A CHANGE OF RING THEOREM WITH APPLICATIONS
T0 POINCARE SERIES AND INTERSECTION MULTIPLICITY.

Tor H. Gulliksen

INTRODUCTION

Let KiseoesXy be elements generating an ideal @ in a
commutative ring R . Put A:=R/ and let M and N be A-
modules., The purpose of this paper is to find a close relation-
ship between Tor@(M,N) and Tor?(M,N) . This is of course al-
most hopeless in general, so we make right away the assumption
that the Koszul complex KR(X1,...,Xm) be acyclic, cf. (2.2).

Let G = A[X1,...,Xm] be the polynomial ring in m variables
of degree -2 . The main idea is to turn Toré(M,N) into a gra-
ded G-module in such a way that it becomes an artinian G-module
whenever Tor?(M,N) is an artinian R-module ., The main result
(3.1) is formulated in terms ofmore general derived functors. In
particular we obtain dual results for Ext . One of the conse-
quences of (3.1) is the following (4.2):

Let A,#4 Dbe a local complete intersection with
m = dim #/#4° - dim A

and let M and N ©be A-modules of finite type such that N[QAN
has finite length 1(MC%LN) . Then there exists a polynomial

nﬁ N(t) in Z{t] such that we have the following identity of
9
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powerseries

(%) mL(Torh(,1)) 4P = (1-4%)mg (%)

Moreover, if R - A 1is a surjective ringhomomorphism where R
is regular, local of the same imbedding dimension as A then we
have

my (=1) = x*anm)

whepe

xE(M,N) = z(-1>P1(Tor§<M,N>>

is the intersection multiplicity. Cf. [Sel.
As an application of (*) we prove that if A* = A px M is the
trivial extension of a local complete intersection A by a fini-

tely generated A-module M , then the FPoincaré series of A¥

. A%
Epdlm Torp (k,k)t?

is a rational function (4.5), k being the residue field of A* ,

§§ 1 and 2 contain more or less well known lemmas. In § 3
we prove the main theorem (3.1), while § 4 contains the applica-
tions to intersection theory and the retionality

problem for Poincaré series,

NOTATION
If H is a graded module, Hp (pe€ Z) will denote its

homogeneous components, i.e.

B=lezH,

H is called positively graded if Hj = 0 for p <0 .

It is called negatively graded if Hp O for p>0.
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If Y is a complex, its homology is denoted by H.(Y) .

We use the convention

1 P(y) = Hp(Y) for p €%,

R and A will always be commutative rings with identity.

Mod denotes the category of R-modules. Let

R

P : Mod - Mod

R A

be an additive functor. PFor ¢ > O let L F and RF denote
the q-*”j-l left derived functor, respectively the qig right deri-
ved functor of F . It is convenient to introduce the following

notation:

If F is covariant, put

DF::=1LPF for > 0
D D bz
DpF:: 0 otherwise .

If F 1is contravariant, put

DT := R°PF  for p <o

D F:=0 otherwise .

In both cases we put

D.F::_LLDPF where p runs through Z .
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§ 1. GRADED MODULES AND POINCARE SERIES.

1.1 DEFINITION. Let & ;ii@i be a Z-graded ring and let
H {LLHP be a Z-graded G-module. Let n be an integer. We
define H(n) to be the Z-graded G-module

H(n) ={[ H(n)

where H(z = H .
(*1)p p=n

If each Hp is a G -module of finite length l(Hp) , we define

the Poincaré-series of H +to be the formal powerseries

xg(t) = zpl(Hp)t!PE

Observe that if n > 0 and if H is positively graded, then so

is H(n) and we have
n

whenever Xg OF XH(n) is defined.

1.2 LEMMA. ILet H Dbe a Z-graded left module over a not neces-
sarily commutative ring G . Assume that Hp = 0 for all »p
sufficiently small (resp. large). TLet X : H - H be a homogen-
eous G-linear map of negative degree w . Assume that the graded
G-module Ker X is artinian (resp. noetherian), then H is an

artinian (resp. noetherian) module over the ring G[X] .

