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Introduction.

Let R be an Artinian local ring with residue field k = R/m .
Let M be any faithful R-module, i.e. rM = 0 implies r = 0 for
all r€R. Then for a large class of rings R one has the inequality

(%) 2(M) > 2(R)

2 denoting classical length. It 1s easlly seen that the inequality
is valid whenever R 1s self injective, that 1s when

dim Homp(k,R) = 1; see (2.8) in [1]. The purpose of the present note
is to generalize this fact by showing that (¥*) is valid for all faith-
ful R-modules M whenever dimHomp(k,R) < 3. This result is in a
way the best possible, in fact for each integer s > 4 we can glve

an example of a local ring R and a faithful R-module M such that

2(M) < &(R) and dim Homp(k,R) = s.
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Notations and definitions.

R will always be an Artinian local ring with maximal ideal #£.
R-modules are assumed to be unitary and finitely generated. If M

is an R-module we defilne the annihlilator

an(M) = {reR|rM = 0}
and the socle
s(M) = {xeM|#x = 0}.

Observe that s(M) ® HomR(R/ﬂ%,M).

2(M) denotes the length of M. If an(M) =% then dimM will
denote the dimension of M as a vectorspace over R/# E denotes
the injective hull of the R-module R /#4 We let M* denote the

dual of M, that is
*
M” = HomR(M,E).

Recall that the functor HomR(-,E) defines a duallity on the category

of finitely generated R-modules, cf. [2]. Note that

an(M) = an(M®), s(M*) = M/ %% .

M will be called a faithful R-module if an(M) = 0. Observe that E

1s, up to isomorphism, the only faithful R-module with one-dimensional

socle.
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Lemma 1. Let M be a faithful R-module. Suppose that M/N
is not falthful for any submodule N # 0. Then s(M) = s(R)M.
Proof. Let N be a submodule of M such that
s(M) = s(RIM® N.

We are going to show that N = 0. Suppose N # 0. Then by the
minimality of M there exists an element r # 0 in R such that

rM < N. We may as well assume that re s(R). It follows that

rMc s(R)MNN = 0. Hence r = 0, which is a contradiction.
Lemma 2. Let M be a faithful R-module. Assume that nelther
N nor M/N 1s faithful for any submodule N such that 0 # N # M.

Then we have

(1) dim M/gy M < dim s(R)

(11) dim s(M) < dim s(R).
Moreover, if M # R then at least one of the inequalities is strict.

Proof. We will first prove (i). Let m = dim M4y M and let
g, 5°°°>8, be a minimal set of generators for M. Since (1) is

obvious 1f m = 1, we may assume that m > 2.

For 1 <1 <m let M; Dbe the submodule generated by all
g, 5" .8, except g,. Put ci = an(Mi). By the minimallty of M
we have C, # 0 hence c,N s(R) # 0 for all i. Choose one non-zero
element u; in 0111 s(R) for each 1. Since M is faithful, the
elements u; are clearly linearly independent over the fileld R/7#.

It follows that m < dim s(R).
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To prove (i1i) we Jjust have to apply (1) to the dual M*,

observing that M* satlisfies the same minimality conditions as M.

We get

*
dim s(M) = dim %74;7M* < dim s(R).

We will now assume that we have equality in both (i} and (ii),
and we assume that M 1s not isomorphic to R. We are going to

show that this is impossible.

Since M 1s faithful, but not isomorphic to R, we have
dim M/t/zM > 2. Let B15°°° 58 and Uj,®°c,uy be as above. The
equality in (1) gives that CHPLL LN 1s a basis for s(R). Hence

by lemma 1 we obtain

s(M) = (uL-""sum)(gls°°°,gm) = (u,g,, u282’°°°’umgm)’

Let C be the annihilator of the element g+ °*° + Bn* By mininality
of M we have C# 0 and hence Cns(R) # 0. Let u be a non-zero
element in CAs(R). Let AR be elements in R such that

m
u=z ) r,u. We have

i=1 i1

m
0 = ulg,+ =oe *g) = 121 TyUi8s -

Since not all r are in #, the equation above shows that

i
dim s(M) < m contradicting the equality in (ii).

