomenon, 

called censoring, may for instance, be due to the planned termina­

tion of a clinical trial, or due to the planned removal of certain 

test ob]ects in a study of the life distribution of a technical 

component. 

). 
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Starting with the work of J. Graunt in 1662 (cf. Glass, 1950; 

Benjamin, 1978), life-table analysis has been studied for centur­

ies by actuaries and demographers. Other important elements in the 

theory of life history analysis, like the three state illness­

death model {or disability-model) and the product-limit estimator 

frequently named after Kaplan and Meier (1958), also have a his­

tory of more that 70 years, with roots back to Karup ( 1 89;3) and 

Bohmer {1912). However, in spite of this long history, it seems 

appropriate to date a modern statistical approach to life history 

analysis to the beginning of the 1950's. Important contributions 

from this period are the stochastic illness-death model of Fix and 

Neyman (1951 ) , and Halperin • s (J 952) and Epstein and Sobel's 

(1953) study of maximum likehood estimation for parametric life 

time models under certain types of censorship. 

In the years that have followed, most of the research effort 

has gone into the study of survival·analysis, or failure time 

analysis, which has indeed been established as a field of it.s own. 

Some important contributions have also appeared on more general 

life history models, usually in a Markov chain setting. The works 

of Freund (1961), Sverdrup (1965}, Chiang (1968), and Hoem {1972, 

1976) are well worth mentioning. Only quite recently, however, has 

a theory been presented that allows for a unified treatment of the 

statistical methods of survival analysis and the more general life 

history models. To give a review of this _theory and its app­

lications is, in fact, the purpose of this paper. Before we turn 

to that, however, we will give a brief outline of the deyelopments 

in survival analysis. 

Following the papers by Halperin "{1952) and Epstein and Sobel 

(1953), much work was done in the 1950's, and especially in the 

1960's and 1970's, on developing parametric statistical models for 



- 3 -

censored failure time data. Lawless ( 1983) revie·.-~s the work in 

this area. The parametric methods have found widespread use in the 

analysis of censored failure time data arising in engineering 

settings. 

In biostatistical applications it was often found impossible 

to justify a particular parametric life-time model. Initiated by 

the paper by Kaplan and Meier (1958), which discussed the pro~uct­

limit estimator for the survival distribution function,.much 

effort has gone into the development of nonpararnetric methods for 

censored survival data. Some important contributions are the gene­

ralizations of the Wilcoxol), Kruskal-Wallis and Savage (or 11 log­

rank11) tests to censored data (Gehan, 1965; Breslow, 1970; Peto 

and Peto, 1972). 

During _the 1960's several papers appeared on parametric 

regression models for censored survival data, making it possible 

to include explanatory variables {or covariates) in the analysis. 

Kalbfleisch and Prentice (1980, p. 68) give references to such 

papers. In 1972, Cox proposed a sernipararnetric regression model 

for censored survival data, modelling the hazard rate function of 

the lifetime distribution as a product of one parametric term and 

one which was left completely arbitrary. Cox's regression model 

quickly became very popular, and it has had an enormous influence 

on applied as well as theoretical research in biostatistics. Like 

many of the recently proposed methods, Cox's regression model 

requires modern computing equipment to be applicable, so the con­

current 9evelopment of modern computers has been one of the prere­

quisites for this methodological work. 

The life history model that has been discussed most frequent­

ly in the literature, apart from the simple survival data model, 

j. 
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is the competing risks or multiple decrement model, where more 

than one cause of death (failure) is considered. But usually this 

model, as well as the survival data model, have been formulated by 

means of random variables, and the statistical methods have typi­

cally been derived and studied by means of results for i.i.d. 

random variables. In life history analysis, time and random pheno­

mena occurring in time play an essential role, and it seems there­

fore more natural to study life history analysis in terms of the 

theory of stochastic processes. Thus, the formulation in terms of 

random variables may have contributed to hampering the researchers 

working in the field of survival analysis, or failure time analy­

sis, from extending their otherwise fine methodology to more gene­

ral life history models. 

Such an extension was facilitated b¥ the fundamental work of 

Aalen (1975, 1978), which was a decisive breakthrough for the use 

of modern theory of stochastic processes in life history analysis. 

Aalen showed how the theory of multivariate counting processes 

provides a general framework in which both censored failure time 

data and censored observations from inhomogeneous Markov chains 

may be analysed, and he studied the empirical cumulative intensity 

estimator (Nelson, 1969; Altshuler, 1970) and nonparametric two­

sample tests. Later, this approach, which relies heavily on modern 

theory of time-continuous martingales and stochastic integrals, 

has been used to extend other well-known methods from the survival 

analysis literature, such as nonparametric k-sample and one-sample 

tests (Andersen et al. .1 1982), Cox's regression model (Andersen 

and Gill, 1982), kernel function smoothing of cumulative intensi­

ties {Ramlau-Hansen, 1983a,b), and maximum likelihood estimation 

in parametric settings {Bergan, 1984), to the more general models 

of life history analysis. This counting process approach also has 

). 
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the importa,nt aQ,vantage of providing straightfc;>rward, but rigC)rou~, 
• 

proofs for the di:stributional properties of the variou$ estimatox;-s 

and test statistics under very general· censoring patt~rns (~len, 

1978: Aalen and Johansen, 1978: Gill, 1980a). 

Tne purpose of the present paper is to give an ~xtensive 

review of the above mentioned wotks b¥ ~len and others· We will 

aim at interpreting the statistical models, disoussin9 the theQre~ 

ti.cal rea1,1l ts, and give illustrative aJ?plica,tions. We will not go 

deeply into the prob~bilistic background for the ~tho~s we dis- · 

cuss, only in Subsection 3.3 the basic definitions a:nt givEm, and 

some references for further re~ding are provided. Rather in th~s 

paper, emphasis will be put on a heuristic introduction to the 

mathematical framework following the lines ot Gill (1984). It 

should therefore be possible to benefit from the readins ot this 

paper without any prior exposure to the s1,1bject. 

The plan of the paper is as foll"ows. In Section 2 we p~esent 

some introductory examples of life history models. J\ heur;i..stic 

introduction to the notions of a multivariate count!n2 eroce~s, an 

·intensit:( process, a martingale, and a stochastiq integral is 

given in Section 3, where we also present the fundamental multi­

plicative intensity model of Aalen (1978) with illustrative exam~ 

ples. The empirical cumulative intensity estimator (o~ Nelson­

Aalel') estimator) is introduced in Section 4. There we also show 

how this estimator may be smoothed by kernel £unction methods· In 

Section 5 we present results for nonparametric tests. Parametric 

alternatives to the nonparametric methogs are given in Section 6, 

while Section 7 conta,ins a discussion of regression models. The 

main message of this paper is that the theory of counting proces~ 

ses has been extremely useful in the study of statistical met~ods 

I· 
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for analysing life histories. No tree grows into heaven, how~ver, 

and even the counting process approach has its limitations. These 

limitations are discussed in our final Section 8. In an appendix 

\Ve illustrate the use of the background theory in the derivation 

of the properties of the Nelson-Aalen estimator and o! the maximUUl 

likelihood estiinator in a simple parametric model. 

Throughout this paper we shall concentrate on statistical 

models for the intensities or rates at which the various events 

occur. It is, however, worth pointing out that counting processes 

also have been very useful for the study of product-limi,t type 

estimators for the survival distribution, or more generally for 

the transition probabilities of Markov chain models (Aalen & 

Johansen, 1978; Gill, 1980a, 1983a). 

2. INTRODUCTORY EXAMPLES 
I 

To give a more specific introduction to the kind of models 

and data one encounters in life history analysis, let us in this 

section consider a few examples more in detail. As mentioned 

above, we model individual life histories by a stochastic process 

with finite state space. It is convenient to illustrate such a 

process by a diagram, where the states are represented as boxes, 

and where arrows between the bo~es indicate the possible Birect 

transitions. The time parameter 9f the process may be e.g. an 

individual's age or the time elapsed since the diagnosis of a cer-

tain disease. Only rarely will the time parameter correspond to 

calendar time. This should be kept in mind when we talk about 

"time" below. 

J• 
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2.1 Survival data 

The simplest possible model for life history data is the model, 

i'llustrated in Fig. · 1, where one only has the two states 0 and 1 , 

with state 1 absorbing. We will denote the states ''alive" and 

11 dead 11 , respectively, although other names may be more appropriate 

in some applications. This model is the one underlying most work 

in survival or failure time analysis. 

0 

Alive I a 
) 

Dead I 
Fig 1 • A simple survival data :mode 1. 

In statistical analysis of survival data from a homogeneous 
"" ' I 

population, one is·interested in estimating and testing hYJ?Othescs 

concerning the death intensity (or force of mortality, or hazard 

function) a. This quantity is defined as follows. Let the random 

variable T represent the survival time for an individual from 

the population. Then 

a(t) = lim - 1- P(t<T<t+~tjT>t), 
~t"'O ~t 

(2. 1 ) 

i.e. a{t)dt is the probability that an individual <lies in the 

small time interval from t to t + dt, given that the individual. 

is alive at time t. In this respect a . measures the instantane..-

ous death risk. 

In ma,ny applications, there are explanatory variables (or co­

variates) upon which the survival times may depend. These :may 

either be qualitative variables, as indicators for sex, treatment 

group and geographical region, or quantitative variables like age 

I· 
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when a certain disease \~S diagnosed and blood pressure. Gene-

rally, one has a vector of, possibly time-dependent, covariates 

~ ( t) = ( zl ( t) I ••• I zp ( t)) I for each individual under study. For 

such situations one is interested in studying the effect of the 

covariates on the risk of dying. This is often accomplished by a 

regression t,ype model, where the death intensity for an individual 

with covariate vector ~ ( t) is assumed to have the multiplicative 

form 

. ~·~(t) 
a:0 (t)e • 

Here ~ = (~ 1 , ••• ,~p)' is a vector of regression parameter~, and 

the underlying d.eath intensity a:0 is the force of mortality for 

an individual with covariate vector z - o. Within this framework, ,.., ,.., 

the effect of the .covariates on the risk of dying may be measured 

by ~, whlle a: 0 is a measure of the level of mortality. 

The individuals under study may consist of patients at a 

given hospital suffering from some lethal disease (possibly ran­

domized to one out of a given set o.f treatments) , or they may 

consist of a cohort or a ~ross-sectional sample of individuals 

from some well defined population. The gr9up under study is fol-

lowed continuously in time, and the occurrences and times of 

deaths are recorded. Time will often be measured from the date of 

the entry into the study (the time of randomization). This kind of 

data collection has an inevitable consequence in the form of right 

censored data, since in practice one cannot continue the data 

collection until all individuals are observed to die. Some indi-

viduals will still be alive at the end of the study, and for these 

individu.als it \'lill only be kna.vn that their survival times e:xceed 

certain lower limits .. Censoring may also occur because some indi-

viduals are lost from follow-up. Thus, statistical methods for 
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analysing survival data (and other kinds of life history data) 

must be able to deal with censored observations. A review of the 

application of counting process methods in the survival a_nalysis 

set-up is given by Andersen (1982). 

The following concrete example of survival data will be used 

below for illustrative· purposes. We consider those among the 

population of insulin dependent diabetics alive in the county of 

Funen in Denmark at 1 July 1973 (Green et al., 1981) who had an 

age at onset of the disease not exceeding 29 years. This group 

consists of 413 males and 314 females. These individuals were 

followed until death or emigration or until 1 January 1982. ~{e 

will show below how these data may be used to estimate the age 

specific force of mortality among diabetics, and how these 

estimators may be compared with the death intensity for the 

.general population. Our analysis will also include a comparison of 

male and female diabetics and a di scuss.ion of the influence on 

f?Urvival of the age at onset of the disease (using a model of the 

form ( 2 • 2 ) ) • r 

2.2 Competing risks 
I 

When in a survival time study also the cause of death is of 

interest, the state "dead" in Fig. 1 can be split into, say k 

states "dead of cause 1", •.• ,"dead of cause k", cf. Fig. 2. 

1 
of no. 1 Dead cause 

0Alive I of no.2 cause 
• 
• 

k of no.k I Dead cause 

FiSI.2· A model for competing risks 
I 
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In an analysis of data on competing risks from a homogeneous 

population, the parameters of prime interest are the cause speci­

fic death intensities (or hazard functions) ~ 1 ,a 2 , ••• ,ak. Tnese 

are· defined in a similar manner as (2.1), such that c:h(t}dt is 

the probability that an individual will die of cause no. h in the 

small time interval from t to t + dt, given that the individual 

is alive at time t. The possible effect of certain covariates on 

the cause specific death intensities may be studied by a regress­

ion type model similar to (2.2). 

vfuen studying mortality among diabetics, it is sometimes of 

interest to analyse deaths caused from direct complications to the 

disease, deaths due to cardiovascular diseases and deaths due to 

other causes separately. In the set of data mentioned in Subsec­

tion 2.1, however, no reliable information on causes of death is 

avaliable, and in this paper no real example of a competing risks 

model will be analysed. Such examples can be found in Prentice et 

al. (1978) and Aalen (1982a). 

2.3. An illness-death model 
I 

In a study of life history data, one may be interested in the 

occurrence of a disease (or some other event) and how this affects 

the force of mortality. A model for such a situation is displayed 

in Fig.3. In biostatistics the model is usually called an illness­

death model, while actuaries will recognize it as a disability 

model. 

0 
Aliv~, not ill 

a 
02 

l 
Alive,· ill 

a 
12 

Fig.3. An illness-death or disability model. 
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For studies of data from a homogeneous population, the sto-

chastic process is often assumed to be Markovian. Then the rates 

at which the various events occur are measured by the transition 

intensities, defined as 

Here Ph.(s,t) 
J 

ex h . { t) = 1 im ~ t Ph . { t, t +A t) • 
J A t-1- 0 u J ' 

(2.3) 

is the probability that an individual in state h 

at time s will be in state j at time t ~ s. Thus cx 01 is the 

force of morbidity, cx 10 is the cure rate, while cx 12 and cx 02 

are death intensities for diseased and disease free individuals, 

respectively. 

More generally, one may assume a semi-Markov structure where 
• 

e.g. cx 10 and cx 12 depend on time as well as on the duration of 

the disease. It is also possible to incorporate the duration of 

the disease as a (time-dependent) covariate, along with other 

explanatory variables, in a regression model similar to (2.2). A 

semi-Markov specification is often appropriate in a model for 
I 

cancer progression, where the state l of Fig. 3 corresponds to 

relapse of the disease {Voelkel and Crowley, 1984). 

In this paper we will apply an illness-death model in 

connection with a study of survival with liver cirrhosis, CSJ.,-I, a 

randomized clinical trial conducted by the Copenhagen Study Group 

for Liver Diseases. The purpose of the study was to compare the 

effect on survival of prednisone treatment versus placebo. {The 

Copenhagen Study Group for Liver Diseases, 1974). In the period 

1962-69, 532 patients with histologically verified liver cirrhosis 

were included in the study and followed until death or censoring, 

the closing date of the study being 1 September 1974. The effect 

on survival of clinical, serological, biochemical and histological 
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variables measured at the time of entry into the trial were analy­

sed by Schlichting et al. (1983). We shall be concerned also with 

the effect of .. follow-up variables.. on survival. These were recor-

ded 3, 6, 9 and 12 months after start of treatment and thereafter 

once a year. In particular we shall study the effect of the bio­

chemical variable prothrombine on survival during prednisone and 

placebo treatment, and also how changes in the level of pro­

thrombine may themselves depend on treatment. Restricting atten­

tion to either low or nornia.l level we obtain an 11 illness-death11 

model for each treatment, time t being measured from the date of 

randomization. 

Another example of a model of the type shown on Fig. 3 was 

analysed by Andersen and Rasmussen {1982). They studied admissions 

to and discharges from psychiatric hospitals among women giving 

birth and women having induced abortion. Here the state l corre­

sponded to a woman being resident in a psychiatric hospital, and 

the state. 0 to a woman not being resident in such a hospital. 

Time t was measured relative to the date of birth /abortion. 

2.4. Interaction between life history events 

For studying the interaction between two separate events A 

and B in the life history of art individual, a model of the form 

displayed in Fig. 4 can sometimes be applied·. 

