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ABSTRACT

Ve continue the study of quantum field theoretical models

in n dimensional space~time with interaction densities
which are bounded functions of an ultraviolet cut-off boson
field. TFor the scattering matrix of the space cut-off in-
teraction, constructed in terms of asymptotic fiesds, we
prove analyticity in the coupling constant A\ and conver-
gence of the linked cluster expansion for sufficiently small
X . The correlation functions and imaginary time Wightman
functions for the infinite volume limit constructed in a pre-
vious paper are also proved to have a linked cluster expan-
sion, convergent for sufficiently small values of A . This
is then used, together with the results on the space cut-off
S-matrix, to establish the existence and analyticity in A
of the infinite volume scattering functions and to prove re-
duction formulae for the infinite volume Wightman functions.

October 1972,



1. Introduction

The basic quantities for the description of scattering pro-
cesses for systems of infinitely many particles have been proven
to exist only for certain classes of quantum field theoretical
models 1), all of them breaking in one way or the other at least
some of the Wightman axioms for a satisfactpry local covariant
quantum field theory. In particular only for few models with
translation invariant interaction the existence of an S-matrix

has been established. 2)

In this paper we begin the study of the
S-matrix for a class of models of self-coupled bosons in n di-
mensions, with translation invariant non-polynomial, ultraviolet
cut-off interactions. These models have vacuum problems (vacuum
polarization) as well as one-particle problems (translation inva-
riance and pure creation terms in the interaction). They have an
interaction of the form:
x| elswe(X)dv(s)di ,
where w@(%) is an ultraviolet cut-off time zero Boson field in
(n-1) space dimensions 3) and dv(s) 4is a finite measure of boun-
ded support (with dv(-s) = dv(s), - meaning complex conjugate).
In a preceding paper [5]4) we proved, in particular, the ex-
istence, uniqueness and analyticity in the coupling constant X\
of the vacuum in the infinite volume limit and of the comrespon-
ding imaginary time Wightman functions for this class of models,
for all IA[ <A  , A, >0 .
In this paper we start (section 2) from the construction of

the scattering matrix for the space cut-off interaction in terms

of asymptotic fields. An asymptotic expansion of this S-matrix
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(or, more precisely, of its generating functional) in powers of \
is then derived, The following sections will then establish,
through the identification of this expansion with a linked cluster
expansion, the actual convergence of the series for all || < Mg -
In section 3 we prove the linked cluster expansions, as convergent
series for |A| <A, of the infinite volume correlation functions
introduced in [5], of the corresponding imaginary time Wightman
functions and of the corresponding truncated quantities. In
section 4 we prove the linked cluster expansion, as asymptotic
series for small values of |Al , of the space cut-off S-matrix,
starting from the asymptotic expansion derived in section 2.
Moreover, we show that the ©S-matrix is given in terms of scatter-
ing functions which have a formal power series expansion in which
every term has analytic continuation from the positive real axis
in the time variables to the positive imaginary axis.
In section 5 we start by proving that the scattering functions are
the analytic continuation of the correlation functions from posi-
tive times to positive imaginary time. This is done by first es-
tablishing the joint analyticity in the time variables, in the
right half plane, and in the coupling constant A , for §x1~<xo,
of the correlation functions for the space cut-off interaction.
This together with their linked cluster expansion (proven to con-
verge for le < ko by the methods of section 3), yields the iden-
tification term by term and then, due to the convergence, globally
of the scattering functions with the analytic continuation of the
correlation functions. Moreover, this implies the convergence of
the linked cluster expansion of the scattering matrix for the
space cut-off interaction and its analyticity in X, for lx!<<xo.
The S-matrix as defined originally in terms of the asymptotic

fields is proven to be the sum of this expansion, for all complex
A with |A] sufficiently small.



In section 6 we prove that the scattering functions have unique
limits when the space cut-off is taken away, for 4-xo~<x < Xo .
The infinite volume scattering functions are uniformly bounded in
all space time variables and analytic in time differences in the
lower half plane., Moreover, they are the analytic continuation of
the correlation functions and yield reduction formulae for the
Wightman functions (in the same way as the correlation functions
give reduction formulae for the imaginary time Wightman functions).
Finally the finite volume scattering amplitude for given ingoing
and outgoing momenta are expressed through the Fourier transforms
of the scattering functions and the existence of the off-shell
scattering amplitudes in the infinite volume 1limit is remarked.
The discussion will be pursued in a forthcoming paper.

Throughout this paper we shall always use the same notations as

in our previous discussion [5] of the models under consideration.



2, The scattering matrix for the space cut-off interaction

In the previous paper (5] we considered self-interacting bo-
son fields with Hamiltonian of the form

B = H +x | vie ()%, (2.1)
|1
where HO is the free energy of a free time zero boson field

o(X) of mass m >0 , and me(i) = JX€(§-§)w(§)d§ , with 55€Ep’1,
n being the number of dimensions of space-time, and

xo () € RN, x (F) 2 0, x (F) = x (-F) .

v(a) is a real valued function of the form v(a) = Jeiasdv(s) .
where dv(s) is a bounded measure of bounded support on the real
line. A is a real number (the coupling constant). Hy 1is then
a self-adjoint operator, bounded from below, with the same domain
as H, in the Fock space & of the free boson field m(i) rel.
Interactions of the form (2.1) have also been considered in [7],
where it was proven that the asymptotié fields exist as strong
limits and the scattering matrix was then given in terms of these.
In [6] it was proven that H1 has a simple lowest eigenvalue

B with the corresponding normalized eigenvector Ql which can

1

be chosen so that (Ql,QO) >0 , where Q_ is the Fock vacuum.

For any operator A on & we define:
-itH itH -itH itH
A = e - e O re e 1 . (2.2)

The free time zero field m(f) is given in terms of the annihi-

lation and creation operators a(p) and a*(p) by

n-1 o

o) = 27%em 2 [ B Ear(Brad)-Ls (2.3
RO-1 u(p)®

- - 1
where u(p) = (p2+-m2)2 . Let D De the domain of H_ and Dy

B



the domain of H

a¥(n) = [a"(P)n(8)a3 , (2.4)
#

where a stands for a or a* ., The following theorem was

proven in [7].

Theorem 2,1

a) Tet h € L2GRn'1) and VY € D% .  Then aﬁ(h)Y converge
strongly as t tends to * o, The limit operators af(h) are
closable operators defined on D% , and af(h) map D%— into JZ',
uniformly boundedly in h with respect to-the natural norm in D%.
If we denote the closure of af(h) also by af(h) , then ai(ﬂ)

and a+(h) are the adjoints of each other,

b) Let g and h be in Ly(R® ') . Then al(n) map D_ into

f(g)af(h) map D into &, uniformly

the domain of ai(g) , and a
boundedly in g and h with respect to the natural norm on Do .
aﬁ(h) satisfy the same commutation relations on D as do a#(h)
on D . Hy and ai(h) satisfy the same commutation relations

1
o . itH 4 -itH
as do Ho and a"(n) , in the sense that e 1 af(h) e 12

:11': - 3 b t - .
a;(hit) on D% , Where ht(p) = el“(p) h(p) and h . goes with
a; and h-t with a, .

¢) a,(h)a; =0 for all h ¢ LZCE{n_1) . Tet f+ be the Pock
spaces constructed with af(h) as annihilation-creation operators

and Ql as Fock vacuums. Then cgr decomposes relatively to the

asymptotic operatora af(h) as a tensor product 521=J;: ® Vi R

where Ql ® Vi is the subspace of ‘57 annihilated by a+(h) for

all h € LZGRn'1) . With respact to this decomposition, H; - E;

decomposes as

_ ot 0
By -E, = H @ 1+1 ® H) ,
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where H§ is the free energy operator (to the mass m ) in ézl .

and 1 ® Hi is the restriction of H to the invariant subspace

0
Ql @ Vi .
The S-matrix element between n outgoing particles with

momentum distributions given by h1,...,h

n in L2 and m incon-

ing particles with momentum distributions given by 81ssees8y in
L2 is given by

1 .

87 n(Bgpens B 38 e 8y) = (22(hy) e 22 ()0, 8% (g5) eua* (g )0y). (2.5)
This gives the relation between the asymptotic fields and the S-

matrix.

