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INTRODUCTION 

Let x 1 , .•. ,xm be elements generating an ideal a in a 

commutative ring R • Put A:= R/m and let M and N be A-

modules. The purpose of this paper is to find a close relation-

ship between Tor~(IY.I 1 N) and Tor~(]II,N) • This is of course al-

most hopeless in general, so we make right away the assumption 

that the Koszul complex R 
K (x1 ' ••. ~ xm) be acyclic, cf. (2.2). 

Let G = A[X1 , ••• ,Xm] be the polynomial ring in m variables 

of degree - 2 .. The main idea is to turn Tor~(M 1 N) into a gra-

ded G-module in such a way that it becomes an artinian G-module 

whenever Tor~(M,N) is an artinian R-module • The main result 

(3.1) is formulated in terms ofmore general derived functors. In 

particular we obtain dual results for Ext • One of the conse-

quences of (3.1) is the following (4.2): 

Let A,~ be a local complete intersection with 

and let M and N be A-Taodules of finite type such that M ®AN 

has finite length 1 (M ~ N) • Then there exists a polynomial 

n~,N(t) in ~[t] such that we have the following identity of 
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powerseries 

Moreover, if R -+ A is a surjective ringhomomorphism where R 

is regular 9 local of the same imbedding dimension as A then we 

have 

whe:ee 

is the intersection multiplicity. Cf. [Se]. 

As an application of (*) we prove that if A* = A ~ M is the 

trivial extension of a local complete intersection A by a fini-

tely generated A-module M 9 then the Poincar~ series of A* • 1-1. • 

is a rational function (4.5), k being the residue field of A* 

§§ 1 and 2 contain more or less well known lemmas. In § 3 

we prove the m~in theorem (3.1) 9 while§ 4 contains the applica-

tions to intersection theory and the rationality 

problem for Poincar~ series. 

NOTATION 

If H is a graded module, 

homogeneous components, i.e. 

H 
p 

(p E Z6 ) will denote its 

H is called positively graded if Hp = 0 for p < 0 

It is called negatively graded if Hp = 0 for p > 0 
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If Y is a complex 9 its homology is denoted by H.(Y) • 

Vie use the convention 

for p E ~ • 

R and A will always be commutative rings with identity. 

ModR denotes the category of R-modules. Let 

be an additive functor. For q ~ 0 let LqF and RqF denote 

the +h th 
q~ left derived functor, respectively the q--. right deri-

ved functor of F • It is convenient to introduce the following 

notation: 

If F is covariant, put 

D F := L F p p 

D F := 0 p 

for p > 0 

othervrise . 

If F is contravariant, put 

D F := R-PF p 

D F := 0 p 

In both cases we put 

for p < 0 

otherwise . 

where p runs through ~ . 
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§ 1. GRAJ)ED MODULES A:HD POINC.ARE SERIES. 

1.1 DEFINITION. Let G =JlGi be a ~-graded ring and let 

H =JlHp be a ~-graded G-module. Let n be an integer. We 

define H(n) to be the ~-graded G-module 

H(n) =Jl H(n)P 

where H(n)p = H . p-n 

If each Hp is a G0 -module of finite length l(Hp) , we define 

the Poincar~-series of H to be the formal powerse~ies 

XH ( t ) ·- r 1 ( H ) t ! p : 
Q- p p 

Observe that if n > 0 and if H is positively graded~ then so 

is H(n) and we have 

whenever or is defined. 

1.2 LE1ll~. Let H be a ~-graded left module over a not neces-

sarily commutative ring G • Assume that Hp = 0 for all p 

sufficiently small (resp. large). Let -.r 
.i>.. H _, H be a homogen-

eous G-linear map of negative degree w . Assume that the graded 

G-module Ker X is artinian (resp. noetherian), then H is an 

artinian (resp. noetherian) module over the ring G[X] • 

PROOF. The noetherian case is a version of the Hilbert basis-satz. 

Yle will only prove the artinian case. 

Put I = Ker X and let 

... 
be a descending sequence of graded submodules of H • 
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For each pair of non-negative integers p~q put 

Then Ip 9 q are left H-modules satisfying 

I p ' q ::) I p+ 1 ' q + I p ' q + 1 -
Since I is artinian we can pick an integer Q such that 

Ip,q = Ip,Q for q ~ Q , p ~ 0 . 

