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ABSTRACT. Let X 1 , ... ,Xn be a random sample from an unknown probability 
distribution P on the sample space X, and let 8 = 8( P) be a parameter of inter­
est. The present paper proposes a nonparametric 'Bayesian bootstrap' method of 
obtaining Bayes estimates and Bayesian confidence limits for 8. It uses a simple 
simulation technique to numerically approximate the exact posterior distribution 
of 8 using a (non-degenerate) Dirichlet process prior for P. Asymptotic argu­
ments are given which justify the use of the Bayesian bootstrap for any smooth 
functional 8(P). When the prior is fixed and the sample size grows five approaches 
become first-order equivalent: the exact Bayesian, the Bayesian bootstrap, Ru­
bin's degenerate-prior bootstrap, Efron's bootstrap, and the classical one using 
delta methods. The Bayesian bootstrap method is also extended to the semi­
parametric regression case. A separate section treats similar ideas for censored 
data and for more general hazard rate models, where a connection is made to 
a 'weird bootstrap' proposed by Gill. Finally empirical Bayesian versions of the 
procedure are discussed, where suitable parameters of the Dirichlet process prior 
are inferred from data. 

Our results lend Bayesian support to the classic Efron bootstrap. It is the 
Bayesian bootstrap under a noninformative reference prior; it is a limit of natural 
approximations to good Bayes solutions; it is an approximation to a natural 
empirical Bayesian strategy; and the formally incorrect reading of a bootstrap 
histogram as a posterior distribution for the parameter isn't so incorrect after all. 

Key words and phrases: BAYESIAN BOOTSTRAP, BETA AND DIRICHLET PRO­

CESSES, CONFIDENCE INTERVALS, EMPIRICAL BAYES, FIVE (AT LEAST) STATIS­

TICIANS, SEMIPARAMETRIC BAYESIAN REGRESSION 

1. Introduction and summary. Let X 1 , ... ,Xn be independent and identically 
distributed (i.i.d.) according to an unknown distribution P. For convenience take the 
sample space to be X = n, the real line, so that P can be identified with its distribution 
function ( c.d.f.) F. Most of the methods and results in this report have natural extensions 
to n Tc and indeed to any complete, separable metric space X. 

Let 8 = 8(F) be a parameter functional of interest, like the mean, or median, or the 
standard deviation, or J l:z:- p-l(t )I dF(x ). We shall be concerned with nonparametric 
Bayesian estimates of and confidence statements about 8, and need to start out with a prior 
distribution on the space of all c.d.f. 's. A natural class from which to choose is provided 
by Ferguson's (1973, 1974) Dirichlet processes; this class is rich, each member has large 
support, and at least posterior expectations (Bayes estimates under quadratic loss) can be 
calculated for a fair list of cases. Thus let 

F,...., Dir(aFo), (1.1) 
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i.e. F is a Dirichlet process with parameter aFo. Here Fo(.) = EBF(.) is the prior guess 
c.d.f. whereas a > 0 has interpretation as prior sample size, see Ferguson ( op. cit.). Sub­
script B -means that the operation in question is relative to the Bayesian framework. 

The observed sample :z:1 , ••• , Zn gives rise to and can be identified with the empirical 
c.d.f. Fn(t) = ~ L:~=l J{:z:i < t}. The posterior distribution ofF is 

{1.2) 

Thus the distribution function 

{1.3) 

is in principle known to the statistician. In addition to the Bayesian point estimate fJB = 

EB{fJ(F)Idata} = jtdGn(t) we wish to calculate Bayesian confidence limits fJL and fJu 
from the data, obeying PrB{fJL < fJ(F):::; fJuldata} ..:_ 1- 2a, say. Thus 

{1.4) 

are the natural choices, where G~1 {p) = inf{t: Gn(t) ~ p}. 
The fact that Gn above is only very rarely explicitly available, however, necessitates 

devising computational approximations. There are a couple of rather laborious ways to 
simulate variables from a close approximation to Gn. That is, a sequence Yb Y2 , ••• being 
i.i.d. with a distribution very close to Gn can be generated, thus enabling one to obtain 
a close approximation to Gn and to the sought-after fJB, fJL, fJu; see 2A and 9B below. 
It turns out that the following rather simpler alternative simulation strategy gives a good 
approximation to the posterior distribution Gn: Generate a 'Bayesian bootstrap (BB) 
sample' x;' ... 'x~+a of size n + a from the mixture distribution 

a n 
Fn B(t) = EB{F{t)ldata} = --Fo(t) + --Fn(t), 

' a+n a+n 
{1.5) 

the natural Bayes estimate of the underlying c.d.f. F, and compute a 'BB parameter value' 

n+a 
fJBB = fJ(FBB) = 8(n: a L I{XI < . } ) = fJ(X;, ... ,X~+a) {1.6) 

i=l 

on the basis of the empirical c.d.f. FEB of these values. The proposed approximation to 

{1.7) 

where subscript '*' is used to indicate operations relative to the (data-conditional) BB 
framework. In practice Gn(.) is evaluated via simulations as 

1 boot ...... ...... 2: b Gn(t) . Gn boot(t) = -b I{fJBB :::; t} 
' oot 

b=l 
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for a large number boot of independent BifB of the type described. This idea, inserting Gn 
for Gn, leads to using 

1 boot ..... J ..... """ b 8B = t dGn(t) ..:.. boot L...t 8BB' 
b=l 

(1.8) 

the BE-based Bayes estimate of 8(F), and to the BB percentile interval 

Other Bayesian posterior calculations can be carried out with the same relative ease, like 
computing Bayes estimates with non-quadratic loss functions. 

The motivation for the BB method lies in the fact that the two conditional distribu­
tions .CB{Fjdata} and .C*{F.BBidata} are reasonably close. This is explained in Section 2. 
When the prior sample size parameter a goes to zero (corresponding in a certain sense to 
the case of a 'noninformative nonparametric prior' for F) the BB becomes Efron's classic 
bootstrap. In particular the BB percentile interval becomes Efron's (uncorrected) per­
centile interval. One may therefore think of the BB as an 'informative extension' of the 
usual bootstrap method, capable of incorporating prior information on F. This also lends 
some Bayesian credit to Efron's bootstrap, and shows that the incorrect interpretation of 
the traditional bootstrap distribution as a posterior distribution for the parameter isn't 
so incorrect after all. Note that the BB smooths also outside the data points, unlike the 
classic bootstrap. In the a close to zero case the BB is also an approximation to Rubin's 
(1981) 'degenerate prior Bayesian bootstrap', as indicated in Section 2. A large-sample 
justification for the BB is given in Section 3. Under frequentist circumstances it is shown 
that five different approaches tend to agree, asymptotically; the exact Bayesian, the boot­
strap Bayesian, the Rubin bootstrap, the ordinary nonparametric large-sample method, 
and the classic bootstrap. 

Section 4 gives two Bayesian bias correction methods for the BB. In Section 5 the BB 
method is shown at work for a couple of parameters. Some suggestions on how to select 
parameters in the prior Dirichlet process is briefly discussed in Section 6, thus opening for 
empirical Bayes versions of the bootstrap. In particular the Rubin method, for which the 
Efron method is the BB approximation, can be seen as a natural empirical Bayes strategy. 
Section 7 presents the BB for semiparametric regression, where the residual distribution 
is given a Dirichlet prior. This leads in particular to an interesting frequentist bootstrap 
scheme suggestion. In Section 8 we deviate a bit from the main story and report on a 
brief investigation into bootstrapping schemes for censored data and hazard rate models. 
Finally several supplementing remarks are made in Section 9. 