We now define the wave operators Wi by

Wia*(h1)...a*(hn)ﬂo = at(ny) ... at(ny)o, . (2.6)

- c
Then W+ are isometries mapping S onto o and by (2.5) the

i_ ’
scattering operator S 1is given by

*
st = wl”™ Wy . (2.7)
Since Wi are isometries, we have HS1H <1 ("}l denoting the

norm in 57’), and from the commutation relations for H and

ai(h) we get that
1
[s7,H1=0. (2.8)

Let |
o(f) = [e@£(R)az , (2.9)

_1 _1
with f real and in g€ _ 2, , where o %, is the Sobolev space
of order (-%) (see [5]). Then o(f) is essentially self-adjoint
on D ., Let mt(f) be given by (2.2) and mi(f) be defined by
(2,9) and (2.3), with at substituted for af. It follows then



from Theorem 2,1 that m+(f) is also essentially self-adjoint

i (T i f
e Vt( ) converges strongly to elwi( )

on D ., This implies that
as t - t oo,

From (2.2) it follows easily that, for any bounded operator A :

b eH) isH -isH_ isH,
A, = A1) J dse e [Vl(s),A] e e , (2.10)
o
- 4 -isH 3 1isHj
with vy = I v(¢€(x))dx and Vl(s) = e Ve .
|%|<1
Ir At converges strongly to A+ as t - fco, it follows from
(2,10) that
t . . . .
-isH isH -isH isH
A= A _-i) J dse 1o EVl(s),A] e °© g 1 (2.11)
-0
and
+2C . ) . i
-isH isH -isH isH
A, = A-ir [ase Ll Cqv(e),Ale %e 1, (2.12)
- iCp-t(f)

where the integrals are strongly convergent, Since e

converges strongly, we get from (2.12)

0 -
i, (F) ip (£) ° -isH, isH . -isH_is
e T =e -ixjdse 1o O[Vl(s),elw(f)]e O¢ Hi.
-0 (2,13)

Due to the form of Vy and v(a) , we see that

is o i (f) —iSHO
By = (e [Vl(s),e Pt/ 1e ),t converges strongly as t - % co,

From (2.11) with A =B and t = 0 substituted in the integral

in (2.13) we get

i, (£)  de_(f£) T -disH,  isH)
e = e -iA J dse B_e
- (2.14)
+ o O . . . .
-i(s+0)H, ioH -ioH i(s+0)H
¢ (-in)° [ as j doe e °rv (0),Ble e 1,

- 20 - 20
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isH, ig_(f)_ -isH,
From Theorem 2,1 we have B_ = e [Vl(s)_,e Je .
o !
where Vl(s)_ is Vl(s) with a’ substituted for at . Hence:
io, (£)  iyp_(f) < ip_(f)
+ - , ~
e = e +1i) J ds[Vl(s)_,e ]
-0
o s ) ) . .
: -iocH, icH . -iocH ioH
+ (—i)\)2 jds J doe 1e Ofvl(o),vl(s),el@(f)]]e 0 1 .
-0 -oo
By iteration of this procedure we get
i, (f) N r icP_(f)
T 1 €= PO S N | A €00 JEOON 4 [ S F SO0
n=0 £ <0<t
n_“._u1
. . (2,15)
) 1 -ioH, ioH .
+ ("1)\)N+ J ‘e Je 16‘ O[Vl(o)s[V(tN)sﬂ's[V(t'])9e1cp(f)]u.]]
<t <...<
OStyS-e <t ~icH, ioH;
e e dodt1...dtN R
where the integrals are strongly convergent.
1
We now define for f and g in &6;131 :
ip_(g) ip, (£)
Sl(g;f) =(:e P Qe : Ql) , (2.16)

where: : stands for the Wick product.57

It follows from Theorem 2.1 that Ql is an analytic vector with
respect to ¢+(f) , So that Sl(g;f) is infinitely differentiable
with respect ;o f and g and we see from (2.5) that the deriva-
tives determine the S-matrix elements Sn,m . From (2.15) we

get the following asymptotic expansion in i :

N iv_(g)
S.(gs8) = = (<™ [ J(ie T iag,
n=o
EpSe oSt (2.17)
ip_(f) 1
[V (b)) _suues [V (59) 0 @ :7...30))dt .. .at +o( AN,

where |0(a)| < const. |al, for small values of a .
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Consider now the quantity

ip (g) ip (f)
(o = 0y, TV () _yeens [T (5)_,ie = 1 1...00y) =

= (_: 608 o W orv (), .. TV (5g), (57, 00y .

Since W_ is an isometry, this is equal to

(: eicp(g) : 0

0 TV (8g)seny IV (890, 2P0 00 )

Hence (2.17) takes the form
N . :
8,(g50) = = (0P [ (a,,:68@ 0y (4)),0n, (0 (1), : 69911010 Yty at,

n=o0
tnsu.c§t1

2.1
+o(|a ™ (2.19)

This gives us an asymptotic expansion of Sl(g;f) with respect
to A .' We shall later on show (in section 5) that each term in
this expansion can be rewritten in such a way as to obtain the
linked cluster expansion. This will give us the connection with
the correlation functions studied in 5] and we shall use this
connection to prove that the series in (2.18) converges as N = <
for all |Al < Ay s A, >0, from which it follows that the S-
matrix for the space cut-off interaction is analytic in X for
Ix] < ko and given by the convergent linked cluster expansion.

-1 e—2B-1

ko is equal to C , Where C 1is defined in section 4

of T5] and B is defined in (4.10) of [5].
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3, The linked cluster expansion for the infinite volume

imaginary time Wightman functions

In [5] we proved that the infinite volume imaginary time
Wightman functions exist as limits for 1 - 0 of the correspond-
ing volume cut-off quantities for the models considered in the
previous section. Moreover, we proved that they are analytic for
In] < Ao and continuous in the time variables in the closed right
hand half plane, and hence define the Wightman functions for the
infinite volume models. PFrom the formula (5.5) of (5] the imagi-

nary time Wightman functions are given by

k
k k , ’
G (Xqp000,%) = Go(x1,...,xk)4-r§1 = qgr o T
= >r,p>
p+a=k
z 62(x » 1 o : (3.1)
G;Sk O'(1),.-.’ U(p)l+‘. ]qu1.oaol . J...Jm;—_1 .

l >1

1 1
F s m _ T
[(isy) jE1Ge(Xc(p+11+...+lm—j+0 Vi) 107y 8seee 78 )3§1dV(s 3199y -

The variables X5 and yj are all space-time variables in R .

is the set of permutations of 1,...,k and Gg(x1,...,xk)

S

k
are the free imaginary time Wightman functions,which are equal to

zero if k is odd and are given, for k =-2p , by

G'lg(X1,...9X ) = z G(XO'(1)-XO‘(2))“°G(XO(2p—1)-XO'(2p))’(3'2)

P
2% p! UES2p

J ipx

with G'(X) = T——Z dp .

IRn
pr(X1S1,...,err) is the infinite volume correlation function of

Lemma 4,1 in (57,
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R T . - iPX, (2yA2
G (x) = J onZ Ix.(p)|%dp , with X _(B) = j e ix  (x)ax .
Y :mn—1
The infinite volume correlation function pr(X1S1,...,XrSr)
is a limit, uniformly on compact sets, of the corresponding finite
volume correlation functions QX(X1ST""’XrSr) , Where A 1is a

bounded domain in R®™ (Lemma 4.1 of [5]). The are defined

r
°n
by n+k

-.Z.8.8.6 (% -X)p4k

I, n+k o[, i%3iTiTe i n+
p (X S ”."X S ) = Z 2 sce 1 € H du(s.)dX.
AT k'k Ao, 1l Jn J P 5/ %50

A (3.3)

du(s,)ax, . (3.4)

The apparent difference between (3.3) and (4.3) of [5] is due to
1.2
the fact that du(s) = e7%° Ge(o)dv(s) , Where dy is the measure

defined in Section 2 and used in (4.3) of 75]. Now
n+k

"igjsiste(Xi_xj) n+k -sis.Ge(xi-x.)
e = 0 [(e J 3721y +17 . (3.5)
i<j

The product above runs over the set P of all Z(n+k)(n+k-1)
unordered pairs (i,j) of different elements from the set

{1,2,...,0n+k} . The product in (3.5) is therefore of the form
-5.5.G (Xi-Xj)

I (ay+1) , with a, = e 1€ -1 for A4 = (i,j) . One
Acp
verifies easily that
T(a+1) = £ 1a (3.6)
pep P Qcp fer ¥’

where the sum runs over all subsets T of P , and by definition
[ %L =1, @ Yeing the empty set.
Led
A subset T of P is called a simple unoriented graph with

labeled points, for short we will call it a graph. We shall say
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that i 1is a point of the graph T if there is a j such that
(i,j) € T . The unordered pairs in TIT' are called the lines of
the graph T, Note that T can also be the empty set or P it-
self, Combining (3.3) and (3.6) we get

0 n+k -g.8.G
k -1 -)
op(Xq8qpeeeky®y) = 27 T ;‘13 J (e TIET I 1 au)ax,

(3.7)
where % denotes the sum over all graphs with points from the
set {1,...,n+kl . The points from the set {1,...,k} will be
called external points of T and the points from the set {k+1,..
v, k+nt will be called internal points;