We will now show that 

for q ~ Q , p > 0 • 

It suffices to show that in each degree r the inclusion map 

is an isomorphism. This can be shown by induction on r applying 

the five lemma to the diagram 

0 -> (XpHq)r X, - ....... 0 

J 
0 (XpHQ) 

r 
¢._> 0 -> .!...> 

1.3 LEMMA. Let A be a commutative ring and let G= A[X1, ••• ,Xm] 

be the polynomial ring. Let w1 , ••• ,wm be non-zero integers, and 

give G a grading by putting G0 = A and letting Xi have de-

gree w .• 
J. 

Let H be a graded G-module which is either positively 

or negatively graded, and such that each homogeneous component Hp 

is an A-module of finite length. Assume moreover that H is ei-

ther an artinian or a noetherian G-module. Then there exists a 

polynomial n(t) in ~(t] such that the Poincar~-series of H 

has the form 
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(For m = 0 the formula should be read xH(t) = rr(t) ) 

PROOF. The standard proof which goes by induction on m can be 

adapted to all cases. Let us just sketch the proof in the case 

where H is artinian and positively graded. For m = 0 we have 

Hp = 0 for almost all p 9 hence xH(t) is a polynomial. Now 

let m > 0 • Let us first treat the case where w < 0 • m Multi-

plication by X 
ill 

gives rise to an exact sequence of graded G-mo-

dules 

0 -> N c.__> H -> c -> 0 

with homomorphisms of degree zero. It follows that 

-w 
(1-t m)xH(t) = xN(t)- x0 (t) 

( 1 ) 

(2) 

cf. ( 1 ) • Since N and r< 
v are ldlled by Xm , they are modules 

over G/X G ~ A[X1 , ••• ,X 1 J m m- and the induction hypotesis applies 

to N and C • Hence the desired formula for xH(t) follows 

from ( 2). 

In the case where wn > 0 we just have to replace (1) by a se­

quence of the form 
X 

0 -> N .c._> H(wn) ....,E!> H -> C -> 0 

and repeat the argument. 
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§ 2. DIFFERENTIAL GRADED MODULES AND ALGEBRAS 

2.1 DEFINITION. A pair (K~d) will be called a DG-algebra over 

a ring R if K is an associative, strictly skew-commutative dif-

ferential graded algebra over R , with differential d of degree 

-1 , and unit element 1 , such that 

for p < 0 • 

A differential graded module over a DG-algebra (K,d) will briefly 

be called a DG-module over K • 

A triple (K,d,e) will be called a DGA-algebra over R if 

(i) (K,d) is a DG-algebra over R 

(ii) e is a surjective algebra homomorphism from K onto a 

residue class ring of R such that 

ed = 0 for p > 0 . 

e will be called the augmentation. 

Let (K,d,e) be a DGA-algebra over R with augmentation 

e : K ..... ~tJL • By a DGA-module over K we mean a triple ( L, d, 'll) 

where (L,d') is a DG-module over K and 'll is an R-linear map 

from L to an A-module, such that 

!ld' = 0 

and 

!l(xl) = e(X)T)(l) 

2.2 EX.AlVIPLE. Let x1 ' . • • ,xm be a seq_uence of elements in a com-

mutative ring R • Let 

R K = K (x1 , •.. , xm) 

be the Koszul complex generated over R by x1 '. • . 'xm ' 
cf. [Se] 

ch. IV no.2. K is a DG-algebra over R Observe that Ko = R • 
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Equipped with the augmentation induced by the canonical map 

R .... 

K becomes a DGA-algebra over R • By the augmentation ideal in 

K we will always mean the kernel of this augmentation. Recall 

that if x1 ' ••• 'xm is a regular sequence, then K is acyclic. 

