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ABSTRACT

We construct models of local relativistic quantum fields in

two space-time dimensions with weak polynomial or exponential
interactions, which are canonical in the sense of the canonical
Hamiltonian formalism. They are thus given in terms of the

time zero vacuum, which determines a unitary strongly continu-
ous representation of the canonical commutation relations for

the time zero fields (for which the vacuum is cyclic) and their
conjugate momenta, as well as a unitary strongly continuous
representation of the inhomogeneous Lorentz group. The infini-
tesimal generators of time translations and Lorentz transfor-
mations are given by Dirichlet forms associated with . The
infinitesimal generator of time translations generates a homo-
geneous Markov process solving a stochastic diffusion equation
with osmotic velocity given by i . The models satisfy conditions
for Euclidean Markov fields discussed by Nelson and Simon. The
measure W 1is the restriction of the physical vacuum for the pre-
viously constructed Wightman models (with the same interactions)

to the functions of the time zero fields.
December 1975
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1. Introduction

In this paper we construct ﬁodels of local relstivisiic quantum
ficlde, which are canonical,in the sense that they are piven.comple
tely in terms of a probability measure u ,the time zero vacuum,
which determines a representation of the canonical commutation
relations for the time zero fields and their conjugate momentsa,
as well as the infinitesimal generators of the inhomogeneous
Loretz group,unitarily strongly continuously represented in Lz(dpL
with 1 as invariant vector, We discussed problems related to the
ones tackled in this paper in two previous papers [1] ;127 ,2nd we
refer to these also for references concerning previous work rela
ted to the subject.

In this paper we consider more particulariy1) the weakly coupled
P(¢ ), models ([3]) and the exponentisl interactions morels ([4],
[5]) of Bose quantum fields in two space time dimensions. Such
models satisfy in particular all the Wightman axioms ond their
physical Hamiltonian has a3 mass gap at the lower end of iis
spectrum.It is an open question whether these mocdels orc cenonical
in the sense that the physical vacuum is a3 cyclic vector for the
time zero fielés or ,equivalently,([6]),the contraction semigroup
generated oy the physical Hamiltonian is a Markov semi;rcup. In
more technical terms it is open whether the models satisfv Nelson's
axiomsf?],[é] or the relateé Simon's onesﬁﬁ ssee also ﬁnf.[ﬁ],
Ch.IV. For some c¢iscussions of these questions see [6] —{34J.

In this paper we show that in any case one can use thc models
mentionec¢ to construct canonical ones. We shall now “ricfly descri

be this construction.
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Let Lf be the measure correspondéent to the physical vaciin for any
of the models mentionec¢ above.It is known that the timc zero
fields exist ss multiplication operators in Lp (Gu*)g1§;p <
with the physical vacuum as an analytic vector in Lz(du*)

([13]2) resp. .5] ). Let be the probability measure on “he real
space S(R) cdefinedé as the restriction of uw* to the time zero

fields, so that

I ei<g’@>du = 1lim
n— o

s ( E*
[y (1.1
for any £ € S'(R), E* € S'(RE), v € S(R) , and an’ d-sequence
of functions xnout'of S(R).
In [11,[2] we established results on u which we shall now recall,
at least partially. y was first proven to be & quasi invaeriant
probability measure with respect to the nuclear rigging
S(R) c L2(du) c S'(R) (real spaces),

so that yu defines a unitary strongly continuous represeniation

o —> Ul ¢),V(p ) of the Weyl commutation relations on L, (au.),
with

WD)(8) = H5Pe(e), (W@)(3) = [HHD 2(2ip)  (1.2)

and f €L2(du )e Let m( o ) be the infinitesimal generator of the
unitary group V(t ¢ ),i.e. m( @ ) is the canonical momenivi, conju
gate to the canonical field{E,p) . We proved in [2] thet the v &
function 1 in L2(d|4) (i.e. the time zero vacuum) is an analytic
vector for m o ). Let FCé be the dense omain in I, (¢ dconsisting |
or functions on§' (R) which are finitely based and ¢ on their bvase,

so that £ (&) = £f( Pe E) for some projection P, with finite dimen

¥
sional range in 5(R) ané such that the restriction f of £ to the
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range of Pf is n-times continuously differentiable. It was proven
in 2 +that p is strictly positive, in the sense that
I fau = J‘f*(xq,;.,,xn)p(xq,;..,xn)dxq... dx, (1.3)
S'(R) R
where the ¢ensityp is bounded away from zero, uniforml: on compacts.
In [1] and in section 4 of [2} we considered mereover -he