We say that two points i and Jj din T are connected if
there is a sequence of points i,,...,i; in T such that (i,14),
(11,12),...,(18_1,15),(18,3) are lines in T . Let T_ be the
subgraph of T consisting of those internal points of T that
are not connected with any external point of T , and let Ty be
the subgraph consisting of the points that are connected with ex-
ternal points. ry 1is called an externally connected graph. We
define the product of two graphs T' x I'" as the graph whose set
of points is the union of the points of T' and the points of T'"

and with lines which are those of T%' and T" , It follows fronm

the definition of TO and T1 that T =T >1r1 . Therefore

o
T 1 a, = % I a, = ¢ T a, 0 a (%3.8)
£ £ A yA ‘
T £eT 1"0,1"1 fé%xr1 Ty ,EGI‘O 43'61‘1
where 2 denotes the sum over all graphs ro with only inter-
nal poiﬁts and over all graphs Ty which are externally connected.
Hence
o) n+k . -55.6 (x-x.)
Etygmgsy) = 270 2 S 2 L 1 (o T ) T o,
n=o = ° ISP (i,j)e%yz‘1 Fktl
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Any two terms which can be obtained from each other by permuting

the internal points give equal contrubutions to the sum r Z]_" 5
‘ 5T
because of the symmetry of the integrand. Therefore we

may take the .¢ points of T, to be the 4 last internal points

{n+k-4+1,...,n+k} . Since we can pick .4 points out of n points
in (E) different ways, we get

12 )\)m+k (=2) y/ . -sist €(xi-xj) ket 4,

IR R yx DU (e -1)_ 1 du(sj)dxj,

(3.9)

where T}: runs over all externally connected graphs with points

1

out of {1,...,k+m} and ¥ owr gll graphs with only internal points

from {k+m+1, ee., k+m+47 . o ) ( )

-5.8.G(x.-x. -5.8.6G (x,-x.

Since I (englJ-D: n(e + 4 ¢ 4
(1,j)EI‘oxI‘1 I‘1

k

~1).

-5, 8 .Ge(xi-—xj)

J

.0 (e -1) , we see that the integral in (3.9) factors

o

as a product , one factor being

[ (e'siste(Xi'Xj)-1).§ du(s,)ax;

Az TS j=1
Sumnming now over all graphs T with A points and using (3.6),
we get this equal to
P R
T J

a1

A

If we now multiply by -(—'Z)#,L and sum over A we get Z, by
(3.4), Using this result we obtain then from (3.9)

x n+k -s.8.6 (x.-x.) k+n

Bz sm,xs)e 2 A T n [l n (o8 13T T qu(s. Yax.

ANEE stk n S 5 )9%4,

n=o —° E°,n” (1,J) €E : k+1
‘ (3.10)

where E runs over all externally connected graphs. By Lemma 4,1

of [5] we know that ol,f converges uniformly on compact subsets
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to the infinite volume correlation function pk(x1s1,...,xksk)
and moreover that of is analytic in A for |A| < Ay« It
follows from (3.10) that each term in the power series expansion
for o% converges as A 1increases to R™ . By the fact that
pointwise convergence of analytic functions in an open domain im-

plies the convergence of their derivatives at a point, we get that

< n+k G (x.-x.) k+m
0 (X11,n” 1S =T ;} T‘E"U n (e e 101y 1 du(s;)dx, ,
n= : E (L,j)€E k+1 (3 11)

and the series is convergent for |[A| <\ . This is the linked
cluster ezpansion for the correlation function.
For later use we shall also introduce the truncated correla-
. . k -
tion functions pT(X1s1,...,stk) . Let X = {(X1s1),...,(xksk)}.
We define

k
p(X) = o (xySyyeeesxy 8) o (3.12)
The truncated correlation functions are then defined by

oE(xysy,eenme) = = (AT @R 0(X,),  (3.13)
Y171 kk

—}%‘lo.UXL
where the sum is over all partitions of X dinto disjoint subsets

X'I’“"X,z o

The inversion of (3.13) is given by the formula

p(X) = I m(X )'-cpT( ) 9 (3-14)
X=X1U...|..JXI&

where pT(X) is defined according to (3.12).

We say that a graph T 1is connected if any two points of T
are connected, It is obvious that any graph T 1is a product
' = C1><... XCE of its connected components Ci . For a fixed
term in (3.11) we write E as the product of its connected com-

ponents E = C, x...'yqa . We then get that the integral in (3.11)
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is equal to

éf...j b (e'siste(Xi—ijn_ T au(sy)ax, (3.15)
m=1 (1g)€0m ieIntC

where In‘tCn1 is the set of internal points of Cm . By the sym-

metry of the integrand in (3.15), we may permute the integration

variables without changing the value of the integral. Let n,

be the number of points in Int(%n, and let us permute the inte-

gration variables in such a way that the internal points in Cm

become the points {k+n1-+...+-nm_1-+1,...,k+n1+-”.+nm} . Since

the number of ways one can divide n = ng+...+n, points into

groups containing Nyseeeshy points is EFT?%EZT , the summation
over E in (3.11) gives n1l?f-nzl equal contributions of the
form
m_m m _m k +n
2 -s.8.6 (x:-x2) m' - m
i J...j I (e 1 J°E€ A D du(s?)dx? ,
m= 1 (19 J) € Cm 1=km+1

where X = {(x?s?),...s(xﬁ ,sﬁ )} is the subset of the set
m m

X = {(X1S1)""’(stk)} of external points which consists of the
external points in Cm . Thus k = k1+...+K& and X==X1U...UX&
is a partition of X into disjoint subsets. Hence we get from

(3.11) that
n1+k1

0
(X)) = £ T [CS I Vi I 4
n=o0 Nq+e.+n,=n o1 Ly e C1v"9ng=1
3.16
m_m m _m
. -8, 8.6 (x,-x.) kK ng
j...l 1 (e *J€ 1 -1) I du(s?)dx? .
1,9 ecCy i=k +1

We now define the formal power sexries in A
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e n+k -s.8.G (X -X.) k+n
o(X) = ¥ i:l%— T 'n (e 13 3721) 1 au(s.)ax., (3.17)
n Jered L i’
n=o : c ({,3) €C k+1

where C 1runs over all connected graphs with external points.

Then it follows from (3.16) that

D(X) = 2 U(X1)o--G(Xn) 9 (3'18)
X=X1 Uc ) ! =Xn

where the sum goes over all disjoint partitions of X and the
equality is in the sense of formal power series., By utilizing
that (3.13) is the algebraic inverse relation of (3.14), it fol-

lows that

5(X) = (=177 (=1)10(%y) o0 e0(X,) (3.19)

z
X= X1U...w

where the equality is again to be understood in the sense of for-
mal power series, But since, by (3.11), p(Xm) has a power series
expansion that converges for {A| <  , it follows from (3.19)
that the power series (3.17) converges for ]hl < xo and moreover
it converges to pT(X) , because of (3.19). We summarize this

discussion in the following:

Lemme 3.1 The correlation function pk(x1s1,...,xksk) and the
truncated correikation function pg(x1s1,...,xksk) are both given,
for |a| < A, (where ) is given in Lemma 4.1 of [5]), by their

convergent linked cluster expansions:

pk(X 81,...,stk) =
n+k -s.8.0 (x.-x. ) k+n
= z i:i%- 7°I J i (e 1d7€717J07 9y g du(s,)dx,
i,j)€E i=k+1
and

k
Pp(XySyseensXySy) =

co n+k -s.8.6G (x,-x.) k+n
= T (‘k? z%f".j i (e T4 € 1 Jd_1y 1 du(s,;)ax; ,
n=o ~* C (d,j)ec i=k+1
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where E runs over all externally connected graphs and C runs

over all connected graphs with external points.

Let now {@k(x1,...,xk)}§i1 be a sequence of symmetric func-

tions. PFor any finite set X = {X1,...,Xn} we define (X) =

= wn(x1,.;.,xn) and we define correspondingly the truncated func-
tions ¢%(X1,...,Xk) by (3.13)., The inverse relation yielding ¥
in terms of U, is then given by (3.14). TLet us now define the
generating functional for the {-functions as the formal power

series in 2z

O . vk ¢
[
#(zh) = 147 Gz) [ ¥ (e )(xy) o B (x, )X, 0 adx, . (3.20)

Correspondingly we define wT(zh) in the same way., Substituting
(3.14) in (3.20) we get

o /. vk '
1+ 3 ﬁl_ZZ_JF 5 Vo (L Yewe U (T (K )eee (K, )X q0en A, . (3.21)
ki J R | iy 1 k 1 k

k=1 Xz}{’lu anoU-IE&

Because of symmetry reassons all terms with [X,| = k,,..
°°’!¥Al =k, give, after integration, the same contribution,
Here |X| stands for the number of points in X . Therefore,
after rearranging variables, we get that (3.21) can be written as

co .. vk oo
1+ % %—?—L 2
k=1 . l 1/&0

S ki
L k,,] i ."kj,! J ‘pT(X—Iso.ogxkl)h(X.])..‘h(}(l{1)d3§.1 .o .ka1
+ v

:k‘] . o+]§e=k

™

]
cool U (XppeeonX, Jh(x))eh(x, )dx....d

) J ¥y Iyt XkL 1 sz
s Y (Zh) 9
140 T

where the equality is to be understood as the equality of formal

*
= 1+%2
A=

power series, This then gives us the formal power series relation

between the generating functionals for ¢ and wT H

y(zh) = e‘slT . (3.22)
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By inverting the power series of the exponent function, we
get then
ll'T(Zh) = log 1'J(Zh) 9 (3o23)

also as a formal power series relation,
From (5.6) of 5] we have the generating functional G(zh)
for the imaginary time Wightman functions
G(zh) =
e—%2ﬂhh)_1 @ v -s.2n%(x.) r (5.24)

