GROUPS WITH HAUSDORFF UNITARY DUAL SPACE

ABSTRACT  We show that for any non-compact, connected, semisimple
Lie group G the unitary dual space 6 endowed with the hull-kernel
topology is non-Hausdorff. This result gives a structure theorem for
the class of all connected, locally compact groups with Hausdorff

unitary dual space.

1. INTRODUCTION Let G be a non-compact, connected, semisimple
Lie’group with Lie algebra § , and G its unitary dual space con-
sisting of all equivalence classes of irreducible unitary represen-
tations of G, equipped with the hull-kernel topology. We prove
here that G 1is non-Hausdorff. The idea of the proof is as follows.
According to Kostant [2] the (class one) complementary series of G

is parametrized by those elements A in the closure of a certain
convex set called the critical interval, CI , such that A-p and

- A +p are conjugate under the Weyl group W, whefe p(x)==%tr(ad(xﬁqg
n

boundary point of CI 1is associated a reducible representation of

the nilpotent part of the Iwasawa decomposition of § . To a

which can be unitarized and contains at least two non-equivalent
irreducible components. We show then, applying results of Milidic¢
[6], that the.above mentioned parametrization is continuous at a
boundary point., Thus there exists a sequence of irreducible comﬁle—
mentary series representations with at least two different limit
points, |

Our main motivation‘for>_writing this article is the following.
Combining the above mentioned result for semisimpie groups with
earlier work 5f Liukkonen and Mosak [5], and Peters [7], we obtain a

structure theorem for the family of all connected, locally compact



groﬁps possessing Hausdorff unitary dual space. In fact, as shown

in [5] the primitive ideal épace, Prim G, of the group C#*-algebra
with the hull-kernel topology is a Hausdorff space if G 1is o-compact
and all of its conjugacy classes are precompact. The converse result
was established in [7] for unimodular, amenable groups.

Now in the connected case a group G possessing precompact
cohjugacy classes is an extension of a vector group by a compact
normal subgroup (see e.g. [51), and such groups are of type I (an
application of the Mackey theory). Hence Prim G and G are homéo-

morphic, and so for amenable, unimodular groups we have
3 9

¢ is Hausdorff ¢ Prim G is Hausdorff « G 1is an

extension of a vector graup by a compact normal subgroup.

Further, @ Hausdorff = 6 is CCR = G is unimodular, [2]. Hence
unimodularity is automatic in our situation.

From the results of the present article (Proposition 3) the
semisimple part in the Levi decomposition of a connected Lie group G
witﬁ a Hausdorff unitary dual spacevmust be compact. In other words,
the solvable radical of G ié cocompact. Accordingly G 1s amenable
and the above remarks apply: G contains a compact, normal covector
subgroup K. Now 1f G 1is an arbitrary connected l.c. group and
6 is Hausdorff,‘ G 1is a projective limit of Lie groups,

G = projl%m(gi) ,and it follows that each éi is Hausdorff, being

a closed subspace of G. We have proved the following.

Theorem 1. Let G be a connected, locally compact group. Its

~

unitary dual space G, endowed with the hull-kernel topology, is a

Hausdorff space if and only if G 1is an extension of a vector

group by a compact, connected group. E



Remark. Actually one can say somewhat more about the structure of
such groups. For let G be a Lie group with a compact, connected,
normal subgroup K, and G/k ~ R" a vector group. Now K is
isomorphic to the direct produc* of a semisimple (compact) group S
and a k-torus Tﬁk , K~ SXTTk; and by Levi's theorem S must
occur as a direct factor in G since G/x is solvable. Further
the automorphism group of TH< is discrete so the connected group
G/K acts trivially on X by automorphisms, and hence T is
central in G. Thus we have G = NxS where S 1is compact,
connected, and semisimple, and N is a 2-step nilpotent Lie group
containing a cen?ral k-torus 'Ek and with N/Ek mIRn_. In other

words, N satisfies a central, exact sequence of topological groups

1T > N R > 1.,

Finally, in the non-Lie case, G 1is a projective limit of Lie groups

Nx S of the above type.