Dirichlet form

Jofvean= | IgdiylPaxauce) | (1.4)

obtained by closure from its restriction to F 02 sWhere the gracient
is naturally defined of FC, . The unique self-adjoint opcrator H
associated with the Dirichlet form, called diffusion opcrator, is

the FPriedrichs extension of its restriction to F02 and oun 'C2

H= -A0=-B8V , (1.5)

with the natural definition of the Laplacian A , and with

n
BeVf = 2 (B- %y )(@ V) f s where "

2
f € FC ,@1,,._¢ﬂ is an orthomormal base in the range of Pf and
B-wj = 21n(¢j)=1 . # was called in [1],[2] the osnoiic velocity
corresponding to the neasure u.B)
The relation between H and the physical Hamiltonian ﬂph of the

Wightman models of Eef. [3], (5] is, as proven in [1}, [2]

(£,9,Hp I, 8) = (£, Hg), (1.6)

for any f,g in FC2 , where J_ is the embedding of L, (¢p) in

2(du)

We come now 10 the main results ané the distribution cf the

topics in this paper.
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Insection 2 we make general considerations about Diricle” Tforme
associated with the nuclear rigging

s (Y L, @) cs' &).
They are of the type

Dy(£,8) = () ety !® ax au
with fe FC2 and notation generalizeds from (1.4). h is onv function
in the space (R™) of multipliers on S'(R™). The quasi inverient
measures U are assumed to be such that 1 is in the domoin of nl(e ),
for all ¢ € S(k™),where 1(op ) is defined 1in *hé same way as above.
The form Dh is shown to be closable so that its closurc defines
uniquely a self-adéjoint operator H(h). Under some adéiticnal
conditions we prove that, on FC4 , the commutator [H(h1),E(h2)]
is a vector field over S'(Rn), with components given by the kernel
of the bounded linear map [H(h1), H(hz)] < (&, fron

s (R")to I, (du).

In section 3 the results are then applied to the case where g 1is
the time zero vacuum measure of quantum fields with exponcntial
or polynomial interactions. In this case the above kerncl is simply

equal to (h, v h, -h,?V hq) v E (x).

For h, = 1 we have H(h1) = H, the diffusion operator associated
with p . For hz(x) = x ,setting H(h2) = A , we then have
[AH] = iP , with P the infinitesimal generator o space

translations, naturally induced in L2( du ) by the space transla
tions acting on the fields (§,p) « Moreover we find that A ,P ,H
have on FC4 all the correct commutation relations of the infini.esi
mal generators of the inhomogeneous Loretz group. Moreover we prove
that we have indeed a2 unitary *trohgly continuous reprcscntation of

the inhomogeneous Lorentz group on the canonical space L?(ﬂpl),

generatea by A, P , H .



105

We thus see that the measure pu has given us local relativistic
canonical models. These results carry through , for thc nodels
considered, the program discussed by Araki [17].

We expect of course that the canonical models constructec¢ in the
present paper from the restriction of the physical vaccum of the
Buclidean models to the time zero fields coincice with the usual
models f3] ,[5] constructed by analytic continuation from the
Buclidean models,However we have not yet been able to prove this.
In any case the canonical models of this paper are models that
have the Markov property with respect to half planes snd shus
satisfy the conditions fd%yﬁ%%ﬁggnfields ¢iscussed by Ilelson [7] :

and Simon [9] .



2. Diffusion operators on the space of tempered distributions.

Consider the nuclear rigging
S(R") < Ly(R") < 8'(RY) (2.1)

where S(R™) is the Schwartz space and S'(R™) its dual i.e. the
space of tempered distributions. Let u be an S-quasi invariant
probability measure on S',i.e. du(g€) and du(g+yp) are equivalent
measures for any ¢ in S. Such a measure u gives rise toAa
unitary representation (U,V) on Lz(du) of the Weyl commutation
relations on S. Namely, for f € Ly(an), (U(e)£)(E) Y
and  (V()£)(8) = a(E,0)1(8) , where o(5,9) = (4LErel?,
Let m(¢) be the infinitesimal generator for the unitary group
V(tp) . We say that p € J7(S') if the function 1 is in the
domain of n(wq)...‘n(wn) for any n elements in S. For further
details see [1], [2].