0 

B 

A 
Neither A nor o:OA .. A has occurred 
B has occurred ,. but not B 

lt 

B ha.s 
but not 

o:OB ' o:AB 

AB 
occurred .. Both A and 

A o:BA B have occurred 

Fig. 4. A model for analysing the 
interaction between two separate 
life history events. 

. 
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Aalen et al.(1980) used a ~arkov model·of this type to study 

the possible effect of menopausal hormonal changes on the inten­

sity of the outbreak of the chronical skin disease pustulosis 

palma-plantaris. Similarly, Bergan et al. (1982) analysed a set of 

data concerning the interaction between nickel allergy and hand 

eczema among Danish women by the model of Fig.4. 

2. 5. Labour Market Dynamics 

In longitudinal studies on labour market dynamics, the three 

states "unemployed", "employed 11 and "out of labour force" are 

considered, cf. Fig.5 •. 

0 
Unemployed 

ex 
20 2 

Out of labour force 

1 
Employed 

ex 
21 

Fig. 5. A model for' labour force dynamics 

Andersen ( 1985) discussed statistical models for this situa­

tion assuming continuous observation of a random sample of 

individuals from the potential labour force over a fixed calendar 

time period. Hoem (1977} used an illness-death type model to study 

the accession to and separation from the Danish labour force for 

the period 1972-74. 

3. MULTIVARIATE COUNTING PROCESSES 

In this section we introduce the important concept of a mul~ 

tivariate counting process and the corresponding intensity pro­

cess, and show how this gives a general framework for analysing 

the type of situations discussed in Section 2. In Subsection 3.1 

we give a somewhat informal introduction to these noti~ns follo­

wing Gill ( 1984), and provide illustrative examples. We also com-
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ment upon the so-called multiplicative intensity model of Aalen 

( 1 978) . The informal introduction to the :mathematical framework is 

continued in Subsection 3.2 by a discussion of martingales and 

stochastic integrals. In the final Subsection 3. 3 the precise 

mathematical results with references are given. 

3.1 Hultivariate counting processes. The multiplicative intens.ity 

model 

A multivariate counting process 

t!, = {(N 1 (t), N2 (t), ••. ,Nk(t)), t E (0,1]} is a stochastic process 

with (say) k components, which c;::an be thought of as counting the 

occurrences, as time t proceeds, of k different types of 

events, Nh(t) being the number of type h events in the time 

interval (o,t]. In this paper the time parameter t is assumed 

to vary in a finite interval, which we for convenience in the 

general discussion will take to be [o, l ] . It is assumed that each 

component process. Nh has jumps of size +1, and that no two 

component processes can jump simultaneously. Thus multiple events 

cannot occur. The events will typically correspond to the 

transitions, for an individual or a group of individuals, ·between 

the various states of a stochastic process as examplified in 

Section 2. 

The development in time of a multivariate counting process N ,... 

is goverened by its (random) intensity process A. = 
{(A.1 (t), ••• ,"k{t)), t E (0,1 ]}, which is given as follows. Let 

Idt be a small time interval of length dt ·around time t, then 

A.h{t)dt is the conditional probability that Nh jumps in Idt 

given all that has happened till just before time t. 

If we let d~(t) denote the increment of Nh over Idt' and let 

f' t- denote everything that has happened up to, but not including 

t, then we can write 



·. 

- 15 -

( 3.1 } 

Here the 11history" ; includes a complete specification of the t-
path of N(u} on the interval [ 01 t) as well as all other events -
implicitly or explicitly included in the model which have happened 

· before (but not at) time t. As a consequence we have that 

fs ~ ~t' whenever s < t, reflecting the fact that as time proceeds 

more and more is learnt about the process. 
-

Let us see how the examples of Section 2 fit into this frame ... 

work 

Example 1. Survival data 

we consider the situation of Subsection 2.1. To be concrete, 

let us suppose that a group of n patients indexed by 

i, i=l, ••• n, suffering from a given (lethal} disease is followed 

at some·hospital from the time of diagnosis of the disease to the 

time of death or to some fixed closing date of the study. Thus for 

each patient i we observe a disease duration Ti which is either 

his true survival time T., i.e. the length of time from diagnosis 
~ 

to death, or a censoring time: i.e. the length of time from diag-

nosis to the closing date. Let D.= 1 
J. 

if 'T. 
~ 

is a true survival 

time:. D.= 0 otherwise. Moreover, we assume that the pairs 
~ 

(T.,D. ): i = 1, 2, ••• , n: are independent. 
~ :1. 

We can define a multivariate counting process N - by 

= I(T.<t, 0.=1) , 
~ ~ 

i = l, •. ,n, (3.2) 

where I ( •) is the indicator fun'ction. Thus Ni is zero before 

T.; and jumps to one at 'T. if T.; is- a true survival. time; . ~ . ' 
otherwise N1 does not jump at alL To find the corresponding 

intensity process we argue as follows. At any time t we know 

that either has the ith patient been observed to die, or he has 
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been censored, "or he is still alive and uncensored. For the first 

two cases the conditional probability of observing N. 
~ 

to jump in 

the interval Idt is zero. For the latter case this conditional 

probability is ex. ( t )dt, where ex. ( t) is the hazard function, or 
~ ~ 

death intensity, for the true survival time T. 
~ 

for this patient, 

cf. (2.1). Thus if we define 

(3. 3) 

then we have that 

ex.(t) Y.(t)dt, 
~ ~ 

(3.4) 

where f represents all the information available on the course 
t-

o£ the disease just before time t. (The independence assumption 
I 

ensures that ex.(t} can be interpreted as the ordinary hazard 
~ 

rate function for individual no. i.} By (3 .1) and (3 .4}, we see 

that the multivariate counting process N = (N 1, ••• ,N },·given by ,... n 

(3.2}, has an intensity process ~ with components Xi given by 

X.(t) = ex.(t) Y.(t) 
~ ~ ~ 

; i = 1 1 2 1 .. • • In. (3.5) 

In the example concerning survival witn insulin dependent 

diabetes mellitus, the situation is more complicated. Studying 

mortality as a function of age, rather than as a function of 

disease duration, the individuals are not followed from age 2;ero, 

but from their age at July 1973. Denote this age for ~he ith 

individual by aiO' and let Ni(t) be 1 if this individual is 

observed to die in the age span from 0 to t years. Then 

N =· (N 1 , ••• ,N } is a multivariate counting process with intensity 
- n 
process of the form (3.5) with 
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= I(T.>t>a. 0 ) 
l. . 1 

, i = l, ••• ,n. 

In some situations it is reasonable to assume that the death . 
intensities cz i are the same for all individuals, so that we ~ve 

a homogeneous papulation. Denote the common value of the czi s by 

cz. Then we get a univariate counting process N by a~gregating 

the "individual" counting proceses (3.2), i.e. 

n 
N(t) = ! Ni (t). (3.6) 

i=l 

This process counts the total number of observed deaths in [ O,t]. 

By (3 .1), (3 .. 5), and the fact that no two individuals die at the 

same time, it follows that (3.6) has intensity process A given 

by 

where 

n 
A(t) =! Ai(t) = cz(t) Y(t) 

i•l 

n 
Y(t) - I 

i•l 
y. (t). 

l. 

(3.7) 

(3.8) 

Note that the right hand side of (3. 7) is just a product of the 

death intensity for a single individual and the "number at risk" 

just prior to t. D 

Example 2. Observations from a finite state Markov chain 

Following the lines from the previous example, we consider a 

homogeneou• group of individuals indexed by ·i = 1 , ~ •• , n. For 

these individuals we observe, continuously in time, the events of , 
interest, modelled as transitions between the st~tes of a stochas-

tic process with finite state. space· r (compare Subsections 2.2 -

2.5). We define the counting process Nhji(t) to be the number of 

direct transitions from h to j (h, j~r, h+ j) observed for indi­

vidual no. i in the time interval [O,t], and assume that.the 

individuals behave independently of each other. Let Yhi(t) • 1 

if the ith individual is observed to be in state h just prior to 
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time t, i.e 11at risk11 for a h + j transition: yhi ( t} = 0 

otherwise. · Then, provided that the stochastic process is 

Markovian (and that the censoring mechanisms satisfy the general 

conditions discussed at the end of this section}, arguments 

similar to those in Example 1 show that Nh .. (t) 
J~ 

has·· i.ntensi ty 

1>· 
process ahj(t} Yhi(t), where ahj is the intensity for a h + j 

transition, cf. (2.3}. (Also for an inhomogeneous group of 

individuals or for a non-Markovian process the intensity process 

for Nh'i 
], 

indicator 

. t.~ [ 01 1]} 

will be a product of ah 11 individual intensity .. and the 

Yh .• ) Thus N = {(Nh .. (t): h,jer, ~j, i=l, ••• ,n, 
~ ,.. ]~ 

is an nk-variate counting process, k being the number of 

possible types of <lirect transitions. Analogously.to (3.6) and 

( 3 • 8) , we let 

n 
Nh]' ( t) = I Nh .. ( t) 

i=l Jl. 

be the total number of h + j transitions observed in [ O,t], and· 

be the total number of individuals observed to 'be in state. h at 

t-. Then, since no two transitions occur simultaneously, and the 

transition intensities for different individuals are assumed to be 

identical, {{Nhj{t), h,jE:r, h*j, tE[O,l]}' is a k-variate counting 

procee;s ~th Nhj (t) having intensity process ahj {t) Yh {t), cf 

{3.7). D 

·Motivated by examples li$e the ones above, Aalen (1978) 

ihtroducedthe multiplicative intensitx.model for counting proces­

ses where ·it is· assumed that the intensity process ~3.1)·may be 

given as 
' r ~ 

{3.9} 
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Here ah(t) is a nonnegative deterministic function, while Yh(t) 

is a nonnegative observable stochastic process whose value at any 

time t is known just before t. We say that a process with 

these properties is predictable. In the examples, a;h (t) could be 

interpreted as an individual intensity for making the transition 

in question (i.e. of type h), and Yh(t) as the number 11at 

risk" at t- for making a transition of this type. As a conse­

quence of this, we shall assume, in the general set-up as well, 

that Yh(t) = 0 whenever Yh(t) < 1. Other examples of the mul­

tiplicative intensity model are given by Aalen (1978, Sections 4 

and 8; 1982a, Section 4). 

Since the develbpment in time of a multivariate counting pro­

cess N is goverened by its intensity process (3.1), we can spe--
cify a counting process model for life history data by giving a 

specification of the intensity process. Let Nhi(t) be the number 

of~ h transitions for individual i in [o,t]. Tli.en·all the 

statistical models studied in this paper (except for Subsection 

7.3) have a common structure, namely that the intensity process of 

Nhi is given by 

( 3. l 0) 

h = l, ••• ,k; i = l, ••• ,n; t E [0,1]. 

The indi,vidual intensities a;h may depend on the type h 

either nonparametrically (Sections 4,5 and 7) ·ar via a finite 

number of parameters (Sections 6 and 7), and they may depend on 

the individual i· via a vector of predictable covariate processes 

Z.(t), either by a stratification according to the values of Z. 
-1 -1 

(Section 4,5,6) or by a regression model specification, cf. (2.2) 

(Section 7). 

The Yhi are predictable indicate~ processes, Yhi(t) 
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indicating by the value 1 whether individual i is observed tQ be 

at risk just before t for making a type h transition.. Let 

Nhi ( t) be the number of type h transitions in [o, t ] we had 

observed for individual i if t-here had. been no censoring. Then 

the value of the indic-ator processes Yhi is a result of both the 

development of ~i = (N1 i, .•• ,Nki) up to (but not including) t -and of possible censoring. Suppose that the uncensored process N. 
-~ 

satisfies a model of the form (3.10), i-~· that it has intensity 

process 

-where Yhi is determined by -N. alone. Moreover, assume that 
-~ 

censoring of individual i is determined by a predictable indi­

cator process C i ( t), iQdicating by the value 1 when this indivi­

dual is under observation. Then the censored counting process 

Nhi(t) is given by 

h = 1, ••• ,k, 

and it has intensity process given by (3.10) with 

(Andersen et al., 1982). 

Thus censoring by a predictable process c. 
~ 

preserves the 

structure of the ·model,_ and inference on the ah{., .) may be drawn 

from observing the censored process ~ = { (N 1 i' • • • ,Nki); 
, 

i=1 , ••• ,n}. This means· that the censoring mechanisms may be quite 

arbitrary, as long as they only depend on the past and outside 

random variation. It was discussed by Aalen (1978), Gill (1980a) 

and Andersen et al. (1982) how, in the case of survival data 

(Example 1, above), the most frequently used models for right 
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censoring (e.g. type I censorship and random censorship) can in 

fact be described in this way. Examples of censoring mechanisms 

which do not satisfy these conditions are given in Section 8. 

As shown in the examples above, the model {3.10) may some­

times be reduced to the multiplicative intensity model (3.9) by 

aggregating the individual processes. Aalen (1982 b) discusses 

conditions under which such a reduction of the data is sufficient. 

Especially, he points out that for left censoring and ''censoring 

on intervals" some information may be lost by the aggregation. 

The statistical methods derived from (3.9) will still be valid, 

however, as the long as the censoring mechanisms satisfy the gene­

ral conditions discussed above. 

3.2. Martingales and stochastic integrals 

The study of life history data by means of multivariate coun­

ting processes is intimately connected with the use of martingale 

methods for deriving the properties of the statistical estimation 

and testing procedures. In this subsection the link between c;oun­

ting processes and martingales is·outlined, and stochastic inte­

grals a.re introduced. Our informal pres.entation is modelled after 

Gill (1984 )-. 

The increment dNb(t) of ~ over the small interval Idt of 

length dt around time t is a 0 - 1 variable. Therefore, by 

( 3. 1 } 

E ( dNh ( t) I y t-} = A. h( t ) d t. 

This implies that if we define stochastic processes 

l, ••• ,kr by having increments 

M ; h = h. 

(3.11) 

(3.12) 
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over Idt (and satisfying Uh(O) :;:: 0), then 

E ( dMh ( t) I yt-) = 0. 

i.e. the pro~esses 

(3.13) 

(3.14) 

h = 1 , ••• ,k: t ~ (0,1 ]; are ma:rtinsales. ln particular eMh(t)=O 

for a 11 t E [ 0, 1 ] • 

The relation (3. 14) is the key to the "countfng process apl(.-. 

roach" to life history analysis. As \'le will see in Section~ 4-7 

below, many est.i,matqrs q.nd test statistics may be expressed <!I.St or 

approximated by, stochastic integrals \'lith respect to the 1r1artin!""" 

gales (3.14). Moreover, ce~tral ltmit theor~ms and other pro~er­

ties for martingales, and therefore also for stochastic int~grals 

(cf. below), are ve~ well studied, and ~ay be used to inv~stig~te 

the properties of the statistical proced\,lres~ 

Martingale central limit theorems state conditions pnde~ 

which a sequence (M(n)(t); t E [0,.1 ]), n = 1,2r··· of martingales 

(not necessar-ily of the form (3. 14)) behaves as a oon'l;.inuous ~-

sian martingale \'lhen . n gr011s large. A continuous Gaussiap mar­

tingale (X(t), t EL0,1)) is a (possibly) time-tri;insformed Wiener 

process, and as such it has independent norm~lly distributed in..-

crements with expectatic;m zerq. In partic1..1lar the conditional 

variance of dX(t), given all that has happened up to t~e t, i.e. 

ft-' equals Var(dX(t)), and hence it is deterministic. Further .... 

more, X has continuous sample paths. So if a sequence of martin-
' 

gales asymptotically should look like a continuous Gaussian mar­

tingale X, then firstly the jumps of H(n) should become neglic:;ri-

ble when n gets large, and secondly the conditional va~iapces 

Var(dH(n) (t) I ft_) should become d~terminist.ic in the l;i.mit. The 

conditional variance of a martinsale H is given by the so-called 
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predictable varil!tion process (or vq.riance Eroceas,) < M >, 

defined by having the increi!lents 

d< t-1 >{t) ~ Var (dM{t} I..Ft_) 

ovet' Idt" So in conclusion, the second condit:i.on for the 

convergence of a sequence of martingales to a cont.inuops Ga"sl3iap. 

martingale, is that "tlle ~t'4ild:i.ata'ble variaticm pro~•!$~es 'i M { n) l> 

converge to ~ determini$tic function. 

