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ABSTRACT 

This is a study of monotone likelihood (M-1) experiments i.e. experiments which 
possess monotone likelihood in some statistics. The main tools are the concave functions, 
here called Neyman-Pearson (N-P) functions, which describe the relationships between 
level of significance and minimum power for maximin tests. 

IT the parameter set contains two points, i.e. in the case of dichotomies, these functions 
describe the experiment up to equivalence. Structures for sets of dichotomies are often very 
simply expressed in terms of Neyman-Pearson functions. It turns out that several of these 
structures of dichotomies extend naturally to M-L experiments. Thus, for example, the set 
of types of M-1 experiments is order complete for the pairwise ordering and it is compact 
for the weak experiment topology. 

Types of M-L experiments are determined by families of N-P functions satisfying 
obvious consistency requirements. These requirements may be expressed as a semigroup 
property of N-P functions for functional composition. A closely related representation is 
in terms of powerfunctions of most powerful tests. 

Using these representations we consider comparison, exact or approximate, of one 
M-1 experiment w.r.t. another experiment. Generalizing results in Lehmann (1988) we 
show that comparison for monotone decision problems reduces to pairwise comparison i.e 
to dichotomies. By general comparison principles, for given classes of loss functions, this 
extends to products and mixtures of M-L experiments. In particular we obtain comparison 
results for the n-sample case. 

Other interesting characterizations and representations are in terms of supports of 
standard measure, in terms of the between property for statistical distance and, in the 
differentiable case, in terms of local comparison. In the last case M-1 experiments are 
characterized by families of functions, here called slope functions, providing slopes of pow­
erfunctions of most powerful tests. 

Besides unavoidable continuity /differentiability conditions there are no consistency 
requiremention for these families of slope functions. The type of a differentiable M-L ex­
periment be recovered from the slope functions by solving first order differential equations. 

The results are used to explore how information is affected by selection. IT the random 
variable X constituting our original (ideal) experiment are observable only when a given 
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1. INTRODUCTION. MONOTONE LIKELIHOOD AND MONOTONE DE­
CISION PROBLEMS. ORDERING OF EXPONENTIAL MODELS. 

In a most interesting paper Bayarri and DeGroot (1987) consider how information is influ­
enced by selection. Most of the models discussed by them were monotone likelihood (M-L) 
experiments. As this property is preserved by selection the general principles for com­
paring such experiments apply. In particular the important criterion of Lehmann (1988) 
for comparison for monotone decision problems applies in the non atomic case. A general 
criterion for the overall comparison of such experiments which effectively utilizes the M-L 
property is still not available. 

H the models are exponential (Darmois-Koopman) then overall comparison may by Janssen 
(1988) be decided by a convolution criterion. This important criterion is described later 
in this section. 

We shall here mostly discuss comparison where at least one of the experiments under 
comparison has the monotone likelihood property. We shall however also make a few 
comments on general comparison, and in particular on comparison for a given loss-function. 

The point of departure of this paper is to consider the information stored in the set of 
powerfunctions of one sided tests. 

In the case of dichotomies this set completely characterizes the type (i.e. the equivalence 
class) of the experiment. Moreover it provides a simple canonical representation having 
interesting properties. As any dichotomy may be considered as a M-L experiment, we 
begin in section 2 by briefly describing some basic properties of dichotomies. 

Dichotomies may be studied in terms of their Neyman-Pearson (N-P) functions. These are 
the functions which relate level of significance to maximin power. They abound in math­
ematical statistics and are, up to trivial modifications, nothing but the Lorentz transfor­
mations (curves) from econometry or the total time on test (TTT) transform of reliability 
theory. Both aspects are statistically interesting. In this paper we shall in particular see 
how basic tools from reliability theory may be explored to obtain general information on 
statistical models. 

In the case of differentiable experiments we may instead consider functions which associate 
maximum slopes of powerfunctions of tests with given levels of significance. These func­
tions, here called slope functions, determine, as explained in Torgersen (1985), all local 
information. In particular they determine Fisher information. They enter naturally into 
the discussion here and we shall therefore provide a brief exposition in section 3. 

After these preparations we turn to general M-L experiments in section 4. 

We begin here by observing that the M-L property amounts to the requirement that the 
likelihoods are totally ordered for the natural ordering. This implies readily that the M-L 
property is a triplewise property, i.e. that it suffices to consider subsets of the parameter 
set having three points. 
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Combining this with the standard method for obtaining minimum Bayes risk we conclude 
that if £i i=1, ... ,r, is at least as informative as :Fi for a given class of lossfunctions then the 
product £1 X · · · x£r is at least as informative as :F1 x · · · x:Fr for the same class of loss 
functions. 

A similar statement holds for mixtures of experiments. 

As pointed out in Lehmann (1988) the overall comparison may be afflicted by particular 
decision problems which are not of interest in a given situation. LeCam (1964) provides 
criteria which may throw light on what kind of decision problems are responsible for the 
noncomparability og given experiments. 

The problem of finding methods for comparing experiments w.r.t. given decision problems 
of particular interest is a challenging one. In addition to the references in Lehmann (1988) 
we would also like to point out that: comparison for k-decision problems is treated in 
Blackwell (1953) and Torgersen (1970), comparison for estimation of linear parametric 
functions were discussed in Stepniak and Torgersen (1981), in Stepniak, Wang and Wu 
(1984), in Torgersen (1984 and 1990) and in Swensen (1980). 

The theory of LeCam (1964 and 1986) provides criteria for asymptotic local comparison of 
risk functions for given decision problems. Fixed sample size local comparison is discussed 
in Torgersen (1972a-b and 1985). 

In the last part of section 6 and in section 7 we apply the obtained criteria, as well as 
other ones, to experiments obtained by selection. We shall here mainly be concerned with 
orderings of experiments related to one of the following modes of comparison: 

Over all comparison = comparison on all of 0 for all decision problems. 

Local comparison= comparison within small neighbourhoods of any given pa­
rameter point and for all decision problems. (If 0 is one 
dimensional then it suffices to consider testing problems). 

m-wise comparison = comparison for all m-point sub parameter sets and for all 
decision problems. 

Pairwise comparison = 2-wise comparison = comparison for all two point subpa­
rameter sets and for all decision problems (it suffices to 
consider testing problems). 

Other orderings which will be considered are the natural orderings defined by the Hellinger 
transform, by affinities and by Fisher information. These orderings are related as in the 
figure below, where arrows point in the direction of decreasing strength: 
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By the previous sections comparison for monotone decision problems may be expressed 
in terms of N-P functions or in terms of slope functions. In the first case the problem 
is reduced to pairwise comparison and in the second to local comparison. Thus we shall 
take a look on how N-P functions and slope functions are altered by selection. In the 
exponential case, we do the same thing for the Hellinger transform. 

We shall in section 7 restrict our attention to selection on subsets of the likelihood space 
which are either intervals or complements of intervals. It turns out, in both cases, that 
whether information is reduced or increased is related to whether the failure rates of laws of 
(differentiated) log likelihoods are increasing or decreasing. Among the results we mention 
that selection on an interval bounded away from 0 and infinity in the likelihood space never 
increases strictly the pairwise information. 

In section 8 we return to the general situation and consider conditions ensuring that a M-1 
experiment approximately majorizes another experiment for monotone decision problem. 

In the case of dichotomies this is expressed in terms of the deficiency introduced by LeCam 
(1964). This deficiency has, as shown in Torgersen (1970), natural geometrical interpreta­
tions. In particular the deficiency distance/ J2 is the Paul-Levy diagonal distance between 
these functions considered as distribution functions. 

The main results in this section extend this by showing that a M-1 experiment is £ -

deficient w.r.t. another experiment for monotone decision problems if and only if this is 
so pairwise. 

At this point we should make precise what is here meant by monotone likelihood ratio, by 
monotone decision problems and by monotone decision procedures. 

Consider an experiment £ = ( x, A; Pe; 0 E 8) along with a real valued statistic Z on the 
sample space ( x, A) of £. Assuming that 8 is a set of real numbers we shall say that 
£ bas monotonically increasing (decreasing) likelihood ratio in Z if there to each pair 
( 81, 82) E 8 X 8 such that 82 > 81 corresponds a monotonically increasing (decreasing) 
function <pe2 ,e1 on R such that <pe2 ,e1 (Z) is a Pe2 maximal version of dPe2 /dPe 1 • 

Note that maximality implies that <pe2 ,e1 (Z) = oo a.s. Pe2 on any Pe1 null set N. 

Clearly £ has monotonically increasing likelihood ratio in Z if and only if £ has mono­
tonically decreasing likelihood ratio in -Z. Thus we may in many problems restrict our 
attention to monotonically increasing likelihood ratios. 

Consider now the particular case of a totally informative experiment i.e. an experiment 
£ = (Pe : 0 E 8) such that Pe1 and Pe2 are mutually singular when 81 =f 82. H the 
sample space X permits a measurable patitioning Ae : 0 E 0 such that Pe(Ae) = 1 then 
£has monotonically increasing likelihood ratio in z where Z(x) = 0 when X E Ae and 
0 E e. Although this construction is feasible whenever e is countable, and thus for any 
restriction to a countable subparameter set, there may not be any statistic Z such that£ has 
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H conditions (i) and (iii) hole!_ while (ii) is violate<!_ with r being monotonically decre!l-sin_e; 
then we may replace e withe= -e and L with L defined by L 0(t) = L_0(t) when() E 8 

and t E T. Then tis monotone with T being replaced by::; given by r(B) = r( -B); 8 E e. 
H Lis monotone and the decision space Tis finite, say T = {t1, ... , tk} with t1 < · · · < tk, 
then we may decompose ease= e 1 U · · uek where ei = {B: r(B) = ti}. Then e1, ... , ek 
are disjoint intervals in e and 81 < · · · < ()k whenever Bi E ei; i = 1, .. , k. H, in addition, 
e is finite then there are parameter points ()1 < ()2 < ... < ()k-1 so that: 

e1 = {B : () E e and () < () } = 1 ' 

ek-1 = {B: BEe and Bk-2 < () ~ Bk-d and ek = {B: () E e and B > Bk-d 

A general monotone decision problem may be approximated by a finite monotone decision 
problem by the following device. Let (T, L) be monotone as described above and consider 
any non empty subset T0 ofT and any non empty subset 8 0 of e. Then there are subsets 
T1 ofT and e1 of e such that T0 ~ T1, eo ~ 8 1 and L/e1 x T1 is monotone. In fact we 
may put T1 =To U r[eo] and e 1 = 8 0 u {81 : t E T1 - r[eo]} where B = 81 , for each t, is 
a solution of the equation r( B) = t. Then r[8 1] = T1 so that L/81 x T1 is monotone. 

Note that the sets 8 1 and T1 are both finite when the sets 8 0 and T0 are finite. 

H the experiment £ = ( P8 : B E 8) has monotonically increasing likelihood ratio in a· 
statistic Z and if the loss function is monotone then, by Karlin and Rubin ( 1956 ), we may 
restrict attention to decision rules 8 which are monotone in the sense that 8([t, oo[/Z = 
z) = 1 whenever 8([t, oo[/Z = z') > 0 for some z' < z. 

H 8 is non randomized this amounts to the condition that 8( z) is monotonically increasing 
in z. For randomized procedures the above definition of monotonicity amounts to a stronger 
requirement than the requirement that t5( ·/z) increases monotonically in z for the stochastic 
ordering of distributions. 

So far no simple general criteria for the overall comparison of M-1 experiments appear to 
be available. In two important particular cases convolution criteria apply. 

Firstly if £ is a strongly unimodal translation experiment then the convolution criterion 
of Boll (1955) for comparability of translation experiments applies. By Torgersen (1972) 
this extends to approximate comparison. 

Secondly if £ is an exponential (Darmois-Koopmans) family of any finite dimension then 
the convolution criterion of Janssen (1988) is available. (This result is also close to the 
surface in Ehm and Muller (1983), although the emphasize in that paper is on asymptotic 
comparison). 

One dimensional exponential experiments are M-1 experiments and, furthermore, expo­
nentiallity is preserved by selection. Thus the latter criterion is very relevant here. As it 
may not be so well known we shall provide the following version of it. 
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for the distribution P90 X M. Then P90 X M = D X Q90 and P90 = DQ6o· It follows that 
D maps densities dP9jdP90 into versions z-+ f[dP6/dP60]yD(dyjz) of dQ9jdQ6o· In other 

words J :(~)5 e< 6- 60 ·Y)D(dyjz) = :(:})e<6- 60 •z) for Q90 almost all z E Rk. Let Dz be the 

distribution of Y- z when Y is distributed according to D( ·lz). Then J e<6- 6o,x) Dz( dx) = 

J e<6- 6o,y-z) D(dyjz) - a(6o)b(6) for Q9 almost all z - a(6)b(60) o • 

By continuity and separability we may arrange the exceptional set of points z such that 
it does not depend on (} as long as (} belongs to an open ball around 80 • Using analytic 
continuation we find that the characteristic function of D z, for z not belonging to this 
exceptional set, is independent of z and thus that Dz = G where the distribution function 
G does not depend on z. 

For 8 belonging to the above mentioned ball around (}0 this implies J e<B-Bo,x)G(dx) 
a(8o)b(6) · th t a(8o) b(6o) J (6-6 x)G(d ) Th 1 al" al b "tt a(B)b(6o) I.e. a ""ii"(8f = ""b'(8) e 0 • x . e ast equ 1ty may so e wn en 

Hence 

and thus: 

0 

Among the notations which will be used are: 

N(~, u) =the univariate normal distribution with mean~ and standard deviation 

u. 

R(O, 1) =the uniform (rectangular) distribution on [0,1] . 

.C(X) = distribution (law) of X. 

DFR= decreasing failure rate. 

IFR= increasing failure rate. 

dvfdp =the Radon-Nikodym derivative of the J.L absolutely continuous part of v 

w.r.t J.L· 

a A b =minimum {a, b} 

a V b =maximum {a,b} 

1\ at= inf at 
t t 
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2. THE CASE OF DICHOTOMIES. NEYMAN-PEARSON (N-P) FUNC­
TIONS. 

Any dichotomy V =(Po, PI)= (Pe; 8 E {0, 1}) is a M-1 experiment. It is therefor natural 
to begin our study of M-1 experiments by reviewing properties of dichotomies. Convenient 
tools in this case are: 

(i) The relationship between level of significance and maximum power for testing, say, 
"8 = 0" against "8 = 1". 

(ii) The relationship between prior distribution and minimum Bayes risk for testing 
"8 = 0" against "8 = 1" with 0-1 loss. 

(iii) Variations of standard measures and Blackwell measures. 
(iv) The Hellinger transform. 

The relationship (i) is given by functions which in one form or another, appear to play 
important roles at the most diverse occasions, not all of them in statistics. Although not 
widely recoqnized, even among statisticians, their genesis may be regarded as rooted in 
the Neyman-Pearson lemma. They deserve a name expressing this and we shall here say 
that a function is a Neyman-Pearson function (N-P function) if it is a continuous concave 
function from the unit interval [0,1] to itself which leaves 1 fixed. Of course concavity 
ensures continuity on the open interval )0,1[ and if, in addition, it is assumed that 1 is a 
fixed point then it is automatically continuous on )0,1). Thus a function f3 from the unit 
interval to itself is a N-P function if and only if it is concave, {3(0+) = {3(0) and {3(1) = 1. 

In statistics N-P functions arise in testing theory in many situations which are not directly 
related to the Neyman-Pearson lemma. Thus e.g. the maximin level a power defines a N-P 
function f3 of a provided we ensure that {3(0+) = f3(0).[If the weak compactness lemma 
holds then this is automatic. In general we may just define {3(0) as {3(0+ ).] 

More generally we may consider maximin level a power for test functions belonging to a 
given convex class of test functions containing the constants in [0,1). 