In what follows we shall always assume that p € .g:(S'),

Let FC, be the subspace of L2(dp) consisting of bounded finitely

k
based and k-times differentiable functions i.e. f € FCk iff
there is an f* € Ck(Rl) and ®q,...,9; in S such that f(§) =
f*((¢1,g>,,,.,(¢l,§>), For any f € FC, we define

s (E) = 21 ({0 Esee 108200, () L 2)

X §=1 J 11270 AL S J R

where f; are the partial derivatives of f*. We see that %%-
is a continuous map from S' into S with finite dimensional range.
Since 1 € D(m(y)) for any o € S, we get that ¢ - m(e)1 is a
linear mapping from S into L2(du). Moreover, since S is a
complete metric space, we have that o = n(p)*1 is bounded, and

then,by using that S is nuclear, we get that this mapping has a

kernel which we denote é%s(x). 8 1s a measurable mapping of
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S' into §S' called the osmotic velocity, and we have

()1 = é%JYB(X)¢(X)dx. | (2.3)

For a proof of these facts see prop. 2.5 [1].
Let h € S'(Rn), then we define, for f € FC,, the Dirichlet form

D(£,2) = 5 [[ 0O gyl Paxau (5) (2.4)

This is well defined since %% is a continuous mapping from &S'
into a finite dimensional subspace of S, and by (2.2)
Jh(x)l | dx is uniformly bounded and continuous in §&. Let
CQM

then T(x) = h(x)T(x) is a bounded linear transformation on S'.

(R®*) be the space of multipliers for S (Rn), i.e. if thC%Cf5

If h € Ca (R ) then the Dirichlet form (2.4) restricted to FC2

is closable. It is namely given by a symmetric operator in I?(du)

where
2
1 5 f 6f
H(h)f = —_{Jh<X)(-5g—(x_)-2+ B(X)m—y)dx. (2.6)

For details see theorem 2.6 [1] and the proof of it.

Since Dh(f,f) is closable its closure defines a self-adjoint
operator on Lg(du) which we shall also denote by H(h). Since
h >0 = H() >0 by (2.4), we have that H(h) is monotone in h
and since monotone convergence of semibounded forms implies resol-
vent convergence we have that, if 0 < hn./'h.,then (’I+H(hn))—,I
converges strongly to (1+H(h))—q. As an integral in h, Dh(f,f)
is absolutely continuous with respect to the Lebesgue measure in RM,
~Hence by monotone convergence, H(h) may be extended to all h in

L{R%) .

If h € CQM(Rn) and h > O then it is easily verified that
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H(h) is the limit in the strong resolvent sense of operators Hm(h)
such that Hﬁ(h) are given as direct integrals of forms which are
Markov symmetric forms in the sense of Fukushima [17], as in theorem

2.7 of Ref. [1]. In this way we get the following theorem

Theorem 2,71

Tet h € <’9M(Rn) i.e. the space of multipliers on S'(R®)

such that h 2 0. Then e'tH(h) is a conservative Markov semi-

group i.e. for f € Lg(du) such that f > O we have that

e"tH(h)f >0 and e'tH(h)ﬂ = 1. Thus the corresponding Markov
process §h(t) on S'(RY) is a homogeneous Markov process with
invariant measure u. This process €h(x,t) on S'(R®) satisfies

the following stochastic differential equation
dg, (x,t) = h(x)B(§ (t))(x)dt + h(x)dW(x,t)

where W(x,t) is the standard Wiener process on S'(R®) given by
the rigging S(R") ¢ Iy(R") c 8'(R%), and B(8)(x) = mrm(x) +1 in
the sense of (2.3), |

Let us now assume for some h and ¢ in S(Rn), that
m(p) 1 is in D(H(h)). Then H(h)n(yp) -1 is a bilinear map
from SxS into Lg(du)°
By the abstract kernel theorem we get in the same way as in prop.2.5
of [1] that there is a measurable mapping U: & - T(&)(x,y) from
S'(R") into S'(R™xR") such that, for h and ¢ in S(R?),

(pxh,T(E)) is in L,(dw) as a function of § and
(oxh, T(8)) = T(H(R)M(9)*1)(E) . (2.7)

Since obviously H(h)m(y)e1 = [H(h),m(¢)]e1 and [H(h),m(p)] is a

multiplication operator we also have

e xh,T(8)> = ilm(e),H(h)]. (2.8)
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Remark:

In the case where the osmotic velocity B(E)(x) is sufficiently

smooth, we have that for h € S
[
H(b) = [a(y)(3n(3)? + V(y)ax,

where V(y) = %6 < +7}B(y)2 (see section 2 Ref. [1]). In this

case we see from (2.8) that

T(8)(x,7) = $HLY - (2.9)

Lemma 2.1

Let p € 352(3') , then if for some h, € ('M(Rn) we have
that (@)1 € D(H(h,])) for eny o € S(R™) then, for any h, in
’JM(Rn) , H(hy) maps FC, into the domain of H(h,).

Proof:

Tet f € FCL?L then

H)t =2 [ ho(o—2ol,a A Mo (x) 8(x)epird (2.10)
)t =-7 ) Rplx) =g dx -5  By(x) Blx)ggryy dx .

