
ISBN 82-553-0347-2
Mathematics
No 7 - June 1978

FINITE ALGORITHMIC PROCEDURES AND
COMPUTATION THEORIES

by

J.Moldestad, V.Stoltenberg-Hansen &
J.V. Tucker

PREPRINT SERIES - Matematisk institutt, Universitetet i Oslo

FINITE ALGORITHMIC PROCEDURES AND

COMPUTATION THEORIES

by

J.Moldestad, V.Stoltenberg-Hansen &
J.V. Tucker

This article analyses the relationships existing between some

natural classes of machine-theoretic computable functions on a

relational system A and between them and natural criteria for

these classes to take on the large scale structure of the recur­

sive functions on the natural numbers, w. It is written in

association with our [11] with which the reader is henceforth assumed

acquainted, in particular there is to be found an extensive intro­

duction to both papers.

The four kinds of function on A considered are those functions

definable by a finite algorithmic procedure, a fap, by a fap with

a stack, a fapS - these were defined in the first section of ~1] -

by a fap with counting, a fapC, and by a fap with both counting and

stacking, a fapCS - these are defined in section two here. The

classes of functions over A including all numbers of arguments are

denoted FAP(A), FAPS(A), FAPC(A) and FAPCS(A) respectively.

The essential abstract global features of the recursive func­

tions on w such as the existence of codings and of universal

computable functions, are invested in the axiomatic concept of a

computation theory, the subject of section one. The principal

question addressed here 1s What are the basic classes of machine

computable functions on a relational system A, with a finite number

of operations and relations, which take on the structure of a

computation theory? The obvious numerical coding of programmes

distinguishes the class FAPC(A) so we prepare our algebras by

adjoining arithmetic to them in section three. In section four,
the investigation reveals the algebraic foundation of these forms

of computing and concludes with the answer that adding arithmetic
is not enough:

- 2 -

Theorem FAPCS(A) is the class of functions computable in the

minimal computation theory over A with code set w.

In section five the uniqueness of the operations of stacking

and counting is established by examples. And in section six we

examine the situation where one wants to compute with the constant

functions over the structure: here we invent a new coding and

encounter the necessity of adjoining pairing functions to our

algebras but analogous theorems are proved.

One of us - Tucker - wishes to acknowledge the indispensible

support of a fellowship from the European Programme of the Royal

Society, London.

1. Computation Theories

Throughout we are concerned with a relational structure of the form

A = (A ; o1 , ••• , o1 ; s1 , ••• , S s) wherein the operations and relations

need not be total;

is denoted n P(A ,A)

of [11] in fact. A*

ments of A.

the set of all n-ary partial functions on A

with P(A) = U P(An,A), exactly the notation
nEw

is the set of all finite sequences of ele-

The central analytical idea 1n the paper is that of the compu­

tation theory which axiomatises the experience of the theory of

the partial recursive functions on w.

0 c P(A) lS said to be a computation theory over A \·Jith code

set C c A and its elements said to be 0-computable functions iff

associated to 0 1s a surjection a : C ~ 0, called a coding and

abbreviated by a(e) = {e} for e E C, and a length of computation

function II: C x A*~ On, partially defined, je;~l~- {e}(~H·,

for which all the following properties hold.

- 3 -

I. C lS acceptable as a code set in that it contains (an isomor-

phic copy of) w and 8 contains (functions which correspond

to) successor, predessor and zero on w.

II. 8 contains these generating functions:

(i) for each n and 1<i<n the projection functions

U~Ca1 ,o .. ,a) =a. with 8-uniform codes p1 (n,i);
l n l

(ii) each operation a of A·
'

(iii) for each relation s of A the definition-by-cases

function defined

Dc8 <~,x,y) = X if S(a)

= y if ,s<~>.

III. 0 is uniformly closed under

(i) the composition of functions: if f and g are n+1

and n-ary 8-computable functions with codes f,g

respectively then their composition defined

CCf,g)(~) ~ f(g(~) ,~) is 8-computable with 8-uniform

"' "' code p 2 <n,f,g)o

(ii) the permuting of arguments: let ja=

(aj , a 1 , •.• , aj _1 , aj + 1 , •• o , an) when a = (a1 , o •. , an) o

If f is an n-ary 8-computable function with code f

then, for each 1~j~n, the function defined

jf(a) ~ f(ja) is 0-computable with 8-uniform code

p 3 Cn,j ,f).

(iii) the addition of arguments: if f is an n-ary 8-compu-

table function with code f then, for any m, the

(n+m)-ary function g defined g(~,b) ~ f(~) is

"' 8-computable with 0-uniform code p 4 Cn,m,f)o

- 4 -

IV. 0 contains universal functions

U (e,a)::! {e}(a)
n - -

with e-uniform codes ps(n).

u
n

such that for n
e € C, ~E A

V. 0 enjoys this iteration property: for each n,m there is a

e -computable maps~, withe-uniform code p6(n,m), such that

for e E C, ~ E Cn, bE Am

{Sn(e,a)}(b)::! {e}(a,b).
m - - --

And finally it is required of the length function to respect the

efficiency of the functions mentioned in axioms III, IV and V.

"' "' " " VI. (i) Composition: I c P 2 c n , f , g > ; a > I > max { I < f ; g <~ > , ~ > 1 , I < g ; ~ > I } •
"

(ii) Permutation: !Cp 3 Cn,j,f);~)l > l<f;J~>I •
"' " (iii) Addition: I Cp4 (n,m,f) ;.§:)I > l<f;~>l.

(iv) Universality: l<p 5 Cn);e,~>l > I (e;~)l •

(v) Iteration: I (S~(e,~) ;b) I > ICe;~,£) I.

Notice that axiom I ensures a copy of the partial recursive

functions on w is contained within every computation theory.

There are a number of such axiomatisations, this definition is

essentially that in [5] and is in our opinion the most successful.

Its evolution is rather involved: it originates in the work of

Y.N. Moschovakis [13,14,15] and was first taken up by Fenstad in [4].

Its subsequent development as a method of analysis and generalisation

in Recursive Function Theory sets down roots in the theory of recur-

sion in higher types, as in Moldestad's [10], and in degree theory

on the ordinals, as in Stoltenberg-Hansens's [17]. For this paper

familiarity with Moschovakis' [15] is invaluable but for a compre-

hensive introduction the reader should consult Fenstad's book [7]

with Hhich this article is consistent and from which we take the

following ideas and facts without proofs.

