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ABSTRACT 

We continue the study of quantum field theoretical models 

in n dimensional space-time with interaction densities 
which are bounded functions of an ultraviolet cut-off boson 
field. For the scattering matrix of the space cut-off in­
teraction~ constructed in terms of asymptotic Tiesds 1 we 
prove analyticity in the coupling constant A and conver­
gence of the linked cluster expansion for sufficiently small 
A. • The correlation functions and imaginary time Wightman 
functions for the infinite volume limit constructed in a pre­
vious paper are also proved to have a linked cluster expan­

sion9 convergent for sufficiently small values of A • This 
is then used~ together with the results on the space cut-o£f 
S-matrix, to establish the existence and analyticity in A. 

of the infinite volume scattering functions and to prove re­
duction formulae for the infinite volume Wightman functions. 

October 1972. 
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1. Introduction 

The basic quantities for the description of scattering pro­

cesses for systems of infinitely many particles have been proven 

to exist only for certain classes of quantum field theoretical 

models 1 ), all of them breaking in one way or the other at least 

some of the Wtghtman axioms for a satisfactory local covariant 

quant~~ field theory. In particular only for few models with 

translation invariant interaction the existence of an S-matrix 

has been established. 2 ) In this paper we begin the study of the 

S-matrix for a class of models of self-coupled bosons in n di-

mensions 9 with translation invariant non-polynomial 9 ultraviolet 

cut-off interactions. These models have vacuum problems (vacuum 

polarization) as well as one-particle problems (translation inva­

riance and pure creation terms in the interaction). They have an 

interaction of the form: 

S iscp (x) _. 
A e 8 dv(s)dx 

where q:> 8 (x) is an ultraviolet cut-off time zero Boson field in 

(n-1) space dimensions 3 ) and dv(s) is a finite measure of boun­

ded support (with dv(-s) = d~ 9 - meaning complex conjugate). 

In a preceding paper [5]4) we proved 9 in particular, the ex-

istence 9 uniqueness and analyticity in the coupling constant A 

of the vacuum in the infinite volume limit and of the conrespon-

ding imaginary time Wightman fm1ctions for this class of models 9 

for all < A , A > 0 • 
0 0 

In this paper we start (section 2) from the construction of 

the scattering matrix for the space cut-off interaction in terms 

of asymptotic fields. An asymptotic expansion of this S-matrix 
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(or~ more precisely~ of its generating functional) in powers of A 

is then derived. The following sections will then establish, 

through the identification of this expansion with a linked cluster 

expansion~ the actual convergence of the series for all !Al < A0 • 

In section 3 we prove the linked cluster expansions~ as convergent 

series for < A , of the infinite volume correlation functions 
0 

introduced in [5], of the corresponding imaginary time Wightman 

functions and of the corresponding truncated quantities. In 

section 4 we prove the linked cluster expansion, as asymptotic 

series for small values of !A! , of the space cut-off S-matrix, 

starting from the asymptotic expansion derived in section 2. 

Moreover, we show that the S-matrix is given in terms of scatter-

ing functions which have a formal power series expansion in which 

every term has analytic continuation from the positive real axis 

in the time variables to the positive imaginary axis. 

In section 5 we start by proving that the scattering functions are 

the analytic continuation of the correlation functions from posi-

tive times to positive imaginary time. This is done by first es-

tablishing the joint analyticity in the time variables, in the 

right half plane, and in the coupling constant A , for ! A l < A0 , 

of the correlation functions for the space cut-off interaction. 

This together with their linked cluster expansion (proven to con­

verge for IAI < A0 by the methods of section 3), yields themen­

tification term by term and then, due to the convergence, globally 

of the scattering functions with the analytic continuation of the 

correlation functions. Moreover, this implies the convergence of 

the linked cluster expansion of the scattering matrix for the 

space cut-off interaction and its analyticity in A, for I A! <A • 
0 

The S-matrix as defined originally in terms of the asymptotk 

fields is proven to be the sum of this expansion, for all complex 

A with IAI sufficiently small. 
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In section 6 we prove that the scattering functions have uniQue 

limits when the space cut-off is taken away~ for -A <A < A • 
0 0 

The infinite volume scattering functions are uniformly bounded in 

all space time variables and analytic in time differences in the 

lower half plane. Moreover~ they are the analytic continuation of 

the correlation functions and yield reduction formulae for the 

VVightman functions (in the same way as the correlation functions 

give reduction formulae for the imaginary time Wightman functions). 

Finally the finite volume scattering amplitude for given ingoing 

and outgoing momenta are expressed through the Fourier transforms 

of the scattering functions and the existence of the off-shell 

scattering amplitudes in the infinite volume limit is remarked. 

The discussion will be ptrrsued in a forthcoming paper. 

Throughout this paper we shall always use the same notations as 

in our previous discussion [5] of the models under consideration. 
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2, The scattering matrix for the space cut-off interaction 

In the previous paper (5] we considered self-interacting bo­
son fields with Hamiltonian of the form 

H1 = H0 + A. J v(~'Je: (x) )dx J 

lxl<l 
( 2. 1 ) 

where H0 is the free energy of a free time zero boson field 

cp(x) of mass m > o , and cpe: (x) = fxe: (x-y)cp(y)dy , with x EIRn-1 

n being the number of dimensions of space-time, and 
.... ro n-1 .... .... .... 

X8 (x) E C0 (lli ), Xe:(x) ~ O, Xe:(x) = Xe:(-x) 

v(a.) is a real valued function of the form v(a.) = Jeia.sdv(s) , 

where dv(s) is a bounded measure of bounded support on the real 

line. A. is a real number (the coupling constant). H1 is then 

a self-adjoint operator, bounded from below, with the same domain 

as H0 in the Fock space ~~of the free boson field cp(x) [6]. 

Interactions of the form (2.1) have also been considered in [7], 

where it was proven that the asymptotic fields exist as strong 

limits and the scattering matrix was then given in terms of these. 

In [6] it was proven that H1 has a simple lowest eigenvalue 

E1 with the corresponding normalized eigenvector o1 which can 

be chosen so that (o1 ,o0 ) > 0 , where 0. 0 is the Fock vacuum. 

For any operator A on Jr we define: 

-itH1 itH -itH itH1 
A1 = e e 0 A e 0 e ( 2 • 2 ) 

The free time zero field cp(x) is given in terms of the annihi­

lation and creation operators a(p) and a*(p) by 

n-1 
1 -~ .... _, d ... 

2 --:z ( 2 n ) J e i P • x ( a"''" ( - p) + a ( p )) : _ 
JRn-1 ll ( p) 2 

crCi) = 

Let D be the domain of H0 

(2.3) 

and D1 
2 



- 6 -

the domain of 

(2.4) 
/1 

where a1F stands for a or a''t- • The following theorem was 

proven in !?]. 

Theorem 2.1 

a) and '1' E ])~ • 
2 

Then a~(h)'l' converge 

strongly as t tends to +co - . The limit operators 

" ])~ 9 and a!(h) map closable operators defined on 

uniformly boundedly in h vnth respect to the natural norm in])~. 
2 

If we denote the closure of a!(h) also by a!(h) , then a~(h) 
and a+(h) are the adjoints of each other. 

b) Let g Then map ]) 
0 

into 

the domain of 

and h be in 

af(g) and map TI 0 into fJ: uniformJy 

boundedly in g and h with respect to the natural norm on ])0 • 
II 

satisfy the same commutation relations on ]) 
0 

as do a 1'F(h) 

on 

as do H 
0 

_J!_ 

a·n- (h ) 
± ±t 

a-)~ and 
± 

H 1 and 

and a1f(h) 
' 

on ])~ 
' 

where 
2 

h -t with a 
± 

. 

satisfy the same commutation 
itH -" 

in the sense that e 1 a!(h) 

ht(p) = ei~(p)t h(p) and- h+t 

relations 
-itH1 e = 

goes with 

c) a±(h)o1 = 0 for all hE L20Rn- 1) • Let ~ be the Fock 

spaces constructed with a!(h) as annihilation-creation operators 

and o1 as Fock vacuums. Then Jr decomposes relatively to the 

asymptotic operators a!(h) as a tensor product Y= s; ® V~ 9 

where 0 ® V0 is the subspace of JT annihilated by a±(h) for 
1 ± 

all h E L2(JRn- 1 ) • With respact to this decomposition, H1 - E1 

decomposes as 
= H± 0 1 + 1 ® H0 

0 ± 
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where is the free energy operator (to the mass m ) in :T, 
± 

and is the restriction of H to the invariant subspace 

The S-matrix element between n outgoing particles with 

momentum distributions given by h 1 , ••• ,hn in L2 

ing particles with momentum distributions given by 

and m incom-

in 

L2 is given by 

S~ m(h1, ••• ,hn;g1, ••• ,gm) = (a_:(h1 ) ••• a:(hn)o1 ,a~(g 1 ) ••• a*(~)o1). (2.5) 
' 

This gives the relation between the asymptotic fields and the S-

matrix. 

We now define the wave operators V.l v 
± 

by 

Then W± 
CT are isometries mapping cf onto 

scattering operator S is given by 

Sl = wl* wl 
I 0 

T 

(2.6) 

c' 
~ , and by (2.5) the 

± 

(2.7) 

Since w! are isometries' we have !! s1 !i .:: 1 ( !! I! denoting the 

norm in f7'), and from the commutation relations for H and 

a;(h) we get that 

[S1 ,H 0 ] = 0. (2.8) 

Let 
r .... .... .... 

