
ON THE DEVIATIONS OF A LOCAL RING 

T.H. GULLIKSEN 

INTRODUCTION 

Let R denote a local ring (always commutative, noetherian 

with residue field k = R/1ff and let PR be the Poincare series 

of R i.e. the power series 

It is well known that PR may be written as a product of the form 

"" (1+t2i+1)E2i 
PR(t) = IT 2 2 

i=O (1-t l+ ) 8 2i+1 
( 1 ) 

where Eq(R) = Eq (q=0,1, ... ) are non-negative integers. These 

integers are called the deviations of R . EO equals the embedding 

dimension of R . It is well known that R is regular if and only 

if E1 = 0 and that R is a complete intersection if and only if 

one of the following equivalent conditions are satisfied 

(i) E2 = 0 

(ii) E3 = 0 

(iii) E = 0 for q :: 2 q 

(iv) E q = 0 for all q sufficiently large. Cf. [ 4]. 

We recall that R is said to be a complete intersection if the 

~-adic completion 
... 
R is isomorphic to a quotientring of a regular 

local ring by an ideal generated by a regular sequence. 

In section 1 of the present paper we shall prove a technical result 

1.5 that makes it possible to replace (iv) above with the following 
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condition 

( iv' ) eq = 0 for all odd q sufficiently large. 

This result is used in section 2 to yield a characterization of 

local complete intersections which is similar to the characterization 

of regular local rings in terms of projective dimension. We replace 

the class of modules of finite projective dimension by the class of 

modules whose Betd numbers are bounded by a polynomial. The charac­

terization yields a new proof of the fact that the class of local 

complete intersections is closed w.r.t. localizations. 

In section 3 we investigate how the alternating sums 

(r:: 0) 

behave w.r.t. localization. Under "mild" conditions on R , cf. 3.4, 

we obtain 

for r odd 

and 

depth R < xr(R) for r even, r > 0 

Moreover, if e:r+1 ( R) = 0 for some r > 0 then 

depth R < Xr ( R) < dim R . 

It is easily seen that PR can be written 

( 2 ) PR(t) 
(1+t)€0 

= 
rr. 2 C1-tj)fj 

J:: 

where fj(R) = f. (j = 2,3, ••• ) are integers. 
J 

that if k has characteristic 2 , then f. > 0 
J -

other words 

for all odd q * 1 

in the form 

Andre [1] has 

for all j ?: 2 

shown 

in 

as seen by comparing with (1). In section 1 of the present paper we 
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have included a new proof of these inequalities - still assuming k 

to have characteristic 2 . However, one may ask if they are valid 

in general. In section 4 we shall show that several classes of rings 

satisfy the following even stronger property: 

(*) If R is not a complete intersection, then fq(R) > 0 for all 

q > 2 • 

0. PRELIMINARIES 

Concerning notation and terminology we will use [6] as a refer-

ence. In addition to the notation (q :: 0) for the deviations we 

will also be using the notation 

tioh is 

e. 
~ 

(i::1) 

e. = e:. 1 
~ ~-

for i > 1 • 

X= R<•••S.•••; dS. =s.> 
~ ~ ~ 

as in [1]. The transla-

denotes the R-algebra obtained from R by Tate's method of adjoining 

variables to kill cycles. X has a structure of a strictly skew-

commutative DG-algebra over R with a system of divided powers 

compatible with the differential. In particular, for a homogeneous 

element x of degree q > 0 we have for q even 

and 

xj = j! x ( j) 

For q odd we have x2 = 0 . 

Let IX denote the augmentation ideal in X w.r.t. the canonical 

augementation X + k . Put 

Q(X) = IX/I( 2 )X 
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where I( 2 )x denotes the ideal in X generated by (IX) 2 and all 

divided powers of elements in IX of even degree. With the canonical 

differential d Q(X) becomes a complex of vectorspaces over k . 

If R ~ R is a ringhomomorphism inducing an isomorphism 

H0 (X) a~ R, and if Hq(X) = 0 for q > 1 , then X is called an 

R-algebraresolution of R . X is called an acyclic closure of 

R ~ R if in addition it satisfies a certain minimality condition 

that is equivalent to dq : Q(X)q ~ Q(X)q_1 being zero for q > 2 . 

-Given R ~ R, such an acyclic closure always exists by [6;1.9.3]. 

