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ABSTRACT

A survey is given of the development of statistical models
for life history data based on counting processes. This develop-
ment was initiated by Aalen's 1975 thesis f£rom Berkeley. We review
nonparametric estimation and testing procedures for counting pro-
cess intensities; kernel function smoothing, parametric inference
and various regression techniques, including a generaiization of

the Cox regression model for censored survival data.
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1. INTRODUCTION

Life history analysis (or event-history analysis) finds app-
lications in actuarial science, dembgraphy, epidemiology, medical
research, reliability analysis, micro-sociology, and possibly
other fields. In this theory, individual life histories are seen
as independent sample paths of stochastic processes moving between
states in a discrete state-space. The states of the processes
correspond to various statuses for an individual, an insurance
policy, a technical component, or whatever we are studying while

transitions between the states correspond to occurrence of the

events of interest. Most often the object of study is the rate or
intensitx at which an event occurs. Thus, typically a statistical
model for life history data includes a specification of how the
various intensities depend on time and'on individual characteris-
tics and outside events that are being observed. The study of £he
simplest situation, in.which there are only the two states "alive"
and "dead" (or “functioning" and "not functioning;), is often
called life-table analysis, survival analysis, or failure time
anélysis. In this>case the intensity of the event "death“»is
simply the haza;d rate function for the survival time distribu-
tion. | |

A special feature of this field of statistics is that one is'
rarely able to observe complete life-histories. This phenomenon,
called censoring, may for instance, be due to the planned termina-
tion of a clinical trial, or due to the planned removal of certain
test objects in a study of the life distribution of a technical

component.



Starting with the work of J. Graunt in 1662 (cf. Glass, 1950;
Benjamin,'1978), life-table analysis has been studied for centur-
ies by actuaries and demographers. Other important elements in the
theory of life history analysis, like the three state illness-
death model (or disability -model) and the product-limit estimator
frequently named after Kaplan and Meier (1958), also have a his-
tory of more that 70 Years; with roots back to Karup (1893) and
Bohmer (1912). However, in spite of this long history, it seems
appropriate to date a modern statistical approach to life history
analysis to the beginning of the ]950'g. Important contributions
from this period are the stochastic illness-death model of Fix and
Neyman (1951), and Halperin's (1952) and Epstein and Sobel's
(1953) study of maximum likehood estimation for parametric life
time models under certain types of censorship.

In thebyears that have followed, most of the research effort
~ has gone into the study of survival analysis, or failure time )
analysis, which has indeed been established as a field of its own.
Some important contributions have also appeared on more geheral
life history models, usually in a Mgrkov chain setting. The works
of‘Freund (1961), sSverdrup (1965), Chiang (1968), and Hoem (1972,
1976) are well worth mentioning. Only quite recently, however, has
a theofy been presented that allows for a unified treatment of the
statistical methods of survival analysis and the more general life
history models. To give a review of this theory and its app-
lications is, in fact, the purpose of this paper. Before we turn
to that, however, we will give a brief outline of the developments
in survival analysis.

Following the papers by Halperin (1952) and Epstein and Sobel
(1953), much work was done in the 1950'5, and especially in the

1960's and 1970's, on developing parametric statistical models for




censored failure time data. Lawless (1983) reviews the work in
this area. The parametric methode have found widespread use in the
analysis of censored failure time data arising in engineering
settings. |

In biostatistical applications it was often found impossible
to justify a particular parametric life-time model. Initiated by
the paper by Kaplan and Meier (1958), which discussed the pfoduct—
limit estimator for the survival distribution function, much

effort has gone into the development of nonparametric methods for

censored survival data. Some important contributions ate the gene-
ralizations ofbthe Wilcoxon, Kruskal-Wallis and Savage (or "log-
rank") tests to censored data (Gehan, 1965; Breslow, 1970; Peto
and Peto, 1972).

During the )960'5 several papers appeared on parametric

regression models for censored survival data, making it péssible

- to include explanatory variables (or covariates) in the analysis.
Kalbfleisch and Prentice (1980, p. 68) give references to such
papers. In 1972, Cox proposed a semiparametric regression model
for censored survival data, modelling the_hazerd rate fﬁnction of
the lifetime distribution as a product of one parametric term and
one which was left completely arbitrary. Cox's regression model
quickly became very popular, and it has had an enormous influence
on applied as well as theoretical research in biostatistics. Like
many of ihe recently proposed methods, Cox's regression model
requires modern computing equipment to be applicable, so the con-
current development of modefn computers has been one of the prere-
quisites for this methodological work.

The life history model that has been discussed most frequent-

ly in the literature, apart from the simple survival data model,
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is the competing risks or multiple decrement model, where more

than one cause of death (failure) is considered._But usually this
model, as well as the survival data model, have been formulated by
means of random variables, and the statistical methods have typi-
cally been derived and studied by means of results for i.i.d.
random variables. In life history analysis, time and random pheno-
mena occurring in time play an essential role, and it seems there-
fore more natural to study life history analysis in terms of the
theory of stochastic processes. Thus, the formulation in termé of
random variables may have contributed to hampering the researchers
working in the field of survival analysis, or failure time analy-
sis, from extending their otherwise fine methodology to more gene-
ral life history models.

Such an extension was facilitated by the fundamental work of
Aalen (1975, 1978), which was a decisive breakthrough for the use
of modern theory of stochastic processes in life history analysis.
Aalen showed how the theory of multivariate counting processes
provides a general framework in which both censored failure time
data and censored observations from inhomogeneous Markov chains
may be analysed, and he studied the empirical cumulative intensity
estimator (Nelson, 1969; Altshuler, 1970) and nonparametric two-
sample tests. Later, this approach, which relies heavily on modern
theory of time-continuous martingales ana stochastic integrals,
has been used to extend other well-known methods from the survival
aﬁalysis literature, such as nonparametric k-sample and one-sample
tests (Andersen et al., 1982), Cox's regression model (Andersen
and Gill, 1982), kernel function smoothing of cumulative intensi-
ties (Ramlau-Hansen, 1983a,b), and maximum likelihood estimation
in parametric settings (Borgan, 1984), to the more general models

of life history analysis. This counting process approach also has




the important advantage of providing straightforward, but rigorous,
proofs for the distributional properties of the various eStimaﬁors

and test statistics under very general censoring patierns (Aalen,
1978; Aalen and Johansen, 1978; Gill, 1980a). B

The purpose of the present paper is to give an extensive
review of the above mentioned works by Aalen and others. We will
aim at interpreting the statistical models, discussing the theore-
tical resulgs, and give illustrative applications. We will.not go
deeply into the probabilistic background for the methods we dis-'b_
cuss, only in Subsection 3.3 the basié definitions are givén. and
some references for further reading are provided. Rather in this
paper, emphasis will be put on a heuristic ‘introduction to the_l
mathematicai frahewprk following the lines of Gill (1984); It'
should therefore be possible to benefit from the reading of this
paper without any prior exposure to the subject. ‘ |

The plan of the paper is as follbwé. In Section 2'we_§xesént
some introductory examples of life history models. A heuristic

introduction to the notions of a multivariate counting,prodess, an

‘intensity process, a martingale, and a stochastiq integral is
given in Section 3, where we also present the fundamental multi-

plicative intensity model of Aalen (1978) with illustrative exam-

ples. The empirical cumulative intensity estimator (or Neison—
Aalen estimator) is introduced in Section 4. There we also shbw
how this estimator may be smoothed by kernel function methods. In
Section 5 we present results for nonparametric tests. Parametric
alternatives to the nonparametric methods are given in Section 6,
while Section 7 contains a discussion of regression models. The
main message of this paper is that the theory of éounting procésw

‘ses has been extremely useful in the study of statistical ﬁethods



‘fof‘éﬁalféing life histories; No tree grows into heaven, however,
andﬂevén‘the_counting process approach has its limiﬁations. These
limitations are discussed iﬁ our final Section 8. 1In an appendix
we illustrate the use of the background theory in the derivatién
- of the pfoperties of the Nelson-Aalen estimator and of the maximum
likelihood estimator in a simple parametric model.

Throughout this paper we shall concentrate on statistical

models for the intensities or rates at which the various events

occur. It is, however, worth pointing out that counting processes
also have been very useful for the study of product-limit type
estimators for the survival distribution, or more generally for
‘the transition probabilities of Markov chain models kAalen &

Johansen, 1978; Gill, 1980a, 1983a).

2. INTRODUCTORY EXAMPLES

To give a more specific introduétidn to the kind of médels
and data one encounters in life history éﬁalysis, let us in this
séction consider a few examples more in detail. As menﬁioned
above, we model individual life histories by a stochastic process
.with finite state space. It is convénient to illustrate such a
process by a diagfam, where the states are represented as boxes,
and where arrows between the boxes indicat;_the possible Hirect
Itransitions, The time parameter of the'process may be e.g. an
individual's age or the time elapsed since the diagnosis of a cer-
taiﬁ disease.'Only rarely will the time parameter correspond to

calendar time. This should be kept in mind when we talk about

"time" below.




2.1 Survival data

The simplest possible model for life history data is the model
illustrated in Fig. 1, where one only has’thevtwo states 0 and 1,
with state 1 absorbing. We will denote the states "alive" and
"dead", respectively, although other names may be more appropriate
in some applications. This model is the one underlying most work

in survival or failure time analysis.

0] ‘ a l.
Alive ! Dead
Fig 1. A simple survival data model.

In statistical analysis of survival data from a homogeneous

population, one is interested in estimating and tésting hypotheses

concerning the death intensity (or force of mortality, or hazard

function) «. This quantity is defined as follows. Let the random
variable T represent the survival time for an individual from

the population. Then

a{t) = lim —1—-P(t<T<t+At|T>t), (2.1)

Aty0 At

®

i.e. a(t)dt is the probability that.an individual dies in the
small time interval from t to t + dt, given that the individual
is alive at time' t. In this respect «a. measures the iﬁstantane—
ous death risk.

In many applications, there are explanatory variables (or co-

variates) upon which the survival times may depend. These may
either be qualitative variables, as indicators for sex, treatment

\

group and geographical region, or quantitative variables like age



when a certain disease was diagnosed and blood pressure. Gene-
rally, one has a vector of, possibly time-dependent, covafiates
g(t) =V(Zf(t)""’zp(t))' for each individual under study. For
such situations one is interested in studying the effect of the
covariates on the risk of dying. This is often accomplished by a
regression type model, where the death intensity for an individual
with covariate vector 2(t) is assumed to have the multiplicative
form

ao(t)e . (2*2)

Here 8 = (B],...,Bp)' is a vector of regression parameters, and

‘the underlying death intensity @, is the force of mortality for

an individual with covariate vector Z = 0. Within this framework,
the effect of the covariates on the risk of dying may be measuréd
by B, wﬂile @y is a measure of the 1éve; of mortality.

The individuals under study may consist of patients at a
given héspital suffering from some lethal disease (possibly ran-
domized to one out of a given set of treatments), or they may
consist of a cohort or a cross-sectional sample of individuals
from some well defined population. The group under study is fol- -
lowed contihuously in time, and the occurrences and times of
deaths are recorded. Time will often be measured from the date of
the entry into the study (the time of randomization). This kind of
data collection has an inevitable consequence in the‘form of right

censored data, since in practice ocne cannot continue the data

collection until all individuals are observed to die. Some indi-
viduals will still be alive at the end of the study, and for these
individuals it will only be known that their survival times exceed
certain lower limits. Censoring may also occur because some indi-

viduals are lost from follow-up. Thus, statistical methods for

I
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2.2 Competing risks

analysing survival data (and other kinds of life history data)
must be able to deal with censored observations. A review of the
application of counting process methods in the survival analysis
set-up is given by Andersen (1982). |
The following concrete example of survival data wili be used
below for illustrative purposes. We consider those among the
population of insulin dependent diabetics alive in the county of
Funén in Denmark at 1 July 1973 (Green et al., 1981) who had an
age at onset of the disease not exceeding 29 years. This group
consists of 413 males énd 314 females. These individuals were
followed until death or emigration or until 1 January 1982. wé“

will show below how these data may be used to estimate the age

specific force of mortality among diabetics, and how these

estimators may be compared with the death intensity for the

general population. Our analysis will also include a comparison of

male and female diabetics and a discussion of the influence on
survival of the age at onset of the disease (using a model of the

form (2.2)). v _ (‘b

: | |
When in a survival time study also the cause of death is of

interest, the state "dead" in Fig. 1 can be split into, say k

states "dead of cause 1",...,"dead of cause k", cf. Fig. 2.

‘ . K
1 ]Dead of cause no.l1

0Alive_ a

2 2Dead of cause no.2
\ak\ _ ,

Dead of cause no.k

Fig.2. A model for competing risks
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In an analysis of data on competing risks from a homogeneous
population, the parameters of prime interest are the cause speci-
fic death intensities (or hazard functions) @qaBoreeesCye These
are’ defined in a similar manner as (2.1), such that ah(t)dt is

the probability that an individual will die of cause no. h in the

small time interval from t to t + dt, given that the individual
is alive at time t. The possible effect of certain covariates on
the cause specific death intensities may be studied by a regress-
ion type model similar to (2.2).

When studying mortality among diabetics, it is sometimes of
intéfest to analyse deaths caused from direct complications to the
disease, deaths due to cardiovascular diseases and deaths due to
other causes separately. In the set of data mentioned in Subsec-
tion 2.1, however, no reliable information on causes of death is
avaliable, and in this paper no real example of a competing risks
- model will be analysed. Such examples can be found in Prentice et

al. (1978) and Aalen (1982a).

2.3. An illness-death model

{ - B
In a study of life history data, one may be interested in the
occurrence of a disease (or some other event) and how this affects

the force of mortality. A model for such a situation is displayed

in Fig.3. In biostatistics the model is usually called an illness- :

death model, while actuaries will recognize it as a disability

model.
%01
0 > 1 .
Alive, not ill , Alive, ill
%10
[v4 : 2 a
02 Dead 12

Fig.3. An illness-death or disability model.
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For studies of data from a homogeneous population, the sto-
chastic process is often assumed to be Markovian. Then the rates
at which the various events occur are measured by the transition

intensities, defined as

Ph

wl”

.(t) = 1lim

a (t,t+0t). (2.3)
hj ALY 0 it

‘Here Phj(s't) is the probability that an individual in state h
at time s will be in state j at time +t 2> s. Thus %5, is the
force of morbidity, alb is the cure rate, while @49 and @59
are death intensities for diseased and disease free individuals,
respectively.

More generally, one may assume a semi-Markov s%ructure where
€.g. ;4 and P depend on time as well as on the duration of
the disease. It is also possible to incorporate the duration of
the disease as a (time-dependent) covariate, along with other
explanatory variabies, in a regression model similar to (2.2). A
semi-Markoy specification is often appropriate in a model for
cancer progression, where the state'l.of Fig. 3 corresponds to
relapse of the disease (Voelkel and Crowley, 1984).