2. The Bayesian bootstrap. This section motivates the Bayesian bootstrap method 
(1.5)-(1.9) and explains why it can be expected to work. Then connections to Efron's (1979, 
1982) traditional bootstrap and to Rubin's (1981) degenerate-prior Bayesian bootstrap are 
commented on. 

2A. Approximating the posterior distribution. Before discussing our Bayesian boot­
strap method further, let us mention that the posterior distribution Gn of (1.3) can be 
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evaluated exactly for a few parameter functionals. Section 5 provides calculations for 
() = F{A}, A a set of interest, and () = p-1 (p), the p-quantile. For other parameters it 
may be possible to carry out almost-exact simulation of .CB{Ojdata}, as hinted at before 
(1.5). 

For such an example, let () = J xdF(x) be the mean of F. The exact distribu­
tion of() given data can be obtained, but the resulting expressions are complicated and 
make exact simulation difficult. See Hannum, Hollander, and Langberg (1981), Yamato 
(1984), and Cifarelli and Regazzini (1990). However, the posterior distribution can be 
approximated with that of()' = ~~=1 XiF{xi} + ~j:1 y;F{A;}, say, where A17 ••• ,Am 
is a fine partition of 'R - {XI, ... , xn}, and Y; E A;. This ()' can then be simulated, 
since (F{xl}, ... , F{xn}, F(A1), ... , F(Am)) has a {finite-dimensional) Dirichlet distribu-
tion. Hjort {1976) showed that f3m --+d j3 in X implies Dir{f3m) --+d Dir(/3) in the space 
of probability masures on X, w.r.t. various metrics, and JxdFm(x) --+d JxdF(x) under 
a mild extra condition on {f3m}· This result justifies C(O) ~ £(8') above, and can be 
used to approximate Gn also in more general cases, using a simpler variable that involves 
only finite-dimensional Dirichlet distributions. Another almost-exact simulation strategy 
is described in Section 9B. 

This example illustrates that (1.3) in general will be difficult to obtain via exact or 
almost-exact simulation from Gn. The Bayesian bootstrap method described in {1.5)-{1.9) 
is clearly much simpler. Note that Xt is from F0 with probability a/ (a+ n) and is equal to 
x; with probability 1/(a+n), for j = 1, ... ,n. The description in {1.6)-{1.7) assumed a to 
be an integer. If a= m+/3, say, with man integer and 0 < j3 < 1, generate n+m+1 Xi's 
from Fn,B instead, and use FaB(t) = [~~~t I{Xi < t}+f3l{X~+m+1 :::; t}]/(n+m+f3). 

To explain why the BB method can be expected to work, consider the two data­
conditional distributions CB{Fjdata} and .C*{FaBldata}. Judicious calculations give 

EB{F(t)jdata} = Fn,B(t), 

E*{FaB(t)jdata} = Fn,B(t), 

COVB [{F{s),F{t)}jdata] = 1 Fn B(s){1- Fn B(t)}, {2-1) 
n+a+1 ' ' 

cov* [{F_BB{s),F_BB(t)}!data] = n: a Fn,B(s){1- Fn,B(t)}, 

for all s :::; t. Accordingly, for well-behaved functionals 8 = O(F) we would expect 

{2.2) 

As a point of further comparison it may be considered a bit annoying that the skewness of 
Fjdata is about twice that of FBB !data, but they are both small for moderate to large n: 

E {F(t) _F. (t)}sjdata = 2Fn,B(t){1- Fn,B(t)}{1- 2Fn,B(t)} 
B n,B (n+a+1)(n+a+2) ' 

E {F* (t) _F. (t)}3jd t _ Fn,B(t){1- Fn,B(t)}{1- 2Fn,B(t)} 
* BB n,B aa- (n+a)2 . 

(2.3) 
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One might therefore expect the (uncorrected) BB and the exact Bayes methods to be first 
order but not second order equivalent; see Section 3. 

We could have made the second order moments agree completely and not only ap­
proximatively in {2.1) by drawing n +a+ 1 BB-data, instead of n +a, to form Fi:JB· The 
difference is tiny and disappears for moderate to large samples. We have chosen BB-sample 
size n + a to better reflect the Bayesian balancing of prior information and data and to 
better highlight the generalisation from the usual Efron bootstrap. 

2B. Connections to other bootstraps. Consider the non-informative case a close to 
zero (or, rather, a/n close to zero). Then the BB procedure advocates taking bootstrap 
samples of size n from the usual Fn, and basing analysis on simulating(}* = 8(X:, ... ,X~). 
But this is the familiar nonparametric Efron bootstrap! In particular the BB percentile in­
terval becomes Efron's (uncorrected) percentile interval. Thus the BB method is a proper 
Bayesian generalisation of the classic bootstrap. And since the BB really works, by Sec­
tion 3, this also lends Bayesian credit to the classic bootstrap; it is the 'vague prior' version 
of a natural nonparametric Bayesian strategy. The incorrect interpretation of the boot­
strap distribution (say in the form of a histogram of 1000 bootstrap values) as a posterior 
distribution for the parameter isn't that incorrect after all; it is an approximation to the 
true posterior distribution if the starting point is a Dirichlet with a small a. 

There are better confidence interval methods than the percentile method for the clas­
sic bootstrap, but the more sophisticated versions, incorporating bias and acceleration 
corrections, are still first-order large-sample equivalent to the simple one. Corrections to 
the BB percentile interval appear in Section 4 below. It should also be remarked that the 
classic bootstrap has several other uses than the making of confidence intervals, like esti­
mating variances of complicated estimators. The BB scheme is general enough to handle 
such problems too, but would in general need an inside bootstrap loop as well. 

Rubin {1981) and Efron {1982, Ch. 10) discuss a simple Bayesian bootstrap differ­
ent from the one proposed here. The Rubin bootstrap, although somewhat differently 
presented in his paper, can be seen to be the limiting Bayes method obtained by using 
F"' Dir{aF0 ) as prior and then letting a--+ O, i.e. using .CB{data} = Dir{nFn), see {1.2). 
{Actually, Rubin and Efron consider only finite sample spaces, but the extension to the 
present generality is not difficult using the available theory of Dirichlet processes.) In this 
limiting case Fldata is concentrated on the observed data values, F = ~~=1 diS( xi), with 
weights { d1 , •.. , dn) following a Dirichlet {1, ... , 1) distribution {uniform on the simplex of 
nonnegative weights summing to one). In particular values of 8(F) can be simulated from 
the exact Gn of {1.3). The di's may be simulated as ei/{e1 +···+en), where the ei's are 
unit exponential. If 8( F) = J x dF( x) is the mean, for example, then a large number of 
realisations of 8(F) = ~~=1 diXi = ~~=1 eixi/ ~~=1 ei can be generated, the distribution 
of these values will approximate Gn, enabling one to get good numerical approximations 
to (JB and to the interval {1.4). Rubin (1981) notes that this approach, though different 
in interpretation, agrees well, operationally and inferentially, with the ordinary bootstrap 
procedure. 

The Rubin bootstrap does not come out of letting a --+ 0 in the BB method proposed 
here. Results of Section 3 show that these are large-sample equivalent to the first order, 
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in particular the Bayesian using a Dirichlet prior with a small a (Rubin) may view the 
Efron bootstrap (which is our BB with small a) as a numerical simulation device giving 
approximately the same results. Rubin's method smooths the weights, but rigidly sticks 
to the observed data poins (as does the ordinary bootstrap), whereas the more generally 
applicable BB method proposed here smooths also outside the data points, using Fn,B· 
One might call this paper's BB the informative Bayesian bootstrap and Rubin's BB the 
degenerate-prior bootstrap. (And with due fairness Rubin didn't advocate its general use, 
but concentrated on connections to and comparisons with Efron's method.) The results 
and remarks above suggest that the present informative BB comes much closer to being a 
proper Bayesian generalisation of Efron's bootstrap, both in operation and in spirit. 