Put 1f(R) = 2p if k has characteristic p > 0 , and put 

1rCR) = m if k has characteristic 0 . 

,..,. ..... 
0.1 LEMMA. Let ot. be an ideal in a regular ring R Put R = RIOt 

"' and let Y be an R-algebra resolution of R . Then we have 

(i) dim Q(Y) 0 

(ii) for q < 'Tf(R)-1 

"' (iii) If R and R have the same embedding dimension and. Y as 
,..,. 

an acyclic closure of R ~ R , then 

dim Q(Y)q = e: (R) q for q < 1r ( R) -1 

PROOF. (i) is obvious from the definition of Q(Y) since e: 0 (R) 
..... 

is the embedding dimension of R . 

(ii). In [6;3.1.1] we introduced k-vectorspaces Vq(R,R) with 
..... 

dimension v (R,R) (q > 0). By [6;3.2.3] we have isomorphisms of 
q 

vectors paces 

for 1 < q < 1r ( R) 
,...,. 

v1 (R,R) r::1 coker(d2 :Q(Y) 2 ~Q(Y) 1 ) . 

Indeed, the complex Y/D(Y) in [6;3.2.3] coincides with the complex 
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Q(Y) in positive degrees~ but is zero in degree zero. Now by 

[6;3.3.2] we have 

for 1 < q < 'T1' ( R ) -1 . 

So to establish (ii) it remains to consider the cases q = 0,1 • 

In low degrees Q(Y) look like 

where 111 is the maximal ideal in R , and where 

so 

( 3) 

On the other hand, by [6;3.3.2(iii)] we have 

,... ,... 
(4) dim coker d 2 = v1 (R,R) = £ 1 (R)- £ 0 (R) + £ 0 (R) • 

From (3) and (4) we get 

dim H 1 ( Q ( Y ) ) = £ 1 ( R) . 

From (i) and (3) we get 

It remains to prove (iii), but this is an immediate consequence of 
,... 

(ii), for if R and R have the same embedding dimension, and Y 

is an acyclic closure, then the differential on Q(Y) is zero. c 
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1. ON THE EXISTENCE OF NON-VANISHING DEVIATIONS, 

AND A NEW PROOF OF THE ANDRE INEQUALITIES. 

Recall that there exists a minimal R-algebra resolution x* 

of k obtained from R by adjoining variables killing cycles. 

Also recall that the deviation e. 
J 

is the number of adjoined vari-

ables of degree j . For q ~ 1 let Xq be the subalgebra of X* 

obtained by adjoining all the variables of degree <q. Xq corresponds 

to F x* 1n the notation of [ 6]. Recall that for q > 1 we have q 

( 5) e = q 

1 .1 LEMMA. Let q > 1 and let a be an homology class in H( Xq) 

of positive degree. Put 

Then we have a p = 0 . 

PROOF. If p = dimkJn/~ 2 +1 , then we have aP = 0 by Lemma 1 

in [ 4 J. Now assume that k has characteristic p > 0 . Let z 

be a cycle in Z(Xq) representing a • We may assume that z has 

even degree. Let z(p) denote the pth divided power. Then we 

have 

Indeed, p! E rn = B0 ( Xq) since q ~ 1 • D 

1.2 THEOREM (Andre [1 ]). Assume that k = R/111 has characteristic 2 

and let q be an odd integer, q > 1 • Then we have 

PROOF. Because of (5) the theorem follows immediately from the 

following two lemmas. 
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1.3 LEMMA. The inclusion Xq c X2q-1 induces an isomorphism of 

vectorspaces 

--+ 
c:t 

PROOF. We have 

2q-1 q X = X <81 , ... , 8 ; d8. = s. > 
r J J 

where 81 , ... ,8r are variables of degrees satisfying 

q < deg 8j ~ 2q -1 for j = 1 , ... ,r . 

Put and i i-1 Y = Y <8. ;d8. = s. > for 
J J J 

i = 1 , ..• ,r . 

It suffices to show that each of the inclusions yi-1 c yi induce 

an isomorphism 

H (yi-1 ) 01 H (yi) 
2q-1 2q-1 . 

However~ this is easily seen from the homology sequence associated 

with the extension yi-1 c yi cf. [ 6; 1 . 3] . D 

Remark. The proof of 1.3 makes no use of the conditions on q and 

the characteristic of k . In 1 .4 however, these conditions are 

essential. 