In particular if V = (Po, PI) is a dichotomy then the N-P function of V is the function 
{3( ·I'D) which to each a E [0, 1] assigns the power {3( a IV) of the most powerful level a test 
for testing "8 = 0" against "8 = 1". When convenient this function may also be denoted 
as f3(·1Po,PI)· 

Example 2.1 (Double dichotomies and triangular N-P functions). 

IT f3 is a N-P function then a~ f3(a) ~ 1 for all a E [0, 1). The lefthand side corresponds to 
the N-P function of a totally non informative dichotomy (P, P) while the right hand side 
corresponds to a totally informative dichotomy (Po, P1 ) with Po and P1 being mutually 
singular. 

An interesting family of N-P functions (which include the above mentioned) are the trian­
gular ones. These are the N-P functions of the double dichotomies. Thus the N-P function 
of the double dichotomy ((1- p,p), (1- q, q)) with p ~ q is the upper boundary of the 
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we may write 1) = i:qf'Di or 
I 

It follows that the collection of dichotomies is order complete for the informational ordering. 
Note however that the sup operation expressed for N-P functions is not the pointwise 
supremum. It corresponds of course to the supremum operation on N-P functions for the 
informational ordering. The least upper bound of a family ('Di : i E I) of dichotomies may 
be denoted as sup'Di or as Vi'Di. 

I 

Monotone likelihood experiments are very naturally represented as families of N-P func­
tions. These families are characterized by being closed for the "natural" functional com­
positions. In general if 1)1 and 1)2 are dichotomies having, respectively N-P functions 
!31 and /32 then the composed function /31 (/32) = /31 o /32 is also a N-P function. If 'D 
is a dichotomy having /31 (/32) as its N -P function then 1) is at most as informative as 
the product dichotomy 'D1 x 'D2. Indeed if 1 is the N -P function of 1)1 x 'D2 then, for 

1 

any a E (0, 1],/(a) = sup{f /31(a(x))f32(dx): J a(x)dx =a} ~ (by Jensen's inequality) 
0 

1 

sup{f3I(J a(x)f32(dx)): J a(x)dx =a}= /31 (/32 (a)). 
0 

As mentioned above any N-P function arises from a dichotomy. In fact a N-P function 
/3 is also a cumulative distribution function of a probability distribution on (0,1] which is 
absolutely continuous on ]0,1]. In fact it may be checked that f3 is the N-P function of the 
pair (R(O, 1),/3) where R(0,1) denotes the rectangular distribution on (0,1). 

The N-P function of a dichotomy 1) = (Po, P 1 ) is usually found by first finding a real 
valued sufficient statistic X, e.g.X = dPI/d(Po +PI), such that F1 = £(XJP1 ) has a 
monotonically increasing density w.r.t. F0 = £(XJP0 ). By the Neyman Pearson lemma 
f3(aJPo,PI) = 1- F 1 (F0- 1(1- a)) for any a E]O, 1[ such that F0 (F0- 1(1- a))= 1- a. 
In general this formula holds for any a E]O, 1[ provided we permit a random mass in 
F0- 1 (1- a) distributed uniformly on [O,m(a)] where m(a) is the Fo mass in F0- 1 (1- a). 

All dichotomies having the same N-P function f3 are statistically equivalent with the di­
chotomy (R(O, 1),/3). Using the terminology of LeCam (1986) we may express this by 
saying that /3(J'D) defines the type of the dichotomy 'D. In fact if a is the observed signif­
icance level for testing "() = 0" against "() = 1" in 1) = (P1 ,P0 ) then £(aJP0 ) = R(O, 1) 
and£( aJP1) = /3. 

The dual of a N-P function f3 is the function b on [0,1] given by: 

b(.A) =,\ min[(1- .A)a + .-\(1- f3(a)] 
a 
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More generally if "Y is any N-P function such that "Y( a)~ ,8( ajP0 , PI) for all a E (0, 1] then 
there is a right continuous monotonically increasing family of test functions ~Per : a E [0, 1] 
in 'D =(Po, PI) such that 

Eo <per = a while EI <per = "Y( a). 

If e.g. "'( is given as the upper boundary of the convex hull of points (0, b), (PI, qi ), (P2, q2) 
and (1,1) where 0 ~PI~ p2 ~ 1 and "Y(O) = b,"'f(Pi) = qi;i = 1,2 then we may construct 
the family <per : a E [0, 1] in the following steps: 

(i) Let Cer :a E [0, 1] be given as above. 

(ii) Put <po = [b/ ,B(OIPo, PI)]80 . 

(iii) Let a1 be the smallest number ai ~ 0 such that the graph of ,B(·IPo,PI) intersects 

the line through (O,b) and (p1 ,q!) in the point (a1,,8(aiiPo,PI)). Put so <po = 

(1- 8)<po + 88o1 for a = (1- 8)0 + 8a1 in [O,p1). 

(iv) Let a2 be the smallest number a 2 ~ a 1 such that the line through (PI, qi) and 

(p2,q2) intersects the graph of ,B(·IP0 ,PI) in (a2,,8(a2!Po,PI)). Put so 'Po= (1-

8)c.pp1 + 8C02 for a= (1- 8)p1 + 8a2 in (p1 ,p2]. 
(:v) Put 'Po = (1- 8)c.pP2 + 8 · 1 for a= (1- 8)p2 + (} · 1 in (p2, 1). 

It may be checked that Co ~ c.p0 , C01 ~ c.pp 1, C02 ~ c.pp 2 and that cpo ~ cpp 1 ~ cpp 2 ~ 1 so 
that c.p 0 : a E [0, 1) satisfy our requirements. 

Proceeding by induction we obtain for any polygonal "Y ~ ,8( ·!Po, P1 ) a representation 
<p 0 :a E [0, 1]. By compactness this extends to any N-P function "Y ~ ,B(·IPo, PI). 

This procedure is closely related to the procedure known from the theory of majorization, 
see e.g. Marshall and Olkin (1979), whereby we may pass from a vector p to a vector q 
which is majorized by p by a finite number of "decreasing" steps each modifying only two 
coordinates. 

Suppose now that "Y(·IQ 0 , QI) ~ ,B(·IP0 ,PI) for a dichotomy (Qo, Q1). Then "Y(aiQo, QI) = 
E1 <p 0 where a = Eo<po for an increasing right continuous family <p 0 : 0 ~ a ~ 1 of 
testfunctions in 'D =(Po, PI). Let M(·lx), for each x in the sample space of 'D be the mea­
sure on [0,1] having distribution function a-+ IPer(x). Letting R(0,1) denote the uniform 
distribution on (0,1) we find for any Borel set B ~ [0, 1] that: 

while: 

R(O, l)(B) = J M(Bix)Po(dx) 

"Y(BIPo,PI) = J "Y(dxiPo,PI) = J M(Bjx)PI(dx) 
B 
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Remarks 

The equivalent conditions (i) - (v) express all that V is at least as informative as V. A 
dilation on [0, oo[ is a Markov kernel D from [0, oo[ to [0, oo[ such that J xD( dx!y) = y; y ~ 
0. 

The integral J ( dPI/ dP0 ) 1 dP0 for a dichotomy V = (Po, PI) is, as a function of t E [0, 1], 
the Hellinger transform of V. It defines V up to equivalence. The ordering described by 
(vi) does not however, see Torgersen (1970), imply that Vis at least as informative as V. 
In terms of the N-P function f3 of V the Hellinger transform may be expressed as: 

1 1 

t--+ j[f3'(a)]1da = jrK-1 (aWda 
0 0 

where 

K = £(dPtfdPoiPo). 

Consider so comparison of dichotomies V = ( F0 , F 1 ) and D = ( G0 , G 1 ) where all four 
distributions are on the real line. Denote the N-P functions of V and i:> by, respectively, · 
f3 and /3. Let us agree that p-fractiles with p > 0 are chosen minimal while 0-fractiles are 
chosen maximal. 

Assume first that V ~ D and that V has monotonically increasing likelihood ratio. Then, 
for any number c, F 0- 1 (G0 (c)) ~ F 1- 1 (G1 (c)). Indeed if this was not so for a number c 
then there is a t so that 

F 1- 1(Gt(c)) < t < F 0- 1(Go(c)). 

Putting a = 1 - G0 (c)) we find that /3(a) ~ 1 - G1 (c) ~ 1 - Ft(t) = f3(ii) where 
ii = 1-Fo(t) ~ 1-G0 (c) =a. Hence /3(a) ~ f3(ii) ~ f3(a) ~ /3(a) so that"=" prevails and 
thus Gt(c) = F1(t). The convention concerning 0-fractiles implies that Gt(c) = Ft(t) > 0 
and thus that f3(ii) = f3(a) < 1. Hence, since ii ~ a, ii = a so that G0 (c) = Fo(t). 
In particular t is a G0 (c) fractile of F0 . H G0 (c) > 0 then this is incompatible with the 
assumption that t < F 0- 1 (G0 (c)). Thus G0 (c) = 0 so that a= 1, but this is incompatible 
with the inequality /3( a) < 1. It follows that there is no number t with the asserted 
property. 

Can this be reversed? It is claimed in Lehmann (1988) that this is permissible if both 
dichotomies have monotonically increasing likelihood ratio. There is·. however a missing 
link in the proof and in fact counterexamples exist when we permit the distributions Fo 
and Ft to have point masses. Assume e.g. that Fi; i = 0,1 have masses 1- Pi and Pi 
in, respectively, 0 and 1 where p0 < p1 • Let 1 be a N-P function such that 1(0) = 0. 
Then we may let G0 be the uniform distribution on [0,1] and let G1 be the distribution 
on [0,1] having distribution function G1(a) = 1- 1(1- a). Then both dichotomies have 
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As mentioned earlier the N-P functions and their close relatives appear in abundance in 
statistics and in econometry. Thus spread in econometry is frequently described, see e.g. 
Arnold (1987), in terms of Lorenz functions. Then relationship between Lorenz functions 
and N-P functions may be described as follows. 

Let F be any distribution on [0, oo[ having finite positive expectation J.LF = J xF( dx) = J: F-1(p)dp. The Lorenz function ofF is the function LF on [0,1] defined by: 

Put Fo = F and let F1 have density x --+ x/ ILF w.r.t. F0 . Let K be the distribution of 
dFJ/dFo under Fo. Then K-1 =p-I/ ILF and LF(P) =P 1- ,8(1- pi'DF) where 'DF in the 
dichotomy (F0 , FI). 

It is easily inferred that a function L is a Lorenz function if and only if it is of the form 
L( a) = 1 - ,8(1 -a) for a N-P function ,8 such that ,8(0) = 0. If L is in this form with ,8 
being the N-P function of the dichotomy (Po, P1 ) then Lis the inverse function of the N-P 
function of the reversed dichotomy ( P1 , P0 ). 

It follows that a function is a Lorenz function if and only if it is a continuous convex 
function from [0,1] onto [0,1] having the origin as a fixed point. 

Considering two probability distributions F and G on [0, oo[ such that both have finite 
positive expectations we may, following Arnold (1987), say that G Lorenz majorizes F if 
LF f; La. By the above comments this amounts to the condition that 'Da f; 'DF where 
'Da is defined in terms of G as 'DF above was defined in terms of F. 

Another notion related to the N-P functions is the total time on test (TTT) transform in 
reliability theory. These are, see Klefsj~ (1984), the functions of the form a --+ 1- ,8(1 -
a) + ( 1 - a) ,8' ( 1 - a) for a N-P function ,8. This is particularily relevant here since, as we 
shall see, reliability theory provides answers to many problems concerning how selection 
influences information. 
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where 
k 

N(9o, h)= {9: L 19i- 9~1 ~ h}. 
i=l 

H the local defiency o;o (£,:F) = 0 then we shall say that £ is locally at least as informative 
as :F at 9o. The local deficiency distance ~Bo (£,:F) between £ and :F at 9 = 9o may 
then be introduced as the larger one of the numbers 680 (£,:F) and o;o ( :F, £). This local 
distance behaves then as a pseudometric, just as the "global" deficiency distance (£,:F) --t 

max{ o(£, :F), o(:F, £)} of LeCam (1964 and 1986). 

H ~Bo (£,:F) = 0 then we shall say that £ and :F are locally equivalent at 9 = 90 • Of 
particular relevance here is the fact that in the one-dimensional case an experiment £ = 
(Pe : 9 E 0) which is differentiable at 9 = 90 is, provided P80 =/= 0, locally equivalent with 
a unique strongly unimodal translation experiment of distributions on the real line. 

In general the local properties of£= (P8 : 8 E 0) are stored in the distribution F(·/8o,£) 
of (dP;0 , /dPe0 ; i = 1, · · ·, k) under Pe0 • Thus the Fisher information matrix 1(8o, £) of 
£at 8o has as its (ij)th entry the number JxixiF(dx/80 ,£). Furthermore£ is locally at 
least as informative as :Fat 8 = 80 if and only if F(-/80 ,£) is a dilation of F(·/8o,:F). 

In general the t:-version of the transition criterion has a dual version expressible in terms of 
approximate dilations. The distribution F(·/80 , £)has expectation (vector) zero and, con­
versely, any distribution on Rk having expectation zero qualifies as a distribution F( ·l8o, £) 
for a suitably chosen differentiable experiment £. 

In the one dimensional case local comparison may be completely described in terms of 
another family of concave functions related to the Neyman-Pearson lemma. These are the 
continuous concave functions K on the unit interval [0,1) such that K(O) = K(1) = 0. A 
function having these properties is here called a (N-P) slope function. Thus a N-P slope 
function is a concave function on [0,1) such that 

K(O) = K(0+) = K(1-) = K(1) = 0. 

Assuming that e ~ R consider an experiment £ = (P8 : 9 E 0) which is differentiable at 
9o E e. Consider also a size a-test o for testing "8 = 90" against "9 > 90". Then Ee0 8 = a 
and the slope of the powerfunction at 9 = 80 is 

This slope is maximized by any size a test 8 admitting a constant c such that o = 0 or 
8 = 1 as dP80 I dPe0 < c or dP80 I dPe0 > c. Insisting that the test should be functionally 
dependent on dP80 IdPe0 we obtain, for each a E [0, 1), a unique maximizing test 8. 

The basic observation here is that this maximum slope as a function of the size a E [0, 1] 
is a N-P slope function which we here shall denote by K(·/80 , £). Any N-P slope function 
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assigns masses Bf(A+B) and A/(A+B) to, respectively -A and B. 

Putting M = AB/(A+B) andp = A/(A+B) we obtain all non null triangular N-P slope 
functions. 

A translation experiment £ = (Go : 8 E R) on the real line is differentiable if and only if G 
+oo 

has an absolutely continuous density g such that J Jg'(x)Jdx < oo. In that case the slope 
-oo 

function K = K( ·l8o, £) does not depend on 80. If G is strongly unimodal then K may be 
expressed as K(a) = g(G-1(1- a)). 

Conversely if K is a non null N-P slope function then K is of this form for a strongly 
unimodal distribution function G such that the corresponding translation experiment is 
differentiable. This family of distribution functions constitutes the totality of solutions of 
the differential equation G' = K(1 -G). 

In the one dimensional case all local properties may be expressed in terms of the slope 
function. Thus if £ has slope function K at 80 then the Fisher information at 8o is the 
quantity 

1 1 

I(8o,£) = j x2 F(dxJOo,£) = j K 1(a) 2 da = j(~)- K 1(a)fda. 

0 0 

The slope function K may be expressed directly in terms of F = F( ·J00 , £) by: 

0' 

K(a) =a j F-1(1- p)dp 

0 

so that the lower 1 - a fractile F-1 (1- a) of F is the right derivative of K for any a E ]0, 1 [. 

Consider now an everywhere differentiable experiment £ = (Po : 0 E 8) having an open 
interval of the real line as its parameter set. Then any test function fJ in £ satisfies the 
differential inequality 

with "=" everywhere if fJ is a most powerful level Eo1 fJ test for testing " 01" against "82" 
whenever 81 < 82. . 