. . . . . 6f .
The first term is obviously in ch and since 34€3) as a function

of x is in a fixed finite dimensional subspace of S, we may

write the second term as
.0 5f
g = -1 [ hy(0) ey mG)dxeT, .

because h2(x)'6_§(%c_7 is again in S as a function of =x. Since

by assumption m(g)-1 € D(H(h,l)) for any ¢ € S, we find that

b
62f -m(x)dxdy-1
68(y)"68(x) (2.12)
ifr 625 |
+?JJ by (7 (%) SE(TIOE(X) B(y)n(x)dxdy - 1

H(hy)g = -3 [ [n(y)ny ()

,--iz th(x) —S-&%H(h,]) m(x)dxe 1 ,
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Now the first term in (3.12) is well defined since 1 €Xn(p)) for

any ¢ € S and

8¢
E(y)8E(x)

3
By (x) th,l(y,62 dy € S.
The second term is equal to

2
[ 81
- _h b, (7)hy (Ogemyserey MM dxdy -1

which is in L2(du) by the assumption that u E,.gZ(S') and the
abstract kernel theorem.

The third term is in Lz(du} by the assumption that m(p) -1 is in
D(th)) and again the abstract kermel theorem. This proves the

lemma. 0

Let us now assume that u € ff;(S') and that for some h, and h2
in  y(R") we have that m(p)-1 € D(H(h,)) for i=1,2 and all
® € S(R") . Then by the previous lemma [H(hq),H(hg)] is defined

on FC By (2.7), (2.10) and (2.12) we have that for f € FCy

4.

57 r

8E(x)65(y)

4 H(hH(hy)E = [EENERINES) = dx dy

8¢
8E(x)5E(y)

- ] B, om0 - B(y)axay

e 871
- |1 h,(y)hs(x)
S (%) 8E(y)

5 8(x)ax ay (2.13)

ﬂﬁl \ 62f
+ ] ’I(Y)h2(x’6€(y)6€(x7 3(X)B(y)dx dy

+2][ hy (7, (1) 5oy T(8)Cx,y)axdy .

We remark that by the assumption that m(yp)-1 € D(th)) we have,
by (2.7), that T(&)(x,y) is defined on  h,(y) X h2<x)TsE§(%c7 for
almost all § and the result is in L,(du) . By antisymmetrization
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with respect to h,; and h2 we get that the four first terms in
(2.13) fall out and the result is |

[H(h,),H(hy)1f =7 [[(hy0Ihy(0) - by 6Iny ) T(E) (x, 7 pppmdx &7 (2.14)

For any u € J,(8') we say that H = H(1) is the Dirichlet opera-
tor given by u. We say that H is an harmonic oscillator on S'
if p 1is a non degenerate Gaussian measure i.e. its Fourier trans-
form has the form é';<w’Bw), where B is a bounded positive oper-
ator on S with a bounded universe on S. By lMinlos theorem there
is a unique u corresponding to any B Dbounded and positive, and
it is easily seen that if also B has a bounded universe, then

we F(s) with B(E)(x) = - [A(x,y)5(y)dy, where A(x,y) is the
kernel of A = B~ , Which by assumption is a bounded map of 8,
hence, A Dbeing symmetric, it is also a bounded map of S'. ©So

we see that harmonic oscillators have linear osmotic velocity fields,

By a straight forward calculation we find that the mapping T(§) in

the case of a harmonic oscillator is given by
(&) (x,7) = AGe,y) [A(y,2)8(2)dz . | (2.15)
In this case we see from (2.15) that for o € S(R®) and hE€ Cgﬁ(Rn)
we have that @xh is always in the domain of T(&) and moreover
(pxh,T(E)> = (hAp,AE) . (2.16)

Since (2.16) is a continuous linear functional it is always in
L2(du) with respect to the Gaussian measure u . We have therefore

proved the following lemma

Lemma 2.2
If H is a harmonic oscillator on S'(Rn) then, for any

h € CQM(Rn) and any ¢ € S(Rn), m(ep)e1 € D(H(h)) . Moreover if
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the corresponding osmotic velocity is
B(8)(x) = - [AGx,7)8(x)ay
then the corresponding mapping T(E) is given by

T(8)(x,7) = AGx,y) [AGy,2)8(2)az . =

Let us now return to the formula (2.14), and consider the expression

JJpa Gy OT(8) G,y dppy ax ay (2.17)

By the definition (2.7) this is equal to

-5 | 55ty - Bp(0H(nB(x)ax . (2.18)

Now by the definition (2.6) we have
- Ah,(x) B(x) = H(h,)E(x) , | o (2.19)
where of course H(h2) E(x) 1is to be understood as a bounded

linear map from S into LE(d“)° That this map i3 bounded follows
from the fact that p € ff;(S').