1.4 LEMMA. There exists an epimorphism of vectorspaces 

PROOF. Put Xq = Xq- 1<V1 , ... ,V ;dV. =v.> where 
m J J 

v. 
J 

are the 

adjoined variables of degree q , and consequently m = e q Put 

l q-1 A L = X <V1 , ... , V., ... , V ; dV. = v. > i = 1, ... ,m 
1 m J J 

,.. 
where v. means that v. has been omitted. 

l l 
Then we have 

Xq = L i <V . ; d V . = v. > • 
l l l 
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The cycles v1 , ... ,vm represent a basis for the k-vectorspace 

H (Xq- 1 ) 
q-1 and the cycle v. 

1. 
represent a basis for 

Hence the inclusions Xq - 1 c L i , i = 1 , ... ,m , induce an isomorphism 

of vectorspaces 

(6) H (xq-1) i 
1 etl_L.H 1 (L). 

q- 1. q-

Consider the exact sequence 

associated with the adjunction of v. 
1. 

to Recall that 

Since vi has degree q-1 , liJe have v. E xq-1 
1. 

for all i. Since the characteristic of k equals 2 , 1.1 shows 

that we have 

Put 

Then w. l.S 
1. 

dx. 
1. 

for some X. E Xq- 1 
1. 2q-1 

w. = v.v. -x .• 
1. 1. 1. 1. 

a cycle l.n xjq-1 tr.le have 

Jj(w.) = v. 0 .. ( 0 .. denotes 
1. 1. l.J l.J 

This shows that the map 

( 7) 

Kronecker delta). 

induced by the maps J 1 , i = 1, ••• ,m , is surjective. From ( 6) 

and (7) we get the wanted epimorphism. 

1.5 PROPOSITION. Let q >1 be an odd integer, and assume that 

eq :1= 0 • Put 

p = inf ( ~ 71" ( R) , dim 111 I m2 + 1 ) . 

[J 
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Then there exists an even integer l with 

q < i < pq - p + 2 • 

e. * 0 l 
satisfying 

PROOF. Assume to the contrary that e. = 0 for all even l sat is-
l 

gying q < l < Q ' where Q = pq- p + 2 . Let xq and Li be as in -
the previous proof. By the assumption on the e. we may assume that 

1 L <U1 , •.. 3 Us; dU. = u. > 
J J 

where u1 , ... ,Us are variables of odd degree. 

Put K0 = 1 1 and inductively 

j =1, .•• ,s. 

l 

By descending induction on J we will prove the following 

statement: 

A( j): for i odd , i < Q • 

For j = s the statement is true since all cycles have been killed 

up to (and including) degree Q -1. To establish the step from j 

to j-1 3 consider the exact sequence assosiated with the adjunction 

of U. 
J . 1 . . 1 

0 + KJ- + KJ + KJ- + 0 • 

From the corresponding homology sequence we get the exact sequence 

( 8) 

where 

iff i 

ll lS the degree of 

is odd. Assuming 

dU. and hence is even. So i-ll is odd 
J 

A(j), we obtain from (8) an epimorphism 

for all odd i < Q • Hence for all natural numbers a and all odd 

i < Q we have an epimorphism 
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H. (Kj - 1 ) . 
l 

By choosing a so large that i - all < 0 we see that 

Using now the statement A(j) , (8) yields an injective map 

( 9) 

for all even i < Q-1 . 

Let us now put j = 1 . 

H.(Kj-1 ) 
l 

Then Kj -1 = L1 
' 

and we may assume 

that u. equals 
J v1 and has degree ll = q-1 . By composition, ( 9) 

yields a map 

which is injective since ll is even and Pll < Q-1 . On the other 

hand o is the connecting homomorphism so it is multiplication by 

the homology class of the cycle u .. 
J 

According to 1.1 it follows 

that aP = o Hence H0 <L1 ) = 0 which is a contradiction. D 

2. A CHARACTERIZATION OF LOCAL COMPLETE INTERSECTIONS 

IN TERMS OF GROWTH OF THE BETTI NUMBERS 

In this section modules are assumed to be finitely generated. 

We start by introducing a class of modules which is a natural exten-

sion of the class of modules of finite projective dimension. 

