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Introduction. 

In the following A will always denote a commutative, inte­

gral domain (with identity). In this paper we shall investigate 

a class of commutative, Noetherian, flat A-algebras which may be 

of interest since it is wide enough to include Noetherian rings 

of any given Krull ordinal. The Krull ordinal ~(R) of a Noethe­

rian ring R will be used in the sense of Bass [1]. It coincides 

with cl.K- dimR as defined in Krause C5]. A definition of ~(R) 

is included in (1.5) below. Recall that ~(R) is an ordinalwhich 

coincides with the classical Krull dimension of R whenever one 

of them is finite. 

Let A[X] be the polynomial ring in a set of transcendent elemen~. 

Let JliL be a family of finite subsets of X and let A[X'1t. be 

the localization of A[X] with respect to the multiplicative set 

A[X] " U MA[X] 
ME fit 

Let .Jc\fi(J be the family consisting of all the subsets of all 

the members of J1tL. We will equip f/J(JIL) with a natural topo-

logy (2.1), and we shall see that there is an intimate connection 

between the topological spaces JfJ(Jil) and Spec A [X] 

In § 1 we give some preliminaries on Krull ordinals. The 
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Krull ordinal dim ffJ of a Noetherian topological space .9 is 

introduced. In §2 we show that cfJ(cfr~) is a Noetherian topologi­

cal space if and only if ~(ci~) is a Noetherian ordered set with 

respace to inclusion; in which case dim !JJc:Jt) equals the Krull 

ordinal of the ordered set 0PCJt) . We also give an explicit 

construction of a Noetherian space :fo(Jl{. ) 
a. of a given Krull or-

dinal a. • 

In §3 we show that if ~(fit) is Noetherian, then the cano-

nical injection 

rfJc/1£) ... Spec A[X~ 

sending P to PA[X~ is a contineous map which restricts to 

a homeomorphism 

Max(Jit) ..... Max Spec A[X1t 

Max(dl-t) being the family of maximal members of cl't . 

§4 contains the main result: If ~(~) is Noetherian, then 

A[X~ is a Noetherian ring, and we have 

tt(A[X.\.) = dim~(Jtf,) 

In particular, ii' a. is an ordinal, then there exists a Noether-

ian ring A[X~ such that 
a. 
tt(A[X]II(. ) = a. 

.;;. a. 

Parts of this result has been obtained independently by Robert 

Gordon and J.C. Robson in a resent manuscript [4] §7. Using meth­

ods different from ours they show that if A is a field, if X = 

U M and if fl (J'i) has ascending chain condition with respect 
M EJ't 
to inclusion, then A[X~ is a Noetherian ring whose Krull ordinal 

is not less than the Krull ordinal of the ordered set ~(Ji) 

In § 5 we discuss the function '·jO ~ coprof R'f on Spec R , R 
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being Noetherian. We construct rings R for which the regular 

locus of R equals the Cohen-Macaulay locus of R without being 

a constructible set in Spec R • We obtain a Noetherian domain R 

for which the function 'fJ ri coprof R;u is not bounded on Spec R • 

We also obtain a Noetherian domain of Krull dimension 2 which is 

not universally Cohen-Macaulay. 
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§ 1. Preliminaries on Krull ordinals. 

1.1 Ordinal numbers. 0 will denote the class of ordinal num-

bers where we have adjoned the symbol -1 with ~following conven-

tions 

(i) -1 < a. for every ordinal a. 

(ii) (-1)+1 = 0 

Whenever W is a set of ordinals, sup W will denote the least 

ordinal which is greater than or equal to every ordinal in W . 

Thus we define sup¢ = 0 • 

1.2 Partially ordered sets. A partially ordered set will be 

called Noetherian if every subset has a maximal element. Let ~ 

be a non-empty Noetherian set. The function A : ffJ ... 0 defined by 

A ( P) = sup (A ( Q) + 1 : P < Q } 

will briefly be called the ordinal map on ~ . It is convenient 

to let A be defined also outside ~, where it will be defined 

constantly equal to -1 • In particular we have A(P) = 0 if 

and only if P is a maximal element of jM. We let x(~) denote 

the Krull ordinal of ~ , see [1]. It is eqsily seen to be re­

lated to the ordinal map as follows: 

x(J0) = sup A (P) 
PErf 

We define x(¢) = -1 • 

1.3 Lemma Let J?> be a partially ordered, Noetherian set, and 

let c0;, •.. , ,f~ be a finite covering of ffJ of non-empty subsets 

having the following property: For each P, Q in cffJ and 1 < i < n 
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we have 