- 5 -

A functional of the form
n1 nk m n

¢:P(A ,A)x .•. xP(A ,A)xA xA +A is

a-effective over A iff there exists a a-code <P such that for

any appropriate e 1 , ... ,ek'

,.,
¢({e1 }, ... ,{ek},b,~)::: {¢}(e1 , ••• ,ek,!?_,~)

and its action is consistent with length of computation: there

always exist gi_:{ei}' 1::i::k, such ·that ¢(g1 , ... ,gk,b,~):::
,.,

¢({e1 }, ..• ,{ek},b,a) and I<<P;e1 , ••• ,ek,b,a)l >max{z1 , ..• ,zk} where

z. = sup{ I (e. ;b,x) I :g. (x)L
1 1 - - 1

Such a functional <P arises as a functional P(An,A) +P(An,A)

with k function parameters and m algebra parameters,

¢(f,b)(~) = ¢(f,!?_,~), in section four. In connection with theorem

2.1 (and 2.2) of [11] we shall assume this delicate form of the

1.1 First Recursion Theorem

If <P is a-effective and monotonic as ¢Cf,b), and if the

f are a-computable, then the least fixed-point ¢(f,b)* is

a-computable. Moreover the fixed-point operator is a

a-effective functional.

Let a and 4l be computation theories over A with code set

C. Then a is said to be a subcomputation theory of 4l iff a c 4l

and there exists a 4J-computable map p: wxC + C such that for each

eE c,~EAn {e}(~) = {p(n,e)}(~) and, of course, l<e;~)l 0 ::

I (p(n,e) ,~) lq,·

a is said to be a minimal computation theory over A with

code set C iff whenever q, is a computation theory over A with

code set C then a is a subcomputation theory of 4J.

- 6 .,..

2. Finite Algorithmic Procedures with Arithmetic

The notions of an A-register machine and an A-register machine with

a stack for a relational structure were explained in [11]. Here

we consider machines with the new capacity of performing recursive

operations on the natural numbers, the idea, along with that of the

A-register machine, of H. Friedman [8].

Programmes for such machines are written 1n the following

language. Variables are r 0 ,r1 , ••• for algebra registers and

c 0 ,c1 , ••• for counting registers which are to contain natural num­

bers. s denotes the stack register. Function and relation symbols

are those used for the species of the relational structure A. In

addition there are function symbols for successor (+1) and pre-

decessor (-1) on the natural numbers.

A programme is an ordered finite list of instructions

(I1 , ••• ,Ik) each instruction being an operational instruction, a

conditional instruction or a halting instruction. For completeness

we list the permissible instructions and give their intended

meaning along with numerical codes,whenever relevant, containing

the characteristic parameters of the instruction.

The operational instructions are:

Code Instruction

r :=cr.(r, , •. r,)
l..l 1. /\1 1\ . n. 1.

Interpretation

Replace the contents of r
l..l

with that of rA.

Apply the ni-ary operation

cr. to the contents of 1.

rA , •.. ,rA and place the
1 n.
1 . 1. va ue 1.n r .

l..l

- 7 -

Code Instruction

<2,i> s:=Ci;r , ... ,r) o m

<2.j> restore

Interpretation

Place the contents of

r 0 , ••• ,rm as an m+1 tuple

along with the marker i top-

most in the stack register.

Replace the contents of

r , •.• , r . 1 , r . + 1 , •• r by
o J- J m

those of the topmost m+1

tuple in the stack register

after which the m+1 tuple in

the stack is deleted.

Add one to the contents of

cA and place that value in

ell.

If contains 0 place

0 in c . Else subtract one
ll

from the contents of cA

and place that·value inc.
ll

The conditional instructions determine the order of executing

instructions. They are:

<3 ,o,ll,A ,1.,1 '>

<3,i,<A1 ,.-,A >,1~1'> m.
l

if rll=rA
then 1 else 1'

then l else 1'

If registers r
ll

and

contain the same elements

then the next instruction

is I 1 else it is I 1 , .

If the m.-ary relation is
l

true of the contents of

rA , •• ,rA then the next
1 m.

l

instruction is I 1 else I 1 ,

- 8 -

if c~=cA then 1 else 1' If registers c~ and

contain the same number

then the next instruction is

r1 else it is r1 , •

Conventions for sensible programmes and their application to

machines were written down in [11], recall that stacking instruc-

tions may only appear in blocks as follows:

goto 1 -joo

* . r . = . j .

restore (r , •.. ,r. 1 ,1~.+ 1 , ••• ,r)
o J- J m

Note that only (and all) algebra registers are stored in the stack,

E£! counting registers. Furthermore r 1 , ••• ,r1 are operational

instructions involving only algebra registers.

Finally there is the halting instruction H or, in case

stacking operations are used, halting block: if s = 0 then H

else * We give them code <4>.

A programme referring only to algebra registers is called a

fap, one which also refers to counting registers is called a fapC

If in addition stacking operations are used we obtain a fapS and

fapCS, respectively.

f E P(An ,A) is fap-computable (fapS-computable) if there is a

fap (fapS) together with an associated machine which computes f

using r 0 as output register and r 1 , ••• ,rn as input registers.

- 9 -

Each function in FAPS(A) (and hence in FAP(A)) is indexed

by a number in a natural v1ay. Suppose f E P(An ,A) is computed

by a fapS CI1 , .•• ,Ik) then an index for f is

ri 1 "I 1
<n' 1 ' • • • ' k > where ri .1

l
is the code assigned above to instruc-

tion I .•
l

Any coding of these programmes which allows a recursive decom-

postion into programme parameters and codes for instructions, and

from these calculation of the numerical parameters characterising

the instructions listed previously, may be called a standard coding

of the programmes. When formalised such a coding can be shown to

be unique up to recursive equivalence in the Mal'cev-Ershov theory

of computable numberings, see Ershov [2,3].