The last observation is crucial for linking local and the global information in differentiable 
M-1 experiments. 
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Proof: 

Let us, as the "if" is trivial, assume that £ = ( Pe : () E E>) is pairwise more informative 
than F = ( Q e : 0 E E>) 

Let u be a powerfunction in F and let 00 E E>. Put a = u(Oo) and assume first that 
0 <a< 1. By the M-L property of£ there is a powerfunction 1r in Tie so that 7r(Oo) =a. 
H () f; 00 then 

H 0 ~ 00 then 

so that 1r( 0) ~ u( 0). 

Consider so the case where u(00 ) = 0 or u(00 ) = 1. Replace u with Un = (1- ~)u +~or 
by u n = ( 1 - ~ )u as, respectively, u( 00 ) = 0 or u( 00 ) = 1. 

Applying the above result to u n with n f; 2 and then using that Tie is dosed for pointwise 
convergence we obtain a powerfunction 1r in 1r e so that 1r( 0) ~ u( 0) or 1r( 0) f; u( 0) as 
() ~ Oo or 0 f; Oo 0 The last statement follows from the fact that ifF has the M-L property 
and if u is a powerfunction in :F and if 80 E 0 then there is powerfnnction 17 in D.r so 
that 17( 8) ~ u( 8) or 17( 8) f; u( 8) as 8 ~ 80 or 8 f; 80 0 

0 

Corollary 4.2 

M-L experiments £ and F are pairwise equivalent if and only if Tie = TI.ro 

Remark 
We shall soon see that pairwise equivalence and full equivalence is the same thing for M-L 
experiments. 

With the modifications described in section 2 the criterion og Lehmann (1988) applies: 

Theorem 4.3. (Pairwise comparability and distribution functions) 

Let £=(Fe: 0 E E>) and F = (Ge: 0 E E>) be experiments on the realline. Then: 
(a) H £ has monotonically increasing likelihood ratio in T(x) = x and if £ f; F 

pairwise then F8- 1(Ge(x)) is monotonically increasing in 0 for any x. 
(b) H F has monotonically increasing likelihood ration in T( x) = x and if the dis­

tributions in £ are non atomic then £ f; F pairwise provided F8- 1(Ge(x)) is 
monotonically increasing in 0 for any x. 
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monotone decison problems. This may be seen directly from Lehmann's criterion since 
Hi,;1 (He,u2 (x)) = (1- ;;- )6 + ;;x when 0 < He,u 2 (x) < 1. 

We shall see in section 6 that if an experiment £ is at least as informative as another 
experiment :F for a given loss function then £n is at least as informative as :Fn for the 
same loss function. Thus theorem 4.1, and also theorem 4.3 when it applies, provides 
conditions ensuring that n independent observations of a variable X are more informative 
than n independent observations of a variable Y pairwise as well as for monotone decision 
problems. In particular this yields the n-sample results in Lehmann (1988). It should 
however be emphasized that the criteria ensuring that £n ~ :Fn for monotone decision 
problems are not the same as those ensuring that £ ~ :F for monotone decision problems. 
This is so even when both£ and :Fare assumed to possess the M-L property. Indeed any 
pair (£,:F) of non comparable dichotomies such that £n ~ :Fn provides a counterexample. 

Let us take a closer look on the sets Tie of powerfunctions. For any experiment £ (with 
8 ~ R) the set Tie is a family of monotonically increasing functions from 8 to [0,1] having 
the additional properties: 

(a') H 6o E 8 and 0 < a < 1 then there is at most one function 1r in Tie such that 
7r(6o) =a. 

(b) To each pair (81 ,82) of points in 8 such that 81 < 82 corresponds a N-P function 
.8(·!61,62) such that 1r(62) = ,8(1r(6I)j81 ,82) whenever 1r(61) > 0. 

(c) Tie is closed for pointwise convergence on e. 

Conditions (a') and (b) imply together that Tie is totally ordered for the pointwise ordering. 
H £ possesses monotone likelihood ratio then (a') may be strengthened to: 

(a) H 6o E 8 and 0 < a < 1 then there is a unique powerfunction 1r in Tie so that 
1r(6o) =a. 

Condition (c) is not as imposing as it may appear. Actually if IT is a set of monotonically 
increasing functions on e satisfying (a) and (b)' then (c) amounts to the condition that n 
should contain those indicator functions which are pointwise limits of functions from n. 
We shall later see that conditions (a) and (b) together characterize the M-L property. 

For now observe the following facts concerning the tests having a particular function func­
tion 1r E Tie as its powerfunction: 

H 1r E Tie and b is a test such that Ee0 b ~ 1r( 60 ) > 0 then Eeb ~ 1r( 6) when 6 ~ 6o. 

H 1r E ITe and b is a test such that Ee1 b ~ 1r( 61) < 1 then Ee8 ~ 1r( 6) when 6 ~ 61. 

Joining these "principles" we conclude that if Ee8 = 1r(6) for 6 = 60 and for 6 = 61 then 
this is so also for 60 ~ 6 ~ 61 . 

It follows that if £ is homogeneous and 6o ~ 6 ~ 61 for any 6 E 8 and if 1r E Tie 
then Ee81r =e 1r( 8) where 01r is the unique most powerful level 1r( 6o) test for testing 
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IT Pe0 (C) > 0 then the requirement may be written: 

E (o !C)= E (A..IC)(= Eeo<P- Peo(B)) 
eo 71' eo 'f' Peo(C) . 

Varying k and 1 the quantity Ee0 ( 811'1C) varies freely in [0,1). Thus an assignment such that 
Ee0 011' = Eeo<P = 7r(8o) is feasible. By the Neyman-Pearson lemma Ee1 ( 87I'IC) ~ Ee1 (<PIC) 
when Pe1 (C) > 0. In any case f o11'dPe1 ~ f <jJdPe1 so that Ee 1 811' ~ Ee1 </J. Thus, by 

c c 
optimality, Ee1 811' = Ee1 <P = 1r(8!). Hence Ee811' = Ee<P = 1r(8); 80 ~ 8 ~ 81 so that 
Ee811' = 1r(8). 

Furthermore by the uniqueness part of the Neyman-Pearson lemma 871' is, up to nullsets, 
the unique, test which has powerfunction 7r and which is measurable w.r.t. the minimal 
sufficient u-algebra. The above discussion provides a substantial part of the spade work 
for: 

Theorem 4.4 (Monotone assignment of tests 1). 

H 0 is finite then there corresponds to any given powerfunction 7r in IT£ one and only one 
test-function 01r having that powerfunction and which is measurable w.r. t. the minimal 
sufficient a-algebra. This test-function 01r assumes, disregarding nullsets, besides 0 and 1 
at most one additional value in ]0,1[. Furthermore the assignment 1r -+ 811' is monotonically 
. . 
mcreasmg. 

Proof: 
We may without loss of generality assume that 0 = {1,· ·· ,m}. Put Jl 

fe = dPefdp. We supress the qualification a.e. in the arguments below. 

L:Pe and 
e 

Let IT be the set of functions in IT£ which are not indicator functions. Obviously we may 
restrict attention to powerfunctions in IT. 

m . . 

Decompose I1 as I1 = U IT' where IT'= {1r: 1r E IT,1r(i) > 0,1r(8) = 0 when 8 < i} 
i=l 

Then, since IT is totally ordered, any power function in ITi majorizes any powerfunction 
in ITk when i < k i.e., with obvious notations,: 

Decompose so each set ITi as 

rt = u rri,j 
i=l 
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There is for any experiment £ a monotone assignment 1r ~ b1r from lle to the set of test 
functions such that 

Eeb1r =e 1r( 8) for all1r E lie 

Remark. 
H the conclusion of the weak compactness lemma is not valid for £ then the statement 
of the theorem requires that we admit the "generalized" test functions described at the 
beginning of this section. 

An important and immediate consequence is: 

Corollary 4.6 (Powerdiagrams and types of M-L experiments) 

H ITe = IT.r for experiments £ and :F and if :F has the monotone likelihood property then 
the experiments £ and :F are equivalent. 

Proof: 

Express £ and :F as £ = (Pe : 8 E 8) and :F = (Q 8 : 8 E 0). It follows, since :F has 
monotone likelihood, that the set n = Tie = TI.r satisfies conditions (a) and (b). Thus [ 
and :F are pairwise equivalent. 

Associate with each constant c E R the test in :F with rejection region [T > c]. Then 
7re given by 1re(8) =e Qe(T > c) is in fl. It follows that there is a test function be in 
£ such that 1re( 8) =e Eebe where be1 ~ be2 a. e. [ when c1 ~ c2 • In order to escape 
technicalities we may, and shall, assume that 0 is finite. Then we may regularize the 
map c ~ be so that it is pointwise monotonically decreasing and continuous from the 
right and such that be ~ 0 or ~ 1 as c ~ oo or c ~ -oo. Then there is a unique 
Markov kernel M from £ to :F such that M(]- oo, c]l·) = 1 -be for all numbers c. Clearly 
EeM(]- oo, c]l·) = 1- 1re(8) = Qe(T ~ c) so that PeM =e .C(TI8). It follows, since T 
is sufficient in :F, that £ is at least as informative as :F. Hence, since they are pairwise 
equivalent, they are equivalent. 

0 

We shall now see that the M-1 property is a property of type i.e. that any experiment 
which is statistically equivalent with a M-1 experiment is itself a M-1 .experiment. By the 
last corollary this implies that if lle = IT.r for a M-1 experiment :F then also £ has the 
M-L property. 

Let £ = ( Pe : 8 E 0) be an experiment having monotonically increasing likelihood ratio in 
a statistic T. IT fe is the density of Pe w.r.t. some majorizing measure J.l and if 81 ~ 82 
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Assume that uivlu where both functions are non null. If v80 > 0 while ue0 = 0 then 

ve/Ve0 ~ uefue~ ~hen (} > Bo so that ue = 0 when (} ~ 00 • Hence, since u =I 0, Ue1 > 0 
for some B1 < Bo. Then 0 = ue0 /ue1 ~ Ve0 /ve 1 contradicting the assumption that Ve0 > 0. 
Thus ve > 0 if and only if ue > 0. 

Choose a parameter value 00 such that ve0 > 0 and put t = ue0 /ve0 • If (} > Bo and 
Ve > 0 then ve/Ve0 = uefue0 so that u8fv8 = t. Likewise if (} < 00 and ve > 0 then 
Ve0 /ve = ue0 /ue so that again ue/ve = t. 

0 

In general if V is a candidate for the set possible likelihood functions then there should 
to each (} in e be at least one function v in V such that v8 > 0. Assuming this we may 
draw the conclusion that if Vis also totally ordered for J then zeros and positive values of 

a function in V appears along the f) axis as: = 

0, ... '0, +, ... '+, 0, ... '0 

where one or both sequences of zeros may be empty. 

In fact if v E V and if ve2 = 0 while ve1 > 0 and ve3 > 0 where 01 < 02 < 03 then we find 
for any wE V with we2 > 0 that we2 /we 1 > 0 = ve2 /ve 1 while we3 /we 2 < oo = Ve3 /Ve 2 • 

This, however, contradicts either of the inequalities w!v and v!w. 

Let us agree to say that a non negative function v on e is sign regular if {f) : ve > 0} is a 
subinterval of e. In other words v is sign regular if ve > 0 whenever 01 < f) < Oz where 
Ve 1 > 0 and Ve 2 > 0. 

It may now be checked that if vlw where v and w are both sign regular then passing from 

w to v the end points of the interval of positivity remain either unchanged or are pushed 
to the right. 

Sets of likelihood functions which are totally ordered for the relation l need of course not be 

measurable. If e is finite however then maximal sets having this pr-operty are necessarily 
measurable. 

In fact, whether e is finite or not, if V is a set of likelihood functions which is totally 
ordered for the relation] then, by proposition 4.7, also the pointwise closure of Vis totally 

ordered for this relation~ If e is finite then closed subsets of R6 are measurable. 

Say that a real valued function T on V is strictly increasing if T( v) ~ T( w) whenever v l w 

while T( v) = T( w) if and only if v and w are positivily proportional. 

Totally ordered sets V may be represented by subsets of the real line with the usual ordering 
as follows: 
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Remark 
The standard measure of£ = (Pe : 8 E 9) is the measure pf-1 where J-l = "f:. Pe, fe = 

8 

dPe/dp; 8 E 9 and f = (fe: 8 E 9). By Blackwell (1951) and 1eCam (1964) this measure 
characterizes£ up to equivalence. The experiment £f- 1 = (P8f- 1 : 8 E 9) is called the 
standard experiment of£. 

Proof: 
We shall use the notations of the remark. H £has the M-1 property then we noted above 
that, disregarding a £ null set, the set of possible functions (} --+ fe is totally ordered for 
the ordering J. Hence pf-1 has a totally ordered support. Conversely if p/-1 has a totally 

ordered supp~rt then /e2 / /e1 = ¢>82 , 81 (T(f)) for ¢>82 ,81 and T as constructed above. 

0 

Corollary 4.10 (Types of M-L experiments contain M-L experiments only) 

An experiment which is equivalent with a M-1 experiment is itself a M-1 experiment. 

Remark. 
It suffices actually to require pairwise equivalence. Indeed, as we soon shall see, the pairwise 
equivalence of £ and a M-1 experiment implies full equivalence. 

Proof: 
This follows directly from the theorem and the definition of the M-1 property. 

0 

In order to show that the monotone likelihood property is a triplewise property we shall 
need: 

Proposition 4.11 

Assume 9 = { 1, · · · , m} and that v and w are non negative functions on 9 such that 

Assume also that v and w are both sign regular. Then either vlw or v and w may be 

expressed as: 

V - (v1 • • • Vt 1 0 " · 0) W = (0 .. · 0 Wt+1 • • • W ) 
- ' ' -' ' ' ' ' ' ' ' ' m 
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supports the standard measure of £19i. Then the standard measure of£ is supported by 
the set V of likelihood functions von e such that any restriction vl9i is in Wi; i = 1, · · ·, 4. 
The proof will now be completed by showing that V is totally ordered. Consider functions 
v and w i V. We must show that either v!w or v!w. 

Assume that neither vlw nor vlw. Note that our assumptions imply that v and w are 

both sign regular. It follows that there are indices k, k + 1 and i, i + 1 such that Wk > 0 
and Vk+I/vk > Wk+I/wk while Vi > 0 and Vi+I/Vi < Wi+I/wi. We may without loss of 
generality assume that k < i and then, since { k, k + 1, i, i + 1} can't be contained in a 
three point set, k = 1 and i = 3. Thus w1 > 0 and v2jv1 > w2/w1 while v3 > 0 and 
v4jv3 < w4jw3. In particular v2 > 0 and w4 > 0. Our assumptions imply that "vlw" 

on the sets {1,2,3} and {1,2,4} while "vlw" on the sets {2,3,4} and {1,3,4}. He~ce 

v3jv2 = w3jw2, v3jv1 = w3jw1, v4/v2 = w4Jw2, and v4/v1 = w4/w1. 

Furthermore the quantities v2jv1, w2fw1, and v3jv1 = w3fw 1 are positive and finite. This, 
however, yields the contradiction: 

w3jw1 = v3jv1 = v3jv2 · v2/v1 > w3jw2 · w2/w1 = w3/w1 

0 

Let us return to our considerations on powerfunctions. We have seen that the set Tit of 
powerfunctions characterizes a M-L experiment £ up to equivalence. The question then 
naturally arises: What sets ll offunction are of the form ll = llt for some M-L experiment 
£? 

We have seen that any such set ll is closed and satisfies conditions (a)-(b). This, however, 
is all we can say since, as we now shall see, any closed set n of monotonically increasing 
functions satisfying these conditions is of the form Tie for some M-L experiment £. 