PROOF., The noetherian case is a version of the Hilbert basis-satz,

We will only prove the artinian case,
Ker X and let

H=H02H12H23300

Put I

be a descending sequence of graded submodules of H .,



For each pair of non-negative integers p,q put
Then 1IP*% are left H-modules satisfying
1P,4 5 [P+1,4 1P, q+]
Since I dis artinian we can pick an integer Q such that

P9 - 1P»¢ for 9>Q, p>0.

We will now show that

xPrd = xPg for ¢>0Q, p>0.

v

It suffices to show that in each degree r the inclusion map
PQ < Pz
(x¥H )r > (xXPH )r

is an isomorphism, This can be shown by induction on r applying

the five lemma to the diagram

— P,d e P4 Lo p+1,4 —
0 > I.° > (XFH )r > (XFT'H )r+w > 0

H J !

__ p,Q P Q X p+1,Q . »
0 > I’ > (X*H )r > (X*T'H )r+w > 0 B

1.3 LEVMMA, Let A Dbe a commutative ring and let G = A[X1,n,Xm]
be the polynomial ring. Let WiseeosW be non-zero integers, and
give G a grading by putting Go = A and letting Xi have de-
gree W, . Let H be a graded G-module which is either positively
or negatively graded, and such that each homogeneous component Hp
is an A-module of finite length. Assume moreover that H is ei-
ther an artinian or a noetherian G-module, Then there exists a
polynomial m(t) din Z[t] such that the Poincaré-series of H

has the form
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x5 = LC=sl e Bl 3 )

(For m = 0 the formula should be read XH(t) = m(t) )

PROOF. The standard proof which goes by induction om m can be
adapted to all cases. Let us just sketch the proof in the case
where H is artinian and positively graded. For m = O we have
Hp = 0 for almost all p , hence XH(t) is a polynomial. Now
let m >0 . Let us first treat the case where W, < 0 . Multi-
plication by Xm gives rise to an exact sequence of graded G-mo-
dules

X
0 —> N &—> H 2 H(-w,) —> ¢ —> 0 (1)

with homomorphisms of degree zero. It follows that

(1=t Mg (1) = % () = % (%) (2)

¢f. (1). Since N and € are killed by X, » they are modules
over G/XmG ~ AlXy,...,X 4] and the induction hypotesis applies
to N and C ., Hence the desired formula for xH(t) follows
from (2).

In the case where w, > 0 we just have to replace (1) by a se-

quence of the form

0 —> N &~ H(wm) Ly H — ¢ —> 0

and repeat the argument. &



§ 2, DIFFERENTIAL GRADED MODULES AND ALGEBRAS

2.1 DEFINITION. A pair (X,d) will be called a DG-algebra over
a ring R if K 1is an associative, strictly skew-commutative dif-
ferential graded algebra over R , with differential d of degree

-1 , and unit element 1 , such that

K0 = Re1 and Kp =0 for p <0 .

A differential graded moduls over a DG-algebra (K,d) will briefly

be called a DG-module over KX ,

A triple (K,d,e) will be called a DGA-algebra over R if
(1) (K,d) is a DG-algebra over R
(ii) e is a surjective algebra homomorphism from XK onto a
residue class ring of R such that

ed = 0 and e(Kp) =0 for p >0,

e will be called the augmentation.

Let (K,d,e) be a DGA-algebra over R with augmentation
€:K - 4 , By a DGA-module over K we mean a triple (L,d,n)
where (L,d') is a DG-module over K and mn is an R-linear map
from I +to an A-module, such that

nd' = 0
and
n(x1)

e(x)n(1) for x €KX , 1 €L .

2.2 EXAMPLE., Let XqsoeonsXy be a sequence of elements in & com-

mutative ring R . Let
R
K:K(X.«lg‘n-;Xm)

be the Koszul complex generated over R by Xq,...,x  , cf. [Se]

ch. IV no.2, K is a DG-algebra over R . Observe that KO =R .
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Equipped with the augmentation induced by the canonical map

R - R//(X19.009Xm)
K Dbecomes a DGA-algebra over R . By the augmentation ideal in
K we will always mean the kernel of this augmentation. Recall

that if KiseeesXy is a regular sequence, then K 1is acyclic.