In fact if we assume that we have m(p)-1 € D(H(hi)) i=1,2 for
any ¢ € S(R™), then (2.19) is a bounded mapping from S(R%) into
D(H(hq)). Hence H(th(hz)E(x) is a bounded mapping from S(R™M)
into L2(du), so that (2.17) is equal to

oty E(ny) Hhy) 5(x) ax. (2.20)

J

We have thus proven the following theorem

'Theorem 2ol
If u € éfg(s') and for some h, end h, in (7 (B%) we

have that m(g)-1 € D(H(hi)) i=1,2 for ¢ arbitrary in S(R),
then_ H(hi) maps FC, into D(H(hj)). In particular, since
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{¢,8) € FC, , H(h;) maps <(@,E) into D(H(hj)) so that
H(hi)H(hj)(m,é) is a bounded linear map from S into Le(du),
S Dbeing nuclear. Let H(hi)H(hj)i(x) be the kernel of this map,

then we have, for any f € FC4 that

(H(h)),H(hy)E = [ getey [H(n),H(By)] £(x) ax.

We remark that this theorem shows that the commutant

”

[H(hq),H(he)] is a first order derivation or a vector field over

S' with components given by [H(hq),H(hE)]- E(X) .
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3. The diffusion operators of the local relativistic quantum fields

in two space-time dimensions.

In this section we consider the cases where the measure puy 1is
the restriction of the physical vacuum to the time zero fields for
the models in which the infinite volume Schwinger functions exist
and the corresponding energy operator has zero as an isolated, but
not necessarily simple, eigenvalue. These models are the weak poly-
nomial interactions [3], the strong polynomial interactions with
Dirichlet boundary conditions [19] - [21] and the exponential inter-
actions [5). In all these cases we know that the restriction u
of the physical vacuum to the time zero fields is a measure on S'(R).

Thus we consider, as in [1], [2], the natural nuclear rigging

S(R) € L, (R) < S'(R). (3.1)

In Ref. [2] we proved that u € <gi(S') for all n, in fact we
proved that 1 is an analytic vector for m(yp), for any ¢ € S.
Let H(h) be the corresponding diffusion operators in the sense of
the previous section and let H = H(1).

In all cases considered here the physical vacuum is given in
terms of the Wightman functions wn(xq,tq,aa.,xn,tn) which are
used to construct,by the Gelfand-Segal-Wightman construction,the
physical Hilbert space gﬁ?h and the physical energy operator th,
which is the generator of the time translations in ?5ph. We have
of course that IL,(du) is a closed subspace of ?ﬁih and one would
naturally have liked to prove that tj@ph is identical with Lg(du)
and th is identical with the diffusion operator H = H(1) . This
is however still an open question. What we have been able to prove

is that for f and g in FC, we have that
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(-f H hg) = (f*)Hg) e (362)
For this result see Ref. [1], [2].

The proof that u € 52(8') in Ref, [2], which gives the ex-
istence of the diffusion operator H, and also the proof of the
analyticity of u, i.e. that 1 is an analytic vector of all m(yp),

were based on the following formula, proven in [1], [2],
10m(9) ] = (@, (-441°)E) + :v' (8): (o) (3.3)

where both sides are to be considered as bilinear forms on F02><FC2°
Here v (E): (o) = J:v'(g(x)):¢(x)dx, and Vv' is the derivative
of the function giving the interaction i.e. the volume cut-off

interaction is of the form

H

L= H o+ | av(e(x):ax, (3.4)

x|z
where Ho is the free energy and v 1is a polynomial bounded below
for the polynomial interactions and v(s) = jcosh(as)dv(a) with v

any positive measure with compact support in (- - ) for the expo-

nential interactions, : : denoting the Wick oﬁZerIE;. The formula
(3.3) was proved by using the expression (3.4) for the corresponding
space cut-off Hamiltonian Hl’ the fact that, on FC2, H1 coin-
cides with the diffusion operator given by the corresponding space
cut-off vacuum My together with the weak convergence of My =

Let now h(x) > 0 and h(x) € GDM(R). Then consider the mo-
dified Wightman functions

Wh(x

/l’ /],-oo, ,tn) = Wn(x,] ,h(X/])t/‘,ooo,Xn,h(xn)tn) ° (3-5)

We see that Wﬁ is invariant under time translations and satisfy
the same positivity conditions and the same analyticity conditions

in the time differences as do the original Wightman functions,
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Moreover: since h(x) > 0, the Hilbert space constructed by the
Gelfand-Segal construction from 'wﬁ is in a natural way identical
with ?gph. The corresponding generator of the time translations
th(h) is of course different from th. We get however by the
same proof as for (3.2) that, for f and g in FC, < L2(du),

