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Introduction. 

Let R be an Artinian local ring with residue field k = R/~. 
Let M be any faithful R-module, i.e. rM = 0 implies r = 0 for 

all r€ R. Then for a large class of rings R one has the inequality 

~(M) > ~(R) 

~ denoting classical length. It is easily seen that the inequality 

is valid whenever R is self injective, that is when 

dimkHomR(k,R) = 1; see (2.8) in [1). The purpose of the present note 

is to generalize this fact by showing that (*) is valid for all faith

ful R-modules M whenever dimkHomR(k,R) ~ 3. This result is in a 

way the best possible, in fact for each integer s > 4 we can give 

an example of a local ring R and a faithful R-module M such that 

~(M) < ~(R) and 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30815643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


- 2 -

Notations and definitions. 

R will always be an Artinian local ring with maximal ideal ~. 

R-modules are assumed to be unitary and finitely generated. If M 

is an R-module we define the annihilator 

an(M) = {rc;RjrM = 0} 

and the socle 

s(M) = {xEMj'fflx = O}. 

Observe that s(M) ~ HomR(R/~,M). 

t(M) denotes the length of M. If an(M) = 1tt- then dimM will 

denote the dimension of M as a vectorspace over R/~. E denotes 

the injective hull of the R-module R/~ We let M* denote the 

dual of M, that is 

M* = HomR(M,E). 

Recall that the fUnctor HomR(-,E) defines a duality on the category 

of finitely generated R-modules, cf. [2]. Note that 

* an(M) = an(M ), * s ( M ) :: M/ -14(. M. 

M will be called a faithful R-module if an(M) = o. Observe that E 

is, up to isomorphism, the only faithful R-module with one-dimensional 

socle. 
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Lemma 1. Let M be a faithful R-module. Suppose that MIN 

is not faithful for any submodule N ~ 0. Then s(M) = s(R)M. 

Proof. Let N be a submodule of M such that 

s(M) :t s(R)M ~ N. 

We are going to show that N = o. Suppose N ~ 0. Then by the 

minimality of M there exists an element r ~ 0 in R such that 

rM c N. We may as well assume that rE s(R). It follows that 

rMc s(R)MnN = 0. Hence r = 0, which is a contradiction. 

Lemma 2. Let M be a faithful R-module. Assume that neither 

N nor M/N is faithful for any submodule N such that 0 ~ N ~ M. 

Then we have 

(i) dim M/~ M ~ dim s(R) 

(ii) dim s(M) ~dim s(R). 

Moreover, if M ~ R then at least one of the inequalities is strict. 

Proof. We will first prove (i). Let m = dim M~ M and let 

g 1 ,••• ,~ be a minimal set of generators for M. Since (i) is 

obvious if m = 1, we may assume that m > 2. 

For 1 < i < m let Mi be the submodule generated by all 

g ••• g 
1' ' m except gi. Put c = i an(Mi). By the minimality of M 

we have ci ~ 0 hence ci n s(R) ~ 0 for all i. Choose one non-zero 

element ui in ci n s (R) for each i. Since M is faithful, the 

elements ui are clearly linearly independent over the field R/~. 

It follows that m <dim s(R). 
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To prove (ii) we just have to apply (i) to the dual 
~ 

M ' 
observing that M* satisfies the same minimality conditions as M. 

We get 

M*/ 
dim s(M) = dim /11ZM* ~dim s(R). 

We will now assume that we have equality in both (i} and (ii), 

and we assume that M is not isomorphic to R. We are going to 

show that this is impossible. 

Since M is faithful, but not isomorphic to R, we have 

Let g 000 g 
1' ' m and U ••• u 

1' ' m be as above. 

equality in (i) gives that 

by lemma 1 we obtain 

u~,···,um is a basis for s(R). 

The 

Hence 

Let C be the annihilator of the element g 1 + ••• + ~· By mininality 

of M we have C~ 0 and hence cns(R) ~ o. Let u be a non-zero 

element in ~As(R). Let r ••• r be elements in R such that 
1' ' m 

u = We have 

Since not all ri are in ~' the equation above shows that 

dim s(M) < m contradicting the equality in (ii). 

Corollary. Let M be as in lemma 2 and suppose that 

dim s(R) < 2. Then M z R or M z E. 