~(f) = j~(x)f(x)dx , (2.9) 

~ 1 

with f real and in J{!, ~= 1 , where df. ~~ 1 is the Sobolev space 

of order (-i) (see [5]). Then ~(f) is essentially self-adjoint 

on D • Let ~t(f) 

(2.9) and (2.3), with 

be given by (2.2) and 

a# substituted for 
± 

be defined by 

It follows then 
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from Theorem 2.1 that ~+(f) is also essentially self-adjoint 
- icpt(f) iq:> (f) 

on D • This implies that e converges strongly to e ± 

as t ... ± ·'XY • 

From (2.2) it follows easily that 9 for any bounded operator 

t 
S -sH isH -isH isH1 

At= A-iA dse 1 e 0 [V1 (s) 9 A] e 0 e 
0 

with v1 = J v(cpe(i))di 

!xl<l 

-isH isH 
and v1 (s) = e 0 Ve 0 

A: 

(2.10) 

If At converges strongly to A± 

(2.10) that 

as t ... ± CD ~ it follows from 

t 
S -isH1 isH -isH isH1 

At =A -iA dse e 0 [V1 (s) 9 A] e 0 e 

-ex:> 

and 

+X -isH isH -isH isH1 
A+= A_-iA J dse 1 e 0 [V1 (s),A] e 0 e 

where the integrals are strongly convergent. 

converges strongly, we get from (2.12) 

Since 

(2.11) 

(2.12) 

icp (f) icp (f) +JCD -isH1 isH . (f) -isH is~ 
e + = e - -iA dse e 0 [V1 (s) 9 e 1 Cfl ]e 0 e • 

-'XJ (2.13) 

Due to the form of v1 and v(a) 7 we see that 

isH . (f) -isH 
Bt = (e 0 [V1 (s) 9 e 1 q:> ]e 0 )t converges strongly as t ... ± ro. 

From (2.11) with A= B and t = 0 substituted in the integral 

in (2.13) we get 

icp+(f) icp_(f) +r -isH1 isH1 
e = e -iA J dse B e 

-ex:> (2.14) 

2+rc f -i(s+cr)H1 icrH -icrH i(s+cr)H1 
+ (-iA) J ds J dcre e 0 [V1 (cr) 9 B]e 0 e 

-CD -ex:> 
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From Theorem 2.1 we have B 

where is with substituted for # a . Hence: 

-X 

x s -icrH iaH . ( ) -iaH iaH 
+ ( - i A.) 2 J ds J d a e 1 e 0 [ V 1 ( a L V 1 ( s L e up f ] ] e 0 e 1 • 

-CO -CO 

By iteration of this procedure we get 

r 
J n=o t < ... <t1 n- -

where the integrals are strongly convergent. 

vre now define for f and g in de -t n-1 

i~_(g) i~+(f) 
s1 ( g; f) = ( : e o1 , : e : o1 ) 9 

where: : stands for the Wick product. 5) 

(2.16) 

It follows from Theorem 2.1 that o1 is an analytic vector with 

respect to ~±(f) 9 so that s1 (g;f) is infinitely differentiable 

with respect to f and g and we see from (2.5) that the deriva-

tives determine the S-matrix elements From (2.15) we 

get the following asymptotic expansion in A. 

i~_(g) J . . . -J ( : e : 01 9 

n=o t < ••• <t1 n- - (2.17) 

vvhere I O(a.) I < canst. Ia. I, for small values of a. • 
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Consider now the quantity 

icp (g) icp (f) 
(:e - : 01 ,[V1 (tn)_P••,[V1 (t1 )_ 9 :e- ] ••• ]01 ) = 

( m ieo(g) ,..., m 'V (t ) rv (t ) ir:o(f) J J ) = vv _ : e , : ~ t 0 , vv _ ~- 1 n , • ._ • L 1 1 9 : e ' : • • • 0 0 • 

Since W is an isometry 9 this is equal to 

+ 0 ( I A IN+ 1 ) • 
(2.18) 

This gives us an asymptotic expansion of s1 (g;f) with respect 

to A • We shall later on show (in section 5) that each term in 

this expansion can be rewritten in such a way as to obtain the 

linked cluster expansion. This will give us the connection with 

the correlation functions studied in [5] and we shall use this 

connection to prove that the series in (2.18) converges as N .... c:o 

for all 1~! < A0 , A0 > 0 9 from which it follows that the S­

matrix for the space cut-off interaction is analytic in A for 

< A 
0 

and given by the convergent linked cluster expansion. 

is equal to -1 -2B-1 d C e 9 where C is define in section 4 

of [5] and B is defined in (4.10) of !5]. 
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3. The linked cluster expansion for the infinite volume 

imaginary time Wightman functions 

In [5] we proved that the infinite volume imaginary time 

Wightman functions exist as limits for 1 ~ :o of the correspond-

ing volume cut-off q¥antities for the models considered in the 

previous section. Moreover, we proved that they are analytic for 

IAI <A and continuous in the time variables in the closed right 
I 0 

hand half plane, and hence define the Wightman functions for the 

infinite volume models. From the formula (5.5) of [5] the imagi-

nary time Wightman functions are given by 

k k k 1 
G (x1 , ••• ,xk) = G (x1 , ••• ,xk)+ 2:: ~ 

0 r=1 • 

1 
p! q?_:r,p?_:o 

p+q= k 

(' r· 
J ••• I rr 

m=1 
( 3. 1 ) 

The variables xi and yj are all space-time variables in mn • 

Sk is the set of permutations of 1, ••• ~k and G~(x 1 , ••• ,xk) 

are the free imaginary time Wightman functions,which are equal to 

zero if k is odd and are given, for k = 2p , by 

S eipx 
with G(x) = 2 2 dp • 

mn 
P +m 

pr(x1s 1 , ••• ,xrsr) is the infinite volume correlation function of 

Lemma 4.1 in [5], and 
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......... 
ie(~) = J eipxxe(i)di 

JRn-1 

The infinite volume correlation function pr(x1s 1 , ••• ,xrsr) 

is a limit~ uniformly on compact sets, of the corresponding finite 

volume correlation functions p~(x 1 s 1 , ••• 9 xrsr) , where fl. is a 

bounded domain in JRn (Lemma 4.1 of [5]). The p~ are defined 

n+k 
_1 :o (-t..)n+k 

= zfl. 2: n' 
n=o • 

-.I:. s. s .G (x.-x.)n+k 
r 1 l<J 1 J e 1 J j .... ; e II d\J.(S .)dx., 

. J j=k+ 1 J J 
/1.11 (3.3) 

where 
,..,~ -2: s.s.G (x.-x.) 

,. ·-v (-A) n I r i <j l J € l J n 
Z A = 2.:: v • • • 1 e II du ( s . ) dx _. • ,. n. ., · 1 J J n=o 1\.n J= 

(3.4) 

The apparent difference be~veen (3.3) and (4.3) of [5] is due to 

the fact that d1-1(s) = e-ls 2Ge(o)d\,~(s) , where dv is the measure 

defined in Section 2 and used in (4.3) of [5]. Now 

e 

n+k 
-.I:.s.s.G (x.-x.) 

l<J l J € l J 
= 

n+k -s.s.G (x.-x.) 
II[(e lJ€ 1 J-1)+1] (3.5) 

i<j 

The product above runs over the set P of all t(n+k)(n+k-1) 

unordered pairs (i,j) of different elements from the set 

{1 9 2p •• ,n+k} . The product in (3.5) is therefore of the form 

n ( a.l + 1 ) , with 
...tEP ·'-' 

-s.s.G (x.-x.) 
a~ = e l J e l J -1 

verifies easily that 

Il(a+1)= 
pEP p 

r rr aL , 
QcP /_Er 

for _/_, = (i,j) • One 

(3.6) 

where the sum runs over all subsets r of P , and by definition 

II a.L = 1 , 0 being the empty set. 
tE0 

A subset r of P is called a simple unoriented graph with 

labeled points, for short we will call it a graph. We shall say 
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that i is a point of the graph r if there is a j such that 

T' 
~ . The unordered pairs in r are called the lines of 

the graph r • Note that r can also be the empty set or P it­

self. Combining ( 3. 3) and ( 3. 6) vve get 

k _ 1 co (-A. )n+kJ r -sisjG8(xi-xj) n+k 
pA(x1s 1 ? ••• ,xksk) = Zl\. L: , ••• JL: I1 (e -1)Tid~(s.)dx. 9 

n=o n. An r (i 9j)Er j=k+1 J J 

(3.7) 
where I: 

r 
denotes the sum over all graphs with points from the 

set {1 90 •• ,n+k1 • The points from the set will be 

called external points of r and the points from the set [k+1, •• 

•• ,k+n} will be called internal points. 

We say that two points i and j in r are connected if 

there is a sequence of points i 1 , ••• ,is in r such that (i,i1 ), 

(i 1 ,i2 ), ••• ,(is_1 ,i8 ),(is,j) are lines in r. Let r 0 be the 

subgraph of r consisting of those internal points of r that 

are not connected with any external point of r , and let r 1 be 

the subgraph consisting of the points that are connected with ex­

ternal points. r 1 is called an externally connected graph. We 

define the prOdUCt Of tWO graphS r I )( riY aS the graph WhOSe Set 

of points is the union of the points of r' and the points of rn 

and with lines which are those of r' and r" • It follows from 

the definition of T' 
~0 

and that r = r " i" 0 / . .1.1 • Therefore 

(3.8) 

where r denotes the sum over all graphs r 0 with only inter­
r o' r1 

nal points and over all graphs r 1 which are externally connected. 