In a recent paper Newton and Raftery (1991) have developed a Bayesian-inspired 
weighted likelihood bootstrap. In its nonparametric form it generalises Rubin's method 
in a way different from our BB. Their method does not smooth outside the data points, 
whereas our does, in presence of a prior guess Fo. See further discussion in their Section 
8. There are finally indirect connections to some of the bootstrapping schemes we discuss 
for hazard rate models in Section 8 below. 

3. Large-sample justification: Five statisticians agree. In this section it 
is proved that the two conditional distributions .CB{8(F)Idata} and .C*{8(F)Idata} are 
asymptotically equivalent to the first order. We also show that five different approaches 
tend to give the same inference for large samples; the classical using delta methods, the 
classic bootstrap, the accurate Bayesian using Dirichlet priors, Rubin's non-informative 
prior bootstrap, and the BB. Then some supplementing remarks are made. 

3A. Finite sample space. Assume first, and mostly for illustrational purposes, that 
the sample space is finite, say X= {1, ... , L}. Let 

ftrue(l) = Prp{Xi = l}, 
1 n 

fn(l) = - L I{xi = l}, 
n i=l 

and fn B(l) = afo(l) + nfn(l). 
' a+n 

Efron (1982, Ch. 5.6) observed that 

.C{ VnCfn- ftrue)} ~ NL{O, ~Cftrue)}, (3.1) 

.C*{ y'n(f~- fn)ldata} ~ NL{O, ~Cfn)} ~ NL{O, ~(!true)} a.s., (3.2) 

where f~(l) = (1/n) I:~=l J{zi = l} stems from the ordinary bootstrap, and where ~(f) 
has elements f(l)Sz,m - f(l)f(m). Efron discussed why (3.1)-(3.2) may be taken as an 
asymptotic justification for a class of inferential procedures based on the bootstrap. Note 
that the (3.1)-(3.2) results rely only on asymptotic theory for the multinomial distribution, 
and that the 'almost surely' statement refers to the set !10 of probability 1 under which 

each fn(l) goes to ftrue(l). 
These can now be accompanied by results for the exact and the BB approximated 

posterior distributions .CB{fldata}, .C*{fimldata}. The framework is the frequentist one, 
where the Xi's are truly i.i.d. from !true· One can prove 

.CB{(n +a+ 1)112(!- fn,B)Idata} ~ NL{O, ~Cfn,.B)} ~ NL{O, ~Cftrue)} a.s., (3.3) 

.C*{(n + a)112CfBB- fn,B)Idata} ~ NL{O, ~Cfn,B)} ~ NL{O, ~Cftrue)} a.s. (3.4) 
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The first follows from asymptotic properties of the Dirichlet distribution, while the second 
is essentially the multidimensional central limit theorem. Note that exactly the same 
a.s. set Q0 is at work in (3.1)-(3.4). The parameter a is supposed to be fixed in (3.3)­
(3.4), so that fn,B -t ftrue on no, but arguments underlying the indicated approximations 
show that the two distributions are approximately equal even if a goes to infinity with n. 

[Certain minimax procedures correspond to using a proportional to -Jii, for example; see 
Hjort {1976).] Efron's discussion of the consequences of (3.1) and (3.2) {1979, p. 23; 
1982, Ch. 5.6) can now be applied to (3.3) and (3.4) as well, and provides the asymptotic 
justification for the BB procedure for the case of a finite sample space. 

It is interesting to note that if only a/ Vn -t 0 as n grows, then fo{f(l) - fn(l)}­
fo{f(l) - fn,B(l)} goes to zero, which implies 

.CB{ vn(f- fn)ldata} -t NL{O, ~Utrue)} a.s., 

.C*{ vnU8B- fn)ldata} -t NL{O, ~{!true)} a.s. 

(3.5) 

(3.6) 

Accordingly, looking back at (3.1)-(3.2), four different approaches will lead to the same 
inferential statements, up to first order asymptotics: the classical based on fni the ordinary 
Efron bootstrap; the proper posterior Bayes; and the BB. This holds for each fixed a, also 
for a -t 0, which means that Rubin's degenerate-prior bootstrap (see Section. 2) also is 
large-sample equivalent to the other four. 

3B. The real line. Now consider extension of the preceding results and conclusions 
to X = R. The degree to which (3.1) and {3.2) and its consequences have analogues for 
X= R was investigated in Bickel and Freedman {1981) and Singh {1981), and later on in 
the form of extensions and refinements by other authors. The canonical parallel to (3.1) is 

.C[.JTi,{Fn(.)- F(.)}] -t Wo(F(.)) in D[-oo,oo], (3.7) 

where Wo is a Brownian bridge and convergence takes place in the space D[ -oo, oo] of 
all right continuous functions y(.) on the line with left hand limits and obeying y( -oo) = 
y( oo) = O, see for example Billingsley {1968). Bickel and Freedman {1981) proved the 
bootstrap companion 

.C* [.JTi,{F:(.)- Fn(.)}ldata] -t Wo(F(.)) in D[-oo, oo] a.s., (3.8) 

and concluded that the bootstrap works for well-behaved functionals () = O(F). 
These results can be parallelled in the present Bayesian posterior context. Again, 

we look at limiting properties in an ordinary framework in which Fn according to the 
Glivenko-Cantelli theorem converges uniformly to F = Ftrue on a set no of probability 
one. 

THEOREM. Let a vary with n in such a way that Fn,B = (aFo +nFn)/(a+n) goes to 
some Foo on no; Foo is just Ftrue H only afn goes to zero. Then 

.CB [(n +a+ 1)112{F(.)- Fn,B(.)}Idata] -t Wo(Foo(.)), 

.C* [(n + a)112 {F_BB- Fn,B(.)}Idata] -t Wo(Foo(.)), 

along every sequence in no. 
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PROOF: The second statement is within reach of the (triangular version of) the clas­
sical Donsker invariance theorem for i.i.d. random variables. The first statement involves 
proving finite-dimensional convergence and tightness. Finite-dimensional convergence fol­
lows upon studying asymptotic properties of (finite-dimensional) Dirichlet distributions. 
To prove tightness (with probability 1), calculate first E(k + 1)2(U- a)2(V- {3)2 where 
( U, V, W) is Dirichlet ( ka, kf3, k1) and a + {3 + 1 = 1. The resulting expression can be 
bounded by 3a{3, regardless of k. Hence 

(n +a+ 1)2 EB [F(s, t]- Fn,B(s, t]}2 {F(t,u]- Fn,B(t,u]}2 ldata] 

~ 3Fn,B(s, t]Fn,B(t, u] 

for s ~ t < u. Taking limsup gives the bound 3F00 (s, t]Foo(t, u] on the right hand side, for 
sequences in !10 • This implies tightness by the proof of Billingsley's {1968) Theorem 15.6 
(but not quite by the theorem itself). 0 

Thus the conditional distributions B(F)Idata and B(F.BB)Idata will be close to each 
other for well-behaved functionals, justifying the BB method. Particular examples can 
be worked through, as in Bickel and Freedman (1981 ). Their tentative description of 
well-behavedness (p. 1209) can also be subscribed to here. Sufficient conditions for 

CB [(n +a+ 1)112{8(F) - 8(Fn,B )}!data] -+ N{O, u 2 (F00 )} a.s., 

C* [(n + a) 112 {8(F_BB)- B(Fn,B)}Idata] -+ N {0, o-2 (Foo)} a.s. 

to hold, for appropriate variance o-2 (F00 ), can be written down using von Mises or influ­
ence function methods. See for example Boos and Serfling (1980) and Parr (1985), who 
use Frechet differentiability, or Shao {1989) who uses Lipschitz differentiability, or Gill 
(1989) with Hadamard or compact differentiability. The limit results obtainable using 
such machinery imply 

where Zp is the p-quantile of the standard normal. 
If a is fixed, or only aj ,fii -+ 0, then 

CB [ ,fii{F(.)- Fn(.)}ldata] -+ Wo(Ftrue(.)) a.s., 

C* [J1i{F_BB(.)- Fn(.)}ldata] -+ Wo(.Ftrue(.)) a.s. 