(P < Q and Q E ~ ) => P E :fJ.: • 
l l 

Then 

rt(~) = max ft ( J0..) 
. 1 l 
l= , ••• ,n 

Proof It suffices to prove the lemma for n = 2 . 
Let A1 and A2 be the ordinal maps on ff'J1 and J02 respec-

tively. By the convention in ( 2. 1 ) we have Ai(P) = -1 for 

p E ;p,~ 
l 

(i = 1 '2) . 
Let A be the ordinal map on ~ • It suffices to prove that 

(1) A(P) = max{A1(P), A2(P)} 

for all P E ~. We will prove (1) by induction on A(P) • 

We have 

(2) A(P) = sup(A(Q)+1 : P < Q} 

If A(P) = 0 then (1) is obviously satisfied. Let a be a non­

zero ordinal, 

Now put A(P) 

on ~ 1 and 

p E ~ n ffJ 2 . 
We have 

), ( p) 

and 

= a. 

ffd 2 

assume 

. If 

gives 

that (1) is satisfied whenever A(P) <a.. 

P E ./fJ i '\... ~ n ~ , then the condition 

A(P) = Ai(P) • Hence we may assume 

= sup[A(Q)+1 0 p < Q} 0 

= max sup[)~(Q)+1 p < Q and A(Q) = Ai(Q)) 
i=1,2 

= max sup (;.. .(Q)+ 1 p < Q and 
i=1,2 l 

Q E ,30. 1 
1-

= max A. (P) . I i=1,2 l 
. 
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1.4 The Krull ordinal of a Noetherian topological space. Let~ -----
be a non-empty Noetherian topological space. Let ~(~) denote 

the family of all irreducible, non-empty, closed subsets of /? . 
We give ;! (ffo) the following ordering. For members I 1 and I 2 

we put if and only if Clearly 

~(j0) becomes a Noetherian partially ordered set. We can now 

define the Krull ordinal of cfJ , notation dim /Jd, as follows 

We put dim¢ = -1 • 

The combinatorial dimension of ~ j_s defined to be the supremum 

of all integers n for which there exists a chain 

I => I 1 => ••• => I 
o I I I n 

in 'Y (iJ) • 

Observe that it coincides with the Krull ordinal, dim~, when-

ever one of them is finite and non-negative. 

1.5 The Krull ordinal o~~~etherian ring. Let R be a commu­

tative, Noetherian ring. Then Spec R has a Krull ordinal, 

dim Spec R , as a Noetherian 9 topological space. It also has a 

Krull ordinal R(SpecR) as a set, partially ordered by inclusion. 

Clearly we have 

dim Spec R = R( Spec R) 

This common value is called the Krull ordinal of R and will be 

denoted by R(R) as in [1]. 
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§2. A class of Noetherian topological spaces. 
----------------------~--~----~---

2. 1 The space f/J(Jtt,) • Let X be a fixed set, and let J'i be 

a family of finite subsets of X • If~ is non-empty, let jM(~) 

be the family of all subsets of the members of~' and let Max~) 

be the family of all the maximal members of J!t . If c:li is empty, 

it is convenient to define JU (Jbi) = Max(JI&) = (¢} • §J(J-h) will 

always be ordered by inclusion. To each P E ffJ (..}1&) we define 

'?J'(p) = (Q E §J(J'&) : P ~ Q} 

If P consists of a single element x we will write 1Y(x) in­

stead of ?J'C [x}) • The topologi~l space jD (c./'i) will be the set 

ffJc~) 
1J(P) 

equipped with the weakest topology for which every set 

is closed. We will briefly say that cfJ (Jti) is Noetherian 

if one of the equivalent conditions in the following proposition 

is satisfied. 

2.2 Pro:12osition. The following statements are equivalent 

(i) f?cfii) is Noetherian as an ordered set. 

(ii) f?cJ'tt) is Noetherian as a topological space. 