2.3 DEFINITION. Let K be any DGA-algebra over R and let L 

be a DGA-module over K with augmentation 'l: L .... M • Let v1 

be a non-negative integer~ and let (x ) be a set of homogen-a. a:EI 

eous cycles in Ker n ~ of degree w • By the symbol combination 

we shall mean the DGA-module L' over K , uniquely determined 

by (i) - (iii) below: 

(i) As a graded K-module, L' is the direct sum of L and the 

free K-module with basis (T ) , each T being a homo-a. a:EI a: 

geneous element of degree w + 1 • 

(ii) The differential d on L' is defined as follows: By (i) 

every element in L' can be expressed uniquely in the form 

where 1 

1 + I: k T a: a. ('}., 

and k are 
(l 

homogeneous elements in 

respectively, k being zero for almost all a. a. 
Letting dK and dL denote the differential 

respectively, we can now define d as follows 

L 

. 
on 

[k J 
d ( 1 + r. k T ) := dL ( 1 ) + I: ( dK ( k ) T + ( - 1 ) a k x ) a. rr a a. a a a 

where denotes the degree of k a. 

and 

K and 

(iii) We equip L' with the augmentation induced by the aug-

mentation on L • 

K 

L 
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It is now straight forward to check that L' is a TIGA-module 

over K • 

2.4 LEMMA. Let K be a TIGA-algebra over R , with augmentation 

e : K _, A , A being a factor ring of R . Let M be an A-module. 

Then there exists an acyclic TIGA-module L over K with augmen-

tation onto M , and such that L is free as a K-module. 

PROOF. We shall obtain L as the union of an ascending chain of 

TIGA-modules over K 

L0 c L' c ..• ~ Ln c .•• 

We will define Ln inductively. For n = 0 , choose a set of 

generators (m ) 0 a. a.EI 
for the A-module M • Let 

TIG-module over K generated by a set of generators 

be the free 

(T~)etEio of 

degree zero. N . . Lo ow we equlp with the unique augmentation 

sending to for all (l • Now let n > 0 and 

assume that Ln has been constructed. Let (x ) be a set of a. a.EI 
generators for the R-module 

Zn(Ln) n Ker 11/Bn(Ln) • 

Here Zn(Ln) and Bn(Ln) denote the set of n-cycles and n-boun-

daries in Ln 11 denotes the augmentation on Ln . If I is 

empty 9 put Ln+1 ~ Ln , otherwise define 

Ln+1 := Ln( .•• ,TCl, • .,;dTa.=xa.} .. 

Finally put 

L:= U Ln 
n>o 

It is easily seen that L is an acyclic TIGA-module over K , with 

augmentation onto M . It is also clear that L is free as a 

graded K-module. I 



- 10 -

2.5 REMARK. The construction of L above can be made canonical 

in following way: Each time a set of generators is to be chosen, 

one can select the maximal one. 

2.6 LEMMA. Let 

ideal I . Let 

graded K-module. 

isomorphism 

K be an acyclic DGA-algebra with augmentation­

L be a DGA-module over K which is free as a 

Then the canonical map L ~ L/IL induces an 

H.(L) ~ H.(L/IL) 

PROOF. If L is generated by elements of degree zero, then as 

a complex we have L ~ K hence IL ~ I so H.(IL) = 0 • Now 

let Ln be the sub-DGA-module of L generated by the elements 

of degree < n . We have an exact sequence of complexes 

0 --> ILn JL> ILn+1 --> Coker i --> 0 

where Coker i , as a complex, is isomorphic to a direct sum of 

copies of the complex I . 

Hence H.(Coker i) = 0 so 

H.(ILn) = H.(ILn+1 ) 

Hence by induction 

for all n > 0 . 

It follows that H.(IL) = 0 9 whencethe map 

H.(L) ~ H.(L/IL) 

is an isomorphism. 
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2.7 LEMMA. Consider the following diagram of complexes: 

0 

~I 

0 

.J 

0 

~ 
0 -->X'--> X-->~~--> 0 

0 ->Y'~ Y -> yn -> 0 

~ + ~ + ~ 
0 -> Z'-> z -> Z" ->0 

t ~ t 
0 0 0 

with exact rows and columns, + indicating that the square is 

commutative, indicating an anticommutative square. Then the 

exact homology sequences yield a commutative diagram 

H. (Y) --> H.(Y") -> H.(Y') 

~ ' ~ 'it 

H.(Z) -> H. (Z") -> H.(Z') 

J I t " w 
H. (X) --> H. (X") -> H. (X') 

PROOF. This follows easily from Prop. 2.1, §2 Chap. IV in [C.E] 

by forcing the upper diagram to be commutative by changing sign 

of the upper, left vertical map. 11 
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§ 3 THE :MAIN THEOREM 