2.1 DEFINITION. Let M be an R-module. We will say that M has 

polynomial growth if there exists a polynomial f with integral 

coefficients such that 

b~(M) < f(p) for all p 

where b~(M) = dimk Tor~(M,k) are the Betti numbers of M. 
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2.2 LEMMA. Let x be a non-zerodivisor contained in m . Put 

R = R/xR . Let M be an R-module. Then M has polynomial growth 

as an R-module if and only if it has polynomial growth as an 

R-module. 

PROOF. From the standard change of ring spectral sequence 

we obtain an exact sequence 

R 
-+- Tori(M,k) 

from which we deduce 

( 1 0) b R. (M) R R 
l < bi (M) + bi-1 (M) 

and 

R 
-+- Tor . 2 ( M , k ) 

1-

( 11 ) bR.(~1 ) < bR.(M) R ( ) R ( ) 1 r 1 + bi_ 2 M + bi_ 4 M + • o o 

-+- 000 

for all i • Now the lemma follm-1s easily from ( 1 0) and ( 11 ) . 0 

2.3 THEOREM. The following statements are equivalent 

(i) R is a local complete intersection, 

(ii) all finitely generated R-modules have polynomial growth, 

(iii) R/nt has polynomial growth. 

PROOF. There is no loss of generality to assume that R 1s 

complete in the 111-adic topology. Hence we may assume that 

"' "' R = R/q where R is a regular local ring. Let M be a finitely 

generated R-module. Now assume (i). Then ~ is generated by a 

regular sequence a 1 , ..• ,ar. Clearly M has polynomial growth as 

"' an R-module. By successive use of 2.2 we find that M has poly-

"' nomial growth over RIOT . Hence (i) implies (ii). Since (iii) 

follows trivially from (ii), it remains to prove that (i) follows 

from (iii). 
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Assume that R/flo/ has polynomial growth. Let f be a 

polynomial of degree d-1 such that 
R . 

b (k) < f(p) 
p - for all p . 

We shall first show that in the product formula 

= 

there are at most d factors in the denominator. 

Assume to the contrary that there are at least d+1 factors. Then 

pick d+1 such factors 

1 2q1 
-t ' •.. ' 1-t 2qd+1 . 

Let N be the least common multiple of 2q1 , ... ,2qd+1 . Then we have 

P (t) 1 = ~ fq+d)tqN 
R >> ( 1 -tN)d+1 q~ol d 

where >> means coefficientwise comparison. 

So bR (k) > fq+dl 
qN - l d J 

for all q > 0 • 

This is a contradiction since fq+dl 
l d ) 

is a polynomial in q of 

degree d . 

It follows from what we have shown that e 2q = 0 for all q 

sufficiently large. Hence form 1.5 we obtain = 0 for all q 

sufficiently large. It now follows from the theorem in [4] that R 

is a complete intersection. o 

2.4 COROLLARY (Avramov [2]). Let be a prime ideal in a local 

complete intersection R . Then is a complete intersection. 

PROOF. By 2.3 R4., has polynomial growth over R . 
fl 

Hence 

has polynomial growth over R1?. By 2.3 R1~ is a complete inter-

section. c 
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2.5 COROLLARY. Assume that PR(t) is the power series of a rational 

function and that the raduis of convergence is at least 1 • Then R 

is a complete intersection. 

PROOF. As ~n the proof of 2.3 it suffices to show that e 2q = 0 

for all q sufficiently large. Assume to the contrary that e 2q * 0 

for infinitely many indices 

Put 

f(t) 
a+1 2q· 

= P R ( t) TI < 1 -t J) 
j =1 

where a is the order of the pole of PR(t) at t = 1 . 

Then f(t) has non-negative integral coefficients and infinitely 

many of them are positive. On the other hand lim f(t) = 0 , which 
t+1 

is a contradiction. o 

3. ALTERMATING SUMS OF DEVIATIONS 

In this section we assume that R is a homomorphic image of a 
,..., 

regular local ring R . dimR denotes the Krull dimension of R 

and depth R is the length of a maximal regular sequence in tn . 

Recall that 1T (R) = 2p if k = Rlffl has characteristic p * 0 , and 

that 1T(R) = oo otherwise. 

3.1 DEFINITION. For r > 0 we define 

r i = !:. 0 (-1) e:.(R) 
~= ~ 
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3.2 REMARK. If R is a complete intersection, then we have 

xr ( R) = dim R for r > 0 . Cf. [ 6; 3. 4. 3) • 

3 • 3 THEOREM. Let j' be a prime ideal in R . Then for all r 

such that 0 ~ r < 1r(R) -1 we have 

Equality holds if 

provided that r < 

e: {R) = 0 r 

TI(R) -2. 