Hence 
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Any two terms which can be obtained from each other by permuting 

the internal points give equal contrubutions to the sum 

because of the symmetry of the integrand. Therefore we 

may take the ?~ points of ro to be the ~ last internal points 

[n+k-~+1, ••• ,n+k1 • Since we can pick ~ points out of n points 

l·n (~) ~ different ways, we get 

_1 XJ (- A.)m+k (- A.)t J j' -sisjGe:(xr~) k+mtt 
= z 1\. r m! -z:q t t . . . rr ( e -1) rr d!-l~}dx:., 

m,l=o • r1 r 0 .1\m+J., (i,j)Er0 x11 j=k+1 J 

( 3. 9) 

where r runs over all externally connected graphs with points 
T" 
.L1 

out of [1 9 ••• ,k+m} and 2: over aJl graphs with orJ]y :internal points 
ro from {k+m+ 1 ~ ••• , k+m+.i} . 

-s. s .G (X. -x.) -s.s .G (x.-x.) 
Since IT ( e l J t l J - 1) = 

( i ,j)Er 0 xr 1 

rr(e l J e: l J -1). 
r1 

-s.s.G (x.-x.) 
.rr (e l J e l J -1) 9 we see that the integral in (3.9) factors 
ro 

as a product , one factor being 
, J -s. s ·G (x · -x ·) 4 J··· rr (e l J e l J -1) rr d!-l(s.)dx .• 
1.. r j=1 J J 

1\. 0 

Summing now over all graphs r 0 with L points and using (3.6), 

we get this equal to 

, r -. ~ . sis j G e: (xi -x j ) .£ 
1 ••• i e l J IT d!-l(s.)dx .• 
.JI\../v :J j::.:1 J J 

If we now multiply by 
(-/..)"'~ 
~! 

and sum over ,t we get Z 1\. by 

(3.4). Using this result we obtain then from (3.9) 

k X• ( A )n+k r r -s. s .G (x. -x.) k+n 
o .1\ ( x.., s 1 , ••• , xks ) = '>' --=-,- ~ 1 •• •J' IT ( e l J e: l J- 1 ) TI du ( s . ) dx . , 

1 k' n=o n. E ,;,n (i,j) EE k+1 l l 

.\ ( 3. 1 0) 

where E runs over all externally connected graphs. By Lemma 4.1 

of [5] we know that o~ converges uniformly on compact subsets 
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to the infinite volume correlation function k 
p (x1s 1 , •.• ,xksk) 9 

and moreover that k o is analytic in A for IAI < A0 • It 

follows from (3.10) that each term in the power series expansion 

for k oA converges as increases to IRn • By the fact that 

pointwise convergence of analytic functions in an open domain im­

plies the convergence of their derivatives at a point, we get that 

and the series is convergent for < A • 
0 

This is the linked 

cluster ezpansion for the correlation function. 

For later use we shall also introduce the truncated correla-

tion functions 

We define 

(3.12) 

The truncated correlation functions are then defined by 

p~(x 1 s 190 •• ,xksk) = 2:: (-1)--l- 1 (.l-1)!p(X1 ) •.• o(X.t), 
X=~ '_ 1 ... UY':l 

(3.13) 

where the sum is over all partitions of X into disjoint subsets 

x1 9 ••• 9 x..t 

The inversion of (3.13) is given by the formula 

p (X) = 2:: om(X1 ). •• pT(X1) 9 

X=X 1 U ••• UX,.e. ~ 
(3.14) 

where pT(X) is defined according to (3.12). 

We say that a graph r is connected if any two points of r 

are connected. It is o~vious that any graph r is a product 

r = c1 x ••• x ~l of its connected components c. 
l 

For a fixed 

term in (3.11) we write E as the product of its connected com-

ponents E = c1 x ••• Y '} We then get that the integral in (3.11) 
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is equal to 

L \ s -s.s.G (x.-x.) 
IT J""" TI (e l J 8 l J-1) IT d~(s.)dx. 9 

m= 1 (i,j) Eem iE Int em l l 
(3.15) 

where Int em is the set of internal points of em By the sym-

metry of the integrand in (3.15)~ we may permute the integration 

variables without changing the value of the integral. Let nm 

be the number of points in Intern 9 and let us permute the inte-

gration variables in such a way that the internal points in e m 

become the points [k+n1 + ••• + nm_ 1 + 1 9 ••• , k+n1 + •.• +nm} • Since 

the number of ways one can divide n = n 1+ .•. +n£ points into 

groups containing n 1 , ••• ,n~ points is n! 
9 the summation 1 I I1· ••• n.t. 

over E in (3.11) gives n! equal contributions of the 

form 
m m ( m m) k +n h r r - s. s . G X. -x . m m 

IT ••• 1 IT (e l J 8 l J -1) IT d~(s~)dx~ 9 

1 J .;( ) . k 1 l l m= i, j E em l= m + 

where Xm = [(x~s~), •.• 9 (x~m,s~m)} is the subset of the set 

X= {(x1s 1 ), ••• ,(xksk)} of external points which consists of the 

external points in em • Thus k = k 1+ .•• +k_.t. and X= x1u ••• ux..t 

is a partition of X into disjoint subsets. Hence we get from 

( 3. 11 ) that 

P (X) = 
ro 
L Z: 

n=o n 1 + •.• +n..t =n 
n 1 ?:,o, ... ,r_x.;:: o 

m mG ( m ~m) k +n r r -s.s. x.-x. m m 
IT ( l J e: l J 1 ) n d ( m) d m J ••• J e - .! \J. s . :x: . • 

. (. ") E C i=k + 1 l l l,J m m 

We now define the formal power series in A. 

(3.16) 
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cr(X) 
co ( A.)n+k J r -s.s .G (x.-x.) k+n 

= 2: - 1 z ... , II ( e l J 8 l J -1 ) II d!J ( s . ) dx. 9 ( 3.17) 
n=o n. C · J (i~j)EC k+1 l l 

where C runs over all connected graphs with external points. 

Then it follows from (3.16) that 

o (X) =X-XL I I I 'Xcr(X1) •• • cr(Xn) 
- 1 ~ ...... • I n 

(3.18) 

where the sum goes over all disjoint partitions of X and the 

equality is in the sense of formal power series. By utilizing 

that (3.13) is the algebraic inverse relation of (3.14), it fol-

lows that 

(3.19) 

where the equality is again to be understood in the sense of for­

mal power series. But since 9 by (3.11), o(Xm) has a power series 

expansion that converges for !A.! < A. 0 it follows from (3.19) 

that the power series (3.17) converges for < A. 
0 

and moreover 

it converges to pT(X) , because of (3.19). We summarize this 

discussion in the following~ 

k Lemma 3.1 The correlation function p (x1s 1 , .•• ,xksk) and the 
k truncated corremation function pT(x1s 1, ••• 9xksk) are both given, 

for ! A. I < A. 0 (where A. 0 is given in Lemma 4. 1 of r 5] L by their 

convergent linked cluster expansions~ 

k 
P (x1s1, ••• ,xksk) = 

:X) ( A.)n+k f r -s.s .G (x.-x.) k+n 
= r: - , r J ... j n ( e l J 8 l J -1 ) II du ( s . ) dx . 

n=o n. E (i,j)EE i=k+1 l l 

and 
k 

pT(x1s1''''9xksk) = 

co ( ')n+k r f -s.s.G (x.-x.) k+n 
= 2: -II. 1 2: j .. . rr ( e l J 8 l J - 1 ) Il d!J ( s . ) dx . 

n=O n. C J (i,j)E C i=k+1 l l 
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where E runs over all externally connected graphs and C runs 

over all connected graphs with external points. I 

L t f k( ) }C:J e now t !)r x1 , ••• 9 xk k= 1 be a sequence of symmetric func-

tions. For any finite set X = [x1 9 ••• , xn} we define ,~(X) = 

= $n(x1 , •• *,xn) and we define correspondingly the truncated func­
k tions *T(x1, .•• ,xk) by (3.13). The inverse relation yielding ~ 

in terms of ,,, 
"'T is then given by (3.14). Let us now define the 

generating functional for the ~-functions as the formal power 

series in z 

(3.20) 

Correspondingly we define *T(zh) in the same way. Substituting 

(3.14) in (3.20) we get 

OO(iz)kJ r I ~ 1 + L: kl ••• j r , JT(x1 ) ••• wT(XJ,)h(x1 ) ••• h(xk)dx1 ••• dxk. (3.21) 
k= 1 X=~ U ••• U X..e, 

Because of symmetry reassons all terms with IX1 I = k 1 , •• 

.. , !X~l = k~ give, after integration, the same contribution. 

Here IX! stands for the number of points in X • Therefore, 

after rearranging variables, we get that (3.21) can be written as 

00 ( · )k ·:D 1 ' k' r 
1 + L: ~~ r i.l L\ k I .k I I ~T(x1, ••• ,x. )h(x1) ••• h(x. )rhr .••• dxk 

k= 1 • 1-= 1'""'" 1 •••• ");. J l~ .1:(1 -~ 1 

~+ •.• +~=k 

001 ); 
= 1 + L: -rr :j T ( zh) 

--l= 1 .(fo 

where the equality is to be understood as the equality of formal 

power series. This then gives us the formal power series relation 

between the generating functionals for w and ~T 

~(zh) = e 
~~ T ( zh) 

(3.22) 
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By inverting the power series of the exponent function~ we 

get then 

1¥ T ( zh) = log 1V(zh) 9 (3.23) 

also as a formal power series relation. 