In this paper we will apply an illness—-death model in
connection with a study of survival with liver cirrhosis, CSL-I, a
randomized clinical trial conducted by the Copenhagen Study Group
for Liver Diseases. The purpose of the study was to compare the
effect on survival of prednisone treatment versus placebo. (The
Copénhagen Study Group for Liver Diseases, 1974). 1In the period
1962-69, 532 patients with histologically verified liver cirrhosis
were included in the study and followed until death or censoring,
the closing date of the study being 1 September 1974. The effect

on survival of clinical, serological, biochemical and histological
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variables measured at the time of entry into the trial were analy-
sed by Schlichting et al. (1983). We shall be concerned also with
the effect of "follow-up variables" on survival. These were recor-
ded‘3, 6, 9 and 12 months after start of treatment and thereafter
once a year. In particular we shall study the effect of the bio-
chemical variable prothrombine on survival during prednisoneland
placebo treatment, and also how changes in the level of pro-
thrombine may themselves depend on treatment. Restricting atten-
tion to either low or normal level we obtain an "illness-death"
model for each treatment, time t beingfmeasured from the date of
randomization. | |

Another example of a model of the type shown on Fig. 3 was
analysed by Andersen and Rasmussen (1982). They studied admissions
to and discharges from psychiatric hospitals among women giving
birth and women having induced abortion. Here the state 1 corre-
'sandéd to a woman being resident in a psychiatric hospital, and
. the state 0 to a woman not being resident in such a hospital.
Time t was measured relative to the date of birth /abortion.
t
2.4. Interaction between life history events

| For studying the interaction between two separate events A
and B in the life history of an individual, a model of the form

displayed in Fig. 4 can sometimes be applied;'

0] ' A ' .
Neither A nor fOA A has occurred
B has occurred 7 but not B
Y- %o0B Y *aB
B AB
B has occurred > Both A and
but not A , @ pa B have occurred

Fig. 4. A model for analysing the
interaction between two separate
life history events.
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Aalen et 2l1.(1980) used a Markov model-of this type to study
the possible effect of menopausal ho:monal changes on the inten-
sity of the outbreak of the chronical skin disease pustulosis
palmo-plantaris. Similarly, Borgan et al. (1982) analysed a set of
data concerning the interaction between nickel allergy and hand

eczema among Danish women by the model of Fig.4.

2.5. Labour Market Dynamics
In longitudinal studies on labour market dynamics, the three
states "unemployed", "employed" and "out of labour force" are

considered, cf. Fig.5..

0 —} > 1 ~.
Unemployed ‘ Employed

< N a 0
02 %2

Out of labour force

a
21

Fig.5. A model for labour force dynamics

Andersen (1985) discussed statistical models fdf thiS‘situa:
tion assuming continuous observation_of a random sample of
individuals from the potential labour erce ovef a fixed calendar
time period. Hoém-(i977) used an illness-death type model to study
‘the accession to and separation from the Danish labour force for

the period 1972-74.

3. MULTIVARIATE COUNTING PROCESSES

In this section we introduce the important concept of a mul~-
' tivériate counting process and the corresponding intensity pro-:
cess; and show how this gives a .general framework for analyging
the type of situations discussed in Section 2. In Subsection 3.1
we give a somewhat informal introduction to these notions follo-

wing Gill (1984), and provide illustrative examples. We also com-



ment upon the so-called multiplicative intensity model of Aalen
(1978) . The informal introduction to the mathematical framework is
continued in Subsection 3.2 by a discussion of martingales and
stochastic integrals. In the final Subsection 3.3 the precise

mathematical results with references are given.

3.1 Multivariate counting processes. The multiplicative intensity

model

A multivariate counting process

N = {(N](t), Nz(t),...,Nk(t)), t € [0,1]} is a stochastic process

with (say) k components, which can be thought of as counting the
occurrences, as time t proceeds, of k different types of
events, Nh(t) being the number of type h events in the time
interval |[0,t]. 1In this paper the time parameter t is assumed
to vary in a finite interval, which we for convenience in the
general discussion will take to be [0,1]. It is assumed that each
component process ‘Nh has jumps of size +1, and that‘no two
compohent processes can jump simultaneously. Thus multiple events
cannot occur. The events will typically correspond to the
transitions, for an individual or a group of individuals,'betweenj
the various states of a stochastic process as examplified in
Section 2. |

The development in time of a multivariate counting process N

is goverened by its (random) intensity process A=
{(A‘(t),...,kk(t)), t € {0,1]}, which is given as follows. Let

Idt be a small time interval of length dt -around time t, then

xh(t)dt is the conditional probability that N jumps in Idt
given all that has happened till Jjust before time t.

If we let th(t) denote the increment of Nh over Idt' and let
S:t- denote everything that has happened up to, but not including

t, then we can write
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xh(t)'dt = prlan (¢) = 11§ ]. (3.1)

Here the "history" S:t- includes a complete specification of the
path of N(u) on the interval [O0,t) as well as all other events
implicitly or explicitly included in the model which have happened
before (but not at) time t. As a consequence we have that
5; E.S:r whenever s € t, reflecting the fact that as time proceeds
more and more is learnt about the process. |

Let us see how the examples of Section 2 fit into this frame-

work

Examplé 1. Survival data

We consider the situation of Subsection 2.1. To be concrete,
let us suppose that a group of n patients indexed by
i, i=1,... n, suffering from a given (lethal) disease is followed
‘at some hospital from the time of diagnosis of the disease to the
time of death or to some fixed closing date of the study. Thus for
each patient i we observe a disease duration ‘&i which is either
his true survivai time Ti' i.e. the length of time from diagnosis
to death, or a censoring time; i.e. the length of time from diag-
nosis td the closing daté. Let Di= 1 if 'Ei is a true survival
tiﬁe;‘ Di=v0 otherwise. Moreover, we assume that the pairs
(Ti,Di); i=1,2,..., n; are indepéndent.

We can define a multivariate counting process N by

N, (t) = I(7ri<t, D, =1) , i=1,..,n, (3.2)

-

where I(¢) is the indicator function. Thus N is zero before

%i and jumps to one at Ei if 'Ei is}a true survival time;
otherwise Ni does not jump at all. To find the corresponding
intensity process we argue as follows. At any time t we know

that either has the ith patient been observed to die, or he has
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been censored, or he is still alive and uncensored. For the first
two cases the conditional probability of observing Ni to jump in
the interval Idt is zero. For the latter case this conditional
probability is ai(t)dt, where ai(t) is the hazard function, or
death intensity, for the true survival time T, for this patient,

cf. (2.1). Thus if we define

Y, (t) = I(E'i>t), (3.3)

then we have that .

Pran, (£)=1| Ft_] = o, (t) Y (t)dt, (3.4)

where 'fir represents all the information available on thé course
of the disease just before time t. (The independence assumption
ensure; that ai(t) can be interpreted as the ordinary hazard
rate function for individual no.. i.) By (3.1) and (3.4), we see
that the multivariate counting process N = (N],...,Nn),'given by

(3.2), has an intensity process A with components Xi given by

Xi(t) = ai(t) Yi(t) ; i=1,2,+..,n. ' (3.5)

In the example concerning survival with insulin dependent
diabetes mellitus, the situation is more complicated. Studying
mortality as a function of age, rather than as a function of
disease duration,.the individuals are not followed from age zerd,
but from their age at 1 July 1973. Denote this age for the ith
individual by a7 and let Ni(t) be 1 if this individual iéf
observed to die in the age span from O to t yéars. Then
N =‘(N],,;.,Nn) is a muitivariate counting process with intensity

process of the form (3.5) with.




-17 -

. Yi(t)'= I(Ei>t>aio) , i=1,...,n.

In some situations it is reasonable to assume that the death
intensities .ai are the same for all individuals, so that we have
a homogenecus population. Denote the common‘value of the x;8 by
c. Then we get a univariate counting prdcess N by aggregating
the "individual®” counting proceses (3.2), i.e.

N(t) = ? N.(t). (3.6)
i=1 *
This process counts the total number of observed deaths in [O,t].
By (3.1), (3.5), and the fact that no two individuals die at the

same time, it follows that (3.6) has intensity process A given
by

n .
AMe) =] A (e) =a(t) ¥(t) (3.7)
Qhere
n
i=] .

Note that the right hand side of (3.7) is just a product of the
death intensity for a single individual and the "number at risk"
just prior to t. D

Example 2. Observations from a finite state Markov chain

Following the lines from the previous example, we consider a
homogeneous group of individuals indexed by i=1,v..,n. For |
these individuals we observe, continuogply in time, the events of
interest, modelled as transitions between the states of a stochas-
tic process with finite state space T (compare Supsections 2.2 -
2.5). We define the counting process Nhji(t) to be the number of
direct transitions from h to Jj (h,jer, h¥j) observed for indi-
vidual no. i in the time interval [O,t], and assume that the
individuals behave independently of each other. Let‘ Yhi(t) = ]
if the ith individual is observed to be in state h Jjust prior to
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time t, i.e “at risk“ for a 'h +'j,‘transition7 Y .(t) =
7 otherwlse.h Then, prov1ded that the stochastlc process is
Markov1an (and that the censorlng mechanlsms satlsfy the general
| condltlons dlsCUSSEd at the end of this sectlon), arguments )
s1m11ar to those in Example 1 show that N (t) has lntenSLty
process ahj(t) Yh (t), where ﬂ&hﬁ is the 1ntens1tz for a h » j
transition, cf£f. (2.3). (Also for an 1nhomogeneous group of
individuals or for a non-Markovian process the intensity process
for N

hji

u'lndlcator ‘Y G) Thus N = {(Nhjl(t)' h,jEP h#j, 1—],...,n,

'te[o 1]} is an nk-varlate counting process, k beluq +he number of

wlll be a product of an "individual intensity" and the

vposs1ble types_of direct transitions. Analogously.to (3.6) and
(3.8), we let |

n
agle]

Nhj(t) i=1N_hji(t)

be the total number of h + j transitions observed in [0,t], and

Y, () =) Y .(t)
. 121 hi

be the total number of 1nd1v1duals observed to be in state h at
t-. Then, since no two trans1tlons occur 51multaneously, and the

transition intensities for different 1nd1v1duals are assumed to be
identical,‘{(N .(t), h.jer,‘h#j, te[0,1]} ' is a k-variate counting
process w1th N (t) having intensity process ‘uhj(t) Yh(t),'cf |

(3.7). o

‘' Motivated by examples like the ones above, Aalen (1978)

‘ introduced the multiplicative intensity model for counting proces-

ses where it is assumed that the intensity process (3.1) ‘may be
given as | | '

gy

"'@_xh(£>:%.ahgt) Y, (t) , h= 1ok t€[0;1],“ 3.9
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Here ah(t) is a nonnegative deterministic function, while Yh(t)

is a nonnegative observable stochastic process whose value at any

time t is known Jjust before t. We say that a process with

these properties is predictable. In the examples, ah(t) could be

interpreted as an individual intensity for making the transition
in question (i.e. of type h), and Yh(t) as the number "at
risk" at t- for making a transition of this type. As a conse-
quence of this, we shall assume, in the general set-up as well,
that Yh(t) = 0 whenever Yh(t) < 1. Other examples of the mul-
tiplicative intensity model are given by Aalen (1978, Sections 4
and 8; 1982a, Section 4). |

Since the development in time of a multivariate counting pro-
cess N is goverened by its intensity process (3.1), we can'spe—
cify a counting process model.for life history data by giving a
specification of the intensity process. Let Nhi(t) be the number

of type h transitions for individual i in [O,t]. Then-all the

statistical models studied in this paper (except for Subsection
7.3) have a common structure, namely that the intensity process of

N.

i 18 given by.'

Mpg(8) = ap (6,2, (£)) ¥, (¢) (3.10)

h=1,...,k; i=1,...,n; te€ [0,1].

The individual intensities @y may depend on the type h
either nonparametrically (Sections 4,5 and 7) or via a finite
number of parameters (Sections 6 and 7), and they may depend on

-

the individual i- via a vector of predictable covariate processes

gi(t), either by a stratification according to the values of Zs
(Section 4,5,6) or by a regression model épecification, cf. (2.2)

(section 7).

The Y, are predictable indicator processes, Yhi(t)
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indicating by the value 1 whether individual i is observed to be
at risk just before t for making a type h transition. Let

N, ;(t) be the number of type h transitions in [0,t] we had
observed for individual i if there had been no censdring. Then

the value of the indicator processes Yhi‘ is a result of both the

development of gi = (ﬁ] up to (but not including) t

irtt0y ki)

and of possible censoring. Suppose that the uncensored process gi

satisfies a model of the form (3.10), i.e. that it has intensity

process
Mg (8) = o (£,2;(£)) G4 (),

where ihi 'is determined by §; alone. Moreover, assume that

censoring of individual i is determined by a predictable indi-

cator process Ci(t), indicating by the value 1 when this indivi-
dual is under observation. Then the censored counting process
Nﬁi(t) ’is given by | ) |
| t N |

and it has intensity process given by (3.10) with
Y () = T, (e) ¢y ()

(Andersen et al., 1982).

Thus cehsoring by a predictable process Ci preserves the

structure of the model,_and inference on the . ah(.,.) may be drawn
from observing the censored process N = {(N]i,...,Nki);
i=l,.f.,n}: This means ' that the censoring medhanisms may be quite
arbitrary, as long aé they only depend on the past and outside
random variation. It was discussed by Aalen (1978), Gill (1980a)

and Andersen et al. (1982) how, in the case of survival data

(Example 1, above), the most frequently used models for right
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censoring (e.g. type I censorship and random censorship) can in
fact be described in this way. Exaﬁples of censoring mechanisms
which do not satisfy these conditions are given in Section 8.

As shown in the examples above, the model (3.10) may some-
times be reduced to the multiplicative intensity model (3.9) by
aggregating the individual processes. Aalen (1982 b) discusses

conditions under which such a reduction of the data is sufficient.

Especially, he points out that for left censoring and "censoring
on intervals" some information may be lost by the aggregation.

The statistical methods derived from (3.9) will still be valid,
however, as the long as the censoring mechanisms satisfy the gene-

ral conditions discussed above.

3.2. Martingales and stochastic integrals

The study of life history data by means of multivariate coun-
ting processes is intimately connected with the use of martingale
methods for deriving the properties of the statistical estimation
and testing procedures. In this subsection the link between coun-
ting processes and martingales is-outlined, and stochastic inte-
grals are introduced. Our informal presentation is modelled after
Gill (1984). |

The increment'th(t) of Nh over the small interval Idt of
length dt around time t is a 0 - 1 variable. Therefore, by

(3.71)

E(aN, (t)| &, ) = A, (t)dt. (3.11)

This implies that if we define stochastic processes Mh; h =
1,...,k; by having increments

\

th(t) = th(t) - xh(z—.)dt | (3.12)
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over Ig (and satisfying M,(0) = 0), then
E(am (£) | &) = o. B | - (3.a13)
i.e. the processes

t -
Mp(t) = My (&) - é Ap(u) du . (3.14)

h=1,...,ki t € [0,1]; are martingales. In particular EM, (t)=0

for all t € [0,1].

The relation (3.14) is the key to the “countihg'process appr .
roach" to liﬁe‘history analysis. As we will seé in Sections 4-7
below, many estimators and test statistics may be expressed as, or
approximated by, stochastic integrals with respéct to the martin-
gales (3.14). Moreover, central limit theorems and other proper—"
ties for martingales, and therefore also for stochastic integrals:
(cf. below), are very well studied, and may be used to investigate
the properties of the statistical ﬁrocedures.

