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GROUPS WITH HAUSDORFF UNITARY DUAL SPACE 

ABSTRACT We show that for any non-compact, connected, semisimple 

Lie group G the unitary dual space endowed with the hull-kernel 

topology is non-Hausdorff. This result gives a structure theorem for 

the class of all connected, locally compact groups with Hausdorff 

unitary dual space. 

1. INTRODUCTION Let G be a non-compact, connected, semisimple 

Lie group with Lie algebra 9 , and G its unitary dual space con-

sisting of all equivalence classes of irreducible unitary represen-

tations of G equipped with the hull-kernel topology. We prove 

here that G is non-Hausdorff. The idea of the proof is as follows. 

According to Kostant [2] the (class one) complementary series of G 

is parametrized by those elements A in the closure of a certain 

convex set called the critical interval, CI , such that A - p and 

- >.. + p are conjugate under the vJeyl group W , where p (x) = ~tr(ad(x)[,-,.l) 

'fl = the nilpotent part of the Iwasawa decomposition of S To a 

boundary point of CI is associated a reducible representation of 

which .can be unitarized and contains at least two non-equivalent 

irreducible components. We show then, applying results of Mili~i6 

[6], that the above mentioned parametrization lS continuous at a 

boundary point. Thus there exists a sequence of irreducible comple-

mentary series representations with at least two different limit 

points. 

Our main motivation for writing this article is the follov.Jing. 

Combining the above mentioned result for semisimple groups with 

earlier work of Liukkonen and Mosak (5], and Peters [7], we obtain a 

structure .theorem for the family of all connected, locally compact 
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groups possessing Hausdorff unitary dual space. In fact, as shown 

in [ 5] the primitive ideal space, Prim G , of the group c~·:-algebra 

with the hull-kernel topology is a Hausdorff space if G is a-compact 

and all of its conjugacy classes are precompact. The converse result 

was established in [7] for unimodular, amenable groups. 

Now in the connected case a group G possessing precompact 

conjugacy classes is an extension of a vector group by a compact 

normal subgroup (see e.g. [5]), and such groups are of type I (an 
~ 

application of the Mackey theory). Hence Prim G and G are homeo-

morphic, and so for amenable, unimodular groups we have 

~ 

G is Hausdorff ~ Prim G is Hausdorff _. G is an 

extension of a vector group by a compact normal subgroup. 

Further, ~ Hausdorff~ G is CCR ~ G is unimodular, [2]. Hence 

unimodularity is automatic in our situation. 

From the results of th~ present article (Proposition 3) the 

semisimple part in the Levi decomposition of a connected Lie group G 

with a Hausdorff unitary dual space must be compact. In other words, 

the solvable radical of G is cocompact. Accordingly G is amenable 

and the above remarks apply: G contains a compact, normal covector 

subgroup K. Now if G lS an arbitrary connected l.c. group and 
~ 

G lS Hausdorff, G is a projective limit of Lie groups, 
~ 

G = projlim(G.) and it follows that each G. is Hausdorff, being 
. i . l ' l 

~ 

a closed subspace of G • We have proved the following. 

Theorem 1. Let G be a connected, locally compact group. Its 
~ 

unitary dual space G , endowed with the hull-kernel topology, is a 

Hausdorff space if and only if G lS an extension of a vector 

group by a compact, connected group. 
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Remark. Actually one can say somewhat more about the structure of 

such groups. For let G be a Lie group with a compact, connected, 

normal subgroup K , and G;K ~ ]{n a vector group. Now K is 

isomorphic to the direct produc-t: of a semisimple (compact) group s 

and a k-torus ']Tk 
' 

K f'::i Sx'll'k and by Levi's theorem s must 

occur as a direct factor in G s1nce G;K is solvable. Further 

k the automorphism group of 'IT is discrete so the connected group 

G!K acts trivially on 'll'k by automorphisms, and hence 'JI'k is 

central in G • Thus we have G = N x S where S is compact, 

connected, and semisimple, and N is a 2-step nilpotent Lie group 

containing a cen-t;:ral k-torus 'JI'k and with N /'TI.'k ~ ]{n • In other 
I 

words, N satisfies a central, exact sequence of topological groups 

Finally, in the non-Lie case, G 1s a projective limit of Lie groups 

N x S of the above type. 

