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Introduction.

In the following A will always denote a commutative, inte-
gral domain (with identity). In this paper we shall investigate
a class of commutative, Noetherian, flat A-algebras which may be
of interest since it is wide enough to include Noetherian rings
of any given Krull ordinal. The Krull ordinal x(R) of a Noethe-
rian ring R will be used in the sense of Bass [1]., It coincides
with cl.K - dimR as defined in Krause [5]. A definition of x(R)
is included in (1.5) below. Recall that x(R) is an ordinal which
coincides with the classical Krull dimension of R whenever one
of them is finite.
Let A[X] ©be the polynomial ring in a set of transcendent elements,
Let /A be a family of finite subsets of X and let A[X],  be

the localization of AlX] with respect to the multiplicative set

ATX] N\ U MAX]
MeM

Let jac/ﬂ) be the family consisting of all the subsets of all
the members of . We will equip 5pGJﬂJ with a natural topo-
logy (2.1), and we shall see that there is an intimate connecticn
between the topological spaces JZKJ%) and Spec A[X] .

In § 1 we give some preliminaries on Krull ordinals. The



Krull ordinal dimga of a Noetherian topological space ccp is
introduced. In §2 we show that ﬁ(cﬂ{-) is a Noetherian topologi~-
cal space if and only if (M) is a Noetherian ordered set with
respace to inclusion; in which case dimc@(o/’t) equals the Krull
ordinal of the ordered set jj(ﬂ) . We also give an explicit
construction of a Noetherian space c@(cﬂéa) of a given Krull or-
dinal a« .

In §3 we show that if ja(oﬂﬁ) is Noetherian, then the cano-

nical injection

j‘)(c/%) - Spec A[X;/‘L

sending P to PA[X}/‘L is a contineous map which restricts to

a homeomorphism
Max(Y) ~ Max SpecA[Xgﬂ) ’

Max(@¥) being the family of maximal members of <% .
§4 contains the main result: If c//a(ﬂ) is Noetherian, then

ATX] is a Noetherian ring, and we have

M

w(ATX] ) = aimPM)

X
M
Tn particular, if a is an ordinal, then there exists a Noether-

ian ring A[X] such that

oy

w(ATX] ) = «
Moy

Parts of this result has been obtained independently by Robert
Gordon and J.C. Robson in a resent manuscript 4] §7. Using meth-
ods different from ours they show that if A is a field, if X =

um and if 5‘3(«/‘6) has ascending chain condition with respect
MeM .
to inclusion, then A[X'_]ﬂ, is a Noetherian ring whose Krull ordinal

is not less than the Krull ordinal of the ordered set (M) .

In §5 we discuss the function 7{).—) coprof R.],a on SpecR, R



being Noetherian. We construct rings R for which the regular

locus of R equals the Cohen-Macaulay locus of R without being
a constructible set in SpecR . We obtain a Noetherian domain R
for which the function 79r9 coproffygl is not bounded on SpecR.
We also obtain a Noetherian domain of Krull dimension 2 which is

not universally Cohen-Macaulay.



§ 1, Preliminaries on Krull ordinals.

1.7 Ordinal numbers, 0O will denote the class of ordinal num-

bers where we have adjoned the symbol -1 with the following conven-

tions

(1) -1 <a for every ordinal a
(ii) (-1)+1 =0

Whenever W is a set of ordinals, supW will denote the least
ordinal which is greater than or equal to every ordinal in W .,

Thus we define sup@d= 0 .

1.2 Partially ordered sets, A partially ordered set will be

called Noetherian if every subset has a maximal element, Let ﬁ

be a non-empty Noetherian set. The function A :c@—' 0 defined by

AM(P) = sup{A(Q)+1 : P < Q}

will briefly be called the ordinal map on &2 . It is convenient

to let A be defined also outside &° , where it will be defined
constantly equal to -1, In particular we have A(P) = 0 if
and only if P dis a maximal element of P . We let x(J) denote
the Krull ordinal of 2 , see [1]. It is eqsily seen to be re-

lated to the ordinal map as follows:
n(2) = sup (P)
PP

We define (@) = -1 ,

1.3 Lemma Let & ve a partially ordered, Noetherian set, and

let c‘;’D geees f‘% be a finite covering of jD of non-empty subsets

having the following property: For each P, Q in P and 1<i<n



we have
(P<Q and Qefl) =>Pef.

