
CANONICAL RELATIVISTIC QUANTUM FIELDS 

IN TWO SPACE - TIME DI1'1ENSIONS * 

by 

Sergio Albeverio and Raphael H0egh-Krohn 

Institute of Mathematics 
University of Oslo 
Blindern, Oslo 3 

(Norway) 

ABSTRACT 

We construct models of local relativistic quantum fields in 

two space-time dimensionswith weak polynomial or exponential 

interactions, which are canonical in the sense of the canonical 

Hamiltonian formalismo They are thus given in terms of the 

time zero vacuum, which determines a unitary strongly continu­

ous representation of the canonical commutation relations for 

the time zero fields (for which the vacuum is cyclic) and their 

conjugate momenta, as well as a unitary strongly continuous 

representation of the inhomogeneous Lorentz group. The infini­

tesimal generators of time translations and Lorentz transfor­

mations are given by Dirichlet forms associated with I..L. The 

infinitesimal generator of time translations generates a homo­

geneous Markov process solving a stochastic diffusion equation 

with osmotic velocity given by I..L .. The models satisfy conditions 

for Euclidean Markov fields discussed by Nelson and Simon. The 

measure I..L is the restriction of the physical vacuum for the pre­

viously constructed Wightman models (with the same interactions) 

to the functions of the time zero fields. 
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1.1 

1. Introduction 

In this paper we constr.uct models of local relativistic quantum 

field~· which are canonical, in the sense that they are civen .comple · 

tely in terms of a probability measure 1-1. ,the time zero vacuum, 

which determines a. representation of the canonical commutation 

relations for the time zero fields and their conjugate momenta~ 

as well as the ini'initesimal r-enerators of the inhomoe-eneous 

Loretz group, unitarily ctrongly continuously represen:~ec1 in L2 ( diJ.), 

with 1 as invariant 11ector. We discussed problems related to the 

ones tackled in this paper in two previous papers [1] ; [2] , and we 

refer to these also for references concerning previous v1ork rela 

ted to the subject. 

In this pa.per we consider more particula.rly 1) the weakly coupled 

P( q> ) 2 models ( [3]) ana the exponential interactions mof' els ( [4], 

[5]) of Bose quantum fields in two space time dimensions. Such 

models satisfy in particular all the Wightman axioms C?~2c' their 

physical Hamiltonian has a mass gap at the lower end of i·cs 

spectrum. It is an open question whether these moe'; els .s:r0 canonica.l 

in the sense that the physical vacuum is a cyclic vec·(~or :for the 

time zero fiel6s or ,equivalently,{ [6]),the contraction semigroup 

renerateu ~y the physical Hamiltonian is a Markov semi~:roup. In 

more technical terms it is open whether the moo els s.:d;isf7 Nelson's 

axioms [1], [8] or the relatPo Simon's ones [g] ~ser also ·: :• r·. f' [..1 ] 
•- • -- • I ' 

Ch.IV. For some oiscussions of these questions see [6] -[14]. 

In this paper we show that in any case one can use the ~noCels 

mentione6 to construct canonical ones. We shall now jrinfly descri 

be this construction. 
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* . Let 1J be the measure correspondent to the physica.l va.<:,-.,~.m for any 

of the models mentioned above.It is known that the tiec zero 

fields exist as multiplication operators in Lp ( 01-J.*): ·1 ~ p <co 

. th th h . l 1 J... • t . T ( - *) w1 e p ys1ca vacuum a.s an ana yuJ.C vee or 1n ..u 2 c.IJ, 

( [13] 2 ) resp. [5] ) . Let be the probability measure on ";l1e real 

space SXR) defined as the restriction of ~*to the time zero 
I 

fields~ so that 

< > J i(s*,~n> * s ei s,~ d~J, = lim . e d~J, 
n-co 

for any s E S'(R), s* E S'(R2 ), ~ E S(R) , and anr 6-sequence 

of functions x out: of S ( R). n . 

In [1} ~ [2] we established results on iJ. which we shall now· recall, 

at least partially. iJ. was first proven to be a quasi invariant 

proba.bili ty measure with respP-ct to the nuclear rit:.cint"~ 

(real spo.c cs) , 

so that iJ. defines a. uni ta.ry strongly continuous represen~a:tion 

cp -> U( cp) ,V( cp ) of the Vfeyl commutation rela.tions on l 2 (a~-), 

with 

cvc~)r)(s) = Jd~J(s+p) rCs+cp) 
d!J.(s) 

(1.2) 

a.nd f E L2( diJ ) • Let n( ~ ) be the infini tesima.l genera.tor of the 

unitary group V( t cp ) , i.e. n ( cp ) is the canonical mom en :;t'Ll ~ conju 

ga·>;p to the canonical field(s,cp). We proved in [2] tha·~ the .'j..,;,.-.;·~­

i'unction 1 in L2 (d~J,) (i.e. the time zero vacuum) is on analytic 

vector for ·-n( cp ) • Let FC 2 be the dense amain in L2 ( c ll )(:onsisting,. 

or fuilc"tJ.Ons onS 1 (R) which are finite]y based a.no en on their base, 

so that f ( s ) = f( P f t; ) for some projection P f with i'inite dimen 
x-

sional range in s (R) ana such that the restriction f of f to the 
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rantf" of Pf is n-times continuously differentiablE>. It rras proven 

in 2 that 1-l is strictly positive, in thP sense that 

J fdl-l = J f*(x1 , ..... ,xn)p(x1 ,.;. •• ,xn)dx1 ••• dxn (1.3) 

S' (R) Rn 

where the O<?!nsi ty p is bounded away from zero, uniform!} on compacts. 

