*
FINITE SUBALGEBRAS OF A von NEUMANN ALGEBRA.

Christian P, Skau

Abstract. If 7l 18 a von Neumann algebra on the Hilbert space H
with a separating vector x in H we show that there is a 1«1
correspondence between the family of finiﬁe von Neumann subalge-
bras of 7y, and certain projections P(M,x) 4in @B (H) , which

we explicitly characterize in terms of %L and x ., If Yl itself
is finite with x a trace veector for 7n the family of projec-
tions P(7M,x) 1is closely related to the conditional expectations
of M/ onto the various von Neumann subalgebras of G - leaving

the trace wXLWb invariant.

1. INTRODUCTION,

Let vy be & von Neumann algebra acting on the Hilbert space H
with a separating vector x ¢ H, i,e., Mx = 0 for M ¢ W
implies M = 0 ., In {19]) and {16] it was shown that there is a
1 -1 correspondence between the family of abelian von Neumann
subalgebras of 7N and a family of orthogonal projections Q(7H,x)
in B(H) characterized by the property that q € Q(,x) 4iff
x € range(q) and qM q 1is a commutative family of operators.,

The program of this paper is to prove a more general result
which also will give additional information about the correspond-
ence alluded to above, Specifically, we establish a 1~ 1 order-

preserving correspondence between the family of finite von Neumann

¥ Some of these results are contained in the author's doctoral
dissertation at the University of Pennsylvania in 1973. The
author wishes to express his sincere appreciation to Professor
S. Sakai, under whose direction the thesis was written,
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subalgebras of M and a family of orthogonal projections p(M,x)
in B (H) characterized by the property that p € POR,x) iff

x € ronge(p) and pM'p generates a finite von Neumann algebra
with a separating vector on p(H) (Theorem 4.3), The crucial
lemma in proving this result is stated in Theorem 4,1 and seems

to be of some intexrest in itself. The projections QM,x)
referred to above is a closed subfamily of P(MWL,x) in the strong-
operator toﬁology.

We proceed to show that in case M. itself is a finite

von Neumann algebra with X & separating trace vector for o

the femily of projections P(M,x) , which then will be stroﬁg~
operator closed, is closely related to the family &(M) of
conditional expectations of Hu onto the various von Neumann sub- _
algebras of MU which is preserved by the faithful trace w.|., . In
fact, 1f we endow &(f1) with the topology of pointwise conver-
gence in the sirong-operator topology it becomes homeomorphic

with P{M,x) in the strong-operator topology (Theorem 5,8).
Furthermore, if we restrict ourselves to subalgebras containing
the center of L this topology is independent of the particular
trace vector x . Endowing P(Ha,x) and the unitary group %%

in 9 with the strong-operator topology we organize (U, P, %),
and hence (U ,s(M)) , into a topological transformation group
(Theorem 5,5), We also show that for M finite the projections
P(M,x) are closed under intersection for x any separating
vector for M. and we give a counterexample to show that this is
not true if 71U is not finite,

In trying %o prove the resulis quoted we are faced with the

following (profound) question: For K. a von Neumann algebra

on H and x a vector in H does each vector =z in [(x]
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have the form Tx , T being a closed densely-defined operator
affiliated (K, (cf. Definition 2.1)? A partial and exiremely
useful answer was obtained by Murray-von Neumann [12; Lemma 9.2.17 -
- an arbitrary vector 2 in [Rx] has the form =z = BTx ,
where B is & (bounded) operator in (¥, and T dis a closed
densely-defined operator affiliated (R . We call this result
the "BT-theorem" and the first, when valid, the "T-theorem" |
(with respect to x) . It turns out that for finite von Neumann
algebras the T-theorem holds, in fact, the validity of the
T-theorem with respect to all y in [x) 1is equivalent %o
[Rx] being a finite projection in ®' , eof. [8].

The T~theorem for finite von Neumann algebras wil follow as
8 corollary of the BT-theorem and the theory of closed densely
defined operators affiliated a finite von Neumann algebra as
developed by Murray-von Neumann [12] (cf. also [18]). We will
sketch the main features of that theory since we are going to
make extensive use of it in proving our results, Besides this
will make this paper more gself-contained,

The elegant proof we give of Lemma %.4, from which the
BP-theorem is an immediate corollary, is due to R.V., Kadison
(unpublished) and we present it here with his kind permission,
We are also indebted to R.V, Kadison whose guestions at the
Punctional Analysis Seminar at the University of Pennsylvania
(Fall 1973) suggested ideas which led to considerable improvements

in our original results,



—~ 4 -
2., NOTATION AND PRELIMINARIES.

By a von Neumenn algebra (K, acting on the (complex) Hilbert
space H we mean a self-adjoint algebra of operators (X in
@ .(H) , the bounded operators on H , that contains the identity
operator on H and is closed in the strong-operator topology.
By the von Neumann Bicommutant Theorem we have & = R" y Where
we denote by F' +the set of operators in (B (H) commuting with
a family £ of operators in (B(H) .

We use the symbol (+,¢) +to denote the inner product in H .
By a projection in‘OB(H) we will always mean an orthogonal pro-
jection, If p and q are projections in (B(H) onto the
closed subspaces E and F , respectively, we denote by
pVa(pag) the projection onto the subspace E@F(E n P), where
EgF is the smallest closed subspace containing E and F .,

If A is a subset of a topological space we denote by &
the closure of A , Tet X be a subset of the Hilbert space H
and let % be a family of operators in (B(H). Then we write
[(#X] for the closure of the linear span of (Px|Fe¢ F,x€X] .
In particular, if X consists of one point x and F  is a
linear family of operators then (¥ x] = {Px|Pe #} . We will
interchangeably use the notation t?fXJ for the orthogonal pro-
Jection onto the closed linear subspace [35X] . It will be clear
from the context what we mean in each case. The range projection
of an operator A in (B (H) is the projection onto the subspace
[A(H)1= range(A). If A is in the von Neumann algebra (K. then
the range projection of A will be in R .,

If x ¢ H we denote by w; the positive linear functional
on (B(H) defined by A - (Ax,x) . We denote by wﬂJﬁb the re-
 to R,

striction of Wy
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Throughout this paper concepts and results from the theory
of von Neumann algebras and C*~algebras will be used quite freely,
Our general i‘eferenoes are the two books by Dixmier (3], [4].

We now introduce some terminology and definitions that will

be useful in the next section. By the term "“operator" we will
mean a linear mapping T defined on a dense linear manifold
$£(T) of the Hilbert space H and with range R(T) in H .
If TJt and T2 are two operators we write T1 c T2 if |
P(ry) c Q)(T2) and T, and T, agree on O%(T1) . We write
Ty =T, if BH(T,) = D(D,) and ?, and T, agree on their
common domain of definition,

If 85 and T are two operators with domains of definition
D(s) and Q (T) , respectively, then by definition Q(S+1T) =
D) N D(P) and (S+T)x = Sx + Tx for x € D(S+T) . Also,

- D(st) = {xeHlxe D(),Pxe D(S)} and (SDx= 5(Tx) for

x € (s7) . It may well happen that & (8+T) (or D(sT)) 1is
not a dense set in H and hence S+ T (or ST) is not an operator
according to the definition we have adopted. HOWEVGI‘,V as we

shall see in the next section these difficulties evaporates when

we deal with operators affiliated a finite von Neumann algebra.

Definition 2.1. Let ‘hy be a2 von Neumann algebra on H . Let T

be an operator in H . Then T is affiliated M, 1in symbols

ent, 1if M'T < ™' for every M' € ML. This is equivalent

to U'T = PU' for every unitary operator U' in MU,

We notice that if T 4is bounded with [D(T) = H then TnMNU

is equivalent to T ¢ M,

Definition 2.2. TLet T be an operator in H . The graph of T

is the linear subset of HXH defined by (M= {(x,Tx)|{xe¢ &(T)}.
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We say that T is cloged if C}/(T) is a closed set in H x H .
We say that T dis closable with closure T if the closure of

gk(T) defines an operator T din H .