Then
w(P) = maxn (J2.)

i=1,l00 9n 1

Proof It suffices to prove the lemma for n = 2 .

Let A and Ao be the ordinal maps on 521 and éﬁz respec-~
tively. By the convention in (2.1) we have ki(P) = -1 for
PesNR (1=1,2).

Let X Dbe the ordinal map on QQD. It suffices to prove that

(1) A(P) = max{r (P), A, (P)]}

for all P € 2. We will prove (1) by induction on A(P) .
We have

(2) AM(P) = sup{A(Q)+1 : P < Q!

If AP) = 0 then (1) is obviously satisfied. ILet a be a non-
zero ordinal, and assume that (1) is satisfied whenever A(P) <a.
Now put A(P) =« . If P e P N JAn %, then the condition
on Jﬁi and Jﬁ; gives A (P) = xi(P) . Hence we may assume
Pefn .

We have
XM(P) = sup{A(Q)+1 : P < Q}
=_m?€zsup{h(Q)+1 : P <Q and A(Q) = Xi(Q)}
i=1,
= max sup{i.(Q)+1 : P <Q and Q € 50.}
i=1,2 1 1
= max A (P) . o

i=1,2 * A



1.4 The Krull ordinal of a Noetherian topological space. TLet Ja

be a non-empty Noetherian topological space. Let o () denote
the family of all irreducible, non-empty, closed subsets of ﬁg.
We give ;f(ﬁ%) the following ordering. For members I1 and 12
in J(P) we put I, < I, if and only if I, ? I, . Clearly

gf(jb) becomes a Noetherian partially ordered set. We can now

define the Krull ordinal of Ja, notation dimcga, as follows

din P = w(F(P)) , We put dimg = -1 .

The combinatorial dimension of cgg is defined to be the supremum

of all integers n for which there exists a chain

10211 ?;:Z I, in JS(P) .

Observe that it coincides with the Krull ordinal, dim¢9a, when-

ever one of them is finite and non-negative.

1.5 The Krull ordinal of a Noetherian ring. ILet R be a commu-

tative, Noetherian ring. Then SpecR has a Krull ordinal,

dim Spec R, as a Noetherian, topological space. It also has a
Krull ordinal w»(SpecR) as a set, partially ordered by inclusion.
Clearly we have

dim Spec R = u(SpecR)

This common value is called the Krull ordinal of R and will be

denoted by »(R) as in [17.



§2. A class of Noetherian topological spaces,

2.1 The space F(M) . Let X be a fixed set, and let M, be
a family of finite subsets of X . If o/% is non-empty, let Pty
be the family of all subsets of the members of oﬂé, and let Max ")
be the family of all the maximal members of /% . If ¢ is empty,
it is convenient to define J@(J%) = Max(M) = {#} . FP(M) will
always be ordered by inclusion. To each P € gaCﬁL) we define

W(e) = (@ e PM) : P cq)

If P consists of a single element x we will write Mx) in-

stead of M {x}) . The topological space (M) will be the set

éﬁk/%) equipped with the weakest topology for which every set
29(P) is closed. We will briefly say that cjak/%) is Noetherian

if one of the equivalent conditions in the following proposition

is satisfied.

2.2 Proposition. The following statements are equivalent :

(1) <3@@ﬂ£) is Noetherian as an ordered set.
(ii) 330/%) ‘is Noetherian as a topological space.