A conclusion concerning the approximate agreement among the five statisticians referred 
to after (3.5)-(3.6) is therefore reached also for X = 'R (and for more general spaces). 
Each of them reaches confidence intervals that are first-order equivalent to 

8(Fn)- z1-a u(Fn)/vn < B(F) ·~ 8(Fn) + z1-a u(Fn)/vn, (3.11) 

albeit from different perspectives and with partly different interpretations. This holds 
for each Dir(aFo) prior, and, regarding the classic bootstrap, holds for both the simple 
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percentile interval and for the somewhat better reflected bootstrap interval [28{Fn) -
G~-1 (1- a),28(Fn)- G~-1 (a)], where G~ is the bootstrap distribution. 

It is,perhaps surprising that a simple method like the BB, constructed merely to make 
the mean function and covariance function of the exact and approximate distributions of 
F(.) agree, can work well for the vast majority of parameter functionals. As indicated 
in {3.9)-(3.10) this is at least partly the work and the magic of the functional central 
limit theorem. This also points to the possibility of using 'small-sample asymptotics' 
machinery to arrive at other approximations to the posterior distribution Gn, for example 
Edgeworth-Gramer expansions combined with Taylor expansions. Such an approach would 
be functional-dependent, however; a primary virtue of the BB is that it is both simple and 
versatile. A similar remark applies to the classic bootstrap, of course. 

The results in this section are taken from the technical report Hjort {1985). Results 
resembling (3.9) and (3.10) have also been found by Lo {1987), who also worked with rates 
of convergence. 

4. A Bayesian bias correction to the BB percentile interval. The ordinary 
frequentist bootstrap percentile intervals can be corrected for bias and acceleration, see 
Efron {1987). The BB percentile interval {1.9) cannot be corrected in the same way, 
cf. Hjort (1985, Section 4). There is another possibility of detecting and repairing a bias, 
however. For each in a respectable catalogue of examples there is a known transformation 
h, perhaps the identity, such that the posterior expected value of h(B(F)) is explicitly 
calulable by some published formula, i.e. vo = EB{h(B(F))!data} is known. The BB 
procedure uses 

to estimate Hn, the c.d.f. of h(B(F)) given data, and approximates vo with 

{4.1) 

say. Accordingly, if e =J. O, then fin is not a perfect estimate of Hn. The repaired estimate 
He(t) = fi(t +e) gets the mean right, however. Hence 

would be a natural corrected confidence interval for h(B(F)). Transforming back we obtain 

{4.2) 

as the bias-corrected BB percentile interval for B(F). Of course this interval is just {1.9) 
if e = 0. We emphasise that the bias correction is not concerned with frequentist coverage 
probabilities, but is a simple way of repairing the BB estimate Gn of Gn so as to get the 
mean of h( 8( F)) straight. 
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As an example, suppose an interval is needed for u(F), the standard deviation. One 
may prove, using methods of Ferguson (1973) and Hjort (1976), that 

Es{u2 (;)idata} = n +a [-a-u2 (Fo)+-n-u2 (Fn)+-a ___ n_{8(Fn)-8(Fo)}2 ]. 
n+a+1 n+a n+a n+an+a 

(4.3) 
The bias corrected confidence interval for u( F) is therefore 

where e is the difference between the average value of the observed (uBs) 2 and EB{u2 (F)i 
data}. 

One can also write down a slightly more general bias and variance corrected BB 
percentile interval which also takes into account the value of rJ = Var{h(8(F))idata} if it 
is available. Assume that, in addition to { 4.1 ), 

boot · 

ri = J(t- vo? dHn(t) . b~ot L {h(8ifs- ilo}2 = ri(1 + s?. 
b=1 

A perhaps better estimate of Gn(h-1(t)) is then Hn,~,o(t) = Hn((1 + S)t + e- voS), since it 
manages to get both the mean and the variance right. Using fl~! 6(p) = {H;;:-1 (p) + vo6-

' ' e} / {1 + 6) one ends up with 

For an example, consider the mean parameter 8( F) = J x dF( x), for which the posterior 
expectation is Vo = a~n 8( Fo) + a~n X n and the posterior variance is 

2 1 [ a 2 n 2 a n · 2 ] r0 = --u (Fo) + --u (Fn) + ----{8(Fn)- 8(Fo)} . 
n+a+1 n+a n+a n+an+a 

The last formula is proved using methods of Ferguson {1973) and Hjort {1976) again, 
cf. ( 4.3). The bias and variance corrected interval for 8(F) is 

~-1 ~-1 

Gn (a)+ vo6- e < B(F) < Gn (1- a)+ voS- e. 
1+6 - - 1+S 

One can similarly handle parameters of the type g (J f( x) dF( x)). 
It should also be possible to construct a Bayesian skewness correction, cf. (2.3), but 

this is not pursued here. 

5. Some exact calculations. This section looks briefly into the nature of the BB 
approximation method in two cases where exact calculations are possible. 

SA. A probability. If 8(F) = F(A) for some set A of interest, then 

.Cs{B(F)idata} =Beta{ aFo(A) +#(xi E A), a(1- Fo(A)) +#(xi¢ A)}. 
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Thus (1.3) and (1.4) can be obtained from tables of the incomplete Beta function. In 
this case the BB method amounts to approximating the Beta distribution Gn with that of 
Y/(n +a), where Y is binomial [n +a, {aFo(A) +#(xi E A)}/(a + n)]. 

If U is Beta{mp,m(1- p)} and Vis Bin{m,p}/m, then EU = EV = p, and 

Var U = p(1 - p) , Var V = P(1 - p). 
m+1 m 

They differ in skewness and kurtosis, but not to any dramatic extent; for example, 

(m + 1)112 1- 2p 
skew U = 2 { ( )}1/2 ' m+2· p 1-p 

1 1-2p 
skewV = m1/2 {p(1- p)}1/2. 

Brief investigations have shown the distributions of U and V, and therefore confidence 
intervals based on either the exact or BB approximated distributions, to be remarkably 
similar, even for moderate m. This holds provided p is not too close to zero or one, 
provided a is not too close to zero, and finally provided the discrete distribution of V is 
interpolated. Rather than using Gm(t) = Pr[Bin{m,p}/m ~ t], which jumps at the points 
jfm, use Gm(jfm) = tPr[Bin{m,p}/m < jfm] + tPr[Bin{m,p}/m < (j- 1)/m], and 
interpolate linearly in between. Similar modifications to Gn of (1. 7) should also be used 
in other cases where it increases in sharp jumps. 

5B. The median. The p-quantile functional is another example where it is possible to 
calculate the posterior distribution explicitly, but the resulting expressions are complex, 
and the BB would be much easier to carry out in practice. For simplicity only the median 
B(F) = F-1(t) = inf{t:F(t) ~ t} is considered here. 