Equality also holds if e:r+1(R) = 0 

""' ,... 
PROOF. Let R + R be a surjective ring homomorphism, where R 1s 

a regular local ring which may be assumed to have the same embedding 
,..., 

as R . Let Y be an acyclic closure of R + R . Let P be the 

inverse image of -p in R . Then Y ®'F: Rp is an Rp-algebra 

resolution of 

Put 

Observe that 

Then by 0.1 we have 

( 1 2) dimk (f')Hq ( L) = e:q (R-f;,)) for q<TI(R)-1 . 

It lS easily seen that 

dimk(jJ)Lq = dimkQ(Y)q for 1 ~ q 

so by 0.1 we have 

( 1 3) for 1 ~ q < 1r ( R) - 1 

and 

( 14) 

Now let r be an integer such that 0 <r < TI{R) -1. Consider the 
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following complex of vectorspaces over k(~) 

Comparing the alternating sum of dimensions of this complex and of 

its homology we obtain by (12), (13) and (14) 

Since 
rv t"V t'V ,._., 

eO ( F.p) = dim Rp = dim R -· dim R/ P = e:0 ( R) - dim R/j'::J 

we have 

from which the desired inequality follows. Clearly the inequality 

becomes equality if and only if d(Lr+ 1 ) = 0 , so the last statement 

of the theorem follows using (13). o 

3. 4 COROLLARY. Assume that --r:; is a prime ideal such that R? 1s 

a complete intersection. Let be an even- and an odd non-

-negative integer satisfying m0 ,m1 < 1r(R) --1 . 

(i) 

(ii) 

(iii) 

X (R) _< dim R.AO + dimR/..i,o < X (R) 
m1 r f - mo 

X (R) < dim R 
m1 

X (R) > depth R 
mo 

Then we have 

Moreover if r is a non-negative integer such that e:r+ 1 (R) = 0 

and r < 1rCR) - 2 , then 

(iv) xr(R) = dimRfJ +dimR/p. 

In particular 

( v) depth R < Xr ( R) < dim R . 
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PROOF. (i) is an immediate consequence of 3.2 and 3.3. (ii) follows 

from (i). To prove (iii) we let ~O be a minimal primeideal con-

tained in Since Rp 0 is a localization of R-p it follows from 

2.4 that is a complete intersection. Hence from (i) we 

obtain 

x ( R) > dim Rl-t,. ::~ O • mo -

Since 100 E Ass R we have dim R!p0 ~ depth R , so (iii) follows. 

(iv) follows from (i), for putting {m0 ,m1 } = {r,r+1} yields 

X ( R) = Xm ( R) • 
mo 1 

Since in this case we also have 

follows from (ii) and (iii). c 

x (R) ~ we see that (v) 
mo 

4. ON THE POSITIVITY OF THE EXPONENTS fj(R) 

In this section we shall demonstrate a simple method for finding 

lower bounds for the invariants f. (R) 
J 

defined in the introduction, 

formula (2). 

One may ask if the following property (*) holds for all local rings R 

(*) If R is not a complete intersection then f (R) > 0 
q for all q ~ 2. 

We do not know any counterexample to (*). In the theorem below we 

list a few classes of rings satisfying (*). We have not tried to 

make the list as complete as possible, it can easily be enlarged. 

4.1 THEOREM. The following rings R satsify (*). 

(i) Golod rings. 

(ii) R = A/0:~ where A is an artinian local complete intersection. 
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(iii) Gorenstain rings of embedding dimension < 3 • 

(iv) 2 2 
R = Q2[X1, ... ,X5] /(X1, ... ,X5,X1(X2+o••+X5)'X2X3,X4X5) 

(This is an example due ·to Roes of a ring where ExtR((Q,o_n with 

the Yoneda product is not a finitely generated algebra over ~ .) 

(v) R = k[ [X1 , ••• ,Xn]] 10{. where k is a field, and or is an 

ideal generated by four nonomials in x1 , ... ,Xn. 

Before proving the theorem we will make some remarks concerning a 

certain product representation of power series. 