2,3 DEFINITION. Let K be any DGA-algebra over R and let L
be & DGA-module over K with augmentation “:L - M ., Let w
be a non-negative integer, and let (Xa)aél be a set of homogen-

eous cycles in Ker m , of degree w . By the symbol combination

L{...,Ta,...;dT&=X(x}

we shall mean the DGA-module L' over K , uniquely determined
by (i) = (iii) below:

(i) As a graded K-module, L' is the direct sum of L and the
free K-module with basis (Ta)aéI , each T  being & homo-
geneous element of degree w+1 .,

(ii) The differential d on L' is defined as follows: By (i)
every element in L' can be expressed uniquely in the form

1+ ZakaTa

where 1 and ka are homogeneous elements in I and K
respectively, ka being zero for almost all a .

Letting 4 and dL denote the differential on K and L

K
respectively, we can now define d as follows

(k]
a1 +ZkaTa) = dL(l) +2a(dK(ka)’l‘m+ (-1) @ kaxa)

where [ka] denotes the degree of ka .
(iii) We equip L' with the augmentation induced by the aug-

mentation on L .



It is now straight forward to check that L' is a DGA-module

over XK .

2,4 TLEMMA, Let K ©be a DGA-algebra over R , with augmentation
e: K- A, A being a factor ring of R . Let M be an A-module,
Then there exists an acyclic DGA-module I over K with augmen-

tation onto M , and such that 1L is free as a K-module.

PROOF. We shall obtain L as the union of an ascending chain of
DGA-modules over K

o) n
L EL'E-.nEL Snoc

n inductively. For n = 0 , choose a set of

We will define L
generators (ma)aelo for the A-module M . Let LO be the free
DG-module over K generated by a set of generators (TZ)QGIO of
degree zero, Now we equip '1° with the unique augmentation

n: 1° - M sending TZ to o, for all o . Now let n >0 and
assume that I"™ has been constructed., TLet (XG)GEI be a set of

generators for the R-module

Zn(Ln) N Ker n/Bn(Ln) .

Here Zn(Ln) and Bn(Ln) denote the set of n-cycles and n-boun-

daries in IM . n denotes the augmentation on ™. Ir I is

empty, put Ln+1 = " , otherwise define

n+1 n
L :-_-'L {-cugTagooo;dTa=Xa} e

Finally put

L= U Ln
n>o

It is easily seen that L is an acyclic DGA-module over K , with

augmentation onto M . It is also clear that L is free as a
graded K-module, !ﬁ
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2.5 REMARK. The construction of I above can be made canonical

in following way: BEach time a set of generators is to be chosen,

one can select the maximal one.

2.6 LEMMA. TLet K be an acyclic DGA-algebra with augmentation-
ideal I . Let L ©be a DGA-module over K , which is free as a
graded K-module. Then the canonical map L - L/IL induces an

isomorphism

H.(L) ~ H.(L/IL)

PROOF, If I is generated by elements of degree zero, then as
a complex we have L ~ K hence IL~ I so H.(IL) = 0 . Now
let L™ be the sub-DGA-module of L generated by the elements
of degree < n . We have an exact sequence of complexes

0 —> 112 Lo 1Y o Goker i —> 0

where Coker i , as a complex, is isomorphic to a direct sum of
copies of the complex I .

Hence H.(Coker i) = 0 so
H,(11%) = H. (11?1
Hence by induction

H. (IL?)

1]

0 for all n > 0 .

It follows that H.(IL) = O , whencethe map
H.(L) - H.(L/IL)

is an isomorphism, iﬂ
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2.7 LEMMA. Consider the following diagram of complexes:

0 0 0

bbb

0 —> X' —> { =—> X" —> 0

b=

O —>Y'—> ¥ —>Y" —> 0
b

0 —>72"=—> 7 —>7I" ~—> 0
Lol
0 0 0

with exact rows and columns, + indicating that the square is
commutative, - 1indicating an anticommutative square. Then the

exact homology sequences yield a commutative diagram

H.(Y) —> H.(Y") —> H.(Y")

{
) y y

H,(Z) —> H.(Z") —> H.(Z2")

b b b

H.(X) —> H.(X") —> H.(X")

PROOF. This follows easily from Prop. 2.1, §2 Chap. IV in [C.E]
by forcing the upper diagram to be commutative by changing sign

of the upper, left vertical map. ﬁ@
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§3 THE MAIN THEOREM