Assume for concreteness that the data points are distinct, with x1 < ... < Xn· We 
shall find Gn(t) = Pr{B(F) ~ tidata}. For data point Xj one has 

Gn{x;} = Pr{F(-oo,:z:;) < t,F(-oo,x;] ~ t} 

= Pr{U < t,u + V ~ t} = Pr{U < t, W < t}, 

in which (U, V, W) is Dirichlet with parameters a= aF0 (:z:;-) + j- 1, f3 = aF0{x;} + 1, 
and 1 = aFo (xi, oo) + n - j. Taking the prior guess c.d.f. to be continuous we find 

r(a+f3+i) 1 (1)a1 (1)'Y 
Gn{:c;} = r(a)r({3)r('Y) a 2 :; 2 

r(a+n) (1)a+n-1 
= r(aF0 (:z:;) + j)r(a{1- F0 (x;)} + n- j + 1) 2 . 

Next consider Gn[t, t+dt] for some t outside the data points, and let for further convenience 
F0 be the integral of a prior guess density fo. Following the reasoning above one may show 
that Gn has density at t E (:z:;,xj+1) given by 

r(a + n) . . 
9n(t) = r(aFo(t) + j)r(a{1 _ Fo(t)} + n _ j) afo(t) J [ aFo(t) + ), a{1- F0 (t)} + n- J], 
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where 
1 1 

J[a,1] = 1212 ua-1w'Y-1{1- u- w)-1 dudw. 

It is in principle possible to compute for example the posterior expectation and the upper 
and lower 5 percent points for Gn based on this. 

Now consider the BB method in this situation. Let for simplicity n +a= 2m+ 1 be 
odd. The BB approximates the complicated Gn using X['s from Fn,B, as follows: 

Gn(t) = Pr* [BilE =median{ X;' ... ' x~+a} ~ tldata] 

= Pr[Bin{2m + 1,Fn,B(t)} 2: m + 1]. 

Expressions for Gn{:z:;} and for the density 9n that the distribution has between data points 
can be worked out based on this, and they can be compared with Gn and 9n obtained above. 
Such a study is not pursued here. Note that the endpoints of the BB confidence interval 
{1.9) can be found using binomial tables. Note finally that in the non-informative case, 
where a ---? 0, both Gn and Gn are supported on the data points. 

6. Empirical Bayesian bootstrapping. The ideal Bayesian is able to specify a 

and F0 from the infamous but abstract 'prior considerations'. Results of Section 3 show 
that the importance of these parameters diminishes and disappears with growing n, but 
they do matter for small and moderate n. This section briefly discusses some empirical 
methods. 

6A. Choosing a and parameters in F0 • In some situations previous data may be 
available that are either of the same type as the Xi's or at least of a similar type. In the 
best case one has m previous measurements Xf that come from the same F as the new 
Xi's. Then one may use a= m (indeed the 'prior sample size') and F0 equal to a smoothed 
empirical distribution or some fitted normal, say. 

In other cases one might have a specified candidate F0 from previous similar data, but 
without knowing for certain that the new data are from the same distribution. Then the 
problem is to choose a, either from informal 'strength of belief' considerations, or from the 
new data. One wants to use a small a if data disagree with the old F0 and a larger one 
if they seem to fit. This can be done in a formal way by looking at moment properties of 
the empirical distribution Fn. We have E(Fn- Fo?IF = (F- Fo? + F{1- F)/n, so that 

2 2 1 (1 1 a) E(Fn- Fo) = E(F- Fo) + -EF(1- F)= - + -- Fo{1- Fo), 
n a+1 na+1 

and this can be used to fit a suitable a, for example via 

J 2 1( n-1)j E { Fn - Fo) dW = n 1 + a + 1 Fo {1 - Fo) dW, 

which holds for each weight measure W. Choosing W = F0 gives 1/6 for the last integral 
(in the continuous case). 
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There are other estimation methods for a with a fixed Fo and that to a larger extent 
uses properties of the Dirichlet process. The maximum likelihood estimator can be derived, 
see Hjort_ (1976). This and some other estimators depend however on the ties configurations 
in the data in a somewhat strange way, and the sufficient statistic is Dn, the number 
of distinct data points. This stems from some of the more esoteric and less satisfying 
mathematical properties of samples from a Dirichlet, and equating moments of natural 
quantities like above seems much more reasonable. 

In still other cases there might be parameters in the prior guess Fo to specify, say 
Fo = N {J.Lo' un. Then one is helped by EXn = E I :c dF( :c) = J.to and 

1 ~ -2 2 a 2 E-- L..,(Xi- Xn) = Eu (F)= --u0 • 
n-1. a+1 

~=1 

If F0 is nonsymmetric one might fit parameters using also 

E (n _ 1}(n _ 2) t,(X;- Xn)' = E j {x -!'(F)}' dF(x) 

=a: 1 a: 2 J {x- p,(Fo)}3 dFo(z). 

All these moment methods should be used with care and sense. The moment formulae 
here have been proved using methods in Ferguson (1973) and Hjort (1976). 

We mention finally that a frequentist inspired double bootstrap method for fitting a 
good weight a~n in the mixture a~nFo + a~nFn was suggested in Hjort (1988). 

6B. Gross validation and Rubin-Efron as empirical Bayes solutions. Observe that 
the kind of schemes described above can be used on the basis of only the given data 
set, by dividing it into a small training set and the remaining test set, or by some more 
elaborate cross validation strategy. A simple version of this is as follows: Pick a data 
points to constitute the training set, from which the nonparametric guess on F is Fa, the 
empirical c.d.f. for these. Since the remaining n - a data points come from the same F 
the considerations above suggest using a Dir(aFa) as prior for F. But then the posterior 
becomes Dirichlet with aFa + (n- a)Fn-a = nFn = :E;=l c5(:ci)· This is accordingly an 
empirical Bayes argument for using Rubin's method, and a fortiori for using its natural 
BB approximation, which is the classic Efron bootstrap. 

7. BB in semiparametric regression. This section briefly discusses the extension 
of some of the previous methods and results to the semiparametric regression case. The 
model is 

p 

Yi = L Zi,i/3i + O"ei = :c~/3 + O"ei, i = 1, ... , n, 
j=l 

(7.1) 

where the standardised residuals ei = (Yi- :c~/3) / u are i.i.d. from F. The Bayesian version 
must have a prior distribution for the unknown parameters /3, u, F. We stipulate that 
(/3, u) comes from some prior density 1r(f3, u) and that F, independently, comes from the 
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Dirichlet process with parameter a~, where ~(.) is the standard normal. When a is 
large then the distribution ofF becomes concentrated in ~' which gives us the familiar 
textbook normal regression model. This is accordingly a Bayesian generalisation with built­
in uncertainty about the residual distribution. We are interested in Bayesian inference 
about parameters () = 8({3, u, F), like regression deciles z' f3 + u F-1 (j /10 ), probabilities 
Pr{Y(z) ~ y} = F((y-z'f3)/u), expected distance EIY(z)-z'/31, &cetera. A BB strategy 
is arrived at below which makes it possible to get an approximation to the full posterior 
distribution of such parameters. 