Assume then that ll is a set of monotonically increasing functions on e satisfying (a) and 
(b). Let us also for the moment make the simplifying assumption that the only indicator 
functions in ll are the constant functions 1r = 0 and 1r = 1. (This amounts to require 
that the corresponding M-L experiment is homogeneous). Then the set ll is automatically 
closed. 

Choose a point 80 E e and let 1r = 1r( ·l8o, a) be the unique function in ll such that 
1r(8o) =a. Note that for each 8,7r(8!80 ,a) is a continuous distribution function F9 on 
[0,1]. The proof of the above assertion is completed by checking that :F = (F9 : 8 E 9) is a 
M-L experiment such that ll = ll.r· In fact F8 is continuous and it is convex or concave 
as 8 ~ 8o or 8 f; 8o. In particular F90 is the uniform distribution on [0,1]. If 82 > 81 then 
F92 (a) = .B(F81 (a)I8I,82) for a N-P function .8(·!81,82) and it may be checked that 

F~2 (a) = .B'(F91 (a)I81,82)F~1 (a) 

for almost all a. It follows that :F has monotonically decreasing likelihood ratio in T where 
T( a) =a a. This implies readily that ll = ll.r· 
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Remark. 
By Torgersen (1977) m-wise equivalence for any given integer m, however large, does not 
suffice to ensure complete equivalence. 

Proof: 

We may without loss of generality assume that 8 is finite. Assume the theorem is proved 
when 8 is a three point set. Let E be pairwise equivalent with the M-L experiment F. Then 
we may conclude for any three point subparameter set 8' that the restricted experiments 
£18' and Fl8' are equivalent and that £18' has the M-L property. Then, by theorem 4.12, 
the experiment E has the M-L property. By corollary 4.2 the sets Ile and Il.r coincide 
and thus, by corollary 4.6, E and F are equivalent. 

It follows that we without loss of generality may assume that 8 = {1, 2, 3}. Let E = 
(PI, P2, Pa) be pairwise equivalent with the M-L experiment :F = ( QI, Q2, Qa ). It suffices, 
by corollary 4.6, to show that Ile = IT.r and this, since :F has the M-L property, amounts 
to the condition that Il.r ~ Ile· 

Consider a powerfunction 1r in Il.r· Say that 1r is representable if it is the powerfunction of 
a test in E. Our task is then to show that 1r is representable. This is readily checked when 
1r is one of the at most four possible indicator functions in Il.r· If 0 < 7r(1) and 7r(3) < 1 
then, by pairwise equivalence and by optimality, any most powerful level "1r( 1 )" test for 
testing "() = 1" against "() = 3" in £ has powerfunction 1r. Hence 1r is representable in this 
case. 

Consider next the case where 1r(1) = 0 and 7r(3) = 1. Put fe = dPefd'L.Pe and put 
e 

o = (1- >.)IJ3 >o + >.Ih=O· Then, since PI 1\ P3 = O,Eeo = 1r(B);B = 1,3. Furthermore 
P2(JI = 0) f; J 1/Jh = J 1/Jh = 7r(2) for any testfunction 1/J in E such that Eet/J 

ft=O 
1r(B);B = 1,2 (Then 1/J = 0 a.e. when !I> 0). Similarly 

Pa(Ja > 0) = j !2 = j <Ph ~ E2<P = 1r(2) 

/3>0 /a>O 

for any test function¢ in E such that Ee¢ = 1r(B); () = 2, 3. (Then¢= 1 a.e. when fa > 0). 
Thus >. E (0, 1] may be adjusted so that Eeo = 1r(B). 

If 0 = 1r(1) and 7r(3) < 1 then there is, for n = 2, 3, · · ·, a powerfunction 1r n in Il.r so 
that 7rn(1) = 1/n. Then 7rn l 1r* E Il.r and clearly 7r* f; 1r while 1r*(J) = 0 = 7r(1). If 
7r*(3) = 1 then 7r* is representable by the above argument. If 7r*(3) < 1 then 7rn(3) < 1 for 
n sufficiently large and then 1r n is representable. Thus by the weak compactness lemma, 
1r* is representable in any case. Let o* be a test in E so that Eio = 1r( i); i = 1, 2, 3. As 
7r*(22 f; 7r(2) and 7r*(3) ~ 7r(3) we may by proposition 2:5 choose a most yowerfullevel7r(2) 
test o in E for testing "() = 2" against "() = 3" such that o ~ o*. Then Eio = 1r( i); i = 1, 2, 3. 
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H conversely this condition is satisfied for P1 + P2 + P3 almost all x then there corresponds 
to each positive rational number r < the P1 + P2 essential supremum of dP2/ dP1 a non 
negative number tr such that (h- r !!)(!3- trh) f; 0 a.e. P1 + P2 + P3. 

Modifying the densities we may ensure that (h - r ft )(h - tr f 2 ) f; 0 for all such rational 
numbers r. 

Consider points x and y in the sample space of £ such that 

f(x) = (ft(x),h(x),h(x)) and f(y) = (ft(y),h(y),!J(y)) 

are not comparable for the ordering l· 

We may without loss of generality assume that (h(x),!J(x))l(h(y),!J(y)). Then, by 

proposition 4.11, the inequality (!1(x),h(x))l(ft,(y),h(Y)) c~n't hold. Thus ft(x) > 
O,h(y) > 0 and h(x)/ft(x) < h(Y)/ft(y). Let r be a rational number in the interval 
]f2(x)/fi(x),h(y)/fi(y)[. Then h(x) < rf1 (x) while f2(y) > rft(y). The assumption 
on signs tells us then that !J(x) ~ trh(x) and that !J(y) f; trf2(y). H h(x) = 0 then 
this implies that also !J(x) = 0 and this is excluded by hypothesis since then f(Y)1f(x). 

Thus h(x) > 0 and hence !J(x)j h(x) ~ tr ~ !J(y)/ f2(y). Together with the inequal­
ity (h(x),!J(x))l(h(y),!J(y)) this shows that J3 (x)/h(x) = !J(y)/h(y) and thus that 

f( x )[f(y ). As this is also contrary to our hypothesis we are forced to conclude that f( x) 

and f(y) are comparable for any pair (x, y) of points in the sample space of£. 

0 

H the experiment £ = ( P8 : 8 E 8) has the monotone likelihood property then 

for parameter points 81 , 82 and 83 such that 81 < 82 < 83 • This is the basic comparison 
rule governing the pairwise behaviour of M-1 experiments. 

Consider conversely a family /38 1 ,82 ; 81 < 82 of N-P functions such that 

f382,8a (/381 ,82) = /391 ,8a 

when 81 < 82 < 83 • Let TI be the set of functions 1r from 8 to (0,1] such that: 

and 

(ii) 1r(8) > 0 whenever there is a 8' > 8 such that 1 > 1r(8') > /3(018, 8'). 

H 80 E 8 and 0 < a < 1 then we may construct a function 1r E fl such that 1r( 8o) = a by 
putting: 

1r( 8) = { {3( a j80 , 8) when 8 > 8o 
a when 8 = 8o 
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Starting with the N-P functions i3(·18t, 82) : 81 < 82 we may associate with each finite 
subset F of e a f3 function f3 F as follows: 

Arrange the distinct numbers in F in increasing order as F = { a0 , a1, • • · , am} and let f3 F 

denote the composed N-P function f3am-t,amf3am_ 2 ,am-l · · · f3a 0 ,a1 • 

By our last inequality f3 F ~ f3a ifF ~ G and the sets F and G have the same smallest and 
largest elements. Put finally /3* ( ·181 , 82) = sup f3 F where the sup is taken for all finite sets 
F having 81 and 82 as, respectively, its smallest and its largest element. As f3 F ~ f3a when 
F ~ G it does not matter whether sup here is interpreted pointwise or for the informational 
ordering. H 81 < 82 ~3 then the sets F appearing in the definition of /3* ( ·181 , 8a) may be 
chosen so that they all contain 82 • It follows readily that the family (/3*(·181! 82): 81 < 82) 
obeys the composition rule. Thus there is a M-1 experiment £* = (P8 : (} E 8) such that 

f3*(a!81,82) =a f3(a!P81 ,Pg2 ). 

It is straight forward to check that £* f; £t pairwise for all t E T and furthermore that 
£* f; :F pairwise for any other M-1 experiment :F such that :F f; £t pairwise for all t E T. 

Replacing sup with inf we obtain the construction of a greatest lower bound of the family 
&t : t E T. This construction is slightly simpler to interpret since informational infima of 
N-P functions coincide with the corresponding pointwise infima. We have proved: 

Theorem 4.17 (The pairwise ordering of M-L experiments). 

The collection of types of M-1 experiments is order complete for the pairwise ordering. 
Smallest upper bounds and greatest lower bounds of families of M-1 experiments may be 
obtained from the N-P functions by the above constructions. 

In principle we should now be able to approach the interesting problem of finding for a 
given non M-1 experiment £ the pairwise least (most) informative among the types of 
M-1 experiments which are pairwise at least (most) as informative as £. We shall not 
attempt to discuss this (generally open) problem here and instead turn to the problem of 
characterizing important particular classes of M-1 experiments in terms of the associated 
N-P functions. 

Consider e.g. the M-1 experiments£= (P8 : 8 E 8) which are pairwise stationary in the 
sense that the informational content of a dichotomy ( Pe1 , Pe2 ) depends on the difference 
82 - 81 only. H £ possesses this property and if a is any number such that a + e ~ e then 
the M-1 experiments£ and (Pa+9 : 8 E 0) are pairwise equivalent and are thus equivalent. 

As we in the subsequent discussion of stationarity shall assume that e is the real line we 
do not need to distinguish between pairwise stationarity and stationarity. 

Any translation experiment on the real line possesses this stationarity property. Further­
more strongly unimodal translation families are M-1 experiments. It follows that the 
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these distributions are dominated by the Lebesgue measure. In terms of the semigroup 
( /'h : h f; 0) this expresses that 

lll'h- /'kll ~ lll'lk-hl- /'oil-+ 0 as lh- kl-+ 0. 

Define a function F from R to [0,1] by choosing a number a 0 E]O, 1[ and then putting: 

(i) F(x) = 1- 1'-x(ao) when x ~ 0. 
(ii) F(x) = 1- y where l'x(Y) = a 0 when x f; 0 and /'x(O) ~ ao. 

(iii) F(x) = 1 otherwise; i.e. when x f; 0 and l'x(a) > a 0 • 

It is then readily checked that F is continuous and monotonically increasing. 

Note that when k > 0 then: 

SUP/'h(ao) = lim /h(ao) = SUP/k(/h(ao)) = /'k(supl'h(ao)) 
h h-= h 

so that SUP/h(a0 ) = 1. Hence lim F(x) = 0. If F(x) ~ T < 1 for all x then, for 
h x--= 

x > 0,/x(O) ~ ao and ao = lx(1- F(x)) f; lx(1- r) contradicting the fact, established 
above, that lx(1- r)-+ 1 as x-+ oo. Thus F is a probability distribution function. 

It may be checked that 1- F(x- h)= /h(1- F(x)) when h f; 0 and F(x) < 1. [In fact 
if x ~ 0 then 1- F(x- h)= /h-x(ao) while /h(1- F(x)) = /h(/-x(ao)) = /h-x(ao). 
If x > 0 and F(x) < 1 then /x(1- F(x)) = o 0 i.e. /x-h(/h(1- F(x- h))= ao. If also 
0 ~ h ~ x then /x-h(1- F(x- h))= o 0 so that 1- F(x- h)= /h(1- F(x)). If x < h 
then x- h < 0 so that 1- F(x- h)= /h-x(ao) = /h-x(/x(1- F(x)) = /'h(1- F(x)).] 

H F( a) < 1 and h f; 0 this, in turn, implies that: 

a J ~~(1- F)dF = J ~~(1- F)dF- J 1'~(1- F)dF 

-= F~a F=a 

F(a) 

= j 1'~(1- z)dz = 1- /'h(1- F(a)) = F(a- h)= Fh(a) 

0 

where Fe, for any 8, denotes the 8-th translate of(} i.e. Fe(x) =x F(x- B). 

It follows that a Fe maximal version of dFe / dF is given by: 

dFe/dF]x = 1'~(1- F(x)) or = oo asF(x) < 1 or F(x) = 1. 

Thus Fe : (} E R has the M-L property and 

,B(OIFo,Fe) = 1- F(F-1(1- a))= l'e(a) 
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Let £ = (P9 : 8 E e) be any experiment having a finite parameterset e. IT a9 : 8 E e are 
real numbers then 

II L a9P9II = 2[sup L a9 j 8dP9]- L a9 
8 

where sup is taken over all testfunctions 8. Thus ~[II I: a8P9II + I: a9] is the support 
8 8 

function of the set of all powerfunctions of tests. 

The following result provides therefor a link between the set of all powerfnnctions of tests 
on the one hand and the behaviour of N-P functions on the other. 

Let the total variation on a set A of a measure defined by a distribution fnnction f be 
denoted as II!: All· Then we may state: 

Theorem 4.19 (Total variation norm for linear combinations). 

Let £ = (P9 : 8 E 8) be a M-L experiment and consider parameter values Bo, 81, · · ·, Bm 
such that Bo ~ Oi; i = 1, · · ·, m. 

m 

Then for any numbers a 1 , · · ·,am the norm II I: akPB1c II may be decomposed as: 
k=I 

m 

II L akP81c II = II L ak,B( ·IPeo, Pe~c) :)0, 1]11 + r 
k=I 

where the first term on the right also equals the total variation of the Pe0 absolutely 
m 

continuous part of I: akP8Jc while r (consequently) is the total variation of the P90 singular 
k=l 

m 

part of I: akPB1c. In particular 
k=l 

m 

k=l 

when P90 dominates P91 , • • • , Pern. 
m 

In any case r ~ I: lak j,B(OIP80 , P81e ). 
k=l 

m-1 m 

m 

k=l 

r = L II L ak,B(·IP8;+up8~e) :]O,,B(OIPe;,P8;+1 )11. 
i=l k=i+l 

Proof: 
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Hence 
m-1 m 

r ~ L L laki[,Bi,k(O)- ,Bi+1,k(O)] 
i=1 k=i+1 

m-1 m 

= L L laki[,Bi,k(O)- ,Bi+1,k(O)] 
i=1 k=2 

where we put ,Bi,;(O) = 0 when i ~ j. Interchanging :L: and :L: the last expression becomes 
i k 

m m 

l: lakl,81,k(O) = l: laki,B(OIPsuPs~o)· 
k=2 k=1 

D 
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The second limiting relation is proved by similar, but more involved, arguments. 

Here are the details: Let 0 ~ o ~ 1. To each h > 0 there is then a testfunction bh so that 
Ee0 -hbh = o and Ee0 bh = .B(o!Bo- h,Bo). Then J bhdP80 ~ K(,B(a!Bo- h,Bo)) so that 
limsup J bhdP8 ~ K(o). 

h-+0 ° 
It follows that 

limsup[,B(oiBo- h,Bo)- o]/h 
h--+0 

Thus, since K(O) = K(1) = 0, convergence holds for o = 0 and o = 1. Assume so that 
O<o<l. 