For the martingales Mh defined 'by (3. 14), we find 

= Var(dNh (t) I S:t_), 

since Ah{t) is predictable, i.e fixed given ft~' aeo$use 

c:iNh{t) isa 0 ... 1 variable,.(3.1) yielc;is 

j:ind therefore 

t 
< ~>(t) = J ;\h(s)ds. 

0 

To l;5tUdf the transformation of Gt mart-ingale M by ~toc;hast.ic 

integration, let H be a predictable stochastic process, and 

define a new procesEI M' by the stochastic inte51r~1 

t 
M ' ( t) = f H ( s ) dM { s ) . 

0 
{3.16) 

Then M' is a martingale itself, because the increment 4M'(t} = 
H(t) dlvl(t) over Idt has zero conditional expectation 

(cf.(~.l3}): 

E(H{t)~Ht) I .ft_) = H{t) E(dM{t)j -~t.-> = o. 
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Here the first equality is due to the predic~ability of H, While 

the second follotlls by (3.13). The predictable variation process of 

( 3. 1 6) is easily found: Since 

.we get. 

Var (H{t) dH(t)j ft_) = H2 (t) d< M >(t.), 

t 
· < M'>(t);::: f H2 (s)d< M ~(s). 

0 
(3.17) 

One final concept in the following is the o_rthogon~lity of 

two martingales M1 and M2 . To this end we introduce the ~red~c­

table covariation process (or covariance process) < M1 ,H2 >, defi­

ned by having the increments 

over Id.t' and we say that M1 and M~ are o~tho51onal, i~ 

For any two martingales Mh and Mj' h * j, derived from a 

multivariate counting process by (3,14), we bave 

This follows since Xh and X. are p~edictc:lble, and by the fact 
J 

tbat Nh and Nj do not jump simultaneously. Thus, tbe marti~­

gales defined by (3.14) are othogonal. 



- 25 -

3. 3 Mathematical framework 

After the informal introduction to the various mathematical 

concepts given in the preceding two subsections, we shall now turn 

to a precise mathematical formulation. Unlike the rest of the 

paper, this subsection (and the P..ppendix) requires knowledge of 

some basic concepts in measure and probability theory. ~t mqy 

safely be omitted by those of the readers \vho only want to get a 

brief revia-1 of the ideas and resul tf? in the 11 counting process 

approach'' to life history analysis. Some important references to 

the theory of counting processes and martingales are Dolivo 

(1974), Heyer (1976), Bremaud and Jacod (1977), Jacod (1979), Gill 

(1980a), Brernaud (1981), Shiryayev (1981) and Jacobsen (1982). 

Definitions 

Let (Q, F, P) be a complete probability space and 

a filtration on (g,f), i.e. an increasing, right-

continuous family of sub-a--algebras of f. ~'Ve also assume that 

$=0 contains all P-null sets of £ . A multivariate co~ntin~ 

process N = ( (N1 (t), ••. ,Nk (t)), t E (0, 1 ] ) is a k-dirnensional 
I 

stochastic process adapted to the filtration (i.e. N(t) is -
;:-measurable fo! each t E (u,l ]> with components~ which have 

sample functions Which are nondecreasing, right-continuous step 

functions, zero at time zero, and with jumps of unit size. More-

over it is assumed that, with probability one, no two components 

jur.p simultaneously, and that each ~h ( 1) is almost surely finite. 

An adapted stochastic process M, satisfying M(O) = 0, 

EIHI (t} < CD ; t E (0,1 ]; and having right-continuous sample funo-

tions \..ri th left hand lirni ts, is called a martinc;rale if 
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E(H(t) If )=H(s) a.s. (cf. (3.13)) and a submartingale if 
s 

E(M(t) Is= ) -) M(s) a.s. for 0 ~ s " t < 1. A (sub-)martingale s 

is square integrable if 
2 

suptE (o, 1 ]EM ( t) < a;~. 

A stopping time is a random variable T satisfying 

{T<t} Eft for all t. For a stochastic process X, we define the 

stopped process by 
T 

X (•) = X(•AT), sAt denoting the mini-

mum of s and t. A stochastic process X is said to have a 

property locally if there exists an almost surely nondecreasing 

sequence (T ) of stopping times with P(T ;:.t) t 1, as n + o:o for 
n n 

T 
all t E [o, 1 ] , such that for every n, the process . X n has the 

actual property. Thus a local martingale, a local square integra-

ble martingale, a locally bounded process, etc. can be defined. 

The precise definition of a predictable stochastic process 

can be found e.g. in Gill (1980a, p. 8-9). For our purpose it is 

sufficient to note that if a process is adapted and has left-con-

tinuous sample paths, then it i•s predictable and locally bounded. 

Moreover, any Borel measurable deterministic function is 

predictable. 

A process X has a compensator A if X - A is a local 

martingale, and A is predictable and has paths of locally 

bounded variation. 

Results 

Each component Nh of a multivariate counting process has a 

unique compensator Ah. Thus there exist local martingales Mh 

defined by (cf. (3. 14)) 

In fact the Hh are local square integrable martingales. This is 

the Doob-Meyer decomposition of the local submartingale Nh. Under 
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regularity conditions (e.g. Aalen, 1978, Section 3.2) An is 

absolutely continuous, so that there exist predictable processes 

A.h such that (cf. (3.14:)) 

Ah (t) 

Furthermore, 

t 
= f A. h ( s ) ds ; h = 1 , ••• , k. • 

0 

and hence A.h is denoted the intensitX process for Nh (cf. 

(3 .1)). Conversely, given a process A.h with the above mentioned 

properties, then, subject to regularity conditions (e.g. Mlen, 

1975, Sections 2C and 20), a unique counting process can be deter-

mined which has A.h· as its intensity process. Throughout this 

paper we will ass\lme the existence of an intensity process. 

If M1 and M2 are local square integrable martingales, 

then M1 M2 has a unique compensator which we call the predictable 

covariation process of M1 and M2 and denote by <M1 ,M2 >. We say 

that M1 and M2 are orthogonal when <M1 ,M2 > = 0. The counting 

process martingales given by {3.14) are orthogonal. The unique 

compensator for the local submartingale M2 is called the ;eredic­

table variation erocess of M and is denoted by· <M>. Thus < M > 

= < M,M >. For the counting process martingales {3.14) the pre­

dictable variation processes are given by (3.15). 

If H1 and a2 are predictable and locally bounded 

processes, and 1-11 and M2 are local square integrable 

martingales with paths of locally bounded variation, then the 

stochastic integrals 
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t 
f Hh QMh = ( _( Hh ( s ) dMh ( s ) I t f [ 0 I 1 ] ) ; 

0 . 

h = 1,2; can be defined (Gill, 1980a). The stochastic integx-als 

are local square integroiible martingales themselves, with predic-

table covariation process 

t 

< (Hl dMl' (H2dM2>{t) = ( H 1 (s) H2{s) d<M 1 ,M 2>(s). 
. 0 . 

(3.18) 

In· this paper we are mainly working with local square inte­

grable martingales. This means that we cannot in general be su;-e 

that expectations, variances, covariances and correlations do 

exist. Therefore, when we in Sections 4 and 5 and Appendix A below 

talk aboqt expectations etc., we do tacitly assume that they 

exist. 

We finally state two theorems which are of fundamental impor-

tance when deriving the properties of the estimators and test 

statistics in the statistical models discussed in Sections 4-7 

below. 

Theorem 3.1 

Let N be a qnivariate counting process with intensity pro­

cess X and let M be a local square integrable martin<Jale {not 

necessarily given by (3. 14)). Then for all &, Tl > 0 

and 

1 
P{N(1 )>Tl) < 0 + P(jX(t)dt>o), 

Tl 0 

P{ sup jM{t}j>T)} < ~2 + P(<M>(1}>&}. 
tE ( 0, 1 ] 

This theorem is a consequence of Lenglart•s (1977) inequality, cf. 

Andersen and Gill {1982, Appendix I}. 
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Theorem 3.2 (.A central limit theorem for local square integrable 

martingales) 

~ p) pe fixed, and consider a seguence 

variate counting processes \·lith intensity procesa A(n) - , 

of k .... 
n 

and a 

sequence of p x kn~rnatrices of predictable processes, such 

that the stochqstic integrals 

x<.n> ( t) 
J 

k t n 
= f l HJ~~) (s) (dN~n) (s) - A~n) (s)ds): 

0 h=l 

j = 1, ••• ,p; are well defined. If, as n + OtJ, 

p 
<XJ<.n>,x~.n)>(t) + G (t) 

.A. j.t : 

j, ..l = l, ••• ,p, tE [o, 1 ] , where q_ is a pxp matrix of continuous 

functions on (0,1] forming the covariance function of a p-vari-

ate Gaussian.martingale 

€ > 0 

1 kn P 
f l [ H J~hn) { t) ]2 A ( n) ( t ) I ( IH J<.~) ( t) I > e ) dt + 0 ; 
0 h=l h 

j = l , . . . , p : then 
D 

x<n> + -
D 

as n + co. 

The weak convergence + takes place in the space o[O,l ]P 

equipped ,..lith the Skorohod product topology { cf. Billingsley, 

1968). Versions of this theorem were proved independently by Aalen 

(1977) and Rebolledo (1978). Our formulation of Theorem 3.2 is a 

consequence of the results of Rebolledo (1980), and can be found· 

in Andersen and Gill (1982, Appendix I). Other important papers on 

martingale central limit theorems are Liptser and Shiryayev ( 1980) 

and Helland (1982). 

In the Appendix examples are given of the applic:ability of 

these two theorems. 
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·4. NONPARAMETRIC ESTIMATION 

Consider a multivariate counting process 

~ = { (N1 ( -t;.L ••• ,Nk( t)), tE [ 0, 1]} with. intensity process 

satisfying the multiplicative intensity model (3.9). In this 

section we consider nonparametric estimation of the integrated 

ah s, ~nd how these estimators may be smoothed to obtain estimators 

for the ahs themselves. Both methods are illustrated by means of 

the diabetes data discussed in Subsection 2.1. 

4.1 Nonparametric estimation of the integrated ex h~ 

To derive an estimator for 

we use (3.9) and (3.12) to write symbolically 

(4. l ) 

By this, a natural estimator of 

However, one may have Y h = 0, 

and in order to deal systematically with this possibility, we . 
introduce the indicator Jh (t) = I (Yh (t) >0), and define the 

estimator for (4 .1) formally by 

(4~2) 

where Jh(t)/Yh(t) is interpreted as 0 whenever Yh(t) = 0. It 

should be recalled that we assume that Yh(t)<l implies Yh(t) = 0. 

The estimator (4.2) was introduced by Aalen (1975, 1978), and 

· it generalizes the empirical cumulative intensity estimator, 

proposed independently by Nelson (1969,1972) and Altshuler (1970), 

for the set-up with censored failure time data. We will denote 

(4.2)' the Nelson-Aalen estimator. 

It should be realized that the integral in (4.2) is just a 

simple sum. To see this, ·let . Thl < Th2 < • • • be the successive 
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jump times for Nh. Then dNh(t) = 1 when t equals one of these 

jump times, dNb(t) = 0 otherwise. It follows that (4.2) may be 

written alternatively as 

(4.3) 

A 
Thus, ~ is an increasing, right-continuous step-function with 

increment 1/Yh(Thj) at the observed jump time Thj of Nh. 

To further motivate the Nelson-Aalen estimator, let us see 

how it may be derived heuristically from the classical occur-

renee/exposure rates (cf. Hoem, 1976}. To this end, we split the 

time interval [ 0, t] by a partitioning O=t < t,< • • • < t = t 0 m 

which is so fine that in each subinterval at most one jump occurs, 

and such that a ( • ) 
h is (approximately) constant on each of the 

subintervals. Denote this constant value on (tj, tj+l] by ahj' 

and let 1::. be the length of the subintervals (all assumed to be 

of equal size}. Then the occurrence/exposure rate for 

is given (almost) by [Yh(tj)t::.]-1 if Nh jumps in the actual 

subinterval, and it is 0 otherwise. Consequently a natural esti-

mator for ~(t) • I ah.l::. 
j J 

approximately. 

is I ~hjt::. which equals (4.3) 
j 

Still another motivation for working with the Nelson-Aalen 

estimators was given by Johansen (1983) who derived the estimators 

as maximum likelihood estimators in an extended model where the 

compensators (cf. Subsection 3.3) for the Nhs are not assumed to 

be absolutely continuous. Another extension of the model allowing 

maximum likelihood estimation, but giving rise to different esti-

mat9rs, was discussed by Jacobsen (1982, 1984). He derived the 
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asymptotic properties of his maximum likelihood estimators by 

proving that they are asymptotically equivalent to the Nelson­

Aalen estimators. We shall not pursue these approaches any fur­

ther, but motivate the use of the Nelson-Aalen estimators mainly 

by their nice and easily verifiable properties. 

Breslow and Crowley ( 1974) . studied the large sample proper-

ties of the Nelson-Aalen estimator for the special case of random-

ly censored survival data using results for i. i. d. random varia-

bles. Aalen ( 1978) studied these properties in general using the 

theory for multivariate counting processes, martingales and sto­

chastic integrals (cf. Section 3). Let us recapitulate his line of 

reasoning. O~e have slightly improved some of Aalen • s arguments, 

in particular to make use of later developments in the theory of 

stochastic integrals. ) \~e introduce 

* t Ab (t) = J ~(s) Jh(s) ds, 
0 

(4. 4) 

which is almost the s arne as ( 4. 1 ) when there is only a small pro-

bability that Yh(s) = 0 for some s ( t. By (3.9) and (3.14), we 

then get 
. t 

~ (t) - ~ ( t) = J 
0 

{4. 5) 

Since Jh/Yh is a bounded predictable process for each h, the 

right hand side of (4.5) is a stochastic integral w.r.t. a local 

square integrable martingale, and hence itself a mean-zero local 

square integrable martingale. 

This fact is the key to the study of the properties of the 

Nelson-Aalen estimator. To illustrate the use of the theory of 

martingales and stochastic integrals in the study of statistical 

methods for life history data, we give in the Appendix a detailed 

study of the Nelson-Aalen estimator. Let us here just briefly 

state it's properties. (The exact conditions under which the resul­

ts hold true are given in the Appendix.) 

By (4 .·5), we have for all t E [o, 1 ] (assuming that the 
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expectat.i.ons exis.t, cf .. remark. just above Theorem 3. 1 ) 

1\. ,·· ' 
~(t) is an.approxi~ately unbiased' estimator for (4.1 ). 

Its variance ma.y be estirrlated (almost ll.I1biase,dly) by 

t 

. ~h ( t > = l jh < s > ryh < s > r 2 d~~ < s > , (4. 6) 

where the integral may be \~itten as a simple sum in a similar 

fashion as (4. 3) • :t,urthermore, vie\ved as a process of t, ~(t) 

~(t) is· (ap-
" ' 

I. 

has (approximately) uncorrelated increments, and 

proximately) uncorrelated with ~ . ( s) for any . s , t and h =1= j . 
J . 

This latter fact is of great practical ·iinportanC:e, since it im-
. ' . 

plies that plots of the N~lson-Aalen estima:t.ors for h = · 1, 2, ... , k 

may be judged independently of each other . 

. . If e·ach. Yhi • increases uniform;ty over (0, 1 J,, t:.hen. an appli­

cation of Theorem 3.1 shONs that ~· is a uniformly cons:i,stent 

estimator for Ah. Moreover, using Theorem 3.2 it can be shpwn that 

(suitably norlUalized): the ~s . will be asymptotically distributed 

as independent Gaussian martingales. In particular ~:(t) will be 

asymptotically normally distributed with mean Ah (t} and a vari­

ance which may be .est:i.rnated by (4. 6). 
!._' . ' \ ,-,· _. ... ·, ,- i ,;. 