From now on let XyseaasXy be elements in a commutative
ring R generating an ideal ¢z . Let K:= KR(X1,...,Xm) be the
Koszul complex. Cf. (2,2). Put A:= R/o¢0 and consider the func-
tor

T : Mod, = Mod

R A

defined by T(M) = M/oay . ZLet

F: Mod, - Mod

A A

be a given A-linear functor and consider the composition F:= FeT,
We will consider ModA as a subcategory of ModR in the obvious
way., Observe that F is the restriction of F to ModA . In
the following

G = A[X1,...,Xm]

denotes the polynomial ring, negatively graded by giving each Xi

the weight -2 . The main result in this paper is the following:

3.1 THEOREM. Assume that the Koszul complex XK = K'(Xq,...,X)
is exact, Then for each A-module WM , the graded A-module
D.F(M) =1LDqF(M)
can be given structure of a graded G-module in such a way that:
(i) D.F becomes a functor from the category of A-modules to
the category of Z- graded G-modules.
(ii) If P is covariant (resp. contravariant)and if D.F(M) is
an artinian (resp. noetherian) R-module, then D.F(M) is an
artinian, positively graded (resp. noetherian, negatively

graded) G-module.
(iii) If DqF(M) is an A-module of finite length for all ¢
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in % , then so is DqF(M) .
(iv) If D.F(M) is an A-module of finite length, then there

exists a polynomial m(t) in Zlt] such that
r 20 B0l = (1262)ace)

Moreover we have

m(-1) = Zq(-1)ql(DqF(M)) .

Before entering the proof of the theorem we shall prove the

following lemmas

3.2 LEMMA, Let L ©be a DG-module over the DG-algebra K =
KR(X1,...,Xm) . Assume that 1L is free as a graded K-module.,
Let I be the augmentation ideal in X . Then
(i) H.(F(L/IL)) has a structure of a Z-graded G-module with
the following properties:

(ii) If P is covariant (resp. contravariant) and if the graded
A-module H,(F(L)) is artinian (resp. noetherian), then
the graded G-module H.(F(L/IL)) is positively graded and
artinian (resp. negatively graded and noetherian).

(iii) If Hq(F(L)) is an A-module of finite length for each q ,
then so is Hq(F(L/IL)) .

(iv) If H.(F(L)) is an A-module of finite length, then there

exists a polynomial m(t) din Z[t] such that we have the

following identity of powerseries:
fq! 2\=-m
qu(Hq(F(L/IL)))t‘ = (1-t)T () .
Moreover we have

m(-1) = £,(-1)1 (", (F(T))) .
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PROOF, TLet Tyseee,T be a set of algebra generators for K

m

such that dTi = X3 for i =1,,..,m . Let & be the ideal

generated by X4,...,x, and put Y =L/ L . Clearly we have an

m
identity of complexes

F(L) = F(Y) (1)

Let [1,m] denote the set {1,...,m} ; In the following we shall
let S denote an arbitrary subset of [1,m] , and IS denotes the
ideal in the algebra K which is generated by Ti for each 1€8S.

We consider the following DG-module over X :

YO = Y/T ¥

We put Y¢:= v , Observe that
I/IL = Y- om0 (2)

Since YS is in particular a complex of R-modules, we may apply
F and obtain a complex F(YS) of A-modules,

From (1) and (2) we have

H.(F(3)) = H.(F(¥P)) (5)

H.(P(L/IL)) = H.(B(x':2ly) (4)

(i). We shall now equip the graded A-module H.(F(YS)) with a
structure of a graded G-module, Let us start by defining the
action of Xi on H.(F(YS)) for an arbitrary i in (1,m] . If
i dis not in S , then we let Xi act as the zero-map., Let us
now assume that i1 € S . Consider the homogeneous map fi: Y-X

of degree 1 , defined by

- (-1)P c
fi(y) = (=1) Ty for every y € Yp

One sees that fi is a K-linear map which commutes with the dif-

ferential., Put
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SiFS\h}.