Corollary. Let M be as in lemma 2 and suppose that

dim s(R) < 2. Then M®R or M ® E.

Proof. If M # R then by lemma 2 we have dim s(M) = 1,

hence M % E,.
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Theorem 1. Let R be an Artinian local ring with

dimR/¢%:HomR(%/#z,R) < 3. Let M be a faithful R-module. Then

we have &(M) > 2(R).

Proof.Clearly we may assume that M 1s a faithful module of minimal
length, so that M as well as M* satisfies the assumption in
lemma 2. If dim s(R) < 2 then the theorem follows from the above
corollary. We may therefore assume that dim s(R) = 3. Moreover

we may assume that M 1is not isomorphic to R. Hence using lemma 2

and the relation

dim M/ﬂéM = dim s(M*)
we have either
dim s(M*) < 2 or dim s(M) < 2.

There 1s no loss of generality in assuming that dim s(M) < 2. If
dim s(M) = 1 then M ® E, and 1f dim Y4 M = 1 then M % R. Hence

in the rest of the proof we may work under the following assumptions:
dim s(R) = 3, dim s(M) = 2 and dim ¥arm > 2.

By the second of these assumptions we can find non-zero irreducible
submodules M,,M, in M such that 0 = M,AM,; see § 2 in [1].
Put O, = an(M/M;) for 1 = 1,2. We will first show that

(1) a(M/My) = &(R/0Ly) for 1 = 1,2.

Since M; is irreducible we have dim s(M/Mi) = 1. It follows

that (M/Mi)* 1s a homomorphic image of R. Moreover we have

an((M/Mi)*) = an(M/Mi) = 0y



hence

* o
(M/Mi) R/aai
so (1) follows.

Since M 1s faithful we have (7, NJ7, = 0. Since
dim s(R) = 3, at least one of the two vectorspaces s(% ;) and
s(0r ,) 1s one-dimensional.

We will assume that dim 5(021) = 1.

In view of (1) it now suffices to show that &(M;) > 2(9C ).
Since M &M, it will be sufficlent to prove the following:

(2) w(or,M) > slog,).
Let 815825°°° 58 be a minimal set of generators for M.
m
Put  fo; = an(gy) for 1 <1 <m. Then ("} /o, = 0. Hence one of
i=1

the /oi, say /,, does not contain s(&7,). Since dim s(or;) =1
we conclude that o, 0 fo, = 0. We obtain @[ M> ot g, * O, (R/f )

~ azllbll N bl

0gt, which yields (2).

Theorem 2. Let s > 4 be an integer. Then there exists a

local Artinian ring R and a faithful R-module M such that
(1) dimR/%HomR(R/%z,R) = s
(11) 2(M) < 2(R).

Proof. Let m > 2 be an integer and let k be an arbitrary

field. Let R be the k-algebra of (m+2)x(m+2)-matrices of "the form



(3)

a -} a
1 m

b, eee bm AT

1 2’2
where A, a;5°°% 58, b1’°"’bm run through k and Ip’q and
0 denotes the ldentity matrix and the zero-matrix of size pxq.

oyl
Clearly Rm is a commutative local Artinian ring of length

R(Rm) = 2m+l. In fact the socle of R, coincides with the maximal
ideal which consists of all matrices of the form (3) in which A = 0.

Hence dim s(Rm) = 2m.

km+2

Now let M be the k-vectorspace . Clearly M Dbecomes

a faithful Rm—module in the obvious way. We have

L(M) = dim M = m+2 < 2m+l = R(Rm).

This proves the theorem in the case where s 1s even.

Let us now assume that s 1 odd. Write s = 2m-1 where
m > 3. Consider R ~and M as before. Let R& be the subring
consisting of all matrices of the form (3) in which a = 0. Clearly
R 1s a local ring of length 2m and dim s(R7) = 2m-1 = s.

Moreover M 1is a faithful R&-module with

L(M) = dimkM = m+2 < 2m = Z(Rﬁ) .

The proof 1s now complete.

Remark. Let R = C[X,YL/(X,Y)“. It can be shown that
%(M) > 2(R) for any faithful R-module, inspite of the fact that

dim s(R) = 4.
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