From (5.6) of [5] we have the generating functional G(zh) 

for the imaginary time Wightman functions 

G( zh) = 
z2 8 

r 
(3.24) 

-'2' (h,h) 1 oo 1 J r r -s.zh (x .) 
= e - [ 1 + :E ""I ••• j' II (e J J -1 ) 

1 r. . 1 
pr(x1s1, ••• 9x s )II dJ..L(s.)dx.] 

r r j=1 J J r= J= 

and it follows from this formula that G(zh) is actually a con­

vergent power series for z in the v~~ole complex plane. In (3.24) 

and 
r 

h 8 (x) = l G (x-y)h(y)dy • 
j e: 

Intruoducing the generating functional p(zh) for the corre­

lation functions as the (convergent) power series 

Xl("z)nr> n n 
p(zh) = 1+r l' ! ••• J!on(x1s. 9 ••• ?xs)g(v_9s1) ... g(:x; 9s) ITdu(s.)dx., (3.25) 

1 n. J . r n n '"'I n n . 1 1: l 
n= J= 

we may rewrite (3.24) as 
z2 

-2(h9h) 1 h€ 
G(zh) = e - o(-i(e-sz -1)) 9 

w±rrch by (3.22) is equal to 

z2 
- "7(h9h) -1 

G( zh) = e 

Using (3.23) for GT(zh) we finally get 

( ) z 2 ( ) ( . ( - s zh 8 ) ) G T zh = - 2"" h, h _ 1 + p T -l e - 1 

We formulate now these results in a theorem. 

Theorem 3.1 

(3.26) 

(3.27) 

The linked cluster expansion for the infinite volume imagi-

nary time Wightman functions and the corresponding truncated fund-
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tions are given in terms of their generating functionals by (3.26) 

and (3.27) and the linked cluster expansions for the correlation 

functions and the truncated correlation functions in Lemma 3.1. 

The linked cluster expansions are all convergent for IA.I <A 
I 0 

The linked cluster expansions for the imaginary time Wightman 

functions are given by (3.1) and Lemma 3.1 and for the truncated 

imaginary time Wightman functions they are given by Lemma 3.1 and 

r r 
oT(y1s 1 , ••• ,y s) 11 d~(s.)dy., 

r r .;_ 1 J J 
J-

where 6k2 = 1 for k = 2 , and 6k2 = 0 for k I 2 • 
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4. The linked cluster expansion as the asymptotic 

series for the scattering matrix of the space cut-off 

interaction. 

Let us from now on assume that the dimension of the space 

time is ~ 4 . 

In section 2 we derived an asymptotic expansion, (2.18), for 

the quantity S~(g;f) which generates the S-matrix for the space 

cut-off interaction. The term of order n in this expansion is 

One finds easily that, for t < ••• < t1 ' n- -

where the 

[1, •• .,n} 

r runs over all permutations 
a 
such that t. < ••• <t. and t~ > ••• >t~ 

l - - l1 1 ..... 1_ - .J..k n ~c+ 

integration in (4.1) is convergent, it is the limit of 

of 

Since the 

(-iA.)nJ ••• J (0 0 , :eicp(g): ~(tn)t ... , [~(t 1 )~ :eicp(f): ] ... Jo 0 )dt1 ••• dtn 
-a<t < ••• <t1<a 

-n- - -

To compute the integrand in (4.2) we observe that 

is 1 ~e(t 1 ,i 1 ) is 2 ~e(t 2 ,i2 ) 
(0 0 , :e : :e :00 ) = 
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is 1 ~ 8 (x) i(t1-t2 )H0 is 2 ~8 (x2 ) 
= (0 0 ,:e :e :e :00 ) = 

-s1s 2G (i(t 1 -t2 )~x1 -x2 )) 
= e e 

An explicit calculation 

yields, for 

G (x ,x) 
€ 0 

X > 0 9 
0 

and G (it,x) is therefore given by 
€ 

= TI I e-i~(p)teipxlxe(p)!2 d£ 
IRn- 1 !J. ( P) 

G (it,x) 
€ 

(4.3) 

We set F (t~x) = G (it,x) • For a function g(x) on IR.n- 1 we e: e: 

define 

By a direct computation we find that the integrand in (4.2) is 

equal to 

-(g,f) ~ 
e -2 

r r r { _. _. 
1 ••• J exp - L: s . s . F ( t . - t . , x. -x . ) -

J • .<. J. J e l J J. J 
lx.!<L J.J 

J. -

li.l<~ 
J. - k 

- ,..., ,...., ("'"' ':r ~ C;:( ) - Z s.s.F t.-v.,x.-x. -
·~· l J 8 J. J l J 
J.~ J (4.4) 

r k ,..., _. ,..., , r r _. k ...., ( ...., ~ ) 
- L: I: s.s.F (t.-t. 9 x.-x.)J .• expi- L: s.f (t.~x.)- L: s.f -t.,x. -

i= 1 j = 1 l J e: J. J l J 1.. i= 1 l e: J. l j = 1 J e: J J 

r k ,...,~ ', r k ,...., 
- I: s . g (- t. ,x.) - I: s . g (- t . ~x. ) : • IT d!--L ( s. ) dx. IT d!J. ( s.) dx . , 

i= 1 l e: l ]. j = 1 J e: J J ) i= 1 l l j = 1 J J 

where is the scalar product in 
~ 

the Sobolev space Jf, - 2 1 (see [ 5]). 
n-

B = {1, ••• ,k} , so that A and B 

Let A= {1p .• ,r} and 

are disjoint sets of labeled 

points. Let L be the set of all unordered pairs of different 
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points in A U B • The elements in L will be called lines and 

subsets of L will be called graphs. We now define: 

-s.f (t. ,i. )-s.g (-t. ~x.) 
a. = e 1 e: 1 1 1 e: 1 1 - 1 for i E A 

l 

b,.,... 
J 

-s.f c-t.,i.)-s.g c-t.,i.) 
= e J e: J J J e: J J - 1 for j E B • 

Furthermore we define 

-s.s.F (-lt.-t.! ,i.-i.) l J e: ' l J' l J :E[, = e -1 if L = ( i 9 j ) 9 i < j 9 i ' j E A 9 

,.....,...... Cl ,~ ~) -s.s.F t.-t.,.x.-x. lJ€ l J''l J 11, = e -1 

-s.s.F (t.-t.,x.-i.) 
Ft = e l J e: l J l J -1 if 1 = ( i, j), i E A, j E B • 

Then the integrand in (4.4) may be written as 

I = II ( F, + 1 ) II ( a . + 1 ) II ( b-:-+ 1 ) 
r,k lEL N iEA 1 JEB J 

(4.5) 

Expanding the products we get 

(4.6) 

By the definition of F0 we see from (4.5) that I is Gymmet-
...c, r,k 

ric with respect to permutations of the points in A and similar-

ly it is also symmetric with respect to permutations of the points 

in B Hence (4.2) may be rewritten as 

-(g,f) 1 ( 1 )k J J r k -:::t 
e - 2 (-iA.)n r ~k' • • . I k II diJ(s.)dx.dt. II diJ(S.)dX.dt., 

r+k=nr.. k. r, j=1 l l lj=1 J J J 
fl.r+ 

a 

(4. 7) 

where t~.a = [(t,x); It! < a, lxl ~ ,e, J • 

Since the integration over the t's in (4.2) is restricted 

to the bounded interval [-a,a] , the sum of (4.2) over n con-

verges to 

. (g) iaH -i2aH iaH . ·( ) -iaH t2aH.t -iaH 
fl_ta (g; f) = ( 00 , : e1 cp : e 0 e :t e 0 : e1 cp f : e 0 e e 0 n 0 ) (4.8) 
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Therefore by summing (4.7) over n and using (4.6) we get 

a -(g~f)_-k- (--i'_A.A.) !,Aic·~c'IB! j f s. ( g; f) = e "' r T'A'h- 1 J r r r ... 
:t !Al,IBI ,AI! !B!! rcL Xc.A YcB A(IAI+IiD 

a (4.9) 

lA! ( ... !B! ("' ) ~ ,... 
I1 F.,. I1 a. I1 b--:- I1 d~ s.)dx.dt. I1 d~ s. dx.dt., 

-tErN iEX 1 jEY J i=1 1 1 1 j=1 J J J 

where, for any finite set X ~ IX! denotes the number of elements 

in X • 

Let A1 and B1 be the elements in A and respectively in 

B that are points of r . Let X 1 respectively y1 be the ele-

ments in X respectively y that are points of r 9 and let x2 

and y2 be their complements in X and y • Let A2 respect-

ively B2 be the complements of A1 u X 2 respectively B1 U y2 

in A respectively B • Then A = A1 U x2 l' A2 , B = B1 lJ y2! I B2 

and X = x 1 U X2 , Y = Y 1 U Y 2 All the unions are disjoint and 

Y1 c B1 • For a fixed term in the sum in (4.9)~ we 

permute the integration variables so that the points in A1 and 

B1 come first~ and then come the points in x2 and Y2 and last 

the points in A2 and B2 • By the symmetry of Ir k we then get 
' 

equal contributions to the sum. Hence (4.9) can be written as 

L' I: J. "" J I1 F. I1 a. IT a. I1 b':"" I1 b~ 
rcL ~ c::A1 A 1Er ~ iEX1 1 iEX2 1 jE~ J JEY2 J 