From now on let x 1 , ••• ,xm be elements in a commutative 

ring R generating an ideal Ol Let R 
K := K ( x 1 ~ • • • 9 xm ) be the 

Koszul complex. Of. (2.2). Put A:= R/~ and consider the func-

tor 

T : ModR ..... ModA 

defined by T(M) = MjatM • Let 

be a given A-linear functor and consider the composition F := Fo T • 

We will consider ModA 

way. Observe that F 

the following 

as a subcategory of ModR in the obvious 

is the restriction of F to ModA • In 

denotes the polynomial ring, negatively graded by giving each Xi 

the weight - 2 • The main result in this paper is the following: 

3. 1 THEOREM. Assume that the Koszul complex 

is exact. Then for each A-module M , the graded A-module 

can be given structure of a graded G-module in such a way that: 

(i) D.F becomes a functor from the category of A-modules to 

the category of ~- graded G-modules. 

(ii) If F is covariant (resp. contravariant) and if D.F(M) is 

an artinian (resp. noetherian) R-module, then D.F(M) is an 

artinian, positively graded (resp. noetherian, negatively 

graded) G-module. 

(iii) If DqF(M) is an A-module of finite length for all q 
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in ~ 9 then so is DqF(M) 

(iv) If D.F(M) is an A-module of finite length 9 then there 

exists a polynomial n(t) in ~[t] such that 

I: l(D F(M))tlql = (1-t2 r-mn(t) • q q 

Moreover we have 

Before entering the proof of the theorem we shall prove the 

following lemma: 

3.2 LE1fi!A. Let L be a DG-module over the DG-algebra K = 

R 
K (x19 ••• ,xm) • Assume that L is free as a graded K-module. 

Let I be the augmentation ideal in K • Then 

(i) H.(F(L/IL)) has a structure of a ~-graded G-module with 

the following properties: 

(ii) If F is covariant (resp. contravariant) and if the graded 

A-module H.(F(L)) is artinian (resp. noetherian), then 

the graded G-module H.(F(L/IL)) is positively graded and 

artinian (resp. negatively graded and noetherian). 

(iii) If Hq(F(L)) is an A-module of finite length for each q , 

then so is Hq(F(L/IL)) • 

(iv) If H.(F(L)) is an A-module of finite length, then there 

exists a polynomial n(t) in ~[t] such that we have the 

following identity of powerseries: 

Moreover we have 
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PROOF. Let T 1 ~ ..• ,Tm be a set of algebra generators for K 

such that dT. = x. for i = 1~···~m. Let~ be the ideal 
J. J. 

generated by x 1 , ••. ,xm and put Y := L/Ob L • Clearly we have an 

identity of complexe? 

F(L) = F(Y) ( 1 ) 

Let [1,m] denote the set {1, ••• ,m} • In the following we shall 

letS denote an arbitrary subset of [1 9 m] , and Is denotes the 

ideal in the algebra K which is generated by Ti for each i E S. 

We consider the following DG-module over K 

We put v - ' Observe that 

L/IL = Y[ 1 ,m] (2) 

Since Y8 is in particular a complex of R-modules, we may apply 

F and obtain a complex F(Y8 ) of A-modules. 

From (1) and (2) we have 

H.(F(L)) = H.(F(Y%)) (3) 

H.(F(L/IL)) = H.(F(Y[ 1 ,m])) (4) 

(i). We shall now equip the graded A-module H.(F(Y8 )) with a 

structure of a graded G-module. Let us start by defining the 

action of X. 
J. 

on H. (F(Y8 )) for an arbitrary i in (1,m] If 

act as the zero-map. Let us i is not in s then we 

now assume that i E S 

of degree 1 , defined by 

f.(y) = (-1)PT.y 
J. l 

let X. 
J. 

Consider the homogeneous map 

for every y E y p 

f.:Y-oY 
J. 

One sees that fi is a K-linear map which commutes with the dif­

ferential. Put 
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s. := s ...... [i 1 • 
l -

One easily checks that 

s. 
y l ... 

f. 
l 

s. y l 

induces a DG-homomorphism 

whose kernel equals 
s. 

T.Y 1 , which in turn equals the kernel of 
l 

the canonical map of degree zero 

s. 
g. : y l 

l 
... 