Proof. If M ~ R then by lemma 2 we have dim s(M) = 1, 

hence M = E. 
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Theorem 1. Let R be an Artinian local ring with 

dimR/~ HomR(~~,R) ~ 3. Let M be a faithful R-module. Then 

we have t(M) ~ t(R). 

Proof.Clearly we may assume that M is a faithful module of minimal 

length, so that M as well as M* satisfies the assumption in 

lemma 2. If dim s(R) < 2 then the theorem follows from the above 

corollary. We may therefore assume that dim s(R) = 3. Moreover 

we may assume that M is not isomorphic to R. Hence using lemma 2 

and the relation 

dim M/mM = 

we have either 

~ dim s(M ) 

dim s(M*) < 2 or dim s(M) ~ 2. 

There is no loss of generality in assuming that dim s(M) ~ 2. If 

dim s(M) = 1 then M ~ E, and if dim Mj~ M = 1 then M = R. Hence 

in the rest of the proof we may work under the following assumptions: 

dim s(R) = 3, dim s (M) = 2 and dim MJ I'! M > 2. 

By the second of these assumptions we can find non-zero irreducible 

submodules M1 ,M 2 in M such that 0 = M1 A M2 ; see § 2 in [1] • 

Put Oti = an(M/Mi) for i = 1,2. We will first show that 

(1) for i = 1,2. 

Since Mi is irreducible we have dim s(M/Mi) = 1. It follows 

that (MIMi)* is a homomorphic image of R. Moreover we have 
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hence 

so (1) follows. 

Since M is faithful we have 0'{, 1 n (/{2 = 0. Since 

dim s(R) = 3, at least one of the two vectorspaces s(q 1 ) and 

s (t:Jt 2 ) is one-dimensional. 

We will assume that dim s(OZ 1 ) = 1. 

In view of (1) it now suffices to show that t(M1 ) ~ i(OL 1 ). 

Since ot1M ~M1 it will be sufficient to prove the following: 

(2) 

Let g 1 ,g2 ,o••,gm be a minimal set of generators for M. 
m 

Put hi = an(gi) for 1 < i < m. Then n 6 1 = 0. Hence one of 
i=l 

the iJ i, say b 1 , does not contain s ( tJt 1 ). Since dim s (ot. 1 ) = 1 

we conclude that 0{ 1 n /.:)1 = 0. We obtain f/[ 1M::J ot 1 g 1 ::: Oz' 1 (R/i, 1 ) 

::: or.l/Jtl n 1:,1 = 0(_1 which yields (2). 

Theorem 2. Let s > 4 be an integer. Then there exists a 

local Artinian ring R and a faithful R-module M such that 

(i) dimR/~qHomR(R/-ut,R) = s 

(ii) t(M) < i(R). 

Proof. Let m > 2 be an integer and let k be an arbitrary 

field. Let Rm be the k-algebra of (m+2)x(m+2)-matrices of·the for;m 
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AI 0 m,m m,2 
(3) 

al 0 0 0 a m 

bl 0 0 0 bm AI2 2 

' 
where A ' a 1 ' o o • 'am ' I and p,q 

0 denotes the identity matrix and the zero-matrix of size p x q. p,q 

Clearly ~ is a commutative local Artinian ring of length 

t(Rm) = 2m+l. In fact the socle of Rm coincides with the maximal 

ideal which consists of all matrices of the form (3) in which A = 0. 

Hence dim s(~) = 2m. 

Now let M be the k-vectorspace km+2• Clearly M becomes 

a faithful Rm-module in the obvious way. We have 

This proves the theorem in the case where s is even. 

m > 3. 

Let us now assume that s i odd. Write s = 2m-l where 

Consider Rm and M as before. Let R' be the subring 
m 

consisting of all matrices of the form (3) in which am = o. Clearly 

R~ is a local ring of length 2m and dim s(~) = 2m-l = s. 

Moreover M is a faithful R~-module with 

t(M) = dimkM = m+2 < 2m = t(R~) 

The proof is now complete. 

Remark. Let R = c[x,Yli (X,Y)~. It can be shown that 

t(M) ~ t(R) for any faithful R-module, inspite of the fact that 

dim s(R) = 4. 
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