Let f E P(wnxAm ,A) or f E P(wnxAm ,w). f is said to be

fapC-computable (fapCS-computabl~ if there is a fapC (fapCS) together

with an associated machine which using the following conventions

computes f

register lS r 0 if im(f) = A and c
0

if im(f) c w. We make

the assumption that initially all counting registers except the

input registers contain 0. Of course, all the recursive functions

on w are fapC-computable.

It will be shown that fapC is too weak a notion to obtain a

computation theory over A, the problem being that a universal

function may need arbitrarily many algebra registers. One is thus

naturally led to considering machines allowing a potentially

infinite number of algebra registers. The following notions are

due to Shepherdson [16].

... 10 -

A finite algorithmic procedure with index registers or fapir

is the following modification of fapC Instructions involving

counting registers remain unchanged. Algebra registers are indexed

by counting registers. Thus rc denotes the algebra register with
A

subscript the content of cA. Instructions involving algebra regis-

ters are modified as the following samples suggest where cr is an

operation of A and S a relation of A

= cr (rc , .•. , r)
A CA

1 n

if ' ... 'r)
CA

m

then 1 else 1 I •

The class of fapir-computable functions on A is defined in

the usual fashion and denoted FAPIR (A). In section four it is

deduced that FAPCS(A) is FAPIR(A). Incidentally, our general class

FAPS(A) is that computed by the PR schemes of Constable & Gries

[1] , see [1 2] •

Note that a fapir (as a syntactical object) is finite. Our

final machine-theoretic notion, the countable algorithmic prodecure,

or cap, is an extension of fap allowing possibly infinitely many

instructions, the list of instructions being enumerated by a

recursive function.

Finally some Algebra. The set T[X1 , .•. ,Xn] of terms in the

indeterminates x1, ... ,xn is inductively defined solely by the

clauses (i) x1 , •.• ,Xn are terms, (ii) if t 1 , ••• ,tm are terms,

and cr is an m-ary operation s~mbol then crCt1 , ... ,tm) is a term.

T [x1 , .•• , Xn] is assumed numerically coded uniformly in n by

n a standard coordinatisation y * : Q c: w-+ T [x1 , •.• , Xn] in the sense

- 11 -

that is a surjection - henceforth abbreviated

is recursive, and there are recursive functions which tell if a

code labels an indeterminate and, if it does, which or, if it does

not, indicates the leading operational symbol and calculates codes

for the subterms. Such a coding is unique up to recursive equiva-

lence in the theory of computable algebras due to Mal'cev [9].

Each term tCX1 , .•. ,Xn) defines a function An-+ A by substi­

tution of algebra elements for indeterminates. Define

: n n xA +A by E (i,a) = [i](~).
n -

3. The Structure A .
~--~~~~~~~~~,w

Our main objective is to find given an algebra A a machine theo-

retic characterisation of the minimal computation theory over A

allowing recursive (sub-)computations on the natural numbers. We

adjoin w to A, to obtain the structure A , in order to use it
w

as a code set for the computation theory. The content of theorem

3.1 is that the extended structure A is the natural one to
w

consider in this setting.

Let A = (A;£,~) be a relational structure. Then set

Aw = (AUw;g,~,s,p,O) where s, p, 0 are the successor, predecessor

and constant zero functions on w, respectively, and are trivially

defined on A. s and p will be written as +1 and -1 as usual.

3.1. Theorem

(i) fE FAP(Aw) iff f is fapC-computable.

(ii) f E FAPS (Aw) iff f is fapCS-computable.

- 12 -

Proof: The proof of (i) is included in the proof of (ii).

For simplicity we assume n f E P (A ,A) , the modifications needed for

the general cases being obvious.

Let P be a programme in the language of fapS over A

defining f. We construct a programme P' 1n the language of

fapCS over A simulating P in such a way that P' defines f.

According to our conventions for P, r 0 is the output register,

r 1 , ..• ,rn are input registers and the remaining registers

rn+1 , ... ,rm are working registers. The programme P' uses algebra

registers s 0 , ••• ,sm and counting registers c 0 , ••• ,cm,cm+1 ' .•• ,cm+k

where k is sufficiently large to perform all needed arithmetic

operations using cm+1 , •.• ,cm+k" Each instruction in P is sim­

ulated by a block of instructions in P'. Each step in the execu-

tion of P corresponds to a stage in the execution of P', viz.

the execution of the associated block. If r. at a particular
J

step contains an element of A or is empty then r. = s.
J J

and

c. = 0.
J

If on the other hand r.
J

contains an element of w then

s. = 0 and c. = r.+1.
J J J

Here are samples of translations of instructions in P (on the

left) into blocks of instruction 1n P' (on the right):

r :
ll

r = 0
ll

r ll : = rA + 1

c = 0
ll

s : = 0
]1

c : = 1
ll

s : = 0
]1

if cA=O then 11 else 1 2

11 • c . - 0 ll. -

goto 1 3

1 2 • ell: = cA +1

- 1 3 -

The only difficulty ~n the reductio!! involves the stacking

operations: In P all registers are stored while in P' only

the algebra registers are stored. cm+1 plays the role of a stack

for registers c 0 , ••• ,cm using a recursive pairing scheme on w •

Given a list of operational instructions over A \.ve perform the

translation indicated above. From that we extract all instructions

involving counting regi_sters' not changing their order. This list

we call the obtained arithmetical instructions. The list of the

remaining instructions are the algebraic instructions. With this

in mind we make the following translation of a stacking block:

s : = (i;r0 , ••• ,rm)

Operational instructions

goto i -+

* · r ·-r . j . - 0

restore

(r , •. ,r. 1 ,r.+1 , .. ,r)
o J- J m

cm+1 : =<<co'··· ,em> ,cm+1 >

Arithmetical instructions

s : = (i;s 0 , ••• ,sm)

Algebraic instructions

goto i -+

* . s . - s . j . - 0

restore (s , ••. ,s. 1 ,s.+1 , .•• ,s) o J- J n

c. : = c
J 0

Restore c , .•. ,c. 1 ,c.+1 , ••. ,c
o J- J m

from cm+1

Note that the stacking block in P' follows the established

conventions. For stacking blocks in P it is convenient to con-

sider stages rather than steps. The first stage ranges from the

entry of a block to the exit via the "goto i -+ " statement and the

second from the reentry to the end of the block. It should be

apparent that the above block for P' properly simulates the

stacking block for P.