Let F be a power series in 1 +til[ [t] ], i.e. F lB.s constant 

term equal to 1 . Then there exist uniquely determined integers 

(j)q (F) for q > 0 , such that 

q:> (F) 
F(t) = lf 0 (1-tq) q 

q> 

Clearly the map 

q:>: 1 + t Z::[[t]J + t LZ[[t]J 

sending F to !: tPq ( F)tq is an isomorphism from the multiplicative 

group 1 +tZl:[t]] to the additive group t:ZZ[[t]]. 

4. 2 LEHMA. Let H and K be a power series ln t7Z[ [ t]] with 

non-negative coefficients. Then we have 

(i) q:>(1-H) >> H 

(ii) If K >> H then c.p(1-K) -q:>(1-H) >> K -H. 

(» denotes coefficientt.vise comparison. ) 

PROOF. ( i) We will first prove that tp( 1-H) > > 0 • We define a 

f · {H(i)} f 11 sequence o power serles . 0 as o ows. 
l?, 

Put H(O) =H. For j :_::0, put H(j+1 ) = H(j) if H(j) = 0. 

If H(j) * 0, put 
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( 1 5) 

where w 1s the leading degree of H(j) We see that 

implies H(j+1 ) >> 0 . Hence by induction we have H(i) >> 0 for 

all i > 0 • 

Passing from H(j) to reduces the leadin~ coefficient 

by 1 while all the preceeding coefficients remain equal to zero. 

If follows that the sequence {H(i)} converges coefficientwise to 0. 

An equivalent way of writing (15) is 

Since H(i) tends to 0 it follows that there exists non-negative 

integers c for w > 0 w such that 

c 
1 - H =lT ( 1-tw) w 

· w>O 

Hence 

<.!) ( 1-H) > > 0 • 

Now let q be an arbitrary positive integer. Let ctq be the term 

of degree q 1n H . Put 

( 1 6) 

-
Then H >> 0 , so by the previous argument we have <P( 1-H) >> 0 • 

From (16) we obtain 

so 

Hence 

q>(1-H) >> H. 
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( ii) Now assume that K >> H >> 0 . We apply lP to the identity 

(1-H)(1-G)- 1 = 1- (H-G)(1-G)- 1 

By (i) we obtain 

q:~(1-H) -lP(1-G) >> (H-G)(1-G)-1 >>H -G. 

PROOF OF THE THEOREM. We write PR in the form 

eo 
p ( t) - ( 1 +t) 

R - G(t) 

0 

where G(t) E 1 + t 2 7l [ EtJ] . We assume that R is not a complete 

intersection~ so to verify (*) is equivalent to showing 

for q ~ 2 ~ l.e. to showing lf>(G) >>t 2 C1-t)-1 . 

lP (G) > 1 q -

(i) In this case there exist non-negative integers c 1 , .•. ,cn with 

such that 2 
G=1-ct -··· 1 

t n+1 ( f - c c . n 

e.g. [6]). 

By 4.2 (ii) we have 

lf>(G) >> lP(1-2t 2-t 3 ) 

writing 

we obtain by 4.2 (i) 

t.p(1-2t 2-t 3 ) >>4)(1-t 2 C1-t)- 1 ) >>t 2 C1-t)-1 • 

Hence q:> (G) > > t 2 ( 1 -t) - 1 . 

(ii) In this case we can write 

So by 4.2 (i) we get 
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(iii) According to Wiebe [8] we have 

2 3 5 
G = 1 - rt -· rt + t 

where r is an integer r > 5 • 

We have 

2 3 2 -1 G = (1-t )(1-t -(r-1)t (1-t) ) 

so in the same way as above we obtain 

2 -1 2 -1 
c.p(G) >> (r-·1 )t (1-t) >> 4t (1-·t) 

(iv) According to Roos [7] we have 

Put G = (1-t 2 ) 5 (1-H) . It is a matter of straight forward 

computation to show that H E t 2 :ZZ[ t]] and H >> t 2 (1-t)-1 . 

As before we have c.p(G) >>I-I • 

(v) According to a classification due to Fr¢berg [3] there are 22 

different Poincareseries possible 1n this case. The Poincare-

series are given explicitely in [3]. One can show that in all 

but one of the 2 2 cases there exists an integer m ( 0 ~ m ~ 3) 

and a power series H E t:ZZ[[t]J wi.th 2 -1 H >> t ( 1-t) such that 

The exceptional case is (h) 1n the classification where 

This case can be taken care of by observing that we have 

Since <.p 

is a grouphomomorphism, we obtain 

0 
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