Moreover, if (i) or (ii) is satisfied, then the non-empty irredu-
cible, closed sets in <ﬁaQ/%) are just the sets Zp(P) . In par-

ticular we have

dim L) = w(FP(M))

Proof The implication (ii) => (i) is obvious in view of the

fact fhaf we have

(1) P, ;PZ «—=> ™2, > e,)



for all P, and B,in P(H4) . Ve will now show (i) => (ii).
Let g., be the collection consisting of the empty set and all
finite unions of sets (J(P) for P € ﬁ(ﬂ) . Clearly & is
closed with respect to finite unions. Let us now assume that
f(ﬂ) is Noetherian with respact to <,

It follows from (1) that any descending chain
V) > ey o ...

is stationary. From this one can show that 052— has descending

chain condition with respect to inclusion. Hence y is closed
with respect to arbitrary intersections, This shows that c)(Z’ is
the collection of closed sets in jg(-/%) , and hence ja(\/'ﬁ) is

a Noetherian space. Clearly, the non-empty, irreducible colsed

sets are the sets H(P) for P ¢ c/m(ﬂ) .

2.3 Lemma TLet X and jD(/Lé) be as in (2.1). Assume that
j‘)( 'Z}(X)) is Noetherian for each x € X . Then JD(J%) is Noe-

therian, Moreover

(P = sup x (P Hx)))
x €X

Proof In proving (2.3) we will consider cgaﬁ/%) as ordered by
inclusion, Then clearly p/@(c/'é) is Noetherian., Letting M\ Dbe
the ordinal map on 5 (%) we have:

(M) = supa( {xD1 = sup w(P(x))+1 < sup «(P(V(x)))

x €X x €X x€X

(P . B

IA

In

2.4 Definition Let x be a symbol. We define

Mzl = (MU {x} : M eSY)
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2.5 Lemma 4°(/[x]) is Noetherian if and only if P (M) is,

in which case we have

w( P TxT)) = w(PUH)) +1

provided that x ;éJLJ M.

v

Proof The lemma is easily verified and we omit the proof.

2.6 The construction of a Noetherian topological space éa(dﬁa)

of a given Krull ordinal o . Let a be an arbitrary ordinal.

We shall construct partially ordered sets Xa as follows. If
o =0 we put XOL =g . If o >0, assume that X8 has been
constructed for every 383 <a . If a = sup{B: £ <a! , then we let
Xa be the disjoint union of the sets XB for B <a. Xa will

be ordered by letting each X, keep its given ordering, and let-

8
ting elements of XB1 and X82 be incomparable if 84 <Py <a .

If there exists an ordinal B such that a = 8+1 , then we put

Xa = XBlJ{x} where x dis a selected element not in XB . We let
XOL be ordered by letting XB keep its given ordering, and by let-
ting x be greater than every element in XS .

In each case we let a@% be the family of maximal linearly or-
dered subsets of Xa . Using (2.3%) and (2.5) it is easily shown
by transfinite induction that 3@(¢Q%) is Noetherian with respect
to <, and that w(P(M)) = a . By (2.2) jD(J%h) is a Noe-

therian topological space with .

dim@(r-/%a) = 0 o
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§ 3 Combinatorial localizations of polynomial rings.

3.1 The ring A[Xl% . A will always denote a commutative inte-
gral domain, and A[X] is the polynomial ring in a set X of in-
determinates. TLet <% be a family of finite subsets of X . If

M is non-empty, we let A[X\]/% denote the localization of A[X]

with respect to the multiplicatively closed set

ATX] N UMA[X]
MeAt

1f JM is empty we define A[Xl,{ to be the field of fractions of
ATX] .

Let c@(f%) and Max/{) be as in (2.1). Whenever P ¢ cg')(./'t)
we let (P) denote the ideal PA[X] . In particular (g) is the
zero-ideal in AflX] .

If Y 4is a subset of A[X] we define

V) = (P e M)+ ¥ c (p)}

3,2 Lemma Let P be an element of jg(/"t) , let J be a non-

empty family contained in 7/“’(]?) and assume that

n(Q) # (P)
Qe
Then there exists a non-empty, finite subset F c X with FNP-= o
such that
(*) 7 c U Ppuxl)

XEFR

Proof. Choose an element a in DQ(Q) but not in (P) , and

select elements X;,...,%x, in X such that a € A[x1,...,xn] .