(f,th(h)S) = (faH(h)g) ° (5°6)

We also immediately get from (3.5),or from the corresponding expres-
sion for the Schwinger functions,that th(h) is the infinite volume
limit of the corresponding finite volume Hamiltionans

H(h) = H(h)+ | H(x):v(g(x)):ax, (3.7

lx|<1

in exactly the same way as th is the limit of H, . Ho(h) in
(3.7) is given by (3.5) with the free Wightman functions on the
right hand side. However in the free case it is immediate to see
that the operators Ho(h) constructed from (%.5) with the free
Wightman functions actually leave invariant the functions of the
time zero fields. In fact one has that Ho(h) is essentially self
adjoint on FC, < Lg(du) in the same way as in the proof of Theorem
4,0 in Ref. [1]. Hence from the correspondent of (3.6) for the free
case we get that Ho(h) actually coincides with the corresponding
diffusion operator given by the free vacuum.

Now we find by (2.8), lemma 2.2 and a simple calculation that
1(m(),H (h)] = (@(-vhv+hm®)E) . (3.8)

Hence in the same way as we proved formula (3.3) above in section &

of Ref. [1], [2] we now get by (3.7) that
i), H(R)] = {p,(~vhv+hm®)E) + :v' (£): (he) . (3.9)

(3.3) and (3.9) hold only in the sense of bilinear forms on FC, x FC,,
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Up to now we have assumed that h(x) > O. However since as bilinear
forms on F02 X F02 both sides of (3%3.9) are obviously linear and
continuous as functions of h, CQM(R) being given the topology of
the bounded operators from SYR) into SkR), it follows that (3.9)
holds as an identity between bilinear forms on FCE X F02 for all

h € CDM(R). We now need the following lemma.

Lemma 3.7
For any o € S(R) we have :v'(E):(yp) € L2(du) , in the cases
of exponential interactions or respectively weak polynomial inter-

actions i.e, if
v(s) = J cosh(sa)dv(a)

where v 1is any positive measure with compact support in Gﬂf: Wr“),

on

. _ k
or respectively v(s) = kanks where a, >0 and a,k= O, we 320

are sufficiently small,

Proof: We first consider the case of exponential interactions.
Let ¢, € S(R) such that ¥, >0 and ¥, - § in S'(R), and

consider
v (8xy):(9) = [Jassinh(ae gy (1)) :av(@)p(x)ax,  (3.10)

where £ * wn is the convolution of & with

n
Let now G_ =%y _ * (-A+m2)'%¢ then
n =%%n n°?

1.2
ag* -2a°G_(o0) ag*y_(x)
te wn(X): = e : n™° e ¥ntx (3.11)

so that
at*xy (x)  BExy (¥) ~3(a"48 )Gn(O) Ex(ay, (x)+BY, ()
. e °

e s e T =€
(3.12)

Let Mo be the free vacuum restricted to the time zero

fields i.e. the u in the case v=0. We proved in theorem 6.1
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of Ref. [5] that, for &he exponentiél interaction, the Schwinger

functions are bounded by the free Schwinger functions. From this

result we immediately get that for ¢ € S(R) and ¢ > O we have
[ &9 8a1 < [ P 8ay . (3.13)
SN S!

From (3.12 and (3.10) we then get

0BG _(x-y)
(1w Cevn e 1Pan < [lellsle 2 leGek) | av(addv(e)axdy.
g (3.14)

It is proved in (4], [5] that (3.74) is bounded uniformly in n .

Moreover if || || is the norm in IL,(du) then
av (Bxy ) e (o) - :v'(é*wn).:cpﬂz < [Mial1el T o0 | (3.15)
‘eaBGnn(Xiy)4-eaBGmm(x-y)__ge“BGnm(X-Y)l Exdyav(@)av(s) |
where G = = %wn* (—A+m2)'%¢m. So by the assumption on v above

:v'(g*wn):(w) is an Lz(du) convergent sequence. Introduce now
the momentum and space cut-off Hamiltonian

B} (h) = H (h) + J n(x):v(Ery_):dx. (3.16)

lx|<1
We have that
iln(e),Hy (1)1 = iln(e),H (0)]+ :v' (Exy ):(hexy =¥ *®)  (3.17)

where X, 1is the characteristic function for the interval [-1,1].
By what was said above the right hand side of (3.17) converges, as

1 and n tend to infinity, strongly in L2(du). On the other
hand we have by the construction of the space cut-off exponential
interaction, Ref. [4], that the left hand side converges weakly, in
the sense of forms defined on a fixed dense domain, to i[n&m,HlGﬂ].