1+ £ =l (T (& 9 J_1 rXSn..XS I du(s.)dx.
C R szﬁ ) 07 Xy Sy X, rg=1tisa) 5

and it follows from this formula that G(zh) is actually a con-

vergent power series for 2z in the whole complex plane. In (3.24)

(n,h)_; = [n(x)6(x-y)n(y)axdy and 1°(x) = |G (x-y)h(y)dy .
Intruoducing the generating functional o(zh) for the corre-

lation functions as the (convergent) power series

8

. \n
o(zh) = 1+7 (3%)
n=1 —*

0. n
jj on(x1 SR ST - SEH g(}cﬂ,sn)jI=11du(si)dxi , (3.25)

we may rewrite (3.24) as

72
—T(hqh)_‘]

G(zh) = e o(-i(e_SZhe-1)) , (3.26)

which by (3.22) is equal to
€
—SZh—1))

2% (h,n) (~i(e
- 9 Omi—-1
G(zh) = e Z =1 e T .

Using (3.23) for GT(zh) we finally get

2
Gplzh) = =Z(h,h)_g +og(=1(e>o1)) . (3.27)

We formulate now these results in a theoremn.

Theorem 3.1

The linked cluster expansion for the infinite volume imagi-

nary time Wightman functions and the corresponding truncated funad-
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tions are given in terms of their generating functionals by (3.26)
and (3.27) and the linked cluster expansions for the correlation
functions and the truncated correlation functions in Lemma 3,1,
The linked cluster expansions are all convergent for [A] < .
The linked cluster expansions for the imaginary time Wightman
functions are given by (3.1) and Lemma 3.1 and for the truncated

imaginary time Wightman functions they are given by Lemma 3.1 and

1

174 -

Tx
g -

0€ 8y & tuntd =k
Ay >

X K
Gp(XqyuenXy) = 850 (xq-x5) + (1)

nMR

r

; r ,{i 4y
Tttt - JiEr[ (s3) jE1Ge (Xo(é1+...+£i-j+1 )~V1)]
T r
pT(y1S1 geee 9yrsr)jE1dU-(sj )dy:] 9

where &,, =1 for k=2, and 6, =0 for k £2.
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4, The linked cluster expansion as the asymptotic

series for the scattering matrix of the space cut-off

interaction.

Let us from now on assume that the dimension of the space
time is > 4 ,

In section 2 we derived an asymptotic expansion, (2.18), for
the quantity SL(g;f) which generates the S-matrix for the space
cut-off interaction. The term of order n in this expansion is |
(-i0)® | (Oo,:eifp(g):[VL(tn),...,[V’L(t.l),:eim(f)]...]Qo)dt1...dtn. @.1)

tn§",§t1

One finds easily that, for tn_<_ PN f_t.] R

[, (oo 07, (s 02900100 - 2 ooy Py D e nt ),

where the £ runs over all permutations o = {i1,...,in} of
O .

1,...,n} such that B Loty and ts >...>ts . Since the
{ 9 9 n -— 11{-{-1 11_ = lk

integration in (4.1) is convergent, it is the limit of

-1 ... | (g, :619@), 00, () )pees 05, 2 %9110 J)dty .. dty
~ast, <.<t<a

n
_ (-n)nkfo(q) r [ooo ] (o  10®, v (% 11)1...\2@. ):e 9@,y T8 z(t )0 )ity uddt,

1
~a <t <..<ty<e .
(4.2)

= a3 O L j(q 98,3, (6). ) T NS A CAL LTI

r+k= n_
..<_E:] - 5Erf.a
"'a _<_t1 fut f'tkfa
To compute the integrand in (4.2) we observe that

isqp (t1,%4)  is,9_(%5,%,)
(0, 196101 %q) | +52% 2’2’Qo)=
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is o (X) i(t,-t,)H. is, o0 (%,)
= (Qo,ge 17 te e 0,00 27€ 2 :QO) =

) e-s1s2G€(i(t1-t2),x1-X2))
- 9

. SitH | itH
where @e(t,x) = e me(x)e . An explicit calculation

yields, for x, >0,

6 (xgs%) = 1 | o 15 g ()2 S (4.3)
-1 u(@)

and Ge(it,i) is therefore given by

6 (1%,%) = n [ o~ (P)Ipx (g (5)(2 G2
IRn-1 u(p

We set Fe(t,i) = Ge(it,ﬁ) . For a function g(X) on :mn‘1 we

define

g (t,%) = [ F (5, X-7)e(y)ay .
By a direct computation we find that the integfand in (4.2) is
equal to

exp{ 1§JSISJF (t tJ x —x ) -

where du(s) = e € dv(s),(g,f)_1 1is the scalar product in
the Sobolev space Jf 1(see [53). Let &A= {1,...,r} and
= {1,...,k} , so that A and B are disjoint sets of labeled

points, Let L ©be the set of all unordered pairs of different
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points in A U B . The elements in I will be called lines and

subsets of I will be called graphs. We now define:
-85 T, (t5,%;)-8;8,(-%;,%;)

a; = e -1 for i € A,
_5.f (-t,,%.)-B.g (-t,,%.
b3 —e 4 e( J’ J) Jge( J’ J)_1 for j € B .

Furthermore we define

—siste(-!ti—tj!,Xi—x.)

o= e -1 if A= (1,§), i<j, 1,i €4,
-5,8.F 5o (], —tJ =l_§j) e el e

F"a = € -1 if ,5: (19j)9 i>j9 is-] EBs
_sig.Fe(ti-t.,ii_z.) - -

B, = e J J 7 1 if 4= (i,3), i €A, J€B .

Then the integrand in (4.4) may be written as

n(F +1) O (a +1) I (b5+1) . (4.5)

L Y A ieh JeB

Expanding the products we get

I, =% ¥ ¥ 0F 0 a I by, (4.6)
’ XcA YCB TeL 47 ieX ~ jey J

By the definition of F, we see from (4.5) that I, , 1is symmet-
9

ric with respect to permutations of the points in A and similar-

ly it is also symmetric with respect to permutations of the points

in B . Hence (4.2) may be rewritten as

"(gsf) 1 r k
e | “ECiNT v 1) = D L au(s;)a¥, at, T duf’ﬁb%dt 4.7)
r+k=n r+k j=1 JJ
Ay
where A_ = {(t,%); |t] <a, |X| <4}

a
Since the integration over the t's in (4.2) is restricted

to the bounded interval [-a,a] , the sum of (4.2) over n con-

verges to
-12aH 1aH icp(f) -iaHo 123H£ -iaH

§f@;ﬂ (a, .gm@) Le OQO) (4.8)
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Therefore by summing (4.7) over n and using (4.6) we get

_(gsf)_% - (—lh)!AI(l)\)!B! -

S%(g;f) = e . s v v | [
L , - - * o @ .
!AlJBI!AI! IBl! pcr xca YoB Ath4ﬁD
& (4.9)
I F 0 a, 0 by 0 du(s,)dx.dt, I du(s,)dX.dt.
ger ¥ iex 1 3ey 3 i1 SR R R B

where, for any finite set X | |X] denotes the number of elements
in X .

Let A1 and B, Dbe the elements in A and feSpectively in
B that are points of T . Let X1 respectively Y1 be the ele-
ments in X respectively Y +that are points of T , and let X2
and Y2 be their complements in X and Y . Let A2 respect-
ively B2 be the complements of A1 U X, respectively B, U Y,
in A respectively B . Then A = A1|JX2t!A2, B = B1IIY2HB2

and X = X1LJX Y = Y.,UY2 . All the unions are disjoint and

29
X, €Ay, Yy cBy . For a fixed term in the sum in (4.9), we
permute the integration variables so that the points in A1 and
B, comne first, and then come the points in X2 and Y2 and last
the points in A2 and B2 . By the symmetry of Ir,k we then get

s IBl:
X0 Ty, fasfe [B5]0

IERERE

equal contributions to the sum. Hence (4,9) can be written as

C.a( f) -@’f)_%- 5 (_.ix)|A1!+]X2!+!A2|(i>\)|31|+!Y2[+|le
oy \E5 = e ;
’ W LB LI Jay e By 150 100 1Ayl 1B, ]

¥, 1, 1a50, 1B,

(4.10)
r r JufnE oo a0 a3 b be
TCL X chq ©, CAeT YieX, TieX, ¥y J jey, Y
—_ a
11 =B } L
Edu(si)dxidti gdu(sj)dxjdtj .
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Now the integrand is independent of the variables in A2 and B2,

and I Ek is independent of the variables in X2 and Y2 .
LET

Therefore we can sum over X2, Yy, A2 and B, and obtain

"( 9f
Sf(g;f)—e ® )‘%
. . IB,!
Aol o oca™ e
la LBl 1Al |B,lt DL XycA, VB,
‘n r |A1; |B1|
| eee | 1 F I I be 0 du(s,)dx.dt, T du(s )az.a%.
RSN fer i€X1 JEY1 J i S A
a

~~
-

where a(ti,ii) = a, , b(%j,xj) = bg and |A] dis the volume of

i
lul = Idu(s) . The factors containing |A] obviously cancel

and in (4,11) A, U B, are the points of T .