- 14 -

By induction on the steps (stages) in the execution of P and

P' it is easily proven that P' simulates P as intended and

hence that P' calculates f.

For the converse assume f lS fapCS-computable by a programme

P using algebra registers s 0 , o o., sm and counting registe·rs

c 0 ,o •• ,ck. We construct a programme P' ln the language of fapS

over Aw simulating P. P' uses registers r 0 , ••• ,rm,v0 ,o •• ,vk,

t 0 , •• o ,t 3 ,w0 , ••• ,wp where p is sufficiently large to perform the

required arithmetic operations. s 0 , ••• ,sm correspond to

r , ... ,r and o m to vo, ••• ,vk. Initial instructions

in P' make v. = 0 for i=O, •.. ,k. The translation of instruc­
l

tions in P to instructions in P' is straightforward when not

within the scope of a stacking block, just replace the registers

used in P by the corresponding registers in P'.

The simulation of a stacking block is problematic since only

algebra registers are stored ln P whereas all r~gisters are stored

in P'. Thus P' may loose information in the simulated counting

registers when making a restore. The problem is resolved by P'

performing each subcomputation twice, first obtaining the algebraic

element and then obtaining the contents of the counting registers.

Below we give the translation of a stacking block and the halting

block.

- 1 5 ...

s: = (i;s , ••. ,s) o m

Algebraic operations

goto i +

* : s. : = s
J 0

if s=¢ then H else *
11 •

12.

t 0 : = 0

t 1 : = r j

Operations involving r , .. ,r o m

goto i +

* : r. ·- r J • - 0

restore {r , .•• ,r. 1 ,r.+1 , • • ·)
0]- J

s := (i';r0 , •••)

t
0

: = 1

: = r.
J

r j : = t 1

Operations involving r 0 , •• ,rm

as above

goto i +

* : t 3 ·- r .- 0

restore (r0 , ••• ,t 2 ,w0 , ••• ,wp)

Restore v0 , ••• ,vk from t 3

if t1 = 0 then 12 else 11

r := <vo' .•• ,vk>
0

if s=¢ then H else * .

We leave to the reader the non-trivial exercise of proving

that P' does in fact simulate P.
Q.E.D.

- 16 -

4. The Minimal Computation Theory

Recall from section 2 that En Q x An -+ A is the term

evaluation function.

4.1. Proposition. FAP(A) w

is uniformly fapC-computable.

is a computation theory iff En

Proof: Assume FAP(A) is a computation theory. The evalu­w

ation of a given term is FAP(A)-computable using projection w
functions, the basic operations, composition and permutation of

arguments. In fact it is easily seen that there is a fapC-compu­

table function f : w -+ C such that if i is a code for a term

then f(i) is a FAP(Aw)-index for the function evaluating the term.

Thus E (i,a) = {f(i)}(a) = U (f(i),a) which is uniformly fapC-n - - n -
computable by our assumption on FAP(A). w

The easy verifications that FAP(A) in its coding, and using w

step counting as length function, satisfies all conditions of

being a computation theory are left to the reader, except that of

the existence of universal functions. The problem with the univer-

sal function, in the absence of a computable pairing scheme, is

that a machine with a fixed number of registers may not be able to

simulate a machine with a very large number of registers. This

problem is avoided by letting the simulating machine manipulate

codes for terms instead of actually performing the simulated opera-

tions, the point being that codes for terms are natural numbers for

which pairing is available. Only when simulating a conditional

instruction, and immediately before a halt instruction, is there

a need to evaluate terms and it is for this we use the computability

- 17 -

We shall give (macro) instructions for a programme which

together with an associated machine computes U (e,a) ~ {e}(a).
n - -

r 0 will, according to our usual conventions, serve as output

register and r 1 , .•. ,rn+1 as input registers. The contents of

the input registers will remain unchanged throughout a computation.

As working registers we use c,t,v1 , ... ,vp' p being the maximum

arity of a relation on A, and sufficiently many other registers

to perform term evaluation and all recursive operations on w.

Suppose e is a (valid) index for a programme. Then denotes

ri. 1 where ri. 1 is a code for the i:th instruction of programme
1 1

e, if register t contains i, 1<i< number of instructions in

programme e. Suppose programme e refers to the first m+1

registers, m>n. Then c will contain an m+1 -tuple of codes

for terms <C ,c1 , ••• ,c > o m simulating the contents of the registers

used by a machine associated to the programme e, m is obtained

recursively from e. c~ := cA stands for instructions replacing

the ~:th component of c by the >.:th component of c, and

C 11 .- '"cr.(c, , .•. ,c,) 1

,... 1 /\1 1\n.
stands for instructions calculating a

1

code for the term cri(tA 1 , ••• ,tA) and placing it in the
n.

component of c if c, = rt, 1 1 for j=1, ••• ,n.. Finally
1\• 1\• 1

J J

~:th

. -.- denotes a sequence of instructions which evaluates

the term coded by cA using r 2 , ••. ,rn+1 as input registers and

places the result in r .
~

Initially the programme determines whether or not e is a

valid index. If not, undefined is simulated. If e is a valid

index, t is set to 1 , the number of registers which are to be

simulated is determined and c is set to

r1r 1 r ,,., ,., h < u , x1 , ••. , xn , u , ••• , u > , w ere is a code for the

- '18 -

undefined or empty term. The remaining part of the programme

consists of a main programme MP and finitely many subroutines. The

main program is entered once for each step simulated.

MP

OP(:=)

OP(a.)
--1

REL (=)

REL(S.)
1

if et = rr
1..1

: = rA. 1 then go to OP(:=)

if et = fr) 1 then go to :=a.(rA. , ••• ,rA.
1..1 1 1 n.

if et = rif r l.l=rA. then 1 else

if et = rif s.(rA. , ••• ,r~)
1 1 'm.

go to

r 0 : = TE(c 0)

H

c = CA ll

t = t+1

go to MP

c = ra.(cA. ' ••. 'cA.
1..1 1 1 n.

1

t = t+1

go to MP

v1 = TE(cl.l)

v2 = TE(cA.)

if v1 = v2 then t : = 1

go to MP

v1 = TE(cA.)
1

v : = TE(c) m. A.
1 m.