In [1] and in section 4 of [2] we considered moreover ·chc 

Dirichlet form 

Obtained by closure from its restriction to F 0~ ;Wher·c tho gradient 

v is natura.lly defined of FC2 • The unique self-adjoint opsrator H 

associated with thP Dirichlet form, called diffusion opcr·a.tor, is 

thP Friedrichs extension of its restriction to F0 2 anc! OYl :r?c2 

(1.5) 

with the natural definition of the Laplacian ~ , and wit~ 

, where .·· 

base in the range of Pf and 

a·cp. = 2irr(cp.)o1 0 ~ was called in [1]~ [2] the osn.o<;ic •relocity 
J J 

corresponding to the neasure 1-1. 3 ) 

e re a 1.0n e ween . an e -Y · .._ Th 1 t . b t H d- th pb sl.·cal H_a·m~ltonian PP,J'.l of the 

Withtman models of Eef. [3], [5] is, as pro~en in (1]) [2] , 

for any f ,g in FC t where J is the embedding of L2 ( C t--t) in 
2 0 

* L 2 ( d 1-1 ) • 

We come now to the main results and the distribution of the 

topics in this paper. 
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Insection 2 we make general considerations about Diricle~ forms 

a.ssociated with the nuclear riggine 

S (Rn) c L2 . (Rn) c S' (Rn) • 

They are of the type 

(' I 6f 12 
~ (f ,f) - jh(x) l) s(x) dx c4J. ' 

with f E FC2 ana notation generalize6 from ( 1.4). h is eJ:r.• function 

in the space & (Rn) of multipliers on S' (Rn). The qua.si inva.riant 

measures 1J. are assumea to be such that 1 is in the domo.in of n( cp ) , 

for all cp E S(Rn) ,where n( cp ) is defined 'in. t~ samn way as above. 

The form Dh is shown to be closable so that its closure 6efines 

uniquely a self-adjoint operator H(h). Under some ad~i-~ional 

conditions we prove tha.t, on Fc4 , the commutator [H( h 1 ) ,E( h 2 )] 

is a vector field over S'(Rn), with components given by the kernel 

of the bounded linear map [H(h1), H(h2 )] < (~,cp) 

S ( Rn) to L2 ( d 1J. ) .. 

fro10. 

In section 3 the results are then applied to the ca.sc w}:lcrc 1J. is 

the time zero va.cuum measure of quantum fields with exponontia.l 

or polynomial interactions. In this case the above kernel is simply 

equal to ( h1 11 h2 - h2 ll h,) 11 ~ (x) .. 

For h1 - 1 we have H(h1 ) = H, the diffusion opera. tor sssocia.teo 

with IJ. . For h2 (x) - X ~setting H(h2 ) - A ' we ·chen have 

[A H] = i P , with P the infinitesimal cenerator o: space 

translations, natura.lly induced in L2( d IJ. ) by the space tronsla 

tions a.cting on the fields (~,cp). Moreover we find tha.t A ,P ,H 

ha.ve on FC 4 all the correct commuta.tion relations of tho infi:c..i:.esi 

mal generators of the inhomogeneous Loretz group. Morea "/er we prove 

tha.t we have indeed a unitary -trongly continuous representation of 

the inhomogeneous Lorentz group on the canonical space :~~. 2 ( c11J. ) , 

generateo by A , P , H • 
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We thus see that the measure 1-1 ha.s €:iven us local rcla.-C;i vis tic 

canonical models. '.rhese results carry throurh y for the r.1oc~els 

considered, the program discussed by _i\.raki [17]. 

We expect of course that the ca.nonica.l models constructeO in the 

present paper from the restriction of the physical vaccl.uc_ of the 

Euclidean models to the time zero fielos coinciCe with the usual 

models [3] ,[5] constructed by ana.lytic continua.tion from the 

Euclidea.n models. However we have not yet been able to p:.co>Te this. 

In any case the canonical models of this paper are mo~els that 

ha.ve the Ma.rkov property with respect to half planes and -~hus 

satisfy the conditions f6~~~J~g~nfields discussed by Nelson [7] 

and Simon [9] . 



2 .. 1 

2.. Diffusion operators on the space of tempered distributions. 

Consider the nuclear rigging 

(2.1) 

where S(Rn) is the Schw~ space and S'(Rn) its dual i.e .. the 

space of tempered distributions. Let ~ be an S-quasi invariant 

probability measure on 8' , i.e.. d~(s) and d~(s+~) are equivalent 

measures for any ~ in S. Such a measure 11 gives rise to a 

unitary representation (U,V) on L2 (dl1) of the Weyl commutation 

relations on So Namely, for f E. L2 (dl1) , (U(~)f) ( s) = ei(cp,s) f( s) 

and (V(~n)f)(s) = a.(s,~n)f(s), where a.(s ~)- (dll(S+J)yt .,.. ..... ' - dll ( ~ .. 

Let n(~) be the infinitesimal generator for the unitary group 

V(tcp) • We say that ll E !f (S') if the function 1 is in the n 

domain of n(~1 ) • o o n(~n) for any n elements in S.. For further 

details see [1], [2] .. 

In what follows we shall always assume that 11 E ~ (S' ) .. 

Let FCk be the subspace of L2(d!J) consisting of bounded finitely 

based and k-times differentiable functions i.e.. f E FCk iff 

there is an and in s such that 

f* ( <~1' s)' .. " 0 '(cpl' s)) D For any f E FC1 we define 

where 

{)f 1 
tss(x)Cs) = .t fjC<~1 ,s>, ..... ,(~,s>)cpj(x) 

J=1 

f~ 
J 

are the partial derivatives of f* • We see that 

f(s) = 

(2.2) 

is a continuous map from S' into S with finite dimensional range. 