Moreover, if (i) or (ii) is satisfied, then the non-empty irredu­

cible, closed sets in .ffd Vl&) are just the sets 'i}(p) • In par-

ticular we have 

Proof The implication (ii) => (i) is obvious in view of the 

fact that we have 

( 1 ) <=> 
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for all p1 and p2 in g.;(Jlt) • We will now show (i) => (ii). 

Let cr be the collection consisting of the empty set and all 

finite unions of sets 7J'(p) for p E fJcJtt) • Clearly Y· l.S 

closed with respect to finite unions. Let us now assume that 

~(~) is Noetherian with respact to c • 

It follows from (1) that any descending chain 

is stationary. 
Q- . 

From this one can show that cr has descending 

chain condition with respect to inclusion. Hence ~ is closed 

with respect to arbitrary intersections. This shows that Y is 

the collection of closed sets in j0(~) ~ and hence J0C~) is 

a Noetherian space. Clearly, the non-empty, irreducible colsed 

sets are the sets ~9-(p) for P E /}(cf/£) • m 

2.3 Lemma Let X and ~~) 
~(~(x)) is Noetherian for each 

be as in (2.1). Assume that 

x E X Then Jd (ell(,) is N oe-

therian. Moreover 

Proof 

x(fid&J'(,)) = sup K (~( CJ'(x))) 
xEX 

In proving ( 2. 3) we will consider ~ (Jl&) as ordered by 

inclusion. Then clearly ~~~) is Noetherian. Letting A be 

the ordinal map on :fJ (Jit,) we have: 

~t(§>(J-b)) = sup A( (x})+1 
xEX 

= SUp ~t(l;"(x))+1 <SUp 7,L(5J(l.r(x))) 
x EX - xEX 

< x(9(./t)) . IJ 

2.4 Tiefinition Let x be a symbol~ We define 

~ [X] = (M U (X} : M E Ji(,} 
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2.5 Lemma ~(~(x]) is Noetherian if and only if ~(~) is, 

in which case we have 

provided that x,iuM. 
./1., 

Proof The lemma is easily verified ru~d we omit the proof. 

2.6 The construction of a Noetherian topological space fiJ(J1&a.) 

of a given Krull ordinal a. • Let a. be an arbitrary ordinal. 

We shall construct partially ordered sets Xa. as follows. If 

a. = 0 we put X = ¢ • a. If a. > 0 assume that has been 

constructed for every '3 < a. • If a. = sup [ (3 : ~ < cx.l , then we let 

X be the disjoint union of the sets X~ for 8 < a. • X will a. a. 
be ordered by letting each x!3 keep its given ordering, and let-

ting elements of xs1 and XB2 be incomparable if s1<s2<a. .. 

If there exists an ordinal s such that a. = (3+1 then we put 

xa. = xs u (x} where X is a selected element not in x8 • We let 

xa. be ordered by letting keep its given ordering, and by let-

ting X be greater than every element in xr:> • 
f) 

In each case we let cfita. be the family of maximal linearly or­

dered subsets of X . Using (2.3) and (2.5) it is easily sho~~ a. 
by transfinite induction that J0(~) is Noetherian with respect a. 
to c , and that By (2.2) is a Noe-

therian topological space witD 

dim f/J( ,fie ) a. = a. • 
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§ 3 Combinatorial localizations of polynomial rings. 

3.1 The ring A[X~ A will always denote a commutative inte-

gral domain, and A[X] is the polynomial ring in a set X of in­

determinates. Let ~fit be a family of finite subsets of X • If 

~is non-empty 9 we let A[X~ denote the localization of A[X] 

with respect to the multiplicatively closed set 

AIX] '. U MA[X] 
M E..J! 