Hence f. induces an injective map 
l 

Ys ... ysl. which by abuse of 

notation will be denoted by Ti , regardless of S • Thus we have 

an exact sequence of complexes over A 

S Ti s. g. S 
0 -> y -> y l __!> y -> 0 (5) 

From now on we will assume that F is covariant. The proof in 

the contravariant case is similar and will be left to the reader. 

(5) splits as a sequence of A-modules. Hence we obtain an exact 

sequence of A-modules 

s. s 
--> F(Y 1 ) --> F(Y ) -> 0 (6) 

Let oi denote the connection homomorphism in the homology se-

quence associated to (6). 

H.(F(Y8 )) as follows 

x.h ~ (-1)poi(h) 
l 

Now we define the action of 

where h E H (F(Y8 )) 
p 

x. 
l 

on 

In this way X. 
l 

may be considered as a homogeneous map of degree 

-2. The reason for the factor (-1)P is that we want certain 

maps arising later to be G-linear. 

In order to have an action of G on H. (F(YS)) it remains 

to show that X. and xj are commuting operators on 
l 

for i ~ j E [ 1 ,m] • 
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If i or j is not in S 1 then this is obviously the case. 

Hence there is no loss of generality assuming that i and j 

are distinct elements in S • Put 

Using exact sequences of the type (5) we obtain a diagram of com-

plexes with exact rows and columns 

0 0 0 

t t I 
T· 'V 

yS s. ,... 
0 -> .2> y J -> yu -> 0 

tTi J;Ti !T. 
'V l 

s. T. s .. s. 
0 -> y l ...l> y lJ.....,. y l_> 0 

J; t I 
~I 

yS 
T. s. s 0 -> ..:..J.> y J -> y -> 0 

t t t 
0 0 0 

in which every square is commutative, except the left upper square 

which is anti-commutative. Recalling that every short exact se­

quence in the diagram splits, we apply the functor F and obtain 

the following diagram by considering the associated homology se-

quence: 

t 
s. 0 j 

H.(F(Y 1 )) ---> 
S. 

H.(F(Y 1 )) 

t 
H • ( F ( yS ) ) o j > 

t 
H. (F(Y8 )) 

(7) 

toi 

cj > H. (F(Y8 )) 
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By (2.7) the lower square is commutative, hence X. and X. 
1 J 

com-

mute. Before proving (ii) we shall make an additional remark 

which will be referred to later. It is easily seen that the middle 

square is also commutative~ while the upper wquare is anti-commu-

tative. However, replacing and in (7) by xi and 

respectively, we obtain a commutative diagram. Hence every map in 

the homology triangle 

S X. S 
H.(F(Y )) ~> H.(F(Y )) 

s. 
H.(F(Y 1 )) 

(8) 

associated to (6) is G-linear. 

(ii). Let us now assume that H.(F(L)) is an artinian graded 

A-module. We will prove that H.(F(L/IL)) is an artinian graded 

G-module. For each S c [1,m] consider the following homogeneous 

subring of G 

s 
G := A( T . , ••• , T i ] 

1 1 s 

Put G¢ ~A. By (4) it suffices to prove that H.(F(Y8 )) is an 

artinian graded G8-module for all S • This will be done by in-

duction on s the number of elements in S If s = 0 then 

S = ¢ , so it is true by assumption, because of (3). Now let r 

be a positive integer 9 and suppose that H.(F(Y8 )) is an artinian 

G8-module whenever S has less than r elements. Now assume 

that S has exactly r elements. Choose an element i in S 
s. 

By (8) we have an exact sequence of G 1 -modules 

H.(F(Y8i)) --> H.(F(Y8 )) Xi> H.(F(Y8 )) 
s. s. 

By the induction hypothesis H.(F(Y 1 )) is an artinian G 1 -module. 

Since the map Xi is of negative degree, it follows from (1.2) 
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that H.(F(Y8 )) is an artinian G8-module, which was to be shown. 

(iii). Assume that is an A-module of finite length 

for all q • Using the exactness of (8) and induction on p 9 one 

easily shows that HP(]'(Y8 )) is an A-module of finite length for 

all p • 

Now (iii) easily follows, using (3) and (4) 

(iv). Let us now assume that H.(F(L)) is an A-module of finite 

length. In particular we have 

Hq(F(L)) = 0 for all q sufficiently large. 