Martingale central limit theorems state conditions under
~which a sequence (M(n)(t); t € [0,1]), n=1,2,... of martingales
(not necessarily of the form (3.14)) behaves as a conﬁinuous Gaus-
sian martingale when n grows large. A continuous Gaussian mar-
tingale (X(t), t €0,1]) is a (possibly) time-transformed Wiener
process, and as such it has independent normally distributéd in~
crements with expectation zero. 1In particular the conditional
variance of dX(t), given all that has happened up to time t, i.e.

fi_, equals Var(dXx(t)), and hence it is deterministi¢c. Further-

more, X hés continuoug sample paths. $So if a sequence of martin-

gales asymptotically should look like a continuous Gaussian ﬁar—
tingale X, then firstly the jumps of M(n)
ble when n gets la:ge, and secondly the conditional variances
Var(dM(n)(t)lf;_) should become deterministic in the limit. fhé

conditional variance of a martingale M is given by the so-called

should become negligi-
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predictable variation process (or variance process) < M >,

defined by having the increments
d< M >(t) = Var (dM(t) |J:t-)

over I_ . So in conclusion, the second condition for the

dt
convergence of a sequence of martingales to a continuous Gaussian

martingale, is that the predictable variation processes < M(n)>
converge to a deterministic function. .
 For the martingales M, defined by (3.14), we f£ind
a< M, >(t) = Var(th(t) - A (r)dae | ‘Ft-)
=‘Var(th(t) I “Ft-)'

since xh(t) is predictable, i.e fixed given 'Ft—’ Because

th(t) is a 0-1 variable, (3.1) yields

as Mh>(t)-u Ah(t)dt (I-Kh(t)dt)-
od A--h(t)d‘t-p
and therefore
| M [ (s)as. (3.15)
< >(t) = A, (s)ds. _ 3.15
"n o B : '

To study the transformation of a martingale M by stoghastic

integration, let H be a predictable stochastic process, and

define a new process M' by the stochastic inteqxa;
. ‘
M'(t) = [ H(s) aM(s). ‘ (3.16)
0
Then M' is a martingale itself, because the increment dM'(t) =
H(t) aM(t) over I

(c£.(3.13)):

at has zero conditional expectation

E(H(t)aM(¢)| §_) = H(t) E(an(e)| £, ) = o.
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Here the flrst equallty is due to the predlctablllty of H, Whlle
the second follows by (3.13). The predlctable varlatlon process of

(3.16) is'easily<found: Since
. _ 2, . |
var (H(t) am(t)| §, ) = H(t) a< M >(¢),
‘we get.

t
< M (L) = (j) H%(s)d< M >(s). L (3.17)

One final concept in the following is the orthogonality of

two martingales M, and M,. To this end we introdqu the.gredicw

table covariation process (or covariance pralcves.s) < M] .Mz>, defi- .

ned by having the increments

a< M,, M, >(s) = Cov(dMl(t).sz(t) |Ft‘-)

over I and we say that M, and M, are orthogonal if

at’

< M'I'MZ > 2 0.

For any two martingales M]_1 and Mj' h + j, derived from a

multivariate counting process by (3.14), we have

dac< Mh'Mj >(t)

Cov(an, (t) - A, (t)at, de(t) - xj(t)dt |S—Tt,_)

I

E(ay, (£) an,(t) | &.) = o.

This follows since xh and kj‘ are predictable, and by the fact

that N _and Nj do not jump simultaneouslyf Thus)‘the‘martin*

h
gales defined by (3.14) are othogonal.
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3.3 Mathematical~f:amework o

After the informal introduction to the various mathematical
concepts given in the préceding two subsections, we shall now turn
to a precise mathéﬁatical formulation. Unlike thé rest of the
paper, this subsection (and the Appendix) requires knowledge of
some basic concepts in measure and probability theory. It may
safely be omitted by those of the readers who only want to get_a'v
brief review of the ideas and results in the'“counting prbcgss |
approach" to life history analysis. Some important references to
the theory of counting proéesses and martingales are Dolivo
(1974), Meyer (1976), Bremaud and Jacod (1977), Jacod (1979), Gill

(1980a), Bremaud (1981), Shiryayev (1981) and Jacobsen (1982);

Definitions

Let (_Q, £, P) be a complete probability space and

(f%)te{o 1] @ filtration on (2,f), i.e. an increasing, right-

continuous family of sub-o-algebras of.f:vwe also assume‘that“

£

0
process N = ((N](t),...;Nk(t)), t € [0,1]) is a k-dimensional

contains all P-null sets of £ . A multivariate counting

! : .
stochastic process adapted to the filtration (i.e. N(t) is

£,

t
sample functions which are nondecreasing, right-continuous step

-measurable for each t € [Q,l]) with components Nh which have

functions, zero at time zero, and with jumps of unit size."More-

over it is assﬁmed that, with probébility one, no two components

jump simultaneously, and that eééh Nh(l) is almost surely finite;
An adapted stochastic process M, satisfying M(0) = o,

E|M|(t) < » ; t € [0,1]; and having right-continuous sample func-

- tions with left hand limits, is called a martingale if
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E(M(t)]§;)=M(s) a.s. (cf. (3.13)) and a submartingale if

E(M(t)lg:s)»> M(s) a.s. for 0 < s <t < 1. A (sub—)martingdle

. . . 2
is square integrable if suPtE[O ]]EM (t) < =.
’

A stopping time is a random variable T satisfying

{r<t} € Ei for all t. For a stochastic process X, we define the

T T ..
~stopped process X by X (+) = X(+AT), s A t denoting the mini-

mum of s and t. A stochastic process X 1is said to have a
property locally if there exists an almost surely nondecreasing

sequence (Tn) of stopping times with P(Tn>t) 41, as n » = fdr
o ,

all t € [0,1], such that for every n, the process -X " has the
actual property. Thus a local martingale, a local square integra-
ble'martingale, a locally bounded process, etc. can be defined.

The precise definition of a predictable stochastic process

can be found e.g. in Gill (1980a, p. 8-9). For our purpose it is
sufficient to note that if a process is adapted and has left-con-
tinuous sample paths, then it is predictable and locally bounded.
Moreover, any Borel measurable deterministic function is
predictable.

A process X has a compensator A if X - A is a local

martingale, and A 1is predictable and has paths of locally

bounded variation.

Results

Each component Nh of a multivariate counting process has a

unique compensator A Thus there exist local martingales Mh

h.
defined by (cf. (3.14))

Mh(t) = I‘Ih(t) - Ah(t), h = ]7'...’];.

In fact the Mh are local square integrable martingales. This is

the Doob-Mever decomposition of the local submartingale Nh. Under
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regularity conditions (e.g. Ralen, 1978, Section 3.2) Ah is
absolutely continuous, so that there exist predictable processes

A such that (cf. (3.14))

h
t
Ah(t) = {) xh(s) ds; h=1,...,k.
Furthermore,

A (t+) = lim 1= (N (t+a€) - N (£) = 1| F,),

atvo A%

and hence hh is denoted the intensity process for Nh (cf.

(3.1)). Conversely, given a process My with the above mentioned

properties, then, subject to regularity conditions (e.g. Aalen,

1975, Sections 2C and 2D), a unique counting process can be deter-
mined which has Xh as its intensity process. Throughout this
paper we will assume the existence of an.intenSity‘process.’

If M] and Mz’ are local square integrable martingales,

then M1M2 has a unique compensator which we call the predictaple

covariation process of M, and M, and denote by <M1,M2>. We say

that M

] and M, are orthogonal when <My ,My> = 0. The counting
process martingales given by (3.14) are orthogonal. The unique
compensator for the local submartingale M? is called the predic-

table variation process of M and is denoted by - <M>. Thus < M >

= < M,M >. For the counting process martingales (3.14) the pre-
dictable variation processes are given by (3.15).

If H, and H are predictable and locally bounded

1 2
processes, and M1 and M, are local square integrable
martingales with paths of locally bounded variation, then the

stochastic integrals
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}f H aM = ( Z Hh(s)dMg (s), te[0,1]);
h = 1,2; can be defined (Gill, 1980a). The siochasﬁic integrais
are local square_integrable martingales themselves, with predic- |
table covariatibn process |
e | |
<[H @M, [HydM,>(t) = é H,(s) Hy(s) dM;,Mp>(s). (3.18)
In this paper we are mainly working with local square inté—
grable martingales. This means that we cannot in general be sﬁre
that expectations, variances, covariances and correlations do
exist. Therefore, when we in Sections 4 and 5 and Appendix‘A below
talk about expectations etc., we do £acitly assume that they
exist. | | | |
We finally state two theorems which are of'fundaméhtal‘impdr-
tance when deriving the properties of the estiﬁators and‘téét'
statistics ih the étatistical models discussed in Sections 4-7

below.

Theorem 3.1

Let N be a univariate counting process with intensity pro-

Cess A and let‘ M be a local squarevintegrable.martingale (not

necessarily given by (3.14)). Then for all &§,n >0

1
P(N(1)>n) < % + P(fA(t)at>s),
: 0

and

’

P( sup _|M(t)[>n) < 25 + B(<M>(1)>5).
te[o,1] n ,

This theorem is a consegquence of Lenglart's (1977) inequality, cf.

Andersen and Gill (1982, Appendix I).
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Theorem 3.2 (A central limit theorem for local square ihtegfable

martingales)

Let p > 1 Dbe fixed, and consider a sequence g(n) of k -

(n)

variate counting processes with intensity process A , and a

sequence g(n)

that the stochastic integrals

of p x k,-matrices of predictable processes, such

t n
x{M o) = [ 1 mg) (e (@™ (s) - A (M (s)as);
] 0 h=l

j=1,...,p; are well defined. If, as n » =,
P
<x§ ),xin)>(t) > G (t).

j»2=1,...,p, t€[0,1], where G is a pxp matrix of continuous

functions on |0,1] forming the covariance function of a p-vari-

ate Gaussian martingale g(o) with E(Q)(O) = 0, and if for all

e >0

1 n P
[ 1 [H (n)(t)] (n)(t) I(IH(n)(t)|>a)dt > 0;
0 h=l
D
j=1,...,p; then z(n) > E(w) as n » o,

D _
The weak convergence + takes place in the space D[O,l]p

equipped with the Skorohod product topology (cf.'Billingsley,
1968). Versions of this theqrem were proved independently bylAalen
(1977) and Rebolledo (1978). Our formulation of Theorem 3.2 is a
consequence 6f the results of Rebolledo (1980), and cah be found -
in Andersen and Gill (1982, Appendix I). Other important papers on
martingale central limit theorems are Liptser and Shiryayev (1980)
and Helland (1982).

In the Appendix examples are given of the applicability of

these two theorems.
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"4, NONPARAMETRIC ESTIMATION

Consider a multivariate counting process
N = {(N](;),...,Nk(t)), te[0,1]} with intensity process
satisfying the multiplicative intensity modelv(3.9). In this
section we consider nonparametric estimation pf the integrated

@, s, and how these estimators may be smoothed to obtain estimators

h
for the @S themselves. Both methods are illustrated by means of

the diabetes data discussed in Subsection 2.1.

4.1 Nonparametric estimation of the integrated LI

To derive an estimator for
t
Ah(t) = é ah(s)ds, (4.1)
we use (3.9) and (3.12) to write symbolically

"th(t) = ah(t)Yh(t)dt + noise". By this, a natural estimator of

t .
(4.1) would be .IO Yh(s)-1th(s). However, one may have Y, =0,

and in order to deal systematically with this possibility, we
introduce the indicator Jh(t) = I(Yh(t)>0), and define the

estimator for (4.1) formally by
t : : \ :
A = I Lo () /4, ()] an (), - (4.2)

where Jh(t)/Yh(t) is interpreted as 0 whenever Yh(t) = 0. It
‘should be recalled that we assume that Yh(t)<] implies Yh(t) = 0.
The eéstimator (4.2) was introduced by Aalen (1975, 1978), and
it generalizes the empirical cumulative intensity estimator,
proposed independently by Nelson (1969,1972) and Altshuler (1970),
for the set-up with censored failure time data. We will denote

(4.2) the Nelson-Aalen estimator.

It should be realized that the integral in (4.2) is just a

< T < ... Dbée the successive

simple sum. To see this, let T ha

hl



jumpvtimés for Nh.

jump times, dNﬁ(t) = 07 otherwise.’It follows that (4.2) may be

written alternatively as |

Bter = 3 t}[ﬁc'h('rhj)]"- | (4.3)
* Thy

Thus, gh is an increasing, right-continuous step—functioﬁ with

increment 1/Yh(Thj) at the observed jump time Thj of Nh.

To further motivate the Nelson-Aalen estimator, let us see
how it may be derived heuristically from the classical occur-
vrence/exposure rates (cf. Hoem, 1976). To this end, we split the
time interQal [0,t] by a partitioning O=ty < t ¢ *ee <t =t
which is so fine that in each subinterval at ﬁost one jump 6ccurs,
and such that ah(?). is (approxihately) constant on each of the |
- subintervals. Denote this constant value on (tj, tj%]]’ by ©hye
and let A Dbe the length of the subintervals (all assumed to be
of equaltsize). Then theroccurrence/exposure rate th for ahj.
is given (almost) by [Yh(tj)A]-] if N jumps in the actual
subinterval, and it is O otherwise. Consequently a natural esti-

mator for Ah(t) = Z a
J

is 5 thA which equals (4.3)

LA
h
1] 3

approximately.

Still another motivation for Qorking with the Nelson-Aalen
estimators was given by Johansen (1983) who derived ﬁhe estimators
as maximum likelihood estimators in an extended model where the
compenSators (cf. Subsection 3.3) for the Nhs. are not assumed to
be absolutely continuous. Another extension of the’mOdel allowing
maximum likelihood estimation, but giving rise to different esti-

mators, was discussed by Jacobsen (1982, 1984). He derived the

Then th(t) = 1 when t equals one of these
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asymptotic properties of his maximum likelihood estimators by
proving that they are asymptotically equivalent to the Nelson-
Aalen estimators. We shall not pursue these approaches any fur-
ther, but motivate the use of the Nelson-Aalen estimators mainly
by their nice and easily verifiable properties.

Breslow and Crowley (1974) studied the large sample proper-
ties of the Nelson-Aalen estimator for the special case of random-
ly censored survival data using results for i.i.d. random varia-
bles. Aalen (1978) studied these properties in general using the
theory for multivariate counting processes, martingales and sto-
chastic integrals (cf. Section 3). Let us recapitulate his line of
reasoning. (We have slightly improved some of Aalen's arguments,
in particular to make use 6f later devélopments in the theory of

stochastic integrals.) We introduce

*

t ,
A (t) = ({ o (s) J,(s) ds, ' (4.4)

which is almost the same as (4.1) when there is only a small pro-

bability that Yh(s) = 0 for some s < t. By (3.9) and (3.14), we

then get
A (6) - A5(e) TR (e (4.5)
. t - t = S)e .
By 5 T U .

Since Jh/Yh is a bounded predictable process for each h, the
right hand side of (4.5) is a stochastic integral w.r.t. a local
sqﬁare integrable martingale, and hence itself a mean-zero local
square integrable martingale. | |

This fact is the key to the study of the properties of the
Nelson-Aalen estimator. To illustrate the use of the theory of
martingales and stochastic integrals in the study of statistical
methods for life history data, we give in the Appendix a detailed
study of the Nelson-Aalen estimator. Let us here just briefly
state its properties. (The exact conditions under which the resul-
ts hold trﬁe are given in the Appendix.)

By (4.5), we have for all t € [0,1] (assuming that the
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expectations exist, cf remark just above ﬁheorem 3 1)

EAh(t) EAh(t),d

LT AT AL e e e T S G S olU i et
so that Ah(t) is an approximately unbiased estimator for (4.1).
ts variance may be;estiﬁated»(almoSt:unbiasedly) by

o A - IJ (s) EY (s3] aNh( S, (4.8

where the 1ntegral may be wrltten as a 31mple sum in a 51m1lar

fashlon as (4 3) Furthernore, v1ewed as a process of t, ﬁh(t)

has (approxrnately) uncorrelated 1ncrements, and ﬁh(t) is (ap-
aprox1mately) uncorrelated w1th ‘ ﬁ (s) “for any s,t and. h # j.
This latter fact 15 of great practlcal 1mportance, since it im-
plies that plots”of'the”Nélson;Aalen estimdtors for h' =:1,2,...,k
may be judged 1ndependently of each other.