Put
F = {X19uon,xn} \P



- 11 -

Then P £ @ . If every Q in 5 meets P +then clearly (*) is
satisfied. Assume to the contrary that there exists a member Qo

in & such that Q,NF = ¢ . Then we would have

a € (Q) nAlxy,..0x ] ¢ (P)

which is absurd.

3.3 Corollary Let Y %be any subset of A[X] , containing a
non-zero element and such that ?/q'(Y) is non-empty. Then there

exist a finite, non-empty set {x1,...,xn} c X such that

() ¢ I{Jl /Ly(xi)
i=1

Proof This follows from (3.2) by putting S = HMY) and P =g K

3.4 Temma ILet Y be any subset of A[X] . Assume that ‘—90(/'{)
is Noetherian. Then U/(Y) is a closed subset of jo(/‘(-) .

Proof Assume that P = YNX is a maximal member of jb(/‘i) such
that LXY) is not closed. If (Y) = (P) +then 7HY) = (@)

which is closed. Hence we may assume that (Y) # (P) so

n (Q) # (P)
Qe MY) \

By (3.2) there exist Xq5e00s%, in XN\P such that
n
(1) Ty = U VU xy))
1=
However, by the maximality of Y n X , each trem in the union (1)

is either empty or closed. Hence ’U’(Y) is closed, which is a

contradiction. %
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3.5 Proposition® The following statements are equivalent :

(i) Let S be a subset of A[X] which is closed with respect
to addition and multiplication, and which is contained in

UMA[X] , then there exists a member M € /M such that
MeAM
S c MA[X] .

(1i) FM) is Noetherian,

Proof (1) => (ii) . 1If P, C:...; P, i... is a strictly in-
creasing chain in (ﬂpgﬂ{) then the ideal generated by lJPn is
n

contained in the union ﬁNHX[X] although not contained in any of
the ideals MA[X] .

(ii) => (1) . Assume that J°(M) is Noetherian. Let S be
as in (i) . We are goihg to show that 27(S) is non-empty.

Let F be a variabel, running through all finite subsets of X .

Then we have

(1) »(s) = gv‘(snA[F]

Since Jacﬂ() is a Noetherian space by (2.2) and since each term
TSN ATF]) is closed by (3.4), the intersection (1) reduces to
a finite intersection. Hence there exists a finite subset TF, of

X such that

(2) 4 T(s) = THS nALP,T)

We have

SN AR, g YN Py )ALX]

Since the right hand side reduces to a finite union, there exists

#) The essential content of (3.5) has been independently estab-
lished in the proof of Theorem 7.13 in [4].
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a member M, € _A{such that
(3) SNALF,] € (Mg N F,)A[X]

By (2) and (3) we have 1MW, € ™s) . B

3.6 Theorem Let AlX] Dbe the polynomial ring over an integral
domain A . Let  be a family of finite subsets of X , and let
jDW) be equipped with the natural topology. Assume that j"(ﬂ)

is Noetherian. Then the map

Cp:c?(./"(,) - SpeoA[X]J%

sending P to PA[X% is a contineous injection which restricts

to a homeomorphism

o : Max(UY) ~ MaxSpecA[X]J%

Proof By (3.4) ¢ is contineous. ¢ is closed, and (3.5) shows

that ¢ restricts to a bijection Max(/M) - MaxSpecA[XLt . B

§ 4 The main theorem.

4,17 Theorem Let A be a commutative integral domain, and let
ATX] Dve the polynomial ring in a set of transcendent elements,
Let Y ve a family of finite subsets of X . Then the following
statements are equivalent :

(i) A[X:"/"L is a Noetherian ring.
(ii) .:9:)(‘/"() is Noetherian with respect to inclusion.