If cfq is empty we define A[X~ to be the field of fractions of 

A[X] • 

Let cfJ(..J1{) and Max(JI{,) be as in (2.1). Whenever P E .9CJ't.) 

we let (P) denote the ideal PA[X] • In particular (¢) is the 

zero-ideal in ACX] • 

If Y is a subset of A[X] we define 

3.2 Lemma Let P be an element of 9(./Lt) 9 let ;j' be a non-

empty family contained in 'ZJ'tp) and assume that 

n(Q) I (P) 
Q Ef 

Then there exists a non-empty 9 finite subset F S X with F n P = r;t 

such that 

;;/ c u 7}( P U [x}) 
xEF 

Proof. Choose an element a in n(Q) but not in (P) , and 
;f 

select elements x 1 , ••• ,xn in X such that a E A[x1 , ••• ,xn] 

Put 



- 11 -

Then F I ¢ • If every Q in ;;;f meets F then clearly ( *) is 

satisfied. Assume to the contrary that there exists a member Q0 

in d such that Q 0 n F = ¢ . Then we would have 

a E (Q 0 ) n A[x1 , ••• ,xn] c (P) 

which is absurd. I 

3.3 Corollary Let Y be any subset of A[X] , containing a 

non-zero element and such that 1/(Y) is non-empty. Then there 

exist a finite, non-empty set [x1 , ••• ,xn} c X such that 

7J(Y) c 
n 
U lJ(x.) 

. 1 J. ].:: 

Proof This follows from (3.2) by putting d:= ?f(Y) and P := ¢ .fia 

3.4 Lemma Let Y be any subset of A[X] • Assume that ~~) 
is Noetherian. Then 1J(Y) is a closed subset of ~(J~) . 

Proof Assume that P = Y n X is a maximal member of ~(./i) such 

that 1J(Y) is not closed. If (Y) = (P) then 1J(Y) = 1J(P) 

which is closed. Hence we may assume that (Y) I (P) so 

n (Q) I (P) 
QE '2i(Y) 

By (3.2) there exist x 1 ,, •• ,xn in X ,p such that 

( 1 ) 1./(Y) = 
n 
U ?J'(Y U [x. }) 

. 1 J. 
J.= 

However, by the maximality of Y n X , each trem in the union (1) 

is either empty or closed. Hence 'lJ(Y) is closed, which is a 

contradiction. I 
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3.5 Proposition* The following statements are equivalent : 

(i) Let S be a subset of A[X] which is closed with respect 

to addition and multiplication, and which is contained in 

U MA[X] , then there exists a member M E Ji such that 
M EJ'(. 

S :::; MA[X] • 

(ii) ~(uA{) is Noetherian. 

Proof (i) => (ii) . If P1 'j•. •'j Pn 'j•.. is a strictly in­

creasing chain in ~ (ftL) then the ideal generated by UP 
n n 

is 

contained in the union UMA[X] although not contained in any of 
M 

the ideals MA[X] • 

( ii) => ( i) Assume that fP (fL) is Noetherian. Let S be 

as in (i) • We are going to show that lt(S) is non-empty. 

Let F be a variabel, running through all finite subsets of X • 

Then we have 

( 1 ) 'ZJ( s ) = n 7J( s n A [ F J 
F 

Since J0(~) is a Noetherian space by (2.2) and since each term 

'29"( S n A[F]) is closed by ( 3. 4), the intersection ( 1) reduces to 

a finite intersection. Hence there exists a finite subset F* of 

X such that 

(2) 

We have 

Since the right hand side reduces to a finite union, there exists 

*) The essential content of (3.5) has been independently estab­

lished in the proof of Theorem 7.13 in [4]. 
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a member M* E .1{ such that 

(3) S n A[F*] S (M* n F*)A[X] 

By ( 2) and ( 3) we have M* E '2J-( S) • I 

3.6 Theorem Let A[X] be the polynomial ring over an integral 

domain A • Let .A be a family of finite subsets of X , and let 

jP(J1t) be equipped with the natural topology. Assume that~(~) 

is Noetherian. Then the map 

Spec A [X~ 

sending P to PA~X~ is a contineous injection which restricts 

to a homeomorphism 

cp : Max(.fl{) "' MaxSpec A [X~ 

Proof By (3.4) ~ is contineous. cp is closed, and (3.5) shows 

that cp restricts to a bijection Max(..}{) ... MaxSpec A [X~ • ll 

§ 4 The main theorem. 

4.1 Theorem Let A be a commutative integral domain, and let 

A[X] be the polynomial ring in a set of transcendent elements. 

Let ~be a family of finite subsets of X • Then the following 

statements are equivalent : 

( i) A[Xh is a Noetherian ring. 

(ii) ~(~) is Noetherian with respect to inclusion. 