Renmark. It‘is 8 simple obgervation that T is closed if and
only if x = x, Ix -y for ({x,} in H(r) implies xe€ D(T)
and Px =y , Hence if T 1is closed and bounded then QD(P) = H

and so T ¢ HB(H) .,

Definition 2.3, The operator T is said to be gymmetric if

(rx,y) = &,Py) for every pair of points x,y in E(T) .
A symmetric operator T is positive if (Tx,x) > 0 for all
x € O(T) . If T = T* we say T 1is self-adjoint, where o (T*)

consists of those y in H such that x -» (Tx,y) , x e (T} ,
is a bounded linear functional and T¥y 4is defined by the equa-

tion (Tx,y) = (x,T%) , x € D(T) .

Remark, It is easily seen that a self-adjoint operator is closed

and has no proper symmetric extensions (7; Chapter XII].

We state the following well-known theorems about closed un-

bounded operators, referring to [7; Chapter XII] for proofs.

Spectral Resolubtion. TLet T ©be a self-adjoint operator in H .

Then there is a uniguely determined regular countably additive
projection~valued measure E defined on the Borel sets of the
real line and related to T by the equations

o0
Dr) = (x[xeH, | 22 (E(aNx,x) < o)
-0

and

n
Tx = lim  [ME(@Mx), xe H(T) .

n—+ o0
-1
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Polar Decomposition. If T is a elosed operator in H +then T

can be written in one and only one way as a product T = PA ,
where P 1is a partial isometry whose initial space is range (&)

and whose final space is Tange () , and A is a positive self-

adjoint operator such that range (A) = rTange (T+) .

Remarks., It is easy to verify that if T 1is a self-adjoint
operator and % is a von Neumann algebrs then Py if and only
if the range of the projection-valued measure E in the spectral
resolution of T is in Wy [74 Chapter XII]. We also have that
if T 4is a closed operator with polar decomposition T = PA
then Tnfw if and only if P ¢ M and An [123 Lemma 4.4.17.
Prom these two observations it follows that 4f T d4g a closed
operator affiliated a von Neuman algebrs L and x is in (7T)
then we can find a sequence of (bounded) operators (M,} in 7VL
such that Tx = 1lin M X .

n
In the next section we are going to consider finite von Neumann
algebras, i.,e. those von Neumann algebras where the only isome-
tries are the unitary operator. This is equivalent to the

existence of a faithful center-valued trace, cf. [3; Chapter IIT,

§ 8 11,
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3., OPERATORS APRFILIATED A PINITE von NEUMANN ALGEBRA.

This section will contain the basic material for proving our

results.. We first prove two simple lemmas that we shall need,

Lemms 3,1, Let T be an operator in H affiliated 77, where
L is a von Neumann algebra acting on H ., Agsume T hus a

closure T , Then Tn 1.

Proof. Let y e ¢H(T) . Then there is a sequence {xn} in (1)
such that x =y and Tx -z =Ty . WNow let M' e m . Ve
have M'Tx, = T'x, for each n . Also M'x - M'y and

TM'.xn - Mz ., Since {M'Xn] c D(P) we have M'y € H(T) and

™'y = M'z = M'Ty . This shows that M'T ¢ ™' and so Tn7u.

Lemma 3.2, Let T be a closed operator in H affiliated both
M, and 9, , where M, and W, are von Neumann algebras on H.
Then In{f, nML,1 .

Proof, We have {M,NnN,}' = {’h’l,; U[m,é}" . We observe that

AT ¢ PA for any A in the *-algebra @1 generated by 9’)‘!.1' U ’}?/Lé .
Let M' e {4 n My} . Then there exists a net (4,1 in gL
converging to M' 1in the strong-operator topology.‘_ Let x¢ @(T).
Then Aa'l‘x = TAax for each o . Now Aax - M'x iénd AaTx-*M"l‘x .
Since T 1s closed we get that M'x € JM{T) and T™'x = M'Tx .
Hence M'T < IM' and so T1{Inq N1} .

Much of the difficulty in manipulations with unbounded opera-
tors lies in the unrelatedness of the domain and range of one such
operator with the domain of another, When we know that these gets
have "many" vectors in common, much of the difficulty disappears.
It turns out that in the case 7??, is a finite von Neumann algebra

the closed operators affiliated M can be manipulated with in
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much the same way as bounded operators, The key lemma to this
effect is Lemma 16,2.% in [12], where finite factors are con-
sidered., By a s8light generalization the non-factor case is settled
in Theorem % in [18)], ©Specifically, Murray and von Neumann call

a dense linear manifold K in the Hilbert space H '"essentially
dense" with respect to the von Neumann algebra I if K is the
union of an ascending sequence c¢f c¢losed linear manifolds whose
projections belong to M. We state the basic result: Let NV

be a finite von Neumann algebra on H and let K be essentially

dense with respect to Py, If T 1is a closed operator affiliated

MWi) then the set {xecHlxe D(T),TxecK) is essentially dense with

ragpect to 9, For the proof one utilizes the existence of a

center-valued dimension function for ‘WU (or a center-valued
faithful trace for %v) . Using this basic result one can show
that closed operators affiliated MU can be added, multipliied
and adjoints taken, and the resulting operators will have essenti-
ally dense domains of definition and be affiliated WL . Besides
they will be closable and their closures will by Lemma 3.1 again
be affiliated ML. Cf. Theorem 4 in [18],.

We need one final result in dealing with closed operators
affiliated a finite von Neumann algebra., The key lemma is Lemma
16,4,1 in [12] (or Theorem 5 in (18]) which effectively says that

a closed symmebtric operator affiligted a finite von Neumann algebrs

ig self-adjoint (see Definition 2.3).

This is proved by application of von Neumann's elegant ex-
tension procedure for symmetric operators using the Cayley trans-
form of an operator [14].

Applying the lemma cited above we can prove the following
unique extension result, which is essentially the same as Lemma

16.4.,2 in [12] and Corollary 5.1 in [187].
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Lemme 3.%. TLet N, be a finite von Neumann algebrs on H .
Let 8 and T be two closed operators that are affiliated M.

If 8§ and T agree on & dense set K in H , then S =T .

Proof. Form the operator §S-T , By the discussion above 5-T
will be closable (Theorem 4 [181) and this closure must be equal
to O by the hypothesis. Hence S and T agree on (8)n D(T)
which is an essentially dense set with respect to 7y (Theorem 4
{18]). Set

V=31g6)0 20 Mg (s)n Do)

As 5 and T are closed operators, V is closable with closure
V. Clearly S and T are extensions of V . It is easily
verified that V is affiliated 9 and by Lemma 3.1 we get Vn7t.

Let S = WB be the polar decomposition of S ., Then WeMm
is a partial isometry with initial space Tenge (B) and final
space range (8) , end B is a positive selfadjoint operator
affiliated M, By associativity of multiplication of unbounded
operators we get W¥S = W*(WB) = (W*W)B = B , Hence S = WB = WW¥S;
and as S 1s an extension of V we also have V = WW¥7 ,

Now W'S = B is self-adjoint, hence it is symmetric, and so WXV
is symmetric, Besides W¥V is closed, which follows immediately
from the observation that W*¥ 1s a partial isometry with initial
space range (o) and ;EEEEHT§T c range (5) . Also, W¥V  has a
densge domain of definition and is affiliated M., By Lemma 16.4.,1
in {1231 referred to above W¥V is self-adjoint. Since B = W*S
is a symmetric extension of W*¥V it follows that W*S = W¥V , and
hence S = WWw*S = WW¥VT = ¥V . Analogously we can show T = V .

This gives us S = 7T ,
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By using the results established above it is now straight-
forward to show that the family of closed unbounded operators
affiliated a finite von Neumann algebra form a ¥-glgebra, where
the closures of S+ T and ST are defined to be the sum and
product of S and T , respectively, in this algebra. The
*~operation is the usual one. (Cf, Theorem XV, Chapter XVI [12]

and Corollary 5.2 [18].)

The following lemma is a version of the BT-theorem that we
alluded to in the Introduction. Taken together with the theory
we have just outlined, we get as a corollary the T-theorem for

finite von Neumann algebras.

Lemma 3,4, Tet (R, be a von Neumann algebra acting on the Hilbert
space H and let x ¢ H. If 2z ¢ [Rx] +there are operators

V,B in (@, V being self-adjoint, and a vector y in ([@ x)
orthogonal to the null space of V such that Vy =x, By = 2 .