Moreover, if (i) or (ii) is satisfied, then ja(f‘() is a Noethe-

rian topological space and we have

n(ALX],) = dinPM) .
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4.2 Corollary TLet A Dbe a commutative integral domain; let a
be an ordinal, and let Xa and dqﬂ be as in (2.6). Then

A[Xalq, is a Noetherian, commutative integral domain with Krull

a
ordinal o .

4.3 Remark (4.2) disproves the conjecture (2.9) in (1] sug-
gesting that Krull ordinals of commutative, Noetherian rings have

a countable bound.

The proof of (4.1) goes by induction on dim&P(AL) . Before en-
tering the proof we need some lemmas concerning change of the fa-

mily <M . As before, let ‘(x) be the family (P e (M) : xe P}.

4,4 Lemma  Assume that AEX]?KX) is Noetherian for every X

in X . Then
(1) AEXl«, is Noetherian.

(11) w(A[X] ) = sup » (A[X] ) .

S x€eX M=)
Proof (i) Let us first observe that Jaﬁﬁt) is Noetherian.
Indeed, for each x ¢ X we have a canonical orderpreserving in-
jection

72 -
S (T(x)) Spec A[X]v’(x)

Hence &P(7%(x)) 1is Noetherian for each x , S0 <90@ﬂﬁ) is
Noetherian. Let O{ be a non-zero ideal in A[X] and let Cﬁb%

) denote the extension of O to A[X] (resp..AB%K y.
by

(resp. OC
(%)

We are going to show that G@ﬁt is finitely generated., We may

assume that Ci::C%qﬁ\A[X] . Let a Dbe a non-zero element in

ac. By (3.3) there exist elements Xqsee0sX, in X such that
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V(a) L ?}’(Xi)

i=1

n

For each 1 (1 <i <n) AflX] is Noetherian and we can

Ux3)
i
choose a finitely generated ideal OU in AlX] such that

i i
0t s ot =a Oy = Py

n i N
put O = (a)+ ¥ OU . We have O c Ot.
i=1

1=
It is easily seen that at* = Ofm for every prime ideal MM in
MX.]/.*L of the form M = (M..)/‘{. where M € M . However, by (3.6),
these primeideals include all maximal ideals of A[X]J% . It fol-
* . . .
lows that OC, = OZJLso %tls finitely generated.

(ii) Clearly we have

”(A[X]’U(x)) < n(A[X;l/Y’) for all x € X

To prove the opposite inequality we may assume that the family
has at least one non-empty member, In the following 1let 70 de-
note an arbitrary non-zero prime ideal in A[X;]/%. Letting A
and \' be the canonical maps on SpecA[X;L and Spec A[X]wTa)

respectively, we have

(1) M(A[X‘]ﬂ) = s%p(x(ja) +1)
Moreover
(2) A(p) +1 = x'(pA[X]mTO)) +1 < n(Spec A[X]M_’a))

To any such 70;! 0 there exist, by (3.3), elements XqyenerXy

in X such that
Tip) g Dlxpu.nv M(x,)

Hence we have
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: n

1
Using (1.3) we obtain

x(Spec A[X]ﬁ(r)) ) < iﬂ?f.’nn(Spec A[X]?}(xi)

Combining this with (2) we obtain

)\(7’()) +1 < ng%u (Spec A[X]??(x))

Hence, by (1), we obtain the desired unequality

K(A[X‘]}'L) < EE%K(A[X]y(X)) £

4,5 Temma TLet x Dbe an element in X\JlLJtM.

Put Y = X\ {x} . Then we have

MEyryy = (ALTLI ] (5)

respect to

where the subscript 1+ (x) means localization with/the multipli-

cative set 1+ (x) , (x) Dbeing the ideal in (A[YL]/%)[x] gener-

ated by x .

The proof of 4.3 is straight forward and will be omitted.

