ON THE LENGTH OF FAITHFUL MODULES OVER ARTINIAN LOCAL RINGS.

by

Tor H. Gulliksen

Introduction.

Let R be an Artinian local ring with residue field k = R/m. Let M be any faithful R-module, i.e. rM = 0 implies r = 0 for all $r \in R$. Then for a large class of rings R one has the inequality

(*) $\ell(M) > \ell(R)$

 ℓ denoting classical length. It is easily seen that the inequality is valid whenever R is self injective, that is when $\dim_k \operatorname{Hom}_R(k,R) = 1$; see (2.8) in [1]. The purpose of the present note is to generalize this fact by showing that (*) is valid for all faithful R-modules M whenever $\dim_k \operatorname{Hom}_R(k,R) \leq 3$. This result is in a way the best possible, in fact for each integer $s \geq 4$ we can give an example of a local ring R and a faithful R-module M such that

 $\ell(M) < \ell(R)$ and $\dim_k \operatorname{Hom}_R(k,R) = s$.

Ī

Notations and definitions.

R will always be an Artinian local ring with maximal ideal *M.* R-modules are assumed to be unitary and finitely generated. If M is an R-module we define the annihilator

$$an(M) = \{r \in R | rM = 0\}$$

and the socle

$$s(M) = \{x \in M | \mathcal{M} | x = 0\}.$$

Observe that $s(M) \approx Hom_R(R/\mathcal{M}, M)$.

l(M) denotes the length of M. If $an(M) = \mathcal{H}$ then dimM will denote the dimension of M as a vectorspace over R/ \mathcal{H} . E denotes the injective hull of the R-module R/ \mathcal{H} . We let M^{*} denote the dual of M, that is

$$M^* = Hom_R(M,E).$$

Recall that the functor $\operatorname{Hom}_{R}(-,E)$ defines a duality on the category of finitely generated R-modules, cf. [2]. Note that

an(M) = an(M^{*}),
$$s(M^*) \approx M/\mathcal{M} M$$
.

M will be called a faithful R-module if an(M) = 0. Observe that E is, up to isomorphism, the only faithful R-module with one-dimensional socle.

Lemma 1. Let M be a faithful R-module. Suppose that M/N is not faithful for any submodule N \neq 0. Then s(M) = s(R)M.

Proof. Let N be a submodule of M such that

 $s(M) = s(R)M \oplus N.$

We are going to show that N = 0. Suppose $N \neq 0$. Then by the minimality of M there exists an element $r \neq 0$ in R such that $rM \subset N$. We may as well assume that $r \in s(R)$. It follows that $rM \subset s(R)M \cap N = 0$. Hence r = 0, which is a contradiction.

Lemma 2. Let M be a faithful R-module. Assume that neither N nor M/N is faithful for any submodule N such that $0 \neq N \neq M$. Then we have

(i) dim $M/_{M} M \leq \dim s(R)$

(ii) dim $s(M) < \dim s(R)$.

Moreover, if $M \neq R$ then at least one of the inequalities is strict.

<u>Proof.</u> We will first prove (i). Let $m = \dim M/_{H_{I}} M$ and let g_1, \dots, g_m be a minimal set of generators for M. Since (i) is obvious if m = 1, we may assume that m > 2.

For $1 \le i \le m$ let M_i be the submodule generated by all g_1, \cdots, g_m except g_i . Put $C_i = an(M_i)$. By the minimality of M we have $C_i \ne 0$ hence $C_i \cap s(R) \ne 0$ for all i. Choose one non-zero element u_i in $C_i \cap s(R)$ for each i. Since M is faithful, the elements u_i are clearly linearly independent over the field R/M. It follows that $m \le \dim s(R)$.

- 3 -

To prove (ii) we just have to apply (i) to the dual M^{*}, observing that M^{*} satisfies the same minimality conditions as M. We get

dim s(M) = dim
$$\frac{M^*}{m_M^*} \leq \dim s(R)$$
.

We will now assume that we have equality in both (i) and (ii), and we assume that M is not isomorphic to R. We are going to show that this is impossible.

Since M is faithful, but not isomorphic to R, we have $\dim \frac{M}{M} \le 2$. Let g_1, \cdots, g_m and u_1, \cdots, u_m be as above. The equality in (i) gives that u_1, \cdots, u_m is a basis for s(R). Hence by lemma 1 we obtain

$$s(M) = (u_1, \dots, u_m)(g_1, \dots, g_m) = (u_1g_1, u_2g_2, \dots, u_mg_m).$$

Let **C** be the annihilator of the element $g_1 + \cdots + g_m$. By mininality of M we have $C \neq 0$ and hence $C \cap s(R) \neq 0$. Let u be a non-zero element in $C \cap s(R)$. Let r_1, \cdots, r_m be elements in R such that $u = \sum_{i=1}^{m} r_i u_i$. We have

$$0 = u(g_1 + \cdots + g_m) = \sum_{i=1}^{m} r_i u_i g_i \cdot \frac{1}{i}$$

Since not all r_i are in \mathcal{M} , the equation above shows that dim s(M) < m contradicting the equality in (ii).

<u>Corollary.</u> Let M be as in lemma 2 and suppose that dim s(R) < 2. Then M \approx R or M \approx E.

<u>Proof.</u> If $M \neq R$ then by lemma 2 we have dim s(M) = 1, hence $M \approx E$. <u>Theorem 1.</u> Let R be an Artinian local ring with $\dim_{R/M} \operatorname{Hom}_{R}({}^{R/M},R) \leq 3$. Let M be a faithful R-module. Then we have $\ell(M) > \ell(R)$.