However we have in the same way as in (3.9) that

ilm(e),Hy (1)1 =iln(e),H (W) + :v'(E):(x;he) , (3.18)
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which obviously converges to the right hand side of (%.9) if ¢ has
compact support. Hence if ¢ has compact suppott we get from (3.14)
and what is said above that

[t (0:@)1Pan < [ 1al 181907 [o00(y) lav(@av(s)axdy -

8! (3.19)
On the other hand (3.19) is obviously a continuous bilinear form
on SXS so it extends easely by continuity to all ¢ € S(R) .
Hence the lemma is proved for the case of exponential interactions.

For the case of weak polynomial interactions it is an immediate

consequence of theorem 2, section I.2 of Ref. [22]. This proves

the lemma. O

Let us now assume that we have an interaction such that the con-
clusion of lemma 3.1 holds. Then it follows from (%.9), linear
functions being in Lz(du) , that m(¢)-1 € D(H(h)) for any
@ € S(R) and any h € Cam(R) . Therefore the conclusions of theorem
(2.2) hold for any pair of h; and h, in M(R) .

From (3.9) however we see that the mapping H(hq)H(hg)g(x)
considered in theorem 2.2 is, in the present case of local relativ-

istic fields, given by

H(h,)H(h,)E(x) = H(h,)em(x) -1 = iln(x),H(h,)] . (3.20)
So that
H(hy)H(hy)E(x) = hy(x)(=vh,7+hm®) E(x) + hyhy () :v' (5(x)) ¢
(3.21)
from which it follows
[H(h,),H(hy)18(x) = ((vhy)-h,(vh,))-vE(x) . (3.22)

Hence we have proved the following theorem
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Theorem 3.7

If u is the time zero vacuum for a local relativistic inter-
action such that :v'(E):(p) € L2(du) for any o € S(R), which is
for instance the case for exponential interactions or weak polyno-
mial interactions, we have that the conclusions of theorem 2.2 hold,

and moreover that, for any f € FC, ,
_ I oy . _Of
[H(hq ) sH(h2>]f = (hqvh2—V2Vh/l) VE(x) m)—dx

for any pair h, and h, in C9M(R). O

Take now hq(x) = x and hg(x) = 1. Then, with the notations

1

A=H(h,) and K = H(h,), for such h,, h,, we have, for any

f €FC, ,

(A HIE

- Joe - & X) ax . (3.23)

The one parameter group of space translations E - §a where

@a(x) = E(x-a) induces transformations in S'(R) which leave u
invariant. Thus these transformations induce a one parameter uni-
tary group in Lg(du). Let P the self-adjoint infinitesimal ge-
nerator of this group, then we see that the right hand side of (3.23)

is simply iPf. ©So we have proved that, for f € ch,
[AHIf = iPf. (3.24)

P being the infinitesimal generator of a translation group which
leaves invariant the dense domain FC, of Le(du) , we have that

P is essentially self-adjoint on FC4. Since obviously

e*F H(n) %P - m(w_), (3.25)

where h_é(x) = h(x+a) , we have that
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elaP g o=iaP _ gy (3.26)

whilé

18P g~18P A+aH. (3.26)

From this we then have the following lemma

Lemma 3.2

On FC4 we have the following commutation relations

(AH] = iP, [H,P] =0, [A,P] = iH. - (3.28)

Now since P maps FC, into FC3 we obviously have that
PFC, < FC, © D(A) . On the other hand since [A,P] =iH on FC,
we also get that A maps FC4 into the domain of P. By this
and (3.28) we get that

(A,0A,H]) = -H (3.29)

on FC From (3.28) and (3.29) it follows that eiMuge iM g

4&
strongly analytic in A on FC, for all values of A and
eiXA iAA

He™ = coshA -H -sinhAP. (3.30)

Moreover we get in the same way

ei)‘AP e"lu\ = coshAP-sinhAH. (3.31)

We may now write (3.30) in the following way

H-tgh AP = 1M g o=1A (3.32)

cos
which shows that for any |a|l <1 we have H-aP > O, This implies
that (£,(H+1)f) - tghA (£,Pf) and (f,(H+1)f) are equivalent

norms on FC4. From the fact that u is a strictly positive mea-
sure, Theorems 4.1, 4.2 of Ref. [2], it follows immediately by stan-

dard finite dimensional mollifier techniques that one can approximate
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any g € FC2 by elements in FC4 in the sense of the Dirichiet
norm (f,(H+1)f). Hence H, which is the Friedrichs extension of
H restricted to FCQ, is the same as the Friedrichs extension of
H restricted to FC,. The closure of FC, in the Dirichlet norm
(£,(H+1)f) 4is therefore the domain of H%. By what we have above

"iXAf) is the same

: 1
as for the Dirichlet norm. This gives us that e IM 1 eaves D(H?)