1

1

) 1

else

1
1' 1 then go to

then 1 else 1' 1

t : = 1'

if S . (v1 , ••• , v) then t : = 1 else t : = 1'
1 m.

1

goto MP

OP(a.)
1

REL(:::)

then

- 19 -

It is an easy matter to prove by induction on the simulated

step that the programme above with an associated machine calcu-

lates U (e,a) ~ {e}(a). Furthermore an index for the above
n - -

programme is obtained uniformly from n since by assumption an

index for TE is obtained uniformly from n. And the length

condition on computations is satisfied.

4.2. Proposition. E is uniformly fapCS-computable.
n

Q.E.D.

Proof: In view of 3.1, of course, we prove En is fapS-

computable over A; by theorem 2 of [11] this is equivalent to w

showing it is inductively definable over A • w

informally recursively defined in our coding by

Now is

E (i,a) = a.
n - J

if i codes the indeterminate X. ;
J

= cr.(E Ci1 ,a), ... ,E (ik,a)) if
J n - n - [i] = aj([i1], ••. ,[ik]);

= u if i does not code a term,

or codes the empty term.

Thus E is defined by the induction term
n

with the evaluation x = i and x. = a. , 1 ~j ~n, and t is the
0 J J

algebra term informally described by

t(p,z,y1 , ..• ,yn) = Yj if ind(z,j);

= 0 j (p(z1 ,y1 '· • ,yn) '· • ,p(zk,y1 , .. ,yn)) if op(z,j);

= u if empcode (z) ;

= u if ,TCode (z).

where the relations ind, op,empcode,TCode are terms taking their

obvious meaning and where z .
J

is the term for the appropriate

recursive function which calculates l.
J

from i, for 1~j~k;

- 20 -

a rather complicated definition-by-cases construction over A and

w • The uniformity required is that of a recursive function

p : w + C which computes the fapCS-code p(n) for E :
n

this

follows from the constructiveness of proposition 4.1 of ~1]

expessed in terms of a godel numbering of the induction terms, a

point more carefully discussed in theorem 4.4 later.

4.3. Theorem. FAPS(A)
(J)

is a computation theory.

Q.E.D.

Proof: 4.2 expresses the key property that term evaluation is

uniformly fapCS-computable. It therefore suffices to append the

proof of 4.1 by adding blocks to simulate store and restore

instructions and the halting block. For this we add a working

register w initialised to < > which is to simulate the stack

by "stacking" codes for terms. In the main programme we delete

the last two instructions and add the following conditional clauses.

if et = rs : = Ci;r , ... ,r) 1

o m then goto STORE

if et = r restore (r0 , ••• ,rj_1 ,rj+1 , ... ,rm) 1 then goto RESTORE

if et = r if s=¢ then H else *1 then goto HALT

In the customary notation for pairing and unpairing on w we add

the following subroutines.

STORE vl = <<i,c>,w>

t = t+1

goto MP

RESTORE v1 = (w)o

w = (w) 1

v2 = c.
J

c = (v 1) 1

c. = v2 J

go to MP

- 20 -

a rather complicated definition-by-cases construction over A and

w . The uniformity required is that of a recursive function

p : w-+ C which computes the fapCS-code p(n) for E :
n

this

follows from the constructiveness of proposition 4.1 of ~1]

expessed in terms of a godel numbering of the induction terms, a

point more carefully discussed in theorem 4.4 later.

4.3. Theorem. FAPS(A) is a computation theory.
{JJ

Q.E.D.

Proof: 4.2 expresses the key property that term evaluation is

uniformly fapCS-computable. It therefore suffices to append the

proof of 4.1 by adding blocks to simulate store and restore

instructions and the halting block. For this we add a working

register w initialised to < > which is to simulate the stack

by "stacking" codes for terms. In the main programme ~ve delete

the last two instructions and add the following conditional clauses.

if et = rs : = (i;r0 , ••• ,rm) , then go to STORE

if et = r restore (ro' ..• ,rj-1 ,rj+1 ' ••• ,rm) 1 then go to RESTORE

if et = r if s=0 then H else *, then go to HALT

In the customary notation for pairing and unpairing on w we add

the following subroutines.

STORE vl = <<i,c>,w>

t = t+1

goto HP

RESTORE v1 = (w)
0

w = (w) 1

v2 = c.
J

c = (v 1) 1

c. = v2 J

go to MP

- 21 -

HALT if w = < > then H1 else H2

H1. r : = TE(c)
0 0

H

.... : = * in block 1 r..vhere (w)o = <i,c> L H2.

go to HP Q.E.D.

4.4. Theorem. FAPSCA) 1s the minimal computation theory. w

Proof: By theorem 2 in [11] FAPS(Aw) = Ind(Aw). Moreover

there is a recursive function g such that if e is a code for

a fapS then g(e) 1s a godel number for the term which is equiva­

lent to the fapS. If t is an algebra term with free function

variables among p1 , ••• ,pk' free algebra variables among

then let be the following functional:

cptCf1 , ••• ,fk,a1 , ••• ,a1) ~ the value of t when f 1 , ••• ,fk,a1 , •• ,a1

are substituted for p 1 , .•• ,pk ,x1 , ••• ,x1 . By lemma 2. 2 in [11]

1s monotonic. Let e be a computation theory on A • w We will

define a 8-computable function h such that if e is a godel

number for a term t then h(e) is a 8-index for cpt. This will

prove the theorem for the length condition follows from the fact

that the length function in FAPS(Aw) is there computable.

Let t be a term. Then t is of the form u, x, £,

cr(t1 , ... ,tn)' DC8 Ct1 , ... ,tn,tn+1 ,tn+ 2), p(t1 , ••• ,tn) or

FP[A.p,x1 , •.. ,x .t]Ct1 , ... ,t). n o n

i) t = cr(t1 , .•. ,t). Let ¢. be the functionals associated
- n 1

to ti' i=1, •.• ,n. ¢tCf1 , .•. ,fk,a1 , ••• ,a1) ~ crC¢ 1 Cf1 , •. fk,a1 , •• ,a1),

... ,cpn<f1 , .•. ,fk,a1 , ... ,a1)). By several applications of composi­

tion and the iteration property a e-index for ¢t can be found

uniformly from e-indices for <jl1, ••• ,¢n·

- 22 -

ii) t = FP[Ap,x1 , .•• ,xn.t0]Ct1 , •• ~~tk). It suffices to find

a 8-index for the functional ~ defined by FP[Ap x 1 , ••• ,xn.t0].

as a 8-index for ¢t can then be constructed as in i). Let ¢

be the functional defined by t 0 • ¢ is effective by the induction

hypothesis. It follows from the First Recursion Theorem that ~

is effective. Q.E.D.