Proof., Without loss of generality we may assume that x|l = |lail=1.

Since 2 ¢ [R x)1 +there are operators {Tn} in (¢ such that
o'} n

-n 2 k g%
nZo TpX = 2z and WTxll <4 . If H =T+ 3,4 T, then

{Hi} is & monotone increasing sequence of positive invertible
operators in & . Hn is the positive square root (in R) of Hﬁ.
Recall that if Jd and X are positive invertible operators such

1 1

that J <K then K~ [4; p.15]. Hence (HZ°) is a

< 3~
monotone decreasing sequence of positive invertible operators

tending in the sirong-operator topology to some operator. Thus

1
{H;1} = {(Hgg)z} tends strongly to some positive operator V
in (R since each real-valued continuous function £ on the real

line is strong-operator continuous on bounded sets of self-adjoint
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operators [117. In this case f£(t) equals O for +t <0 and

Jt for > 0 . Note that

~k

n n
"HnX”2 = (ng,x) = (x,x) + kio 4kﬂTkX”2 <1+ E 477 < 3 .

k=0

Thus the sequence (H x} 1ieé in the ball of radius ¥3 in H
which is a weakly compact set in H . Hence some subnet {Hn,x]
converges weakly to a vector y' in H , Clearly y' e [ x] .
We assert that Vy' = x ., In fact, let € > 0 and a vector w
in H be given., There is a positive integer N such that
HH;1W - Vw| < % if n> N and |(H ,x-y',Vw)]| < g if nt >N,

Then with =n' > N, |(Hn,x,Vw) - (Hn,x,HQ?w)] = I(Hn,x,Vw)-m(x,w)js
I x| Vv~ Botwl) < § 18, ,xll < § . In addition,
[yt Vw) = (H %, Vw) | < % so that |(y',Vw)~(x,w)| < € , i.e.

| (Vy' ~x,w)| < €. Thus (Vy'-x,w) = 0 for all w and hence

Vy' = x ., Tor fixed n and m >n we have

0 < 4% ke u-

< “1( g 4Kp#p )H'1 =
nnm - Hm k=0 Kk m T

i

B KmEm V=B D, Kmx m Keyx ;%
(I + k§O4 TETy) (k§O4 TR (T + k§o4 Ty )

m
T 4 T
kr.l?]_ < I
Km¥ -
e 2 47TT,

(We have used that if A < B +then C¥AC < C*¥BC for any operators

A,B and C [4; p.147.)

-1

Since I - ¥V in the strong-operator topology, we have

=2

02 ANTFLY < I, Thus 2°T, V)l <1 and so [T,V < L .
2
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(@ 6]
Thus X TnV converges in the norm topology to an operator B
n=o

o0 (e
in Hence 2 = P ¥ = T Vy' = By! , Replacin L
in & . (I ¥ = I TV y P g y' by

its projection y on the orthogonal complement of the null space
of V we have Vy = x and By = ;g;TnVy = Z .

Since the projection ¢ on [ R x] is in ®' and y'e [®R x1,
it follows that y ¢ [Rx] . In fact, let p be the projection
onto the null space of V . Then p € ®R and y = (1-p)y' =
(1-play' = a(1=-p)y* € [Rx] .

This concludes the proof,

Corollary 1 (BT-theorem), Tet (K, be a von Neumann algebra on H

and let x be a vector in H ., If =z ¢ [Rx] there is an opera-
tor B in R and a closed (densely-defined) operator T affili-
ated R such that x ¢ () and z = BTx .,

Proof, TLet B,V and y Dbe as in lemma, Let p be the range
projection of the operator V , i.e. p dis the projection onto

Hy = {V(H)] . Then p is in @ and we have null(V) = range(v*)l -
range(\i’)'L = H# . In particular, y € Hy . V restricted to H,

is & 1-1 mepping of H, onto the dense linear manifold V(H;) =
V(H) in Hy . Define T +to be the operator in H with domain

i
of definition ¥(T) = V(H,) © H; and T(Vhyehy) = by ; hy € H,

-

AL
h, € Hy &
It is a routine matter to verify that T 1is a closed densely-

defined operator in H that is affiliated (X . Since Vy = x ¢ Hy
we have x ¢ D(T) and Tx =y , Thus BTx = By = z ,

Corollary 2 (T-theorem)., Let (R, be a finite von Neumann algebra

on H and let x be a vector in H . If 2z ¢ LR x] +there exists
a closed (densely-defined) operator T affiliated (R such that
x € H(T) snd Tx = =z,
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Proof. Immediate consequence of Corollary 1 and the theory
outlined above of operators affiliated a finite von Neumann
algebra. Specifically, the operator BT in Corollary 1 has a
(densely~defined) closure which is affiliated (R.

We end this section by stating a theorem about finite von Neumann
algebras referring to [13], [17; Proposition 2,3.27 and
[3; Chapter I, § 63 3 & Chapter III, § 15 5] for proofs.

We need the following definition.

Definition 3,5. A vector x in the Hilbert space H 1is said

to be a trace vector for a von Neumann algebra R, on H 1if x

is separating for (& and (ABx,x) = (BAx,x) for all A and B

in ® . In other words, wu,|g is & faithful trace on R

Theorem 3.6, If ® d4is a finite von Neumann algebra acting on H

with a cyclic and separating vector in H then X'+ is finite,
and there is a vector x in H which is a cyclic trace vector
for R . Then x is also a trace vector for &' , For each A
in & there is a unique A' in &' such that Ax = A'x . The
mapping A - A' is a *-antiisomorphism of (R onto R' ., The

cyclic and separating vectors for (K coincide,
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4, MATIN RESULTS.

We state and prove & theorem that will be crucial in what

follows and which seems to be of some independent interest.

Theorem 4,1, Let M. be a von Neumann algebra on H with a

separating vector x in H ., Let Gy be a finite von Neumann

subalgebra of . If M e My end Mx ¢ Wx) then M ¢ M.

Proof. By the T-theorem for finite von Neumann algebras (Cor, 2
to Lemma %.4) we have Wx = Tx for some closed operator T affi-
liated Y. Now N'T c TN' for each N! in'7L' ‘and so, in

particular, we have since WL c !
MM'x = M'Mx = M'Tx = TM'x

for each M' ¢ ! . Thus T and M agree on the set M 1x])
which is dense in H since x 1is separating for 7L/, hence
cyclie for MM [%; p.61., Since M is bounded and T 4s closed
we must have JQ(T) = H and M =T , Also T dmplies T €.
So M e .,

Definition 4.2, Let ML be a von Neumann algebra on the Hilbert

space H with a separating vector x in H , Tet p Dbe a

projection in (B(H) (not necessarily in M or ' !) such that

(1) - x € range(p) = p(H) .

(ii) pM'p generates a finite von Neumann algebra
R, on p(H) such that R has a separating

vector.

Then we say p is a finite projection associated with M and x .

We denote these projections by PU%%,X) .
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Remark 1. TLet p ¢ P(M,x) and let (2 be the von Neumann
algebra generasted by php on p(H) . Since x 1s separating
for 74, hence cyclic for ' , it follows that x is eyclic
for (R . Now the cyclic and separating vectors for R coincide
sinceiaQ, ias a finite von Neumann algebra (Theorem 3.6). Hence

x is a separating vector for R .

Remark 2, An important subfamily of PMw,x) is Q(9L,x)
characterized by the property that ¢ € Q(ML,x) iff x ¢ range(q)
and gTh'q is en abelian family of operators, Indeed, if

. q € QWn,x) then gM'e generates an abelian, hence finite,

von Neumann algebra ¥ on q(H) . Since x 1is a cyelic vector
for § it follows that & 1is maximal sbelian in @ (q(H)), i.e.
=6 [(%3; Chapter I, § 6; 3]1. So x is separating for. éf.

Theorem 4.3, TLet P be a von Neumann algebra on H with a

geparating vector x in H ., Then there is a 1-1 correspondence
between the family PF() of finite von Neumann subalgebras of

N and the family of projections P(M,x) defined in Definition
4.2, Specifically, if 4L € F(n) then 7 corresponds to the
projection By, in P(@i,x) whose range is [M.x] and we have

W = Fﬁm} U qu]' . Also, W is ¥—gntiisomorphic to the von
Neumann algebra generated by R&Jhb'Qn, on [Mx7.