We call the points in X; U Y, , entering (4.71), the external

points of T . As in the previous section, we have T = To>rr3 R

where Fo is the subgraph of T consisting of the points in T

which are not externally connected and FB is the subgraph of ex~

ternally connected points.

Let Ao and Bo be the subsets of A1 and B, that are points

of TO and let A3 and B3 be the complements of Ao and BO

in A and B . Then X1 c Ay and Y, C B3 , Since AO and Bo

3
are internal points. The sum in (4.71) can therefore be written

as

|44 |B, |
Z (—i)\) 1 (i)\) 1 S“ j-aoJ‘
| ' T ™

(4.12)

I F, 0 a; J bxl du(s )dX dt, ’Idu(s )dx at. .
i ey, 31 T 33
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By rearranging the variables in such a way that those in A3 and
ESERIRE:IAR:
tB, i 1ot 1B

B3 come first, we get equal contributions

to the sum in (4.12). Hence (4.12) becomes the product of the

two following series

lal Bl

v( 1;\) © (1)\) {

".J 1 F Hdu(si)dxidtiﬂdu(sj)dxjdtj, (4.13)

ngl |B [ Ler 7 4 J
where TO runs over all graphs with points in AO U BO , and
o dagl o | Bsl
gl=ir) 7 (ir) ¥ r s]...]1n 5 @ a;
1 1] (_.'I\ E
[2]¢ |35 |} XeA; TyeBy Tz ") LET; 71X (4.10)

g0 by I du(s )dx dt, IIdu(s )dxdm
JEY1 Joi 15

9

where P3 runs over all externally connected graphs. From (4.9)
we see that (4.13) is nothing but 52 (0,0) , which is equal to
(QOBQO) =1 .

We formulate these results in the following theorem:

Theorem 4.1

The linked cluster expansion for

eltp(g), j.aHo —218.H£ iaH J.Cp(f) -]BI'I 1281{/3 —laH

o,
e e ¢ e Qo)

5;(g;8) = (O,
is convergent for all A and given by

-(g3f)_2 . A ) .
Pa50) - ¢ (858)_s . (i) 1A (40 Bl

, —r oz v [...0
lal, 1] 14l B¢ xcA YcB E JAa J

/ngE“& M a, 0 bx I du((s. )dxidtindu(sj)dxjdtj ,

ieX J'JEY J 4 J
where E runs over all externally connected graphs and

- -Sfe(tsz)"sge(-tsi) -sfe(—t,}?)-sge(—t,i)
h(t,x) = e -€ .
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Defining moreover

NS ANl
$2(g,f) = ~(g,f) o+ x =27 GMNTT S ...
28 = -(e )‘?+]A|7,|Bl INE !leXZA YEBCZ)IA J
a

0 B, 0 a, I by I du(s,)aX.dt, Dau(s.)dx.at,
2ec % iex Tey 3 4 171y AR

where C runs over all those externally connected graphs which

are also connected, we have

Sa(ﬁ°f)
4 NS m
%f(g;f) = e s,

Proof: Only the last part of the theorem is not already proven

above, The proof of this last part runs however entirely parallel

to the proof of the last part of Lemma 3.1.

We know by (2.18) that each term in the power series expan-
sion of %?(g;f) converges as a - 20, and that the formal power
series we get in the limit is the asymptotic expansion of E%(g;f),
We shall now prove that each term in the linked cluster expansion
of %?(g;f) converges as a tends to infinity , and the corres-
ponding expansion is the linked cluster expansion of %6(g;f) .

It follows then that the linked cluster expansion of Sa(g;f) is
identical as formal power series in X with the asymptotic expan-
sion (2.18) of sé(g;f) . Since one can always form exponentials
of formal power series, it is enough to prove that each term in
the power series expansion in X of QE(g;f)T converges as

a - .,

For fixed A, B and C in the linked cluster expansion of %Z(g;f)T

in Theorem 4.1, consider now the integral

ffn F, 0 a; 0 by, (4.15)
ieX jey d ,
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Since Ek 2y and bg fall off sufficiently rapidly in all
the time variables, as solutions of the Klein-Gordon equation with
smooth time zero values, we find that the integrand in (4.15) is
absolutely integrable with respect to all the time variables in
ﬂfq, where N = |A| +|B| . Because of the support properties of
the Fourier transform, with respect to %j , J € B, of the inte-
grand in (4.15), we see that the integral over R with respect to
%1,...,%£ , k = |Bl is equal to zero. Hence as a - = all con-
tributions, to the linked cluster expansion in Theorem 4.7, of

terms of the form (4.15) with B # @ tend to zero. We formulate

these results in the following theorem:

Theorem 4,2

For space-time dimension larger or equal to 4 we have that
the linked cluster expansion of the scattering matrix for the

space cut-off interaction is given by

'(gsf) 1 ( s 'A[
[ ° — -2 -1)\' !
5, (g3%) = e 3 !EI T : . JE L
) IZ.| <g 1€
!l_.
| Al -
a; du(si)dxidti ,

1:1
where E runs over all externally connected graphs with set of

points A .,
This linked cluster expansion of {L(g;f) gives also the asympto-
tic expansion of Qa(g;f) in powers of A\ .

If we define the corresponding truncated expression by the formal

power series relation
S, (g5f)q = log 8, (g;f) ,

then the formal power series for ST is given by
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|A]
%(g;f)T=-(g,f)_; b —'—lﬁ— T X f 1F0al dp.(s)dx dty
. = |al [a]r xea c FAPY, {cC “iex ti=1
ll_

where C runs over all the connected graphs which have external

points.

We see from the linked cluster expansion in Theorem 4.2 that,
. . . . k
if we define the space cut-off scattering functions %(x1%,"q§5k)

as the formal power series

. k , n+k
OHSP”’Xk%J F -—EL—— § rn J QLE E iji+1d“(si)dxidti’ (4.16)
< =

%, |
1
with x; = (tj,:?j) , then §, (g;£) can be written as the following
formal power series
‘(gsf)_%_ ]
S; (g5f) = e ¢ g, (~ia) , (4.17)

where % (a) is the generating functional for the scattering
functions, defined by (3.20) and
. -sf (%,X)-sg _(-t,%)
a(t,¥) =e ° AR (4.18)
Using the symmetry properties of Eﬁ we can write (4.16) for

t1 <eso< t as

= Yy
‘ k+n -
OF (381 om )_2 CinEsl [ o0 p 0 au@)dF.at, . (4.19)
100 % S pdo, Y JGE‘& 1=k +1 TTiT L
=l <t )
By Ze S

The integrand in (4.19) is obviously only a function of the time

variables zj = tj+1_tj s, J = lse0.,k4n-1 ., Since
8,86, (1(ty t)x-X)
J_:')‘e —e 1 JE€ d7_1 for 4= (i,j), i<j,

we see that the integrand is analytic in ZDan > 0 , and falls off

-3/2

as }21 o |2 1= -3/2 uniformly in IDan > 0 , j=T,eeek+n-1,

k+n~1
for all space-time dimensions > 4 .
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If we introduce the new variables Zj =1t in (4.19) we will

3+17%3
have the integration over the domain Zj >0, j=1,...,n ., Because
of the uniform fall off, we may continue the path of integration
from the positive real axis onto the positive imaginary axis. From
this it follows that each term in the formal power series expansion
(4.19) is analytic for Imt; >0, i=1,2,.,..,k and moreover we

obtain the following formal power series relation

. -8.8.G kn
0 (FiSppenFs) = (= 1)1“ b (””km .0 t9 SR8 du(s;)dx;, (4.20)
=o Eﬁ%lfﬂng i=k+1

where :'?j = (i(xj)o,xj) , xj = ((xj)o,xj) , (Xj)o being the time component of Xj.