; cB1 a "'"' 

(4.10) 

-+ rv -+ ,-v 

ITdu ( s . ) dx . d t . IT du ( s . ) dx . d t . • 
.· l l l .. J J J 
l J 
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Now the integrand is independent of the variables in A2 and B2 ~ 

and rr F 
.lEI' l 

is independent of the variables in x2 and 

Therefore we can sum over x2 , Y2 , A2 and B2 and obtain 

a -(g,f) ~ 
SL ( g; f) = e - 2 

(4.11) 

,-v 

where a(t.,x.) = a. 
' 

b(t.,x.) 
l l 

= b ...... and I ~1 is the volume of 
l J J j 

A 9 1~1 = f d~ ( s) . The factors containing I AI obviously cancel 
" 

and in (4.11) A1 u B1 are the points of r • 

We call the points in x1 u y1 9 entering (4.11L the external 

points of 

where T' -o 

I' • As in the previous section, we have I' = I' 0 >'I' 3 , 

is the subgraph of r consisting of the points in r 

which are not externally connected and 

ternally connected points. 

is the subgraph of ex-

Let A and 
0 Bo be the subsets of A1 and B1 that are points 

of ro and let A3 and B3 be the complements of A 
0 

and Bo 

in A and B . Then x1 c A3 and y1 c B3 ' 
since A 

0 
and Bo 

are internal points. The sum in (4.11) can therefore be written 

as 
!A j IB l 

~ 
(-iA) 1 (iA.) 11 

~ r 2: J ... J 
I A1 ! ! I B1 I ! ro,r3 x1cA3 Y1cB3 A a 

(4.12) 
....... 

rr ~ rr a. ....,II b~ rr d1-1 ( s . ) dx . d t . rr d~ ( s . ) dx . d t' . . 
lEI' iEX1 

l j EY1 J i l l l . J J J 
J 
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By rearranging the variables in such a way that those in A3 and 
!A1l! lB1!! . . 

B3 come first, we get lA I 1 IB 1, IJI l 1 ! B l 1 equal contr1.but1.ons 
, o • 'ol• i ~31" ; 3 • 

to the sum in (4.12). Hence (4.12) becomes the product of the 

tvro following series 

!A I IB I 
r (-i!J. o (iA.) o r f'. .• J· l1 F 

r A I I I B I i r J 0 Er '.t ·o· o· oil. ...<-o 

,..... 

rrd~(s.)dx.dt.rrdu(s.)dx.dt., . 1. l 1. . ' J J J 1. J 
(4.13) 

where r 0 runs over all graphs with points in 

lA I IB l 
( . )' 3·(. ) 3 I: -1.A._ lA L. 

IA31! IB31! X1cA3 
I: I: J . . . ~ II F1, l1 a . 

Y1..-n3 r "' uc.-r 1.' r=x 1. 
'--,D 3 A k-:.L 3 - 1 

(4.14) 
,..... 

II b'":"' TI dll ( s . ) dx. d t . TI d!-l ( s . ) dx ffi . , 
'":"'EY J . 1. 1. 1. . J J J 
J 1 1. J 

where r 3 runs over all externally connected graphs. From (4.9) 

we see that (4.13) is nothing but 3] (0 9 0) 1 which is equal to 

(0 ,o ) = 1 . 
0 0 

We formulate these results in the following theorem: 

Theorem 4.1 

The linked cluster expansion for 

is convergent for all A. and given by 

where 

a e- (g;f)_~ "" (-iA.) !AI (iA.) !B I J' r 
so ( g; f) = ~ I I I I r r I: ••• j 

..t- !AI~ IB I A ! B ~· Xc.A YcB E Aa 

,..... 
l1 F, IT a. IT b-:-- n du(s. )dx.dt. lld!J.(s.)dx.dt. , 

-lEE ..{., i EX 1. j EY J i ' l l 1. j J J J 

E runs over all externally coru1ected graphs and 

-sf (t,i)-sg (-t,i) -sf (-t9x)-sg (-t,x) 
= e 8 8 -e 8 8 
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Defining moreover 

-+ row~ C!t I'V 

II Fo II a. TI b,.., IT du ( s . ) dx. d t . II du ( s . ) dx . d t . 9 
LE c N i EX ]_ J EY J i . ]_ ]_ ]_ j J J J 

where C runs over all those externally connected graphs which 

are also connected, we have 

s;cg;f) 
s]'(g;f)m 

= e l. 

Proof: Only the last part of the theorem is not already proven 

above. The proof of this last part runs however entirely parallel 

to the proof of the last part of Lemma 3.1. I 

We know by (2.18) that each term in the power series expan­

sion of ~(g;f) converges as a ~ ~ 9 and that the formal power 

series we get in the limit is the asymptotic expansion of ~(g;f). 

We shall now prove that each term in the linked cluster expansion 

of si.a(g; f) converges as a tends to infinity 9 and the corres-

ponding expansion is the linked cluster expansion of ~(g;f) 

It follows then that the linked cluster expansion of s.e (g; f) is 

identical as formal power series in A with the asymptotic expan-

sion (2.18) of S.e, (g;f) • Since one can always form exponentials 

of formal power series, it is enough to prove that each term in 

the power series expansion in A of s£(g;f)T converges as 

For fixed A, B and C in the linked cluster expansion of s;(g;f)T 

in Theorem 4. 1 9 consider now the integral 

j ... J II Fl II a. II b';"' • (4.15) 
]_ "' J 1\ .£EC iEX jEY 

a 
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Since F.t ~ ai and bj fall off sufficiently rapidly in all 

the time variables~ as solutions of the Klein-Gordon equation with 

smooth time zero values~ we find that the integrand in (4.15) is 

absolutely integrable with respect to all the time variables in 

llil'J 
~ where N = !AI+ IB! • Because of the support properties of 

"' the Fourier transform, with respect to t. 
J ' 

j E B 
' 

of the inte-

grand in (4.15), we see that the integral over JR.k with respect to 

t 1, .•. ,tk, k = IB! is equal to zero. Hence as a_, -::o all con­

tributions, to the linked cluster expansion in Theorem 4.1, of 

terms of the form (4.15) with B I 0 tend to zero. We formulate 

these results in the followin@ theorem~ 

Theorem 4.2 

For space-time dimension larger or equal to 4 we have that 

the linked cluster expansion of the scattering matrix for the 

space cut-off interaction is given by 

~ (g;f) = 
-(g,f)_j,_ 

e 2 2: (-iA)!A! 2: 2: J ... J Il Ftt Il 
I A I I A I ! Xc.A E ,lt=E -{.. i EX !X'. I<£ . l-

I AI _, 
a. Il du ( s . ) dx . d t . , 

l . 1 l l l l= 

where E runs over all externally connected graphs with set of 

points A • 

This linked cluster expansion of S~(g;f) gives also the asympto­

tic expansion of S~(g;f) in powers of A 

If we define the corresponding truncated expression by the formal 

power series relation 

·~ (g;f)T = log st (g;f) , 

then the formal power series for ST is given by 
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I A' _. L: J ... J l1 F.t l1 a. l1 d!-!(s.)dx. d t. , 
c ,_. I :!Ec iEX J.i=1 1 J. J. 

ix. <£ J.-

where C runs over all the connected graphs which have external 

points. I 

We see from the linked cluster expansion in Theorem 4.2 that, 

k if we define the space cut-off scattering functions ':e. (x 1 ~, ••. ,Yk~) 

as the formal power series 

k( ) ·'XJ f.iA.)n+k r J n+k ( ) _. 
~ x1s1, ••. ,:x:t~ = r. n! r J•.. l1 Jt_ l1 d!-! s. dx. d t. , 

n=o E , .... 1 .tEE i=k+1 J. J. J. x. < J.'-

(4.16) 

with x. = ( t. ,i.) , then S, (g; f) can be written as the follow:ing 
J J J N 

formal power series 

-(g,f) :L 

s.t ( g ; f) = e - 2 ~ (- i a) (4.17) 

where ~ (a) is the generating functional for the scattering 

fLLnctions, defined by (3.20) and 

-sf (t,i)-sg (-t,i) 
e e e a(t,i) = - 1 • (4.18) 

Using the symmetry properties of ~ we can write (4.16) for 

t 1 ~· •• ~ tk as 

k co k r '"' k+n _. 
rJ!} (~s1 , ••• ,x s,) = L: (-iA.) +nr, j ••• J l1 . Jt_ II d!-!(s.)dx.dt .• 
"" ' K K n= o E u , _. I .e EE i=k +1 J. J. J. JXi.se 

t1 < ••• <t k - - n+ 

(4.19) 

The integrand in (4.19) is obviously only a function of the time 

variables zj = tj+1-tj , j = 1, ••• 9 k+n-1 • Since 

-s.s.G (i(t.-t.),x.-x.) 
~ = e J. J 8 J. J J. J -1 for .,/, = ( i, j) , i < j , 

we see that the integrand is analytic in Im z. > 0 , and falls off 
J 

I ,-3/2 I ,-3/2 "f 1 1 1 as 1 z 1 . . ... zk+n- 1 , unJ. orm y in Im z j > 0 , j= 90 ,.,k+n- , 

for all space-time dimensions ~ 4 • 
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If we introduce the new variables z. = t. 1-t. in ( 4. 19) we will 
J J+ J 

have the integration over the domain z. > 0, j= 1, ••• ,n. Because 
J -

of the uniform fall off, we may continue the path of integration 

from the positive real axis onto the positive imaginary axis. From 

this it follows that each term in the formal power series expansion 

(4.19) is analytic for Im t. > 0 9 i = 1,2P •• ,k and moreover we 
l 

obtain the following formal power series relation 

k ill: x:, ( Ayr+n r J -s.s. G (x.-x.) k+n 
~(JC1s1 ,~ .• ,~~=(-irr ~! rJ••· 11 (el.J e: 1 J-1).11du(si)dxi' (4.20) 

n=o . E , ... I -!EE l=k+ 1 
,xi~t 

where x. = (i(x.) ,x.), x. = ((x.) ,x.), (x.) being the time component ofx .. 
J JO J J JO J JO J 