As in Aalen (1976) {fqr the special case of a multiple deere-
~ . ' ' ' ' ' 

I 1', , ,·;:' 

ment model, cf. Subsection 2.2) one may develop 100 (1-a) per cent 
' ' \ ' 

confidence bands for ~ of the form 

Here b "is the upper ~- fractile in the wef{·-'kn~wn distribution 
' . '3' ~ " ~~,.· . '-: ;"": -~ ,, .. 'i \"' 

of 'sup I H(t) I, ~h~n~·· W 
·, ;t.E.'O,._l 1 . · ·· ...• , . .. . ..•... k .~• J. " .:, ' 0 • -' L \ '-' > r ,\I\ 

' 
is a st~nd~rd '~ieAer pr66ess .. {For a 

table see v-lalsh, 1962, p.334.) Howe~er, these confidence bands 

have constant width (dete~i~ed, by .. ~h ( 1 .) ) .. ·~~~~ ;~a; tl~e~efo~~ be 

of little practical interest. Instead a transformation to a Brown-

ian bridge can be applied. Let us sketch how this approach can be 
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used to obtain confid~nce bands for with a width that 

increases as the estimated variance increases. 

The idea is that if X(t) is a mean ze~o Gaussian martingale 

tAs 
on [o, 1] \..rith Cov(X(s) ,X(t)) = f g~(u)dt,' = G(tAf!), then 

0 
~ -1 0 G(t) 

X(t)G(l) (G(l )+G (t)) is distributed as H <c;;(l )+G(t)), where 

w0 is the standard BrO\'Inian bridge on ( 0, 1 ] (see Billingsley, 

1966). Now \'/e let X be the limiting process of ~ (propeJ;'lY 

normalized), cf. the Appendix, and qse the fact that, for this 

situation, ~(t) (properly normalized) converges in propapility to 

G(t) uniformly in t E [0,1 ]. Then it follows that 100(1-~) per 

cent confidence ~ands for Ah(t) are given by 

1\ 

~ (t)+c ~ (1 )~(1+ .....;"Ch;.;..(_t....,.) 
r;, a n . ~h ( 1 ) 

)], (4,8) 

where c is the up.J?er a 
a-fractile in the distribution of 

s~p lv1° ( t) I, see· Hall and Wellner ( 1980, p. 141) • 
tElO,~] 

Example. Survival !Wong ins~l;in dependent diabetics 

As described in Example 1 in Subsection 3.1 each patient i · 

in this example is followed from age aiO at 1 July 1973 to age 

-T i at the exit from the study. In the first place '"e shall con.-

s:i,der a two-dimensional counting process (U1 ,N2 ), N1 (t) counting 

the number of observed deaths among females, and N 2 < t) counting 

those among males. If a 1 (t) and a 2 (t) denote the age specific 

death intensities for females and males, respectively, then N1 

has intensity process a 1 (t)Y 1 (t), where 
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Y1 (t) = l I(a. 0 .; t < T. ), 
i for females 1 ·· 1 

and si~ila~ily for N2 (E~ample 1 of SQpsection 3.1). Thus the 

integrated death if!,tensities A1 (t) and A2 (t), see (4.1), cq.n be 

estimated by the :Nelson-Aalen estimators (4.2). Fig. 6 sh9fls tne 

estimates ~1 ( t) and ~ { t) for the age interval fran\ 0 tQ 70 

years. (For ages less than the lowest ages at which deaths are 

observed, 23 and 19 years, respectively, ~1 (t) and *-2 (t) a:r;e 

zero.) Also shown are aprro~ima.te 9~% pointwis.e confidence limits 

and 95% conf i~ence bands computed from (4. 7) (with h0 • 05=2. 25) • 

It is seen that both for fer,'\ales and far males the death .j.ntensity 

(the slope of the plats) seems to increase with age, and comparing . 

~l (t) and ~(t), males seem to nave a slightly higher mortality 

than females. ,Furthe~ore, it is seen that the conficlence bands 

based on (4. 7) are very wide, and that the pointwise con£iQ.ence 

limits do not seem to refle~t very well the uncerta:J,nty of the 

entire curve .. fig. 7 shCMs *1 (t) and ~(t) with C\pproximatl;l 95% 

confidence bands computed from (4.8) (with c0 . 05= 1.27). As 

expected, these confidence bands are not so w.i,.de for lCM ages as 

are those based on (4. 7), In the next s11bsection we shall see hOW' 

the influence of age on the mortality is much more clearly 

revealed by estiinating the death intensities a: 1 and a:2 directly. 0 
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4.2 Kernel function smoothing 

The Nelson-Aalen estimators {4.2) are estimators for the 

integrated ahs given by (4.1}. However, as seen in Subsection 

3. 1 , it is the a hs themselves which are the entities of rea 1 

interest. Therefore, when studying plots of the Nelson-Aalen esti-

mator, one mainly focuses on the slope of the curves. Hence it is 0
' 

useful to directly estimate the ahs. Inspired by works on kernel 

function estimation of density functions (for a review, see Bean 

and Tsokos, 1980} I Ramlau-Hansen ( 1 983 a, b) proposed and stud ;Led 

nonpararnetric estimators for the ahs in the multiplicative 

intensity model. Basiclyl the estimators are derived by smoothing 

the increments of the Nelson-Aalen estimators. Let us review the 

main results derived by Ramlau-Hansen. Since the Nelson-Aalen 

estimators are uncorrelated 1, we will in this subsection restrict 

our attention to one component of the multivariate counting pro-

cess. We will therefore omit the subscript h in the notation. 

As an estimator for a(t) 1 Ramlau-Hansen (1983a} proposed 

~ {t) 
1 1 

= b 6 K{t~s)d~(s). (4. 9) 

Here the kernel function K is a bounded function which is zero 

outside [-1~1] and has integral 1. The window b is a positive 

parameter. The kernel function and· the window have to be chosen in 

concrete applications. One frequently used kernel function is the 

Epanechnikov' s kernel function K ( x} = 0. 75 (l-x2 ) 1 I xl < 1 • 

If we let T1 < T2 < ••• denote the successive jump times of 

N1 .then ~ may be given as in (4.3) 1 and it follows that (4.9} 

may be written equivalently as 

~ (t) 
l t-T. 

= b r K<,.-.J> 
T. 

1 (4.10} 

J 
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It should be realized that, since K vanishes outside [-..1,1 ], 

only values of j for which t-b ( T. ( t+b 
J 

contribute to this 

sum. Given a window b, we will only discuss estimation of a:( t) 

for t E [b, 1-b], since it is only for such values of t that 

( 4. 1 0) is a real average of the increments 1 /Y (T j) of ~. The 

remaining tail problem can be attacked in a similar manner (see 

Ramlau-Hansen, 1981 ) . 

Let us comment briefly upon the connection between (4.10) and 

the smoothing of occurrence/exposure rates by moving averages (cf. 

Bergan, 1979). He consider the set-up discussed just below (4.3), 

with 0 = t 0 < t 1 < • • • < tm :::: 1 being a fine parti tion.ins of 

[0,1 J, a:j the (almost) constant value of a:( •) on {tj,tj+1 ], 

the occurrence/exposure rate for a: .• 
J 

Then, by a moving 

average, one would.estimate a:. 
J 

by 
a 
~ r ~. for some weights 
!.. V J-V v=-a 

{r }. This equals {4.10) approximately, if we let b = a~ and v 
/). - v /). rv= b K(-,;-)· The close connection between the theory of moving 

averages and kernel function smoothing by means of (4.9) is dis-

cussed by Ramlau-Hansen ( 1983b) 

To study the properties of A a:(t) we introduce the quantity 

(cf. (4.4)) 

a:* ( t) 
1 

= .!_ f K ( t- s ) dA* ( s ) 
b 0 b 

(4.11) 

and note that by (4.5) 

1 
~(t) - a:*(t} = ~ J K(t~s} i~:l dM(s}. (4.12) 

* Thus, a:(t) - a: (t) is a stochastic integral w.r.t. the local 

square integrable martingale M, a fact which provides the basis 

for studying the statistical properties of (4. 9). live im1nediately 

get 
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for t E: [b, 1-b] that E~ (t) = Ea:'* (t), which means that the expec-. 

ted value of ~ ( t) equals 

1 
1 J t-s b K(~) a:(s)ds 

0· 
(4.13) 

approximately when there is only a small probability that Y(t)=O 

for some t E [0,1]. Thus, in general, the kernel estimator is not 

even approximately unbiased for a (t) (ho\>~ever, cf. below). The 

• 
variance of (4.9) may be estimated (almost unbiasedly) by 

1 
~2 ( t ) = 1 f K2 ( t- s ) J ( s ) dN ( s ) 

~ 0 b y2 (s) 
(4.14) 

(Ramlau-Hansen, 1983a, Proposition 3.2.1). 

If Y increases uniformly in a neighbourhood of t, and at 

the same time the window tends to zero, then, subject to some 

regularity conditions, ~(t) is a consistent estimator for a:(t). 

Moreover, it is asymptotically normally distributed with mean 

a; (t) and a variance which may be estimated by (4 .14) (Ramlau­

Hansen, 1983a, Proposition 4.1.1 and Theorem 4.2.2). Finally, ~(s) 

and ~(t) are asymptotically independent when s * t. 
To apply the kernel function· estimator (4.9) in practice, one 

has to decide upon a choice for the kernel function and the win-

dow. Some guidelines to the choice of K are given by the results 

derived by Ramlau-Hansen (1983b). He argues, much the way one 

reasons in moving average theory (cf. Bergan, 1979), that one 

should choose a kernel function such that ~ ( t) is almost unoia-

sed, i.e. such that (4.13) is approximately equal to a;(t). This 

is possible if tt(s) may be approximated by a polynomial of a 

certain degree over each interval of the form [t-b,t+b}. Subject 

to such an unbiasedness condition, one then chooses the kernel 

function which minimizes a specified risk function. Kernel 
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functions which are optimal in this sense are given by Ramlau-

Hansen ( 1 983h) • Among other things, he shows that Epanechnikov' s 

kernel function minimizes the variance of the first derivative of 

(4.9) when o:(s) may be approximated by a linear function over 

each interval of the form ( t-b, t+b J. The choice of the window b 

see1ns to be much a question of trial and error. Some guidelines 

are, however, given by Rudemo (1982). 

Example (continued) 

The kernel function smoothing method outlined above was used 

to obtain estimates for the age specific forces of mortality 

a: 1 ( t) for female diabetics and a: 2 ( t) for male diabetics in the 

example of Subsection 4.1. Fig. 8 shows the estimates and 

" .a2 (t) together with approximate 95% pointwise confidence inter-

vals for o:(t) (using the approximate normality of " a: ( t) ) • In the 

estimation Epanechnikov's kernel function was used, and a window 

b = 5 years was chosen for the age interval (24 years, 66 years]. 

For ages t outs ide this interval, the largest window b = b( t) 

such that [t-b(t) ,t+b(t)] ~ (20 years, 70 years] was chosen. 

From Figure 8 the level of the mortality is clearly se.en. 

For ages less than about 55 years the mortality is close to 2% per 

year for both sexes, with a tendency to a lower mortality for 

females. From age 55 the death intensity increases for both men 

and women, and at age 65 the 1 evel of the mortality is about 1 0% 

per year. The fluctuations for ages above 65 years are due to 

less smoothing because of the narrow window used for these ages. 

In the next section we shall see h0¥1 a comparison of the 

mortality for men and women can be carried out, and also how the 

mortality among diabetics can be compared '>lith. that of the general 

Danish population. IJ 
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5. NONPARAMETRIC TESTING 

This section is concerned with nonparametric testing for the 

multiplicative intensity model. In Subsection 5.1 we discuss how 

one may test whether one or more of the ahs in (3.9) equal cer­

tain known functions, while we in Subsection 5. 2 show hovT testing 

of the hypothesis that all ahs are identical may be carried out. 

The procedures are illustrated b.Y examining whether the mortality 

among the diabetes patients coincide with that of the general 

Danish population, and b.Y a test for equality of the survival of 

male and female diabetics. 

5.1 Tests of completely specified hypotheses 

Let ~ = (N1 ,N2 , ••• ,Nk) be a multivariate counting process 

satisfying the multiplicative intensity model (3.9). We want to 

derive tests for the hypotheses 

{ 5. 1 ) 

and 

{5.2) 

where the are known functions. 

Let us first consider testing of the hypothesis (5.1). 

Andersen et al. ( 1982) studied a class of test s1tatistics for this 

problem. Their approach-was as follows. Introduce 

~{t) {5.3) 

and note that, under the hypothesis, {5.3} equals ~(t) defined 

by (4.4). 
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Therefore, when (5.1) holds true, we have 

~(t) - ~(t} ( 5. 4) 

so that, except for random variations, ~ and ~ are equal 

under the hypothesis. It is therefore natural to base a test for 

(5.1} on a comparison of these quantities. Tb do this, introduce a 

locally bounded predictable "weight process" Kh, and define the 

stochastic process 

t 0 
. ~ ( t) = f ~ ( s) d ( ~ -~) ( s) • 

0 
(5. 5) 

When (5.1} holds true this is a stochastic integral (cf. (5.4)), 

and hence a mean zero local square integrable martingale. 

By an application of the martingale central limit theorem 

(Theorem 3.2) it follows that ~ (properly normalized) converges 

weakly as Yh , incre_ases to a Gaussian martingale when the 

hypothesis is true (Andersen et al., 1982, Theorem 4.1). In 

particular ~(1) is asymptotically normally distributed with 

mean zero and a variance that may be estimated by 

(5. 6) 

Thus 

(5.7) 

is an asymptotically standard normally distributed statistic for 

testing the hypothesis (5.1). Alternatively one may instead of 

(5.6) use the variance estimate 

(5. 8) 

obtained by replacing by the Nelson-Aalen estimate 
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dN h( s) /Y h ( s ) • 

'Vle note that (5 .6) is an estimator of the variance of ~ (1) 

when the hypothesis (5.1) is true, while (5.8) is valid in gene­

ral. Thus if the alternative to the hypothesis (5. 1 ) is a:h ( t) 

> ~(t), with strict inequality for some t, then (5.8) will tend 

to be greater than (5. 6). This implies that (5. 6) is the best 

variance estimator to use for testing purposes in such situations. 

By choosing different weight processes Kb, \ie get a ntunber 

of possible test statistics of the form (5. 7). It was shown by 

Andersen et al. ( 1 982) hOW' several one sample tests suggested 

for the survival data situation (cf. Subsection 2. 1) are special 

cases of (5. 7). 

For the choice of weight process ~= Yh, the test statistic 

(5.7) reduces to 

(5. 9) 

where 

is the total observed number of type h events, 'lill'hile 

by (3.9) and (3.14), is the "expected" number of this type of 

events under the hypothesis. The choice ~ = Yh corresponds in 

the survival data situation to the one sample logrank test (Bres-

low, 1975; Hyde, 1977), which in this case is known to be optimal 

against proportional hazards alternatives 

Also in our more general set-up the model (5.10) is often approp-
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riate1 and when H0 is rejected it is of interest to estimate the 

parameter eh. Us_ing the results of our Section 6 1 the maximum 

likelihood estimator of eh is found to be 

oh 
~, = -E • 

n h 
(5 .11) 

Ivloreoverl ~h is asymptotically normally distributed with mean Gh ~ 

and a variance that can be estimated by 
A . 

eh/~ = vh, say. In par-

ticular the test statistic (5.9) equals h -~ 
(~h-1 )VOh' where 

is the estimated variance of ~ 
h 

under the hypothesis 

eh= 1. Note that in the survival data situation (5.11) is simply 

the well known standarized mortality ratio. 

It is possible to use the convergence of the process ~ 

(properly normalized) to a Gaussian martingale to derive Kolrnogo-

rov-Srnirnov type tests for (5.1) 1 cf. Aalen (1976) 1 Fleming et al. 

(1980), and our Subsection 4.1. We will not discuss the details 

here, however. 

To test the hypothesis (5. 2) 1 we use the fact that the local 

martingales given by (5. 4) for h = 1 1 2, ••• 1 k are orthogonal (cf. 