Since 1 E D(n(~)) for any ~ E S, we get that ~ ... n(cp)1 is a 

linear mapping from S into L2(d!J) .. Moreover, since S is a 

complete metric space, 'ltJe have that ~ ... n(~)o1 is bounded, and 

then;bY using that S is nuclear, we get that this mapping has a 

kernel which we denote 1 d a(x) 0 is a measurable mapping of 



S' into S' called the osmotic velocity, and we have 

n(cp)1 = -dr J S(x)cp(x)dx. 

For a proof of these facts see prop. 2o5 [1]. 

Let h E S' (Rn) , then we define, for f E FC1 , the Dirichlet form 

Dh(f,f) = ~JJh(x)\ 0 ~g6fx)l 2dxd~-L(S). (2.4) 

This is well defined since ~{ is a continuous mapping from S' 

into a finite dimensional subspace of S, and by (2o2) 

Jh(x) la /{x) l2dx is uniformly bounded and continuous in s . Let 

c91'1(R?) be the space of multipliers for S' (Rn) , i.e. if hE C(fiP) 

S' • then T(x) ~ h(x)T(x) is a bounded linear transformation on 

If h E CJM(Rn) then the Dirichlet form (2.4) restricted to FC2 

It is namely given by a symmetric operator in L2 (d!l) is closable. 

Dh (f ,f) = (f ,H(h)f) , 

where 

1 r o2f of H(h)f = - 2 J h(x)( 2 + ~(x) 0 gc ))dx. 
0 S(X) X 

For details see theorem 2.6 [1] and the proof of it. 

Since Dh(f,f) is closable its closure defines a self-adjoint 

operator on L2 (d!l) which we shall also denote by H(h) • Since 

h ~ 0 ==;> H(h) ~ 0 by (2.4), \ve have that H(h) is monotone in h 

and since monotone convergence of semibounded forms implies resol-

t h th t "f 0 < h ~h th (1+H(hn))-1 ven convergence we ave a , J. _ --n. r , en 

converges strongly to (1+H(h))-1 • As an integral in h, Dh(f,f) 

is absolutely continuous with respect to the Lebesgue measure in Rn. 

Hence.:, by monotone convergence ) H(h) may be extended to all h in 

Ito(Rn) o 

If h E c9M(Rn) and h > 0 then it is easily verified that 
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H(h) is the limit in the strong resolvent sense of operators Hm(h) 

such that Hm(h) are given as direct integrals of forms which are 

Markov symmetric forms in the sense of Fukushima [17], as in theorem 

2.7 of Ref. [1]. In this way we get the following theorem 

Theorem 2.1 

Let h E (3M(~) i.e. the space of multipliers on S' (Rn) 

such that h > 0. Then e-tH(h) is a conservative Markov semi-

group i.e. for f E L2 (d~) such that f > 0 we have that 

e-tH(h)f > 0 and e-tH(h)1 = 1 • Thus the corresponding Markov 

process sh(t) on S'(Rn) is a homogeneous Markov process with 

invariant measure ~ • This process sh (x, t) on S' (~) satisfies 

the following stochastic differential equation 

dsh (x, t) = h(x) ~ ( sh ( t)) (x)dt + h(x)dW(x, t) 

where W(x,t) is the standard Wiener process on S'(Rn) given by 

the rigging S(Rn) c L2(~) c S' (Rn), and ~(s)(x) = drn(x) ·1 in 

the sense of (2.3). 0 

Let us now assume for some h and cp in S(Rn) , that 

n(cp) • 1 is in D(H(h)) • Then H(h) n(cp) ·1 is a bilinear map 

from S x S into L2 (d~) • 

By the abstract kernel theorem we get in the same way as in prop.2.5 

of [1] that there is a measurable mapping U: s ~ T(~)(x,y) from 

S'(~) into S'(RnxRn) such that, for h and cp in S(Rn), 

(cpxh,T(s)) is in L2(d1J) as a function of s and 

(cpxh, T(s)) = {CH(h)n(cp)·1)(s) .. (2.7) 

Since obviously H(h)n(cp)•1 = [H(h),n(cp)]•1 and [H(h),n(cp)] is a 

multiplication operator we also have 

(cpxh,T(s)) = i[n(cp),H(h)]. (2.8) 



Remark: 

In the case where the osmotic velocity ~(s)(x) is sufficiently 

smooth, we have that for h E S 

n 2 
H(h) = jh(y) ( tn(y) + V(y))dx, 

1~ 1 2 . where V(y) = ~~ + zr13 (y) (see section 2 

case we see from (2 .. 8) that 

Lemma 2 .. 1 

oV_(.y) 
T(s)(x,y) = 6SrXT .. 

Ref .. [1]) .. In this 

(2.9) 

Let 1..1 E ~2(s') , then if for some . h 1 E c9M(Rn) we have 

that n(cp)o1 E D(H(h1)) for eny cp E S(B?) then, for any h 2 in 
1CJ n 
._.... M(R ) , H(h2 ) maps FC4 into the domain of H(h1 } .. 

Proof: 

Let f E FC4 then 

1 r 0 2f 1 i' of 
H(~)f =-'2'J h2 (x) 2 ax-'2'Jh2 (x) 13(x)os(x)dx .. 