More general results of Hjort (1986, 1987) imply that the posterior density for (f3,u) 
becomes 

n 

7rn(f3, uldata) = const. 1r({3, u) IT { u-1 </>((Yi- z~f3)/u)}, (7.2) 
i=1 

provided the yi's are distinct, i.e., the posterior distribution for these parameters are as 
if F had been known to be ~. And F has a distribution being a mixture of Dirichlet 
processes, since 

n 

Fl{f3, u, data}"' Dir{ a~+ L 8((Yi- z~f3)/u)}. (7.3) 
i=l 

This makes it easy to write down EB{F(t)if3, u, data} and then integrating out ({3, u) "' 
1r n (.) to reach the posterior expectation of F( t). Suppose for simplicity that u is known and 
that f3 is given a fiat prior on 'R.P, which leads to 7rn being quite simply N {{J, ~u2 M-1 }, 

where M = ~ 'L::~=l Zizi and {J = M-1 ~ 2::~1 Zil'i is the familiar least squares estimator 
(now seen also as the Bayes solution under the fiat prior). Accordingly ei = (Yi- zif3)/u 
has mean value ei = (Yi- zifJ)/u, the estimated residual, and variance hi = ~ziM-1 zi, 
g~vmg 

Fn,B(t) = E{F(t)idata} 

= E[-a-~(t) + _n_.!_ ~ I{(yi- z~f3)/u ~ t}ldata] 
a+n a+nn~ 

,=1 

a n 1 ~ (t- e·) = --~(t) + --- L., ~ --' . 
a+n a+nn. hi 

,=1 

In constrast to the i.i.d. case, see (1.5), this is a continuous distribution with density 

n 
a n a n 1 ""' (t - ei) 1 

fn,B(t) = -+ </>(t) + -+ fn(t) = -+ </>(t) + -+ - L., </> -h- -h · a n a n a n a nn. i i 
,=1 

{7.4) 

The second term fn(t) is a variable kernel density estimate with smoothing parameters hi 
smaller than the usual ones, i.e. fn(t) follows the ups and downs of a fine histogram more 
than a typical kernel estimate would do. This particular result is implicit in Hjort {1987) 
and has also been found by Olaf Bunke {1988). 

We can now describe the BB strategy. For a general prior 1r({3,u), work out the 
posterior 7rn(f3, ujdata) and the corresponding generalisation of {7.4), with a fn(t) that is 
potentially more complicated but still a variable kernel estimate for estimated residuals 
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ei = (Yi -z~~)fu. Choose a random (/3*, u*) from 7rn(.) and then a BB sample et, ... , e~+a 
of size n +a from Fn,B(t!/3*, u*) = E{F(t)l/3*, u*, data}, cf. (7.3). Then compute the BB 
value eBB = 8({3*' u*' FEB), where FEB is the empirical distribution of the chosen e;'s. 
This is repeated a large number of times and gives Gn(t) = Pr*{O.BB :::; t}, proposed as an 
approximation to Gn(t) = PrB{8({3, u, F) :::; t!data}. BB-based point estimates and BB 
percentile intervals can then be computed. Bias corrections of some sort can be carried 
out using the exact information in (the parallel to) (7.4). 

An interesting bootstrapping strategy emerges in the case of vague prior information. 
This would mean a flat prior for {3, a flat prior for log u, and a ---7 0 for the Dirichlet. The 
steps above take this form: Draw first u* from the distribution that corresponds to 1/ u2 

being Gamma with parameters t(n-p) and t(n-p)u2 , where 0:2 = I:~=1 (yi-z~,B)2 /(n-p) 
is the usual estimate. Then draw /3* from N (/l, ~(u*)2 M- 1 }, and then ei, ... , e~ from the 
empirical distribution of ei = (Yi - zi/3*) / u*. Finally compute 8* = 8({3*, u*, et, ... , e~) 
based on these, i.e., based on pairs (zi,yi) where Yi = zi/3* + u*e;. This constitutes an 
alternative frequentist way of bootstrapping in the semiparametric regression model. 

8. Bootstrapping schemes in hazard rate models. To what extent do methods 
and results of the previous sections generalise to situations with censored data, and to 
more general models for survival data analysis? This section deviates somewhat from the 
rest of the article and reports on a brief investigation into frequentist and Bayesian boot­
strapping schemes for such problems, where it is natural to shift attention from cumulative 
distribution functions ( c.d.f. 's) to cumulative hazard rates ( c.h.r. 's ). 

BA. From c.d.f. F to c.h.r. A. For concreteness we concentrate on the random cen­
sorship model here. Generalisations to counting process models should not be difficult. 
Life-times X? from a distribution F on [0, oo) may be censored on the right, so that only 
xi = min{ X?' Ci} and si = I {xi :::; ci} are observed. It is assumed that X? 's and cen­
soring times Ci's are independent, and that the Ci's come from some H. The c.h.r. A is 
defined via A[s, s + ds] = F[s, s + ds]/ F[s, oo ), or dA(s) = dF(s )/ F[s, oo) for short, which 
leads to 

A(t) = r dF(s) 
} 0 F[s, oo) 

and F(t) = 1- IJ {1- dA(s)}. 
[O,t] 

(8.1) 

When F is continuous then A = -log(1 - F), but we will encounter non-continuous 
c.d.f.'s and c.h.r.'s, for which the product integral representation (8.1) is appropriate; see 
for example Hjort (1990). Parameters defined in terms ofF can equally be represented as 
functions of A, say 8 = Bcdr(F) = Bchr(A). 

Introduce Nn(t) = I:~=l I{Xi :::; t, Si = 1}, counting the number of observed events 
in [0, t], and Yn(t) = I:~=l I{Xi ~ t}, the number at risk just before timet. The Kaplan­
Meier and the Nelson-Aalen estimator are respectively 

Fn(t) = 1- II {1- dNn(s)/Yn(s)} and · An(t) = lt dNn(s)/Yn(s). (8.2) 
~~ 0 

Here dNn(s) jumps only at observed life-times, with jump ANn(zi) = 1 if these are 
distinct. In particular An is the c.h.r. associated with Fn, and dAn(s) = dNn(s)/Yn(s). 
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In the uncensored case LlAn(zi) = 1/(n- i + 1), assuming z1 < ... < Zn, and then Fn 
becomes the usual empirical c.d.f. Traditional nonparametric inference is based on the fact 
that for large n, An(.) has approximately independent increments with 

EdAn(s)..:. dA(s), VardAn(s) = EYn(s)-1 dA(s){1- dA(s)}. (8.3) 

A precise large-sample statement is that .C[.Jn{An(.)- A(.)}] -t V(.), in which V(.) is a 
Gau:Bian martingale with independent increments and Var dV( s) = dA( s ){1- dA( s)} jy( s ). 
Here y(s) is the limit in probability ofYn(s)jn, that is y(s) = F[s, oo)G[s, oo) under present 
circumstances. See Hjort (1991), for example. In the continuous case dA(1- dA) = dA, 
of course. 

BB. The weird bootstrap. Let us make the following introductory remark, which 
applies to both frequentist and Bayesian bootstrapping: There is nothing particularly 
magic about resampling data per se, and other data-conditional simulation schemes might 
easily work as well. In the classical i.i.d. framework, for example, resampling from Fn 
creates a F: with the properties 

which properly match 

EFn(t) = F(t) and cov{Fn(s),Fn(t)} = n-1 F(s){1- F(t)} for s ~ t. 

This almost suffices for£*{ y'n"(F:- Fn)Jdata} to be close to£{ fo(Fn- F)}, and (3.7)­
(3.8) make this precise. But other simulation schemes that in one way or another create 
some artificial F:(.) with properties like (8.4) can also be expected to work. That is, even 
if the random F: is created from other means than actual sampling, one would expect 
.C*[.J7l{8cdf(F:)- 8cdr(Fn)}Jdata) to be close to £[fo{8cdf(Fn)- 8cdr(F)}). 