By (ii) H.(F(L/IL)) is an artinian graded module over 

G = A[X1 , ••• ,Xm] • Hence by (1.3) there exists a polynomial n(t) 

such that 

It remains to show that 

(9) 

Consider the exact triangle (8). To simplify the notation, put 

s. 
H := H. (F(Y 1 )) 

H := H. ( F ( Y8 ) ) 

and let xH(t) and xH(t) be the corresponding Poincar~-series, 

cf. (1.1). In the proof of (ii) we have seen that H is an ar­

tinian graded G8-module. Hence by (1.3) there exists a polynomial 

g(t) in ~[t] such that 

( 1 0) 

s being the cardinality of S • Similarly there exists a poly­

nomial g(t) such that 
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( 11 ) 

To prove (9) it clearly suffices to prove the following 

g(-1) = g(-1) ( 12) 

-Let U be the kernel of the homogeneous map H ~ H in (8). Then 

for all p we obtain from (8) an exact sequence of A-modules 

- -0 -> Up C-> H -> H -> H 2 -> U 1 -> p p p- p- 0 

Hence we have an exact sequence of positively graded modules and 

homogeneous maps of degree zero 

o ->U ->H ->H ->H(2) ->U(1) ->0 

Looking at the corresponding Poincar~-series we get 

( 13) 

As a submodule of H U is an artinian graded module over 

Hence by (1.3) there exists a polynomial u(t) such that 

( 14) 

Multiplying both sides of (13) by (1-t2)s-1 and substituting 

(10), (11) and (14) we obtain 

g{t) = g(t)- (1+t)u(t) 

which yields (12). 

PROOF OF (3.1). The theorem will be proved only in the case where 

F is covariant. The contravariant case can be proved similarly 

and will be left to the reader. 

To each A-module M we select an acyclic DGA-module L over 

K 9 which is free as a graded K-module 9 and whose augmentation 
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maps L onto M • This can be done in view of (2.4) and (2.5). 

Let I be the augmentation ideal in K • Since K is acyclic, 

it follows from (2.6) that L/IL is an A-free resolution of M • 

Hence 

By (3.2) D.F(M) =JlqDqF(M) is a graded G-module. 

To prove ( i) let cp : M _, M 1 be a homomorphism of A-modules. 

We are going to show that the induced map D.F(~) is G-linear. 

Let L and L' be selected acyclic DGA-modules over K with 

augmentations n and TJ' onto M and M' respectively. Since 

L is K-free and L' is acyclic we have a commutative diagram 

L 
~ 

-> L' 

where § is a homomorphism of DG-modules over K • 

~ induces an A-homomorphism '§' : L/IL _. L '/IL 1 and we have 

D.F(cp) = H. ( q)) • 

Put S := (1, ••• ,m} and let i E S • Using the notation in the 

proof of (3.2) we have 

L/IL = Y8 

noreover we have a commutative diagram 

0 yS 
T. s. 

yS -> -2-.> y 1 -> -> 0 

\~ ' t w 
yS 

T. s. 
yS -> --2:.> y 1 -> -> 0 0 

where the rows are split-exact (cf. (5) in the proof of (3.2)) 

and the vertical maps are induced by § • From this diagram we 
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obtain a commutative diagram 

S X. 
H • ( F ( Y ) ) ---2:.> 

tD.F(cp) 
s x. 

H. (F(Y ) ) ....2.> 

H. (F(YS)) 

~D.F(cp) 

s 
H. (F(Y ) ) 

showing that D.F(cp) is G-linear. Since 

D.F(M) = H.(F(L)) ~ 

(ii) - (iv) follows immediately from (ii) - (iv) in (3.2). a 

§ 4 APPLICATIONS OF ( 3. 1 ) TO POINCARE SERIES AND 

INTERSECTION MULTIPLICITY . 

4.1 COROLLARY. Let R be a noetherian ring and let OL be an 

ideal in R which is generated by a regular sequence x 1 , ••• 9 xm. 

Put A~= R/ot • Let M and N be A-modules of finite type such 

that 1 ( M ® N) < co • 

(i) If Ext~(M,N) = 0 for p sufficiently large, then there 

exists a polynomial f(t) in ~[t] such that 

(ii) If Tor~(M,N) = 0 for p sufficiently large, then there 

exists a polynomial g(t) in ~[t] such that 

PROOF. The condition 

Ext~(M,N) as well as 

1 (M 0 N) < ro yields that 

Tor!(M,N) and Ext1(M,N) 

R Torp(M,N) and 

have finite 
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length for all p . 