Lemma 4.1 
Let H0 be a self adjoint operator with zero as an isolated 

simple eigenvalue with eigenvector 0 , and the rest of its spect­
o 

rum absolutely continuous. Let HA. = H0 + A.V, where V is bounded and 

symmetric. Let P0 be the projection onto 
-1 nal complement. Let H0 P1 be the inverse of 

00 and P1 its orthogo­

H0 on the range of P1 • 

~II - 1 Jl- 1 I ' If A. 1 = 2.,VH0 P 1 1 then for 1 A., < 2A.1 HA. has a simple iso-

lated eigenvalue EA. with eigenvector OA.' both depending analy-

tically on A . 

l'.'[oreover for 

weak lim 
t->±CXl 

'A I < A1 
i t(HA. -EA.) 

e 0 0 

Proof~ The first part of the lemma is well known from regular per­

turbation theory. The moreover part is proved as follows. We expand 

in powers of A and get 

. H 'X) j r oo s J -i t1H 
ew A\20 = r, (iAf .•• J V(~) ••• v(tn)00dt1 .•. dtn = r, (it..P ••• e 0 V 

n-o n-o 
- o <~~···~tn_::a - o.S1.S··O.:~b <a 

-i(t2-t1)H -i(t -t 1)H oo Ja f -~H -is?I -isH 
e 0V ••. e n n- 0V00dt1 ... dtn = l:(iA.f .... je 0Ve 0V ••• e n °V 

n=o o o 
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By integrating we find that 

isH,._ _1 iaH,._ co 1 -iaH 1 -iaH 
(r2 0 9e 0 0 ) e 0 0 = I: /..nH~ P1 (1-e 0 )V ••• H~ P1 (1-e 0 )VQ 0 • 

n=o 
For l"-1 <1>.1 this series is strongly convergent, uniformly in a, 

and term by term it converges weakly to the Rayleigh-Schr0dinger 

expansion for o,._. This implies, by the convergence of the Ray~~-
iaH,._ -1 iaH, -1 

Schr0dinger expansion, that (D 0 ,e D0 ) e ~D0 ~ (D 0 ,o,._) o,._ 

weakly. By taking the inner product with o,._ this gives that 
iaE,._ iaH,._ 1 2 

e (0 0 ,e 0 0 )- converges to !(D0 ,o,._)!-. This,together with 

the weak convergence above,proves the lemma. 

Remark~ This proof has relations to methods developed by De Witt 
and Lanford and extended by Hepp (Theorem 2.5 of [8]). 

'rheorem 4. 3. 
Let I ~>.I< A. 1 , where ~>. 1 is given in lemma 4.1 9 and A = ~eicp(g) ~ 9 

B = ~ eicp(f)~ 9 then 
-2i tH-t 1 it~ -i tH -i tf~ i tH 

(r2 09 e 0 )- (e e 0 AO 9 e e 0 BO ) 
0 0 0 

converges to (A_o-0 ,B+r2.t) as a~ oo, where A_ is the norm limit of At 
as t ~ -oo and B+ is the norm limit of Bt as t ~ oo 9 with At = 

e -it~ e i tHo Ae -i tH0 e i tH..e: and similarly for B • 

-i2aH..t 1 iaH.l -iaH -iaft iaH 
Proof~ (0 9 e 0 )- (e e 0 AD ,e e 0 BO ) 

0 0 0 0 

-i2aH..t _1 iaH-l -iaH.t 
= (D 09 e 00 ) (A_ae 009 Bae D0 ) • 

One verifies easily that il [~ ( s) 9 ~ eicp( f):] I! _:: c (Is I+ 1) - 312 
9 from 

which it follows from (2.10) that A and Ba converge in norm to A -a 
and B+. Hence it is enough to prove that 

-i2aH.t 1 iafu -ia~ 
( 0 9 e 0 ) - ( e "'0 ,A*B e 0 ) converges as a~ CD. Since 

0 0 0 - + 0 
the finite dimensional operators are dense, by uniform boundedness 
it is enough to prove that the expression converges with a finite 
dimensional operator C replacing A:B+. By linearity it is then en­
ough to prove that for any pair of vectors ~ and ~ we have conver­
gence of -i2aH iaH -iaHg 

( 0 e ~0 )- 1 (e ~0 ~)(~ e vo) 
o' o o' ' o • the proof of 

By lemma 4.1 this however ca:nverges to (0z 9 !?)(~,0_.e),vfuich compJetes/ the theorem. 
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5. The convergence of the linked cluster expansion for 

the space cut-off scattering matrix. 

Let A cllin be a bounded domain. Tiefine the quantities 

Fi\ 9 ZA~ fx as in section 4 of [5] and set ? 8 (x) = ~(fx) ~ where 

2 = § is the generalized Gaussian stochastic process indexed .o-1 
~n 1 

by the Sobolev space J{- defined in section 3 of [5]. We then 
n 

have from section 4 of [5]~ 
k ~ 

k i .r. s . 9 (x .) -A. J v( ~ (x) )dx 
(-A.fz'": 1F ( r s.f' ) = (-A.fz-1E(e J=1 J 8 J e A e: ) , 

A A . 1 1-x. A 
l= l 

( 5. 1 ) 

where E is the expectation in the probability space for ~ 

(see [5]). Expanding with respect to A. we get this equal to 
k 

. so n i r s ~ (x ) k+n 
k -1 l=.1L r r i=1 i e: i (-A.) ZA r. , }·· i E(e v(e (x. 1) )_ v(~ (x. ) ) ) rr dxJ. 

a n-o n. no.J e:. K+ e: .te+n ._1 1 - A J-l{+ 

k+n 
1 X; ( )k+n i r s. Q (x.) k+n 

= Z~ r. -A. 1 J ... lE(e i=1 1 8 1 ) II dv(s.)dx. = 
-1 XJ (-A.)k+n r r 

zf\ r n' J•··J 
n= o n · An J j=k + 1 J J ' n=o • An 

k+n 
- ~ r s . s . G (x_, - x . ) kel.:n 

. '-1 l J 8 j_ J -.-. 
e l,J- II d v ( s . ) dx . , 

j=k+1 J J 

k which by (4.3) of ~5] is equal to pA(x1s 19 ••• ,xksk) • 

Hence we have proven the formula: 
r k r 

-A.J v(~,..(x)dx) 1 i 2: s. § (x.) - A.J v( ~ (x))dx 
k k- A "' - i=1 l 8 l . A 8 

pA(x1s1, ••• ,~B:t{)=(-A.)-l,l:!;(e )] E(e e ). (5.2) 

Choose Aa£. = ((x0 ,x);lx0 l <a,lx!..::;-lJ. Let p:(x1s 1 , ••• ,xksk) 
' 

be the limit of p~ for a .... co , which exists by ( 5. 2) and 
a' J., 

the Lemma 3.4 of 15]. Moreover we have the following: 

Lemma 5.1 

The limit of as 
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a ~ oc' exists and the convergence is uniform on compact subsets. 

Moreover: 

k k is1cre/~) -(t2-t1)H-t is2ep8(ik) -i(tk-\-1)~ ~cp8~) 
f?t(~s 1~···~~~)=(-A.) (~~e e e .•. e e ~), 

for (xi) 0 = ti , t 1 _:: ••• _:: tk , ~ = ~ - ~ , E..&. being the ei-

genvalue of C?.t • 

Proof~ The uniform convergence on compact subsets follows as in 

the proof of Lemma 4.1 of [5] and the formula for the limit fol­

lows from Lemma 3.4 of [5]. I 

Lemma 5.2 

are given~ for !A.l <).. ~ by their convergent linked cluster ex­
o 

pans ions 

k :n ( , ..k+n 1- .- -s. s. G (x.-x.) k+n 
( ) ')' -11.} "' I I ( l J 8 l J 1) } d ( )d p x.. s 1 ,...~x. sk = _ , L, 1 ••• J IT e - l !-l s. x. 

".(. -- 1 K n=o n. E "'!x.!<t (i,j)EE i=k+1 1 l 

l-

and 
k -:o ( A.f+n J. r -s.s. G (x.-x.) k+n 
~ mC~s1 ,. .• ~~= r-, r ···J n (e lJ 8 l J-1) n du(s.)dx., 

~j_ n=o n. C I ~J <l (i,j) EC i=k+ 1 l l 

where E runs over all externally connected graphs and C over 

all connected graphs with external points. 