Subsections 3.2 and 3.3). This implies that the Uh given by 

(5.7) are asymptotically independent. Thus we may use the stati-

stic 

k 
x2 = I u2 

h=1 h 
(5.12) 

for testing the hypothesis (5.2). Under the hypothesis, (5.12) is 

asymptotically chi-squared distributed with k degrees of free-

darn. For Kh= Yh; h = l, ... ,k; 

well known form 

k 
x2 = L 

h=l 

(5.12) gives a statistic of the 

(0 - E ) 2 
h h 

I 
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Example. Survival among diabetics 

Among the 314 female diabetics, o1= 39 were observed to die 

in the period in question, and among the 413 males we found 

o2= 65. To investigate whether these figures are larger than 

expected, judged from published life-tables for the general Danish 

population, the test statistic (5.9) was calculated for females 

and males separately. The .. expected .. number of females dying \'las 

found to be E1= 6.34, while .for males we found E2= 13.86. For 

both sexes the test statistic (5.9) is highly significant in that 

u1 = 12.97 and u2 = 13.74. Assuming a proportional hazards model 

(5. 1 0) (in Section 7 we shall return to a discussion of this 

assumption), we find ~ 1 = o1 /E1 = 6.1 5 and ~ 2= o2 /E2 = 4. 69 

indicating higher excess rnortali ty among females than among males. 

Using the variance estimates 
I!. 

vh = eh/~, confidence intervals for 

eh can be constructed, e.g. by transforming a symmetric confi­

dence interval for log eh. Thus we find approximate 95% confidence 

intervals [2.82, 13.39] and [2.77, 7.93] for e1 and e 2 , respec­

tively. 0 

5.2 The k-sample problem 

As in the preceding subsection, we consider a k-variate coun-

ting process N - satisfying the multiplicative intensity model 

(3.9). We want to derive a test for the hypothesis 

(5.13) 

The common value of the cxhs will be denoted ex • 

Following Aalen (1978), who considered the two-sample prob-

lem, Andersen et al. (1982) introduced a class of statistics for 

testing the hypothesis (5.13). Their idea was to construct a test 

statistic by comparing the Nelson-Aalen estimators ~(t), cf. 
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(4.2), with an estimator of the hypothesized common value 

t 
A(t) = f a(s)ds. This latter quantity can be estimated by 

0 

.6 Jt J(s) 
A(t) = Y.(s) dN.(s), 

0 

k k 
where N. =IN, Y. =I Y and J(t) = I(Y.(t)>O). ~is follows 

h=l h h=l h 

as in Subsection 4.1, since under the hypothesis, N.(t) is a 

(univariate) counting process with intensity process a(t)Y.(t}. 

We introduce 

t t 
~ (t) = f Jh (s)d~ds) = f 

0 0 

Jh (s) 
dN. (s), 

y. ( s) 

and note that, when (5.13) holds true, we have 

t Jh (s) t Jh(s) 
~(t} - ~(t) = f y. ( s) d~(s) - f Y.(s) dM.(s), 

0 0 

k 
variations, ~ where H. = I~· Thus, except for random 

h=l 
,.. 

(5.14) 

and 

~ are equal under the hypothesis. In a similar manner as in 

Subsection 5.1, we introduce locally bounded predictable weight 

processes Kh, and define stochastic processes 

t 
~ ( t) = r ~ { S) d ( ~ :...~ )( S) : h = 1 1 o o o 1 k o 

0 
(5.15) 

~fuen (5 .13) holds true, (5 .14) yields that the Zhs are linear 

combinations of stochastic integrals. Especially EZh(t) = 0 for 

all h and t E [0,1]. 

It turns out that the special choice of weight processes 

(5.16) 

where L is a locally bounded predictable process that only dep-

ends on (N.,Y.), covers most examples of interest. Then (5.15) 

may be written 
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t t Yh(s) 
= f L(s)dNh(s) - f L(s) Y. (s) dN. (s); h=1, ... ,k. 

0 0 
(5.17) 

k 
We note that L 

h=1 
z = 0. By an application of the martingale cen­

h 

tral limit theorem .(Theorem 3. 2), it follo\"ls that the Zh s given 

by (5. 17) (properly normalized) converge weakly to a k-variate 

Gaussian martingale under the hypothesis, as the Yhs increase 

(Andersen et aL 1982, Theorem 3. 1, see also Helland, 1983, Sec-

tion 4) • Especially ~ ( 1 ) = ( z1 ( 1 ) , .•. , zk ( 1 ) ) I is asymptotically 

multinormally distributed with mean zero and a (singular) covari-

ance matrix that can be estimated by y(1) = {vbj(1)}, where 

1 Yh(s) Y.(s) 
vhj(l) = J L2(s) Y.(s) (ohj- Y:(s)) dN.(s), (5.18) 

and is a Kronecker delta. 

Thus, under the hypothesis (5 .13), the statistic 

(5.19) 

where v ( 1 ) - is a generalized inverse, is asymptotically chi-

squared Q.istributed with k-1 degrees of freedom (Andersen et 

al., 1. 982, Section 3.1). Note that (5. 19) may be computed by del'e-

ting the last component of z ( 1 ) ,.., and the last row and column of 

y(l ), to give ~0 (1) and y0 (1) say, and then using the relation 

- -1 ~(1) y(l) ~(1) = _e0 (1)' y0 (1) ~0 (1). Also, as in Section 4 the 

integrals (5. 1 7) and (5. 1 8) are finite sums. 

Andersen et al. (1982, Section 3.2-3.4) studied various con­

servative approximations to the test statistic (5.19), and discus­

sed heM it generalizes the classical nonparametric tests as \~Tell 

as their generalizations to censored data. For example the choice 

L(t) = I(Y.(t)>O) corresponds to the logrank (or Savage) test 

(Pete and Pete, 1972), while L(t) = Y. (t) gives a generalization 

of the Kruskal-Wallis test (Breslow, 1970). Also the tests sugges­

ted by Tarone and Ware (1977), Prentice (1978) and Harrington 
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and Fleming ( 1982) are special cases of (5. 19). 

For the two-sample problem, i.e. k=2, Aalen (1975, Theorem 

9.1) showed that the logrank test is the asymptotically optimal 

similar test against local (or more precisely, contiguous) alter­

natives where a: 1 and a: 2 are proportional. Gill ( 1980a) studied 

asymptotic relative efficiencies between various tests for the 

two-sample problem, and showed how one can derive tests with opti­

mality properties against specified alternatives. 

Following the lines of the preceding subsection, let us now 

study the two-sample model with proportional intensities 

a:2(t) = 9(11 (t) (5.20) 

in more detail. When k=2 the Aalen (1 978) test statistic based 

on the process 

t 
z < t > = r K < s > < d~2 < s > - ~1 < s > > 

0 
(5.21) 

is equivalent to the general k-sample test statistic (5.17). (With 

K(t) = Y1 (t)Y2 (t)L(t)/Y. (t), (5 .21) is seen to equal z2 (t) given 

by (5 .17)".) This two• sample test takes the form z ( 1 )V( 1)- ~ with 

V given by 

V(t) tf 2 dN. ( s) 
= 0 K (s) Y1 (s)Y2(s) 

(i.e. V(t) equals v 22 (t) given by (5.18) with the above mentio­

ned choice of K(t)). The optimal test under the model (5. 20), the 

logrank test, corresponds to the weight process 

Under the proportional intensity model it is of interest to 

estimate the intensity ratio A, in particular if H0 is rejected. 

A class of consistent and asymptotically normally distributed 

estimators of e is given by 

~: 
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i 
f K(t)d~l (t) 
0 

(5.22) 

{Andersen, 1983a), and in this class, the "log-rank esti,rnator" 

~ 
eK has smallest variance under the r-ull hypothesis 9=1 • The 

L 

variance of ~K can be est~ated by 

~2 = A2 
"'K tlK 

1 dN.(t) 
fK2 ( t)v . A 
0 -1 {;:)9KY2 (t) 

l dN1 (t) 2 
(JK(t) v ( ... )) 

0 -, 1,. 

(5.23) 

It is seen tnat the Aalen test statistic defined below (5.21) 

/j. (" ,-1 "2 equals (eK-1) a 0KJ , where a0 K is the estimated, vq.ria.nce of 

~K under the hypotesis e = 1, obtained by substitutin9 l ;for ~K 

in (5. 23) • 

The appropriateness of the model (5.20) can be checked 

graphically by plotting ~ (t) against ~1 (t), or by plotting 

log ~(t) and log 'A1 (t) against t (or log t). Under the model 

(5.20) the former plot should approximate a straight line through 

the origin (with slope ... e) and the latter should yield approxima­

tely parallel curves (with vertical distance :osloge). Alterna-

tively, test statistics for proportionality can be constructed of 

the form 

t 
U(t) = f K(t)(dA2 (t)-eaA.1 > L 

0 
(5.24) 

where ~ is some estimate for ~, h=l ,2, and e is an estimate 

for a • Gill and Schumacher ( 1 984) studied the case ~ = ~ and 

6 = ~K - ( cf. ( 5 • 22}) and obtained when K ( t) /K ( t) is increasing a 

test U(l) consistent against the alternative that cx 2 (t)/o: 1 (t) 

is monotone. \qei {1983) showed that with K(t) = Y2 (t), A2 {t) = 

~2 ( t) and e and A, (t) based on the Cox regress:j.on model (cf .• 
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Section 7 below), the process U(t) is distributed asymptoti-

cally as a ti..~e-transformed BrO\-.rnian bridge. Fj.nally .fmdersen 

( 1983 b) showed that for "' " ~= ~n' h = 1,2, and \vith 

KT(t) = Y1 (t)Y2 (t)/(Y1 (t)+eY2 (t)) a test equivalent to that of 

"' Wei (1983) is obta.ined, where e is any consistent estimator for 

" e. In the case of survival data the estlinator e¥ is the two 
'T 

step estimator of Begun and Reid (l983). 

The test statistic (5. 19) is based only on the weak conver-

gence of (5. 1 7) for t=l. Hmvever, we have weak convergence of the 

entire processes given by (5.17), For the two-sample probla~ this 

may be used to derive Kolmogorov-Srnirnov type statistics suitable 

£or testing against "crossing intensities alternatives" (e.g. 

Fleming et al., 1980~ Gill, 1980a~ Fleming and Harrington, 1981 ~ 

of. also Subsection 4.1 above). 

E.~tample. 

As an example of the applicability of the testing procedures 

discussed in this subsection, let us exar.ri.ne· \vhether mal~ and 

female diabetics have identical mortalities. The figures in Sec­

tion 4 indicate that males have a slightly higher mortality than 

females. The two-sample logratik test for the hypothesis a2 (t) = 

a 1 (t·) takes the value 1 .62 corresponding to a two-sided p-value 

of 0.11. The visual impression .from the figures is confirmed by 

the logrank estimator ~K = 1.39, assuming proportionality a2 (t) 
L 

= ea1 (t). The estimated standard error of ~K is 0.24 yielding 
L 

an approximate 95% confidence interval (0.87, 2.22] for e (by 

transforming a symmetric confidence interval for log 9). Thus the 

analyses in this section indicate that male diabetics have a 

higher absolute mortality than female diabetics, but compared to 

the mortality in the general Danish population female diabetics 

seem to have a higher excess mortality than males. 0 
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6. PARAMETRIC MODELS 

In the two preceding sections we have considered nonperame-

tric estimation and testing procedures for the multiplicative 

intensity model. Alternatively the ahs in (3.9) can be given via 

a parametric specification and maximum likelihood methods can be 

applied. In this section we shall revie•,.; the results of Bergan 

(1984) for this situation. 

To give a motivatiop for the general set-up, we first consi-

der the situation with censored failure time .data. Let T 1 , •• ,T . n 

be independent and identically distributed (true) survival times 

with hazard rate function a ( t; 2o ) . Some conunonly used forms for 

a:(t;~) are reviewed by Kalbfleisch and Prentice (1980) and Mil-

ler ( l 981 ) . We do not observe the T.s, but only censored survival 
J. -.... T .... l.Ines i and indicators D.= I (T. =T. ) : i = 1, ••• ,n (c!. 

J. J. J. 
Example 

1, Subsection 3.1). Then for a very broad class of censoring mec­

hanisms (the important part of) the likelihood is 

n 
L(9) = II 

... i=1 

(e.g. Kalbfleisch and Prentice, 19.80, Section 5. 2) . 

With N(t) defined as in (3.2) and (3.6), and Y(t) defined 

as in (3 .3) and (3 .8), we may write 

1 1 
logL( 9) - = f log(a(s; G)) dN(s) - fa(s;9} Y(s}ds, 

0 - 0 .... 
( 6. 1 ) 

and the maximum likelihood estimator '9 is defined as a solution 

to the set of equations ologL(e}/oe = o. - -
Turning to the general formulation, we let ~ = (N1 , •.• ,Nk) 

be a multivariate counting process satisfying the multiplicative 

intensity model (3.9) with parametric ahs, i.e. the intensity 

process is given by 
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( 6. 2) 

where ~ 0 = (e 10 , ••. ,eq0 )• belongs to some open subset e of 

Rq. Under some regularity conditions (e.g. Aalen, 1978, Section 

3.3), the log-likelihood function now takes the form (cf. (6.1)) 

k l k 1 
1 og L ( ~ ) = I f 1 og ( ex h ( s : ~ )) dN h ( s ) - I f ex h ( s : ~ ) Y h ( s ) d s , 

h=l. 0 h=l 0 
(6. 3) 

and the maximum likelihood estimator ! is defined as a solution 

to the set of equations 

k l 

I f (6. 4) 
h=l 0 

j=l, •••• ,q. 

BQrga.n (1984, Theorems 1 and 2) shows that, under certain 

regularity conditions on the exhs, the.likelihood ~quations (6.4) 

have, with a probability tending to one, exactly one consistent 

solution ~ as the Yhs increase. Moreover, ! is 

asymptotically multinormally distributed with mean 

covariance matrix that may be estimated by ""'1(~)-l, 
~ 0 and a 

where I< e) = .... ,.,. 

a2 log L(9)jae 2 • Thus, the usual results for maximtllil like,lihood ... ... 
estimation in the L i. d. case continue to hold under our more 

general model (6.2). 

The methods of proofs used in that paper are similar to the 

classical i.i.d. case (Cramer, 1945). But in the present context 

Lenglart's inequality (Theorem 3.1) is used to establish the con­

sistency results derived by the law of large numbers in the­

classical set-up, while asymptotic normality is derived by the 

martingale central limit theorem (Theorem 3.2). These results may 

be used, since by (3.14) and {6.2), the left hand sides of (6.4), 

evaluated at the true parameter value ~ 0 , equal the stochastic 

integrals 

~. 
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k 1 
2 f l, •.. ,k. (6.5) 

h=l 0 

{We have used the notation 
0 
e a. (s;]o> o . n for 

0 
-=--a a(s;e)j e-e . ) 
0 j - .... -~ J 

To illustrate ho." pm.;erful the rr.artingale techniques are in deri­

ving such general results, we give in the Appendix a detailed 

derivation of the properties of the maximum likelihood estimator 

for a univariate counting process when q = 1. 

By combining the results of Borgnn ( 1984) with the argument 

used to derive the properties of the likelihood ratio test for the 

i.i.d. qase (e.g. Serfling, 1980, Section 4.4), we have that minus 

tor.v"' tin1e s the logarithm of the likelihood ratio test statistic is 

asymptotically chi-squared distributed, also in our more general 

setting. 

Exami?le. Survival with liver cirrhosis 

~ In Subsection 2. 3 a brief introduction to the CSL-I study was 

given. Here 1s?me analyses of the data from that trial are 

reviewed. 

We shall be concerned with the interaction between the treat-

ment (prednisone or placebo) and the biochemical variable pro­

thrombine, the value of or."hich will be considered as either 11 10W 11 

or 11 normal ... The variable was recorded according to the follow-up 

scheme described in Subsection 2.3. In the following analyses the 

assumption is made that for each patient and for each time t, the 

prothrombine value for this patient at . t is the one that was 

recorded at the last follow-up preceding t. 

For each of the two treat.tnents an illness-death model as 

sho\<fn is Figure 3 is considered. Figure 9 shows the Nelson-Aalen 

plots for the integrated death intensities. It is seen that for 
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b?th treatments the death intensities are higher when the pro..­

thrombine value is low. Moreover, the "difference" between the 

"low" and "normal" curve is smaller for the plac~bo treated pa-

tients than for those treated with prednisone. 

Assuming proportionality between the death intensities for 

patients with normal and low value within each treat.~ent group we 

can estimate the hazard ratio by the logrank version of (5.22). 