1+(x
polynomial ring in one variable, localized with respect to the

4,6 Temma TLet R be a Noetherian ring, and let R[x]( )be the

multiplicative set 1+ (x) . Then we have

A(RIE]y (5)) = #(R) + 1

Proof The inequality < follows from (2.8) in [1]. Put

R' = R[x]1+(x) . The canonical homomorphism R' - R , sending X
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to 0 dinduces an injection SpecR - SpecR' by which the image
of (0) 4is not the zero-ideal in R' , This shows that

w(R') > w(R) +1 . A

4.7 Proof of theorem 4.1, That (i) implies (ii) is trivial in

view of the fact that the canonical map
2 -
J(M) ~ sSpexAlX],

is an order preserving injection. Let us now assume that Jpgﬁﬁ)
is Noetherian, cf, (2.1). By (2.2) it suffices to show the

following
(*) AlX], is a Noetherian ring and we have

n(ALX),) = w(P ) .

We are going to prove (*) by induction on #« = n(ﬁaﬁf%)) . If

% = 0 , then either M =@ or JM= {g} . In both cases (¥*) is
obviously satisfied. ILet o Dbe a non-zero ordinal and let us
assume that (*) is satisfied whenever x < q ., Now assume that
“=a . By (2.3) and (4.4) there is no loss of generality assum-

ing that M= T¥(x) for some x € X . Consider the family
A = (U\{x} : M €S}

and the set Y= X\{x} . We have oM=AH[x] , and by (2.5) we

have

(P M) = w(PAH)) + 1

Hence by the induction hypotesis A[Ylv is Noetherian with Krull
ordinal equal to n(éEG/V)) . By (4.5) we have

ATX], = (ALY )x]q, (o)

Hence by (4.6) A[Xl% is a Noetherian ring of Krull ordinal sx(PEM).
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§5 Examples where coprof R‘P bahaves badly on SpecR,

5.1 The map ‘]9 b coprof R'P . Let R be a commutative, Noether-
ian ring., Let prof RT’ be the length of a maximal regular se-
quence in 70R10 , and let dim RT"’ denote the Krull dimension of

RT" . Recall the definition

coprof R.{a = dimRT, - prof R7° .

CM(R) (resp. Reg(R)) will denote the Cohen-Macaulay locus of R
(resp. regular locus of R) i.e. the set of all points in SpecR
where RT" is Cohen-Macaulay (resp'. regular),

If R is a homomorphic image of a regular ring, then by a
theorem due to Auslander [EGA,IV,6.11,2] the map 70 1% coprof RT"
is upper semicontineous on ©SpecR . In particular this function
is bounded, and CM(R) dis an open set in SpecR. It is known
that OCM(R) is not open in general. In [3] Ferrand and Raynaud
have given an example of a local ring of dimension 3 whose Cohen-
Macaulay locus is not an open set. The present section is devoted
to the construction of a class of Noetherian domains showing that
in general there is little connection between dim and prof as
functions on SpecR . In particular the function ‘PH coprofRTo

need not be bounded.

5.2 Lemma Let k be a field, and assume that w is an element
which is algebraic over k , but not contained in k ., For inte-
gers r >0 and c¢ > 1 consider the polynomial ring in r+c

transcendent elements over k()

k(w)[y19'--syr9x19"°’XC]
and the subring

A:: k[y1,-qogyr9X1gnllsX09wX1gono9wXC]
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Let M be the maximal ideal in A which is generated by Vs

Xy and WX 5 for 0<i<r, 1< j<c . Then we have

r+1

prof Am

r+c

dim Am

Moreover, if ‘Iﬂ is a prime ideal in A of height less than c¢ ,

then AT° is regular.

Proof Let ® be algebraic of degree n > 0 , and let ao,...;on_1

n-1 :
be elements of k such that wn = T qiwl .
i=o0
Since for 1 < j < c¢ we have
n-1 . n-1 . .
(x ) = ¥ a0 xB = ¢ o (wx. ) 1=2"t e x.a
J i=o J i=0 T J J J

we see that V9seeesTpsXyseoe, X, 15 a system of parameters for
Am ,; S0 dimAm =r+c , To prove that profAm =r+1 , we will
show that the A-regular sequence TiseeesYnsXy is maximal in A,m

It suffices to show that every element in M A,m is a zero-divisor

for Am/ot where Oz== (y1,...,yr,X1 )Am . We have
xj(wx1) = (uuxj)x1 € x,A  for all

hence, since FiseeesTpsXyseees X, is a system of parameters,

there exists an integer s such that
S
M Ay wxy C H

On the other hand wx, is not in Y.