0 s(x) 
(2.10) 

The first term is obviously in FC2 and since of 
0 s(x) as a function 

of x is in a fixed finite dimensional subspace of S , we· may 

write the second term as 

. r h C ) of C )d 1 g = - 1. j 2 X 0 S(x) n X X" ' (2 .. 11) 

of 
because h2(x) 0 s(x) is again in s as a function of X. Since 

by assumption n(cp)a1 E D(H(h1 )) for any cp E S, we find that 

H(h1 )g = -~ JJn,Cy)h2 (x) o;f ·n(x)dxdyo1 
. os(y) os(x) 

is f' o2f . 
+ ~ j h 1 ( Y) h 2 (X) O S ( y) O S (X) • l3 ( y) TT (X) dxdy o 1 

(2.12) 
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Now the first term in (3 .. 12) is well defined since 1 E~n(~)) for 

any ~ E S and 

The second term is equal to 

I r- 5 2f 
- j h1 (y )h2(x) {) s(y) {) s(x) n(y )rr(x)dxdy .. 1 

which is in L2 (d~) by the assumption that ~ E sP2(S') and the 

abstract kernel theorem .. 

The third term is in L2 (d~) by the assumption that n(~) • 1 is in 

D(~1 )) and again the abstract kernel theorem.. This proves the 

lemma.. 0 

L t th t E -~2(8') h f e us now assume a ~ ~ and t at or some h1 

in l9M(W) we have that n(~) .. 1 E D(II(hi)) for i = 1,2 

and h2 

and all 

~ E S(Rn) • Then by the previous lem.rna [H(h1 ) ,H(h2 )] is defined 

on FC4 • By (2 .. 7), (2 .. 10) and (2 .. 12) we have that for f E FC4 

Jr 54 f 
4 • H(h1 )H(h2 )f = J h1(y)h2 (x) 2 2 dx dy 

5 s(x) 5 s(y) 

JJ. 63f 
- h1(y)h2 (x) 2 • 13(y)dxdy 

{) s(x) 6 r;(y) 

(2 .. 13) 

I r of 
+ 2 j h1 (y )h2(x) 6 ~(x) T( s) (x,y )dx dy .. 

We remark that by the assumption that n(~)" 1 E D(Hh1 )) we have, 
of by (2.7), that T(s)(x,y) is defined on h1(y) x h2(x) 5s(x) for 

almost all s and the result is in L2 (d~) ., By antisymmetrization 



with respect to h1 and h2 we get that the four first terms in 

(2.13) fall out and the result is 

For any 1-.l E -?1(S') we say that H = H(1) is the Dirichlet opera­

tor given by ll • We say that H is an harmonic oscillator on S' 

if ll is a non degenerate Gaussian measure i.e. its Fourier trans-
1 

form has the form e- zr(cp,Bcp) , where B is a bounded positive oper-

ator on S with a bounded universe on S o By Minlos theorem there 

is a unique ll corresponding to any B bounded and positive, and 

it is easily seen that if also B has a bounded universe, then 
r 

with ~(s)(x) =- J A(x,y)s(y)dy, where A(x,y) is the 

kernel of A = B-1 , which by assumption is a bounded map of s ' 
hence, A being symmetric, it is also a bounded map of S' • So 

we see that harmonic oscillators have linear osmotic velocity fields~ 

By a straight forward calculation we find that the mapping T(s) in 

the case of a harmonic oscillator is given by 

T(s)(x,y) = A(x,y)JA(y,z)s(z)dz. (2o15) 

In this case we see from (2. 15) that for cp E S(Rn) and hE c9I1(Rn) 

we have that cp x h is always in the domain of T( s) and moreover 

(cp X h, T( S)) = (hAcp,AS) o (2o 16) 

Since (2.16) is a continuous linear functional it is always in 

L2 (d!-l) with respect to the Gaussian measure 1J • We have therefore 

proved the following lemma 

Lemma 2.2 

,If H is a harmonic oscillator on S'(Rn) then, for any 

h E (:9 J.VI(Rn) and any cp E S(Rn) , n(cp) ·1 E D(H(h)) • Moreover if 



the corresponding osmotic velocity is 

S ( S) (X) = - sA (X, y) S ( y) dy 

then the corresponding mapping T(s) is given by 

T(s)(x,y) = A(x,y)JA(y,z)s(z)dz .. 0. 

Let us now return to the formula (2 .. 14), and consider the expression 

(2.17) 

By the definition (2.7) this is equal to 

Now by the definition (2 .. 6) we have 

(2.19) 

where of course H(h2 ) s(x) is to be understood as a bounded 

linear map from S into L2 (d!l) .. That this map i:3 bounded follows 

from the fact that ll E ~1 (8') • 

In fact if we assume that we have rr(~)·1 E D(H(h.)) 
l 

i=1,2 for 

any cp E S(Rn) , then (2. 19) is a bounded mapping from S(Rn) into 

D(H(h1 )) o Hence H(h~(h2 )s(x) is a bounded mapping from S(Rn) 

into L2 (d!l) , so that (2 .. 17) is equal to 

(2.20) 

We have thus proven the following theorem 

Theorem 2 .. 2 

If ll E z:f>2cs' ) and for some h1 and h2 in r3 (Rn) we 

have that n(cp) •1 E D(H(hi)) i = 1 ,2 for ~ arbitrary in S(R) , 

then_ H(hi) maps FC4 into D(H(hj)).. In particular, since 
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(cp, S) E FC4 , H(hi) maps (cp, s) into D(H(hj)) so that 

H(hi) H(hj) (cp, s) is a bounded linear map from S into L2 (d~) , 

S being nuclearo Let H(hi)H(nj) s(x) be the kernel of this map, 

then we have, for any f E FC4 that 

We remark that this theorem shows that the commutant 

[H(h1 ),H(h2 )J is a first order derivation or a vector field over 

S' with components given by [H(h1 ),H(h2 )J • s(x). 