In view of this remark and of (8.3) we should look for data-conditional simulation 
strategies that produce some random c.h.r. A~ with approximately independent increments 
and with 

Such schemes will succeed in the required 

or £*{ fo(B~- Bn)Jdata} ..:. £{ fo(Bn- 8)} for short, with few extra requirements. One 
very simple way of achieving this is to let A~ (.) have independent increments and 

dA~(s) = Yn(s)-1 Bin{Yn(s), dAn(s)}. (8.7) 

So A~(.) is fiat between observed life times, and at such a point Zi, say, the hazard jump 
LlA~(zi) is a relative frequency from a binomial with parameters Yn(zi) and 1/Yn(zi)· 
This is Richard Gill's 'weird bootstrap' (1990, personal communication). 
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Note that A~ corresponds to a random F:(xi) = 1- fl:c-<z·{1- LlA~(x;)}, which is 
J- • 

different from that obtained through resampling from Fn. The weird bootstrap does not 
resample- any data set, but it works, with and without censoring. A precise asymptotic 
result about (8.6) can be proved. In particular the weird bootstrap can be seen as an 
alternative to Efron's bootstrap in the uncensored case, developed from the hazard rate 
point of view. 

BC. Exact nonparametric Bayesian analysis. Now we can embark on Bayesian issues. 
The canonical analogue to a Dirichlet process for F is a Beta process for A. Let A be such 
a process with parameters c(.) and A0 (.), which means that A has independent increments 
that are approximately Beta distributed, 

dA(s) ~ Beta[c(s)dAo(s), c(s){1- dAo(s)}]. 

Note that 

EBdA(s) = dAo(s) and VarBdA(s) = dAo(s)~\- dAo(s)}, 
c s + 1 

so A 0 is the prior guess and c( s) is related to the concentration of the prior measure 
around this prior guess. When c(s) = aF0 [s,oo), where F0 = 1- fl[o,/1- dA0 ), then 
F = 1- flro,-]{1 - dA) is Dirichlet with parameter aF0 • See Hjort {1990) about further 
properties for Beta processes. 

Given data A is still a Beta process, with parameters c + Yn and An,B, where 

An B(t) = r c(s)dAo(s) + dNn(s) 
' Jo c(s) + Yn(s) 

is the Bayes estimate. So A given data has independent increments with 

dA{s)ldata ~ Beta[c(s)dAo(s) + dNn(s), c(s){1- dAo(s)} + Yn(s)- dNn(s)]. {8.8) 

In particular 

EB{dA(s)idata} = dAn,B(s) d -,;r {dA( )ld t } = dAn,B(s){1- dAn,B(s)} 
an varB s a a ( ) v ( ) · cs+.Lns+1 

(8.9) 
Full Bayesian posterior analysis is now theoretically possible, via simulation of the in­
dependent increment process A and then calculation of Ochr{A), leading in the end to 
Gn(t) = PrB{Ochr(A) ~ tidata}, cf. (1.3). And in view of (8.3) and (8.9) we would get the 
pleasing result 

i.e. frequentists and Bayesians would agree for large sample sizes. The full Bayesian sim­
ulation method is cumbersome, however, and requires a fine partitioning of the halfline. 

BD. A weird Bayesian bootstrap. In view of the relative complexity of the full Bayesian 
Beta process approach one may look for approximating BE-strategies, perhaps generalising 
our basic BB of {1.5)-{1.7). One way is to sample xr*, ... , X~+.a from the Bayes estimate 

F ( ) _ _ IT { _ cdAo + dN n } nBt-1 1 Y, , , c+ 
[O,t] n 
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then pairing them with simulated censoring times ci from the Kaplan-Meier estimate Hn 
for H, and then treating Xi = min{ Xf*, ci} and SJ = I { Xf* :::; ci} as a new BB-data 
set. Here a is related to the c(.) function, for example being taken to be its maximum 
value. This works, asymptotically, under some conditions, but not particularly well under 
non-negligible censoring. So in this sense there does not seem to be a natural generali­
sation of this article's full data BB to hazard rate models with Beta process priors. The 
approximation suggested here does however work best when c(s) = aF0 [s, oo), which is the 
Dirichlet( aF0 ) prior for F, and indeed with BB sample size n + a. 

A simpler second solution which both works better and has a nice interpretation of 
its own is to generate ABB with independent binomial frequencies increments 

dA_BB(s) = {c(s) + Yn(s)}-1 Bin{c(s) + Yn(s),dAn,B(s)}. (8.10) 

This manages to almost match (8.9), and the small difference disappears asymptotically. 
At observed life times the jump ~ABB(zi) is a binomial [c(zi)+Yn(zi), 1/{c(zi)+Yn(zi)}] 
divided by c(zi) + Yn(zi)· Again, this scheme does not correspond to data resampling, but 
weirdly kills and reincarnates individuals at each time point. 

BE. Exact Bayesian and BB analysis under a noninformative reference prior. Let c(.) 
go to zero in the above constructions. The exact Bayesian solution is then a Beta process 
A with parameters Yn and An, i.e. 

dA(s)ldata"' Beta{dNn(s), Yn(s)- dNn(s)}, 

with independent jumps only at observed life times. Note that 

EB{dA(s)ldata} = dAn(s) and VarB{dA(s)ldata} = dAn(1{~) dAn(s)}. 
n S + 1 

(8.11) 

Observe also that letting c(.) -+ 0 in the posterior distributions is the same as letting 
a -+ 0 in the posterior distribution with a Dirichlet( aF0 ). In this way we have arrived 
at a generalisation to censored data for Rubin's noninformative Bayesian bootstrap. In 
addition to being a natural limit of proper Bayes solutions it can be given an empirical 
Bayesian interpretation. The (8.11) method is also the method proposed by Lo (1991); see 
his paper for further properties. 

Letting c(.) -+ 0 in the weird BB of 8D gives Gill's weird bootstrap of 8B. The 
latter can therefore be seen as the noninformative limit of a natural simulation-based 
approximation to a full Bayesian method. 

One can prove that all the schemes described here are first order equivalent. In 
particular each scheme will reach confidence intervals asymptotically equivalent to (3.11). 

BF. Cox regression. Let us finally note that the methods above can be extended and 
used in the semiparametric Cox regression model. Suppose individual no. i has covariate 
Zi and c.h.r. Ai, and that 

1- dAi(s) = {1- dA(s)}exp{,Bzi), i = 1, ... ,n. 
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If the Bayesian prior is that (3 comes from some 1r({3) and that A independently is a Beta 
process (c,A0 ), then the posterior distributions can be worked out, making a full semi­
parametric Bayesian analysis awkward but possible, through cumbersome simulations. See 
Hjort {1990, Section 6). Simulation-based approximations to this scheme can be developed, 
with ideas as above, giving in particular a weird BB scheme, but requiring more involved 
distributions than the simple binomial. Let us merely report on the noninformative limit 
version of the exact Bayes solution, as c(.) ~ 0. First draw a (3 from 

n 

1rn(f3) = const. IT { '¢1(Rn(Zi,f3))- '¢1(Rn(Zi,f3)- exp(f3zi))} 6'. 
i=1 

Then let A be flat between observed life times, and have independent jumps 

z-1 { {1 _ z)R,.(:z:i,J3)-exp{J3z•)-1 _ (1 _ z)R,.(:z:i,.B)-1} 
6.A(zi) "" , 0 < z < 1, 

'¢1(Rn(zi,f3))- '¢1(Rn(Zi,f3)- exp(f3zi)) 

for those Zi with si = 1. In these expressions Rn(s,(3) = I:~=1 Yi(s)exp(f3zi), where 
Yi(s) = I{Xf ~ s,ci ~ s} is the at-risk indicator for individual i. And any sensible 
simpler way of simulating 6.ABB(zi) instead, with asymptotically correct matching for 
the two first moments, defines a weird BB. 