One easily checks that fi induces a DG-homomorphism

Ysi . Ysi

S.
whose kernel equals TiY 1 , Which in turn equals the kernel of

the canonical map of degree zero
S,
g;: Y S T A
: s S S .
Hence fi induces an injective map Y- - Y 1 , which by abuse of

notation will be denoted by Ti , regardless of S . Thus we have

an exact sequence of complexes over A

T. S. &
0 — y°o A, ¥°i Zi, ¢S o o (5)

From now on we will assume that F is covariant. The proof in
the contravariant case is similar and will be left to the reader.,
(5) splits as a sequence of A-modules., Hence we obtain an exact

sequence of A-modules

S.
0 —> F(Y) —> P(Y 1) —> FY) —> 0 (6)

Let ai denote the connection homomorphism in the homology se-
quence associated to (6)., Now we define the action of X, on

H.(F(YS)) as follows

Xih.: (-1)P3%(n) where h € HP(F(YS)) .

In this way Xi may be considered as a homogeneous map of degree
-~ 2., The reason for the factor (-1)p is that we want certain
maps arising later to be G-linear,

In order to have an action of G on H.(F(YS)) it remains
to show that X, and Xj are commuting operators on Ha(F(YS))

for i,j € [1,m] .
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If 1 or j is not in S , then this is obviously the case.
Hence there is no loss of generality assuming that i and J

are distinct elements in S . Put

Sij = S{i,]}

Using exact sequences of the type (5) we obtain a diagram of com-

plexes with exact rows and columns

0 0 0
J ! |
2
T 3 S . Q
0 — v° s vUi s ¥S s o
|
bTi LTl WTl
s. T S. . .
0 =—>7Y1 = Y1l]j]— Y 1> 0
\!/ \l/ \i/
s T4 S, S
0 —> Y° —is J —> Y° —> 0

in which every square is commutative, except the left upper square
which is anti-commutative. Recalling that every short exact se-
quence in the diagram splits, we apply the functor F and obtain
the following diagram by considering the associated homology se-
quence:
S S
H.(F(Y")) —> H.(P(Y"))
S. J S.
H(F(Y 1)) 25 m.(p(y 1))
! . Vo (7)
H. (P(Y®)) ~—>  H.(F(Y"))
151 i
i l?

H(F(YS)) =5 w,(p(d))
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By (2.7) the lower square is commutative, hence Xi and Xj com-
mute, Before proving (ii) we shall make an additional remark
which will be referred to later. It is easily seen that the middle
square is also commutative, while the upper wquare is anti-commu-
tative, However, replacing 21 ana ad in (7) by X; and Xj
respectively, we obtain a commutative diagram. Hence every map in

the homology triangle

H. (F(Y°)) i H. (F(Y°))

5 (8)
H.(F(Y 1))

associated to (6) is G-linear.

(ii). Let us now assume that H,(F(L)) is an artinian graded
A-module. We will prove that H.(F(L/IL)) is an artinian graded
G-module, For each S = [1,m] consider the following homogeneous

subring of G

S
6% = ALT,

peees Ty ] where S = {i1s0aesd 1.

S

S

Put G¢:= A, By (4) it suffices to prove that H.(F(YS)) is an
artinian graded GS-module for all S . This will be done by in-
duction on s , the number of elements in S . If s = 0 then

S =g, so it is true by assumption, because of (3). Now let r
be a positive integer, and suppose that H.(F(YS)) is an artinian
GS—module whenever S has less than 1r elements, Now assume
that S has exactly r elements, Choose an element i in ©§ .

S,
By (8) we have an exact sequence of G T-modules

S. X, .
H.(P(Y 1)) —> H. (F(Y°)) —E> 1, (3(¥°))

S. Si
By the induction hypothesis H,(F(Y %)) is an artinian G t-module.

Since the map Xi is of negative degree, it follows from (1.2)
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that H,(F(Y®)) is an artinian GS-module, which was to be shown.

(111). Assume that H (F(Y"1)) is an A-module of finite length
for all q . Using the exactness of (8) and induction on p , one

easily shows that HP(F(YS)) is an A-module of finite length for

all p .
Now (iii) easily follows, using (3) and (4) .
(iv). Let us now assume that H,(P(L)) is an A-module of finite

length. In particular we have
Hq(F(L)) =0 for all q sufficiently large.