It remains to show that li}?_!~f[.B( oj80 - h, 80)- a]/h ~ K( o ). H this was not so then there 

is a number A < K( o) and a sequence 0 < hn ! 0 so that 

[,B(o!Bo- hn,Bo)- a]/hn ~ A;n = 1,2, · · · 

Restrict attention to numbers n such that (A+~ )hn $ 1- o. (This is so for n sufficiently 
large). Suppress the subscript n, put E =(A+~ )h/(1- o) and let b be a slope optimal 
level o test-function so that Ee0 8 = o while J 8dP80 = K(o). Consider the testfunction 
8t = (1 - E)8 +E. The above assumptions imply that 

1 
Ee0 8t = (1- E)o + E = o + E(1- o) = o +(A+- )h > .B(oiBo- h, Bo). 

n 

Hence, by optimality and since E --+ 0 as n --+ oo: 

o < Ee0 -h8t = Ee0 8t- h j 8tdP80 + ho(1) 

= o +(A+.!_ )h- hj8dP8 - hEJ(1- 8)dP8 + ho(1) n o o 

1 
= o +(A+- )h- hK(o) + ho(1) 

n 

so that A+ ~ > K( o) + o(1) yielding, as n --+ oo, the contradiction K( o) > A ~ K( o ). 

Assume so that E has the M-1 property and that 

K(o) = lim[,B(oiBo,Bo +h)- a]/h = lim[,B(oiBo- h,Bo)- a]/h 

where lim is for h! 0 and where K is a N-P slope function. H h, k ~ 0 then, by theorem 
4.19, II(PBo+h- Pe0 )/h- (PBo+k- Pe0 )/kll ~ the total variation of the function 

1 1 
o--+ h[.B(o!Bo,Bo +h)- o]- k[.B(oj80 , 80 + k)- o] 
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Let a E]O, 1[ and consider the fraction [,8( al80 , 80 +h)- a]/ h where h > 0. Choose 1r E Tie 
such that 7r(8o) =a. Putting K(a) = 1r•(80 ) we find that 

[,B(al8o,8o +h)- a]jh = [1r(80 +h)- 1r(80 )]jh ~ K(a) ash~ 0. 

Extending the definition of K to [0,1] by putting K(O) = K(1) = 0 we conclude that K is 
continuous at a= 0 and at a= 1 and thus is a N-P slope function. 

Trivially [,8(1l8o,8o +h) -1]/h = 0 ~ K(1). H 0 <a then, as we have seen, K(a) = 
lim[,B(al8o,8o +h)- a]/h. Thus 

( ) > 1. (1- ,B(OI8o,8o + h))a + ,B(OI80 ,8o +h)- a K a _ 1m sup ....;...__.;.__..;._.;.___---:....:........,....;.__~..;._.;.___---:.... __ 
- h-o h 

= (1- a)limsup,B(OI8o,8o + h)jh. 
h-o 

Letting a~ 0 we find that limsup,B(OI80 ,80 + h)/h = 0 so that 
h-o 

[,B(al8o,80 +h)- a]jh ~ K(a) for all a E [0, 1]. 

In order to apply the theorem we need also to consider the left difference fraction [,8( o IBo­
h,8o)- a]jh. By the M-L property the function ,8(·180 - h,80 ) decreases pointwise to a 
N-P. function 1 as h l 0. By Dini's Lemma this convergence is uniform on [0,1]. The 
convergence is however also in the sense of total variation. 

Choose a E]O,l[ and putah= 1r(80 - h) where 1r E Tie and 1r(a0 ) =a. Then ,B(ahi8o­
h, 8o)- 1( a h) ~ 0 while ah ~ 1r(80 ) = a since any 1r is continuous at 80 • Thus 1( a h) ~ 
1( a) so that ,8( ah l8o - h, 80 ) ~ 1( a). On the other hand: 

,B(ahl8o- h,8o)- ah _ 1r(8o)- 1r(8o- h) .(8 ) _ ( ) 
h - h ~7r o-Ka. 

Thus ,B(ahl8o- h,8o) ~a so that 1(a) =a. Hence 1(a) =n a so that ,B(al8o- h,8o) l a 
uniformly in a as h ~ 0. 

Consider ah = wh(a) as a function of a E]O, 1[ for each h > 0. Then ,B(wh(a)l80 - h,8o) = 
a; 0 <a< 1. It follows that if a > ,8(0180 - h, 80 ), which is the case when his sufficiently 
small, then x = wh(a) is the unique solution of the equation ,B(xl8o- h,8o) = x. H 
0 < a ~ ,B(OI8o - h, 8- 0) then wh(a) = 1r(8o - h) = 0. Put also wh(O) = 0 and 
wh(1) = wh(1- ). Then wh is a convex function (actually a Lorenz function). H a E]O, 1[ 
then again: 

and trivially this holds also for a= 0. The number wh(1) = wh(1-) is the smallest number 
th such that ,B(th l8o -h, 8o) = 1. There is then a powerfunction 1r E Tie such that 7r(8o) = 1 
while 1r(80 - h)= th. Then: 
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1 1 1 1 
A= II- ;;.B(·I8o, 8o) + ;;.B(·I8o, 8o +h)+ ;;.B(·I8o, 8!)- ;;.B(·I8o, 81 +h) :]0, 1]11, 

1 1 1 
B1 = II;;.B(·I8o + h, 8o +h)+ ;;.8( ·l8o + h, 81)- ;;:.8(·180 + h, 81 +h) :]0, ,B(OI8o, 8o + h)JII, 

1 1 
B2 = 11;;:.8(·18~,81)- ;;:.8(·18~,81 +h) :]0,,8(0180 + h,8I)]II and 

1 
Ba = 11;;:.8(·181 + h,81 +h) :]O,,B(OI81,81 + h)]ll· 

Clearly 

The proof is now established by showing, as h l 0, that: 

A -+ IlK( ·l8o) - K(,B( ·l8o, 81) :]0, 1]11, B1 -+ 0, 

limsupB2 ~ IIK(·I8I) :JO,,B(OI8o,8I)JII and Ba-+ 0. 

This is seen as follows: 

A may be rewritten as 

1 1 
A= llh[,B(·I8o,8o +h)->.]- h[,B(,B(·I8o,8t)l8t,8t +h)- ,B(·IBo,8I)] :)0, 1)11 

1 1 
= llh01- h02 :)0, 1]11 

where 

in total variation on ]0,1]. 

The expression for B1 may be rewritten as: 

where O'.h = ,B(OI8o, 8o + h) l 0. Hence provided O'.h < a. 0 : 

It follows, since a.h(h) = [,B(OI80 ,8o +h)- 0]/h-+ K(OI8o) = 0, that limsupB1 ~ IIKe1 : 

]0, a.o] II l 0 as a.o l 0. 
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Assume so that £is a M-L experiment such that ~~::(alB) is continuous in B. 

By corollary 5.3 

If B1 l Bo or if Bo j B1 then II~~::( ·IB1) - ~~::( ·IBo) II --+ 0. In the first case 

In the second case 

IIPso- P81 II~ II~~::(·IBo)- ~~::(,B(·IBo, B)IBo) :]0, 1]11 
+ II~~::(,B(·IBo,Bt)IBo) -~~::(,8(·1Bo,B1)IBI) :]0, 1]11 

+ II~~::(·IBo) :]O,,B(OIBo,B1)]11 + II~~::(·IB1)- ~~::(·IBo) :]0, 1]11 
~ o(1) + 2II~~::(·IBo)- ~~::(·IB1)II--+ o 

IIPso- Ps1 II~ II~~::(·IBo)- ~~::(·IBI)II 

+ 11~~::( ·IBI)- ~~::(,B(·IBo, BI) :]0, 1]11 + 11~~::( ·IBI) :]0, ,B(OIBo, BI)]II --+ 0. 

0 

In terms of powerlunctions continuous differentiability of M-L experiments may be ex­
pressed as follows: 

Corollary 5.5 (Continuous derivatives of powerfunctions). 

Let £ = (Pe : B E 8) be an everywhere differentiable M-L experiment. Then the derivative 
P; is continuous in B for the total variation distance if and only if the family ( 1r• : 1r E ITe) 
of differentiated powerlunctions is equicontinuous on e. 

Proof: 

If P; is continuous in B then, as we have seen, ~~::(alB) is continuous in B for each a. This 
implies for these slope functions that ~~::(alB) is jointly continuous in (a, B). Combining this 
with the fact that 1r• = ~~::( 1rl·) when 1r E ITe we find that ITe as well as { 1r• : 1r E IJeJ is 
equicontinuous. (In fact ITe is uniformly Lipschitz on compacts). 

Assume so that the family ( 1r• : 1r E ITe) is uniformly equicontinuous. It suffices, by the 
theorem to show that~~::( alB) is continuous in B for a given a E]O, 1[. Consider then numbers 
Bn; n = 1, 2 · · · converging to B. Let 1r, 1r1 , 1r2, · · · be the powerfunctions determined by the 
requirements a= 1r(B) = 1r1(B1) = 1r2(B2) = · · ·. Then ~~::(aiBn) = ~~::(7rn(Bn)IBn) = 7r~(Bn) 
while ~~::(alB)= ~~::( 1r(B)IB) = 1r•(B). 

It suffices therefor to show that 7r:(Bn)--+ 1r•(B). Now 
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continuous family (K(·I8) : 8 E e) of slope functions and if K(·l8) ~ K(·l8) for all8 E e then, 
letting y denote the corresponding solution forK, y(8l80 , o:0 ) ~ y(8l80 , o:0 ) or~ y(8l8o, o:o) 
as 8 :5 80 or 8 ~ 80 • - -

Furthermore if w is any function on e such that w( 80 ) = o:0 and having a derivative w• 
such that w•(8) ~ K(w(8)18) for all 8 then w(8) ~ y(8180 , o:0 ) or~ y(8l8o, o:o) as 8 ~ 8o or 
8 ~ 8o. 

Finally if v is any function on e such that v(80 ) = a: and having a derivative v• such 
that v•(8) ~ K(v(8)18) for all 8 where the inequality is strict whenever K(o:l8) =a 0, then 
v(8) ~ y(8l8o,o:o) or~ y(8l8o,o:o) as 8 ~ 8o or 8 ~ 8o. 

Proof: 

The local existence theory for 1-st order differential equations implies that there is a 
a> 0 such that there is a function y = y(·J80 ,o:0 ) from [80 - a,80 +a] to ]0,1[ such that 
y•(8) = K(y(8)J8) when 8 E [80 - a, 80 +a] while y(80 ) = o:0 . The uniqueness part of this 
theory implies that there is at most one such function from e to [0,1]. The desired global 
solution may be obtained as a maximal extension of the fragment on [80 -a, 80 +a]. 

Consider so two continuous families K1(·18): 8 E e and K2(·18): 8 E e such that K1(-18) ~ 
K2(·!8) for all 8. Put K2(o:J8) = K2(o:l8) + Emin{o:, 1- a:} when E > 0. Let Zt be the 
solution for K2, let z be the solution for K2 and let y be the solution for K1. Thus zt(8o) = 
z(8o) = y(8o) = O:o while for any 8 E e: z:un = K2(zf(8)J8),z·(8) = K2(z(8)J8) and 
y•(8) = K1(y(8)18). 

Then z£(8) ~ z(8) when 8 ~ 80 while z£(8) ;$ z(8) when 8 ~ 80 • If 8 > 8o then this may 
be argued as follows: Firstly z£(80 ) = z(80 ) =a: while z;(80 ) > z•(80 ). Thus zf(8) > z(8) 
when 8 ~ 80 and 8 is sufficiently close to 80 • If z£(8) < z(8) for some 8 > 80 then there is a 
81 > 8o such that zf(8I) = z(8I) while zf(8) > z(8) when 8 E]8o, 81 [. Then z;(8I) ~ z•(8I) 
which is impossible since z;(8I) = K2(zf(81)18I) = K2(z(8I)j81) > K2(z(8I)I81) = z•(8I). If 
8 < 8o then the derived inequality may likewise be argued by comparing slopes at points 
of intersection of the graphs of z and of zE. 

By about the same kind of arguments we find also that zE(8) ~ y(8) when 8 ~ 80 while 
zE(8) ~ y(8) when 8 ~ 80 • Furthermore zE(8) increases monotonically in f when 8 ~ 8o 
while zE(8) decreases monotonically when 8 ~ 80 • It is readily checked that 8-+ lim zE(8) 

E-+0 

satisfies the same differential equation as z and trivially lim zE(80 ) = o:o. Hence lim zE(8) = 
E-+0 E-+0 

z(8); 8 E e so that z(8) ~ y(8) or~ y(8) as 8 ~ 80 or 8 ~ 80 • 

Consider next any function w from e to [0,1] such that w(8o) = o:o while w•(8) ~ K(w(8)18) 
for all8. Put KE(o:l8) = K(o:I8)+Emin{o:,l-o:} for f > 0. (KE is introduced in order to be 
able to work with a strictly positive slope function on )0,1[). Let YE be the unique function 
such that y;(8) = KE(y(8)18); 8 E e while YE(8o) = o:o. 



5.12 

Let ao, a 1 and r be numbers in ]0,1[ and put 

z(6) = (1- r)y(616o,ao) + ry(616o,ai)· 

Then, since K( ·16) is concave, 

z•(6) = (1- r)y•(616o, ao) + ry•(6l6o, a1) 

= (1- r)~~:(y(616o, ao)l6) + r~~:(y(616o, ai)I6) 

~ ~~:(z(6)16). 

On the other hand z(80 ) = (1- r)a0 + ra1. Hence, by the theorem: y(8j60 ,a) ~ z(6) or 
~ z(6) as 6 ~ 60 or 6 ~ 60 • 

It follows that y( 616o, a) is convex or concave in a as 6 ~ 60 or 6 ~ 60 • In particular y( 8!) 
is a concave function of y( 60 ) > 0 when y varies in f1 provided 60 < 61. 

This shows that f1 satisfies both condition (a) and condition (b) of section 4. The closure 
f1 of f1 for pointwise convergence satisfies then also (a) and (b). Indeed f1 consists of the 
functions in rr and the set of indicator functions which are pointwise limits of functions 
in rr. 
It follows from theorem 4.13 that f1 = f1£ for a M-1 experiment £ = (P9 : 8 E 0). If 
7r En then K(7r(8)J8,£) = 7r.(8) = K(7r(8)J8) so that ~~:(-J8,£) = ~~:(·18) when 8 E e. The 
continuity of ,..,( aJ8) for given a implies by corollary 5.5 that P; is continuous in 8 for 
total variation distance. Finally uniqueness follows from the uniqueness of solutions of our 
differential equations. 

D 

In spite of the uniqueness part of our last theorem there is in general a multitude of 
continuously differentiable non M-1 experiments having the same slope functions as £. In 
fact if :F is any continuously differentiable experiment then our results imply that there is 
a M-1 experiment which is locally equivalent with :F. If :F does not have the M-1 property 
then £ and :F can not be equivalent. 

If£ is any experiment which is differentiable at 6 = 60 and if ~~:( ·160 ) =I 0 then, by Torgersen 
(1985), £is locally equivalent at 60 to a unique strongly unimodal translation experiment 
Q = (G9 : 6 E 0). The distribution function G along with all its translates constitute the 
total set of solutions of the differential equation 

As a particular case consider the Cauchy translation experiment £ ·determined by the 
Cauchy density x --? 1r(I~x 2 ). As is well known this experiment is not a M-1 experiment 

i.e. x --? log(1 + x2 ) is not convex. Since £ is a translation experiment the slope function 
~~:( ·16, £) does not depend on 6. Thus the constructed strongly unimodal translation ex­
periment Q is everywhere locally equivalent to£. By our next theorem Q is pairwise more 
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6. COMPARISON FOR GIVEN LOSS FUNCTIONS. APPLICATIONS TO 
SELECTION PROBLEMS. 

Consider a decision problem given by an experiment E = (x, A, Pe : 8 E e), a decision 
space (T, V) (i.e. a measurable space) and a loss function Lon T. Thus L = (Le : 8 E e) 
is a family of extended real valued measurable functions on (T, V). We shall for simplicity 
assume that Le, for each 8, is bounded from below. This condition is assumed fulfilled for 
the decision problems considered in this paper. 

IT not otherwise stated the parameter set e is an arbitrary, but fixed set. 

Within this set up a decision rule p in the traditional sense is a Markov kernel from the 
sample space of E to the decision space (T, V). 