This correqundence preserves ordering, i.e. 711 c 712 for

NqsMNp € POL)  1if and only if p¢b1 < p/m’2 . Moreover, if

s Nps M€ F@AR) such that h, u o, c M then p%l iy = p7t1A%12.

Proof. Tet M be a finite von Neumann subalgebra of G and let
o be the projection onto [?bx} . Then Py e W' and the
central carrier of p@L} is the identity operator on H since X

is cyclic for ' , hence cyclic for ?U',’ and so ?b is
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*¥~isomorphic to the von Neumann algebra ‘fhpm/ on [%x] (cf.

[3; Chapter I, § 1 & § 2]). Wow x ¢ {Wx] is separating for
%p,w . In fact, let N € % and let Np,x=Nx =0 ., Then N=0
since x 1is separating for 7 and so Np =0 . Clearly x

is cyclic for /h,p% and so X 1is separating for (%pﬂfu)' . Now

| B 1 !
(?/qu’l/) = pMtpy 2 Bt By,

and since (%p%)' is a finite von Neumann algebra (Theorem 3.6)
it follows that pmqn' Py generates a finite von Neumann algebra *.
on range(p%) = [‘Hx] . Clearly x is separating for ® . So
Py, € PN,x) . Note that x is cyclic for (R, We shall prove
shortly that & = (f]/Lp%)' and so P, is *-antiisomorphic to R
by Theorem %,6,
Now let M4, M, € F(hL) . Then obviously'fm c N, dimplies

p,n_I < p,n2 . On the other hand, assume pm_g p,n_2 . Then for
Ny €hy we hgve Nyx € [y x] € Mpx] and so Ny €M, by
Theorem 4,1, Hence 4y < M, 1if and ogly if pm < pﬂl12 . This
proves that the mapping N -—> Py, = [fx] is a 1-1 order-isomor-
phic map of F(fn) into P{h,x) . We also have that if 1 € P()
and p, M =1ipy, for M €M then M € f. In fact, Mx = Mp, x =
Py MX € [ x1 and so M € i by Theorem 4.1, Hence we have
M=Pn {p, 3" = b 'Upsl' .

"Tet us Teturn to the situation above where N € F(ML) and
R is the finite von Neumann algebra generated by pm%'p% on
range(pm) = hx]l . ( is a subalgebra of the finite von Neumann
algebra (%P%)' on [ x] and both have the cyclic and separating
vector x € [ix] . By what we have just proved this implies
R = ((]’!‘p%)1r and so 9 is *—an'tiisomorphic to (R . 7

Next we prove that if p € P(?n,x)then there exists® ¢ Fih)
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such that yp'= Py, = [(h,x] . Indeed, define M= (. 'v p} . ‘Then
%, is a von Neumann subalgebra of L and also p ¢ N'. By
[ 33 Chapter I, § 23 Proposition 17 we have that p'}n'p generates
the von Neumann algebra pM'p = (FLp)' on p(H) . By Remark 1
preceding this theorem we conclude that (M p)' is a finite
von Neumann algebra with x € p(H) a cyclic and separating vector
for (wp)' . Hence Mp is a finite von Neumann algebra on p(H)
(Theorem 3.6), Now M is *¥-isomorphic to p since the central
carrier of p €' is the identity operator on H and so P is
finite, i.e. e P(M) . Also x is cyclic for ‘hp and so
p(H) = [(fpx] = [hx] = range(p,,) » hence p = Py + Thus the
mapping R, - b, from F(d*n,) to P(M,x) is onto.

It remains to show that if %1,%2,%6 POn) such that
%1 U fh2c:(h_, then p(.n”!l.ﬂ,{2 = p{h1 A p¢12 . Clearly p%1nrl’2'2 < pfh1A p,nz.
Now let y ¢ range(quA p,n2) = [‘h,,lxj Nn{%,x1 . By the T-theorem

for finite von Neumann algebras (Corollary 2 to Lemma 3.4) there
exist closed operators T4 and T, in H such that

T1Tlrh1, Tg”ﬂq’Lz sy X € %(Tﬂ N @(Tz) and y = T.x = T,x . Clearly
T1n%, Tan’u gince %1U'h2c:% ., Let N' ¢ ' . Then

A
T.]N'X = N‘T1x = N'T2X = TQN'X .

Hence T, and T, agree on the dense set (h'xy (o5 grrxl)

in ‘H and so T, = T2 by Lemma 3,3, Let T = T, = T, . Then
Tn(}’b1 and ‘J_"r';ch,-2 and so by Lemma 3,2 Tn(%1 nq/L2) . By the
remarks at the end of Section 2 we conclude that y = Tx e[‘}L.] %],

A = [ ]
Hence range(p,n/l p,hz) = range(p%m%) and so p%i My = Py A B,

This concludes the proof of the theorem.



- 19 -

Corollary 1. Let Jn/ be a von Neumann algebra on H with a

separating vector x in H ., Then the mapping & - B, = 4 x)
induces 2 1-~1 order-isomorphic correspondence betxvee;l the family
Al of abelian von Neumann subalgebras {5} of (yu and the
family of projections Q(M,x) defined above (Remark 2 to Defini-
tion 2.2)., Q(M,x) 1is closed in the strong-operator topology.

be An)  is meximal sbelian in P if and only if pg € ' uB I

| Proof, It is an immediate consequence of the theorem that the
restriction of the mapping MNe Plr) - Py, € P ,x) to A(M)
is onto QU ,x) .

Now let {qa} c Q. ,x) and 4, @ 4 1in the strong-operator
topology. Then clearly g is a projection and x ¢ range(q) .
Let M%, 1\412' e ' . Then (qM.}q)(qMéq) = 1g;.m(an!tqa)(anéqa) =
lim(qarﬂféqa)(qam;qa) = (qMyq)(aM4a) . So aq'd is a commutative
family of operators and so q € Q(ML,x) . Hence Q(ht,x) is
closed in the strong-operator topology.

Assume U ¢ A(m) is maximal abelian in /}VL', Then ‘]nng’sg
and so Pg = [(Bx) eB' = {fnm‘é"}‘ = {’M'Ut?}" . Conversgely,
assume pg € (F.'U61" = gunB'l . Since ' < 'yl " we get
v pg]" c {(mn‘é’"}' . Taking commutants we have M né'c[ﬁL'Upg} '
By the theorem we have 6 = {(?’n.,'ung}' and so
b 9)10&' c [?’)‘L—'U pg]' =6 . Hence %) :Q?Ln?g' and so g is

maximal abelian in % .

Gorollary 2., Let 71 be a finite von Neumann algebra on H with

a cyclic and separating vector, Let (h/ be a von Neumann sub-

algebra of iy with a cyclic and separating vector. Then ?L = %1/.

Proof, Let x € H be a separating vector for ML . Then clearly

x 1s separating for " end so is cyclic for o by Theorem 3,6,
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Hence x 1is a joint cyclic and separating vector for M and %/
and so [Mx] = [@Lx] = the identity operator on H . By the

theorem we have N = M.

Remarks. In [10] Kadison proved Corollary 2 using a different
approach and he showed that the hypothesis of finiteness is essen-
tial, In fact, in the same paper he constructs an example of a
type I factor %ﬂj on a separable Hilbert space H with a cyeclic
and separating vector x and a proper type I subfactor %/ with
the same cyclic and separating vector x . Indeed, let X be a
Hilbert space of dimension ' . TLet H = K@K®K and let
Mm=0KeBX) e Iy , = =@BE)®I, eI, , vhere I, is the
identity operator on X . Then ?U is’a proper type I subfactor
of the type I factor ML, It is easy to see that W, Th',Ju
and ' each have cyclic vectors in H , By ([6]1 M,MM', % and
' nave a Joint eyeclic vector x which accordingly will be

jointly cyclic and separsting for T and .