For prednisone treatment we find 
A e . ~= o. 1 59 prea and for placebo 

treatment ~plac= 0.294. A comparison between these hazard ratios 

is most easily carried out by noticing that it follows from (s·. 23) 

that ~~ 
K has a variance that can be estimated by 

'd5K is defined just bel0\>1 (5. 23) • Thus "'"e find that when 

a = a the statistic plac pred 

u = 2 
"~ a -plac 

'a~ 
pred 

where 

has an approximate standard normal distribution. Inserting the 

estimates ~pred' ~plac and 'a. - 0 .. 095 O,plac- and 

we get the significant value U = 2.29, Thus the indication, look­

ing only at the death intensities, is that prednisone treatment 

should only be given to patients with normal prothrombine value. 

Figure 10 shows the Nelson-Aalen plots for the integrated 

intensities for transitions from low to normal prothrombine. We 

see that this intensity is highest for prednisone treated pati­

ents. Figure 10 also shows the corresponding curves for 

transitions from normal to loW prothrombine, and in this case the 

prednisone intensity seems to be lowest. 

A comparison between the transition intensities for the two 

treatment groups can be performed e.g. by using the t\,o-sainple 

logrank test. For the transitions from normal to low value the 

test statistic takes the value- 3.16 corresponding to the signi­

ficance probability 0.002, and for transitions f~om low to normal 
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the value·is 2.09 (P=0.04). Thus both of the tendencies seen from 

the figures are significant. Equivalent to these values of the 

test statistic are the logrank estimates 
A e = 0.12 for the ratio 

between the transition intensities from normal to low value for 

prednisone treated and for placebo treated patients \'lith an 

approximate 95% confidence interval (0.57, 0.89). For transitions 

from la·T to normal value 'tile find ~ = 1. 29 with an approximate 95% 

confidence interval (i.01, 1.60). 

So for patients with normal prothrombine value prednisone 

treatment seems to be beneficial in that both the death intensity 

and the tendency for getting a low prothrombine value is smaller 

for prednisone treated patients. For patients with low prothrom-

bine value the situation is more complicated because both the 

death intensity and the tendency for getting a normal prothrombine 

value is higher during prednisone treatment. So in this case the 

decision whether or not to treat a patient with prednisone cannot 

be based solely on the estimated intensities. \·Jhat is needed is· 

an estimate for each treatment of the probability of being alive 

at any time t given the initial state (low or normal) • These I 

probabilities can be estimated nonpararnetrically following the 

lines of Aalen & Johansen ( 1 978) . ~ie shall estimate these probabi­

lites under the parametric assumption of constant transition in­

tensities. Judged from the Figures 9 and 10 this assumption (which 

is equivalent to linear cumulative intensities) is not too unrea-

sonable even though there is a tendency towards higher transition 

intensities shortly after start of treatment. 

It is ·easily seen from the likelihood equations (6.4) that the 

estimators in this simple model are occurrence/exposure rates {see 

also Borgan, 1904, Section 5.1). That is, in order to estimate the 
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intensities, we only need to divide the t.otal number of 

transitions of the various kinds by the total amount of time spent 

in the·relevant states. ·The estimates are shown in Table 1. 

From these estimates the same hypotheses as discussed above 

can be tested and the same hazard ratios can be estimated. In no 

case any major discrepanicies from the ~arlier results are £ound. 

From the estimated transition intensi tes "'le can estimate the prob­

abilities of being alive at any time t using the relations bet­

ween the transition intensites and the transition probabilities in 

a Markov chain with constant intensities (see ·e.g. Tuma et al., 

1979). The estimated probabilities are shown in Figure 11, and for 

patients having normal prothrornbine value at start of treatment 

the survival probability (as expected) is larger during prednisone 

treatment. For patients having low value at start of treatment no 

clear picture is seen and the conclusion is that for 'these 

patients there seems to· be no treatment effect. 0 

Table 1. Model with constant transition intensities 1£or 

patients with liver cirrhosis. 

I Prednisone Placebo treatment 
treatment 

Transition No. tran- Intensity No. tran- Intensity 
sitions per year sitions per year 

From low 
to normal 164 0.69 159 0.53 

From normal 
to low 137 0.20 150 0.26 

From low 
to death 95 0.40 99 0.33 

From normal 
to death 47 0.070 51 0.089 

). 
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7. REGRESSION MODELS 

·In the preceding sections attention has been focused on sta..-

tistical models applicable when analysing homogeneous groups of 

individuals. The methods of inference discussed in the Sections 

4, 5 and 6 were based on processes n11 (t) and Yh(t) obtained by 

aggregating individual processes correspbnding to the ~ h 

event, cf. Subsection 3. 1 • In this section "'ie shall study regres­

sion models for the individual intensity processes (3. 1 0). In 

order to include individual covariates or covariate processes 

in the models, some assunptions have to be made about the way in 

which these enter the individual intensity processes. ~ve shall 

mainly concentrate on extensions of the Cox regression model, that 

is models where the factor !Xh ( t, ~i ( t)) in (3. 10) factorises as 

(7. 1 ) 

It is convenient to let the vector tpf regression parameters 

~ = ( ~ 1 , ••• , f3p} • be the same for all types h. This can always 

be obtained, if necessary by introducing extra type specific co-

variates. Therefore, we have introduced type specific covariate 

vectors ~ ·. ( t) = ( ~ .1 ( t), ... , ~ . ( t))l on the right-hand side 
~~ · · n~ n~p 

of (7. l) • 

In the nOf/ classical regression model for survival data of 

Cox (1972) (see also Kalbfleisch and Prentice, 1980), the relative 

risk function g( •) was chosen to be the exponential function. 

In this presentation \'le shall also discuss this case in greatest 

detail, and only briefly mention models with a general form of the 

relative risk function g( •). 
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In Subsection 7.1 we discuss the counting process formulation 

of the Cox regr1ession Iilodel, and study the statistical properties 

of ·the estirnators (A.lldersen & Gill, 1982). .-;. brief discussion of 

the modifications needed to alla.v a general relative risk function 

g( •) is also included (Prentice & Self, 1983). Parametric re-

gression models (Borgan, 1984) are treated in Subsection 7.2, 

while in Subsection 7.3 an alternative, linear regression model 

for the intensity process (Aalen, 1980) is introduced. As an 

example of the application·of a Cox regression model to life his-

tory data, some results from an analysis of the diabetes survival 

data are given. 

7.1. The Cox regression model 

We consider an nk-dimensional counting process (l~hi ( t) , 

h = 1, ••• ,k; i = 1, ••• ,n) ,tE(O, 1] where Nhi {t) counts the ntnnber 

of ~ h events in LO,t] for individual i, see Subsection 

3. l . He assume that Nhi has intensity process. of the forrtl 
I -

Ahi(t) = aOh(t)exp(~O~hi(t))Yhi(t), (7. 2) 

cf. (2.2), (3.10) and (7.1). Here a:Oh' h = l, ••• ,k are unspeci-

fied type specific underlving intensities whose integrals 

t 
A 0h(t) = Ja0h(s)ds are assumed to satisfy A 0h(i)<=, h = 1, ••• ,k. 

Furthermore ~0 = (~01 , ••• ,~0P) • is a vector of unknown reqres­

sion coefficients and z.. .(t} = (z.. . 1 (t), ... ,zh. (t))' a vec;tor 
Nh~ Jh~ ~p 

of predictable and locally bounded (type spec;ific) covariate 

processes. Some further boundedness conditions on the covariate 

processes are also needed, see Andersen r~ Gill ( 1 982, p. 1 l 05 and 

1110, item C). 
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Finally Yhi(t) is a predictable indicator process taking the 

value if the ith individual is at ~isk at time t- for 

experiencing a type h event; other1.-1ise Y .. ( t) = 0. 
n~ 

The basic assumption in the extended Cox model (7.2) is that 

each covariate zh .. ( t) has a mul tiolicative effect on the inten­
~J 

sity; in particular for time-independent covariates we have a 

model \'Tith proportional intensities. The asymptotic properties of 

the Cox model for survival data have been studied by Tsiatis 

( i 981) and NCEs ( 1982), while the properties of the model (7. 2) 

were studied by Andersen & Gill (1982) in the case k = 1, i.e. of 

individual univariate counting processes. In the follm'Ving we 

shall formulate the corresponding results valid also when k>1. 

~ne proofs of Andersen and Gill (1982) go through almost unchanged 

for our more general model. The estimator ~ for ~O is defined 

as the solution to the equations (o/of3.)C(~,i) = o, j = 1, •.. ,p, 
J . 

where 

. k n t 
c (.@., t) = L [ I f ~I z .. ( s) dNh. ( s)-

h=1 i=1 0~ ~n~ ~ 

t n 
flog{ I Yh.(s)exp{f3 1 Zh.(s))}dNh(s)], 
0 i=1 ~ - ~ ~ 

(7. 3) 

and Nh = Nh 1+ ... +Nhn" The process (7.3) can be regarded as the 

logarithm of a generalized Cox 1 s partial .likelihood function (Cox, 

1972, 1975; Johansen, 1983). We shall not, hmvever, use the 

interpretation of ~ as a maximum partial likelihood estimator 

in the following; only the fact that it is a solution to 

(o/o~)C(t,l) = O. Hence we shall neither go into a discussion of 

the extended model of Johansen (1983), in which ~ (and the esti~ 

mate ~Oh(t) for A0h(t) given bel~l, see (7.8)) is the maximum 

likelihood estimator, nor of that of Jacobsen (1984) in which a 

maximum likelihood estira.ator differing from ~ is obtained. 
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The key step in the derivation of the statistical properties 

of ~ is to notice the fact that, evaluated at the true value ~O 

of the parameter vector, the derivatives U( S,t) = (o/oA)C( S,t) 
~ ~ ~ ~ 

of (7.3) are local square integrable martingales. To see this we 

introduce the predictable processes 

S (O)(q ') 
h ~,"C. 

n 
=- I Yh. (t)exp( A1 Zh. (t)), 

n . 1 ~ - "' ~ 
~= 

n 
= - I Yh. ( t) zh .. ( t) exp ( A 1 z. . ( t) ) , 

n i,;l ~ ~J - "' -n~ 
(7. 4) 

n 
L Yh. ( t) zh .. ( t) zh . .t ( t) exp( A I zh. ( t)) , 

n i=l ~ ~J ~ - - ~ 

h =1, ••. ,ki j, .t = 1, ..• ,p; and •;,.;e define 

Then the jth component of U(S,t) - - is given as 

k t n t 
UJ.{f,t) = t [J L zh .. (s)dNh.(s)-JEh.(S,s)dNh(s) ], 

h=l 0 i=l ~J ~ 0 J -

and using (3.14} and (7.2) we see that 

(7.5) 

are linear combinations of stochastic integrals. Thus the martin-

gale central limit theorem (Theorem 3.2) can be applied to prove 

that the process n-~~(~0 , •) asymptotically, as n+~, is distri-

buted as a mean zero Gaussian martingale. To transform this 
I 

result into a theorem concerning the asymptotic distribution of ~ 

we Taylor expand U.(S,l) 
J -

around 
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(7. 6) 

where ~* is between ~ and ~O 

order partial derivative of C(£,1) w.r.t. ~· J 

is the second 

and ~1 • Thus 

( 7. 7) 

\le write £or the pxp matrix \vith components I j 1 ( t!_). 

Inserting in (7.6) we get (since u • (~ 1 1 ) = 0 
J 

by definition 

of ~) 

with ~* bet~.reen ~ and !o. It now remains to be proved that 

~ is consistent as n+=, and that for each [* with ~* P. ~O 

1 * p 
nrj.t <£ > + aj1 

where f = {aj1 } is positive definite. 

Sufficient conditions for these results to hold were given by' 

Andersen & Gill (1982) in the case k = l. For k>1 the condi-

tions include an assumption of the sums (7.4) converging uniform-

1Y. for t E ( 0, 1 ] and ~ in some n~ighbourhood of [o to func-

tions (0) (1) 
~ (~,t), shj {~,t) d (~) ( A t) ..._ ' 1 ' an shj 1 ~, , respec~~ve y, ~n pro-

bability. Furthermore some regularity assumptions on the limiting 

s-functions are needed (Andersen & Gill, 1982, p. 1105, ita~ D). 
1 

Under such conditions n~(~-£0 ) is asymptotically multinormally 

distributed Np(Q,~- 1 ) and aj 1 can be estimated consistently by 

- ~I j 1 ( ~) , see (7 • 7) . 

Under the same set of conditions the estimates for A0h(t): 
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h = 1, .•• ,k, (7. 8) 

(with ~O) defined in (7.4)) will be distributed asymptotically 

as Gaussian processes. The proof fo~ this goes as in Andersen and 

Gill ( 1982, Theorem 3 .4), the main step being to notice that 

with . Yh = Yh 1 + ••• + Yhn' h = 1, .•• , k are local square integrable 

martingales which are orthogonal to (7.5). 

One should notice that for a homogeneous group of .i,.ndivi-

duals, i.e. when all z. = 0 
-~ ,.... 

the estimator (7.8) reduces to the 

Nelson-Aalen estimator (4.2). 

The results mentioned so far make it possible to draw asymp-

totic inference on the regression parameters ~ in the presenqe 

of the "nuisance" functions a:0 1 , ••• , a:0k. This property of the 

model was in fact Cox's original motivation for introducing the 
, 

semi-parametric specification (7.1). In some cases, however, the 

und~rlying intensities are also of interest, and we have seen how 

their integrals A0h(t) can be estimated. The underlying inten-

sities themselves can be estimated by smoothing by means 

of a kernel function similarly to the.approach in Subsection 4.2; 

tE(b,1-b]. (7. 9) 

Combining the asymptotic results of Rarnlau-Hansen ( 1983a) \'lith 

those concerning *oh(t) mentioned above, it can be seen that the 

asymptotic distribution of (7. 9) \'lhen n+""' (and b -l-0 
n 

in sq.ch a 

way that nbn+""') is normal with mean a: 0h(t) and yariance 

a~(t)/n, where at(t) is given by 
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o:Oh ( t) 1 
= O) }K 2(s)ds. 

{ (0 -> -1 s, Po, ... 
n -

The latter quantity can be estimated consistently by 

'&~ ( t) 

Furthermore 

or tl ;:t2. (For these asymptotic results to hold it is crucial 

that b 
n 

-)oo. For fixed b the asymptotic variance will be larger 

than (J~ ( t) and the independence result will not be true. The 

relevant variance ;formula in this case was given by Andersen & 

Rasmussen (1982).) 

As noted above, the estimator ~h(t) reduces to the ordina-

ry Nelson-Aalen estimator when all zh. = o. ... J. ... 
Another link between 

the-Cox regression model and the models described in the preceding 

sections is the fact that certain score test statistics based on 

the extended Cox model (7.2) coincide with the nonpararnetric tests 
-

discussed in Section 5. For example, consider the k-sample prob-

la~ with proportional intensities, i.e. introduce covariates 

I zh. (t) = (Zh'l (t) 1 ••• , z_ . (t)), where p = k-1 1 and z •.. (t) = 
~ J. J. Jh1p nJ.J 

ohj ~i (t), j = 1, •.. ,p, and ohj as usual is a Kroneches delta. 

Then the score test statistic for the hypothesis that each of the 

corresponding regression coefficients is zero is 

5 = U(O,l)•(-I(O))-lU(O,l) 
~ ~ ~ ~ ~ ~ -

with ~ defined just above (7.5) and I in (7.7). - It is easily 

seen that 5 is equal to the k-sample logra~~ test statistic 

( ( 5. 1 6) , ( 5 . 1 7) and ( 5. 1 8) with L ( t) = I ( Y. ( t) >0) ) . Also the 

other k-sample test statistics in Subsection 5.2 can be obtained 
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by appropriate choices of time-dependent covariates, see Lustbader 

(1980) I oakes {1981) I A..'J.dersen & Gill (1982, P· 111 0) and 

Andersen et al. (1982, p. 236). 