If each Y ‘increases unlformly over [O”l] _then an appll—
catlon‘of Theorem 3 1 shows that ﬁﬁ is a unlformly cons;stent
estimator for Ah' Moreover, using Theorem 3.2 it can be shown that
(suitably normalized) the A s will be asymptotically distributed
as 1ndependent Gaussian martingales. In.particular . ﬁh(t) w1ll be
asymptotically normally distributed with mean Ah(t) and a vari-
ance which may be estlmated by (4 6). “_;,_y”,y Hyh o

As in Aalen (1976) (for the spec1al case of a multlple decre—

. ment model, cf Subsectlon 2. 2)one may develop 100 (l-a) Der cent

l“confldence bands for :Ah ‘of the form
AL(t) € fﬁh(t) 303, “"ﬁﬁ(t);+vvb&”"'\fﬁ‘('1)}i]~';"«,(,4-7)

»Here b 1s the upper a—fractlle ln the well known dlstrlbutlon
of %up ] | W(t)| where W is a standard ‘Wiener process. “(For a
.‘;';(- E 0 ] S : G e b I ver i ‘ vl g BB e Tk

table see Walsh, 1962 P 334 ) However, these confldence bands
have constant width (determlned by P (l)) 'and may thererore be
of little practical interest. Instead a transformation to a Brown-

ian bridge can be applied. Let us sketch how this approach can be



used to obtain confidence bands for Ah(t) with a width that

. . . A ,
increases as the estimated variance 1h(t) increases.

The idea is that if X(t) is a mean zero Gaussian martingale

’ tAs . -
on [0,1] with Cov(X(s),X(t)) = [ g2(u)du = G(tAs), then

0 .
X(t)G(l)%(G(l)+G(t))-] is distributed as WO(GT$%§%TET" where

W is the standard Brownian bridge on [0,1] (see Billingsley,
1968) . Now we lét X Dbe thé limiting process of ﬁh (properly
normalized), cf. the Appendix, and uyse the faci that, for this
situation,‘Qh(t) (properly normalized) converges in probability to
G(t) uniformly in t € [0,1]. Then it follows that lOO(l-@)”per

cent confidence bands for 'Ah(t) are given by

| N A
: T, (t) , 7, (t) .
A (e)e[R (0)-e (W 20+ 20y, & (0)+e } (1020+ B—))], (1.8)
S WP REENTE)

where <, is the upper a-fractile in the distribution of

sup IWO(t)|;'see'Ha11 and Wellner (1980, p. 141).
t€[0,%] ' ,

Exampie. Survival)am@hg insulin depéndent‘diabetics

As described in Example 1 in'Subéecﬁion 3.1 each patient .i'
in this example is followed from age ajo at 1 July 1973‘to‘age
Ti at the exit from the study. In the first place we shall con-
sider a two~dim¢nsional counting process (ﬁ],Nz), N‘(t)‘ counting
" the number of Observed deaths amoné females, and Nz(t) 'counting
those among males. If a](t) and az(t),denqte the age specific

death intensities for females and males, respectively, then N,

has intensity process «,(£)Y, (t), where




Y](t) ) i forzfemales I(aio< " Ti)i

and similarily for N, (Example 1| of Subsection 3.1). Thus the
integrated death intensities A‘(t)‘ and Az(t), see (4.1), cah be
estimated by the Nelson-Aalen estimators (4.2). Fig. 6 shows the
estimates vﬁ](t) énd ﬁz(t) for the age interval from 0 tb 70
years. (For ages less than the lowest ages at which deaths are
observed, 23 and 19 years, respectively;'ﬁ](t) and ﬁz(t) are
zero.) Also shown are approximate 95% pointwise cohfidence limits
and 95% confidence bands computed from (4.7) (with .b0.05=2.25){
It is seen that both for females and for males the death intensiﬁy
(the slope of the plots) seems to increase with age, and comparing
A](t) and ﬁz(t), males seem to have a slightly higher mortality
than females. Furthermore, it is seen that the confidencg bands
based on (4.7) are very wide, and that the pointwise confidence
limits do not seem to reflect very well the uncertainty of the
entire curve. Fig. 7 shows ﬁ](t) and ﬁz(t) with approximate 95%
confidence bands computed from (4.8) (with C0.05" 1.27). As
expected, these confidence bands are not so wide for low ages as
are those based on (4.7), In the next subsection we shall seé.how
the influence of age on the mortality is much more clearly

revealed by estimating the death intensities @, and ) directly. []
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4.2 Kernel function smoothing

The Nelson-Aalen estimators (4.2) are estimators for the

integrated a«.,s given by (4.1). However, as seen in Subsection

h

3.1, it is the a.s themselves which are the entities of real

h
interest. Therefore, when studying plots of the Nelson-Aalen esti-
mator, one mainly focuses on the slope of the curves. Hence it is
useful to directly estimate the @, S- Inspired by works on kernel
function estimation of density functions (for a review, see Bean
and Tsokos, 1980), Ramlau-Hansen (1983 a,b) proposed and studied
nonparametric estimators for the @, s in the multiplicative
intensity model. Basicly, the estimators are derived by smoothing
the increments of the Nelson-Aalen estimators. Let us review the
main results derived by Ramlau-Hansen. Since the Nelson-Aalen
estimators are uncorrelated, we will in this subsection restrict
our attention to one component of the multivariate counting pro-

cess. We will therefore omit the subscript h in the notation.

As an estimator for a(t), Ramlau-Hansen (1983a) proposed

:
A () = 15{3 K(E2)dh(s) . (4.9)

Here the kernel function K 1is a bounded function which is zero

outside [-1,1] and has integral 1. The window b is a positive
parameter. The kernel function and the window have to be chosen in
concrete applications. One frequently used kernel function is the
Epanechnikov's kernel function K(x) = 0.75(1-x2), |x| < 1.

If we let T] < T2 < ... denote the successive jump times of
N, then A may be given as in (4.5), and it follows that (4.9)

may be written equivalently as

a =] - ) 4.10
a(t)-BXK(b )Y(Tj).(, | . (4. )

T.
J
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It should be realized that, since K vanishes outside [-1,1],
only values of j for which t-b < Tj < t+b contribute to this
sum. Given a window Db, we will only discuss estimation of «a(t)
for t € [b,1-b], since it is only for such values of t that
(4.10) is a real average of the increments l/Y(Tj) of A. The
remaining tail problem can be attacked in a similar manner (see
Ramlau-Hansen, 1981).

Let us comment briefly upon the connection between (4.10) and
the smoothing of occurrence/exposure rates by moving averages (cf.

Borgan, 1979). We consider the set-up discussed just below (4.3),

with 0 = t, < t,< «ee< t =1 Dbeing a fine partitioning of

o], ay the (almost) constant value of af(+) on (tj'tj+]]’

and . Qj the occurrence/exposure rate for aj. Then, by a moving

a

average, one would.estimate a«, by =~ ) r

for some weights
J v==-a

vaj—v
{rv}. This equals (4.10) approximately, if we let b = aA and
r,= % K(:%A). The close connection between the theory of moving
averages and kernel function smoothing by means of (4.9) is dis-
cussed by Ramlau-Hansen (1983Db)

To study the properties of @(t) we introduce the quantity

(cf.(4.4))

1
a*(t) = ¢ c{ K(552)an* (s) | (4.11)

and note that by (4.5)

' 1
A * 1 t-s, J(s) :
a(t) - a () = 5 Of K(T) Y—(?Y dm(s). (4.12)

Thus, a(t) - o« (t) is a stochastic integral w.r.t. the local
square integrable martingale M, a fact which provides the basis
for studying the statistical properties of (4.9). We immediately

get
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for t ¢ [b,l-b] that EQ(t) = Ea*(t), which means that the expec-.

ted value of Q(t) equals

K(E%E) « (s)ds | (4.13)

1
b

O — —

approximately when there is only a small probability that Y(t)=0
for some t € [0,1]. Thus, in general, the kernel estimator is not
even approximately unbiased for a«a(t) (however, cf. below). The

variance of (4.9) may be estimated (almost unbiasedly)'by

92 (t) =

:
[ x2 (528) Jz(?)) an(s) (4.14)
0 Y< (s

L
b?
(Ramlau-Hansen, 1983a, Proposition 3.2.1).

If Y increases uniformly in a neighbourhood of t, and at
the same time the window tends to zero, then, subject to some
regulari£y conditions, Q(t) is a consistent estimator for a(t).
Moreover, it is asymptotically normally distributed with mean
a(t) and a variance which may be estimated by (4.14) (Ramlau-
Hansen, 1983a, fropoSition 4.1.1 and Thedrem 4.2.2). Finally, & (s)
and Q(t) aré asymptotically independent when s # t.

To apply the kernel function estimator (4.9) in practice, one
has to decide upon a choice for the kernel function and the win-
dow. Some guidelines to the choice of K are given by the results
derived by-Ramiau-Hansen (1983b) . He argues, much the way one
reasons in moving average theory (cf. Borgan, 1979), that one
should choose a kernel function such that Q(t) is almost unbia-
sed, i.e. such that (4.13) is approximately equal to a(t). This
is possible if a(s) may be approximated by a polynomial of a
certain degree over each interval of the form [t-b,t+b]. Subject
to such an unbiasedness condition, one then chooses the kernel

function which minimizes a specified risk function. Kernel




functions which are optimal in this sense are given by Ramlau-
Hansen (1983bh). Among other things, he shows that Epanechnikov's
kernel function minimizes the variance of the first derivative of
(4.9) when a(s) may be approximated by a linear function over
each interval of the form [t-b,t+b]. The choice of the window D
seems to be much a question of trial and error. Some guidelines

are, however, given by Rudemo (1982).

Example (continued)

The kernel function smoothing method outlined above was used
to obtain estimates for the age specific forces of mortality
a](t) for female diabetics and az(t) for male diabetics in the
example of Subsection 4.1. Fig. 8 shows the estimates Q](t) and
.Qz(t) together with approximate 95% pointwise confidence inter-
vals for a(t) (using the approximate normality of a(t)). In thé
estimation Epanechnikov's kernel function was used, and a window
b = 5 years was chosen for the age interval [24 years; 66 &ears].
For ages t outside this interval, the largest window b = Db(t)
such that [t-b(t),t+b(t)] < [20 years,70 years| was chosen.

From Figure 8 the level of the mortality is clearly seen.
For ages less than about 55 years the mortality is close to 2% per
year for both sexes, with a tendency to a lower mortality for
females. From age 55 the death intensity increases for both men
and women, and at age 65 the level of the mortality is about 10%
per year; The fluctuations for ages above 65 years are due to
less smoothing because of the narrow window used for these ages.

In the next section we shall see how a comparison of the
mortality for men and women can be carried out, and also how the
mortality among diabetics can be compared with.that of the general

Danish population. O -
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5. NONPARAMETRIC TESTING

This section is concerned with nonparametric testing for the
multiplicative intensity model. In Subsection 5.1 we discuss how
one may test whether one or more of the @y S in (3.9) equal cer-
tain known functions, while we in Subsection 5.2 show how testing

of the hypothesis that all «.,s are identical may be carried out.

h
The procedures are illustrated by examining whether the mortality
among the diabetes patients coincide with that of the general

Danish population, and by a test for equality of the survival of

male and female diabetics.

5.1 Tests of completely specified hypotheses

Let N = (N1,N2,...,Nk) be a multivariate counting process
satisfying the multiplicative intensity model (3.9). We want to

derive tests for the hypotheses

0
and
0 0 0
HO: % = @y Go= Aoy &= Aoy (5.2)

0 .
hs are known functions.

Let us first consider testing of the hypothesis (5.1).

where the «

Andersen et al. (1982) studied a class of test statistics for this

problem. Their approach was as follows. Introduce

0 t 0
ﬁh(t) = [ 3, (s)e, (s)as, (5.3)
0

and note that, under the hypothesis, (5.3) equals A;(t) defined

by (4.4).
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Therefore, when (5.1) holds true, we have

t J (s)

R (0) - Vqe) = / ?—:7;; am,_(s), (5.4)

so that, except for random variations, %h and ﬁg are equal
under the hypothesis. It is therefore natural to base a test for
(5.1) on a comparison of these quantities. To do this, introduce a
locally bounded predictable "weight process" Kh' and define the

stochastic process

t
R (8) = [ K (s) a(d -A0)(s). (5.5)
0

When (5.1) holds true this is a stochastic integral (cf. (5.4)),
and hence a mean zero local square integrable martingale.

By an application of the martingale central limit theorem
(Theorem 3.2) it follows that Rh (properly normalized) converges

weakly as Y increases to a Gaussian martingale when the

h
hypothesis is true (Andersen et al., 1982, Theorem 4.1). In
particular Rh(]) is asymptotically normally distributed with

mean zero and a variance that may be estimated by

| , Jh(s) 0
<Rh>(1) = {) Kh(s) ?;G)-ah(s) ds. (5.6)
Thus ,
U= Rh(”/[q{h)(”_]% (5.7)

is an asymptotically standard normally distributed statistic for
testing the hypothesis (5.1). Alternatively one may instead of

(5.6) use the variance estimate

4

1 , Jh(s)
.[Rh] (1) = é Kh(s) ‘Y-%l—gy th(S), (5.8)

obtained by replacing aa(s) by the Nelson-Aalen estimate
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th(s)/Yh(s).

We note that (5.6) is an estimator of the variance of Rh(l)
when the hypothesis (5.1) is trﬁe, while (5.8) is valid in gene-
ral. Thus if the alternative to the hypothesis (5.1) is ah(t)
> ag(t), with strict inequality for some t, then (5.8) will tend
to be greater than (5.6). This implies tha£ (5.6) is the best
variance estimator to use for testing purposes in such situations.

By choosing different weight processes Kh, we dget a number
of possible test statistics of the form (5.7). It was shown by
Andersen et al. (1982) how several one sample tests suggested
for the survival data situation (cf. Subsection 2.1) are special
cases of (5.7).

For the choice of weight process Kh= Yh' the test statistic

(5.7) reduces to

Uh= ) _ (5.9)
where
1
o.= ({ Jh(g)th(s) = Nh(l)

is the tdtal observed nﬁmber of type h events, while
] 0 1 o .
E,= g Jh(s)AYh(s) ah(s)ds = éah(s) Yh(s)ds,
by (3.9) and (3.14), is the "expected" number of this type of
events under the hypothesis. The choice Kh= Yh corresponds in
the survival data situation to the one sample logrank test (Bres-
low, 1975; Hyde, 1977), which in this case is known to be optimal

against proportional hazards alternatives
a, (s) = 6 al(s) (5.10)
h h*n's’ e )

Also in our more general set-up the model (5.10) is often approp-
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riate, and when Hy is rejected it is of interest to estimate the
parameter eh. Using the results of our Section 6, the maximum

likelihood estimator of Gh is found to be

8

0
=B

Moreover, @h is asymptotically normally distributed with mean Gh
and a variance that can be estimated by /e\h/Eh = Vh’ say. 1In par-
=3
ticular the test statistic (5.9) equals (@h-l)Vog, where
. . . A .
Von™ I/Eh is the estimated variance of 6 - under the hypothesis
eh= 1. Note that in the survival data situation (5.11) is simply

the well known standarized mortality ratio.

It is possible to use the convergence of the process Rh
(properly normalized) to a Gaussian martingale to derive Kolmogo-
rov-Smirnov type tests for (5.1), cf. Aalen (1976),~Fléming et al;
(1980), and our Subsection 4.1. We will not discuss the details
here, however.