Moreover, if (i) or (ii) is satisfied, then JN(~) is a Noethe­

rian topological space and we have 

K(A[X~) = dimjU(~) • 
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4.2 Corollary Let A be a commutative integral domain; let a 

be an ordinal, and let X a. and cl~a be as in (2.6). Then 

A[Xa:.~ is a Noetherian, commutative integral domain with Krull 
a 

ordinal a. • 

4.3 Remark (4.2) disproves the conjecture (2.9) in [1] sug-

gesting that Krull ordinals of commutative, Noetherian rings have 

a countable bound. 

The proof of (4.1) goes by induction on dim~(~) . Before en-

tering the proof we need some lemmas concerning change of the fa­

mily J-i. As before, let 1J(x) be the family [P E ~~) : x E P J • 

4.4 Lemma Assume that A[X]'LJ(x) is Noetherian for every X 

in X Then 

( i) A[X~ is Noetherian. 

( ii) it(A[X] ) = sup x (A[XJ1<w ) ) • 
V"i. xEX v\x 

Proof (i) Let us first observe that .9(Jti) is Noetherian. 

Indeed, for each x E X we have a canonical orderpreserving in-

jection 

flJ ( ?J-( X) ) - Spec A[X}lJ(x) 

Hence cffi( ?J-(x)) is Noetherian for each x , so tfJ ~) is 

Noetherian. Let 0{ be a non-zero ideal in A[X] and let Ot~ 

(resp. O(.'lr(x)) denote the extension of 0( to A[X] (resp. ADC-ixx)). 

vve are going to show that ~ is finitely generated. We may 

assume that ()[ = Oi n A[X] • Let a be a non-zero element in 
..fli. 

or... By (3.3) there exist elements in X such that 
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n 
11t.?'( a) c U '(}(x.) 

J. 

For each i ( 1 < i < n) A[X]'?.9(x.) is Noetherian and we can 
J. . 

choose a finitely generated ideal 
/)-(]. 
v~ in A[X] such that 

i 
Oi ~ 0(, and 

* n i Put 01. = (a) + r ot . We have ()[* ~ 01... 
i=1 

It is easily seen that Ol*w = ~~1 for every prime ideal ~ in 

A[Xk of the form 111 = (Mk where M E ~. However, by (3.6) ~ 

these primeideals include all maximal ideals of A[X~ • It fol­

lows that Oi~ = ~so Of ...I'(.. is finitely generated. 

(ii) Clearly we have 

< ~(A[X] ) 
J(; 

for all x E X 

To prove the opposite inequality we may assume that the family 

has at least one non-empty member. In the following let ~ de­

note an arbitrary non-zero prime ideal in A[X~. Letting A 

and A' be the canonical maps on Spec A[Xk and 

respectively, we have 

( 1 ) 

Moreover 

(2) 

To any such (JI 
in X such that 

'?J(~) 

Hence we have 

0 

c 

= sup(A('f) +1) 
ta 

there exist, by ( 3. 3)' 

'ZJ( x1 ) U ••• U ?J'( xn) 

elements 

Spec A[X]ZJ-<fc') 

x1 '• • • ,xn 
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n 
Spec A[X]zy--('f) c U Spec A[X]?J{ ) . 1 x. 

l.= l. 

Using (1.3) we obtain 

x. (Spec A CX ]19'( "'D) ) _:: . max x. (Spec A(X]'l9-( x. ) 
I 1.= 1, ••• ,n 1. 

Combining this with (2) we obtain 

A. ('10) + 1 
I 

< sup x. (Spec A[X]19tx)) 
xEX 

Hence, by (1), we obtain the desired unequality 

,:: sup x. (A[X]l9(x)) 
xEX 

4.5 Lemma Let x be an element in X'\ UM • 
.)"(. 

Put Y := X'\. [x} • Then we have 

A[X~[x] = (A[Y~ [xJ 1+(x) 

respect to 
where the subscript 1 + (x) means localization with/the multipli-

cative set 1 + (x) , (x) being the ideal in (A[Yk) [x] gener­

ated by x • 

The proof of 4.3 is straight forward and will be omitted. 