Example 

In the example in Section .5 tne influence of sex on the rnor-

tality a.-nong insulir. dependent diabetics \•las examined using a 

nonparametric approach. We sa..,., h011: it was possible to give an 

11 after the fact estimate" of the hazard ratio 6 by first estirna-

ting the integrated intemd .. ciF!s A1 ( t) and A2 ( t) , without assum­

ing proportionality, and afterwards estimating e from ~1 (t) and 

"" A2 (t), see {5 .. 22). Usir.g the Cox model as described above, the 

hazard ratio a = exp (~ ) and the underlying hazard function 

cx~(t) can be estimated simultaneously. So, assume now that each 

individual counting process N. (t) 
l. cor=esponding to a female 

diabetic i has intensity process a 0 {t)Yi (t) I with y. (t) 
l. being 

defined .. the usual fashion the predictable indicator for l.n as 

individual i being at risk at t-. For a male diabetic N. (t) 
l. 

has . ~ ."- process a 0 ( t) exp ( ~ )Y i ( t) . Thus ~.:: we define the l.n ... ensl.._y ....... 

covariate zi1• by 

z .• = { 1 
J.l 0 

if i is a man, 

i= i is a woman, 

then any individual counting process has an intensity process 

which can be written as 

0 

c£. (7.2). In this example the estimated sex effect is ~ 1 = 0.33 

with .an estirrated standard er!:'or 0. 21 • These results are in close 

~greement with those of the example in Subsection 5.2 in that 



.. · 

exp(~l ) = 1 .39 with an approximate 95% confidence interval 

[0.93,2.08]. One should notice that the confidence interval based 

on the Cox regression model is more narr~T than the one based on 

the estimate ~K . This is a consequence of the general result· 
L 

that any estiwator ~K of the form (5.22) has larger asymptotic 

variance than exp(~) (Andersen, l983a}. 

Figure 12 sh~~s the estimated integrated underlying intensity 

~ ( t) , in this cas.e es·tima ting the mortality among female diabe-

tics, and also the smoo·thed estimate " rz0 < t) using the s~e smoot-

hing procedure as in the example in Subsecton 4.2. Comparing these 

two figures with the Figures 6 to 8, a fairly close agreement is 

seen, indicating that the hypothesis of proportional hazards seems 

reasonable. 

Another covariate of interest is the age at onset of the 

disease. Thus we introduce the covariate zi2= age (in years) at 

onset for individual no.i and consider the model 

Notice that the interpretation of ~ 1 is now different.· In the 

first model exp(a 1) was the ratio between the hazard functions 

for any male and any female diabetic, whereas now exp(B 1 ) is the 

ratio between the hazard functions for a male and a female with 

the same age at onset. The estimates in the new mode~become 

~1 = 0.36 (0.21) and ~2= -0.015 (0.014}.. with the estimated 

standard errors given in braCkets. The estimated correlation bet­

ween ~l and ~2 is -0.13. Due to this negative correlation,. 

indicating that in this data set female diabetics tend to have a 

slightly earlier disease onset than males, the esti~ted sex 

effect increased slightly from 0.33 to 0.36, The negative value 
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Fig. 12. Estimated integrated underlying death ifitensity (upper 

figure) ~nd estimated underlying death intensity (lower 

figure) for diabetics in Cox regression model with 

sex included as covariate. 
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1:!:. 
~2 = -0.015 indicates a worse prognosis for diabetics with early 

disease onset. 

In Subsection 5.1 we studied an alternative model for the 

mortality among insulin dependent diabetics, where the mortality 

was assumed to be proportional to the mortality in the general 

Danish population. Within the frame\rork of the Cox regression 

model it is possible to 'examine the proportionality assumption in 

the model more closely. Anders~n (1984) studied a model of the 

form 

{7. 1 0} 

where IJ.i {t) is the known age-, sex- and cal'endar time specific 

population based mortality for an individual similar to no.i. In 

this model a: 0 (t) is an underlying excess mortality and the co­

variates ~i(t) have a multiplicative effect on the exc~ss morta­

lity. The properties of the model (7.10) can be studied in a way 

s;i.milar to the Cox model because !J..{t)Y.(t) 
~ ~ 

is predictable. 

For the diabetes data a model of the form (7.10) was ana-

lysed. No covariates Zi(t) were included in the exponent part of 

the model, but possibly different excess mortalities a01 (t) and 

a:02 (t) among females and males, respectively, were allowed. 

Figure 13 shows the estimates 
A 
a:o 1 < t > and A 

0:02 (t) obtained by 

smoothing estimates *ol (t) and ~02 {t) by means of a kernel 

function. For high and low values of age t the standard error of 
, 

the estimates are large due to the narrow window. It is seen that 

both females and males tend to have a high excess mortality around 

age 35-40 years indicating that the assumption of the intensities 

being proportional to the population mortalities is probably 

unrealistic. 
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Fig. 13. Estimated-excess mortality in relation to the general 

Danish pop:u,lation for female diabetics (···) and !or male 
(-) diabetics. 
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Assuming that the excess mortality among males and females 

are proportional (Figure 13 indicates that they are possibly iden­

tical) the ratio between the excess mortalities can be estimated 

In this subsection we have so far only considered versions of 

the Cox regression model with an ex;eonential form of the relative· 

risk function g( •), see ( 7. 1 ) • Prentice and Self ( 1 983) studied 

Cox-type models with a general g( •) {"1hen k=l ) , and proved .. con­

sistency and asymptotic normality of the estimator ~ which maxi­

mizes (7.3) with t~=1 ·and ~·~i('s). replaced by log g(_@'~i(s)). 

The conditions under which these asymptotic results were proved 

include those of ,Andersen & Gill {1982) sketched above, but in 

addition some extra conditions are needed to ensure the positivity 

. of g( ~ • ~hi ( s) ) and positive definiteness of the estimator for 

in a neighbourhood of ~0 , see Prentice and Self (1983) for 

details. 

7.2 Parametric regression models. 

I: -

In the models discussed in the previous subsection the factor 

!oh{t) in (7.1) was left completely arbitrary in that no specific 

fona of a0h(t) was assumed. In this subsection we consider an 

nk-variate counting process as in Subsection 7.1, but instead of 

{7.2) we assume that Nhi has intensity process of the form 

{7.11) 

' 

lili th ~0 belonging to an open subset of Rq. References to papers 
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where parametric models of the form (7.11) have been studied in 

the special case of survival data are given by Kalbfleisch and 

Prentice (1980, Section 3). Bergan {1984, Section 6) studied maxi­

mum likelihood estimation for the model (7.11) for the special 

case of k = 1, i.e. of individual univariate counting proceses. 

We shall briefly present these results extended to our more gene-

ral setting. 

The log-likelihood function is ~nalogous to (6.3), i.e. 

log L(!,~) = 
k n 1 
I: ·I: [J {log o:h(s: !) + ~·~hi(s) }d~Thi {s) 

h=l i=l 0 

1 -t o:h(s,£) exp(~·~hi{s))Yhi(s)ds], 

and the maximum ~ikelihood estimators ! and ~ are defined as 

solutions to the set of equations 

k 
l 

h=1 

j = l, ... lq and (7.12) 

k n 1 1 
l l (f Zh. 0 (s)dNh. (s)-J o:h(s, 9)Zh. 0 {s)exp{I3 1 Zh. (s} )Yh. (s)ds]=o 

h=l i=1 0 l.h ,l. 0 .... l.h .... - l. l. 

1 = 1 1 ••• , p. The proof for the asymptotic properties of the esti-

mators and ~ now proceeds exactly as in Borgan (1984} by 

first of all noticing that the left hand sides of the likelihood 

equations (7.12) evaluated at the true parameter values !o and 

~o. are line~r combinations of stochastic integrals of the predic­

a 
table processes ae. o:h(s,20 )/~(s~2o> and ~i.l(s}~ respective-

] 

ly 1 w .r. t .. the local square integrable martingales ~·1li ( t) = 
t 

·Nh.(t)-J 1-.1 .(s)ds. Hence a central limit theorem for these mar..-
:1. 0 ll. 

.. 
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tingales can be, proved using Theore.tn 3 .2. Subject' to some regula-

rity conditions this result can be used to prove that the maximum 

likelihood estimators are asymptotically r:tultinormally distributed 

with the proper expectation and with a covariance matrix that may 

be estimated in the usual manner. The regularity conditions needed 

are slight extensions of those of Bergan (1984t p.14)t in particu­

lar asymptotic stability conditions on the sums (7.4) (as well as 
.. 

a similar 11 third order" condition) have to be fulfilled. 

The results of Bergan (1984, Section 6) may also be used to 

derive that minus two times the loga:ritlun of the likelihood ratio 

test statistic is asymptotically chi-squared distributed in the 

usual manner (cf. our Section 6). 

As it was the case for the Cox regression model (Subsection 

7.1) other forms of the relative risk function than the. 

exponential one can be considered, but the regularity conditions 

get more complicated. 

7.3 h linear re9ression model for the intensity procese·. 

An alternative regression model for a multivariate counting 

process ~(t) = (N1 (t), ••• ,Nk(t)) was introduced by Aalen (1980). 

He suggested a matrix version of the multiplicative intensity 

model, assuming that the intensity process satisfies 

A (t) = Y(t) « (t}, - - .... 
(7.13) 

« = (« 11•••1« )•~ p<kt being a vector of unknown functions and 
- p 

:r<t) = (Yhj (t)) 1 h = 11 ••• ,k, j = 1, ••• ,p, a matrix of predictable 

processes. Thus the model is given by 
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As an example h cOQld refer to the single individuals, Yh1(t) 

could be the 11 Us.ual 11 :i,.ndicat·or of individual no. h being at ris'k 

at tim~ t- 1 and for j. =; 2, •.• ,p Yhj qould be defined aE,t 

for some predictable covariate processes z1 . < t) • lJ 
Estiwators fo~ 

t 
Aj(t) ~ 6 ~j(s)ds, j = l, ... ,p 

can be defined lly 

(7. 14) 

where !-(t) 1., a generalized·inverse of !(t) (i.e. !- satisfi~s 

! (t)!(t) • the rxr identity matrix) and J .l.s define4 by 

J(t) = lim I[rank Y(t-~t) = r] 
4t-"O "" 

(thus J is predi(,:table). It follc:Ms n(7tl that with' 'f:* (t) ~ 

t ~ * · /J(s) a(s)ds, A - A is an r-variate local square integrable 0 .... . .... ~ 

martingale with predictable covariation process (a pxp matrix) 

<I.-A*>( t) ....... 
t 

= f J(s) Y- (s) X{s) Y""'(s) 'ds, 0 .... ... .... 

where ~ is the matrix diag(X1, ••• ,Ak). From this result some 

exact and asymptotic properties may be derived. 

Except for the computation of the estimators (7.14) are 

simple and the model {7.13) is a truly nonparametric alternative 
• 

to the semi-parametric and parametric regression models discussed 

in the two previous subsections. Aalen (1980, section 5) presen~s 

one _application ot this regression model. 
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8. LIMITATIONS OF THE COUNTING PROCESS APPROACH 

As seen in the preceding sections, the "counting process 

approach" to life history analysis is very useful i11 the study of 

a nu!nber of statistical est.:i.r.l.ation and testing procedures. How-

ever, in its simple :form, as presented in this paper, it does not 

solve every problem, and in this final section we comment upon 

some points which illustrate the limitations. Some areas where 

further research is needed are also mentioned. , 

Only for the very simplest situations in life history analy­

sis, like type II censored exponential life times (F.;pste.tn and 

Sobel, 1953), is it possible to derive useful expressions for the 

exact distribution of the estimators and test statistics. Thus 

most statistical pro~edures for analysing life history data have 

to rely on large scunple resu·l ts, and it is important to know "how 

large" a sample must be to make this appropriate. lV'e have :reviewed 

how the martingale central limit theorem may be used to study the 

asymptotic properties of rna·ny estimators and test statistics. 

However, little is knCMn about the rate of convergence for the 

martingale central limit theorem, so the counting process approach 

cannot help us solve this problem. 

For the special case of a competing risks model, Csorgo and 
-

Horvath ( 1982} have studied uniform rates of convergence for the 

Nelson-Aalen estimators and certain transforms of these. Their 

r'esults are quite dissappointing in general, in that they indicate 

that quite large sample sizes may be needed for the asymptotics to 

hold. However, we believe that their results are too general to 

give guidance al;>out the sample sizes needed in concrete .applicati­

ons. Our guess is that ,simulation stud!es. for "typical" situations 

encountered in pratice will shCM that the large sample results are 

satisfactory for much smaller sample sizes than those indicated 
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by the results of Csorgo and Horvath (1982). 

Some simulation studies have in fact been performed to study 

the small sample properties of so~~ of the statistical methods 

discussed in this paper in the special case of censored su~vival 

data. We mention the studies of the performance of parametric and 

nonparametric two-sample tests of Gehan and Thomas (1969), Lee et 

al. (1975) and Latta (1981), the studies of parametric regression 

models and the Cox regression model of Peace and Flora (1978} and 

Lee et al. (1983}, and Schou and V=th's (1980} study of f~ilure 

time data from an exponential distribution under various types of 

censorship. However, much work remains to be done before a satis­

factory knowledge of the small sample properties of the various 

estimators and test statistics has been established. Especially 

we will mention the possibility of using transformations to im­

prove the approximations to the asymptotic distributions. Kalb­

fleisch and Prentice (1980, pp. 14-lS) mention this possibility in 

connection with the Kaplan-Meier estimator for the survival func­

tion, and Schou and V~th {1980) show that the cubic~root of· the 

occurrence/exposure rate may be considered to be approximately 

normally distributed for much smaller sample si~es than are needed 

for the occurrence/exposure rate itself. 

In Subsection 3.1 we indicated how the results of this paper 

are valid under quite arbitrary censorin9 mechanisms, as long as 

censoring only depends on the "past" and outside random variation. 

Speaking in technical terms the censo:J;"ing processes c. {.) 
.1 

of 

Subsection 3..1 have to be predictable. There are some important 

situations in which this is not the case • 
• 
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In testing with replacement, items are life tested one at a 

tice. At each failure, the failed item is replaced by a neT one. 

If observation stops after a fixed period of time, then tne last 

i te1n is censored. Moreover, its censoring time is determined by 

the possibly lonqer life times of the preceding items, i.e. the 

censoring doe.s not depend solely on_ the 11past''. T'nis means that 

the results presented above cannot be ~pplied. It is, however, 

shown e.g. by Gill (1981) ha.-7 nore classical arguments for Li.d. 

random variables can be used to study this situation. 

For semi-Markov models, or Markov renewal processes, t.he 

intensity for a transition between two states depends on the time 

elaosed since the entry into the current state. Thus 11 time" starts 

anew at zero after each transition into a new state. For censored 

observations of such a process, we get the same type of problem as 

dis.cussed above,. and in general the counting process approach in 

its simple form cannot be used (Gill, 1980b). However, Voelkel and 

Crowley ( 1 984) show how one via a random time change may apply the 

counting process methods of this paper for some hierarchical semi-
\ 

Markov processes. 

For sequential analysis with staggered entry one has to con­

sider two time scales simultaneously, a fact which makes the theo­

retical problems much more complicated. Sellke and Siegmund (1983) 

discuss this situation for Cox's (1972) proportional hazarQ.s model 

with one regression parameter. Here the derivative of the log­

partial-likelihood function, evaluated at the true paraceter 

value, will no longer be a martingale as was the case in our Sub­

section 7.1. However, Sellke and Siegmund (1983) show that it may 

be approximated by a martingale, so that the martingale central 

limit theorem may still be used. Another paper on sequential 

' •.. 
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analysis with staggered entry is by Slud {1984), who discusses 

nonparametric two-sample tests for this situation. 