Tet K, H and M be as above and let /jl’i.a1 =ﬁl®@(K)®IK ;
where OU is a maximal abelian von Neumann subalgebra of (8 (x) .
Then GL1 is a type I (non-factor) proper von Neumann subalgebra
of ?n,. By (6] there exists a joint cyclic and separating vector x
for ML and 011 . DMoreover, every maximal abelian von Neumann
subalgebra of ¢b1 is maximal abelian in qh/, a fact which is

readily verified.
Example. 1In Theorem 4,3 we proved that Hﬂ1ﬂ412 = pn1A'gk2 for

qu WE e F(n) 1ir ¢L1U(h@3 generates a finite von Neumann sub-

algebra of L. In particular, if T itself is finite this is

always so, However, if M is infinite it is not true in general
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t2:= gn1A Eﬂg for ?L1 and.?bz in F{) . We shall

that Rh101
construct an example illustrating this (Proposition 4.4).

Pirst some preliminary discussion,

Let H bYbe a Hilbert space of dimension & o . Then we can
find two distinct self-adjoint unbounded operators that agree on
a dense set in H . TPor example, let H = L2([0,1]) with

Lebesgue measure on [0,1] . Let T1 be the operator in H with

X
iXT1) = {f¢ LZ([O,1])|f(X) = Jg(t)dt + congtant ,
: 0

g € 1°(L0,17) , £(0) = £(1))

and
(7,£)(x) = -if'(x) for f ¢ 53(T1) .

Let Ty he the operateor in H with

D(ny) = (£6 T4([0,1])]£(x) = [g(t)at + constant ,

Os—mK

g € 1°([0,11) , £(0) = e (1) , % € 0,1}

and
(1,£)(x) = -1f'(x) for f e D(D,) .

Then T, and T, are self-adjoint and agree on the set

X

(£ I°(10,11)|£(x) = [a(t)at, g € 12([0,11) ,
0
£(0) = £(1) = 0 )

which is demse in L°([0,11); of. [15; § 1197 . Clearly T, # T,
since 5®(T1) £ D(T,) .

Proposition 4.4. There exists a type 21) factor 7h/, acting on

a separable Hilbert space H with a separating vector x , and

two abelian von Neumann subslgebras 5} and 62 of P such that .
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Pg1 A pg2 # p%,.1 NG, * where p61 = [61}:] , %2 = [0p%x] and

g ng, = [B1062)x) .

Proof. Let K be a Hilbert space of dimension X, and let T,
and T, be two distinet unbounded self-adjoint operators that
agree on & dense set in K , Let {yn} be a countable dense set
in K contained in &0 (T4)n H(T,) such that T,y, = Tpy, for
each n .

Consider the von Neumann algebra ML = B (X) ®IKOD on the
separable Hilbert space H = K@KOO s Where Koo is the standard
Hilbert space of dimension Ko . M is in Dixmier's terminology
an "ampliation" of B (K) and is isomorphic to @B (X) , hence a
type I factor [3; Chapter I, § 2; 41 . It consists of copies
of operators in (F(X) "along the diagonal", where we are having
in mind the standard unsymmetric realization of K@Koo ag the
Hilbert sum of K a countable number of times, c¢f, [33 Chapter I,
§ 23 31 . Accordingly we will denote elements in H = K@KOO by
{z,} where =z ¢ K and nog‘i ”Zn”2 <o, We will denote elements

n
in W vy ¥ , where N = Mo Iy (MeB(K)) 3 in other words, N

o0
is a copy of M along the diagonal. Let T, = T1®IK® ' ".f."2= T2®II%O
be the copies of T, and T, , respectively, along the diagonal,
It is an easy observation that 51 and ".f."g are self-adjoint

operators in Kf@ﬁx) with domains of definition
ﬁ)("fi) = [{Xn}ngmel:%le &)(Ti) for all n ,
X 2 ,
E Tt <o) (5= 1,2)

Choose a sequence {A\ of non-zero real numbers such that

n)



- 2% -
o= 2 2
n§ I TRl < ooy

<o 2 2

AN Y,T <o and
n=1

o 2 2
n§1 I}‘nl ”TZyn“ <0 .

Then x = {?&nyn] is a separating vector for /z’lt/ in H = Keg Koo .
Besides x ¢ 2)(@1) n 8)(%2) and T’1X = '@2:{ . Since T, £ T, we
have T, # T, .

<0 o
Let T, = I AE(aAr) , T, = I AF(d2) Dbe the spectral resolu-
1 =00 2 ~'co

tions of Ty and T, , respectively., Then it is easily seen that

ac oo
T, = L:?\ﬁ(da) ) '(i"2 = ‘[ \F(dA) are the spectral resolutions of
- o

—

T, and @2 s respectively,

Let (;1 and T_gz be the abelian von Neumann subalgebras of
I generated by {TEV}.(Q)]Q Borel set in R} and {'ﬁ"(n)]ﬂ Borel
set in R) , respectively. Then cleariy ﬁ1n81 and ﬁ‘znt'fQ .
By remarks at the end of Section 2 we have 'T."jx = [‘@13{] and

ﬁzx ¢ [Zfzx] . Hence
513{ = ('i"ex € [Z,f?x] 0 tg‘?}{] .

We want to show that '@'1}: ¢ [(t?1 n‘ég)x'_] . Assume to the
contrary that 'i"1x ¢ [(€1n“€2)xj . Since ‘810‘6’2 , being abelian,
is a finite von Neumann algebra on H with separating vector x ,
there is by Corollary 2 to Lemma 3.4 an operator S in H affi-
liated ‘@10‘82 with x € D(8) such that @‘11{ = 85X . 8Since
obviously Snb, we get that 51 and S agree on the set {t‘)’ftx} ,
which is dense in H since x is cyelic for M (a'z,ﬂ) . By
Lemma 3.3 we conclude that 8§ = ‘1‘1 . Analogously we have S = "fz

and hence 51 = %, , a contradiction. So we have T x ¢ (B, n6)x]
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This shows that pg1n%2 ;4 pcg1 A pg,z .

Remark. A natural questlion to ask in connection with Theorem 4,3
is the following: if '}'2,1 and %2 are two finite von Neumann
subalgebras of M, i.e. %1,7’22 e F(fn) , such that %1 U, © s
for some 1€ F(In) , will then pnB = p,h1 v p,n2 , where ’}7,3 is
the (finite) von Neumann subalgebra of ‘ML generated by W4 and
7?,2 ? The answer is no in general as the following simple example
shows,

Let M be a maximal abelian von Neumann algebra on a four-
dimensional Hilbert space. By choosing an appropriste basis we

mey assume that
a
hu = { (035

Clearly, the vector X =(
il
{ (Oeag)la,s € 0}

8
{ (05\'3)!6.\(6 ¢)

be two abelian subalgebras of Yl and let 53 be the (abelian)

0
la,B,8,y€ &) .

—~

S doahad W

) is separating for 471,,
Le%

1t

G,

and

€,

subalgebra of M generated by *61 and ‘62 . We want to show
that pz‘;3 # Dy Vp,g2 , i.e. E@BX] # [Bx) v [@2}(] . Now
1

range ([8,x]v [B,x]) = {Cyx+ Cpx|C, ¢ 8., 00¢ 6y

gince in a finite-dimensional space all linear subspaces are closed,

: 1
2.0 (0
c, :(o 12)6 g, end 02_(0 00)6‘6’2 .

Then 1, .
€40y = (0 08) e b5 = (EU8,) .

Let



~ 25 -

It [433}:] = [@13{] v [{?2x] we must have
(6102);{ = Dyx + Dyx  for some DT € 61 and D, € 5, ; since
x is separating for ML it follows that C4Cy = Dy Dy

Hence we must have

1 Q )
2~0] _ g 0O 5.0
(0 OO) -—(O 0,8) +(O Yy)

for some q,8,0,Y € ¢ . But this is readily verified to be
impogsible. Hence we have [é’ 3}(] # [?31}:] v [5& 2x] .
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5. GROUP ACTTION ON P(Wu,x) AND CONDITIONAL EXPECTATIONS.