' To test the hypothesis (5.2), we use the fact that the local
martingales.giVenrby (5.4) for h=1,2,...,k are orthogonal (cffv
Subsectidns 3.2vand'3;3). This implies that the Uh giveﬁ by
(5.7) are asymptotically independent. Thﬁs we may uéerthe stati-

stic

2 U (5.12)

1

2
X
h h

Il R

for testing the hypothesis (5.2). Under the hypothesis, (5.12) is
asymptotically chi-squared distributed with k degrees of free-

dom. For 'Kh= he h=1,...,k; (5.12) gives a statistic of the

well known form

- 2
Xk (Oh Eh)

X2 =h_£' _T_
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Example. Survival among diabetics

1

in the period in question, and among the 413 males we found

Among the 314 female diabetics, O0,= 39 were observed to die

02= 65. To investigate whether these figures are larger than

expected, judged from published life-tables for the general Danish
population, the test statistic (5.9) was calculated for females
and males separately. The "expected" number of females dying was

found to be E1= 6.34, while for males we found E2= 13.86. For

both sexes the test statistic (5.9) is highly significant in that

U1= 12.97 and U2= 13.74. Assuming a proportional hazards model

(5.10) (in Section 7 we shall return to a discussion of this
assumption), we find 6]= O]/E]= 6.15 and @2= 02/E2= 4.69
indicating higher excess mortality among females than among males.
Using the variance estimates Vh= eh/Eh' confidence intervals for

Bh can be constructed, e.g. by transforming a symmetric confi-

dence interval for log 6 Thus we find approximate 95% confidence

h.
intervals [2.82, 13.39] and [2.77, 7.93] for o, and 6,, respec-

tively. 0O

5.2 The k-sample problem

As in the preceding subsection, we consider a k-variate coun—
ting process N satisfying the multiplicative intensity model

(3.9). We want to derive a test for the hypothesis
(5.13)

The common value of the @, s will be denoted «.

Following Aalen (1978), who considered the two-sample prob-
lem, Andersen et al. (1982) introduced a class of statistics for
testing the hypothesis (5.13). Their idea was to construct a test

statistic by comparing the Nelson-Aalen estimators ﬁh(t), cf.



(4.2), with an estimator of the hypothesized common value

. » | | A
A(t) = [ a(s)ds. This latter quantity can be estimated by
0 :

Alt) -'}C 3(s)  ax. (s)
= [ Fgey (s,

k k
where N. =) N, Y. =) ¥, and J(t) = I(Y.(t)>0). This follows
h=1 D h=1 B i

"as in Subsection 4.1, since under the hypothesis, N.(t) is a
(univariate) counting process with intensity process a«(t)Y.(t).

We introduce

Jh(s)

Y.(s)

dN. (s),

o—¢t

ot
A (t) = {; Jh(s)d’;\(s) =

and note that, when (5.13) holds true, we have

£ J.(s) ' £ J.(s)

& (6) - % (e) = / ?¥T§7 an (s) - | ey M- (s), (54

k _ '
where M. = _Z Mh' Thus, except for random variations, ﬁh and
h=1 : ' :

Xh are equal under the hypothesis. In a similar manner as in
~ Subsection 5.1, we introduce locally bounded predictable weight

- processes K and define stochastic processes

h'

t | ‘ : -
z, (£) = [ K (s) d(ﬁh'-?xh)(s); h=1,...,ke (5.15)
_ 5 |

h
combinations of stochastic integrals. Especially Ezh(t) = 0 for

When (5.13) holds true, (5.14) yields that the Z.s are linear

all h and te€ [0,1].

It turns out that the special choice of weight processes
Kh(t) = Yh(t) L(t); h=1,...,k; | - (5.16)
where L is a locally boﬁnded ptedictable process that only dep-

ends on (N.,Y.), covers most examples of interest. Then (5.15)

may be written
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t t Yh(s)
Zh(t) = ({ L(s)th(s) - ({ L(s) 7. 157 dN.(s); h=l,...,k. (5.17)

k
We note that ) th 0. By an application of the martingale cen-
h=1

tral limit theorem (Theorem 3.2), it follows that the Z,s given
by (5.17) (properly normalized) converge weakly to a k-variate
Gaussian martingale under the hypothesis, as Fhe Yhs increase
(Andersen et al. 1982, Theorem 3.1, see also Helland, 1983, Sec-
tion 4). Especially 2z(1) = (Z](l),...,zk(l))' is asymptotically

multinormally distributed with mean zero and a (singular) covari-

ance matrix that can be estimated by V(1) = {th(I)}, where

1 Y, (s) Y.(s)
Vps (1) = c{ L2(s) gra7 (Opy~ voqsy ) N-(s), - (5.18)

and éhj is a Kronecker delta.

Thus, under the hypothesis (5.13), the statistic

x2=2z(1)' v(1)" z(1), (5.19)
where z(l)- is a generalized inverse, is asymptotically chi-
squared distributed with k-1 degrees of freedom (Andersen et

al., 1982, Section 3.1). Note that (5.19) may be computed by dele-
ting the last component of E(l) and the last row and column of
- V(1), to give go(l) and Yo(l) say, and then using the relation

2(1) ¥()7z01) = z,(1)* yo (1)~

go(l). Also, as in Section 4 the
integrals (5.17) and (5.18) are finite sums.

Andersen et al. (1982, Section 3.2-3.4) studied various con-
servative approximations to the test statistic (5.19), and discus-
sed how it generalizes the classical nonparametric tests as well
as their generalizations to censored data. For example the choice
L(t) = I(Y.(t)>0) corresponds to the logrank (or Savage) test
(Peto and Peto, 1972), while L(t) = Y.(t) gives a geheralization
of the Kruskal-Wallis test (Breslow, 1970). Also the tests sugges-

ted by Tarone and Ware (1977), Prentice (1978) and Harrington
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and Fleming (1982) are special cases of (5.19).

| For the two-sample problem, i.e. k=2, Aalen (1975, Theorem
9.1) showed that the logrank test is the asymptoticélly optimal
similar test against local (or more precisely, contiguous) alter-
natives where L3 and @, are proportional. Gill (1980a) studied
asymptotic relative efficiencies between various tests for the
two-sample problem, and showed how oOne can derive tests with opti-
mality properties against specified alternatives. |

Following the lines of the preceding subsection, let us now |

study the two-sample model with proportional intensities

az(t) = Qa](t) (5.20)

in more detail. When k=2 the Aalen (1978) test statistic based

on the process
t :
z(t) = [ K(s) (aR,(s) - d& (s)) (5.21)

0

is equivalent to the general k-sample test statistic (5.17). (wWith

K(t)‘= Y](t)Yz(t)L(t)/Y.(t), (5.21) is seen to equal Z2(t) given

by (5.17).) This two-sample test takes the form Z(1)V(1)~ % with

V given by

. |
- dN. (s)
v(e) = [K%(s) 5Ty, (s)

(i.e. V(t) equals V,,(t) given by (5.18) with the above mentio-

ned choice of K(t)). The optimal test under the model (5.20), the

vlogrank test, corresponds to the weight process
KL(t) = Y](t) Y2(t)/Y.(t).

Under the proportional intensity model it is of interest to
estimate the intensity ratio 60, in particular if Hy is rejected.
A class of consistent and asymptotically normally distributed

estimators of 6 is given by



- 5] =

x(t)aﬁz(t)

- Os—‘._;

(5.22)
[ ®(r)dh, (v) |
0 .

(Andersen, 1983a), and in this class, the "log-rank estimator"

@K has smallest variance under the null hypothesis 6=1. The
L '
variance of @K can be estimated by .
1, aN.(t)
~ [ (e)y (o v, (0) |
52 =62 0 K2 C(5.23)
K T UK T am, (e) S

(JK(t) =
e ey

It is seen that the Aalen test statistic defined below (5.21)
equals (@K—1)[30K]-1, where G%K is the estimated variance of

QK under the hypotesis 6 = 1, obtained by substituting 1 for @K :
in (5.23). ' | | .

The appropriateness'of the model (5.20) éan be checked
grapﬁically by plotting ﬁz(t)~ against ﬁ](t), or by plotting
log ﬁz(t) and log_ﬁ1(t) against. t (or log t). Under the model
(5.20) the former plot should approximate a straight iinerthrough
the origin (with slope =6) and the latter should yield approxima-
tely parallel Curves (with vertical distance slogf). Alterna-
tively, test sta£istics for pfoportionality can be constructed of

the form
t ~ ~ ~ k3 »
u(t) = é K(t)(dAz(t)-edA])), : (5.24)

where ih is some estimate for Ah,vh=1,2, and 3 is an estimate

for 9. Gill and Schumacher (1984) studied the case 1h= ﬁh and

~~

6 = QKF (cf£. (5.22)) and obtained when K(t)/K(t) is increasing a

test U(1) consistent against the alterhative that az(t)/a](t)
- is monotone. Wei (1983) showed that with K(t) = ¥, (t), iz(t) =

ﬁz(t) and § and 31(t) based on the Cox regression mbdel_(cf‘



Section 7 below), the process U(t) is distributed asymptoti-
cally as a time-transformed Brownian bridge. Finally Andersen

~ A . ~ A
{1983 b) showed that for =A , h=1,2, and 9 = €, with
Ah n' ’ RT

Kp(t) = ¥, (€)Y, (£)/(¥, (£)+BY¥, (t)) a test equivalent to that of

Wei (1983) is obtained, where 6 is any congistent estimator for

. . . , A . .
8. In the case of survival data the estimator SF is +the two

T
step estimator of Begun and Reid (i983).

The test statistic (5.19) is based only on the wedk conver-
gence of (5.17) for t=i. However, we have weak convergence of the
entire processes given by (5.17). For the two-sample problem this
may be used to‘derive Kolmogorov-Smirnov tfpe statistics suitable
for testing against "crossing intensities alternatives" (e.g.
Fleming et al., 1980; Gill,’]980a; Fleming and Harrington, 1981;

cf. also Subsection 4.1 above).

Example.

As an example of the applicability of the testing procedures
discussed in this subsection, let us examine whether male and
female diabetics have identical mortalities. The figures in Sec-
tion 4 indicate that males have a slightly higher mortality than
females. The two-sample logrank test for the hypothesis az(t) =
a](t) takes the value 1.62 corresponding to a two-sided p-value
of 0.11. The visual impression from the figures is confirmed by
the logrank estimator 6KL= 1.39, assuming proportionality dz(t)

= Ga](t). The estimated standard error of %K is 0.24 yielding
. L

an approximate 95% confidence interval [0.87, 2.22] for o (by
transforﬁing a symmetric confidence interval for log 9). Thus the

analyses in this section indicate that male diabetics have a

higher absolute mortality than female diabetics, but compared to

the mortality in the general Danish population female diabetics }

seem to have a higher excess mortality than males. |
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6. PARAMETRIC MODELS
In the two preceding sections we have considered nonparamne-
tric estimation and testing procedures for the multiplicative

intensity model. Alternatively the «_ s in (3.9) can be given via

v h
a parametric specification and maximum likelihood methods can be

applied. In this section we shall review the results of Borgan
(1984) for this situation.
To give a motivation for the general set-up, we first consi-

der the situation with censored failure time data. Let TyresTy

be independent and identically distributed (true) survival times
with hazard rate function a(t:go). Some commonly used forms for

a(t; are reviewed by Kalbfleisch and Prentice (1980) and Mil-

%)
ler (1981). We do not observe the T,s, but only censored survival

times T; and indicators D,= I(Ti=Ti): i=1,...,n (c£. Exampie

1, Subsection 3.1). Then for a very broad class of censoring mec-

hanisms (the important part of) the likelihood is
» n - D, . Ty
L(9) = 1 {a(T;:8) “exp(-[ a(s:9)ds)}
i=1 0

(e.g. Kalbfleisch and Prentice, 1980, Section 5.2).
With N(t) defined as in (3.2) and (3.6), and Y(t) defined

as in (3.3) and (3.8), we may write

1 1 :
logL(8) = [ log(a(s;8)) aN(s) - [a(s:;8) Y(s)ds, (6.1)
0 0 , ' '

and the maximum‘likelihood estimator @ is defined as a solution
to the set of equations 8logL(§)/28 = 0.

Turning to the general formulation, we let N = (Nl""‘Nk)
be a multivariate counting procéss satisfying the multiplicative

intensity model (3.9) with parametric «.s, i.e. the intensity

| h
process is given by



(t) =« (£58,) Y, (£); h = 1,00,k (6.2)

A,
h

a— s 3
where 8, = (9]0,...,9q0) belongs to some open subset © of

RY. Under some regularity conditions (e.g. Ralen, 1978, Section

3.3), the log-likelihood function now takes the form (cf. (6.1))

k 1 k 1
log L(8) =) [ logle, (s;0))dAN_(s) - ) [ «. (s:0)Y (s)ds, (6.3)
~ =1.0 h '~ h hel o b ~"h

and the maximum likelihood estimator @ is defined as a solution

to the set of equations

(s:8) /

1 |
0 .
(f) 50, @y (s:8) Y, (s)ds = 0; (6.4)

I =1,6e00e,9.

Borgan (1984, Theorems 1 and 2) shows that, under certain
regularity conditions on the a.s, the . 1ikelihood equations (6.4)
have, with a probability tending to one, exactly one consistent
solution § as the Yhs increase. Moreover, lﬁ is
asymptotically multinormally distributed with mean 30 and a
covariance matrix that may be estimated by —;(Q)-1, where I(8) =
bzlog L(g)/agz. Thus, the usual results for maximum likelihood
estimation in the i.i.d. case continue to hold under our more
general model (6.2).

The methods of proofs used in that paper are similar to the
classical i.i.d. case (Cramér, 1945). But in the present context
Lenglart's inequality (Theorem 3.1) is used to establish the con-
sistency results derived by the law of large numbers in the
classical set-up, while asymptotic normality is derived by the
martingale central limit theorem (Theorem 3.2). These results may
be used, since by (3.14) and (6.2), the left hand sides of (6.4),

evaluated at the true parameter value QO’ equal the stochastic

integrals
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56 “n(sifp)

J
ah(s;eo)

dM.h(S),' h= ]’o,cn'k- (6-5)

(We have used the notation E%T o, (s:8y) for S%T a(s:8)] =g )
j . ~ ~0

To illustrate hcw powerful the martingale technigques are in deri-

ving such general results, we give in the Appendix a detailed

derjvation of the properties of the maximum likelihood estimator

for a univariate counting process when g = 1.

By combining the results of Borgan (1984) with the argument
used to derive the properties of the likelihcod ratio test for the
i.i.d. case (e.g. Serfling, 1980, Section 4.4), we have that minus
two times the logarithm of the likelihood ratio test statistic is

asymptotically chi-squared distributed, also in our more general

setting.

Example. Survival with liver éirrhosis

_In Subsection 2.3 a brief introduction to the CSL-I study was
given. Here some analyses of the data from that trial are
reviewed.

We shall be concerned with the interaction between the treat-
ment (prednisone or placebo) and the biochemical variable pro-
thrombine, the value of which will be considered as either "low"
or "normal". fhe variable was recorded according to the follow-up
scheme described in Subsection 2.3. In the following analyses the
assum?tion is made that for each patient and for each time t, the
prothrombine value for this patient at t 1is the one that was
recorded at the last follow-up preceding t.

For each of the two treatments an illness-death model as
shown is Figure 3 is considered. Figure 9 shows the Nelson-Aalen

plots for the integrated death intensities. It is seen that for
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both treatments the aeath intensities are higher when.the pro-
thrembine value is low. Moreover, the "difference" between the
"low" and "normal" curve is smaller for the placebo treated pa-
tients than for those treated with prednisone.