4.6 Lemma Let R be a Noetherian ring, and let R[x] be the 
1+(x) 

polynomial ring in one variable, localized with respect to the 

multiplicative set 1 + (x) • Then we have 

x.(R[x] 1+(x)) = x.(R)+1 

Proof The inequality .:: follows from (2,8) in [1]. Put 

R' = R[x] 1+(x) • The canonical homomorphism R' ~ R , sending x 
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to 0 induces an injection Spec R _, Spec R' by which the image 

of (0) is not the zero-ideal in R' • This shows that 

1-t(R')>x.(R)+1 !i 

4.7 Proof of theorem 4.1. That (i) implies (ii) is trivial in 

view of the fact that the canonical map 

r9 C.ft) Spex A[X&.t 

is an order preserving injection. Let us now assume that ~(~) 

is Noetherian, cf. (2.1). By (2,2) it suffices to show the 

following 

( -:~) A[Xk is a Noetherian ring and we have 

rt(A[Xk) = x.(jJ (d'i)) • 

We are going to prove (*) by induction on tt ~ tt(~(~)) • If 

1-t = 0 , then either r::./'( = ¢ or Ji = {¢} In both cases ( -lE-) is 

obviously satisfied. Let a, be a non-zero ordinal and let us 

assume that (*) is satisfied whenever 1-t < ~ • Now assume that 

n = ~ . By (2.3) and (4.4) there is no loss of generality assum­

ing that c./{= ?Y(x) for some x E X • Consider the family 

c/V := {M\(x1 : M Edt(,} 

and the set Y := X\ (x} • We have a}{= dV [x] , and by ( 2. 5) we 

have 

tt(ff.>(Jf{)) = tt(c0(dV))+1 

Hence by the induction hypotesis A[Y~ is Noetherian with Krull 

ordinal equal to tt(cfd(Jfr)) • By (4. 5) we have 

Hence by ( 4. 6) A[X~ is a Noetherian ring of Krull ordinal ttf}(J'-0). 
I 
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§ 5 Examples where coprof R? bahaves badly on Spec R. 

5. 1 The map ? ,..... co prof R'f Let R be a commutative, Noether-

ian ring. Let profR~ be the length of a maximal regular se­

quence in ~R'P , and let dim R"f' denote the Krull dimension of 

R~ Recall the definition 

co prof Rfl := dim R'fl - prof R-p • 

CM(R) (resp. Reg(R)) will denote the Collen-Macaulay locus of R 

(resp. regular locus of R) i.e. the set of all points in Spec R 

where R'f is Cohen-Macaulay (resp. regular). 

If R is a homomorphic image of a regular ring, then by a 

theorem due to Auslander [EGA, IV, 6. 11.2] the map 1iJ 14 coprof R'F 

is upper semicontineous on Spec R In particular this function 

is bounded, and CM(R) is an open set in Spec R. It is known 

that CM(R) is not open in general. In [3] Ferrand and Raynaud 

have given an example of a local ring of dimension 3 whose Cohen-

Macaulay locus is not an open set. The present section is devoted 

to the construction of a class of Noetherian domains showing that 

in general there is little connection between dim and prof as 

functions on Spec R • In particular the function -p f-4 coprof R"f 

need not be bounded. 

5.2 Lemma Let k be a field, and assume that w is an element 

which is algebraic over k , but not contained in k • For inte­

gers r > 0 and c > 1 consider the polynomial ring in r + c 

transcendent elements over k(l'J) 

k(w)[y1 ' ••• ,yr,x1 '• • • ,xc] 

and the subring 
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Let m be the maximal ideal in A which is generated by y. ~ 
~ 

X. and wx. 
J J 

for 0 < i < r 
~ 

1 < . 
- J < c . Then we have 

prof A111 = r + 1 

dim A111 = r+ c 

Moreover, if p is a prime ideal in A of height less than c 
' 

then Al;, is regular. 