Tet P be a von Neumann algebra on H with a separating
vector x and let {y denote the unitary group in Hu. Ve want
to study the mapping % x PU,x) - P(M,x) defined by
m,p,h) = Dysqy @ vhere 7, is in P(In) , i.e. the family of
finite von Neumann subalgebras of 7N (cf.Thm.4,.3). Under this mapping
(W,P(M,x)) becomes a (right) transformation group and we would
like to investigate the continuity properties of the said mapping
when we endow % and P{(7i,x) with the (relativized) strong-
operator topology. [Recall at this stage that the strong-operator
and weak-operator topologies coincide on the unitary operators
in BA(H), ef. [93 p.51]. PFrom the observation that p- (I-p) =
" 2p~ I 1is a unitary operator for each projection p in H(H)
it follows that the strong-operator and weak-operator topologies
algo coincide on the projections in & (H)7.

We first show (Proposition 5.2) that for H € F(PH) fixed
the mapping U - pyx,y 18 continuous from o into P(L,x) .
We then proceed to show in Theorem 5,5 that 4if x i1s a trace
vector for M., in particular, /1N is finite, the mapping
(U’pﬂt) = Pysmy 18 Jointly continuous from AL x P{(M,x) onto
P{fru,x) , in other words, (U,P(M,x)) is a topological trans-
formation group, cf, Definition 5.4. Finally we establish in
Theorem 5.8 the close corresondence that exists between P(7?#,x)
and the family (M) of conditional expectations (cf, Definition
5.6) of 41N, onto its wvarious von Neumann subalgebras which is presen-

= Wy |y, for ¢ € T .

y 1.e.

ved by the faithful trace waWL

O by
We start our proofs by showing the following lemma which we

shall need to prove the ensuing proposition.
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Lemma 5,1, Let MM be a finite von Neumann algebra on the Hilﬁert
space H and let x ¢ H be a separating vector for %u. Let

{xn] be a sequence of vectors in H converging to x . Then the
sequence {pn} of projections in /B (H) converges in the strong-
operator topology to the projection p in HB(H) , where o, = meﬁ],
p = 'mx]y .

Proof, By the remarks above it is sufficient to prove that [pn}
converges to p 1in the weak-operator topology. Since the unit
ball of d3(H) is compact in the weak-operator topology it is
therefore enough to prove that any weak~operator convergent subnet

of {pn] converges to p in the weak-operator topology. So let

[pn,} be a subnet of [pn} converging to c¢(> 0) in the weak-
operator topology. We are through if we can show that ¢ = p.

Since Xpt X it is easily seen that PP 7 P in the strong-
operator topology and, consequently, PP D in the weak-operator
topology. Now PP ™ CP in the weak-operator topology and so

p = ¢cp . Taking adjoints we have p = c¢p = pc . Hence

iy

¢ = pep + (I-plep + pe(I-p) + (I-p)e(I-p) = p + (I-p)c(I-p) > p .

We observe that p and the pn,’s are projections in !
and so, in particular, c¢ is in ' . Now [M'x) = H since x
is separating for 7. and so P, <P for all n' , where = de-
notes the partial ordering of projections in /#L' [3; Chapter IIT,
§ 1; Thm.,2] . So there exists for each n' a partial isometry

v in M’ such that vn?v = Dyt vh,vnf <p . Now p= ]

nt nt
is a finite projection in L' since W is a finite von Neumann
algebra [17; Proposition 2.,9.5], Hence there exists a faithful
family [lej,edj of normal semifinite traces on (f')* suecn

that Tj(p) < oc for all j ¢ J [17; Lemma 2,5.3%]. We have
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Tj(pn:) = Tj(vnfvnf) = Tj(vn,vnf) < Tj(p) and Tj(c)

< 1lim inf Tj(pn,) < Tj(p) for all 3 € d L[3; Chapter T, § 6; 11.
n‘

In conjunction with ¢ > p this gives us Tj(c—p) = 0 for all

je€ed and so ¢ = p . This completes the proof,.

Remark. The assumption that M is finite in the above lemma is
crucial, In fact, if MM is infinite there exists a separating
vector x for ‘, and a sequence {Xn] of vectors converging

to x such that the sequence of projections ({[Hix ]} does not
converge to [Mmx] 1in the strong-operator topology. We indicate
shortly how we show this. Decomposing /L by a central projection
into a direct sum of its finite part and its properly infinite
part (cf., [3; Chapter I, § 6; 7)) we may reduce the situation

to T being properly infinite with a separating and cyclic vector,
By [3; Chapter I, § 2; Prop. 5 & Chapter III, § 8; Cor, 2] % is
spatially isomorphic to M., ® 03(HCD) acting ori Hy ® H__, where
H_, has dimension }JO and My 1s a von Neumann algebra on H,
with a separating and cyclic vector. PFrom this we see easily

that M has a separating vector x which is not cyeclic for T .
By [67 the cyclic vectors for M are dense and 20 we can find a
gequence {xn} of cyclic vectors converging to x . Since

nx 1 =1 for each n the sequence of projections ([ x,]}

does not converge in the strong-operator topology to DHLx] A1 .

Proposition 5,2, Let ‘H be a von Neumann algebra on H with a

separating vector x and let JU be a finite von Neumann sub-
algebra of ¥, Then the mapping U - Py« 9y from the unitaries

U in P into P(hi,x) 18 strong-operator continuous,

Proof, TFor U € W we have Pus sy = C(u*u)xy, i.e. Pus sy
is the projection onto the closed subspace U ([h(Ux)]) .
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Let qy denote the projection omto [Au(Ux)] . Then U*qU is

a partial isometry with final space UY([T (Ux)]) and so Pyxag =
U*qU(U*qU)* = U*QUU . Now let U, -—> U, in the strong~operator

topology, where all the U's are in T, Then de-aﬁg Uy and on

1s a separating vector for . By Lemma 5.1 we conclude that

qUa > qUO in the strong-operator topology. Also U; —=> Ug

in the strong-operator topology since this topology coincides

with the weak-operator topology on the unitaries and the ¥-opera-
tion is weak-operator continuwous. Hence UéqUuUa —=> quUOUO in

the strong-operator topology, multiplication being Jjointly strong-
operator continuous on bounded sets of operators. This shows

that U - Pa# 4Ly is strong-operator continuous at UO € {e and

the proof is complete.

Remark., We do not know whether the mapping (U’pam) ® Pyemy 1S
jointly continuous from AL X P(M,x) onto P(Fn,x) in general,
However, if x is a trace vector for AL (cf., Definition 3.5)
this is so as we shall presently establish, TFirst we give a
characterization of a lrace vector =x for %y in terms of the
family P(%,x) , repectively P(Mm',x) , of finite projections

associated with Mt and x , respectively ' and x .

Proposition 5.3, Let MW be a von Neumann algebra on H and

let x be a cyclic and separating vector for ‘WL, Then x 1is
a trace vector for M (in particular, M is finite) if and only
if P(M,x) = PUAL' ,x) . Also, if x 1s a trace vector for AU

then P(Me,x) is closed in the strong-operator topology,

Proof. Assume x is a trace vector for ML . Since w.l,, is
a faithful trace on 9 we conclude that % is finite and by

Theorem 3.6 the mapping { : M- M is a *-antiisomorphism,
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where (M) for M in M is the unique operator M' in W'
such that Mx = M'x . Thus ¢ gives rise to a 1~1 mapping ¥
of the family P{M.) of (finite) von Neumann subalgebras of 7
onto the corresponding family FML') for #n' , where f\;((}b) =
(Y(N)|Nen} for e Pin) . Clearly [Mx] = [y(m)x]  for

P@¢n',x) by Theorem 4,3,

1l

each 91 ¢ F(n) and so P{m ,x)
Wext we assume that P(n,x) = P(',x) , Let Y e F() be

an abelian von Neumann subalgebra of "t . Then by assumption

there exists ¥, € F(f') such that p, = [¥ x] =[x] = pb,1 .

From the proof of Theorem 4,3 we have that p%‘?n' Pe generates

the von Neumann algebra pg‘[ﬁlpg on [6Ex] ., Now pg‘\é'pg =

(6 pﬂ)' =0p, since ﬁpg ig maximal abelian on [¥ x] , x being

a cyclic vector for \[‘_‘;pf, . We also have
] t o

We conclude that "ﬁ1pg =0 Pe seince x 1is a cyclic vector for
‘6 104 on [ﬁx} = [??11(‘] and hence ‘61pé‘ is maximal abelian.
Thus 7’3’1 is an abelilan von Neumann subalgebra of ' since ?51
is ¥-isomorphic to ‘@1p81, the central carrier of pﬁ1 being I.