4.5. Proposition. FAPS(A) = FAPIR(A) = CAP(A). w w w

Proof: First we sketch a proof of FAPS(A) c CAP(A).
w w

Given a fapS P we need construct a cap P' simulating P.

The only problematic point is to simulate store and restore instruc-

tions and halting blocks. To the usual simulation and instructions

for the w-recursive operations needed append infinitely many

store and restore blocks, each block using storing registers not

used elsev1here in the programme. Index the store and restore blocks

by (a register) q. The store part of a block will simply consist

of instructions storing the marker i and registers r , ... ,r o m

into distinct registers used only by that block and the restore

part will restore the registers into r 0 , ••• ,rm

the J being indicated to the block in some way.

except for r. ,
J

q will contain

a number indicating the depth of the simulated stack and is used

to find the correct store and restore block. The simulation of

a halting block Hill, of course, use q to determine what action

to take.

The proof of CAP(A) c FAPIR(A) is given 1n Shepherdson [16].
tO W

Thus it remains to prove FAPIR(A) c FAPS(A). The ideas of the
w (!J

proof arebased upon those of 4.1: when simulating a fapir, codes

for terms are manipulated and term evaluation is invoked when

necessary. Suppose P is a fapir programme using counting registers

- 23 -

c0 , ••• ,ck and suppose P is to calculate an n-ary function.

We construct a fapCS programme P' simulating P. P' will use

algebra registers r 0 , ••• ,rn,v1 , ••• ,vp and counting registers

and d. In addition P' will use sufficiently (but

finitely) many other registers to be able to perform the required

operations. d will play the same role as c in 4.1 and will be

initialized with r . 1 r , ~ , < u , x1 , •• , x > •
n

TE denotes instructions

for term evaluation just as in 4.1.

Each instruction in P is simulated by a block of instructions

in P'. Below we give samples of how instructions in P (on the

left) are translated to blocks of instructions in P' (on the right).

Given 4.1 the notation for "instructions" in P' should be self-

explanatory noting that the tuple in d will be extended whenever

necessary by inserting ru, in the new components.

)

if S. (r , ... ,r) then 1 else 1'
l CA CA

1 m.
l

H

c : = c +1
11 A.

v1 := 'IE(d)
CA

1

v :='IE(d)
mi cA.

m.
l

if Si(v1 , •.. ,vm.) then (block) 1 else
1 (block) 1 1

r :='IE(d)
0 0

H

An easy induction argument shows that P' and P compute

the same n-ary function. Q.E.D.

- 24 -

The proof of 4.5 actually shows that for an arbitrary

relational structure A, FAPCS(A) = FAPIR(A) = CAP(A).

4.6. Corollary. If En is fapC-computable for each n

then FAPC(A) = FAPIR(A).

Proof: Note that the constructed fapCS P' simulating

the fapir P in the proof of 4.5 contains stacking instructions

only in the routines evaluating terms. If term evaluation can

in fact be performed using fapC instructions then P' is a fapC

programme.
Q.E.D.

- 25 -

5. Examples

Obviously, the four types of function discussed in these

papers are related thus

FAPC(A)

FAP(A)~ ~APCS(A)
~FAPS(A)/

and, in connection with proposition 4.1, we have declared the

customary situation in Algebra to be this

FAP(A) ---> FAPS(A) ---> FAPC(A) = FAPCS(A)

The question arises, Are these inclusions strict ?

In his original article [8], p.376, Friedman showed that

FAP(A) and FAPC(A) were distinct; the relational structure he con­

structed is now superseded by the general analysis of [18] where
c examples of groups and fields A are given for which FAP(A) ~ FAPC(A).

However, we begin by using Friedman's structure AF to separate

FAPS(A) and FAPC(A), in this we are indebted to our colleague, D.Nor­

mann, for his observations reported in [6].

AF has domain w and a single unary operation a defined as

follows. First we define a partition C of w by c 1 = {0},

c2 = {1,2}, c3 = {3,4,5} and, in general, en consists of the first

n numbers not in cl u 0 D D u c 1 • n- The action of .a

these disjoint cycles so C1 f' c = {a ••• a } maps n 1' ' n
1 < n, and an + al; here are formulae for c and for

The first number in the n-th cycle is !n(n-1) and

1n2
2 .. ' and the number a lies in

I a I = max { z : ! z (z -1) < a} • so

a(a) = a+1

cycle numbered

= ~lal<lal-1) otherwise.

is to

ai
_.,.

cr.

the

Clearly, a is a recursive function on w. AF = (w,a).

permute

ai+1' if

last is

- 26 -

5.1 Theorem ~APS(AF) ~ FAPC(AF) = FAPCS(AF)

Proof: It is straight forward to verify that term evaluation

is fapC.:-computable and so it is enough for us to define a function

g: AF + AF which is fapC-computable but not fapS-computable.

5.2 Lemma The domain o,i' a rapS-computable function on AF is

a recursive subset of w.

First, observe that a fapC-computable function on AF is

recursive as a function on w because cr is recursive on w.

Secondly, we take a theorem from [18], if A is a locally finite

algebraic system, then the halting problem for fapS's is rapes­

decidable. Thus FAPS(AF) has fapC-decidable halting problem arid,

in particular, the relation

H(e,a) .- {e}(a)~

is recursive on w, hence 5.2.

So let S c w which is r.e. but not recursive and define

g(a) = a

= u

if

if

lal .€ S

lal * S

the domain of which is r.e. and not recursive: by 5.2 g cannot

be fapS-computable on AF, but it is fapC-computable by this pro­

gramme: let P be a fapC with domain S say with input register

n 1 ; we need to calculate I I:~~ w by a fapC. Notice

crlal(a) = a :

1 0 rl: = a

2 0 c : = 1

3 0 r2: = cr(r 1)

4 0 if rl = r2 then 8 else 5

- 27 -

5- c . = c+1 .
6. r2: = a(r2)

7. go to 4

8 • nl : = c

Instructions of p with H

replaced by ro: = r 1 ,H.