~ 

As already mentioned, fo~ a connected group G , G 1s Hausdorff 

if and only if Prim G is Hausdorff. Such an equivalence does not 

hold in general since any separable non-type I group in the class 

[FC]- has a Hausdorff primitive dual space, [5]. A reasonable con-

jecture seems to be that 
,... 
G is if and ohly if G is of type I 

and G E [ FC]- . We shall treat the nonconnected case later. 

I am indebted toM. Duflo and J. Rosenberg for encourag1ng 

discussions on the subject. 
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2. NOTATION Let G be a connected sernisimple Lie group with 

Iwasawa decomposition G = KAN , and B = MAN a minimal parabolic 

subgroup, i.e. M is the centralizer uf A 1n K. We recall 

some concepts from [ 3] . _If oC 0:: = HomJR ( 0(, (C) is the complex dual 

to the Lie algebra ot of A then each >.. E ()(! 
~ 

defines a non 

unitary character b •+ b>.. of B such that b>.. = 1 for bE MN , 

bA.=exp>..(x) for expx_=bEA. 

Put X>.. = the space of all analytic K-finite functions f 

on G (i.e. K•f spans .a finite dimensional vector space, where 

(k·f)(g) = f(k- 1 g);k EK,g EG) such that f(gb) = b->..f(g), g EG, 

bE B. Then X>.. is a U -module (not in general a G·-module) where 

U denotes the universal enveloping algebra of g over ~ , and 

(X. f) (g) = _.9_ f ( exp - tx. g) I ' dt - t=O x E 9 , g E G , f E X>.. • 

[3;Thm.2l gives a necessary and sufficient condition for XA. to 

be an irreducible ~-module (in the algebraic sense). Thereby 

arises a region called the critical strip, CS, 

X>.. 1s always U-irreducible~ hence equal to 

• I 
1n otcc for which 

zA. = 1L·1 where 
A. 

is the unique function in X A. ·which is identically 1 on K. 

Let II. c ot' be the set_of roots for the action of or.: on q 
and for t,fl E II. let 91.Pc: 9 be the corresponding root space. The 

d · · 1 [ r: <P •. n ___ -<+>J n 0( one 1mens1ona space ~ -~ (q:> E A) is spanned by a 

unique.element 

Let II. 1 = {lf) E A 

w such that ~(ww_) = <p 

~12 is not a root} 

1 , 

and denote by the pos1-

tive elements in A 1 w. r. t. a lexicographical ordering of 0(.' . 

For any 

T = {tEJR 
!() 

let T 
<.p 

be the open interval 

ltl <(dim g_c.p)/2 if 2c.p 1s not a root, 

and It I < (dim g c.p) I 2 + 1 if 2(() is a root} . 

~ 
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Now define p(x) = ~tr( adx I.I'L. ) ' for all X E 0( ~ where 1t 

nilpotent part 1n t:te Iwasawa decomposition of G For A 

a cer-::ain subset ot* of 0[~ it is possible to associate 

unique unitary, irreducible rep:'esentation A 
7f of G whose 

differential induces the given 1t-module structure on 

= 
in 

a 

The 

(class one) complementary series lS defined as the family of all 

such representations 7fA where A ( E at.*) is in the closure of 

the critical interval C I = { A E Ot' : ( X - p ) ( w ) E T 
(f) tp 

for all 

[3, §7.3]. 

3. THE SEMISIMPLE CASE In this section G will denote a connected 

semisimple Lie group. Notations will be as in Section 2. 

Lemma 2. Let. G be a connected, semisimple Lie group. If Ao is 

a boundary point of the convex set CI 5 then the ~'L.L -module XA 0 

is reducible. In particular the corresponding (non-unitary) repre-

sentation 0 
7f of G is reducible. 