The operational characteristic of pis the experiment (Pep : 8 E e) where (Pep)(D) = 
f p(Dix)Pe(dx);D E V,8 E e. 

The risk r( 8lp) incurred by using the decision rule p when 8 prevails may be expressed 
in terms of the operational characteristic as J Le( t )Pep( dt) or as a double expectation 
J[f Le(t)p(dtlx)]Pe(dx). The risk function of the decision rules pis r(8lp) as a function of 
8. 

We shall need the set A of prior distributions >.on 8 having finite supports. A distribution 
>. in A may then be identified with the weights >.e : 8 E 8 it assignes to the parameter 
points. We do not require that the prior distributions in A are probability distributions. 
Thus (>.e : 8 E e) are the weights of a prior distribution >. in A if and only if these weights 
are all non negative and if the set {8: >.e > 0} is finite. 

The Bayes risk of p may now be written: 

L >.er(8lp) = jrjrL >.e(t)fe]p(dti·)]dJL 
e e 

where Jl is a non negative measure such that Pe is JL-absolutely continuous with density 
fe = dPefdJL when 'A.e > 0. The minimum Bayes risk will be denoted by b('A.IL,E) or just 
by b(>.IL). Thus b('A.IL,E) = f[inf(:L>.eLe(t)fe)]dJL. The minimum Bayes risk b(>.IL,£) as 

t e 
a function of the variables>., LandE plays an important role in decision theory in general 
and in the theory of comparison of experiments in particular. 

Considering the loss function L and the experiment £ as fixed the fundamental observation 
is that b( ·IL, £) provides, by the very definition, the lower support function of the lower 
boundary of the set of risk functions. 

Trivially I: s( 8)>.e ~ b( 'A.jL, £) for any function s on e such that s( 8) ~ r( 8lp) for all 8 for 
e 

some decision rule p. 



6.3 

One benefit of admitting generalized decision rules is that the set of generalized decision 
rules is compact for the pointwise topology on£(£) x M(T, V). We shall from here on 
permit ourselves to work freely with generalized decision rules without always referring to 
them as generalized. It should however be noted that the fundamental quantity 

b(.XIL, £) = inf L .X9(P9pL8) 
p 8 

is unaltered by the admittance of generalized decision rules. 

Another useful fact is the following: Say that a traditional decision rule p is finitely sup­
ported if p(DI·) = 1 everywhere for some finite union D of V atoms. Then the set of 
finitely supported traditional decision rules (i.e. Markov kernels) is dense within the set 
of all decision rules for the topology of pointwise convergence on L( £) x M(T, V). 

We are now in a position to present the fundamental characterization of the lower boundary 
of the risk set due to LeCam. 

Theorem 6.1 (Support function description of the lower boundary of the risk 
set). 

Let the decision problem £, (T, V) and L be as above. Then the following two conditions 
are equivalent for an extended real valued function s on 8: 

(i) There is a decision rule p such that r(Oip) ~ s(O) for all 0 E 8. 
(ii) b(.XjL,£) ~ L:.X9s(8) for all .X EA. 

8 

Proof: 

Suppose b(AIL, £) ~ I: A9s(8) for all .X E A. We must prove the existence of a decision 
8 

rule p such that P9pL9 ~ s(8); 8 E e. 
H s(8) = oo for some 8 then the last inequality is trivial. It follows that we without loss 
of generality may assume that s(8) < oo for all 8 E e. 
Consider the 2-person null-sum game with pay off function (.X, p)-+ I: >.9P9pL9-I: >.9s(8). 

8 8 
This pay off function is affine in >. as well as in p. H L is bounded then it is continuous in 
p. In general it is at least lower semicontinuous in p. Furthermore the set of strategies for 
player II is compact for the pointwise convergence on L(£) x M(T, V). 

It follows by standard minimax theory that this game has a value and that player II has a 
minimax strategy p0 • The assumptions imply that the lower value is non positive so that 

L A9P9poL8 ~ L A9s(8) 
8 8 

for all .X E A. Inserting the one point distribution for .X we find that 

P8poL8 ~ s(8); 8 E e. 
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r r 
In particular ( L.: Pi£i, L);;; ( L.: Pi:h, W) when (£i, L);;; (:Fi, W); i = 1, · · ·, r. 

i=l i=l 

Proof: 
This follows immediately from the fact that b(-\jL, £) is affine in£. 

0 

The minimum Bayes risk for product experiments may conveniently be expressed in terms 
of updated prior distributions as follows: 

Suppose the experiment £ = (P9 : f) E E>) and :F = (Q9 : f) E E>) are realized by 
observing, respectively, the independent variables X and Y. Then the minimum Bayes 
risk b( -\jL, £ x :F) may be expressed as 

b(-\jL, £X :F)= Eb(A(·IY)IL, £) = Eb(-X(·IX)IL, :F) 

where -X(·IY) and -\(·IX) denote, respectively, the a posteriori distributions of f) given Y, 
respectively, the a posteriori distribution of f) given X. 

~onside: also two other independent variables X andY realizing, respectively, experiments 
£ and :F. Assume that the decision problem (£, L) is K 1 deficient w.r.t. the decision 
problem (E,L), and that the decision problem (:F,L) is K2 deficient w.r.t. the decision 
problem (f:, L ). Then: 

b(AIL, E x :F) ~ Eb(-\( ·IY)IL, E)+ L AeK2(fJ) 
9 

= b(AIL,t x :F)= Eb(-\(·IX)L,:F) + L AeK2(fJ) 
9 

~ Eb(-\(·IX)IL,f:) + L AeKI(fJ) + L A9K2(fJ) 
9 9 

= b(-XIE x F)+ L -Xe[Kl(fJ) + K2(fJ)). 
9 

This proves: 

Corollary 6.4 (Comparison of products of decision problems). 

Assume, for i = 1, 2, · · · , r, that the decision problem ( £i, L) is Ki deficient w .r. t. the 
decision problem ( :Fi, L ). 

r r 
Then the decision problem ( IJ £i,L) is L.: Ki deficient w.r.t the decision problem 

i=l i=l 
r 

(IJ:Fi,L). 
i=l 
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H these integrals are finite and Po and P1 are not mutually singular then this yields 
Po(S)/P1 (S) ~ P0 (S)-k. Letting n-+ oo we find that P0(S) ~ P1(S). This proves: 

Proposition 6.6 

Let £5 be the experiment obtained from the experiment £ = (Po : (} E 8) by selection on 
a non ancillary eventS. Assume that 0 < J(dPo2 /dPo1 )ndPo1 < oo for n = 1,2, ···and all 

5 
Bt, B2 E 8. Then £ 5 is not pairwise at least as informative as£. 

Consider also a decision space (T, 'D) equipped with a loss function L = (Lo(t) : t E T, (} E 
8). We shall assume that there is a decision t in T such that Lo(t) < oo for all B. 

Let us also assume that Po( S) < 1 for all (} such that £ 5 c is well defined. We may 
thus compare the decision problems ( £, L), ( £ 5 , L) and ( £ 5 c, L). One might expect that 
if information is generally increased by selection on S then information is generally lost 
by selection on sc. We shall now see that this is so for several important notions of 
information. The following result state that this is so for any given loss function: 

Theorem 6.7 

Let the experiment £, the loss function L and the selection set S be as above. Then 
(£5 c, L) ;$ (£, L) provided (£5 , L) ~ (£, L). 

Proof: 
We may without loss of generality assume that e is finite. Put J1 = 2::: Po and fe = dPe/dJ1. 

e 
The inequality (£5 , L) ~ (£, L) may be written: 

j [/\ L Ae(Je/ Pe(S))Le(t)]dJ1 ;$ j [/\ L AefeLe(t)]dJ1; A EA. 
5 t e t e 

Replacing Ae with AePe( S) this may also be written: 

or 

][f\LAofoLe(t)]dJ1 ;$ j[f\LAePe(S)feLo(t)]dJ1;A E A 
5 t 0 t 0 

j[l\ L AofoLo(t)]dJ1 ~ j {[/\ L AofeLo(t)]- [/\ L AoPo(S)feLe(t)]}dll 
5 c t e t e t o 

~ ][/\ L AoPo(Sc)feLo(t)]dll; A E A where the last ~ follows by super additivity. 
t e 

Replacing Ae by Ao/Pe(Sc) we obtain the informational inequality (£,L) ~ (£5 c,L). 
D 
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IT£ is at least as informative as :F then H(·l£) ~ H(·I:F). IT the latter inequality holds then 
we shall say that £ is at least as infonnative as :F for tbe Hellinger ordering of experiments. 

H Pand Q are probability measures on the same measurable space then J y'dPdQ is called 
tbe affinity between Pand Q. Considering an experiment£= (P8 : 9 E 0) and parameter 
points 61 and 92 we find that the affinity between P81 and Pe2 is H(AI£) where Ae1 = 
Ae2 = ~ or = 1 as 61 "!- 62 or as 91 = 92 . 

Analogously with proposition 6.8 we have: 

Proposition 6.10 

Let { S1, S2, · · ·} be a measurable partitioning of the sample space of£ = ( Pe : 9 E 0) such 
that Pe(Si) > 0; 9 E 0, i = 1, 2, · · ·. Assume that£ is regular in the sense that 1\ Pet= 0 

8EF 
for any finite subset F of e. 

Suppose H(·l£5 ;) ~ H(·l£);i = 1,2,···. Then £5 ; "'£;i = 1,2,··· and the events 
Si; i = 1, 2, · · · are all ancillary. 

In particular this is so if £ 5 ; is at least as informative as £; i = 1, 2, · · ·. 

Remark 
One might of course also consider more general partitionings. Thus if Z is a statistic then 
we might for the various possible realizations z of Z consider the conditional experiments 
£z given Z = z. Under general conditions which are described in Torgersen (1976) it 
can't occure that these conditional experiments are all at least as informative as £ for 
the Hellinger ordering (and thus for the over all ordering) unless Z is ancillary and £Z is 
equivalent to £ with probability 1. 

Proof 
The Hellinger transform of £5 ; is for a probability distribution>. E A given by: H(Ai£5 ;) = 
f(TI dPi' )/ TI Pe(Si)~'. The inequality H(>.i£5 i) ~ H(>.i£) may thus be written 

S; 8 8 

j II dPi' ~II Pe(Si)~' H(Ai£). 
S; 8 8 

Assuming this fori= 1, 2, · · · we find by summation that 

H(AI£) ~ L II Pe(Si)~' H(AI£) ~ H(AI£) 
i 8 

so that "=" prevails. By regularity H(AI£) > 0 that 2::: TI Pe(Si)~' = 1. Thus Pe(Si) 
i 8 

does not depend on 9 as long as >.e > 0. Assuming that H(Ai£5 ;) ~ H(>.l£) for all>. and 
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Then if I(B,£5 j) ~ 1(8,£) for all 8 and j then I(B,£5j) = I(B,£);j = 1,2,· .. and the 
events SI, s2, ... are all ancillary. 

Let us consider the particular case of an exponential experiment £ = (Po : 8 E 8) having 
8 as a k-dimensional canonical parameter. Thus we assume that there is a non negative 
measure J.l and a k-dimensional statistic Y such that, for each B,dP8 jdp, = c(B)-1 e(8,Y)h 
where the function h is non negative. The natural parameter set e of £ is the set of vectors 
8 such that J e(B,Y) hdp, < 00. By Holder's inequality e is convex and thus contains the 
convex hull of e. We shall consider the quantity c(B) = J e(B,Y)hdp, as defined for all 
o E e. 
Let us agree to use the notation 8>. for the expectation of 8 for the prior distribution A. 

The Hellinger transform of£ becomes for a prior probability distribution A in A: 

H(AJ£) =]IT dP;' = j e<8A,Y)hdp,/IT c(B)>.' 
8 8 

= c(B>.)/ IT c(B)>.' 
8 

so that 

log H(AJ£) = log c(lf;>.)- L A9 loge( B) 
8 

showing directly the log convexity of the function c. 

H P9(S) > 0 for some 8 then Po(S) > 0 for all 8 and the selection experiment £5 is also 
exponential. In fact 

Hence 

H(AI£5 ) = H(AJ£)P8A (S)/ IT P9(S)>.' · 
8 

Thus £ 5 majorizes £or is majorized by£ for the Hellinger ordering according to whether 
log Po(S) is convex or is concave in B. 

As shown by Bayarri and DeGroot (1987) this is also the criterion for the ordering by Fisher 
information. In fact if 8 is an interior point of e then the Fisher information matrix at 8 
is the convariance matrix of Y and the (i,j)th element of this matrix at 8 is the number 
82 log c(B)/8Bi8Bi. 

Adding the matrix whose (i,j)th element is 82 logP9(S)j8Bi8Bi we obtain the Fisher 
information matrix of £5 . Thus I(B, £5 ) ~ I(B, £) or ~ I(B, £) as log P8(S) is locally 
convex or concave at 8. 
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(iii) log (Eew2/Eewl) is convex in 8. 

He is open then these conditions are equivalent with: 

(iv) 

Remark 
By Janssen's convolution criterion, theorem 1.1, Ew1 ~ Ew2 if and only if for some 8 the 
distribution Pe,w1 is a convolution factor of the distribution Pe,w2 • 

Let us return to the case where 8 is one dimensional and let us assume that 8 is an open 
interval of the real line and that £ is exponential as above. By section 5 the experiment 
£ is locally at least (at most) as informative as £ 5 if and only if £ is pairwise at least (at 
most) as informative as £ 5 . By the results of section 8 this is so if and only if£ is at least 
(at most) as informative £ 5 for monotone decision problems and this, in turn, implies the 
corresponding orderings of Hellinger transforms and of Fisher information. 

Having established one way or another an ordering of the experiment £ and the selection 
experiment £ 5 we may ask whether or not this is the overall ordering of these experiments. 

Consider e.g. the case of the Poisson distribution with the zero class missing. Thus 
Po(x) = ~: e-~; x = 0, 1, 2 .. ·with A= e8 ; () E RandS= {1, 2 ···}so that Po(S) = 1-e-~. 

X. 

Then Po(S) is concave in () so that, as argued in Bayarri and DeGroot (1987), selection 
on S decreases information pairwise and thus, by section 8, also for monotone decision 
problems. 

Bayarri and DeGroot show also that £ is not more informative than £5 in this case. We 
may here argue this on the basis of theorem 1.1. Indeed if£ was more informative than 
£5 then Po(·IS) must be a convolution factor of P0 . Po being a Poisson distribution does 
not have other convolution factors than translates of Poisson distributions. As Pe(·IS) is 
clearly not a translate of a Poisson distribution we are forced to conclude that £ is not 
more informative than £ 5 . 
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Furthermore, since 

dPt(·IS)fdPo(·IS) = [dPtfdPo][Po(S)/Pt(S)] 

is monotonically increasing in T: 

so that 

Pt(S)f35 (a) = Pt(T E]c, b))+ 1P1(T =c)= [Et8- Pt(T E (b, oo]) 

= f3(Eo8)- Pt(T E (b, oo]) = /3((1- a)z0 + az1 )- f3(z0 ) or = f3(azt) 

as 
oo ¢(a, b) or oo E (a, b). 

Altogether this shows that 

f3 5 (a) =o [/3((1- a)zo + az1)- f3(zo)]/[,B(zt)- ,B(zo)] when oo ¢(a, b) 

while 

The latter expression is clearly also valid when z0 = 0 and ,8(0) = 0. Note that the above 
formulas are precisely those we obtain from the representation (nniform (0,1), /3) by using, 
respectively, ]z0 , z1 [ and [0, z1 ] as the selection set. 