Since x 1 , ••• ,xm is a regular sequence, the Koszul complex 

R K (x1 , ••• ,xm) is acyclic. Now everything follows immediately 

from (3.1). 

Recall that a local complete jntersection is a local ring 

whose completion is the quotient of a regular local ring modulo 

a regular sequence. 

4.2 COROLLARY. Let M and N be modules of finite type over 

a local complete intersection A,~ • Assume that M ®A N has 

A finite length. Then there exists a polynomial "M,N(t) in ~[t] 

only depending on A, M and N such that 

(i) E l(TorA(M,N))tP = (1-t2 )-mn! N(t) 
p p l'll' 

where m = dim 1!!/1ft2 - dim A • 

"' 
(ii) A A 

TIA A(t) = TIM N(t) ' M,N 9 

A denoting ~-adic completion 

(iii) If 0 -+ M' _, M _, M" _, 0 is an exact sequence of A-modules, 

(iv) If A is a homomorphic image of a regular local ring R 

of the same imbedding dimension as A , then considering 

M and N as R-modules we have 

where 
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.... " " PROOF. M ® N has finite length over 
1 

A , moreover we have 

for all p ( 1 ) 

and 

A A2 A 2 
dim 111/111 -dim A = dim 1/1/111 -dim A 

Hence (ii) follows from (i). To prove (i) it suffices to assume 

that "" A = A • Hence we may assume that A has the form A = R/~ 
where R is a regular local ring and a, is generated by an R-

sequence x1 , ••• ,xm ,which may be chosen in the square of the 
<'V 

maximal ideal H1 in R In that case we have 

m = dim R - dim A 
,fV ...... 2 

= dim 1H/fl'1 - dim A 

= dim M/m 2 - dim A 

Now (i) follows from (ii) in (4.1). We will now prove (iv). Let 

A be of the form A ~ R/~ where R is regular of the same em-

bedding dimension as A. Let x 1 , ••• ,xm be a minimal set of 

generators for ~. Then x 1 , ••• ,xm is an R-sequence and we have 

m = dim 1ff / 11'1 2 - dim A 

It follows from (iv) in 3.1) that 

n~,N(-1) = I:q(-1 )ql(Tor~O.[,N)) 
R 

= X (M,N) • 

To prove (iii) we just have to pass to the completion and apply 

R " 111 (ii) and (iv) and use the additivity of x (-,N) • D 

4.3 EXAMPLE. Let A be a local complete intersection with resi­

due field k and imbedding dimension n • It follows from theo­

rem 6 in [Ta] that rr~,k(t) = (1+t)n • 
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4.4 REMARK. Let A 9 f1? be a local (noetherian) ring, and let M 

and N be A-modules of finite type such that M ®AN has finite 

" length. Let R ~ A be any minimal surjective ring homomorphism 

from a regular local ring R onto the completion of A , minimal 
A 

meaning that R and A have the same imbedding dimension. Under 

this assumption it can be shown that the intersection multiplicity 

xR(M 9 N) is an integer depending only of A, M and N • A reason­

able notation for this would be xA(M,N) • Clearly this general­

izes the Serre intersection multiplicity to arbitrary local (noe-

therian) rings. 

city" XA(M,N) 

(4.2) then shows that the "intersection multipli-

over a complete intersection 

intrinsicly in terms of the Poincar~ series of 

reference to an "ambrient space". 

A can be expressed 

Tor~(M,N) without 

4.5 COROLLARY. Let A,~1 be a local complete intersection and 

let A* = A ~ M be the trivial extension of A by a finitely 

generated A-module M • Let k be the residue field of A* • 

Then the powerseries 

represents a rational runction. 

PROOF: Put n = dim 11f/111 2 , m = n- dim A • k may be identified 

with the residue field of A • By (4.3) we have 

By (4.2) there exists a polynomial A 
rrM,k(t) such that 

Lpl(Tor~(M,k))tP = (1-t2 )-mrr~ 9 k(t) • 
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It follows from Theorem 2 in [Gu] that 

I 
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