3. The diffusion operators of the local relativistic quantum fields 

in two space-time dimensionso 

In this section we consider the cases where the measure ~ is 

the restriction of the physical vacuum to the time zero fields for 

the models in which the infinite volume Schwinger functions exist 

and the corresponding energy operator has zero as an isolated, but 

not necessarily simple, eigenvalueo These models are the weak poly­

nomial interactions [3], the strong polynomial interactions with 

Dirichlet boundary conditions [19]- [21] and the exponential inter­

actions [5]. In all these cases we know that the restriction ~ 

of the physical vacuum to the time zero fields is a measure on S '(R) o 

Thus we consider, as in [1], [2], the natural nuclear rigging 

S(R) c L2 (R) c S '(R) • 

In Ref o [2] we proved that 1-1 E 5~ (S' ) for all n , in fact we 

proved that 1 is an analytic vector for rr(cp) , for any cp E S. 

Let H(h) be the corresponding diffusion operators in the sense of 

the previous section and let H = H(1). 

In all cases considered here the physical vacuum is given in 

terms of the Wightman functions 

used to constructJby the Gelfand-Segal-Wightman construction,the 

physical Hilbert ppace ~ph and the physical energy operator Hph' 

which is the generator of the time translations in d'{ph • We have 

of course that L2 (d~) is a closed subspace of 'JG'ph and one would 

naturally have liked to prove that 'Jgph is identical with L2 (d!l) 

and is identical with the diffusion operator H = H ( 1 ) • This 

is however still an open questiono What we have been able to prove 

is that for f and g in FC2 we have that 



(f ,Hph g) = (f ,Hg) .. (3 .. 2) 

For this result see Ref. [1], [2] .. 

The proof that ~ E 1;cs') in Ref .. [2], which gives the ex-

istence of the diffusion operator H' and also the proof of the 

analyticity of ~ ' i.e. that 1 is an analytic vector of all n(cp), 

were based on the following formula, proven in [1], [2], 

i[n(cp),H] = (cp,(-6+m2 )S) + :v'(S):(~), 

where both sides are to be considered as bilinear forms on FC2 x FC2 .. 

Here :v'(s):(cp) = J:v'(s(x)):cp(x)dx, and v' is the derivative 

of the function giving the interaction i.e. the volume cut-off 

interaction is of the form 

H1 = H 0 + j : v ( S ( x) ) : dx , 

lxl_::l 
(3 .. 4) 

where is the free energy and v is a polynomial bounded below 

for the polynomial interactions and v(s) r = j cosh( a.s )dV( a.) with v 

any positive measure with compact support . ( 4 4 ) ~n - "',....,- for the expo-
m 'Vii' 

nential interactions, . . . . denoting the Wick ordering.. The formula 

(3 .. 3) was proved by using the expression (3 .. 4) for the corresponding 

space cut-off Hamil toni an H1 , the fact that, on FC2 , H1 coin­

cides with the diffusion operator given by the corresponding space 

cut-off vacuum ~l , together with the weak convergence of ~l • 

Let now h(x) > 0 and h(x) E C:1M(R) • Then consider the mo­

dified Wightman functions 

(3.5) 

We see that is invariant under time translations and satisfy 

the same positivity conditions and the same analyticity conditions 

in the time differences as do the original Wightman functions .. 
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Moreover, since h(x) > 0 , the Hilbert space constructed by the 

Gelfand-Segal construction from wh is in a natural way identical n 

with ~ph .. The corresponding generator of the time translations 

Hph (h) is of course different from Hph.. We get however by the 

same proof as for (3 .. 2) that, for f and g in FC2 c L2(d~), 

(f ,Hph (h)g) = (f ,H(h)g) .. (3 .. 6) 

We also immediately get from (3.5)>or from the corresponding expres­

sion for the Schwinger functionsJthat Hph(h) is the infinite volume 

limit of the corresponding finite volume Hamiltionans 

H1 (h) = H0 (h) + J H(x) :v( s(x)) :dx, 

\x\<1 
in exactly the same way as Hph is the limit of H1 • H0 (h) in 

(3.7) is given by (3 .. 5) with the free Wightman functions on the 

right hand side.. However in the free case it is immediate to see 

that the operators H0 (h) constructed from (3.5) with the free 

Wightman functions actually leave invariant the functions of the 

time zero fields.. In fact one has that H0 (h) is essentially self 

adjoint on Fc2 c L2 (d~) in the same way as in the proof of Theorem 

4 .. 0 in Ref. [1]. Hence from the correspondent of (3.6) for the free 

case we get that H0 (h) actually coincides with the corresponding 

diffusion operator given by the free vacuum. 

Now we find by (2 .. 8), lemma 2.2 and a simple calculation that 

Hence in the same way as we proved formula (3 .. 3) above in section 4 

of Ref .. [1], [2] we now get by (3 .. 7) that 

i[(cp),H(h)] = (cp,(-'i7h'~+hm2 )s> + :v'(s):(hcp). (3.9) 

(3 .. 3) and (3 .. 9) hold only in the sense of bilinear forms on FC2 xFC2 , 



Up to now we have assumed that h(x) > 0. However since as bilinear 

forms on FC2 x FC2 both sides of (3 .. 9) are obviously linear and 

continuous as functions of 

the bounded operators from 

h , t9 M(R) 

s>(R) into 

being given the topology of 

S1(R) , it follows that (3 .. 9) 

holds as an identity between bilinear forms on FC2 x FC2 for all 

h E (9 M(R) • We now need the following lemma. 