Thus there are important situations with censored data that 

are not covered by the results reviewed in this paper. Another 

important limitation is that most statistical methods presented in 

the Sections 4-7 above make strict demands in terms of data accu­

racy; in particular dated events on the individual level are usu­

ally needed. (An important exception, where only aggregate level 

data are needed, is parametric regression rnodels.with piecewise 

constant underlying intensities and solely qualitative time-inde­

pendent covariates, cf. Bergan (1984, Section 5.2) for a particu­

lar simple example of such a situation.) Real life data.are often 

less comprehensive. For instance, it happens that information is 

only available on the exact time for some of the events of inte­

rest, or data may be missing for a systematic part of the study 

population. Development of statistical methods for situations 

with incomplete data is therefore of considerable interest. There 

seems, however, to be no general solution to the problem of esti­

matinc;J the intensities of partially observed ~Jarkov chains or more 

general stochastic process models. Alsowe believe that it will 

be more the exception than the rule that the counting process 

approach will help in solving such problems. A few examples will 

illustrate these points. 

wben the n~tber of study subjects is large the computations 

needed to·evaluate the maximum partial-likelihood est.iJnator ~ of 

Subsection 7.1 may be very time-consuming, especially if some 

covariates are time-dependent. Consideral reduction in comput·inc;J 

time may therefore be achieved by comparing each failure with a 
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random sample of the corresponding risk set (Thomas, 1977; see 

also Oakes, 1981, Section 3.4; Breslow et al., 1983, Section 6). 

The same idea may be applied to implement the Cox regression model 

for .case-control studies (Prentice and Breslow, 1978). To our 

knowledge the distributional properties of the resulting estima­

tors for the regression parameters have not been studied (see, 

however, Oakes, 1981; Breslcw et al., 1983). Also it seems as if 

the counting process approach does not work for this situation, 

the reason 'being that a simple relation .like (3 .14) (c~ombined with 

{7.2)) will no longer hold for the modified version of (7.3) 

va.lid when we sample from the risk set. Probably more classical 

results for i. i .d. random variables may still be used, however, 

see Bergan and Gill (1982) who use a Skorohod construction as in 

Breslow and Crowley (1974) to study Nelson-Aalen-type estimators, 

and nonparmnetric tests for case-control studies in a Markov chain 

setting. · 

Similar problems arise in the study of demographic incidence 

rates by Bergan and Rarnlau-Hansen ( 1983). They consider a special 

case of partially observed Markov chains, in which transitions 

within a subset of states are observed in detail, while counts of 

transitions out of this subset are only observed aggregated over 

the states. Such situations arise in demography, where one for 

instance in a study of marriage formation and dissolution in a 

female birth cohort may have detailed information about the marri­

ages, .but no information about the distribution of the women over 

the various Itla.rital statuses. Bergan and RamluJJ-Hansen ( 1983) 

study estimators of the Nelson-Aalen- and occurrence/exposure-type 

for this situation. Since relations like (3.14) {combined with 

(3.9)) do not apply for the estimators they consider, the martin­

gale central limit theorem cannot be used, however, and they 

J 
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have to study the distributional properties of the estiro4tors by 

more classical methods. 

As a final example of a situation where incomplete data oc­

cur, and where the methods discussed in this paper do not work, 

let us mention experiments with laboratory animals. For such 

experiments one is seldom able to observe the exact time for the 

onset of a disease, and alternative incomplete observational plans 

have to be used. Such observational plans may include the killing 

of certain animals at prespecified times (serial sacrifice) or 

periodic diagnosis of live animals, see Bergan et al. (1984) who 

also provide further references to the literature. It is hard to 

see hOW' the counting process approach can be of much use in s-tudy­

ing statistical procedures for analysing data from such experi-

ments. 

One problem in which incomplete data occur and where martin­

gale methods have proved useful is the epidemics model studied by 

Becker {1977, 1981) and Becker & Hopper (1983). They consider a 

closed population of "susceptibles" to which an "infected" indivi-

dual arrives and study the intensity at which the infectious dis­

ease is spread. In this situation it is unreasonable to assume 

that one is able to observe both the number of susceptibles and 

the number of infected at any time t. However, under the assump-

tion of a constant infection intensity ex these authors derive an 

estimator -a that can be expressed in terms of observable quan-

tities, and they study the properties of ex using martingale 

methods. 

In conclusion, detailed life history data may be given a 

thorough analysis using the methods based on counting processes 

discussed in this paper. However, if less precise information is 

available, then alternative techniques are necessary. Some such 

techniques can, as we have seen in this final section, also be 

based ori counting process ideas, but not in the simple form as 

presented in this paper. 
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APPENDIX 

A. Derivation of the statistical properties o~ the Nelson-Aalen 

estimators 

As mentioned in Subsect.ton 4.1, the statistical prope::rties of 

the Nelson•Aa1ep estimators (4.2) are most conveniently de~ived by 

introducing the quantities * ~ (t), see (4 .4). It should be ret;:~.li.-

Zed, however, that pJ;ovided that Yll ~nc;:-ea.SE;!S un,i,fc:p;mlX O.n pro""' 

bability) ove~ (0,1 ], the difference.between ~ and ~ will 

eventually vanish, ~d ~ may pe replaced by ~ everywhe::re in 

the asymptotic results below. 

The key formula for deriving the properties of ~(t) i~ 

(4.5) which we repe«t here: 

t Jh(s) 
~ ( t) - 'A.* ( t) = J ' ' dM.. ( ~) ; ~ ~ll O Yn(S) ~"'h 

(A. 1 ) 

h=1 , .•. ,k. It follcws that t~e ~- ~ are mean-ze~o local square 

integrable ~rtingale$, and tne orthogonal.ity of the Mhs and 

(3.18) give that (A.l) have predictable cov~riatio~ proces-•s 

t Jh (s) 
< ~ -.A!, A. -A~> ( t) = 5,.. . .f v ( ) ~ ( s) ds, 
~ --n J ' uJ 0 -h s · n 

(A. 2) 

' where 5hj is a Kronec'J(er delta, and we write <~,M> ~or <M>. 

Thus, the local martingales (A.1) are also orthogonal. ~rom these 

facts follow the 11 Unbiasednes s" property for all t E [ 0, 1 ] (as sum-. 

ing that the e~ect.at;ions exist, of. remarlt just above Tbeorem 3. 1) 

E~(t) = ~(t): h = 1, •• ,,k, 

and furthermore th~t the processes 1\ * ~-An, h ~ 1,2, .• ~,k, have 

uncorrelated incremen-ts and tha~ ~(t) - ~(t) is uncorrelated 

The mean squared error function of (4.2) is given by 
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1,Ct) = E[~(t) - ~(t) ]2. (A. 3) 

= E<~ -~> (t) I 

where the latter equality follows from the definition of <M> as 

the compensator for M2. As an estimator for il(t), we use 
I\ 1-t (t) 

given by (4.6). The difference between (4.6) and {A.3) equals the 

stochastic integral f~h(s) [Yh(s) ]-2dMh(s), so that (4.6) ~s 
unbiased. 

To study the large sample properties of the Nelson-Aalen 

estimators, we consider a sequence of counting processes indexed 

by n = 1,2, •• , each satisfying the multiplicative intensity model 

with the ahs being the same for all n. By a direct application 

of Lenglart's inequality (Theorem 3.1) we get, using (A.2), that 

p 
sup I ~n)(t)- ~(n)(t) I+ 0 

t E [0 I 1 J 

as n + ~, if only 

1 J(n)(s) 
f h . 
0 Y(n) (s) 

h 

p 

a:h (s )ds + 0 

(A. 4) 

(A. 5) 

as n + ~. We note that {A.S) essentially requires that Y~n)(t) 
becomes large for all t E [0, l ] • 

Let us then study the asymptotic distribution of the Nelson-

Aalen estimators. We will do this by applying the martingale cen­

tral limit theorem (Theorem 3.2). By (A.2), what essentially is 

needed for the applications considered in this paper is that 

Y~n)(t~/n converge to some deterministic function as n +~.For 

other applications (e. g. Aalen, 197 8, Section 8) we need to nor-

. malize the Yhs by other constants than {n}. By Theore.'tl 3.2 (with 

p=kn=k), we may therefore state the follC111ing general result. 
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Theorem. Assume that there exist a sequence of POsitive constants 

fan l~ increasing to infinity. as n-+ ..,1 and non-negative square 

integrable functions %, h = 1 1 2 I ••• , k I defined on [o 1 1 ] , such 

that 

A) For each t E (0~1] and h = 1121•••1k 

t J(n)(s) 
a 2 1 _h;,;;...-,,_-­
noy<n)(s) 

h 

B) For all h and e: > 0 

Then 

t J(n)(s) 
1 h 
0 Y~n) (s) 

a n 

J(n)(s) 
h 

I( Ia ( } · I 
n yhn (s) 

i(n) -
1 

~*(n) 
1 

• • • 
~n) - ~(n) 

as 

p 
> e) ds -+ 0 

D 

where x1 ,x 2 , ••• 1Xk are independent Gaussian martingales with 

~ (0) = 0 and Cov(~ {s) ,~ (t)) = 1tAs ~(u)du. 
0 

The (kxk)-ma.trix of predictable processes Hjh in Theorem 
. -1 

3. 2 is in this case diagonal with Hhh= anJhYh . In all appli-

cations in this paper we· will have an = n ~ . 
In practice the verification of the conditions A and B · is 

not always so direct, and it is useful to have alternative and 

more easily verifiable sets of conditions. A simple set of condi­

tions, sufficient for A and B to hold true, and which is often 

fulfilled in practice, is 

A•) For h = 1,2, ... 1k 

p 

g~ ( t) . I + 0 as 
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s•) For h = 1,2, ••• ,k 

as n + co. 

Alternative sets of sufficient conditions are discussed by Gill 

(1980a, 1983b), Andersen et al. (1982) and Helland {198~). To 

apply the weak convergence result in practice, one must be able to 

estimate the covariance function of the limiting Gaussian martin-

gale. By Rebolledo (1980) we have that, ;if Conditions A and B hold 

true, then for all h and t E (0,1] 

p t 
a~~~n) (t) + f ~ (u)du, 

0 

Where ~(.n)(t) · d f' d · (.4 6) n J.s e J.ne as J.n .. • 

(A. 6) 

An application of Lenglart•s inequality (Theorem 3.1) shows 

that we have uniform convergence for t E (0,1] in probability in 

(A.6) provided that 

1 
a4 f 

n 0 

J(n)(s) 
h 

~ 

as n + =, and that we have uniform convergence for t E (0, 1 ] in 

probability in Condition A. It is straightforward to see that 

Conditions A1 and s• are sufficient for this to hold true. 



- 89 -

B. Asymptotic properties of the maximum likelihood estimator for a 

one-parameter univariate countinq process model 

We consider a sequence {N ( n) } of univariate cou.'l.ting pro­

cesses, where N(n)(t) has intensity process ~(t;e 0 )¥(n}(t), 
with e0 belonging to an open interval e of R. By (6.3) the 

log-likelihood function for the n-th model takes the form 

1 1 
log L(e) = f log(~(s;e))dN(n)(s) - f ~(s;e)Y(n)(s)ds, (B. 1 ) 

0 0 

and the maximum likelihood estimator ~ is defined as a solution n 

to the equation 

0 
o log L ( e) 1 a e a:< s: e > ( ) 1 o ( ) 

0 e J a: ( s; e ) dN n ( s ) - 6 "59 a: ( s : e ) Y n ( s ) ds=O • (B.2) 

We will here derive the properties of ~ n under the follo-

wing sufficient set of conditions. (For a general set of conditi­

ons, see Bergan (1984, Section 4).) 

1 ) There exist a sequence of nonnegative constants a n' increasing 

to infinity as n + co, and a function y such that y(p)ja.2 
n 

converges uniformly on l 0, 1 ] to y in probability as n + co. 

2) There exists a neighbourhood e0 of e0 such that a: (t; e) 

and its derivatives of first, second and third order w.r.t. e 

·exist and are continuous functions o.f e E e0 • Moreover, they are 

bounded on L0,1 ]xe0 • 

3) a:(t; e) is bounded away from zero on [o, 1 ]xe0 • 

o2 
1 oa2 c:(s;e) 

4) a2( eo) > 0, where = 6 a:(s;a) y(s)ds. 

In all applications in this paper we will have 

We may prove: 

a= n 
n 

~ 
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Theorem 't-vi th a probability tending to 1 , the likelihood eguation 

(B.2) has exactly one consistent solution @ 
n under Conditions 1-

4. Moreover 

where cr2 {a 0 ) is defined in Condition 4. 

Proof: By a Taylor series expansion we have for e E eo 

1 o los L(e > 
An + Bn ( e -e 0 ) + ~ en (e -eo )2 • {B.3) az- oe = 

n 

Here 

A 1 
o log L(e 0 ) 

=-n a' oe n 

1 
o2 log L (eO) 

B = az- oe 2 n n 

and 

.1 
o 3 log L <e* ) 

c n. = az- oe,) n n 

where e* ,n is between e and eo. Let us study the behaviour of 

these three terms as n + Cl) • 

By {6. 5) 

1 
0 

1 ·oe a:(s;eo> 
dM(n){s), A = 7 I c:(s;e 0 ) n 0 n 

such that (3.17) and an application of Lenglart's inequality 

(Theorem 3.1) gives that for all 6~TJ > 0 we have 

0 

P(jA I>TJ) < 6 + p {< 1 f 
oe a (s;eo> 

dM{n) {s)> (1 )>6) 
n 7 ~ cds;e 0 ) n 

0 
y(n) (s) 6 1 

1 ae a; {s;eo> 
]2 a: (s;eo) = ~ + P( ~ f [ a:{s;e 0 ) a' ds > 6). 

n 0 n 
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By Conditions 1-3 the last term on the right hand side converges 

to zero as n + ~, so we have that 

A !' 0 as n + ~. n 

Using (3.14) and (B.2) we see that 

1 
= - f 

0 

+L 
a" n 

a2 
wa: (s:ao> y(n)(s) 

ds 

1 

f 
0 

a:{s;e 0 ) a" n 

0 2 1 og ( cd s ; e 0 )) 
----=--=-""'--- dM ( n) ( s) • 

oe"' 

(B.4) 

Here the second term converges in probability to zero by an argu-

rnent s.imilar to the one giving (B.4). Therefore Conditions 1-3 

give that 

p 

B n + - 0'2 ( e o) as n + co. (B.S) 

Finally by Conditions 2 and 3 

for some constants K1 and K2 not depending on e. Another 

application of I.,.englart•s inequality (Theorem 3.1) and Condition 1 

therefore give that there exists a finite constant M not depen-

ding on e such that 

lim P ( I cnl <M) = l • 
n+co 

(B.6) 

From (B.3) - (B.6) it follows as for the classical i.i.d. 

case that there e~ists a (weakly) consistent solution to the like­

lihood equation (B.2). (See e.g. Serfling (1980 1 pp. 147-148), 

with convergence almost surely replaced by convergence in proba­

bility.) It is shown in Billingsley (1961, pp.12-13) that if~~l) 
d A9 (2) . . < > an are two cons~stent solut~ons of B.2 , then the n 



- 92 -

probability that ~(1)= ~(2) 
n n 

goes to one as n + =, so that (B.2) 

has an essentially unique (weakly) consistent solution. 

To prove the second assertion of the theorem, we use (B.2) 

and (B.3) to write 

1 
0 =­a" n 

o log L(~ ) 
n 

oe 

By this 

= A + B (~ -e 0 ) + ~ c (~ -e 0 ) 2 
n n n n n 

-a 
IJ. An p n a (e -e 0 ) + 0 n n B +!; en<~ n -eo) n -

as n + m. By {B.S), (B.6) and the consistency of 

~, B + ~ (~ -e ) ~- a 2 (e ) as n + m, and it follows that n n n 0 0 

a (~ -e0 ) has the same asymptotic distribution as a A Jc2 (e 0 ). n n n n 
Now 

= _, } 
an 0 

is a stochastic integral with respect to a square integrable mar­

tingale. Since, by Conditions 1-3, 

1 0 
= I [ 

as a: {s;eo> 
a: (s;e 0 ) 

0 

as n + m, an application 

(Theorem 3.2} gives that 

y(n)(s) ]2 a: (s;e 0 ) ds ~ a2 (a 0 ), 
a" n 

of the martingale central limit theorem 

a A l? N(O,a2 (e 0 )}, and the theorem. is 
n n 

proved. Note that, except for the application of the martingale 

central limit theorem, the proof of the asymptotic normality is 

exactly as for the classical i.i.d. case (e.g. Serfling, 1980, 

p. 148). 0 
It is shown in Bergan 

-2 
consistently by -a- a2log 

n 

(1984) that a 2 (e 0 ) 

L(~ )/oe2. The proof 
n 

may be estimated 

of this result 

uses (B.S} and the fact that ~ 
n 

is consistent for 
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