Proof. By assumption A. 0 is a boundary point of CI , hence there 

is a functional 1 
<P E A+ such that 

if. 21[1 is not a root 
( 1 ) 

if 2<P is a root . 

a) 2qJ is not a root (i.e. dim 9 2 ([.> = 0) • Then by ( 1) 

{ 0 ' 

d . G(P 
liD ;; ' 

if ( A. 0 ·-p) (w<P) < 0 

if (A. 0 -p)(w<.p) >0 

which 1n both cases is 0 (mod ZZ ) . Hence [ 3, Theorem 2] gives 

that XA. 0 is reducible. 
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b) 2lP lS a root (i.e. dim 92c,pE{1,3,7} by say [B,pp. 31-32]). 

By [ 8, Lemma 2, p. () 3] dim. S ~0 is an even integer. Hence 

mi.,') = {dim g <.P) I 2 +dim 9 2 <.0 is an integer. We wish to apply [3, Theorem 2] 

again, and have by the identity (1) above, 

(A 0-p)(wlP) +m<P = (A. 0 -p)(w(J)) +(dimg(p)/2 +dimS 2 <fl 

= 
{dim( g 2<PJ - 1 , if 0 0 -p) ( w<P) < 0 

dimc9<P) +dim( 92<-P) +1, if CA 0-p)(w(j)) >0 

which, in both cases, is an integer. Hence again 
Ao 

X is irre-

ducible. So the proof is complete. 

Assume now that G has finite center. Let D'(G) denote the 

space of distributions on G endowed with the weak topology, 

tr: G + D'(G) the injective map which assigns to each n in G 
"' its distribution character tr(n) , and Q the closure of tr(G) 

in D 1 (G) • By Barish-Chandra's character formula [1, Theorem 2] 

the character of any irreducible complementary series representation 

nA. A ECI , is given by integration against a continuous function 

eA on G which depends continuously on the parameter A , 

where G 
1 

is a certain closed subgroup of G· .. 

main result of this section. 

We prove next the 

froposition_3.. Let G be a connected, noncompact, semisimple 

"' Lie group. Then its unitary dual space G equipped with the hull-

kernel topology is not a Hausdorff space. 

Proof. We may clearly assume that G has finite center. Suppose 
A 

{n n} is a sequence of irreducible complementary series · n=1 , 2, ... 
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representations of G , where A E CI n 
for each n = 1 ,2,·· ., and 

A -p -A +p 
n ' n 

are conjugate under the Weyl group W , and that A 
n 

converges to a boundary point A0 of CI . Then by Barish-Chandra's 

character formula [1, Theorem 2] and the Lebesgue convergence theorem 

A 
tr(~ n(f)) = JG eA (x)f(x)dx --+ 

1 n n+oo 
JG eA (x)f(x)dx = To(f)' 

1 0 
for all f E C (G) • 

c 

0 
Hence T 0 is a central distribution, To En, and T is the 

character of the representation ~ 0 which is associated to the 

reducible 1L-module XAo (Lemma 2). 

Now, by a result of Milicic, [6, Theorem 5.8], To is uniquely decom

posable into the sum of finitely many distribution characters of 

"' elements of G ' 

integer, and 

:r . n tr( ~) , 
~Ef(T 0 ) ~ 

where n 
~ 

is a unique finite subset of 

is a positive 

" G called the 

carrier of Moreover, by [6, Theorem 5.6] the sequence 
A 

{~ n} 

converges to 71" for each 71" E r ( T 0 ) , as .An + .A 0 • By Lemma 2 71" 0 

is reducible, and to show that G is non-Hausdorff it suffices to 

prove that r<T 0 ) consists of more than one element. This follows 

from the fact that 0 
71" contains a spherical component 71" 1 with 

multiplicity one (the only K-fixed vectors are the functions constant 

on K). Thus 'II".Ao contains at least two non-equivalent components. 

The proof is complete. 
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