Lemma 3 .. 1 

For any ep E S(R) we have :v' ( s): (ep) E L2 (dll) , in the cases 

of exponential interactions or respectively weak :polynomial inter-

actions i.e. if 

v(s) = J cosh(s~)dv(~) 
where v is any positive measure with 

2n k 
or respectively v(s) = ~ a s where 

k=o k 

compact support in (- :n, !{rr), 
a2n > 0 and ak, k = 0 , -· , 2n 

are sufficiently smallv 

Proof: We first consider the case of exponential interactions. 

Let Wn E S(R) such that ~ > 0 and n- in S '(R), and 

consider 

where s * 1jl is the convolution of n 
s:: with ,,, 
'=' '~'n • 

( 2)-i Let now Gn = t ~n * -~+m 2 $n , then 

~s*wn(x) -t~2Gn(o) ~s*wn(x) 
:e : = e e 

so that 

-tC~2+S2 )Gn(o) s*(~wn(x)+~~n(y) 
= e e • 

(3 .. 12) 

Let llo be the free vacuum restricted to the time zero 

fiel&, i .. e .. the 1-1 in the case v = 0.. We proved in theorem 6 .. 1 



of Ref .. [5] that, for the exponenti'al interaction, the Schwinger 

functions are bounded by the free Schwinger functions.. From this 

result we immediately get that for ~ E S(R) and ~ ~ 0 we have 

(3 .. 13) 
S' S' 

From (3 .. 12 and (3.10) we then get 

J 2 ff\T a.i3G (x-y) 
l:v'(s*~n):(~)l d~ :5. .illlla.llsl e n l~Cx)~(y)l dv(a.)dv(f3)dxdy. 

S I (3.14) 

It is proved in (4], [5] that (3.14) is bounded uniformly in n • 

Moreover if II II is the norm in L2 ( dJ..L) then 

(3.15) 
a.i3G (x-y) ~G (x-y) ~f3Gnm(x-y) 

I e nn + e mm - 2e 1 dxdydv( a.)dv( f3) , 

where G = tw * ( -A+m2 ) -t w • So by the assumption on v above nm n m 
:v'(s*wn):(~) is an L2 (dJ..L) convergent sequence .. Introduce now 

the momentum and space cut-off Hamiltonian 

~(h) = H0 (h)+ J h(x) :v( S*Wn) :dx. 
lxl<l 

We have that 

(3.17) 

where xl is the characteristic function for the interval [-1,1] 0 

By what was said above the right hand side of (3 .. 17) converges,,as 

1 and n tend to infinity, strongly in L2(d~) .. On the other 

hand we have by the construction of the space cut-off exponential 

interaction, Ref .. [4], that the left hand side converges weakly, in 

the sense of forms defined on a fixed dense domain, to i[n(~),H1 (h)] .. 

However we have in the same way as in (3 .. 9) that 

(3.18) 



which obviously converges to the right hand side of (3.9) if ~ has 

compact support. Hence if ~ has compact suppout we get from (3.14) 

and what is said above that 

On the other hand (3.19) is obviously a continuous bilinear form 

on S x S so it extends easely by continuity to all ~ E S(R) • 

Hence the lemma is proved for the case of exponential interactions. 

For the case of weak polynomial interactions it is an immediate 

consequence of theorem 2, section I.2 of Ref. [22]. This proves 

the lemma. 0 

Let us now assume that we have an interaction such that the con-

elusion of lemma 3.1 holds. Then it follows from (3.9), linear 

functions being in L2 (d!J.), that n(~),1 E D(H(h)) for any 

~ E S(R) and any h E CJM(R) • Therefore the conclusions of theorem 

(2.2) hold for any pair of h1 and h2 in CJM(R) • 

From (3.9) however we see that the mapping H(h1 )H(h2)s(x) 

considered in theorem 2.2 is, in the present case of local relativ-

istic fields, given by 

(3.20) 

So that 
2 = h2(x)(-vh1V+h1m )s(x) +h1 ·h2(x):v'(s(x)):, 

(3 .. 21) 

from which it follows 

Hence we have proved the following theorem 



Theorem 3.1 

If ~ is the time zero vacuum for a local relativistic inter-

action such that :v'(s):(~) E L2 (d~) for any ~ E S(R), which is 

for instance the case for exponential interactions or weak polyno­

mial interactions, we have that the conclusions of theorem 2.2 hold, 

and moreover that, for any f E FC4 , 

[H(h1 ),H(h2 )]f = J(h1<Jh2-vr2vrh1 ) • vs(x) • 6 /{x) dx 

for any pair h1 and h2 in CJ 11(R) .. 0 

Take now h1 (x) = x and h2 (x) = 1 .. Then, with the notations 

A = H(h1 ) and H = H(h2 ) , for such h1 , h 2 , we have~ for any 

f EFC4 , 

[1\ ,H]f = - J v s(x) o ~~t~~ dx • 

The one parameter group of space translations s - sa where 

sa(x) = s(x-a) induces transformations in S'(R) which leave ~ 

invariant. Thus these transformations induce a one parameter uni-

tary group in L2(d~) .. Let P the self-adjoint infinitesimal ge­

nerator of this group, then we see that the right hand side of (3 .. 23) 

is simply iPf .. So we have proved that, for f E FC4 , 

[A,H]f = i P·f. 