By (ii) H.(P(L/IL)) 4is an artinian graded module over
G = A[X,,...,X ] . Hence by (1.3) there exists a polynomial m(t)

such that

T L(H (F(L/10))% = (1-47) (%)
It remains to show that

m(-1) = £,(-1)%1(H, (F(1))) (9)
Consider the exact triangle (8). To simplify the notation, put

H: H.(F(Ysi))

H:

H, (F(YY))

and let XH(t) and xﬁ(t) be the corresponding Poincaré-series,
cf. (1.1). In the proof of (ii) we have seen that H is an ar-
tinian graded Gs-module. Hence by (1.3) there exists a polynomial

g(t) in Z[t] such that

xg(t) = (1-t%)7% E(t) (10)

s being the cardinality of S . Similarly there exists a poly-

nomial g(t) such that
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Xz (1) = (1-t%)751g(4) (11)

To prove (9) it clearly suffices to prove the following

g(-1) = g(-1) (12)

Let U be the kernel of the homogeneous map H - H in (8). Then

for all p we obtain from (8) an exact sequence of A-modules

0 —> U C—>H —>H —>H
p p

Hence we have an exact sequence of positively graded modules and

homogeneous maps of degree zero

0 —>U —>H —>H —> H(2) —> U(1) —> 0

Looking at the corresponding Poincaré-series we get

S

As a submodule of H ;, U is an artinian graded module over G L,

Hencg by (1.3) there exists a polynomial u(t) such that

xg(t) = (1-2)7%u(t) (14)
Multiplying both sides of (13) by (1-t2)°" and substituting
(1Q), (11) and (14) we obtain

g(t) = g(t) - (1+t)u(t)

which yields (12).

PROOF OF (3.1). The theorem will be proved only in the case where
P is covariant. The contravariant case can be proved similarly
and will be left to the reader,

To each A-module M we select an acyclic DGA-module L over

K , which is free as a graded K-module, and whose augmentation
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maps L onto M , This can be done in view of (2.4) and (2.5).
Let I ©be the augmentation ideal in K ., Since K is acyclic,
it follows from (2.6) that I/IL is an A-free resolution of M .
Hence

DqF(M) ~ Hq(F(L/IL)) = Hq(F(L/IL))

By (3.2) D.F(M) =11quﬁ(M) is a graded G-module,

To prove (i) let @: M - M' be a homomorphism of A-modules.
We are going to show that the induced map D.F(@) is G-linear.
Let L and L' Dbe selected acyclic DGA-modules over K with
augmentations mn and n' onto M and M' respectively. Since

L is K-free and L' 1is acyclic we have a commutative diagram

L —E—> LY
In $n
M —2—s M

where & is a homomorphism of DG-modules over K .

& induces an A-homomorphism ¢ : IL/IL =~ L'/IL' and we have
D.F(op) = H.(3) .

Put S:= {1,...,m} and let i € S . Using the notation in the
proof of (3.2) we have

1/IL = Y°

noreover we have a commutative diagram

T. S.
0 — ¥ —dsy i Y5 —> 0
]
@ v i
T. S.
0 —> YS —> 7 1 — YS —> 0

where the rows are split-exact (cf. (5) in the proof of (3.2))

and the vertical maps are induced by & ., TIrom this diagram we
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obtain a commutative diagram

X
1, (F(YY)) —is H.(R(Y°))
\|/D.i*(cp) J/D-f‘(cp)

X,
1, (F(Y%)) —3> 1, (B(Y%))

showing that D.F(p) is G-linear. Since
D.F(M) = H.(F(L)) ,

(ii) - (iv) follows immediately from (ii) - (iv) in (3.2). /]

§ 4 APPLICATIONS OF (3.1) TO POINCARE SERIES AND
INTERSECTION MULTIPLICITY .

4,1 COROLLARY. Let R Ybe a noetherian ring and let OL be an
ideal in R which is generated by a regular sequence XqyseaosXpe

Put A:=R/oo . Let M and N be A-modules of finite type such

that 1(M ® N) <o,

(1) If BxtS(M,N) = 0 for p sufficiently large, then there
exists a polynomial f(t) in Z[t] such that

71 (Bxt) (1, 7)) P (1-t2)"Dr (%)
(ii) 1If Tori(M,N) = 0 for p sufficiently large, then there
exists a polynomial g(t) din Z[t] such that

Zpl(TorAp(M,N))tp = (1-t%)"Bg(t)

PROOF, The condition 1(M ® N) < oo yields that Torg(M,N) and
Extg(M,N) as well as Torg(M,N) and ExtE(M,N) have finite
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length for all p .