Now let A and B be operators in n » B Dbeing normal,
j.e, BB*= B*B , Then B is contained in an abelian von Neumann
subalgebra © of 7., TLet ﬁ1 ¢ F(7') such that [bd,lx'_] =
[(6x] . We established sbove that &, is abelisn, thus ¥,

consists of normal operstors. Let {C be g sequence of opera-

n}
tors in @1 such that Cnx - Bx . Now Cn- B is a normal opera-
tor for each n since €, and B commute, Thus [(C -B)y| =
||(C;—B*)y“ for each y in H . Hence G;x - B¥x , We have

. . *
(ABx,x) = l%m(ACnX,x) = l%m(CnAX,'x) = 1%m(A}c,Cflx) = (Ax,B"x) =
(BAx,x) . 8Since each operator in %L is the sum of two normal

operators, we conclude that X 1is a trace vector for I
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To prove the remaining part of the proposition let {pa} be
a net in P(%,x) such that p, P 1in the strong-operator topo-
logy. Then p is a projection such that =x ¢ range(p) = p(H) .
For arbitrary M',N' in W' and any o we have (paM'papaN'gfng=
(paN'papaM'pax,x) since x 1is a trace vector for the von Neumann
algebra generated by pa%mfpa on pa(H) , ¢f, Theorem 3.6 and
Theorem 4,3, Thus we have (pM'ppl'px,x) = (pN'ppM'px,x) . From
this we see easily that (R4Rox,x) = (R,Ryx,x) for R4,R, 1in the
von Neumann algebra ® generated by pTu'p on p(H) . According
to Definition 4.2 the proof is complete if we can show that x
is separating for (& Dbecause this entails that ® is finite,
Assumé therefore R e K 4, Rx =0 . For all RiyRy 1in R we
have (RR1X,R2X) = (R;RR1X,X) = (R1R§Rx,x) =0, Thus R =0

since x 1is cyclic for (K . So x is separating for (R .

Remark, If =x 1is a trace vector for the von Neumann algebra M.
on the Hilbert space H we see from the proof of the above propo-
sition that we have the following alternative characterization of
the family P{(fiL,x) , namely, p € P(fh,x) iff x € range(p) and
(pM%ppMépx,x) = (pMéppM%pX,x) for any M%,Mé ¢ M' (compare this

with Remark 2 to Definition 4.2).

Before we prove the next theorem we give the following defini~

tion, cf. [9; pp. %38-39],

Definition 5.4. A (right) topological transformation group (G,X)

is a topological group G +together with a topological space X
and a continuous map (g,x) - xg of GXX into X such that
x(gh) =(xg)h , and if e is the identity of ¢ , xe = x for

all g,h in G and x in X ., (G,X) is polonais if G and X

are polonails, i.e. they are scparable and metrizable by & complete



metric, Similarly we say that (G,X) is Hausdorff if both &

and X have that property,.

Recall that P(M) denotes the finite von Neumann subalgebras

of In, and QU denotes the unitary eperators in %n ,

Theorem 5,5. Let . be a finite von Neumann algebra on the

Hilbert space H with a separating and cyclic vector and let x
be a trace vector for M., Then (% ,P(¥n,x)) is a Hausdorff
(right) topological transformation group under the mapping
(U,p&U) ® DPyxgy ¢ Where N e POn) , U €94 and where 4, and
P(I,x) are given the strong-operator topology. If H is separ-
avle (T,P(M,x)) is polonais.

Finally, let x; and x, in H Dbe two trace vectors for fn
and let {4bu} be a net in F(P) such that ecach d%h contains
the center % of M. Let % e (M) . Then we have

(1) o o] g p(2 p(2 :
[q/ba}(i] € P(rn/lyxi) y pfnJ [/}’b}[ ] € P({}‘P},,X ) 1,23 converg-

ence heing in the strong-operator topology.

Proof, Let UB ke UO s ENY ?7> P in the strong-operator topo-

logy, where the U's are in WU and the M's are in F(n)
For each UB there is a unique Ué € ' such that UBX = Uéx

and (J— U in the strong-operator topology, where U; e m

B B

such that U x = Uéx {Theorem 3%,6), Now Py# quUB is the pro-

jection onto the subspace

*( - ¥ - * ' = ¥rp!
[(UB kQUB)x] UB([(hw(UBx)]) UB(tqﬁy(UBx)]) UBUB([ﬂtyx])
The operator B qul ig a partial isometry with final space

¥*_ ! *
Us([qux]) and so pqu%YU = (UBUBpﬂt )(UBUB ) =



- 3% .
%! 1% Ko ! ¥
Us% PoyUs g 5777 YoloP Yo Yo = Putm v

Thus the mapping (U,pg ) = Pyrqy 1S (jointly) continuous in

the strong-~operator topology. This completes the non-trivial

part of the proof that (U,P(r,x)) is a Hausdorff (right) topo-
loglecal transformation group.

If H 4is separable, the unit ball of @B (H) 4is polonais in
the strong—operator topology [3; Chapter I, § 3; 11 . By proposi-
tion 5.3 P(@L,x) is closed in the stfoné;operator topology and
so P(M,x) is polonais. Also T is a G, subset of the unit
ball of (B(H) in the strong-operator topology ([5; Lemma 4]) and
so is polonais ([2; Chapter IX, § 6; Theorem 1]), Thus
(,p(In,x)) is polonais,

To prove the remaining part of the theorem we first observe
that with {7,} and N given as stated we have that N, contains
the center % of 1. This is so since either pég) < pgl) or
pgf) < pés) and so by Theorem 4,3 we have %< v . Assume for
the moment that we can find a cyclic vector y for v such that
[%x,‘] = [’ﬁy] and {(My,y) = (Mx,,%,) for all M in hu
Then there exists a unitary operator_ U' in M such that
U'y = x, [4; Proposition 2.4,1]. Then we have [y 401 =

. , (1)
Eﬁva(U'y)3 =0 (M1 =10 (M x41) for all o . Now U’ pW

is a partial isometry with final space U'([ﬁ@hx1]) and s0

(2) _ grolM) (1) (1)
p{n}a = U p,nQI(U Py ) =’ p’“’aU for all o . Analogously
(1)

we have p,’ =T p(1) U . We infer that P 7?> p(1) if
and only if p%i} 5> p%i) s convergence being in the strong-
operator topology.

It remains to establish that we can find a vector y in H

with the desired properties. By [3; Chapter IIL, § 4; Lemma 1 &
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Proposition 41 there exists an increasing net {CB} of positive
operators in 'Z (not necessarily bounded above) such that
(Mx,,%,) = wXQ(M) = 1;m w 1(c M) = 1;m(0 Mxy,%xq) = 1;m(MG x1,CSX1)
for every positive operator M in . We want to prove that

1 1
lim CZx, =y exists, Indeed, {Cg} is an increasing net of

g B
operators in % and so for g4<8o

L i
ng§2x1 Cq x1H = (cs2x1,x1) + (081x1,x1) 2(0; cg Xq9%q)

IA

2((}82x1,x1) - 2(CB1X1’X1) .

1
We conclude from this that {ng1} ig a Cauchy net since for
any 8' we have (Gs,xq,x1) < 1%111(08){1,};1) = (X5,%5) + So

lém CB 1 =y exists and we have (Mx,,x,) = (My,y) for every

positive M in N and hence for all M in T, Clearly y is
separating for 7 since wylm is faithful, and so y is cyclic
for 7 by Theorem 3.6, Obviously y € [’%X1] and also y is
separating for %p% on Py (H) = [%X,I] . Hence y is cyclic
for ’Zp% since ”ﬁp% is maximal abelian on [/Zx1] « This shows
that x, ¢ [% ¥yl , thus rendering . [/}{x,,] = [%y] .

This completes the proof of the theoremn.