Proof: The proof is given by the one of Lemma 3.1. I 

Lemma 5.3 

The space cut-off correlation functions 

are translation invariant with respect to the time variables and, 

as functions of z. = (x. 1 ) -(x.) , i = 1, ••• ,k-1 
l l+ 0 l 0 

they are 
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analytic in the domain Rez. > 0 9 i = 1, ••• 9 k-1 and continuous 
l 

in Re z. > 0 • 
l 

Moreover they satisfy, for t 1 .:::. ••• <tk 9 

k ""' ,.__ \ Jc is1 cpe:(~) -i(t2-t1)i1 ~cpE:(~) -i(\-\-1)i!e ~%(~) 
~ (X1 ~, .•. ,~~e= (-AJ(~,e e e •.• e e (]e) , 

where ""' ( ..... ) k(""' "" ) xj = itj,xj , and et: x 1s 1 , ••• ,xksk are analytic in A 

for !A! < Ao and symmetric in x1s 1 , ••. ,xksk. 

Proof: The translation invariance, continuity and analyticity in 

the time variables follow immediately from Lemma 5.1. From the 

analyticity in A of the correlation functions for rreal (xj) 0 , 

j = 1, ••• ,k (Lemma 5.2), the analyticity of the state lz (A)= 

( o.e , AOe ) 

of [ 5]. 

follows as for the infinite volume limit in Theorem6.3 
itH11 

The norm analyticity of e ~ in k for all values of 

A follows from the norm boundedness of the space cut-off inter-

action. Since i tH..e. 
(~,e o~) = e i tE..t it follows first that E_.e. 

is analytic for I A I < A. 
0 

and then that e i tH.l is norm-analytic 

for lt..l <A. • From the formula in Lemma 5.3 it follows then 
0 

k(""' ,...., ) I I R that pt x 1 s 1 , .... , xksk is analytic in ).._ for A < A. 0 • D 

From Lemma 5.2 and (4.20) we have that 

(5.3) 

with x = (-ix0 ,x) , in the sense of formal power series. Recal­

ling now that the formal power series in (4.20) was obtained by 

termwise analytic continuations in the time variables from the 

formal power series for 

that 

with x = (ix ,x) , in the sense of formal power series. 
0 

(5.4) 
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By Lemma 5.3 howeve~ the power series on the right hand side of 

( 5. 4) converges for I A. I < A. 0 9 hence the formal power series for 

aj 9 as defined by (4.19), converges for lt..! < A0 • Under the 

assumption of space-time dimension ~ 4 we have: 

Lemma 5.4 

The scattering functions ~(x 1 s 1 , ••• ,xksk) are analytic in 

A for complex ~\ with l ), ! < ) .. 0 and given by the convergent 

linked cluster expansionjwhich converges to: 

Hence for real A they are uniformly bounded continuous functions 

of all their variables. Moreover, there is a ), 2 > 0 such that 

for all complex A. with !AI < t.. 2 we have the following uniform 

estimate 

I ?tk(x1 s1 9 • • • ,xksk) I _:: a(!At) ~k 

for t 1 _:: ••• _:: tk, where a(b. .. J) and Bk depend only on e, -t . 

Proof: The first part of the lemma follows from the previous 

lemma and from (5.3) and the remarks above. The proof of the 

rest goes as follows. Let us define the time ordered scattering 

functions by 

(5.5) 

vk( ) for t 1 < ••• _:: tk and the requirement that c:.e, x 1 s 1 , ••• , xksk is 

symmetric under permutation of its variables. It follows then 

from the linked cluster expansion (4.19) for the scattering func-

tions that the time-ordered scattering functions have the follwing 

linked cluster expansion: 
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v k •XJ (-i)l.)n+k r· r Tk+n ... 
ab (x1s1,ooo~Xksk) = L i I: I •• ·J II Jt II d!-l(S. )dx.dt. ' 
.{, n=o n. E J!xi!;:t -tEE i=k+1 l l l 

(5.6) 

where ~T = exp[-sjskG 8 (-i!tj-tkl ,xj-xk)]-1 for i = (j 9 k) with 

j < k , and E runs over all externally connected graphs. It 

follwws from the first part of this lemma that (4.19) is conver­

gent and this implies that (5.6) is convergent for I AI < A. 1 < )1. 0 • 

Hence ~k(x 1 s 1 , ••• ,xksk) are actually the correlation functions 

with respect to the interaction potential 

T r. s. s . F (X. -X . ) ' 
i <j l J e: l J 

in the sense of [5], where F~(t,x) = G8 (-i!tl ,x) 

F~(t,x) = n s 
JRn-1 

so that, using that X (p) = X (-p) 9 we get 
€: e: 

Now 

From (5.9) we observe that < const·(ltl+1)-3/ 2 

(5.7) 

(5.8) 

for 

all x in lxl ~ ~ and all t, if the dimension of space-time 

is larger or equal to 4 9 as we have assumed. This implies that 

c = sup J 
s. 

-s. s .FT (x. -x.) 
!e 1 J 8 1 J -1 [d!-l(s.)di.dt. 

J J J 
l I x .I <t 

J '-

(5.10) 

is finite, so that the interaction is regular, in the sense of 

[5]. Moreover~ from (5.9) we see that the real part of (5.9) is 

positive definite and hence 

m T 
Re L s.s. F (x.-x.) > -Bm. 

i<j l J 8 l J -
(5.11) 

This is the proper form of a stability condition which can be 
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used similarly as in C5] 9 to estimate 

m T 
- ~ s.s.F (x.-x.) 

j=2 l J e: l J 
e 

We see namely that in such an estimate the imaginary time of 

plays no role. Therefore by (5.11) we can use the methods of 

[5] not only to prove that the time cut-off scattering functions 

converge as the time cut-off is taken away, which we knew already, 

but also to get the estimate~ uniform in the variables x 1s 1 , •• 

1 ! c-1e-2B-1 •• ,xksk, for all complex 1 X, < A. 2 , x2 = 

(5.12) 

This then·completes the proof of the lemma. 

Theorem 5.1 

There is a ~ 0 > 0 such that the generating functional 

S..(/(g;f) for the space cut-off scattering matrix is analytic for 

complex A with I A. I < ~ 0 9 and ~ 0 = min0. 0 9 A. 1 , A. 2 ) 

is given in theorem 4.3 and A. 2 in lemma 5.4. 

Moreover, for 

~(g;f) 
-(g,f) _l._ y 

=e - 2 cz(-ia) 

and 

= -(g,f) .1.. + a0 T(-ia) , 
-2 -"V9 

where 

-+ r -+ -+ -+ .... v 
fe:(t,x) = j G8 (it,x-y)f(y)dy , and ~(-ia) is the generating 

functional for the time ordered scattering functions 



- 38 -

~-t (-ia) 

(5.13) 

The scattering functions are analytic in 

A for !A! < A0 9 with A0 independent of the space cut-off 9 

and are given by the reduction formula 

(5.14) 

k is 1 ~8 (x 1 ) -i(t2-t 1 )H~ -i(tk-tk_ 1 )~ isk~8 (xk) 
( - i A ) ( Q-t 9 e e o • • e e Q ..l ) 

and also by the linked cluster expansion 9 convergent for I A I < A0 : 

k Z ( x 1 s 1 9 • • • ' xk s k ) = 
(5.15) 

CD n+k s r -s.s .G (x.-x.) k+n 
2:: (- i /,) 2:: •• o 1 ( rr ( e 1 J 8 1 J -1 ) rr diJ ( s . ) dx. 9 

n= o E "' i , j ) EE i=k + 1 1 1 

tk+ 1 < ••• :s_tk+n 

where E runs over all externally connected graphs and '"" x. = 
J 

(i(xj) 0 ,xj) • Similarly the truncated scattering functions ~ 9 T 
are given by their connected graph expansion, which is also con­

vergent for !A! < A0 

~,T(x1s1'"''9xksk) = (5.16) 
co c • -s.s.G (x.-x.) k+n 
2:: (-iA)n+kl:: J ... J IT (e 1 J 8 1 J -1) l1 diJ(s. )dx .• (. . ) ,... c . k 1 1 l n=o C 1, J '= 1= + 

tk+1_:: ••• ,:::tk+n 

Proof~ By (5o4) and Lemma 5.3 we know that 

is analytic and given by its linked cluster expansion for ! A I < A0 • 

This proves (5.14) and (5.15). (5.16) follows by direct algebraic 

calculations from (5.15). From lemma 5.4 we know that 
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aJcx1s 1 , .•• ,xksk) is uniformly bounded by a(IAI)sk for complex 

A with !AI < A2 • By the integrability of the function a this 

gives that the sum defining ~(-ia) is convergent also for com­

plex A with !AI < A2 , and therefore that ~(-ia) is analy­

tic in A for complex A with !A! ~ A2 

This implies, by section 4, that the asymptotic expansion of 

~(g;f) is actually a convergent powerseries for !AI < A2 • 

Consider now the expression 

s..t ' t ( g ; f ) = 
(5.17) 

-2itH~ 1 itH~ -itH -itH, itH 
(00 ,e 00 )- (e e 0 A009 e ~e 0 B00 ) 

of theorem 4.3. Expanding (5.17) in powers of A we find easily 

that we get the linked cluster expansion for s~,t(g,f) in terms 

of the time cut-off time ordered scattering functions 
v 

~,t . 

It is 

(5.18) 

where the linked cluster expansion for is obtained as the 

linked cluster expansion for with all time integrations re-

stricted to the intervall [-t,t] • From the proof of lemma 5.4 

it follows that 

(5.18) 

vk ) and converges uniformly on compact subsets to ~ (x1s 1 , .•• ,xksk. 

This implies that ~' t(-ia) converges to ~ (-ia) as t .... oo. 

From (5.18) we then get that s-t',t(g;f) converges as t .... co to 

the sum of the linked cluster expansion for the scattering matrix. 