Assuming proportionality between the death intensities for

patients with normal and low value within each treatment group we

can estimate the hazard ratio by the logrank version of (5.22).

For'prednisone treatment we find gpred= 0.159 and for placebo

treatment 8 0.294. A comparison between these hazard ratios

plac=
is most easily carried out by noticing that it follows from (5.23)
that @E has a variance that can be estimated by %éK/4 where

QéK is defined just below (5.23). Thus we find that when

eplac= epred the statistic
A% _ Ak
U= 2 plac pred
’ (32 + A2 )%
0,plac 0, pred

has an approximate standard normal distribution. Inserting the

) A A - . A =
estimates epred' gplac and o, plac™ and %0, pred”

we get the significant value U = 2.29, Thus the indication, look-

0.095 0.078
ing only at the death intensities, is that prednisone treatment
should only be given to patients with normal prothrombine value.

Figure 10 shows the Nelson-Aalen plots for the integrated
intensities for transitions from low to normal prothrombine. We
see that this intensity is highest for prednisone treated pati-
ents. Figure 10 also shows the cbrresponding curves for
transitions from normal to low prothrombine, and in this case the
prednisone intensity seems to be lowest.

A comparison between the transition intensities for the two
treatment groups can be performed e.g. by using the two-sample
logrank test. For the transitions from normal to low value the
test statistic takes the value - 3.16 corresponding to the signi-

ficance probability 0.002, and for transitions from low to normal
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the value 'is 2.09 (P=0.04). Thus both of the tendencies seen from
the figures are significant. Equivalent to these wvalues of the
test statistic are the logrank estimates ® = 0.72 for the iatio
between the transition intensities from normal to low value for
prednisone treated and for placebo treated patients with an
approximaté 95% confidence interval (0.57, 0.89). For transitions
from low to normal value we find B = 1.29 with an approximate 95%
confidence interval (i.01, 1.60).

So for patients with normal prothrombine value prednisone
treatment seems to be beneficial in that both the death intensity
and the tendency for getting a low prothrombine value is smaller
for prednisone treated patients. For patients with low prothrom-
bine value the situation is more complicated because both the
death intensity and the tendency for getting a normal prothrombine
value is higher during prednisone treatment. So in this case t‘he~
decisioh whether or not to treat a patient with prednisone cannot
be based solely on the estimated intensities. What is needed is’

an estimate for each treatment of the probability of being alive

at any time t given the initial state (low or normal). These ¢
probabilities can be estimated nonparametrically following the
lines of Aalen & Johansen (1978). We shall estimate these probabi-
lites under the pafametric assumption of‘constaht transition in-
tensities. JudgedAfrom the Figures 9 and 10 this assumption (which
is equivalent to linear cumulative intensities) is not too unrea-
ssnable even though there is a tendency towsrds highér transition
intensities shortly after start of trestment.

It is-essily séen from the likelihood equations (6.4) that theb
estimators in this simple model are occurrence/exposure rates (see

also Borgan, 1984, Section 5.1). That is, in order to estimate the



intensities, we only need to divide the total number of
transitions of the various kinds by the total amount of time spent
in the relevant states. The estimates are shown in Table 1.

From these estimates the same hypotheses as discussed above
can be tested and the same hazard ratios can be estimated. In no
case anv major discrepahicies“from the éarlier results are'founé.
From'the estimated transition intensites we can estimate the prob-
abilities of being alive at any time ‘t using the relations bet-
ween the transition intensites and the transition probabilities in
a Markov chain with constant intensities (see -e.g. Tuma et al.,
1979). The estimated probabilities are shown in Figure 11, and for
patients having normal prothrombine wvalue at start of treatment
the survival probability (as expected) is larger during prednisone
treatment. For patients having low value at start of treatment no
clear picture is seen and the conclusion is that for these

patients there seems to be no treatment effect. [J

Table 1. Model with constant transition intensitiesifor

patients with liver cirrhosis.

Prednisone Placebo treatment
treatment
Transition No. tran- Intensity|{No. tran- Intensity
~sitions per year |sitions per year
From low
to normal 164 0.69 159 0.53
From normal
to low 137 0.20 150 0.26
From low
to death 95 0.40 99 0.33
From normal
to death a7 0.070 51 0.089
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7. REGRESSION MODELS

'In the preceding sections attention has been focused on sta-
tistical models applicable when analvsing homogeneous groups of
individuals. The methods of inference discussed in the Sections
4, 5 and 6 were based on processes Nh(t) and Yh(t) obtained by

aggregating individual processes corresponding to the type h

event, cf. Subsection 3.1. 1In this section we shall study regres-

sion models for the individual intensity processes (3.10). 1In

order to include individual covariates or covariate processes

in the models, some assumptions have to be made about the way in
which these enter the individual intensity processes. We shall
mainly concentrate on extensions of the Cox regression model, that

is models where the factor a,(t,2;(t)) in (3.10) factorises as

ap (€24 (6)) = gy (£)a( 2y, (). (7.1)

It is convenient to let the vector of regression parameteré
g.='(3],...,ﬁp)’ be the same for all types h. This can always
be obtained, if necessary by introducing extra type specific co-
variates. Therefore,'@e have introduced type specific covariate
vectors ghi(t) = (Zhil(t)' ceey Zhip(t”’ on the right-hand side
of (7.1).

In the now classical regression model for survival data of

Cox (1972) (see also Kalbfleisch and Prentice, 1980), the relative

risk function g(+) was chosen to be the exponential function.

In this presentation we shall also discuss this case in greatest

detail; and only briefly mention models with a general form of the

relative risk function g(-).
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In Subsection 7.1 we discuss the counting process formnulation
of the Cox regﬁession rnedel, and study the statistical properties
of the estimators (Andersen & Gill, 1982). A brief discussion of
the modifications needed to allow a general relative risk function
g(+) 1is also included (Prentice & Self, 1983). Parametric re-
gression models (Borgan, 1984) are treated in Subsection 7.2,
while in Subsection 7.3 an alternative, linear regression model
for the intensity process (Aalen, 1980) is introduced. As an
example of the application of a Cox regression model to life his-
tory data, some results from an analysis of the diabetes survival

data are given.

7.1. The Cox regression model
We consider an nk-dimensional counting process (Nhi(t),
h=1,...,k; i=1,...,n),t€[0,1] where Nhi(t) counts the number

of type h events in [0,t] for individual i, see Subsection

3.1. We assume that ‘Nhi has intensity process of the form
| .

Myi (8) = gy (£)exp( 842y 1 (£))¥y; (£), (7.2)

cf. (2.2), (3.10) and (7.1). Here ¢gpe B = 1,...,k are unspeci-

fied type specific underlving intensities whose integrals
t

) = Ja
0 Oh

A, (t (s)ds are assumed to satisfy AOh(i)<w, h=1,...,k.

Oh

Furthermore EO = (BOI"'°’BOP). is a vector of unknown reqres-

3 3 : o = y ]
sion coefficients and ghi(t) (Ahi](t)""’zhip(t)) a vector
of predictable and locally bounded (type specific) covariate
processes. Some further boundedness conditions on the covariate
processes are also needed, see Andersen & Gill (1982, p. 1105 and

1110, item C).



Finally Yhi(t) is a predictable indicator process taking the
value 1 if the ith individual is at risk at time t- for
experiencing a type h event; otherwise Yhi(t) = 0.

The basic assumption in the extended Cox model (7.2) is that

each covariate Zhij(t) has & multiplicative effect on the inten-

sity:; in particular for time-independent covariates we have a

model with proportional intensities. The asymptotic properties of
the Coxvmodel for survival data have been Studied by Tsiatis
(1981) and Nas (1982), while the properties of the model (7.2)
were studied by Andersen & Gill (1982) in the case k =1, i.e. of

individual univariate counting processes. In the following we

shall formulate the corresponding results valid also when k>1.
The proofs of Andersen and Gill (1982) go through almost unchanged

for our more general model. The estimator ﬁ for EO is defined

as the solution to the equations (b/aBj)C(E,i) =0, 3=1,.e.,D,
where | ‘
-k n t
C(B,t) = hzlti__z_] gg'ghi(s)dnhi(s)—
t n .
glog{iz]Yhi(s)exp(Q'th(s))}th(s)], (7.3)
and Nh = Nh1+"'+Nhn' The process (7.3) can be regarded.és the

logarithm of a generalized Cox's partial likelihood function (Cox,
1972, 1975; Johansen, 1983). We shall not, however, use the
interpretation of @ as a maximum partial likelihood estimator

in the following; only the fact that it is a solution to
(a/ag)c(g,l) = 0. Hence we shall neither gd into a discussion of
the extended model of Johansen (1983), in which @ .(and the esti~

mate ﬁ for AOh(t) given belcw, see (7.8)) is the mazximum

on (£)
likelihood estimator, nor of that of Jacobsen (1984) in which a

maximum likelihood estimator differing from g is obtained.
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The key step in the derivation of the statistical properties
of @ is to notice the fact that, evaluated at the true value B
~of the parameter vector, the derivatives U(8,t) = (3/88)C(8,t)

of (7.3) are local square integrable martingales. To see this we

introduce the predictable processes

(0) 1%
Sy (8.t) = ¢ iZ]th( t)exp(8'2Z, . (x)),
sge) =1 Ty (012, (tlexnls'z, (£)) (7.4)
hi ‘=~ n .#]‘hi hij ‘o T
( )(q t) = 1 ? v. . (t)z (t)z (t)exp(8'Z,..(%))
Shyetd n L, hit T Thij hig PAZ Znsits//»
h=t,...,k; j,2=1,...,p;: and we define
(1)
(8, t)
hJ
E,.(B,t) = .
hj' > (0)
sy (8,t)

Then the Jjth component of U(8,t) 1is given as

l .

| A
O — ¢t

il >0

ugge) = [

t
—]. Z lj(S)thi(S)-orEhj(E"S)th(S)]l

i=]

and using (3.14) and (7.2) we see that

_!LMW'

n t :
U (8g.t) 1 é[ Zy34(8)-Byy(8g,8) JaMy  (s), 3=1,...,p  (7.5)

h=] i=i

are linear combinations of stochastic integrals. Thus the martin-
gale central limit{ theorem (Thecrem 3.2) can be applied‘to prove
that the process n-%g(go,-) asymptotical;y, as n»e, is distri-
buted as a mean zero.Gaussian martinga}e. To transform this
result into a theorem concerning the asymptotic distribution of ﬁ

we Taylor expand Uj(g,l) around 84



U (B.1) = Ug(fy 1) }f I, (85)(By=Bgy) (7.6)

where Q* is between § and EO and Ijz(E) is the second

order partial derivative of C(g,1) w.r.t. Bj and Bl’ Thus

17'8‘)‘(9‘—5‘- Ehj(ﬁ’S)Ehx(ﬁ’s)]th(S)' (7.7)
h ! :

We write I(B) for the pxp matrix with components Ijl(g).
Inserting ﬁ in (7.6) we get (since Uj(ﬁ,l) = 0 by definition
of ﬁ) |

with g* between ﬁ and Bp+ It now remains to be proved that
g is consistent as n+=», and that for each Q* with E* 3 EO
P

- L1 (g% > o,

n ji jr

where g = {ij} is positive definite.

Sufficient conditions for these results to hold were given by’

Andersen & Gill (1982) in the case k = 1. For k> the condi-
tions include an éssumption of the sums (7.4) converging uniform-

ly for t € [0,1] and B in some neighbourhood of 8, to func-

(2)
hijt
bability. Furthermore some regularity assumptions on the limiting

tions séo)(g,t),s(])(g t) and s (g,t), respectively, in pro-
s-functions are needed (Andersen & Gill, 1982, p. 1105, item D).
1
Under such conditions né(ﬁ—go) is asymptotically multinormally
distributed N (0, 2—]) and o can be estimated consistently by
- ijl(ﬁ), see (7 7).
Under the same set of conditions the estimates for AOh(t):

j*
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t . N
AOh(t) = é[nSéo)(@,s)]-]th(s), h=1,...,k (7.8)

. 0 . . - . . . - .
(with Sé ) defined in (7.4)) will be distributed asymptotically
as Gaussian processes. The proof for this goes as in Andersen and

Gill (1982, Theorem 3.4), the main step being to notice that
i (0) -1
of{Lnsh (Bg-s) ] 'aw, (s)-I(¥, (s)>0)ay, (s)ds}

with 'Yh= th+ cee + Yhn' h=1,...,k are local square integrable
martingales which are orthogonal to (7.5).

One should notice thét for a hombgenéous group of indivi-
duals, i.e. when all Z. =0 the estimator (7.8) reduces to the
Nelson-Aalen estimator (4.2).

The results mentioned so far make it possible to draw asymp-
totic inference on the regression parameters f in the presence
of the "nuisance" functions AR This property of the
model was in fact Cox's original motivation for introducing the
semi—parametric specification (5.1). In some cases, however, the
underlying intensities are also of interest, and we have seen how
their integrals AOh(t) can be estimated. The underlying inten-
sities themselves can be estimated by smoothihg ﬁOh(t) by means

of a kernel function similarly to the approach in Subsection 4.2:

1
Bom (£) =,% [K(E2)ahy, (s),  te[b,1-b]. (7.9)

Combining the asymptotic results of Ramlau-Hansen (1983a) with
those concérning ﬁOh(t) mentioned above, it can be seen that the
asymptotic distribution of (7.9) when n»= (and bn+0 in such a

way that nbn+=) is normal with mean

%o () and Yar}ance

cﬁ(t)/n, where cﬁ(t) is given by
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(t) 1
“on [K2(s)as.

o2(t) =
R el -

The latter quantity can be estimated consistently by

1 o | -—
52(¢) = -g éxz(—"—gé)[ S}(lo')(fé,s)] 2th(s).

Furthermore QOhl(t]) and Qth(tz) re independent for h,#+h,
g; Ty, (For these asymptotic results to hold it is crucial
that bn*o.‘_For fixed b the asymptotic variance will be larger
than aﬁ(t) and the independence result will not be true. The
relevant variance formula in this case was given by Andersen &
Rasnmussen (1982).) f

As noted above, the estimator ﬁOh(t) reduces to the ordina-
ry Nelson-Aalen estimator when all Ehi = 0. Another link between
the .Cox regression model and the models described in the preceding

sections is the fact that certain score test statistics based on

the extended Cox model (7.2) coincide with the nonparametric tests
discussed in Section 5. For’example, consider the k-sample prob-
lem with proportional intensities, i.e. introduce covariates

A A = Y- =
ghi(t) = (Zhil(t)""'zhip(t))’ where p = k-1, and Zhi.(t)

J

5ijﬁi(t)' j=1,...,p, and éhj as usual is a Kroneches delta.
Then the score test statistic for the hypothesis that each of the

corresponding regression coefficients is zero is

8 =U(0,1)'(-1(0)) 'u(o,1)

~

with U defined just above (7.5) and I in (7.7). It is easily
seen that S is equal to the k-sample logrank test statistic
((5.16), (5.17) and (5.18) with L(t) = I(Y.(t)>0)). Also the

other k-sample test statistics in Subsection 5.2 can be obtained
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by appropriate choices of time-dependent covariates, see Lustbader
(1980), oOakes (1981), Andersen & Giil (1982, p. 1110) and

Andersen et al. (1982, p. 236).

Example .