Lemma 4.1
Tet Ho'be a self adjoint operator with zero as an isolated

simple eigenvalue with eigenvector QO , and the rest of its spect-
rum absolutely continuous. Let le HO+-AV, where V is bounded and

symmetric, Let P be the projection onto Q and P1 its orthogo-

nal complement. Let H” 1P1 be the inverse of H on the range of P].
If X1=-§HVHO P1H then for [Al< 21, H, has a simple iso-

lated eigenvalue E>L with eigenvector ng both depending analy-

tically on A\ .
Moreover for !xl < A
it(H _Ek)

weak lim e
t- ©

A -

QO = (Q k’Q )O .
Proof: The first part of the lemma is well known from regular per-
turbation theory. The moreover part is proved as follows., We expand

in powers of A and get

. it,H
ejﬂHmo= z(n)nj ..th,)... t)0.dt ...at) z( Ve j] T

n=o 0<t <wst, <a n=0 0St<w st <a
~i(t,-t)H -t =t OH o % ZasH -1s 1, -isH
o oy 0y 0 aty it = SE ..,d.fe 2oy, o oy

n=o0 O O
a . .

oo} » =18, =<is H iaH
Qods].o.d%z SEVR T j...,d'e o °p, AR B0 VQ dag..ds, = (O, Q)

n=o0 1oncno (0] n

a a

oo -isq H -is H

DI ER VR P "op.v...e T °p,U dsg...ds, .
o o

n=o0
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By integrating we find that

-1 iaHX oo} o1 -iaHO -1 -iaHO
09 € QO) e Q, =n;<:ox H P1(1—e )V...Ho P1(1-e )VQO .

For !k] <k this series is strongly convergent, uniformly in a ,

(o

and term by term it converges weakly to the Rayleigh-Schregdinger
expansion for QA’ This implies, by the convergence of the Rayleigh-

iaH iaH
. . A =1 A o =1
Schredinger expansion, that (QO’e QO) e QO (Qong) Qk

weakly. By taking the inner product with Qk this gives that
iaE>L iaHX
e (Qo,e

the weak convergence above,proves the lemma.

Qo)_1 converges to |(9099X)|-2-' This, together with

Remark: This proof has relations to methods developed by De Witt
and Lanford and extended by Hepp (Theorem 2.5 of [8]).

Theorem 4,3,

Let IX!‘<X1, where Ay is given in lemma 4.1, and A = :eim(g):,
B = :elc‘o(f):, then
-21tH itH, -itH -itH, itH
£ -
(0@ 0 )" (e Fe  Caa_,e ‘e °Bo )

converges to (A_QC,B+Q6) as a = oo, where A_1s the norm limit of.At
as t--00 and B+ is the norm limit of Bt as t-o00 , with At =

-itH, itH -itH itH
e e Ope 9% % gnd similarly for B .
-i2aH ialH, -iaH -ial, iaH
Proof: (Q_,e 4{2)"1(e 'ze a0 e 55e °Bn )
(0] 0 (0] (0]
~-i2aH iaH -iaH
B £ \=1 < <
= (Qo,e QO) (A_ae 0,sBge QO) 5

One verifies easily that H[Ye(s),:ei@(f):jﬂ < c(ls}+1)'3/2, from
which it follows from (2,10) that A__ and B, converge in norm to A_
and B,, Hence it is enough to prove that
- . .

(Qo,e—lcaﬂZQo)'1(elagéo,AfB+e_laﬁZQO) converges as a- 0, Since
the finite dimensional operators are dense, by uniform boundedness
it is enough to prove that the expression converges with a finite
dimensional operator C replacing AfB+. By linearity it is then en-
ough to prove that for any pair of vectors & and Y we have conver-

gence of . . .
-i2aH iaH -iaH

to) e t ta) .
the proof of

By lemma 4.1 this however camverges to (Q,,8)(¥,Qp),vhich completes / the theorem.

(08 a,,8)(¥,e
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5. The convergence of the linked cluster expansion for

the space cut-off scattering matrix.

Let A CIRn be a bounded domain. Define the quantities

FA’ Z,, £, as in section 4 of 57 and set -»‘Zve(x) = é(fx) , Where

¢ = & 1 is the generalized Gaussian stochastic process indexed
L p

by the Sobolev space d{n defined in section 3 of [5]. We then

have from section 4 of [5]:

k

i¥. s ée(x) Jv(@e(x))d.x

(07 St )= (2B e ) (5.1)

where I 1is the expectation in the probability space for @&
(see [5]). Expanding with respect to A we get this equal to

k
i¥ s.9 (}" ) k+n
k. ~1 ( ) i1 1 e“i _
(-k) Zy T ‘E( v(& ( Nee v x_))) 0 dax.
n=o n! Arf e 1z +1 € K+n j=k+1 J
k+n 5 ( )
30 n i ? S. X.)k+n 20 k+n
J=k+1 J Y n=o * AR ‘
lk+n |
-7, 2 .]SngGe(Xl =%y )k+n |
e LJ= I dv(s.)dx. , |
j=lot1 J
which by (4.3) of 5] is equal to plg(x1s19...,xksk) .
Hence we have proven the formula: }
k
-Mv(é (x)ax) iT s (x) -)\J v(@ (x))dx
ViEEe M =1 i=11
pA(X‘I 19“9xksk) (' )] E(e e ). (5.2)

Choose Ay , = {(xo,i);!xolf_a,li!f_,@} . Let pf(x1s1,...,xksk)
pk

Aa,,&
the Lemma 3.4 of T51. Moreover we have the following:

be the limit of for a - oo, which exists by (5.2) and

Temma 5,1

c k k
The 1limit %(X1S1’“"stk) of pAagg(X1S1""’stk) as
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a - ¢ exists and the convergence is uniform on compact subsets.

Moreover:

is ¢ (X)) = (b=t is,0 &,) -ttt ), 1
‘%{(Xlsv“"xksk) = (- X)k(%,els1 CKS(X‘])@ 2 1) < elSQ Cpe(xz),.,e : k &'1)1%:81{%@]{)% )

for (Xi)o =t
genvalue of Q£ .
Proof: The uniform convergence on compact subsets follows as in

the proof of Lemma 4.1 of [5] and the formula for the limit fol-

lows from Lemma 3.4 of [5]. 4

Lemma 5.2

The space cut-off correlation functions ;3{]‘{(3(181 yo e ’stk)

. . k
and the corresponding truncated functions '01, 9 T(x1 Sqseee s X Sy

are given, for !A| < \, s by their convergent linked cluster ex-

pansions
P m - ] -s.8.6G (x.-x.) k+n
p{k(xlsP‘"’XkSk) =Y (-)\r)i(' X J .o j 1 (e Td €1 F_ 1) du(si)dxi
n=o E FAPY (i,))€E i=k+1
1 —
and : )
>~ gl , -8.8. G X.-x, k+n
k f—l ‘ r 1] e 177
Py (X Sqgee =7 I | (e -1 0 du(s)dx,
£ Nl Qi{sk) n=o % ¢ J!iliﬂ (i, €cC imlerl L 1
1-—-

where E runs over all externally connected graphs and C over

all connected graphs with external points.

Proof: The proof is given by the one of Lemma 3.1. g

Lemma 5.3
The space cut-off correlation functions pzk(x1s1 gecas ’stk)

are translation invariant with respect to the time variables and,

as functions of z. = (x.




- 3 -

analytic in the domain Rez, >0, i = 1,00.,k=-1 and continuous
in Rez;, >0 .
Moreover they satisfy, for 'tlg... gtk 5

i ~i(t~t)H, i 2Y it - = .
@,y oE ) (- )\)k(% e CPe(;ﬁ)e ity-toH, elszwe(xz)m ; it %_ﬁ{%elskcpe(;ck)%) 9

o . = k)~ ~ . .
where X, = (1tj,xj) , and g (Xys4,...,%, 8, ) are analytic in A

for |A] < \, end symmetric in Eisy,...,%.s, .

Proof: The translation invariance, continuity and analyticity in
the time variables follow immediately from Lemma 5.1, From the
analyticity in A of the correlation functions for real (xj)09
j=1,...,k (Lemma 5,2), the analyticity of the state qk(A) =
U%,Agg) follows as for the infinite volume limit in Theorem 6.3
of [5]. The norm analyticity of eitﬂ@ in X for all values of

A follows from the norm boundedness of the space cut-off inter-

itH, JitBy

action. Since ((k , € Y ) = it follows first that E,

i tH
is analytic for |[A| < A  and then that e’ ™% is norm-analytic
for [A] <, . From the formula in Lemma 5.3 it follows then

that ggk()“c'1s1,...,5fksk) is analytic in A for [A] <A .

Prom Lemma 5.2 and (4;20) we have that

o (xysqy e xysy) = (<% (Fysq,.. 0, Fs) (5.3)
with X = (-ixo,i) , in the sense of formal power series. Recal-
ling now that the formal power series in (4.20) was obtained by
termwise analytic continuations in the time variables from the
formal power series for a%(x1s1,...,xksk) , it follows from (5.3%)
that

g;{(x1s19...,xksk) = ik%k(:”qs“...,:”cksk) ; (5.4)

. ~ . - . -
with x = (1xo,x) , in the sense of formal power series.
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By Lemma 5.3 however, the power series on the right hand side of

(5.4) converges for |Ar| < A, » hence the formal power series for
qf
assumption of space-time dimension > 4 we have:

, as defined by (4.19), converges for [A| < A, - Under the

Lemma 5.4
The scattering functions §$(X1S1""’stk) are analytic in
A for complex X with !k! < ho and given by the convergent

linked cluster expansion,which converges to:

i “i(ty=t,)H, ~i(t, -1 5o
%k(t@%»ﬁ{%k (-i)\)k(c_}e 96181%@1)6 1(ty=1t4) L 1(ty k_1)1§eelskc%(3%{)%)

Hence for real ) they are uniformly bounded continuous functions

.

of all their variables. Moreover, there is a ho > 0 such that
for all complex X with !A| <2, we have the following uniform

estimate
k k
l% (X1S1,...,XkSk)l = G,(P\!)B

for t;<...<%,, where a(r) and gk depend only on €, £ .