Q.E.D.

From the point of view of computing it is necessary to establish

the incomparability of the storing facility of the stack and that

of counting which, of course, no ordinary algebraic structure will

exemplify; we have these examples.

5.3 Theorem There is a system A where

FAPC(A) = FAP(A) ~ FAPS(A) = FAPCS(A).

Proof: Let IJ.ll and IJ.l2 be copies of the natural numbers and
0

set N = IJ.ll u IJ.l2' the system has the form A = (N; S,P,O,a 1 ,a2,a 3 ;R)

where 0 € IJ.ll and S(a) = a+1 if a € IJ.ll , P(a) = a-1 if a € w1 ,-.nd

'· =· 0 if a € IJ.l2 , = 0 if a E IJ.l2
(where at ' a~ are unarw
~opera ions, a 3 is binary and R is a unary relation. We shall

show how to define these operations so that the function with term

is not rap-computable over A, it is rapS-computable by 4.1 of []

of course; these operations will be triYial on w1 , and defined in

an irregular way on w2 by means of 5.1. This establishes 5.3

as FAPC(A) = FAP(A) is the observation that counting is possible in

FAP(A) by using fa~ instructions on (w 1 ;S,P,O).

Give w2 the partition c1 ,c 2,••• of 5.1. For each k E w

- 28 -

choose n = n(k) sufficiently large (> 2k+ 1 + 2k) and fix the k-th

element ak of en, define ak ~ S, thus to calculate t(ak) one

has to calculate pa 1 (~) and pa 2 (ak) whence

t(ak) = a 3 (paiak),pa 2 (ak)). We now define a 1 (ak) and a 2 (ak) to

be distinct elements of en - {ak} and, whatever the choice, define

them to be in ,S. Thus to continue to calcul~te t(ak) in com­

puting pa 1 (ak), pa 2 (ak) one must first compute pa 1 2 (ak)'

pa2 a 1 ~ak) and pa2 2 (ak), pa 1 a 2 (ak). This regression is continued

-into this tree of polynomials q; of degree ~ k, for which one

must calculate pq(ak) in computing t(ak), call it the k-th tree:

, , ,
' ,

a1 ,a2 are defined so that for. each k, q 1 (ak) ~ q2 (ak)

different polynomials in the tree (for this n(k) ~ 2k+ 1)

for

and

a 1 (a) = a2 (a) = 0 when a ~ q(ak) for q in the k-th tree. s

defined by taking for each k, s n en(k) to consist of the values

of the polynomials in the k-th ro.w on ak and no other elements;

is

with this s, tq(ak) = q(ak) when q is in the k-th ro.w. We have

- 29 -

only to define a 3 • For each q not in the lowermost row assume

ta 1q{ak), ta 2q(ak) to be defined and take a 3 (ta 1q(ak)' ta 2q(ak) =
tq(ak) to be a new element in Cn(k)' not any value of operations

so far defined (this requires the further 2k elements); elsewhere

a 3 takes the value o.

Assume f is fap-computable by programme P involving m­

registers, we obtain a contradiction in showing that f(am) requires

at least m+1 registers to fap-compute. Let aij be the value of

the j-th polynomial in the i-th row of the m-th tree. Consider the

stage where a 01 = f(am) first appears in the registers of the ma­

chine Mm implementing P: by construction it arises from an in­

struction of the form rk : = a 3 (ri,rj) with a 11 € ri and

a 12 E rj P involves at least two registers. Now consider the

stage where the last of a 11 ,a12 first enters the machine, say it

is a 11 : prior to this the distinct elements a12 and a 21 ,a22 lie

in the machine for a 11 = a 3 (a21 ,a22) - P involves at least three

registers. Considering the stage of which the latest of a 12 ,a21 ,a24

first appears one can continue this regression until at least m+1

elements have been found necessary to have stored as may be easily

verified.

Q.E.D.

5.4 Corollary Term evaluation E1 is not fapC-computable over A.

Now combining 5.1 and 5.3 we can prove

5.5 Theorem There is a system A where the following in­

clusions are strict

~FAPC(A)~

FAP(A)"' ~FAPCS(A)

~APS(A)~

- 30 -

Proof: Clearly it is sufficient to construct an A where

FAPC(A) ~ FAPS(A) and FAPS(A) ~ FAPC(A). Let w1 and w2 be

copies of the natural numbers and set • N = w1 U w2 : such a structure

wherein is the cycle translation

function cr of 5.1 defined on w1 , and trivially extended to w2

and O,cr 1 ,cr 2 ,cr 3 and R are the operations and relations defined on

N in 5.3. Since cr 1 ,cr 2 ,cr 3 can be chosen recursive and A is lo­

cally finite the argument of 5.1 produces a function which is rape­

computable but not rapS-computable. And the argument of 5.3 applies

directly to A to yield a function which is rapS-computable but not

fapC-computable.

Q.E.D.

- 31 -

6. Computing with constants

To compute with the constant functions on the relational

structure A is to use programmes which allow them as basic combi-

national operations. In this final section we reconsider the pre-

occupations of our two papers with the new requirement that the con-

stant functions be computable; as we are interested in the ideas and

results for comparison the details of our proofs are not included.

f € P(An,A) is fap*-computable if there is a fap-computable

g E P(An+m,A) and such that for each

* * The class of all fap -computable functions on A is denoted FAP (A) •

Clearly FAP*(A) contains every constant function on A. Correspon­

ding to fapC, fapS and fapCS there are the classes FAPC*(A),

FAPS*(A) and FAPCS*(A) ~he relationships between the computing

·power of the considered classes determined in section five extend to

our present setting.

The classes Ind*(A) and Dind*(A) are defined in an analogous

manner from Ind(A) and Dind(A), i.e. using parameters. The main

results from [11] lift directly as

6.1. Theorem

(i) FAP*(A) = Dind*(A)

(ii) FAPS*(A) =Ind*(A).

In section four we gave a machine-theoretic characterisation of

the minimal computation theory over A or strictly speaking A • w

In order to obtain a similar characterisation of the minimal computa-

tion theory containing all constant functions it seems necessary to

assume a computable pairing scheme.