_In the example in Section 5 the influénce of sex on the mor-
tality among insulin dependent diabeticé was examined using &
nonparametric approach. We saw how it was possible to give an
"after the fact estimate" of the hazard ratio 6 by first estima-
ting the integrated intensitips ‘A](t) and Az(t), without assum-
ing pfbportionality, and afterwards estimating € from QT(t) and
'ﬁz(t), see (5.22). Using the Cox modei as.&escribed above; the
hazard ratio .9 = exp(B) and the underlying hazardrfunction
ab(t) can be estimated simultaneously. So, assume now that each
individual counting process Ni(t) corresponding to a fema;é
diabetic i has intensity process ao(t)Yi(t), with Yi(t) being
defined in the usual fashion as the predictable indicator for
individual i beiné’at risk at t=-. For a male diabetic Ni(t)

- has intensity process ao(t)exp(B)Yi(t).vThus'if we deﬁine‘the
covariate Zi]”by‘
' _{j 1 if i is a man,
Z,.= .
0 if i is a woman,
then any individual counting vrocess has an intensity process.

which can be written as

Mi(t) = ag(t)exp(B 24,7, (2),
cf. (7.2). In this examnple the estimated sex effect is ﬁ]= 0.33
with an estimated standard error 0.21. These results are in close

agreement with those of the example in Subsection 5.2 in that

r



exp(@1) = 1.39 with an approximate 95% confidence interval
[0.93,2.08]. One should notice that the confidence interval based
on the Cox regression model is more narrcw than the one based on

the estimate 9, . This is a consequence of the general result

KL
that any estimator @K of the form (5.22) has larger asymptotic
variance than exp(e) ({Andersen, 1983a).

Figure 12 shows the estimated integrated underlying intensity
Ao(t), in this case estimating the mortality among female diabe-
tics, and also the smoothed estimate Qo(t) using the same smoot-
hing procedure as in the example in Subsecton 4.2. Compafing these
two figures with the Figures 6 to 8, a fairly close agreement is
seen, indicating that the hypothesis of proportional hazards seems
reasonable.

Another covariate of interest is the age at onset of the

disease. Thus we introduce the covariate Zi2= age (in years) at

onset for indiwvidual no.i and consider the model

ki(t) = ao(t) exp(B]Zi]+Bzzi2)Yi(t).

Notice that the interpretation of By is now different. In the
first model exp(B8,) was the ratio between the hazard functions
for any male and any female dizbetic, whereas now exp(B‘) is the
ratio between the hazard functions for a male and a female with

the same age at onset. The estimates in the new model- become

8,=0.36 (0.21) and B,= -0.015 (0.014) with the estimated
standard errors given in brackets. The estimated correlation bet-
ween @] and @2 is_ -0.13. Due to this negatiVe correLationL
indicating that in this data set female diabetics tend to have a
slightly earlier disease onset than males, the estimated sex

effect increased slichtly from 0.33 to 0.36, The negative value

/
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§2= -0.015 indicates a worse prognosis for diabetics with early
disease onset.

In Subsection 5.1 we studied an alternative model £for the
mortality among insulin dependent diabetics, where the mortality
was assumed to be proportional to the mortality in the general
Danish population. Within the framework of the Cox regression
model it is possible to examine the proportionality assumption in
the model more closely. Andersen (1984) studied a model of the
form

li(t) = ao(t)exp(ﬁ'éi(t))ui(t)Yi(t)A. (7-10)

where ui(t) is the ggggg age-, sex- and calendar time specific
population based mbrtality for an individual similar to no.i. In
this model ao(t) is an underlying excess mortality and the co-
variates gi(t) have a multiplicative effect on the excess morta-

lity. The properties of the model (7.10) can be studied in a way

similar to the Cox model because ui(t)Yi(t) is predictable.

For the diabetes data a model of the form (7.10) was ana-
lysed. No covariates Zi(t) were included in thevexponent part of
the model, but possibly different excess mortalities “0](t) and
aoz(t) among females and males, respectively, were allowed.
Figure 13 shows the estimates QOl(t) and Qoz(t) obtained by
smoothing estimates ﬁO](t) and ﬁoz(t) by means of a kernel
function. For high and low value; of age t the standard error of
the estimates are la?ge due to the narrow window. It is seen that
both females and males tend tovhave a high excess mortality around
age 35-40 years indicating that the assumpﬁién of the intensities

being proportional to the population mortalities is probably

unrealistic.
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Fig. 13. Estimated excess mortality in relation to the general
Danish population for female diabetics (:-.-) and for male
(—) diabetics. '



Assuming that the excess mortality among males and females

are proportional (Figure 13 indicates that they are possibly iden-

tical) the ratio between the excess mortalities can be estimated
using the model (7.10) with the covariate 2, included. In this
model we obtain the estimate %]= -0.192 (0.21) confirming the
tendency seen in the example in Subsecticn 5.1 that females have a
slightly higher excess mortality. There we found %2/@] = 0.76 =

exp(-0.27). @«

In this subsection we have so far only considered versions of

the Cox regression model with an exponential form of the relative

risk function g(°+), see (7.1). Prentice and Self (1983) studied
Cox-type models with a general g(-+) (when k=1), and proved con-
sistency and asymptotic normality of the estimator ﬁ_ which maxi-
mizes (7.3) with t=1 -and B'Z,; (s). replaced by log g(ﬁ'ghi(s))-
The éonditions under which these asymbtotic results were proved
include those of Andersen & Gill (1982) sketched above, but in
addition some extra conditions are needed to ensure the positivity
'of g(8'%,,(s)) and positive definiteness of the estimator for )

in a.neighbourhood of B,, see Prentice and Self (1983) for

details.

7.2 Parametric regression‘models.

In the models discussed in the prévious subsection the factor
th(t) in (7.1) was left completely arbitrary in that no specific
form of aOh(t) was assumed. In this subsection we consider ‘an
nk-variate counting process as in Subsection 7.1, but instead of

(7.2) we assume that N has intensity process of the form

hi
Mg (8) = a5 (£780) exp(BiZ, (£)) Yy, (£), (7.11)

with 20 belonéing to an open subset of RY. References to papers
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where pa:ametric models of the form (7.11) have been studied in
the special case of survival data are given by Kalbfleisch and
Prentice (1980, Section 3). Borgan (1984, Section 6) studied maxi-
mum likelihood estimation for the model (7.11) for the special
case of k = 1, i.e. of individual univariate counting proceses.
We shall briefly present these results éxtended to our more gene-
ral setting.

The log-likelihood function is znalogous to (6.3), i.e.

k n
log L(6,B) = & I log (s;0) + B'2Z, .(s)}am,_.(s)
~B L [6” (o1 * (e b,

. |
- é a, (s,8) exP(E.%hi(s))Yhi(s)ds]’

and the maximum likelihood estimators @ and ﬁ are defined as

solutions to the set of equations

(e]
k n .] ‘5‘9—1 ah(s"g) 1 R | .
hzl izllg ‘ ah(s’g) thi(s)-g 33;ch(s’g)exP(E ghi(s))Yhi(s)ds]=0
j=1,...,9 and ' ' (7.12)

1

El [g Zhil(S)thi(S)_g ah(s.g)zhix(s)exp(g éhi(s))Yhi(s)ds]=o

|t

h=1 i

2=1,.00,p The‘proof for the asymptotic properties of the esti-
mators @ and ﬁ now proceéds exactly as in Eorgan (1984) by
first of all noticingbthat the left hand sides of the likelihood
equations (7.12) evaluated at the true parameter values 20 and
EO‘ are linegr combinations of stochastic integrals of the predic-

o) ” J -
table processes bej ah(s,go)/ah(s,go) and “hix(s)’ respective
ly, w.r.t. the local square integrable martingales Mhi(t)=

t .
.Nhi(t)-f.khi(s)ds. Hence a central limit theorem for these mar-
; o
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tingales can be;provéd using Theorem 3;2. Subject to some regula-
rity cond;tlons th;s result can be used to prove that uhe maximum
likelihood estimators are asymptotlcallv multinormally dlstrlbuted
with the proper expectation and with a covariance matrix that may
be estimated in the usual manner. The regularity conditions needed
are slight extensions of those of Borgan (1984, p.14), in pafticu—‘
lar asymptotic stability conditions on the sums (7.4) (as wéll as
a similar "third order" condition) have to be fulfilled.

The results of Borgan (1984, Section 6) may also be used to
derive that minus two times the logarithm of the likelihood ratio
test statistic is asymptotically chi-squared distributed in the
usual manner (cf. our Section 6).

As it was thé case for the Cox regression model (Subsection
7.1) other forms of the relative risk function than the
exponential one'can be.considered, but the regularity conditions

get more complicated.

7.3 A linear regression model for the intensity process.

An alternatzve regre551on model for a multlvarlate countlng
process N(t) = (N](t),...,Nk(t)) was introduced by Aalen (1980)
He suggested a matrix version of the multiplicative intensity

model, assuming that the intensity process satisfies
Alt) = Y(t) a(t), - (7.13)

~

(a],...,ap)', p<k, being a vector of unknown functions and
Y(t) = (¥ (t)), h=1,...,%kx, j=1,...,p, a matrix of predictable

processes. Thus the model is given by

xh(t) =Y, (t)a (t)+... Y (t)a (t), h = ‘l,...,k.
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As an example h could refer to the single individuals, Yy ,(%)
could be the "usual” indicator of individual no. h being at risk

at time t—"and» for j = 2,...,p th could be defined as

th(t) = Z\hj(t) ‘:m(t),

for some predictable covariate processes 2. .(t).

hj
Estimators for
t
Aj(t) = [ e.(s)ds, j=1,.00,p
: o 3 ‘ .
can be defined by
A(r) = g J(s) ¥ (s)aN(s), O (7404)

where Y (t) is a generalized inverse of Y(t) (i.e. Y satisfies

Y (£)¥(t) = the rxr identity matrix) and J is defined by

J(t) = lim I[rank Y(t-At) = r]
At+0 . .

(thus J is predictable). It follows now that with 5*(t) =

t . ' o '

-[J(s)g(s)ds, s - A is an r-variate local square integrable

0 ' . .

martingale with predictable covariation process (a pxp matrix)
t

A-a*>(t) = [ 3(s) ¥ (s) Als) ¥ (s)'ds,
v 0 v ‘ .

~ where § is the matrix diag(x],...,hk). From this result some
exact and asymptotic properties may be derived.
Except for the computation of Y  the estimators (7.14) are

simple and the model (7.13) is a truly nonparametric alternative

to the semi-parametric and parametric regressior models discussed
in the two previous subsections. Aalen (1980, section 5) presents

one application of this regression model.



8. LIMITATIONS OF THE COUNTING PROCESS APPROACH

As seen in the preceding sections, the "counting process
approach” to life history analysis is very useful in the étudy of
a number of statistical estimation and testing procedures. How-
ever, in its simple form,‘as prgsented in this paper, it does not
solve every problem, and in thié final section we comment upon
some points which illustrate the limitations. Some areas where
further research is needed are also mentioned. |

Only for the very simplest situations in life history ahaly-
sis, like type I1 censored exponential life times (Epstein and
Sobel, 1953), is it possible to derive useful expressions fof the
exact distribution of'thé estimators and test statistics. Thus
- most statistical procedures for analysing life history data have
to rely on large sample results, and it is impoftaﬁt to kncw "how
large" a sample must be to make this appropriate. We have reviewed
how the martingale central limit theorem may be used to study the
asymptotic properties of many estimators and test statistics.t
However, little is knoﬁn about the rate of convergence fof‘the
martingale central limit theorem, so the counting process approach
cannot help us solve this problem. | ) |

For the special case of a competing risks model,‘Cébrga and
Horvath (1982)«ﬁéve‘3tudied uniform rates of convergence for the
Nelson-Aalen estimators and certain transforms of these. Their
results are quite dissappointing in géneral, in that they‘indicate
“that quite 1arge sample sizes may be needed'for the‘asymptoticé to

hold. However, we believe that their results are too general to

give guidance about the sample sizes needed in concrete applicati-

ons. Our guess is that simulation studies.for "tYpical“ situations
encountered in pratice will show that the large sample results are

satisfactory for much smaller sample sizes than those indicated
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by the results of Csdrgd and Horvath (1982).
| Some simulation studies have in fact been performed to study
the small sample properties of some'of the statistical methods
discussed in this paper in the special case of censored survival
data. We mention the studies of the performance of parametric and-
nonparametric two-sample tests of Gehan and Thomas (1969), Lee et
al. (1975) and Latta (1981), the studies of parametric regression
models and the‘Coxbregression model of Peace and Flora (1978) and
Lee et al. (1983), and Schou and Vath's (1980) studv of failure
time data from an exponential diétribution under various types of
censorship. However,-mudh work remains to be done before a satis-
factory knowledge of the small sample properties of the various
estimators and test statistics has been established. Especially
we will mention the possibility of using transformations to im-
prove the approximations to the asymbtotic distributions. Kalb-
fleisch and Prentice (1980, pp. 14-15) mention this possibility in
connection_with the Kaplan-Meier éstimator for the survival func-
tion, and Schou and Vath (1980) show that the cubic-root of the
occur:ence/exposure rate may be considered to be;approximatély
| normally distributed for much smaller sample siges than are needed
for the occurrence/exposure rate itself. ’ | |

In Subsection 3.1 we indicated how‘the results of this paper
are valia under quite arbitrary censoring mechaﬁisms, as long as
censorihg only depends on the “past“ and outside random variation.
Speaking in technical terms the censbring processes Ci(') ’of

Subsection 3.1 have to be predictable. There are some important

situations in which this is not the case.
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In testing with replacement, items are life tested one at a

time. At each failure, ﬁhe failed item is}replaced'by a new 6ne.
‘ 'vapbservationlstops after a fixed period,of time, then the last
~item is censored. Moreover, its censcring time is determined by
the possibly longer life times of the»preceaing iiems, i.e. the
censoring doces not depend sclely on_the "past". This means that
the results presented above cannot be applied. It is, however,
shown e.g. by Gill (1981) how more élassical arguments for i.i.d.

random va:iables can be used to study this situation.

For semi-Markov models, or Markov renewal processes, the
intensity for a trﬁnsition between two states depends on the time
elapsed since the entry into the current state. Thus "time" starts
anew at zero after éach transition into a new state. For éensored
observations of such a process, we get the‘same type of problem as
‘discussed above, and in general theycountingkprocess approach in
its simple form cannot be used (Gill, 1980D) . However, Voelkel and
Crowley (1984) show how one via a randgm time’change may apply the
counting process methods of this paper for some hieraréhical semi-
Mafkoé.processes,’ - ' ‘

For‘sequeniial analysis with étaggered entry one has to con-
sider tﬁo time scales simultaneoﬁsly, a fact which makes the ﬁheo-
retical probleﬁs'much more complicated, Sellke and'siegmund'(1983)‘
discuss this Situatién for Cox's (1972),proportional hazards hodel
,with‘one regression parameter. Here the derivative of the log-
partial-likelihood functidn, evaluated at the true-pafameter
value, will no 1onge: bé avmartingale as was the case in our Sub-
section 7.1. However, Sellke and Siegmund (1983) show that it may
be approximated by a martingale, so that the martingale central

limit theorem may still be used. Another paper on sequential
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‘analysisvwith staggered entry is by Siud (1984), who discusses
nonparametric two-sample tests for this situation.