1
Now let 7‘3 be a prime ideal in A of height less than c .
Since © must be an element of A’F’ , 1t is easily seen that A

equals the localization of the regular ring

k(w)[y1,...,yr,x1,...,XC]
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with respect to the multiplicative set Aﬁ\?@ . Hence AP is

regular, @

5.3 Theorem Let IN Dbe the set of positive integers and let £

and g be functions IN -IN such that

1 < f(n) < g(n) for all n €IV .

Then there exists a Noetherian integral domain R and a bijection
IV - Max SpecR

such that letting mn denote the image of n we have

(1) prof Ry, f(n)
n

g(n)

(ii) dim Ry
n

(iii) A proper subset of Max SpecR is closed if and only if
it is finite.

Proof Let P1sPoseassPpsecs be the odd prime numbers ordered

by size. For each m in W let W, be a primitive pn-:c-l—1 root

of 1 and consider the following extension of @ ,

)

For ecach n in IN 1let us choose sets of transcendents over @

~

@ = Q(W1gooogwngaoo

Yl’l = {yn"s'-'synr} 9 XIl = {Xn']""9ch}
where T= f(n)-1 and c= g(n)-f(n)+1 . Let A (resp. K)
denote the polynomial ring generated over @ (resp. 6) by Yh

and Xn for all n >0 ., Let wnX denote the set
{wan1,...,wanc}

and let A' ©be the ring between A and A which is generated

over @ Dby Yn, Xn and man for all n >0 . Let Mﬁ be the

ideal in A' which is generated by Y., X, and w X . Let S

be the multiplicative set
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S = A'\ UM
n>o 1

1

first show that the maximal ideals in R are just the ideals

I claim that R is the required example., We will

Tﬂnzz MﬁR . For this it suffices to show the following:

(*) TLet I be an ideal of A' which is contained in the union
lJMh « Then I 1is contained in at least one of the Mﬁ .

To prove (*), let M, (resp. ﬁﬁ) be the ideal in A (resp.K)
generated by Yn and Xn . Observe that I is contained in
lJﬁn . Hence by (3,5) I is contained in some ﬁ£ . Thus it
suffices to show that Arwﬁﬁ = Mﬁ for all n . But since the
ideal Jﬁ is contained in the ideal Ar1ﬁ£ ; and both of them
are prime ideals lying over Mn , and the extension A - A' is
integral, it follows that M! = Anil .

If a 1is a non-zero element in A' , then a 1is contained
in only finitely many of the ideals IM! , so (iii) follows.

Letting @n be the field generated over @ by every Wy s

Y end X for m Z n , one easily shows that we have

R, = Q[Y ,X ,0 X ] ,
Tﬂn n-"n’*n’"n"n (Yn,Xn,uan)

Since w, 1is not in @ (5.2) gives

n

ProfRy =1+ 1 = f(n)
n

dim Roy =r+c = g(n)
n

That R is Noetherian follows from (E1.1) on page 203 in [6]. &

5.4 Corollary Let R be the ring constructed in (5.3) . If
1 = f(n) < g(n) for all =n , then the sets Reg(R) and CM(R)

coincide with the set of all non-maximal prime ideals, which is
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a non-constructible set in SpecR (By a constructible set we
mean a finite union of sets of the form UNTF where U 1is open

and F is closed).

5.5 Example Putting f(n) =1 and g(n) = n+1 for all n ,

we obtain a Noetherian domain R for which the function

T& » coprof R.’a

is not bounded on SpecR .

5.6 Example Putting f(n) =1 and g(n) =2 for all n , we
obtain a Noetherian domain of dimension 2 which is not univer-
sally Cohen Macaulay. This gives an answer to the question raised

in [EGA, IV,6.711.9 (ii)].
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