Consider in particular selection sets of the form S = [T E (a, oo)]. H we put z = P0 (S) = 
Po(T E (a, oo]) then, by the last one of the formulas above, 

As the N-P fnnction {35 of V 5 depends on z only we shall permit ourselves to write f3z 
instead of {3 5 so that f3z(a) =o f3(az)/f3(z). Conditions ensuring monotonicity in z of f3z 
provide, since /31 = /3, also conditions ensuring the informational inequalities £5 ~ £ and 
£5 ~ £. 

As a particular case let us consider the exponential life time model realized by observing 
T having cwnulative distribution fnnction Fe(t) = 1- e8t; t > 0 wher.e () < 0. Assuming 
that 01 ~ 02 and putting p( 01, 02) = I02I/IOtl we find that /3( a lOt, 02) =o aP< 81 •82 ). H the 
selection set is the set S = [T ~ a] then, by the lack of "memory" of the exponential 
distribution, Pe(·IS) = P8 and thus £ 5 "-J £. Indeed f3z(a) =o f3(a) whenever f3 is of the 
form f3( a) =o aP with 0 ~ p ~ 1. In view of proposition 6.6 we may ask whether it is at 
all possible to have V 5 ~ 'D for V 5 not equivalent to 'D. 
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IT K(x) = 1 for some x < oo then J(dP1jdP0 )ndP0 ~ xn < oo;n = 1,2,· ··. Hence, by 
the proof of proposition 6.6, either P1 J.. Po or z = P0 (S) f; P1(S) = f3(z) for all z > 0. 
In the first case K is the one point distribution in 0. In the second case {3( a) = a and 
then K is the one point distribution in 1. Assuming that K is not a one point distribution 
we conclude that the cumulative distribution function K is strictly increasing on I. IT, 
furthermore, 0 < c1 < c2 E I then K( c1-) < K( c2-) < 1. Putting z2 = 1 - K( c1-) and 
z1 = 1- K(c2-) we find that 0 < z1 < z2 and hence w(z1) ~ w(z2) i.e: 

E[(Xjc2)IX f; c2] = J xK(dx)jc2K[c2, oo[= f3(zl)j[K- 1(1- zl)z1] 

[c2 ,oo[ 

= w(zl)-1 f; w(z2)-1 = E[(Xjci)jX f; c1]. 

Thus the equivalent conditions (a) and (b) imply condition (c). 

Assume finally that condition (c) is satisfied. IT, in addition, K is the one point distribution 
in a point~ then /3( a) =a~ +(1-0 and then f3z( a)= [az~ +(1-0]/[z~ +(1-0] decreases 
monotonically in z. (Alternatively we may observe that w(z) = ~z/f3(z) T in z). Thus 
we may, and shall, in the remaining part of the proof assume that ]{ is not a one point 
distribution. Decompose the interval ]0,1[ as ]0,1[= U{[*K(c-),K(c)]: c ~ K- 1 (0+)} 
where the * indicates that this bracket shall be reversed when c = J(- 1 (0+ ). Letting lc 
denote the closed interval with endpoints P(X >c) and P(X ~c) this decomposition may 
be expressed as )0, 1[= U{J;: c ~ K-1(0+)} where the(*) indicates that P(X ~c) shall 
be deleted from Jc when c = J{-1 (0+ ). 

IT c1 < c2 then 1c1 and lc2 are disjoint and Jc1 is entirely to the right of lc2 • H z E Jc 
then K-1(1- z) = c and thus w(z) = cz/f3(z) which is monotonically increasing in z. 

Assume so that 0 < z1 < z2 < 1. Then z1 E Jc2 and z2 E Jc1 for numbers c1 and c2. By 
the above result we may assume that c1 =f. c2 and then c1 < c2 . We may now also assume 
that z1 = 1- K(c2-) and that z2 = 1- K(ci). Then K-1(1- zi) = c2,K-1(1- z2) = 
c1,(3(z1 ) = J xK(dx) and f3(z2) = J xK(dx). 

[c2,oo[ ]c1 ,oo[ 

Letting d l c1 we find that: 

so that w(zl) ~ w(z2). 

0 

Thus the property of V that V 5 is information decreasing in S = [ dP1 / dPo f; a] may be 
phrased as .CK(logX) having increasing mean exponential residual life time. Similarly, 
as we now shall see, the property of V that V 5 is information increasing in S may be 
interpreted as .C K(log X) having decreasing mean exponential residual life time. 
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c1,n = K-1(p1 + ~) when P1 + ~ < P2· Then c1,n l c1. It follows, by continuity, that it 
suffices to show that E(X/c1,niX ~ c1,n) ~ E(X/c2jX ~ c2). Put z1 = 1- K(c2) and 
z2,n = 1- K(c1,n)· Then 0 < Z1 ~ z2,n < 1 and K-1(1- z1) = c2 while K-1(1- Z2,n) = 
c1 n· Thus , 

E(X/ IX> ) - (3(z2,n) > (3(z1) 
c1,n = c1,n - Z J{-1(1- Z ) = z J{-1(1- Z ) 2,n 2,n 1 1 

= E(X/c1jx ~ c1). 

Assume finally that (c) is satisfied and let us write w(z) = zK-1(1- z)/f3(z). Then 
w(z) ~ 1 for all z E]O, 1[. 

As conditions (a) and (b) are trivially satisfied when K is either the one point distribution 
in 0 or the one point distribution in 1 we may, and shall, assume that K is none of these 
one point distributions. 

Let z E]O, 1[ and put Cz = K-1(1- z). Then Cz E [K-1(0+),K-1(1)]. Decompose ]0, 1[ 
as ]0, 1[= U U V U W where U = {z: Cz = K- 1(1)}, V = {z: K- 1(0+) < Cz < K-1(1)} 
and W = {z: Cz = K- 1 (0+)}. Put b = K- 1 (1). 

li z E U = { z : Cz = b} then K- 1 (1 - z) = b and 1 = K( b) > 1 - z ~ K( b-) so that 
z ~ K([b,oo[) = K({b}). It follows that we may write z = BK({b}) with 8 E]0,1J. Thus 
(3(z) = BbK({b}) so that w(z) = 1. 

Hz E V = {z: K-1 (0+) < Cz < b} then, since Cz E J, we find that 

w(z) = zK-1(1- z)j(3(z) = [1- K(cz)]cz/f3(1- K(cz)) 

= 1/E[(X/cz)IX ~ Cz] l in z. 

Thus w is monotonically decreasing on V. 

Hz E W = {z: cz = K-1(0+)} =]1- K(K-1(0+), 1[ then K(K-1(0+)) > 0 so that K 
has an atom at K-1 (0+). By condition (c) this requires that either K-1 (0+) = 0 or that 
K-1 (0+) = K-1 (1). 

The last condition implies that K is a one point distribution and thus, since J xK( dx) = 1, 
that K is the one point distribution in 1. Having excluded this case we conclude that 
K-1(0+) = 0 and thus that w(z) = Cz = 0 when z E W. 

The proof is now completed by observing that U is situated entirely to the left of V while 
W is situated entirely to the right of V. 

0 
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Let ro(x) = Po(x)/Po([x,oo[) be the hazard rate at x. Then Po has the IFR property, 
i.e. Co(X- miX ~ m) decreases monotonically in m E I according to the "stochastic 
ordering" of distribution functions, if and only if r0(x) increases monotonically in x E I. 
In other words Po( X ~ m + t IX ~ m) decreases in m for each t ~ 0 if and only if the 
hazard rate is monotonically decreasing on I. This can only happen when I is bounded 
from below. 

A simple condition ensuring this is that v(x + 1)/v(x) is decreasing in x E I. Note that if 
these conditions are satisfied then they are also satisfied after conditioning w.r.t any non 
empty right tail [a, oo[ni of I. The last condition prevails however after conditioning w.r.t 
any sub interval of I and also by translations and reflections. It may be checked that this 
last condition is satisfied in the (negative) binomial case as well as in the Poisson case. 

Theorem 7.4 (Pairwise information increasing selections. The discrete case). 

Let £=(Po: BE 8) be an exponential family of IFR distributions as described above. 

Consider selection on an subintervalS of I (necessarily bounded from below). Then £ 5 is 
pairwise information increasing in S provided we restrict attention to intervals S having 
the same right end point as I. This provision may be omitted if v( x + 1 )/v( x) decreases 
monotonically in x when x E I. 

Proof: 

Let X be a random variable having distribution Po when B prevails. 

We may without loss of generality assume that I is a finite interval having the origin as its 
left and point. Passage to a general bounded interval follows then from the remarks above. 
Passage to unbounded intervals follows from Scheffe's convergence theorem and the fact 
that orderings of experiments are preserved under limits for the weak experiment topology. 
We may also restrict attention to B E { Bo' BI} where Bo and Bl are two given points in e 
which we may assume are arranged so that </>(80 ) ~ </>(BI). Simplifying the notations we 
shall write: </>o = </>(Bo), </>1 = </>(BI), ko = k(Bo), k1 = k(BI), Po = Po0 and P1 = Pe1 - After 
conditioning we obtain the distributions Q0 and Q1 on {1, 2, · · ·} where 

It suffices then to show that 

for any number c. H c ~ 0 this is trivial. It follows from the convexity of these two 
functions of c that we may restrict attention to numbers c belonging to a given support 
of]{= Lp0 (dPJ/dP0 ). Thus we may assume that c = P1(a)jP0 (a) where a E I. Putting 

f!p(a) = II(Pl- ~~f=~Po)+ll and nQ(a) = II(Ql- ~~~=~Qo)+ll the desired inequality may be 
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Assuming that a + 1 E I the left hand side may be written: 

and this, by the IFR property is 

$ Eo [ Pt (X - 1 + a + 1) IX ~ 1] = Eo [ Pt (X + a) IX ~ 1] 
- Po (X - 1 + a + 1) - Po (X + a) -
_ Po(O) Pt(a) 1- Pt(a) 
- Pt(O) P0 (a) 1- P0 (0) 

proving our claim. 

0 

In the other direction we have: 

Theorem 7.5 (Pairwise information decreasing selections. The discrete case). 

Let E = (P9 : () E 0) be an exponential family of DFR distributions on an interval I of the 
integers. (Then I is necessarily unbounded from above unless it is a one point set). 

We shall assume that there are functions k and <P on 0 and a positive function von I such 
that 

P9(x) = k(O)v(x)elf>(fJ)x;x E I. 

Then selection on an interval S = [a, oo[; -oo ~ a < oo is pairwise information increasing 
in a; i.e pairwise information decreasing in S. 

Remark: 
P9 has the DFR property if and only if £9(X -miX ~ m) increases stochastically in 
mE I and this is equivalent to the condition that the hazard rate P9(x)fP9[x, oo[ decreases 
monotonically in x. 

A sufficient condition for P9 to have the DFR property is that v(x + 1)/v(x) increases 
monotonically in x E I. 

Proof: 
We may again restrict attention to the case where I= [0, oo[, S = [1, oo[ and 0 = {00 , 01 } 

with </J(Oo) ~ </J(01 ). Using the notation of the proof of the previous theorem we put 

and 
Qi(x) = Pi(x)/1- Pi(O); i = 0, 1, x = 1, 2, · · ·. 
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It follows that n:P(a) ~ nQ(a) if and only if 

PI ([a+ 1, oo[)/ Po([a + 1, oo[) ~ [Po(O)/ PI (O)][PI( a)/ Po( a)]. 

The left hand side of the last inequality may also be expressed as: 

Eo[PI(X)/Po(X)IX ~a+ 1) 

= Eo[PI(X- a -1 +a+ 1)/Po(X- a -1 +a+ l)IX ~a+ 1]. 

By the DFR property the last quantity is at least 

Eo[PI(X +a+ l)/P0(X +a+ 1)] 

= [PI (a)/ Po( a)]( Eo( ki / ko )e(t/>1 -t/>o)X )( ko/ ki )et/>1 -4>0 

= [PI (a)/ Po( a )][Eo( PI (X)/ P0 (X))][P0 (0)/ PI (O)]et/>1 -4>0 

~ [PI(a)/Po(a)][l][Po(O)/PI(O)][l] since <PI~ <Po-

0 

Let us return to the general problem of the effect of selection for a M-L experiment £ = 
(Pe : 8 E 0) with 0 ~ R. IT our concern are with comparison for monotone decision 
problems then the preceding results may be helpful provided we know how to handle the 
dichotomies (Pel' Pe2 ) : ()I, 82 E E>. Even if this is possible however it may be simpler to 
consider the local effect of selection and then apply the results of section 5. 

Consider an experiment £ = (Pe : 8 E 0) which is differentiable in a given point () E 0. 
Let us denote the slope function. K( ·IB, £) by K( ·18). 

The selection experiment £5 = (Pe(·IS): () E 0) is also differentiable in() and 

P8(AIS) = P8(A)/Pe(S)- Pe(AIS) · [P8(S)/Pe(S)] 

when A ~ S. Thus 

Let K 5 (·1B) denote the slope function of £ 5 at 8. 

Assume that dP; / dPe is a monotonically increasing function of some real valued statistic 
T and that the selection set S is of the form S = [T E (a, b)] where (a, b) denotes a specific 
interval with endpoints a and b. Express S as S = [T E (a, oo )] - [T E (b, oo )] with 
the appropriate assignments of endpoints of intervals. Putting z0 = Pe(T E (b, oo)) and 
ZI = Pe(T E (a,oo)) we find that Pe(S) = ZI- zo while P8(S) = K(ziiB)- K(zo!B). 
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Proposition 7.6 (The particular role of doubly exponential translation experi­
ments). 

With notations as above we can't have K5 (·1B) ~ K(·IB) for 0 < z0 < z1 < 1 unless 
K( zo I B) = K( z1IB) and £( dP8 I dPeiPe) either is a two point distribution or is the one point 
distribution in zero. H so then K5 (·1B) = K(·IB) i.e. £5 and£ are locally equivalent at B. 

Remark: 
By example 3.1 the density dP80 I dPe0 assumes P80 - essentially at most two values if and 
only if the experiment£ is locally, at B = 60 equivalent with a doubly exponential transla­
tion family (G(·-B): BE R) with density g given by g(x) = [(AB)I(A+B)]e-Bx++Ax-; x E 
R. In that case K(a) =BaA A(1- a). H selection is on the setS= [a,b] and Bo = 0 
then K(zoiO) = K(ziiO) if and only if Aa + Bb = 0. In particular a= -b when A= B. 
Thus selection on any symmetric interval [ -b, b] preserves local information at zero for a 
symmetric double exponential translation family. 

Proof: 
The inequality K 5 ~ K may, when 0 <a;:;; 1, be written 

where Z 0 = (1- a )z0 + az1 • By concavity K( a)/ a ~ [ K( z0 )- K( z0 )]/( z0 - zo) when a ;:;; zo 
and then [K(zi)- K(z0)]/(z1 - z0 );:;; 0 i.e. K(z1);:;; K(z0 ). Put ,.*(z) = K-(1- z); 0;:;; z;:;; 1. 

Replacing K, z0 , z1 and a with respectively ,.•, 1- z1 , 1- z0 and 1- a the same argument 
shows that K*(1- z0 );:;; K*(1- zi) i.e. that K(z0 );:;; K(zi). Hence K(z0 ) = K(zi) and we 
denote this number by m. 

The first inequality of this proof shows that for all a : 

Za- Zo 

so that "=" holds for a :5 z . H so then by concavity ~~:(za)-~~:(zo) :5 ~~:(zo) so that 
- 0 ' ' Za- zo - zo 

~~:(a) :5 ~~:(zo) when z :5 z0 • Thus K(a) = ~~:(zo) a = .!!!.a when 0 :5 a :5 zo. By similar 
a - zo - zo zo - -

arguments, or by symmetry, K(a) = I~z1 (1- a) when z1 ;:;; a;:;; 1. 