Since XqseeesXy is a regular sequence, the Koszul complex
KR(X1,...,Xm) is acyclic. Now everything follows immediately
from (3.1). /|

Recall that a local complete intersection is a local ring

whose completion is the quotient of a regular local ring modulo

a regular sequence,

4,2 COROLLARY, Let M and N be modules of finite type over
a local complete intersection A,# . Assume that N ®A N has
finite length. Then there exists a polynomial nﬁ,N(t) in Z[+t]
only depending on A, M and N such that

(i) zpl(Torf;(M,N))tp - (1-t2)'mnﬁ9N(t)

where m = dimﬂb@%z - dim A .,

g?a»
=

(11) (+) = my (%)

]

* denoting ##-adic completion

(iii) If O - M' - M - M" - O is an exact sequence of A-modules,

mp w(=1) = My (=10 + m (=1

(iv) If A is a homomorphic image of a regular local ring R
of the same imbedding dimension as A , then considering

M and N as R-modules we have
A R
TrM,N(-1) = X (M,N)

where

(M, ) = zp(-ﬂpl(morﬁ(m,lv))
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ﬁ has finite length over A , moreover we have

®

PROOF., M

"

.

Tor‘g(lﬁ,ﬁ) - Torg(I\’I,N) for all p (1)
and

dim # /#%° - dim A = dim # /s - dim A

Hence (ii) follows from (i). To prove (i) it suffices to assume
that A = A . Hence we may assume that A has the form A = R/
where R is a regular local ring and @& is generated by an R-
sequence Xq,.e. X ,which may be chosen in the square of the
maximal ideal #7 in R . In that case we have

m = dim R-dim A = dim#/#7° - dim A

dim #/m ° — din A

Now (i) follows from (ii) in (4.1). We will now prove (iv). Let
A be of the form A ~ R/mn where R is regular of the same em-
bedding dimension as A , Let KisesesXy be a minimal set of

generators for 2 . Then Xqseve Xy is an R-sequence and we have
m = dim#/m° - dim A

It follows from (iv) in 3.1) that

nﬁ’N(d) Zq(-’l)ql(Torg(M,N))

xR, .

To prove (iii) we just have to pass to the completion and apply

(ii) and (iv) and use the additivity of x7(-,f) .

4,3 EXAMPLE, Let A be a local complete intersection with resi-
due field k and imbedding dimension n . It follows from theo-

rem 6 in [Ta] that nﬁ k(t) = (1+t)% .
9
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4,4 REMARK. Let A,#/ be a local (noetherian) ring, and let M
and N be A-modules of finite type such that M ®, N has finite
length., Let R - E ve any minimal surjective ring homomorphism
from a regular local ring R onto the completion of A , minimal
meaning that R and X nave the same imbedding dimension. Under
this assumption it can be shown that the intersection multiplicity
XR(ﬁ,ﬁ) is an integer depending only of A, M and N . A reason-
able notation for this would be xA(M,N) . Clearly this general-
izes the Serre intersection multiplicity to arbitrary local (noe-
therian) rings. (4.2) fhen shows that the "intersection multipli-
city" XA(M,N) over a complete intersection A can be expressed
intrinsicly in terms of the Poincaré series of Tor%(M,N) without

reference to an "ambrient space'.

4,5 COROLLARY, Let A,#7 be a local complete intersection and
let A*¥ = A ik M be the trivial extension of A by a finitely
generated A-module M . Let k be the residue field of A¥* ,

'I& f p
t

represents a rational runction.

PROOF; Put n = djﬂlﬂV?ﬂz , m=n-dim A ., k may be identified

with the residue field of A , By (4.3) we have

Zpl(Tor‘g(k,k))tp = (1-t2) B(144)R
By (4.2) there exists a polynomial nﬁ k(t) such that
9

A P _ 2y-m_A
Zpl(Torp(M,k))t = (1-t7) ﬁM,k(t) .
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It follows from Theorem 2 in [Gu] that

zpl(morg*(k,k))tp - [(1-t2)m-tnﬁsk(t)]-1(1+‘t)n :
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