9. Supplementing results and remarks. This final section offers some concluding 
comments and mentions some extensions of previous results. 

9A. Two viewpoints. There are presumably two ways to approach the problem of 
handling 8( F) in a Bayesian non parametric way. One way is to ignore the underlying 
F and concentrate on 9( F) and what the prior information on this particular parameter 
is. In the end some Bayesian calculations are carried out for 9 given data. In this mode 
each parameter must be treated separately, and inconsistencies can occur, since Bayesians 
are nonperfect. The second way is the one chosen in this article, where information is 
expressed in terms of the underlying F once and for all, after which analysis can proceed 
on an automatic basis for every conceivable 9(F). 

9B. Exact simulation. There are actually ways of simulating almost exactly from Gn = 
.CB{9(F)Idata}, cf. remarks made at the start of2A, where one such method was described, 
using a fine partition of the real line and finite-dimensional Dirichlet distributions. Another 
way would be through simulation of F via its product integral representation in terms of 
the cumulative hazard process A, which is a Beta process, see Section 8 above. This 
remark and results there show that such posterior simulation of 9( F) is possible even with 
censored data, and in more complex models for survival data. 

A third possibility is to use Sethuraman's constructive definition of an arbitrary Dirich­
let process, see Sethuraman and Tiwari (1982). The present Dir( aF0 +nFn) case (see (1.2)) 
can be represented as follows. Generate an infinite i.i.d. sequence { za from F'?-,B of (1.5), 
and an infinite i.i.d. sequence {Bi} from Beta{1, a+ n}. Then let Ai = Bi llj-:~(1- B;) 
and use 

(X) 

F = LAiS(zD, {9.1) 
i=1 
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where S(:c) means unit point mass at position :z:. To see how this can be used, consider 
the mad-parameter 8(F) = J lx- med(F)I dF(z), for example. Approximate F by using 
a large number I instead of oo in (9.1), perhaps I = 1000. Order the :z:~ points and 
determine the one for which the cumulative probability mass '2:1=1 Ai first exceeds t; 
this gives an approximation med' to p-1 ( t ). Some care is required since there will be 

heavy ties in the :c~ data. Then compute 8' = '2:[=1 lz~ - med'IAi, all in all giving an 
approximation to one particular 8 drawn from F. This algorithm must then be repeated 
a large number of times to form .C{B(F)Idata}. -This elaborate strategy makes almost­
exact Bayesian caculations possible, and in a certain sense makes the BB less necessary. 
But arguments still favouring the BB include (i) that it is much simpler to use, regarding 
both programming, simulation, and cpu-use, (ii) that it is less functional-dependent, (iii) 
that BB and almost-exact simulation are first order equivalent, by Section 3, and (iv) that 
the BB perhaps is more trustworthy and realistic than the almost-exact version in that it 
only exploits the first and second order characteristics of the Dirichlet process structure, 
and not the more esoteric ones, like the inherent discreteness of its sample paths, visible 
in (9.1). In any case the (9.1)-based method does make almost-exact posterior Dirichlet 
analysis possible and should be included in any serious comparison between the various 
strategies. 

9C. Invariance under transformations. Both the nonparametric Bayesian confidence 
interval [8L, Bu] of (1.4) and its BB approximation [OL, Bu] of (1.9) transform very neatly, 
with respect to both data-transformations and parameter-transformations. (i) Suppose 
v = 9(8) is a new parameter, with a smooth and increasing 9(.). The {1.4) scheme uses 
Hn(t) = PrB{v(8(F)) < t} = Gn(9-1(t)), and the (1.9) uses Hn(t) = Pr*{v.BB < t} = 
Gn(9-I ( t) ). It follows that 

(9.2) 

(ii) Suppose Yi = h(Xi) for a smooth increasing h(.). IfF for Xi is Dirichlet aF0 , then 
F = Fh-1 for Yi is Dirichlet aF0 = aF0 h-1 • Write v(F) = 8(F) for the old parameter 
seen in the context of li's from F. Then Hn(t) = PrB{v ~ t} = Gn(t) and the Dirichlet 
transformation property implies Hn(t) = Pr*{v.BB < t} = Gn(t). So (1.4) and (1.9) are 
invariant under data transformations. 

9D. Boot sample size. The bootstrap sample size 'boot' in {1.8) should of course 
be large in order for (1.8) and (1.9) to work well, i.e. for functions of Gn,boot(.) to be 
close to the same functions of Gn. The investigation of Efron (1987, Section 9), albeit for 
a different bootstrap, is relevant here, and indicates that boot = 1000 may be a rough 
minimum for quantiles in the tail, required in (1.9), but that boot = 100 may suffice for 
average operations like the mean, required in {1.8). 

9E. Highest posterior density. The starting point for our confidence intervals has been 
(1.4). Sometimes in the Bayesian literature highest posterior density regions are advocated 
instead. In the present case this would involve approximating the posterior distribution Gn 
with one with a density 9n, and then letting { t: 9n( t) ~ 9o} be the confidence region, for 
appropriate level 9o. This approach makes most sense when 9n is unimodal, which it would 
not necessarily be in applications of the present kind, due to the fact that the posterior 
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distribution ofF places extra weight on the observed data points. This is illustrated in 
Section 5 for the case of the median. 

9F. Data-dependent functionals. The functional 8 = 8( F) can depend on the sample 
size; the described BB procedure works specifically for the given n. It is also allowed to 
depend upon the actual data sample, say 8 = 8(F, :z:1, ••• , zn)· Let us illustrate this com­
ment with a description of how a nonparametric Bayesian might construct a simultaneous 
confidence band for F. Consider 

8 . F(t)- Fn,B(t) 
min = a9~b [Fn,B(t){1- Fn,B(t)}]l/2 and 8 F(t)- Fn B(t) 

max = a~;fb [Fn,B(t){1- F~,B(t)}]l/2 . 

The natural band is 

Fn,B(t)- c[Fn,B(t){1 - Fn,B(t)}FI2 ~ F(t) ~ Fn,B(t) + d[Fn,B(t){1- Fn,B(t)}]112 

for a~ t ~ b, where c and d ideally would be determined by 

say (with an additional condition to make them unique, like requiring minimisation of 
c +d). The BB method consists of generating perhaps 1000 values of 

and using the correspondingly defined c and d. One may prove that ( n + a )112 (c- c) 
and {n + a)112(d- d) go to zero in probability, by methods and results of Section 3. 
[Strictly speaking, this is true provided bootn realisations are generated instead of 1000 
and bootn/(nlogn) grows with towards infinity.] It could be advantageous to use this 
asymmetric band instead of the simpler symmetric one since the distribution ofF - Fn,B 
is typically skewed. 

9G. Two-sample BB. The BB method can be generalised to two-sample situations, and 
indeed to more general non-i.i.d. models, as shown in Section 7. To illustrate, let :z:1, ••• , Zn 

and Yl, ... , Ym be samples from respectively F1 and F2, assume 8 = F1- 1( t)- F2- 1( t) is 
of interest, and suppose F1 """' Dir(aF1,o) and F2 f"V Dir(bF2 ,0 ). A Bayes estimate and 
confidence interval for this difference of population medians can be obtained by generating 
perhaps 1000 realisations of 8'BB = med{X;, ... ,X~+a}- med{Yt, ... , Y;_+b}, where the 
X{'s are drawn from (aF1,0 + nFl,n)/(a + n) and the Yi*'s from (bF1,0 +mF2,m)/(b + m), 
and then treating the resulting histogram (or smoothed density estimate) as the posterior 
distribution of 8. 
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