Proof Let w 

be elements of 

be algebraic 

k such that 

of degree n > 0 , and let a.0 , ••• ,0n-1 
n n-;,1 i 

t:J = t_,a,.w 
i=o ~ 

Since for 1 < j ~ c we have 

(wx. )n = 
J 

n-1 . . 
( ) ~ n-~ 2:: a.. wX. X. 

i=O ~ J J 
E x.A 

J 

we see that y 1 , ••• ~yr,x1 p.qXc is a system of parameters for 

A111 ~ so dim Am = r + c • To prove that prof A111 = r + 1 , we will 

show that the A-regular sequence y 1 , •• , , y r, x1 is maximal in Am • 
It suffices to show that every element in mAm is a zero-divisor 

for A111 /ot where 0!:= (y1 , ••• ,yr,x1 )A111 • We have 

for all j 

hence, since y1 , ••• ,yr,x1 , ••• ,xc is a system of parameters, 

there exists an integer s such that 

On the other hand wx1 is not in 0( • 

Now let ['> be a prime ideal in A of height less than c • 

Since m must be an element of Ap it is easily seen that A 

equals the localization of the regular ring 
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with respect to the multiplicative set A\. r . Hence Ap is 

regular. II 

5.3 Theorem Let JN be the set of positive integers and let f 

and g be fu...'Ylctions IN .... JN such that 

1 _::: f(n) _::: g(n) for all n E IN • 

Then there exists a Noetherian integral domain R and a bijection 

IN .... IVIax Spec R 

such that letting 111 
n denote the image of n we have 

( i) prof R111 = f(n) 
n 

( i i) dim Rm = g ( n) 
n 

(iii) A proper subset of Max Spec R is closed if and only if 
it is finite. 

Proof Let p1,p2, ••• ,pn,··· be the odd prime numbers ordered 

by size. For each n in JN let w be a primitive 
n 

of 1 and consider the following extension of ~ , 

p !!! root 
n 

"' For each n in JN let us choose sets of transcendents over ~ 

yn = £yn1'""''ynr} 9 xn = [xn1'''''xnc} 

where r := f(n) - 1 and c := g(n) - f(n) + 1 • Let A (resp. A) 
denote the polynomial ring generated over ~ (resp. qr) by Yn 

for all n > 0 . Let w X denote the set n 

and let A' be the ring between A and A which is generated 

over by Y X and 
n~ n for all n > 0 . Let lVI' 

n 
be the 

ideal in A' which is generated by Yn, Xn and wnXn • Let S 

be the multiplicative set 
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S := A 1 \ U M' 
n>o n 

Put I claim that R is the required example. We will 

first show that the maximal ideals in R are just the ideals 

m ·- M'R no- n L For this it suffices to show the following: 

(*) Let I be an ideal of A' which is contained in the union 

UM' • Then I is contained in at least one of the M' • n n 
"' ,....., 

To prove ( *) ' let Mn (resp. N ) ·-n be the ideal in A (resp. A) 

generated by y and X • n n Observe that I is contained in 

(3.5) 
,....., 

UM • Hence by I is contained in some Mn • Thus it n 

suffices to show that An Mn = M~ for all n . But since the 
,....., 

ideal M~ is contained in the ideal An Mn , and both of them 

are prime ideals lying over Mn , and the extension A ~ A' is 

"' integral, it follows that M~ = An Mn • 

If a is a non-zero element in A' ' 
then a is contained 

in only £initely many of the ideals M' 
' n so (iii) follows. 

Letting ~n be the field generated over Ill by every w m ' 
y 

m and xm for m In ' 
one easily shows that we have 

Since wn is not in ~n ~ (5.2) gives 

prof Rm = r + 1 = f(n) 
n 

dim R.m = r+c = g(n) 
n 

That R is Noetherian follows from (E1 • 1 ) on page 203 in C6J. I 

5.4 Corolla!X Let R be the ring constructed in (5.3) If 

1 = f(n) < g(n) for all n , then the sets Reg(R) and CM(R) 

coincide with the set of all non-maximal prime ideals, which is 
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a non-constructible set in Spec R (By a constructible set we 

mean a finite union of sets of the form U n F where U is open 

and F is closed). 

5.5 Example Putting f(n) ::: 1 and g(n) ::: n + 1 for all n , 

we obtain a Noetherian domain R for which the function 

r H coprof Rta 

is not bounded on Spec R • 

5.6 Example Putting f(n) ::: 1 and g(n) ::: 2 for all n , we 

obtain a Noetherian domain of dimension 2 which is not univer­

sally Cohen Macaulay. This gives an answer to the question raised 

in [EGA, IV~6.11.9 (ii)]. 
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