P being the infinitesimal generator of a translation group which 

leaves invariant the dense domain FC4 of L2(d!-1) , we have that 

P is essentially self-adjoint on FC4 .. Since obviously 

eiaP H(h) e-iaP = H(h ) , 
-a 

where h_a(x) = h(x+a) , we have that 



eiaP H e-iaP = H 

while 

From this we then have the following lemma 

Lemma 3.2 

On FC4 we have the following commutation relations 

[A,H] = i P, (H,P] = 0, (A,P] = iH. 0 (3.28) 

Now since P maps FC4 into Fc3 we obviously have that 

PFC4 c FC2 c D(i\) • On the other hand since (A ,P] = i H on FC4 

we also get that A maps FC4 into the domain of P • By this 

and (3.28) we get that 

[1\, [A,H]] = - H 

on FC4 ., From (3.28) and (3.29) it follows that eiAA H e-i>J\. is 

strongly analytic in A on FC4 for all values of A and 

eiA.J\ He -iA.J\ = cosh A. • H - sinh A. P • 

Moreover we get in the same way 

eiA.J\ P e -iA.i\ = cosh A P- sinh A. H • 

We may now write (3.30) in the following way 

H- tgh A P = 1 eiA.J\ H e-iA.J\ 
cosh >1. 

(3.30) 

which shows that for any I a I < 1 we have H- aP > 0 • This implies 

that (f, (H+1 )f) - tgh A. (f ,Pf) and (f, (H+1 )f) are equivalent 

norms on FC4 • From the fact that j..J. is a strictly positive mea­

sure, Theorems 4.1, 4.2 of Ref. [2], it follows immediately by stan­

dard finite dimensional mollifier techniques that one can approximate 



any g E Fc2 by elements in FC4 in the sense of the Dirichlet 

norm (f, (H+1 )f) • Hence H , which is the Friedrichs extension of 

H restricted to Fc2 , is the same as the Friedrichs extension of 

H restricted to Fc4 • The closure of FC4 in the Dirichlet norm 
1 

(f, (H+1 )f) is therefore the domain of HZ". By what we have above 

the closure of FC4 in the norm (e-iAAf,(H+1)e-iAAf) is the same 

as for the Dirichlet norm. This gives us that -iAA e 
1 

leaves D(H2 ) 

1 

invariant, and (3.30) and (3.31) hold in the sense of forms on D(HZ"). 

Since H is translation invariant, (3.26), the spectral mea­

sures of H and P commute, and we can consider the joint spectral 

resolution of P and H : 

Since (3.30) and (3.31) hold in the sense of forms on 

we see that dv(p) must be quasi invariant under the action of the 

homogeneous Lorentz group in R2 , and , for any Lorentz transfor­

mation L(A) , ~P and 1t:L(A)p must be identical for v- almost 

all p • So that 1Gp depends only on the orbits of the homogeneous 

Lorentz group. Moreover since H is nonnegative with zero as an 

isolated eigenvalue, we see that v has support in the forward cone. 

Since v is quasi-invariant under the Lorentz group, we may just as 

well take it to be invariant since there is always an invariant 

equivalent measure. We may of course also choose the identification 

of with as the one given by the unitary 

operator if p0 ~ 0 , since there is a n:ae-to-one correspon-

dence between the elements of the orbits different from (0,0) and A. 

Let us now observe that if Hf = 0 then f E D(H(h)) and H(h)f = 0 

for any h E c9M(R) • This follows from the fact noted in section 2 



that the form (f,H(h)f) for fixed f is an absolutely continuous 

positive measure in h, from which it follows that (f ,Hf) = (f ,H(1)f) 

is the L1-norm of the density, If Hf = 0 the L1-norm is zero 

and the density is zero almost everywhere. Hence (f,H(h)f) = 0 
1 1 

which implies for h > 0 that f E D(H(h) 2") and H(h)2 f = 0 , hence -
that f E D(H(h)) and H(h)f = 0 0 Now if h is not positive we 

write it as a difference of two positive functions. 
"A.A From this we get that e~ is the identity on te 

(o,o) • 
Hence we have that eiAA is induced by the action of the homogeneous 

Lorentz group L(A.) in the spectral plane R2 of (3.33).. Since v 

is Lorentz invariant this proves that we have a strongly continuous 

unitary representation of the inhomogeneous Lorentz group on L2 (d~). 

We formulate this in the following theorem, in which we state the 

results only for the case of a unique vacuum. 

Theorem 3.2 

Let ~ be the vacuum for the exponential interactions or the 

weak polynomial interactions in two space time dimensions restricted 

to time zero fields. Then ~ is analytic in the sense that 

fP (S I) 
n for all n and, in is an ~~alytic vector 

for the canonical momentum n(~) for any ~ E S • 

1'1oreover ~ is strictly positive in the sense that, £or any f E FC 

with f(s) = f*((~1,s), ..... ,<~n's)), 

I f d~ = J f * ( x1 , • o • , xn) P ( x 1 , o •• , xn) dx1 o • • dxn 
Rn 

where p 
. n 

is bounded below by a positive constant on any compact R • 

1'1oreover for any h E ~1'1(R) the space of multipliers on S(R) , 

we have that the Dirichlet form 

I I 6f 2 
Dh(f,f) = h(x) bs(x)l dx 



3.11 

is closable and the diffusion operator H(h) is defined as the 

self-adjoint operator given by Dh restricted to FC2 o For h ~ 0 

we have that e-tH(h) is a Markov semigroup with invariant measure 

1J. • For the corresponding homogeneous Markov process s( t) we have 

that s(t) satisfies the stochastic differential equation 

ds(x,t) = S(s(t))(x)dt + dw(x,t), 

where W(x,t) is the standard Wiener process on S'(R) and 

S (x) = 2i rr(x) • 1 • Moreover there is a unitary representation of 

the inhomogeneous Lorentz group on L2 (d1J.) which leaves 1 invari­

ant, such that its Lie algebra is spanned by H = H( 1) , A = H(x) 

and P , the infinitesimal generator of the space translations o 0 

For comments to these results we refer back to section 1o 
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Footnotes 

1) Some partial results are also obtained for the P( ~) 2 models 

with Dirichlet boundary conditions and isolated (but not neces­

sarily unique) vacua .• These models were also consic~ered in 

[2] , where references to the Euclidean theory for such models 

are also given. 