<u>Proof</u>.Clearly we may assume that M is a faithful module of minimal length, so that M as well as M^* satisfies the assumption in lemma 2. If dim $s(R) \leq 2$ then the theorem follows from the above corollary. We may therefore assume that dim s(R) = 3. Moreover we may assume that M is not isomorphic to R. Hence using lemma 2 and the relation

 $\dim \frac{M}{M} M = \dim s(M^*)$

we have either

dim $s(M^*) \leq 2$ or dim $s(M) \leq 2$.

There is no loss of generality in assuming that dim $s(M) \le 2$. If dim s(M) = 1 then $M \approx E$, and if dim $M'_{M}M = 1$ then $M \approx R$. Hence in the rest of the proof we may work under the following assumptions:

dim s(R) = 3, dim s(M) = 2 and dim $\frac{M}{M} M > 2$.

By the second of these assumptions we can find non-zero irreducible submodules M_1, M_2 in M such that $0 = M_1 \land M_2$; see § 2 in [1]. Put $\alpha_1 = an(M/M_1)$ for i = 1, 2. We will first show that

(1)
$$\ell(M/M_i) = \ell(R/\mathcal{O}_i)$$
 for $i = 1, 2$.

Since M_i is irreducible we have dim $s(M/M_i) = 1$. It follows that $(M/M_i)^*$ is a homomorphic image of R. Moreover we have

$$\operatorname{an}((M/M_{i})^{*}) = \operatorname{an}(M/M_{i}) = \mathcal{O}_{i}$$

hence

$$(M/M_1)^* \approx R/\sigma_1$$

so (1) follows.

Since M is faithful we have $\mathcal{O}_1 \cap \mathcal{O}_2 = 0$. Since dim s(R) = 3, at least one of the two vectorspaces $s(\mathcal{O}_1)$ and $s(\mathcal{O}_2)$ is one-dimensional.

We will assume that dim $s(O_{1}) = 1$.

In view of (1) it now suffices to show that $\ell(M_1) \ge \ell(\mathcal{O}_1)$. Since $\mathcal{O}_1, M \subseteq M_1$, it will be sufficient to prove the following:

(2)
$$\ell(\mathcal{O}_1 \mathbb{M}) \geq \ell(\mathcal{O}_1).$$

Let g_1, g_2, \dots, g_m be a minimal set of generators for M. Put $\wp_i = \operatorname{an}(g_i)$ for $1 \leq i \leq m$. Then $\bigcap_{i=1}^m \wp_i = 0$. Hence one of i=1 the \wp_i , say \wp_1 , does not contain $\operatorname{s}(\mathscr{O}_1)$. Since dim $\operatorname{s}(\mathscr{O}_1) = 1$ we conclude that $\mathscr{O}_1 \cap \wp_1 = 0$. We obtain $\mathscr{O}_1 \mathbb{M} \supset \mathscr{O}_1 g_1 \approx \mathscr{O}_1(\mathbb{R}/\wp_1)$ $\approx {}^{\mathscr{O}_1} \wp_1 \cap \wp_1 = \mathscr{O}_1$ which yields (2).

<u>Theorem 2.</u> Let $s \ge 4$ be an integer. Then there exists a local Artinian ring R and a faithful R-module M such that

(i)
$$\dim_{R/M} \operatorname{Hom}_{R}(R/M,R) = s$$

(ii)
$$\ell(M) < \ell(R)$$
.

<u>Proof.</u> Let $m \ge 2$ be an integer and let k be an arbitrary field. Let R_m be the k-algebra of $(m+2)\times(m+2)$ -matrices of the form

(3)
$$\begin{pmatrix} \lambda I_{m,m} & O_{m,2} \\ a_1 \cdots a_m \\ b_1 \cdots b_m & \lambda I_{2,2} \end{pmatrix}$$

where λ , a_1 , \cdots , a_m , b_1 , \cdots , b_m run through k and $I_{p,q}$ and $O_{p,q}$ denotes the identity matrix and the zero-matrix of size $p \times q$. Clearly R_m is a commutative local Artinian ring of length $\ell(R_m) = 2m+1$. In fact the socle of R_m coincides with the maximal ideal which consists of all matrices of the form (3) in which $\lambda = 0$. Hence dim $s(R_m) = 2m$.

Now let M be the k-vectorspace k^{m+2} . Clearly M becomes a faithful R_m -module in the obvious way. We have

$$\ell(M) = \dim_{k} M = m+2 < 2m+1 = \ell(R_{m}).$$

This proves the theorem in the case where s is even.

Let us now assume that s i odd. Write s = 2m-1 where $m \ge 3$. Consider R_m and M as before. Let R_m^i be the subring consisting of all matrices of the form (3) in which $a_m = 0$. Clearly R_m^i is a local ring of length 2m and dim $s(R_m^i) = 2m-1 = s$. Moreover M is a faithful R_m^i -module with

$$\ell(M) = \dim_k M = m+2 < 2m = \ell(R_m^{\prime})$$
.

The proof is now complete.

<u>Remark.</u> Let $R = C[X,Y]/(X,Y)^4$. It can be shown that $l(M) \ge l(R)$ for any faithful R-module, inspite of the fact that dim s(R) = 4.

- 7 -

REFERENCES

[1]	Bass, H.:	On the ubiquity of Gorenstein rings. Math. Zeithschr.82, 8-28 (1963).
[2]	Matlis, E.:	Injective modules over noetherian rings. Pacific J. Math. 8, 511-528 (1958).