It remains to investigate the behaviour of K on [zo, zi]· Put z. = I~z)[.;0 + I~zJ = 
I-(:1°_zo)· Then z. E]zo,zi[ and (1- z.)l(1- zi) = z.lzo. By concavity [K((1- a)zo + 
az1)- m]l(z1 - z0 ) ~ K(a) for all a E [0, 1]. H a= z. then (1- a)zo+ az1 = z. yielding 

-K(..:.....z.....:.* )_-_m_ > ( ) . = K z. 1.e.: 
z1 - Zo 

( )I < K(z.)- m 
I'\: z. z.-- z.- z0 
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These conditions are automatically satisfied when F has the decreasing failure rate property 
DFR i.e. log (1 - F) is convex. 

Proof: 

Let X be a random variable having distribution F and put w(z) = "Sz) - F-1(1- z); 0 < 
z < 1. Then w(z) ~ 0 for all z E)O, 1[. 

Assume that conditions (i) and (ii) are fulfilled. The identity K(z)/z = F-1(1- z) +w(z) 
and the continuity of"' implies that 

K(z)jz = F-1((1- z)+) +w(z-). 

By monotonicity F-1(1 - z) ~ F-1(1 - z)+) and w(z) ~ w(z-) so that = prevails. 
Thus F-1 and w are both continuous on )0, 1[. H F-1(0+) < c1 < c2 < F-1 (1) and 
F(c1) = F(c2) = p then 0 < p < 1. Putting a = inf{x : F(x) = p} we find that 
F-1(p) = a while F-1(q) ~ c2 > a whenever q > p. This, however, contradicts the 
continuity of F-1 • Thus F is strictly increasing on ]F- 1(0+ ), F-1(1)[. 

It suffices therefor, in order to show that F is strictly increasing on I, to show that F( x) < 1 
for all numbers x unless F is a one point distribution. Assume then that F is not a one 
point distribution and that this was not so. Then a= F- 1(1) < oo. Put zf = F[a-t:, oo[=: 
1- F(a- t:) when a-t: is a point of continuity of F. Then zf l F[a, oo[ as t: l 0. Consider 
first the situation where F assigns a positive mass F( {a}) to a. Then F( {a}) = F[a, oo[> 0. 
It follows that if z E]O, F({ a})[ then we may write z = BF({ a})+ F]a, oo[ so that "-( z) = 
BaF( {a}) + J xF( dx ). The rightmost terms of the last two equalitites are both zero. 

]a,oo[ 

Hence K(z)/z =a. Furthermore F- 1(1-z) = F- 1(F(a- )) =a and thus w(z) =a -a= 0. 
In particular w(O+) = 0. Suppose next that a = p-1(1) < oo and that a is a point of 
continuity of F. Then, as t:! O,zf l F[a,oo[= 0 and w(zf) l (0+). But 

Thus we find again that w(O+) = 0. Hence, since w is monotonically decreasing, w( z) = 0. 
It follows that 

z 

0 = K(z)- zF-1(1- z) = j[F-1(1- t)- F-1(1- z)]dt 
0 

so that F-1 is constant on )0, 1[. As J xF(dx) = 0 this constant must be zero contradicting 
our assumption that F is not the one point distribution in zero. 

Altogether this shows that F is strictly increasing on I when conditions (i) and (ii) are 
fulfilled. Still assuming this put Zc = 1 - F( c-) when c E I. Then Zc is strictly increasing 
inc E I and E(X- ciX ~c)= [K(zc)/zc]- F-1(1- zc) = w(zc) j in c. Thus conditions 
(i) and (ii) imply condition (iii). 
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m = Pr(X = e). Put also z(B) = Bm + 1 - F(e) for 8 E]O, 1[. Then, by the Neyman­
Pearson lemma, 

K(z(B)) = oem + J xF(dx) = oem + K(1- F(e)). 

Je,oo[ 

IT m > 0 then z(B) E]O, 1[ for all 8 E]O, 1[ and: 

K(z(B))/z(B) = w(z(B)) + F-1(1- z(B)) = w(z(B)) +e. 

By (ii) w(z(B)) increases monotonically with B. On the other hand z-+ K(z)/z is always 
monotonically decreasing. Thus K(z(B))/z(B) does not depend on 8 E]O, 1[. Letting 81 -+ 0 
and 82 -+ 1 in the identity K(z(B1 ))z(B2 ) = K(z(B2 ))z(B1 ) we find that K(z(O))[m + z(O)] = 
rem+ K(z(O))]z(O) so that: K(z(O))/z(O) = e. It follows that 0 ~ K(z)/z = e when 
z E [1- F(e), 1- F(e- )] and thus, by concavity, K(z) = ez whenever 0 < z ~ 1- F(~- ). 

It follows that e = K1(0+ ). Thus, since K1(z) ~ K1(0+) = e for all z, Pr(X ~e)= 1. Hence, 
since Pr(X = 0 > O,F-1(1) = e which is contrary to our assumption that e < F-1 (1). 
Thus F is nonatomic on J. 

Decompose J as 

J=]-oo,F-1 (0+)[U U [F-1 (1-z),F-1((1-z)+)]. 
O<z<1 

IT -oo < c ~ F-1(0+) then E(X- ciX ~ c) = EX- c = -c l in c and we obtain the 
smallest value -F-1(0+) when c = p-1(0+ ). IT c E Jz =]F- 1 (1- z ), F-1((1- z )+)[then 
F(c) = 1- z. It follows that E(XIX ~c) does not depend on cas long as c E Jz. 

Thus E(X- ciX ~c)= E(XIX ~c)-cis decreasing inc E Jz = [F-1(1- z),F- 1 ((1-
z)+)] whenever 0 < z < 1. Put Cz = F-1(1- z) when 0 < z < 1. Then E(X- cziX ~ 
Cz) = w(1- F( Cz)) which is monotonically increasing in z. 

Consider so numbers c1 < c2 in the interval ]F-1(0+ ), F-1(1)[. IT 

and E(X- c1IX ~ ci) ~ E(X- c2 IX ~ c2). On the other hand if 1- z1 = F(ci) < 
F(c2) = 1- z2 and ifc1 = F-1((1- z1)+) and if z T z1 then: 

Finally, noting that E(X - ciX ~ c) -+ -F-1(0+) as c l F-1(0+ ), we conclude that 
E(X- ciX ~c) is monotonically decreasing inc E J. 



7.20 

Note that the above argmnents remain valid if our assumptions are relaxed by replacing 
the factor e8x in the density by etf>(B)x where</> is differentiable with 4>•(8) ¥=- 0. 

In particular the argmnents apply with 8 being replaced by -8 and for the family of 
distribution£( -XIPe) : 8 E e. 

It follows in all these cases that selection on an interval S is locally information increasing in 
S. Hence forth this selection is also information increasing for monotone decision problems. 

One might be tempted to infer from the last example that if £ = (Ge : 8 E 0) is a 
differentiable strongly unimodal translation family then selection on an interval S is locally 
information increasing inS. Expressing the continuous density g of Gas g = e-w where w 
is continuous and convex on R we see that -g' Jg = w' is monotonically increasing. Now 
- g' ( x) / g ( x) E S if and only if x belongs to the interval { y : w' ( y) E S}. Furthermore if £ is 
realized by observing X and if I is an interval then the events [X E I] and [-g'(X)fg(X) E 
the interval spanned by w'[I]] are equivalent. The local behaviour of£ is determined by 
F = £( -g'(X)Jg(X)IG) and, as explained in section 3, F may prescribe any kind of local 
behaviour which is not associated with the zero slope function. This carries over to the 
local effect of selection on intervals as well. Thus selection on intervals may in this case be 
locally information decreasing, increasing or neither. 

In the discrete case the last theorems are not applicable. Let us however again consider 
the situation described in the last statement of theorem 7.4. Thus £ = (Pe : 8 E 0) is an 
exponential model with sample space I being an interval of integers and Pe given by: 

Pe(x) = k(8)v(x)eq,(B)x;x E I 

where</> is some function on 0 and vis a positive function on I such that v(x + 1)/v(x) l 
in x E I. We may without loss of generality assume that </>(8) = 8 and we shall assmne 
that e is open. 

In order to show that £ 5 is information increasing in the sub interval S of I the crucial 
case is, as explained before theorem 7.4, the case where I has the origin as its left end point 
and the selection set is S =I- {0}. 

We shall now see how this case may be simply argued by "local" comparison. Let X be a 
random variable whose distribution 8 is Pe when 8 prevails. Thus X ~ 0 and selection is 
to the setS= [X~ 1]. Then djd8logPe(x) = x- EeX so that 

F =£(X- E 8X). 

In the selection experiment we arrive at 

F =£(X- (EeXIX ~ 1)IX ~ 1). 

In order to show that F is a dilation of F we must show that 

Jcx- c)± F(dx) ~ Jcx- c)± F(dx); c E R 
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8. APPROXIMATE COMPARISON. 

In his pathbreaking 1964 work on sufficiency and approximate sufficiency LeCam intro­
duced a notion of approximate comparison. For experiments £ and :F and a non negative 
function e on E> this notion is as follows: 

Consider some decision problem specified by a decision space T and a loss function L. 
Consider also a risk function s obtainable in :F for this decision problem. H we in such 
a situation always (and thus for any (T,L)) may ensure that there is a risk function r 
obtainable in £ which dominates s (i.e. r ~ s) then £ is at least as informative as :F. 
Indeed this is one of a series of several possible equivalent definitions of "being at least as 
informative as". 

According to the terminology established in section 6 an experiment £ is at least as infor­
mative as an experiment :F if and only if for every loss function L the decision problem 
(£,L) is at least as informative as the decision problem (:F,L). If so then we write£~ :F 
so that £ ~ :F if and only if ( £, L) ~ ( :F, L) for every loss function L. 

If there is no risk function r in £ which dominates s then one might hope for a risk function 
r in £ such that r(O) ~ s(O) + e(O) sup IL 9 (t)i; 0 E E>. Here L9(t) is the loss incurred by 

t 

the decision t when 0 prevails and the loss function L applies. The number sup ILe( t )I is a 
t 

normalizing quantity expressing the "size" of the loss function at 0. When convenient this 
quantity may, as we here shall, be replaced with other expressions for this "size". 

If e( 0) ~ 2 the above inequality holds trivially for this particular 0. In general one might 
hope to find small numbers e( 0) : 0 E E> such that there to any decision problem (it suffices 
to consider finite decision problems) and to any risk function s obtainable in :F there is a 
risk function r in £ such that: 

r(O) ~ s(O) + e(O) sup ILe(t)i; 0 E E>. 
t 

H this is so, for a given function e, then according to the definition in LeCam (take or give 
a factor 2) the experiment £is e-deficient w.r.t. :F. 

His basic randomization criterion states that £ = (P9 : 0 E E>) is e-deficient w.r.t. :F = 
(Qe : 0 E E>) if and only if IIPeT- Qell ~ ee; 0 E E> for some transition (= generalized 
Markov kernel) from £ to :F. 

By the terminology used in section 6 the experiment £is e-deficient w.r.t. the experiment 
:F if and only if for every loss function L the decision problem(£, L) is "'£ deficient w.r.t. 
the decision problem (:F, L) where K£(0) =sup ILe(t)ie(O); 0 E E>. 

t 

H we restrict attention to a particular collection T of loss functions then we obtain a 
concept of €-deficiency of £ w.r.t. :F for T. The smallest constant e = D(r)( £,:F) such 
that £ is e-deficient w .r. t. :F (for T) is the deficiency of £ w.r. t :F (for T ). The largest of 
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(iv) (Pe0 ,Pe1 ) is (e(8o),e(81)) deficient w.r.t. (Qe0 ,Qe1 ) for any pair (8o,81) of points 
from E>. 

H these conditions are satisfied then the decision procedure in £ producing the risk function 
r in condition (i) may be chosen independently of the monotone loss function L and thus 
only depending on the decision procedure in :F producing the risk function s. 

Remark 1: 
(iii) is just a reformulation of (ii). The powerfunction 1r in£ may always be chosen within 
the set Tie of powerfunctions of most powerful tests. 

Note also that we in (iv) may restrict attention to pairs ( 80 , 81) such that 80 < 81. 

Remark 2: 
The pseudonorm II II• is related to the supremum norm II II by the inequalities: 

and 
sup ILo(t2)- Lo(ti)i $ 2IILoll. 
t 1 't 2 

It folllows that condition (i) implies that £ is e-deficient w.r.t. :F for monotone decision 
problems with non negative loss functions. On the other hand if this is so then (i) holds 
with ee replaced throughout with 2e8 . 

Proof: 

By the above remarks (iii) ¢::::::> (ii) ==> (iv) and trivially (i) ==> (ii). Hence (i) ==> (ii) 
~ (iii) ==> (iv). The proof will be completed by first establishing the implication (iv) 
==> (iii) and then showing that (iii) ==> (i). 

We may, see the introduction, assume that the parameter set E> is finite. 

Assume so that condition (iv) is satisfied. H #E> $ 2 then (iii) is just a reformulation of 
(iv). Suppose then that we have argued the implication (iv) => (iii) when #E> =nand 
let us consider the situation where #E> = n + 1, say E> = {0, 1, · · ·, n }. Let 80 = j where 
0 ~ j ~ n and consider the problem of testing "8 ~ 80 " against "8 > 80" for the 0-1 loss 
function. 

Consider first the case "j = 0". Deleting 8 = n - 1 from E> we conclude, from the 
induction hypothesis, that there is a powerfunction p in Tie (defined in section 4) so that 
p(O) ~ a(O)+~eo while p(i) f; a(i)-~ei;i = 1,···,n-2,n. H p(n-1) f; a(n-1)-~En-1 
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Remembering that Tie is totally ordered we may construct PI,··· , Pk-I so that PI ~ P2 ~ 
· · · ~ Pk-I· 

We may achieve this by replacing Pi, i = 1, · · ·, k -1, with Pi =Pi V · · · V Pk-I· H (} ~ (}i and 
k-1 ~ j ~ i then(}~ (}i and Pi(8) ~ Ee8j+Ee/2 ~ E 98i+Ee/2. Hence Pi(8) ~ Ee8i+Ee/2 
when(}~ (}i· H (} > (}i then Pi((})~ Pi(8) ~ Ee8i + Ee/2. 

Let us therefor assume that p0 ~ PI ~ p2 ~ · · · ~ Pk-I ~ Pk where po = 1 and Pk = 0. 
Then there are testfunctions 1 = ¢>0 ~ ¢>I ~ · · · ~ <!>k-I ~ ¢>k = 0 such that Ee</>i =e Pi(8). 
Put finally tPi = </>i-I - </>i; i = 1, · · ·, k. Then tPi, · · ·, tPk ~ 0 and tPI + · · · + tPk = 1. The 
test functions tPI, · · ·, tPk define the decision procedure t/J in £ = (Pe : (} E 0) given by: 
t/J(til·) = tPii i = 1, · · ·, k. The risk function r of t/J may be expressed as: 

k-I 

r(8) =e L)Le(ti+1)- Le(ti)]Ee¢>i· 
i=O 

Hence 
k-1 

r(8)- s(8) = _l)Le(ti+I)- Le(ti)](Ee</>i- Ee8i)· 
i=I 

(The 0-th term may be disregarded since Ee¢0 = Ee80 = 1 ). 

Assume so that (}j-I < (} ~ ()j· Hi < j then L9(ti) ~ Le(ti+I) and, since () > Bi, Ee¢i ~ 
Ee8i - tEe. Hence 

[Le(ti+I)- Le(ti)](Ee¢i- Ee8i) = [Le(ti)- Le(ti+1 )](Ee8i- Ee¢i) 

~ ~Ee[Le(ti)- Le(ti+I)] when i < j. 

when i ~ j. It follows that 

k-I j-1 k-1 
r( 8) - s( 8) = 2:: = 2:: + 2:: 

i=I i=1 i=j 

A similar analysis shows that the inequality r(B)-s(B) ~ EeiiLell. is also valid when 8 ~(}I 
or 8 > (}k-I· 

D 
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