2) Other proofs are in [12.] and [6] ,Th VIII.33. 

3 ) This concept and terminology has its roots in the work on 

stochastic mechanics and stochastic field theory, see 

[14],[15]~~6] and references therein. 



ReferPnces 

[ 1 ] S. Al beverio - R. H0egh-Krohn, Qua.s i-invaria.nt measures, symmetric 

diffusion processes anc quantum fields, Oslo Universi·\;y 

Preprint, May 1975; to appear in the Proceedi::.ncs of ·she 

International Colloquium on Me.thematical Me~hoc~s of l:}uantum 

Field Theory (Marseille June 1975) ,CNRS. 

[2] S .Albeverio - R .H0eth-Krohn ,Dirichlet forms ancl diffusion 

processes on rigge<'J Hilbert spaces, Oslo University Preprint, 

November 1975. 

[3] J.Glimm-A.Jaffe -T.Spencer~ The particle structure of the 

weakly coupled P( ) 2 model and other applications of hi~h 
PP'· J32 ·142, 

~emperature expansions, in Construc~ive Quantum Fi~l( Theory, 

Eos.G.Velo-A.Wichtman,Berlin: Springer 1973. 

[4] R. H0egh-Krohn, A &eneral class of quantum fields wi :.llOE t 

cutoffs in two space-time dimensions, Comm. Math. PLys .. £2.~ 

244-255 (1971). 

[5] S.Albeverio - R .H0eLh-Krohn, The Wiehtman oxioms anr: -:;he mass 

€BP for stronr interactions of exponential type ir:. :;vTo space­

time dimensions, J.Functional Analysis 1.§ ~39-82 (1974). 

(6] B. Simon, _The __ _!j__~ ) 2 Euclid~~J Qua~-!~m) !'~~lo _'£~ __ eo_~z~ 
Princeton: Princeton University Press 1974. 

[~ E.Nelson, Construction of quantum fields from Markoff fields, 

J.Functiona.l Analysis.!£ }97-112 (1973). 

(s] E.Nelsom, Prob~bility theory and Euclidean field theory, 

pp 94-124 in book under Ref. [3]. 

[ 9] B. Simon 9 Positivity of the Hamil tonia.n s emi&.-roup and :;he con 

struction of Euclidea.n rerion fields, Helv.Phys.Acta .!£, 
686-696 (1973). 



[10] C.Newman, The construction of stationary two-dimensional 

Markoff fields with an application to quantum field ::heory, 

J .Functional Ana.lysisis ll , 44- 61 ( 1973). 

[11) J .Frohlich, Schwinger functions and their eenera.ting 

functionals I, II , Helv/~Phys.Acta 47 ,265-306 ( 1974); 
I -

Aov .Ma.th. 

[12] J .FrBhlich~ Verifica.tion of axioms for 'Euclidean a.nd relativi 

s tic fields and Haar:' s Theorem in a class of P ( q:>) 2 -models, 

Ann.Inst.H.Poincare A, 21 , 271-317 (1974). -
[13] J.Glimm-A.Jaffe, A/\( cp£1) 2 quantum field theory withou·c cutoffs, 

II. The field operators and the a.ppro.xima.te vacuum? i:..nn.Math. 

21 t 362- 401 (1970). 

l14l E.Nelson, Dynamical Theories of Brownian Motion , Princeton: 

Princeton University Press 1967. · 

[15] F.Guerra, On stocha.stic field theory, in Proc.IInd 1\.ix-en-Pro 

vence International Conference on Elementary Particles 1973, 

J.de Phys.Suppl.T.34, Fasc~ 11-12,Colloque, C-1-95-98. -
[16] S.Albeverio-R.H0egh-Krohn, A remark on the connectiol1 between 

stochastic mechanics and the heat equation, J. Ma.th.Phys. 

12 ' 1745-1747 (1974). 

[17] H.Araki, Hamiltonian forma.lism a.nd the ca.ncrnical conmn,-._-Ga.tion 

relations in qua.ntum field theory, J .Ma.th.Phys.l )492-504 ( 1960) 

[18] lVl.Fukushima, On the generation of Markov processes by symmetric 

forms, pp.46-79 in Proceedine;s of the Second Ja.pa.n-USSR 
Symposium on Probability Theory, Berlin: Springer 1973. 

[19] F.Guerra-L.Rosen-B.Simon, Correlation inequalities oad the 

ma.ss gap in P(¢ ) 2 ,III.Mass gap for a class o:f stron{-',ly 

coupled theories with non zero external field-~ Com..rn.Ma.th. 
Phys.il , 19-32 (1975). 



~~ R.L.Dobrushin-R.A.Minlos, Construction of a one-dimensional 
quantum field via a continuous Markov field 9 Funct.~nGl. a.nd 
Appl. 1~ 324-325 (1973) (transl.); and Markov fields theory 
and Application to Quantum Boson Fields, to appear in the 
Proceedings of the XII-th Winter School in Karpacz. 

[21] J.Glimm-A.Jaffe- T.Spencer, Phase transitions for 'fiquantum 
fields, to appea.r in Comm.Math.Phys. 

[22] J .P.Eckmann- H.Epstein- J .Frohlich, Asymptotic perturbation 
expansion for the S-matrix and the definition of time ordered 
functions in relativistic quantum fields models; Gon~ve -
ETH Preprint, 1975. 