Thus there are important situations with censored data that
are nét covered by the results reviewed in this paper. Another
important limitation is that most statistical methods presented in
the Sections 4-7 above make strict demands in terms of data accu-
racy; in particular dated events on the individual level are usu-
ally needed. (An important exception, where oniy‘aggregate level
data are needed, is parametric regression models with piecewise
constént underlying intensities and soleiy qualitative time—inde-
pendent covariates, cf. Borgan (1984, Section 5.2) for a particu-
lar simple example of such a situation.) Real life data are bften
less comprehensive. For iﬁstance, it happens that information is
only available on the exact timeyfor some of the events of inte-
rest, or data may be missing for a systematic part’of the study
population. Development of statistical methods for situations
with incomplete d#ﬁa'is therefore of considerable interest. There
seems, however, to be no general solution to the problem of esti-
mating the intensities of partially observed Markov chains or more
general stOChastié process models. Aléo'we believe that it will
_bé more the exception than the rule that the counting process
| apptoach wiil help in solving such problems. A few examples will
illustrate these points. | | |

When the number of study_subjects is large the cOmputations
needed to5evalﬁate ﬁhe maximum partial-likelihood estimator Q of
Subsection 7.1 may be very time-consuming, especially if some
 covariates are time-dependent. Consideral reduction in computing

time may therefore be achieved by comparing each failure with a

T
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random sample of the corresponding risk set (Thomas, 1977; see
also Oakes, 1981, Section 3.4; Breslow et al., 1983,‘Section 6).
The same idea may be‘applied to implement the‘Cox regression model
for,case—contro} studies (Prenticerand Breslow, 1978) . To our
knowledge the distributional properties of the resulting estima-
tors for the regression parameters have‘nbt been studied (seé.
"however, Oakes, 1981; Breslcw et al., 1983). Also it seems as if
the counting process apprcach does not work for this situation,
the reason being that a simple relation.like:(3.14) (combined with
(7.2)) will no longer hold for the modified version of (7.3)
valid when we sample from the risk set. Probably ﬁore claésical‘
results for i.i.d. random variables may still be used, however,
see Borgan and Gili (1982) who use a Skorohod construction as in
Breslow and Crowley (1974) to study Neisoﬁ-Aalen?type estimators
and nonparametric tests for case-control studies in a Markov chain
setting. - _ | | |
Similar problems arise in the study of demographic incidence
‘rates by Borgan and Ramlaﬁ-Hansen (1983). They consider a special
Caée of'parti311Y’observed Mafkov chains, in which transitions
within a subset of states are observed in detaii, while cOuhts of
transitions out of this subset are only observedvaégregated‘over
the states. Such situations arise in demography, where one for
instance in a study of marriage formation and.dissolutioﬁ in a
female birth cohort may have detailed information,about the marri-
ages, but no information about the distribution of the women over
the‘various marital statuses. rgan and Ramlan-Hansen (1983) |
study estimators of the Nelson-Aalen- and occurrence/exposure—tYPe
for this situation. Since relations like (3.14) (combined with
(3.9)) do not apply for the estimators they consider, the martin-

gale central limit theorem cannot be used, however, and they
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have to study the distributional properties of the estimators Dby
more classical methods.

As a £final example of a situation where incomplete data oc-
cur, and where the methods discussed in this paper do not work,
let us mention experiments with laboratory animals. For such
experiments one is seldom able to observe the exact time for the
onset of a aisease, and alternative incomplete observational plans
have to be used. Such observational plans may include the killing
of certain animals at prespecified times (serial sacrifice) or
periodic diagnosis of live animals, see Borgan et al. (1984) who
also provide further references to the literature. It is hard to
see how the counting process}approadh can.be of much use in étudy—
ing statistical procedures for'analysiﬁg data from such experi-
ments.

One problem in which incomﬁlete data occur and where martin-
gale methods have proved useful is the epidemics model studied by
- Becker (1977, 1981) and Becker & Hopper (1983). They considef a
closed population of “"susceptibles" to which an "infected" indivi-
dual arrives and study the intensity at which the infectious dis-
ease 1s spread. In this situation it is unreasonable to aséume
that one is able to observe both the number of susceptibles and
the number of infected at any time +t. However, under the assump-
tion of a constant infection intensity a« these authors derive an
estimator @ that can be expressed in terms of observable gquan-
tities, and they study the properties of @« using martingale
methods.

In conclusion, aetailed life history data may be given a
thorough analysis using the methods based on counting processes
discussed in £his ﬁaper. However, if less precise inforﬁation is
available, then alternative techniques are necessary. Some such
techniques can, as we have seen in this final section, also be
based on counting process ideas, but not in the simple form as

presented in this paper.
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APPENDIX

A. Derivation of the statistical properties of the Nelson-Aalen

estimato:s

As mentioned in Subsection 4.1, the statistical properties of
the Nelson-Aalen eStimatars (4.2) are most conveniently derlved by
introdﬁcing the quéntiﬁiés 'A;(t), see-( A). It should be rea11~
zed, howevér,‘that provided that !5  increases‘unifogglz (in pro=
bability) over [0,1], the differéncehbetween' Ahb and A;, will
eventually vanish, and A; may be replaced by Ah' e&erjﬁhere in
the.asympiotié results below. | , | |

The key formula for deriving the properties of ﬁh(t) is
(4.5) which we repeat'hg#e: ' | '

t J,(s) o o
Ah(t) - Ah(t) - m am.(s); (A
h=1,...,k. It‘folIOWS that the ﬁh" Ah are mean-zero local square
integrable‘martingalea, and the orthogonality of the Mhs. and

(3.18) give that (A.1) have,predictable‘covariation‘processes

-t g (s)
<Ah.Ah ﬁ "'A >(t) = hJ (’) TT'T Cth(s)dSp - (A.2)

where 6hj is a Kronecker delta, and we'wriﬁe, <M,M> for <M>,
Thus, the local martingales (A.1) are also orthogonal. From these
facts follow the "unbiasedness" property for all t € [0,1] (assum-

ing that the expectations exist, cf. remark just above Theorem 3.1)

ER (£) = BAR(£): h = 1,... .k,

and furthermore that the processes gﬁ-A;, h=1,2,..,,k, have
uncorrelated increments and that ah(t) - A;(t) is uncorrelated
with ﬂj(s) - Ag(s). for any s,t and hzj. |

The mean squared error function of (4.2) is given by
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o (£) = E[A () - A;(t) 2. (A.3)

E<A -A7>(t),

where the latter equality follows from the definition of <M> as
the compensator for M2. As an estimator for th(t), we use Qh(t)
given by (4.6). The difference between (4.6) and (A.3) equals the
stochastic integral f h(s)[‘Y (s) ] aMh(s), so that (4.6) is
unbiased.

To study the large sample properties of the Nelson-Aalen
estimators, we consider a sequence of counting processes indexed -
by n=1,2,.., each satisfying the.multiplicativé intensity mbdel
with the «a. s being the same for all n. By a direct application

h
of Lenglart's inequality (Theorem 3.1) we get, using (A.2), that

P -
n) *(n) '
sup (t) - (¢) | » 0 (A.4)
te[0,1] Ah
as n »> =, if only
1 J]fl“)(s) p
ah(s)ds -0 (A.5)

(n)
0 v~ (s)
as n *» =». We note that (A.5) essentially requires that Yhn)(t)

becomes large for all t € [0,1].

Let us then study the asymptoﬁic distribution of the Nelson-

Aalen estimators. We will do this by applying the martingale cen~-

tral limit theorem (Theorem 3.2). By (A.2), what essentially is

needed for the applications considefed in this paper is that

Yén)

other applications (e.g. Aalen, 1978, Section 8) we need to nor-

(t)/n converge to some deterministic function as n + «. For

"malize the 'Yhs'by other constants than {n}. By Theorem 3.2 (with

p=kn=k), we may therefore state the following general result.
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Theorem. Assume that there exist a sequence of positive constants
e -

{an}, increasing to infinity as n » =, and non-negative square

integrable functions ¢, h =1,2,...,k, defined on [0,1], such

that

A) For each t € [0,1] and h=1,2,...,k

(n)(s)
2 é ;TET_- @, (s)ds » jghz(s)ds as n > o.

B) For all h and € > O

£ 3 3™ (s) o 1] crl‘j"(s)l T
a. (s) I(ja_ —F——]| > e)ds » O as n > =,
n 0 Y(n)(s) h n Y}(’_n)(s)
Then
(n) _ a*x(n)
A &) ' p (%
a [ > [ ’
n . .
glin) - A;:(n) X
where Xi' 2,...,Xk are 1ndependent Gau551an martingales with

Xh(O) =0 and Cov(xh(s) Xh(t)) = ]tAs gh(u)du.

The (kxk)-matrix of predictable processes Hjh in Theorem

. . . v . - -1 .
3.2 1is in this case diagonal with Hhh anJhYh . In all appli
cations in this paper we will have a = n;é

In practice the verification of the conditions A and B is
not always so direct, and it is useful ﬁo have alternative and
more easily verifiable sets of conditions. A simple set of condi-
tions, sufficient for A and B to hold true, and which is often

fulfilled in practice, is

A') For h=1,2,...,k

P
(n) (n) 1-1 >
ti?g,l]'ag Iy (t)[Yh ()] o (t) - gﬁ(t)*l 0Oas n + =.
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B') For h=1,2,...,k

P
sup | anJ(n)(t) [Y}gn)(t)]-]| > 0

£€[0,1] h

Alternative sets of sufficient conditions are discussed by Gill
(1980a, 1983b), Andersen et al. (1982) and Helland (1983). To
apply the weak cénvergence result in practice, one must be able to
estimate the covariance function of the limiting Gaussian martin-

gale. By Rebolledo (1980) we héve that, if Conditions A and B hold

true, then for all h and t € [0,1]

P t
aﬁ%ﬁn)(t) > g gﬁ(u)du, (A.6)

where Qén)(t) is defined as in (4.6).

An application of Lenglart's inequality (Theorem 3.1) shows
that we have uniform convergence for t € [0,1] in probability in

(A.6) provided that

1 Jén)(s) - P
ah(s)ds > 0

L

aﬁ -, (n) 3
0 (¥, (s)]

as n » =, and that we have uniform convergence for t € |0,1] in

probability in Condition A. It is straightforward to see that

Conditions A' and B' are sufficient for this to hold true.
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B. Asymptoctic properties of the maximum likelihood estimator for a

one-parameter univariate counting process model

We consider a sequence {N(n)} of univariate counting pro-
cesses, where N(n)(t) has intensity process a(t;eo)Y(n)(t),
with BO belonging to an»open interval © of R. By (6.3) the
log-likelihood function for the n-th model takes the form

1 1
log L(8) = g log(a(s; 8))an‘®) (s) - é a(s: 0)Y ) (s)as, (B.1)

. . . . A . . .
and the maximum likelihood estimator en’ is defined as a solution

to the equation

1 2 .
dlog L(8)_ ' 3o %{s:6)
38 0 a(s;0)

1
an{® (g) - [ 25 asio) v (s)as=0. (B.2)
0

- A
We will here derive the properties of L under the follo-

wing sufficient set of conditions. (For a general set of conditi-

ons, see Borgan (1984, Section 4).)

1) There exist a sequence of nonnegative constants a s increasing
to infinity as n » o, and a function y such that Y(p)/ag
converges uniformly on (0,1] to y in probability as n »+ =.

2) There exists a neighbourhood eo of 90 such that a(t;9)

and its derivatives of first, second and third order w.r.t. 8

‘exist and are continuous functions of 6 € 0p+ Moreover, they are

bounded on (0,1 ]x@,.

3) a(t;8) is bounded away from zero on [O,I]XGOQ
, .
4 ) ) ' 1 %62 c(s;:®
t) o2(6y) > 0, where o2(8) = é 1CTI) y(s)ds.

In all applications in this paper we will have a = n

We may prove:
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Theorem With a probability tending to 1, the likelihood equation

(B.2) has exactly one consistent solution 6n under Conditions 1-

4. Moreover

a_(8 -0.) 2 §(0,[a2(s,)17 ),

where 02(90) is defined in Condition 4.

Proof: By a Taylor series expansion we have for 6 ¢ eo

1 dlog L(®) _ ' 2
gi ——‘3———-‘39 =A + B (6-85) +% Cc (8-0,4)%. (B.3)
Here
A = 1 d log L(eo)
n _ a< RL) ’
n
] d321og L(SO)
Bh = & 562 '
n
and
37 *
] 0° log L(en)
C. = = ‘
n a< FCE !
n

where 9: is between 6 and 60. Let us study the behaviour of

these three terms as n » «.

By (6.5)

0 .
1 39 a(s,eo)

(n), |
5 | G(S:eo) dM (5)1

9
A, =&
n

such that (3.17) and an application of Lenglart's inequality

(Theorem 3.1) gives that for all 6,n > 0 we have

o)
— a(s;8,)
P(|a_|>n) <.—f]-2- + P (< %z.f ea(S'O g’ am'™ (5)>(1)56)
n ‘"0
1 o a(s;:0,) (n)
8 ] 20 Yol 12 . y'\? (s)
=37 T P( gzr-;(f) [ cc(s;eo) a(s,eo) _——a; ds > §).




By Conditions 1-3 the last term on the right hand side converges
to zero as n + @, so we have that

An 3 0 as n > =, (B.4)

Using (3.14) and (B.2) we see that

32

1 32 (si85)  y(n) (g
Bn - é a(s;eo) a; ds
1 32log(a(s;6.)) ,
+ %T é =52 0 dM(n)(s).
n

0

Here the second term converges in probability to zero by an argqu-

ment similar to the one giving (B.4). Therefore Conditions 1-3

give that

P
- 2 ® .
Bn > o (eo) as n »+ , | (B.5)

Finally by Conditions 2 and 3

(n) 1 . (n)
]
le | < K, N ), K, | X—;Tiil ds
n 0 n

for some constants K1 and K2 not depending on 6. Another
application of Lenglart's inequality (Theorem 3.1) and Condition 1

therefore give that there exists a finite constant M not depen-
ding on 6 such that

lim P(|C_|<M) = 1. | "~ (B.6)

n->o

From (B.3) - (B.6) it follows as for the classical i.i.d.
case that there exists a (weakly) consistent solution to the like-
lihood equation (B.2). (See e.g. Serfling (1980, pp. 147-148),
with convergence almost surely replaced by convergence in proba-
bility.) It is shown in Billingsley (1961, pp.12-13) that if 6;1)
6;2)

and are twb consistent solutions of (B.2), then the
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probability that éé’)= @;2) goes to one as n + =, so that (B.2)
has an essentially unique (weakly) consistent solution.

To prove the second assertion of the theorem, we use (B.2)
and (B.3) to write

d log A
Y

0 = = A+ B (6§ -0)) +%c (8 -6,)2

S0

I ) .
when en € ?O' By this

-a_ A
a (@ -8 n.n P

n' n O) 0

>
Byt Cn(én—eo)
as n + », By (B.5), (B.6) and the consistency of

L 8 -0.) £ - 2 | - e e
@n, Bn+ L (ﬁn eo) 4 o (eo) as n +» «, and it follows that
)

an(@n-eo has the same asymptotic distribution as anAh/cz(eo).
Now
1 % a(s:6,)
anhpy = %_ / aea(s-e ? dM(n)(s)
n 0 ’ 70

is a stochastic integral with respect to a square integrable mar-

tingale. Since, by Conditions 1-3,

y o Swoelsieg) o |
< g; J d(s;eo) aM (s) > (1)
S 1 gmalsitg) vy P o
é [ ACH ) ] a(s;eo) aZ ds = ¢ (60)'

as n »> «, an application of the martingale central limit theorem
(Theorem 3.2) gives that anAn P N(O,cz(eo)), and the theorem is
proved. Note that, except for the application of the martingale
central limit theorem, the proof of the asymptotic normality is
exactly as for the classical i.i.d. case (e.g. Serfling, 1980,
p.148). U |

| It is shown in Borgan (1984) that 62(90) may be estimated
consistently by -agzazlog L(@n)/6925 The proof of this result

uses (B.5) and the fact that @n is consistent for 90.
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