Definition 5.6. Let M be a von Neumann algebra and let % ve

a von Neumann subalgebra of M., A conditional expectation

on ’72/ is a posgitive linear map ¢ of Mo into N such that

9(I) = I and o(NM) = Ne(M) 3 Ne v, Me ‘M . By taking adjoints,
it follows immediately that o(MN) = o(M)N 3 ¥Ne W, Me WL,

We say ¢ 1is faithful if o(M) = 0 for M€ 7} implies M = O

A AN
and @ is normal if Ma| M implies @(Ma)| o(M)



We list some elementary properties of conditional expectations
in the following proposition and refer to [1; Proposition 6,1,1]

for proofs.

Proposition 5,7. Let M be a von Neumann algebra and let ¢ be

a conditional expectation on the von Neumann subalgedbra o
Then
(1) o) e(M) < 9(M*M) 3 M ¢
(i1) o is a projection oﬁto W, i.e. ® 1is an idempotent
and 90R) = U .

(iii) Tet p be a faithful state on P} which preserves o ,
i.e. pegp = p . Then for every Me M, o(M) 1is that
(unique) element in J which best approximates M in

the norm ”T”p = p(T*T)% ; Te M.

(iv) Let ¢ be any state which preserves ¢ , If p is
faithful, then so is ¢ 3 1if p is faithful and normal,

then ¢ 1s normal,

Remarks. The concept of conditional expectation is very important
in probability theory. Umegaki [21] showed that for a von Neumann
algebra having a faithful normal finite trace, ' though non-commu-
tative, one can define the conditional expectation on a given

von Neumann subalgebra in a most natural way; when the subalgebra
is the center, for example, this construction yields the center-
valued trace, Tomiyama [207 showed that a conditional expectation
on ‘A can be characterized as an idempotent linear mapping of ?ﬂ,

on ‘N having norm 1 , and which leaves the identity fixed.

Let x be a trace vector for the finite von Neumann algebra m.

acting on the Hilbert space H . It turns out that there is a
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close relatiénship between the family of projections P(?%,x)

and conditional expectations in /. We are going to make this
precise in the following theorem where we also construct the con-
ditional expectations in question. PFirst some preliminary remarks.
Let (W) ‘denote the family of conditional expectations of .
onto its various von Neumann subalgebras which leaves the trace

Wy lgp, invariant, i.e. wyfye® = w [y, for e aM) . Por J in
F(Mh) , the family of (finite) von Neumann subalgebras of P4 ,

let ¢wt'in 3(fn) denote the conditional expectation on % .

By Proposition 5.7 (iii) ¥y, 18 uniquely determined by .

$(M) is a subset of the locally convex Hausdorff space B(H, M)
01 bounded linear mappings of GWL into ML with the topology of
poilntwise convergence in the strong-operator topology, i.e.

L, > L in Bin,m) ife La(M) = L(M) in the strong-operator
topology for all M in 1. We assume (M) 1is endowed with

the relativized topology.

Theorem 5,8, Let M be a finite von Neumann algebra on H and

let x be a trace vector for 4yu'. Let pmle P(hi,x) for some
N € P@n) . Then ?qub = pqﬁhbpqt and the mapping M - p,Mp,
of ¥fL onto Ny, &ives rise to the conditional expectation @y,
on U such that wly e, = wly, , i.e. @, € 8(M) . In parti-
cular, ¢“£ ig the center-valued trace Tr , where 7{ is the
center of M.

The correspondence between P(#l,x) and 3(fw) given by
Pry, Phn, (@beiFUMl)) ig a homeomorphism, where P(,x) is
given the strong-operator topology and @CH@) the topology of
pointwise convergence in the strong-operator topology. Further-
more, if N e P(M) contains the center ?f of WU then

Tromqm = Tr ,
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Proof. We may assume without loss of generality that x is
cyclic for .. Tet e P(M) and let D, € P(M,x) Dbe the
projection onto [W.x] . By proposition 5.3 there exists

%1 e F(M.') such that p,n/1 = Py » Now
Wy, = vy My, © DR, € B dPn, = Pgpp)'

Since (%19%)' igs a finite von Neumann algebra on [ x] with
a cyclic and separating vector x , and the same is true for

fhp% (cf, Definition 4,2), we conclude by Theorem 4.3 that
1 , )
Mgy = (M) and s0 Mgy = 1y, Moty -

The mapping Np, - N (N ch) is a “-isomorphism between
%p% and 7/1/ gince the central carrier of Pge in 7’1,,' is I ,
X Dbeing cyclic for n [3; Chapter I, § 23 Proposition 2],
Composing this map with the mapping of M. onto 'h/p%: p%q’nqu
defined by M = p%MpmJ (Me M) we get a mapping Py of (e
anto ‘N characterized by P (M)pyy, = Py Mpg,, for all M ¢ ..
Obviously Py is a positive linear map of M. onto ML and
cp%(I) =1, Tet Me M, 8 ¢ 7. Then 040, WD, = (Np%)(p%Mp%)
since p%e%' . Hence cé% (W) = N, (M) , establishing that

? gy is a conditonal expectation on .. HNow for M ¢ qsz/ we have
(CP%(M)X,X) = (CQ%(M)D,},DX,X) = (p%Mp%X,X) = (MX!X) ’

and so w, !nmocp% = Wyelpy o Hence op € 3(Mm) by the definition
of &(M) . (Observe that by Proposition 5.7 (iv) @, ~ is both
faithful and normal).

With % the cember of Mt we have for My,My € Pnoend Z,% e%

(p,}é M sz%z X,7 x) = (Z 1Mo, X) = (M Z Z.M,x%, x)

(MQM.321X,ZQX) = (p% M2M1p%Z1X,Z2x)
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uéing that x is a trace vector for fn. and that Doyt = [£x)e %‘ .
Hence p,./c,?fl,imzpq2 = p%Mzm.]p% , proving that ®, (M1M2)=¢%(M2M1).
By uniqueness of the center-valued trace we have lTr = ¢ﬁ£
[3; Chapter III, § 5; 1],

Assume next that Je F(M) and Mo ¢ . Then Py, Z Pry

and so for M ¢ L we have

{CP,«%(CP%(M))]}D% = P%CP%(M)P% = p%(@%(M)P%)p%
= Py (P MR IPrp = Py WPy =0 (M)D g
Hence cp,% Wyq, = Py and so '.{‘rm:p,},L = Tr since Tr = Prg

The mapping pq.” $4 for Me F(n) 1is a bijection between

P ((}‘YL ’X) and o) ({;%) (Cf. Theorem 40 3) . Let p% _ﬁ,—> p(VL in
4 0

topology
the strong-operator/, where the W's are in F(%) , and let

Me M. For M' ¢ M we have
o (D AUR) = (Woy (1) (py x) = (M'p,, Ny, )x

—> (M'pf,,LOMp%O)x = (M'cp%o(M)p%O)x = w%O(M)(M'X) .

Since |lo, (M) < M for e F(In) and {M'x} is dense in H
we conclude that mqha(M) - ¢¢&}M) in the strong-operator
topology.,

Conversely, let Pon. o> $q1 in the topology of pointwise
a 0

strong-operator convergence, where the M's are in () .

Tet M ¢ . Then

P CL(MX) = (p’i’laMpWa)x = (ch,La(M)p(}La)X = CP/]/IUSM)X

M

e C?(VLO (M)x = p%O(MX) .

Since ﬂTLx} is dense in H we conclude that p, = Py in
o 0

the strong-~operator topology.
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Remark 1, By the above theorem and Theorem 5.5 we can organize
(I, 2)) into a topological transformetion group by the mapping
(U’cp%) - CPU*(VLU 2 where U ¢ % ’ % € F(/}PL) .

Remark 2. By the above theorem we may draw as a corollary the
result proved in Theorem 5.5 using a different approach, namely
that for X4 and Xo two trace vectors for i, convergence in
P(%m,x1) coincides with convergence in P(Qm,xz) if we adhere

to von Neumann subalgebras of . containing the center of (45
(¢f. Theorem 5,5)., In fact, % ¢ F(MH) and N > % implies
Trep,, = Tr . This uniquely determines ¢, (regardless of the
trace vector x), a fact which is readily verified, Together with
the topological homeomorphism between P(M,x) and 3(M) proved
in the above theorem this immediately gives us the result quoted,
(Notice that we do not have to assume that x 1is a g¢yclic trace
vector to get thisj; we could also have avoided that assumption

in the proof of Theorem 5,5).
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