Proof: The first part of the lemma follows from the previous
lemma and from (5,3) and the remarks above. The proof of the
rest goes as follows. Let us define the time ordered scattering
functions by

85 (%1805 Xe8y) = 9 (X550, 78, (5:3)

k

for %;<...<%, and the requirement that 5{ (x9845.00,%,8, ) 1is

k
symmetric under permutation of its wvariables, It follows then
from the linked cluster expansion (4.19) for the scattering func-
tions that the time-ordered scattering functions have the follwing

linked cluster expansion:




- %6 -

ok X (_in nk . - K+ -
5, (Xy8qpemes X 8y) = L 22— % L. | T L du(s,)dx dt, , (5.6)
- n=o0 E 2y L€E 7 i=k+1

FARI/

where Ef = exp[-sjskGe(—i!tj-tkl,§j-§k)]-1 for £ = (j,k) with
j <k, and E runs over all externally connected graphs. It

follwws from the first part of this lemma that (4.19) is conver-
gent and this implies that (5.6) is convergent for |A]| < Ay Sy
Hence '@é{(x1s1,...,xksk) are actually the correlation functions

with respect to the interaction potential

T
igjsisj F_ (Xi—Xj) , (5.7)

in the sense of [5], where FZ(t,}?)‘: Ge(—iltl,}?) . Now

T,, = r -1 p) _ipx -2 ap
Fe(t,x) =] e iltlu(p) elpxlxe(p)! —-d%’,— , (5.8)
]Rn_’] U(p)

so that, using that xe(ﬁ) = xe(-ﬁ) , we get

FeT(t,}_c') = rrj cos tu(p) cosp- x| )(6(1_3‘)|2 "(1‘._%'.' + i‘ITJr sin [tjulp) cos ﬁfl)%(ﬁ)lz—-@’- .
n-1 u n-1 “6)
= = (5.9)

From (5.9) we observe that [Fr‘f(t,i)! < const-(|t|+1)‘3/2 for
all ¥ in |X| <4 and all +t, if the dimension of space-time

is larger or equal to 4 , as we have assumed, This implies that

T
| 'Siste(Xi—Xj) ’ .
¢ = sup J le -‘lidu(sj)dxjdt. (5.10)

J
is finite, so that the interaction is regular, in the sense of
[5]. Moreover, from (5.9) we see that the real part of (5.9) is

positive definite and hence

m
T
Reizjsisj Fe(xi-xj) > -Bm . ) (5.11)

This is the proper form of a stability condition which can be
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- Z s.s.F (x -X. )
o ije
used similarly as in (5], to estimate e J= .
We see namely that in such an estimate the imaginary time of Fg
plays no role, Therefore by (5.11) we can use the methods of
5] not only to prove that the time cut-off scattering functions
converge as the time cut-off is taken away, which we knew already,

but also to get the estimate, uniform in the variables X8 ,..

-1 —23—1
++s% 8y, for all complex !k! <Ay s Ay =CT

l"k(x1 SqpenesEeSy)] <0 -k -M;gizlm ' (5.12)

This then 'completes the proof of the lemma.

Theorem 5,1

There is a Xo > 0 such that the generating functional
@6(g;f) for the space cut-off scattering matrix is analytic for
complex A with lhl < Xo , and Xo = min(ho,x1,x2) , Where Aq
is given in theorem 4.3 and Ao in lemma 5.4,

Moreover, for |l < Xo )

"(gsf)_;_ v .
Sz(g;f) = e g, (~ia)
and
S'g(g;f)rl\ = -(gyf)_%"' %’T(-ia)
where |
a(t,%,s) = exp(-sf_(t,X) -sg (~1,%)) -1,
£ (£,%) = J‘rGo(it,}—c'—Sr')f(Sr')d&' , and §,(-ia) is the generating

functional for the time ordered scattering functions

vk - .
qg(t1x1s1 oo thk k) given by
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. _ 1 vk - -
qe(-la) = EO T i...J qé(t1x1s1...thksk)
|x;1<€ .
(5.13)
- - k —-
a(t1x1s1 ...a(thksk)ig1du(si)dxidti .

The scattering functions gf(t1§1s1,...,tk§ksk) are analytic in
A for |nl < A, » With A independent of the space cut-off,

and are given by the reduction formula

k - -
0 (64X184, 000,58, %, 8, ) =
% (P1E1S s e e s B Sy (5.14)

Qﬁ)

and also by the linked cluster expansion, convergent for |xl<:xo:

(-10)%(0, e

k
%, X,]S.,,...,stk) =
F. %) (5.15)
oo -35.8.G (x.-X. kin
5 (-i))MEs J...f I . (e T J9¢ L 3 _1)yn du(s.)ax. ,
n=o EJG ¢ (i,j)eB i=k+1 172

I I Y

where E runs over all externally connected graphs and ij =

' (i(Xj)o’§j> . Similarly the truncated scattering functions 9,1
are given by their connected graph expansion, which is also con-

vergent for |A| < A ¢

k
g X484 5000X, 8 =
g,T( 1°1 15 (5.16)

co , , -s.8.0 (X.-X.) k+n
T (-i))2tEy j...f 1 (e T4 L+ J )1 du(s;)dx, .
n=o Co & (i,j)€C izk+1
k+1=""="k+n

Proof: By (5.4) and Lemma 5.3 we know that gg(x1s1,...,xksk).
is analytic and given by its linked cluster expansion for !kl <KO.
This proves (5.14) and (5.15). (5.16) follows by direct algebraic

calculations from (5.15)., From lemma 5.4 we know that
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ée(x1s1,...,xksk) is uniformly bounded by a(]XI)Bk for complex
A with ihl <A . By the integrability of the function a this
gives that the sum defining ég(-ia) is convergent also for com-
plex A with [A] < A, , and therefore that %6(-ia) is analy-
tic in A for complex A with [A{ <X, .

This implies, by section 4, that the asymptotic expansion of
§€(g;f) is actually a convergent powerseries for |A| < Ao

Consider now the expression

?&at(g;f) =

itHy -itH -itH, itH (5.17)
e

-1 0
Qo) (e AQ e e BQO)

09

of theorem 4.3. Expanding (5.17) in powers of A we find easily
that we get the linked cluster expansion for %zgt(g,f) in terms
of the time cut-off time ordered scattering functions %&,t .
It is

-(g,f)_a

Sj,t(g;f) = € = B’g’t("ia) 9 (5.18)

v

where the linked cluster expansion for ?g,t is obtained as the
linked cluster expansion for EZ with all time integrations re-
stricted to the intervall (-t,t] . From the proof of lemma 5.4
it follows that

b

and converges uniformly on compact subsets to ég(x1s1,...,xksk).

g eme) | < alla])et | (5.18)

This implies that %Z 4(-ia) converges to §e(—ia) as t - oo,
9
From (5,18) we then get that §Z t(g;f) converges as 1t - © to
9
the sum of the linked cluster expansion for the scattering matrix.

If we have |A| <\, , where \; 1is given in theorem 4.3, then
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we get by theorem 4.3 and (5.17) that %ﬁ t(g,f) converges to
9

%e(g;f) as t - oo, This identifies §6(g,f) with the sum of
6)

the linked cluster expansion and proves the theorem,



6, The infinite volume scattering functions

In this section we assume again that the dimension of space-
time is larger or equal to 4 . The finite volume scattering
functions qg(x1s1,...,xksk) are, by (5J4), given by the follow-

ing expression:

-

iSC{)e(X,])

£ (eiSCPe&k)

ok )n.at
k

oK (4,218 0pems .58, ) = <-n)k(%,af1(e )0,), 6.1)
-itH itH
', J

where di(A) = e is the automorphism considered in

section 6 of 5], By the theorem 6.1 of [5] we know that

ise, (¥) isp (%)
di(e € ) converges in norm to at(e € ) as £ - o,
-itH A eitH

where at(A) = e and H is the infinite volume Hamil-

tonian of the theorem 6.3 of [5]. Mloreover, from theorem 6.3 of

(5] we also have that converges weakly to w as £ - o for

0
£
Ixl < A\, s Where @6(A) = (Q&,AQL) , and @ is analytic in X

for [A] <, .