the closure of FC, in the norm (e'ilAf,(H+1)e

\

invariant, and (3.30) and (3.31) hold in the sense of forms on D(H?).
Since H is translation invariant, (3.26), the spectral mea-

sures of H and P commute, and we can consider the Jjoint spectral

resolution of P and H:

L(a) = | %6, av(p). (3.33)
., ,
R

Since (3.30) and (3.31) hold in the sense of forms on D(H%)
we see that dv(p) must be quasi invariant under the action of the
homogeneous Lorentz group in R2, and , for any Lorentz transfor-
mation IL(\), ?EP and geL(x)p must be identical for v - almost
all p. So that ?ﬁp depends only on the orbits of the homogeneous
Lorentz group. Moreover since H 1is nonnegative with zero as an
isolated eigenvalue, we see that v has support in the forward cone,
Since Vv 1is quasi-invariant under the Lorentz group, we may Jjust as
well take it to be invariant since there is always an invariant

equivalent measure. We may of course also choose the identification

as the one given by the unitary

of y with %

L(X)(Pooo

i\ . . .
operator el A if P, # O, since there is a pme-to-one correspon-

(pyy0)

dence between the elements of the orbits different from (0,0) and A.

Let us now observe that if Hf = 0 then f € D(H(h)) and H(h)f =0
for any h € C%nCR). This follows from the fact noted in section?2
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that the form (f,H(h)f) for fixed f is an absolutely continuous
positive measure in h, from which it follows that (f,Hf) = (£ ,HDf)
is the Lq-norm of the density, If Hf = O the L,-norm is zero
and the density is zero almost everywhere. Hence (f,H(h)f) =0
which implies for h > O that f € D(H(h)%) and H(h)%f = 0, hence
that f € D(H(h)) and H(h)f = 0. Now if h is not positive we
write it as a difference of two positive functions.

From this we get that e:D‘A is the identity on ?E(o o) *
9

Hence we have that ei>‘A is induced by the action of the homogeneous
Lorentz group L(A) in the spectral plane R2 of (3.33). Since v
is Loréntz invariant this proves that we have a strongly continuous
unitary representation of the inhomogeneous Lorentz group on Lz(du).
We formulate this in the following theorem, in which we state the

results only for the case of a unique vacuum.

Theorém 3,2

Let u Dbe the vacuum for the exponential interactions or the
weak polynomial interactions in two space time dimensions restricted
to time zero fields. Then u is analytic in the sense that
we F(s') forall n and, in Ly(dw), 1 is an smalytic vector
for the canonical momentum m(¢) for any ¢ € S.

Moreover i is strictly positive in the sense that, for any f €FC

with £(8) = £*(K@ ,5),.0.,80,,5)),

f du T*(Xag00e9X JP(Xqye0e,X )AX, oee AX
1 n 1 n’ 1 n

B2
where p is bounded below by a positive constant on any compact RY .

Moreover for any h € C?M(R) the space of multipliers on S(R),

we have that the Dirichlet form

D, (£,£) = [n(x) lﬂgf-}?yl‘?dx
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is closable and the diffusion operator H(h) is defined as the
self-adjoint operator given by Dh restricted to F02 o« For h>0

~tH(h) is a Markov semigroup with invariant measure

we have that e
4. For the corresponding homogenecus Markov process E&(t) we have

that E(t) satisfies the stochastic differential equation
dg(x,t) = B(E(t))(x)dat + dw(x,t) ,

wheré W(x,t) is the standard Wiener process on S'(R) and

B(x) = 2in(x)+1. Moreover there is a unitary representation of
the inhomogeneous Lorentz group on L2(du) which leaves 1 invari-
ant, such that its ILie algebra is spanned by H = H(1), A = H(x)

and P, the infinitesimal generator of the space translations. [

For comments to these results we refer back to section 1.



ACKNOWLEDGEMENTS

The first named author enjoys the opportunity to thank the
Institute of Mathematics, University of Oslo, for the standing
friendly hospitality. Moreover he gratefully acknowledges the
financial support by The Norwegian Research Council for Science
and the Humanities. The second named author would like to thank
Dr. and Mrs. Goldstein for their hospitality during his stay in
New York, under which some of this work was done.



Pootnotes

)

Some partial results are also obtained for the P(!f)? models
with Dirichlet boundary conditions and isolated (but not neces-
sarily unique) vacua. These models were 2lso congicdered in

[2] , where references to the Euclidean theory for such models

are also given.
Other proofs are in [12] and [6] ,Th VIII.33.

This concept and terminology has its roots in the work on
stochastic mechanics and stochastic field theory, see

[14],[]5],&6] and references therein.
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