If we have !AI < A1 , where A1 is given in theorem 4.3, then 
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we get by theorem 4.3 and (5.17) that S~ 9 t(g 9 f) converges to 

~(g;f) as t ~ oo. This identifies ~(g 9 f) with the sum of 

the linked cluster expansion and proves the theorem. 6 ) 
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6. The infinite volume scattering functions 

In this section we assume again that the dimension of space-

time is larger or equal to 4 
k functions aL(x1 s 1 ,~ •• ,xksk) 

ing expression: 

The finite volume scattering 

are, by (5j4), given by the follow-

k .... .... . k l iscpe(x1) .t iscpe:~) cz (t1x1s 1, ••. ,tk~sk) = (-lA) (O.,.t,ctt}e ) •.• CLtk(e )1), (6.1) 

where 

section 6 of 

.e iscp<:' (x) 
ett(e " ) 

[ 5 J. 

is the automorphism considered in 

By the theorem 6.1 of [5] we know that 
iscp (x) 

ett(e 8 ) as 

where cr"t(A) 

converges in norm to 

= e- i tH A e i tH and H is the infinite volume Hamil-

tonian of the theorem 6.3 of [5]. Moreover, from theorem 6.3 of 

[5] we also have that IJJ,e_ converges weakly to w as .,t .... cn for 

I A I < Ao where w (A) = ( ~ ,AO.:t) 9 and w is analytic in \ 
I ' £. 
for ! A! < Ao . 
Theorem 6.1 

The .finite volume scattering functions 

are uniformly bounded for real A in _..t and x 1 s 1 , •.• ,xksk and 

converge pointwise for - A. 0 <A.< ~~ 0 to the infinite volume scat­

tering functions ak(x1s 1 , ••• ,xksk) , which are given by 

k _, .... . k is 1cp 8 (i1 ) -i(t2-t1 )H 
a (t1x1s 1 , ••• ,tkxksk) = (-lA.) (O,e e •.•• 

-i(tk-tk_1 )H iskcpc-(xk) 
• • • e e " 0) 

where 0 is the unique infinite volume vacuum, (O,AO) = w(A) • 

Moreover, there exists a A. 1 > 0 such that cfr{t1X,s190 •• ,tkxksk) is 

analytic for complex A 9 with I A.! < A0 , if - A. 1 < ti+ 1 - ti < A.1 , 
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Proof: The first part of the Lemma follows from (6.1). The 

moreover part is proven by observing that 

k .... .... . k is 1 cp e: ( x 1 ) is n cp e: (~) 
a (t1x 1s1' ... 9 tkxksk) = (-lA.) w(<lt (e ) ••• a.t (e )) (6.2) 

1 n 

and using that w is analytic in A. for ! ), I < A. 
0 

and 
iscp (x) 

a.t(e e: ) is norm analytic in A. for ! A.! < A. if 
0 

- ), 1 < t < A. 1 9 the latter following from the proofs of [8], where 

it is shown that ( iscp8 (x)) 
a.t e is norm analytic for complex A. 

satisfying I A.tl < d . II 

From (5.5) we know that is analytic 

in t 1 , ••• , tn and uniformly bounded for Im ( ti+ 1-ti) < 0 , and 
k from (5.3) we have that a.e is given, for Re(t1 ) = 0, i= 1, ... ,k, 

by the finite volume correlation functions. From Lemma 6.1 we 

know that c1 is uniformly bounded and converges if the time 

variables are kept on the real axis. 

will converge for Im(t. 1-t.) < 0. 
l+ l 

the following Theorem: 

Theorem 6.2 

This then implies that 

From this and (5.3) we get 

For -A. < ~- < A. the infinite volume scattering functions 
0 0 

.... .... 
are uniformly bounded and continuous in t 1x 1s 1 , ••• ,tkxksk. They 

are analytic in t 1 , •• 4,tk for Im(ti+1-ti) < 0 , and related to 

the infinite volume correlation functions by 

( 6. 3) 

Moreover, the infinite volume correlation functions are given, for 

t1 < ••• < t, 
- - K 

and -A. < A. < A. , by 
0 0 
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Remark The formula (6.3) gives an improvement~ for real A , 

on the bounds for ok in Lemma 4.1 of [5], in as much as we have 

now 

for -A < A < A. 
0 0 

Vie can now use Theorem 6.1 and Theorem 6. 2 to improve the 

Theorem 6.4 of [5]. By performing analytic continuations in the 

time variables occurring in the expression (3.1) for the imaginary 
functj..ons 

time infinite volume Wightman/we get the relation between the 

real time Wightman functions and the infinite volume scattering 

functions. These analytic continuations are possible, as a con-

sequence of (3.1), the theorems 6.1 and 6.2 and the Theorem 6.4 

of [5]. We express this in the following theorem: 

Theorem 6.3 

For -A. 0 <A.< A. 0 , the infinite volume Wightman functions 

wk(x1 , ••• ,xk) are given in terms of the infinite volume scatter­

ing functions by the reduction formula 

" 1.,rP(x X ) 
~·, 11 o rr(1), ••• , rr(p) 

TicS k 

r 
n d1-1 c s . ) dy . , 

j=1 J J 

where w~ ( x 1 , . • • , xk ) are the Wightman functions for the free 

field of mass 
m ' F8 (t,x) = G8 (it,x) and the identity is in the 

sense of tempered distributions. I 
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We shall now consider the finite volume scattering matrix 
.e 

sn,m(~1~···,hn;g1, ••• ,gm) defined by (2.5) for h1, .•• ,hn and 

g 1 , ••• ,gm in L2(llin- 1) . Let us define the finite volume scat-
_e (-1 -1 -1 -1 

tering amplitudes sn,m p1, ••• ,pn;q1, ••• ,qm) by 

S;, m ( h 1 ' · · • ' hn ; g 1 ' · • · ' gm ) = 
( 6. 5) 

Introducing the truncated scattering amplitudes by the formula 

corresponding to (3.13), we get the relation between the above 

scattering amplitudes 9 which we denote nov-r by S..t(P;Q), and the 

truncated ones in the form 

S£(P;Q) = ~ St,T(P1,~) ••• sL,T(Pk,Qk) 
P-=P1u ••• UPk 

(6.6) 

Q::Q1u ••• uQk 

where the sum runs over all disjoint parti:tions of P = (p1 , ••• , Pn}, 

r [_, ..... 1 
'<2 = q1 ' • • • 'qm- • 

In Theorem 5.1 we have an explicit expression for the generating 

functional S~ T(g;f) in terms of the scattering functions. This, 
' 

together with the definition (2.16) of the generating functional 

S~ (g;f) for the scattering matrix, enables us to find an explicit 

expression for the finite volume scattering amplitude~ 

Theorem 6.4 

The finite volume scattering amplitude 

is given in terms of the corresponding truncated amplitudes by 

(6.6), and the finite volume truncated scattering amplitudes are 

given by the reduction formula 
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Here S is the set of all permutations of 1, .•• ,n, the symbol n 

5 means n, 1 1 for 

= u(p.) , q~ = 
l J 

n = 1 and zero for n -J 1 , 

1f T(p1 '· • • ,pr;s1' · • · ,sr) 
' 

0 
and pi = 

are the Fourier 

transforms of the functions cri,T(x1s 1 , ••• ,xrsr) in the sense of 

t d d vr ( ) empere istributions, where al,T x 1s 1 , ..• ,xrsr is equal to 

the truncated scattering functions a1,T(x1 s 1 , ••• ,xrsr) for 

t 1 < ••• _::: tr , and is symmetric with respect to the variables 

x 1 s 1 , ••• ,xrsr. I 

Remark: The fact that it is possible to restrict the variables 

in the arguments of 
.,r 
al m 
...v, ~ 

to the mass shell in the 

reduction formula of the Theorem 6.4 is a simple consequence of 

the existence of the truncated generating functional S£,T(g;f) 

and of the Theorem 5.1. 

Although the infinite volume scattering functions exist by 

Theorem 6.1, we may not yet conclude that the limit of the finite 

volume scattering amplitudes exists as ~ Nevertheless, 

by Theorem 6.4 wehave already that the infinite volume off shell 

scattering amplitudes exist as limit for .L _. x in the sense of 

tempered distributions of the off shell amplitudes for the space 
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cut-ofE interaction 9 the latter being defined by the right hand 

side of the formula in Theorem 6.4 without the restrictions 

(p.) 0 = ~(~.) and (q.) 0 = u(~.) • We will discuss this problem 
l l l . l 

in a forthcoming paper. 

Footnotes 

1) See e.g~ the introduction of [1] and the references given 

therein. 

2) Besides Lee-type models and quadratic interactions (see the 

corresponding references in [1]) 9 we should mention the case 

of fermion interactions with ultraviolet cut-off and no pure 

creation or annihilation terms in the interaction [2] 9 as 

well as the case of Nelson's type models (simplified Yukawa 

interaction): C3J~ [1] 9 [4]. 

3) For technical reasons most results are stated and proved 

only for the case of a number of space-time dimensions n~4. 

4) See also the references given in [5] concerning previous 

work on this class of models. 

5) We use in general the notation~ for the Wick product. 
Thus: 

: eir:.p(h): 

where 

The Wick product for the corresponding asymptotic 

in and out fields is defined in the same way, with 
4F stead of a 

# a± in-

6) We have incidentally that the space cut-off scattering matrix 

is non trivial (i.e. different from the identity and from zero). 
This follows already from the fact that it has a non trivial 9 

explicitely given asymptotic expansion. 
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