Theorem 6,1

The finite volume scattering functions gf(x1s1,...,xksk)
are uniformly bounded for real \ in £ and XqSqseee XSy, and
converge pointwise for -ko'<k.<ho to the infinite volume scat-
tering functions ck(x1s1,...,xksk) , Which are given by

i Xq) =i(t,=t4)H

k,, = - 1k isqp (xq) -1(ty-ty

0 (t1x1s1,"”thksk) = (=ix)7(Q,e € e ceee

~i(t ~t, 4)H is, o (X, )
K =170 PP R gy

where Q is the unique infinite volume vacuum, (Q,AQ) = w(&) .

e a » e

Moreover, there exists a x1 > 0 such that &Rtp%s1”",tk§ksk) is
analytic for complex A , with || < Ao s if -2y <ti+1--ti <A

i=192,oon5k_1 .
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Proof: The first part of the Lemma follows from (6,1). The

moreover part is proven by observing that

k - - B is‘]cp (X']) is CP( )
0 (t'IX'lS'}"“’thksk) = (-l)\)k&)(@t'](e © )n-a-tn(e n¥en )) (6.2)
and using that o is analytic in % for [x| <  and
isy (%)
a(e ) is norm analytic in A for |A] < A, if

=%y <t <y , the latter following from the proofs of 8], where

isgg (X)

it is shown that at(e ) is norm analytic for complex A\

satisfying |at] <ad .

From (5.5) we know that qg(t1§1s1,...,tk§ksk) is analytic
in %4,...,%, and uniformly bounded for Dn(ti+1-ti) <0, and
from (5.3) we have that gf is given, for Re(ti) = 0, 1i= Tk,
by the finite volume correlation functions. From Lemma 6.1 we
know that qg is uniformly bounded and converges if the time
variables are kept on the real axis, This then implies that qg
will converge for Im(ti+1-ti) <0 . From this and (5.3) we get

the following Theorem:

Theorem 6.2

For -xo < ) < ko the infinite volume scattering functions
are uniformly bounded and continuous in t1§1s1,...,tk§ksk . They
are analytic in t,,...,%  for Im(ti+1-ti) < 0 , and related to

the infinite volume correlation functions by

oF(Fysy, e Fesy) = (1) (s, ,xmy) (6.3)
where X = (ixo,i) .
Moreover, the infinite volume correlation functions are given, for

ty <. <t and =x <A <), by
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o - e, 1870.(%) - (t-t))H
t1x1s1“.”thksk)==(—x) (Q,e € e .

‘-%—a{.oHeiskwe@m.

(6.4)

k¢

B

o

Remark The formula (6.3) gives an improvement, for real \ ,
on the bounds for of in TLemma 4,17 of [5], in as much as we have
now

!pk(X1S1,...,xksk)} < ;x{k

for —Xo <A< XO .

We can now use Theorem 6.1 and Theorem 6.2 to improve the
Theorem 6.4 of [5]. By performing analytic continuations in the
time variables occurring in the expression (3.1) for the imaginary A

functions '
time infinite volume Wightman/we get the relation between the
real time Wightman functions and the infinite‘volume scattering
functions., These analytic continuations are possible, as a con-

sequence of (3.1), the theorems 6.1 and 6.2 and the Theorem 6.4

of [5]. We express this in the following theorem:

Theorem 6,3

For “Ay <A< A, the infinite volume Wightman functions
Wk(x1,...,xk) are given in terms of the infinite volume scatter-

ing functions by the reduction formula

Wk(x x )-—Wk(x x )4-% e X L n wP(x X, )
190009 k - o 190.., k r=1 r'. qzr’pzo pz TTE'Sk‘ o ,n.(‘])Sono, n(p)
p+d=k

&~

1 [ ro. 4%1 m r
by yvjz—.” 0fEs )" 0T (x =Y )]0 (74815 enes V.S
j1+...+,&if=q 1-.0. : J‘ Jm=1 m j=1 6 n(p+z1+cco+,£m"a+1) m 1 19 4 I' I'
L >1 r
= I du(s.)dy. ,
j=1 7
where Wg(x1,.,.,xk) are the Wightman functions for the free

field of mass m , P_(t,X) = G_(it,X) and the identity is in the

sense of tempered distributions.
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Ve shall now consider the finite volume scattering matrix
2

n,m
E1seees8y in LzﬂRn_1) . Let us define the finite volume scat-

(h19...,hn;g1,...,gm) defined by (2.5) for hyy...,h ~and

. . AZ - -—) - -—
tering amplitudes Sngm(p1,,..,pn;q1,...,qm) by

Y

S
n,m

(h19-'-7hn;g1s°"sgm) =
(6.5)

r f - - - - - - - - - _— -
= S @porees B3 Qponees G )1y (By) o 1 (B) (0 e @)D, - 4B, ATy e 0T
Introducing the truncated scattering amplitudes by the formula
corresponding to (3.13), we get the relation between the above

scattering amplitudes, which we denote now by SL(P;Q), and the

truncated ones in the form

sfr;0) = = 550,058 0,,0) (6.6)
=P U, UPy

QU UQy
where the sum runs over all disjoint partitions of P=={§1,...,§n},
Q= {Tq,...,0,0 .
In Theorem 5.1 we have an explicit expression for the generating
functional Sz’T(g;f) in terms of the scattering functions. This,
together with the definition (2,16) of the generating functional
gg(g;f) for the scattering matrix, enables us to find an explicit

expression for the finite volume scattering amplitude:

Theorem 6.4

L 2 » . ,6 -— -t '—p’ ey
The finite volume scattering amplitude Sngm(p1”n,pn,q1p”qm)

is given in terms of the corresponding truncated amplitudes by
(6.6), and the finite volume truncated scattering amplitudes are

given by the reduction formula
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T(-» — - - ) mmgL,m) 1 Z .
Pygeeeg P § Uagoeo = X =
m ‘]9 9 n’ 1’ ’qm r=1 I‘!k1+“.+ =n k1£.g1xcookr ,&ro
Attt =
Iq 4, kq+ko

s

n,

n m
- 2 - 2 ~T

- . UZSn 1

~Tm

X%+Zé n m ) r (

- Z q_ £3 ' XX Z p s\ - Z q 3 °S vus H dU. S-)+
o 9 b T C 4 1’ ? . ’

4+1 (9 Kyt tk, 4 (ﬂ-%hut%+1 o) T =1 !

+ 6n1,15m1,15(P1‘q1)'

Here Sn is the set of all permutations of 1,.,.,n , the symbol

) means 1 for n =1 and zero for n £ 1 , and pg =

n,l

= u(py) , af

J
transforms of the functions équx1s1,...,xrsr) in the sense of
9

- T .
= u(qj) . 52;#IH9---»Pr?S1s--‘9Sr) are the Fourier

. . . vr .
tempered distributions, where QQEKX1S1""’XrSr) is equal to
. . T ,
the truncated scattering functions QL,T(X1S1”"’XrSr) for
t1 <... 5'§r , and is symmetric with respect to the variables
X1s19.l09err . %

Remark: The fact that it is possible to restrict the wvariables
in the arguments of gf,T to the mass shell p° = u(p) in the
reduction formula of the Theorem 6.4 is a simple consequence of
the existence of the truncated generating functional §£’T(g;f)
and of the Theorem 5.1,

Although the infinite volume scattering functions exist by
Theorem 6.1, we may not yet conclude that the limit of the finite
volume scattering amplitudes exists as £ - . Nevertheless,
by Theorem 6.4 wehave already that the infinite volume off shell

scattering amplitudes exist as limit for £ - 2c in the sense of

tempered distributions of the off shell amplitudes for the space
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cut-ofl interaction, the latter being defined by the right hand

side of the formula in Theorem 6.4 without the restrictions

(pi)o = “(Bi) and (qi)O = u(ai) . We will discuss this problem

in a forthcoming paper.

1)

2)

3)

4)

5)

6)

Footnotes

bee e,g. the introduction of [1] and the references given

therein.

Besides Lee-type models and quadratic interactions (see the
corresponding references in [1]), we should mention the case
of fermion interactions with ultraviolet cut-off and no pure
creation or annihilation terms in the interaction 2], as
well as the case of Nelson's type models (simplified Yukawa
interaction): 7373, [1], [4]7.

FPor technical reasons most results are stated and proved
only for the case of a number of space-time dimensions n >4.

See also the references given in [5] concerning previous

work on this class of models,

We use in general the notation: : for the Wick product.

Thus:
T e, _ e @), 17m)

where -1

o) (n) = 27F(om) ° Jr e P%ax (-7)-2L-,
IPn—1 u(p)=
n-1"

1 - i Ay - D
o ¥(em) 2 | ePEa(p)-E
Ro-T u(p)=

() (n)

The Wick product :eim*(h): for the corresponding asjmptotic

in and out fields is defined in the same way, with af in-

i
stead of a" .

We have incidentally that the space cut-off scattering matrix
is non trivial (i.e, different from the identity and from zero),
This follows already from the fact that it has a non trivial,

explicitely given asymptotic expansion.
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