,.. 32 -

(M,K~L) is a pairing scheme on A if M is an injection

A x A+ A and K and L are the inverse functions of M, i.e.

K(M(a,b)) =a and L(M(a,b)) =b. (Observe that pairing schemes

exist only on infinite structures.)

A* is obtained from A by adjoining a pairing scheme (M,K,L)

to A. Thus if A= (A;~,~) then A* = (A;~,M,K,L;S). Our moderate

aim is to find a machine-theoretic characterization of the minimal

computation theory over A* containing all constant functions.

Assume there are at least two constants in FAP(A*) say 0 and

1. Define inductively Q = M(1,0) and n+1 = M(O,~). It is easily

seen that the elements of ~ = {0,1,2,•••} are distinct and, further-

more, the successor and predecessor operations on w can be expressed

respectively as n + 1 = M(O,g) and n - 1 = DC=(~,Q,Q,L(n)) : it

follows that all the recursive functions on w are in FAP(A*). Also

it is easily verified that the storing operations inveBted in a stack
9

can be performed by a fap over A*. This proves

6.2. Theorem.

(1) FAP(A*) = FAPC(A*) = FAPS(A*) = FAPCS(A*).

(ii) . FAP*(A*) = FAPC*(A*) = FAPS*(A*) = FAPCS*(A*).

Thus if there is a rap-computable pairing scheme on A then all

classes coincide.

The transformation from A to A*' necessary for theorem 6.3,

is not very satisfactory for not only does the transformation obliviat~

the distinction between the various types of functions, but the com­

puting power is directly dependent on the particular choice of pairing

scheme. It seems to us that the natural class of funtions making up

a "computation theory" over A containing all constant functions is

"": 33

FAPIR*(A) : not in the strict sense of section one for the code set

for the "computation theory 11 would be w x A* where A* is the set

of all finite sequences of A. However, this will not be pursued

further here •

6.3. Theorem. FAP*(A*) is the minimal computation theory over

A* containing all constant functions.

Proof: Code all fap instructions by elements of

(using computable pairing < on ~) as in section two.

Suppose for each f(a) c=. g(a,b), - -- where

putable by a fap P = (I 1 ,ooo,Ik). Then we code f by

<n <ri 1 oeo rr J> b>.
_, 1 ' ' k w '-

is com-

It is easily seen that term evaluation is rap-computable over A*

where an index for a term carries along the parameter b using

pairing. Now we can imitate the proof of 4.1 to show that FAP*(A*)

is a computation theory. The proof of minimality is similar to that

of 4. 4.

Q .E .D.

- 34 -

REFERENCES

[1] R.C. Constable & D. Gries

[2] Y.L. Ershov

[3] Y.L. Ershov

[4] J.E. Fenstad

[5] J.E. Fenstad

[6] J.E. Fenstad

[7] J.E. Fenstad

On classes of program schemata
SIAM Journal on Computing 1 (1972)

pp.66-118

Theorie der Numerierungen, I.
Zeitschrift fur Matematische Logik
und Grundlagen der Mathematik

~ (1973) pp. 289-388

Theorie der Numerierungen, II.
Zeitschrift fur Mathematische Logik
und Grundlagen der Mathematik

£1 (1975) pp. 473-584

On axiomatising recursion theory
pp. 385-404 of J.E. Fenstad & P.G.
Hinman (eds.) Generalised recursion

theory, North-Holland, Amsterdam,1974

Computation theories: an axiomatic
approach to recursion on general
structures pp.143-168 of G. MUller,
A. Oberschelp, & K. Potthoff (eds.)
Logic conference, Kiel 1974 Springer­

Verlag, Heidelberg, 1975

On the foundation of general recursion
theory: computations versus inductive
definability pp. 99-111 of J.E. Fen­
stad, R.O. Gandy, & G.E. Sacks Gene­
ralised recursion theory II, North­
Holland, Amsterdam, 1978

Recursion theory: an axiomatic
approach

Springer-Verlag, Berlin, to appear.

[8]

[9]

[10]

[11.]

[12]

[13]

[14]

[15]

- 35 -

H. Friedman

A.I. Mal'cev

J. Moldestad

J. Moldestad,
V. Stoltenberg-Hansen &
J.V. Tucker

J. Moldestad &
J.V. Tucker

Y.N. Moschovakis

Y.N. Moschovakis

Y.N. Moschovakis

Algorithmic procedures, generalized
Turing algorithms. and elementar~
recursion theory pp. 316-389 of
R.O. Gandy & C.M.E. Yates (eds.)
Logic colloquium '69, North-Holland

Amsterdam, 1971

Constructive algebras I pp.148-212

of A.I. Mal'cev T~e meta-mathematics
of al~ebraic systems. Collected papers:
1936-1967. North-Holland, Amsterdam,
1971

Computations in higher types

Springer-Verlag, Berlin, 1977

Finite algorithmic procedures and

inductive definability
Matematisk institutt, Universitetet
i Oslo, Preprint Series, No. 6
(ISBN 82-553-0346-4), Oslo, 1978

On the classification of computable

functions in an abstract setting
In preparation.

Abstract first-order computability,I.
Transactions American Mathematical

Society 138 (1969) pp. 427-464

Abstract first-order computability,II

Transactions American Mathematical
Society 138 (1969) pp. 465-504

Axioms for computation theories -

first draft pp. 119-255 of R.O.aandy
& C.M.E. Yates (eds.) Logic colloquium'
69, North-Holland, Amsterdam, 1971

[16] J.C. Shepherdson

[17] V. Stoitenberg-Hansen

[18] J.V. Tucker

- 36 -

Computation over abstract structures:
serial and parallel procedures and
Friedman's effective definitional

schemes pp. 445-513 of H.E. Rose &
J .c. Shephe:zod;&on (eds.) Logic
colloquium '73, North-Holland,
Amsterdam, 1975

Finite injury arguments in infinite

computation theories
Matematisk institutt, Universitetet i
Oslo, Preprint Series, No. 12 (ISBN

82-553-0313-8), Oslo, 1977

Computing in algebraic systems
Matematisk institutt, Universitetet i

Oslo, Preprint Series, Oslo, 1978