~

As already mentioned, for a connected group G, G 1is Hausdorff
if and only if PrimG is Haﬁsdorff. Such an equivalence does not
hold in general since any separable non-type I group in the class
[FC]™ has a Hausdorff primitive dual space, [5]. A reasonable con-
jecture seems to be that & is T, if and only if G is of type I

and Gé€[FC] . We shall treat the nonconnected case later.

I am indebted to M. Dufla and J. Rosenberg for encouraging

discussions on the subject.




2. NOTATION Let G Dbe a connected semisimple Lie group with
Iwasawa decomposition G .= KAN, and B = MAN a minimal parabolic
Vsubgroup, i.e. M 1is the centralizer of A in K. We recall
some concepts from [3]. .If CX& S HmyR(OLQ) is the complex dual
to the Lie algebra Ol of A then each A ec%é defines a non
unitary character b = ba of B such that bY = 1 for b €MN 5
b’ = exp A(x) for expx. = b€A.

Put X = the space of all analytic K-finite functions f
on G (i.e. K-f spans .a finite dimensional vector space, where
(k-£)(g) = £(k"'g);k €K,z €G) such that £(gb) = b f(g), g€G,
b€B. Then X' is a 4 -module (not in general a G-module) where
1, denotes the universal enveloping algebra of Q over €, and

(x-£)(g) = é%-f(éxp:-tx«g)ltzo 5 x €G, gEGS,:fEXA.
[3;Thm.2] gives a necessary and sufficient condition for x*  to
be an irreducible 7L -module (in the algebraic sense). Thereby
arises a region called the critical strip, CS, in Cﬂé for which
X s always U-irreducible, hence equal to zh = QL»iA where 1,
is the unique function in x* which is identically 1 on K.

Let A < O{' be the set_of roots for the action of Of on § ,
and for ©EA let ‘9 ¢ < 9 be the corresponding root space. The
one dimensional space [Q‘p,g'ﬁﬁ n O (w)éA) is spanned by a

1.

unique . element w, such that ©{wg,)

Let A' = {p€A: ©/2 is not a root}, and denote by Ai the pdsi—

tive elements in A' w.r.t. a lexicographical ordering of ('

For any @€ A let Tm be the open interval

T$ = {teR: |t] <(dim §¥)/2 if 29 is not a root,

and |t] < (dim G¥)/2+1 if 2¢ 1is a root}.




Now define p(x) = %tr(adenJ) , for all x € O(, where N =
nilpotent part in the Iwasawa decomposition of g . Tor i in

a certain subset Ol* of Cﬁé it is possible to associate a

unique unitary, irreducible representation “A of G whose
differential induces the given H-module structure on 7} . The

(class one) complementary series is defined as the family of all

such representations n* where A (€ O*) is in the closure of

the critical interval CI = {A €07 : (A—p)(mm) ETw for all e¢E¢€ A_ll_}9

[3, §7.3]%.

3. THE SEMISIMPLE CASE In this section G will denote a connected

semisimple Lie group. Notations will be as in Section 2.

Lemma 2. Let G be a connected, semisimple Lie group. If 2, is

. A
a boundary point of the convex set CI , then the 4 -module X 0

is reducible., 1In particular the corresponding (non-unitary) repre-
sentation 7° of G 1is reducible.

Proof, By assumption g is a boundary point of CI , hence there

is a functional q:EAi such that

f(din19q5/2 , if  2¢ 1is not a root

(1) ,}(7{0"9)(“’“\)'{ = 3 ©
” L (dim G ¥)/041 , if 2¢ is a root .

a) 20 is not a root (i.e. diﬂlggq)=0). Then by (1)

‘ 0 s if (Ao“p)((ﬂ ) <0
Gg=ed(w,) + @in G0/ = { ¢
| aim g%, if (hg=p) (u ) >0
which in both cases is 0 (mod 72 ). Hence [3, Theorem 2] gives

A ; .
that X 9 is reducible.



‘ . . . 2
b) 29 is a root (i.e. dim 9"“36{1,3,7} by say [8,pp. 31-321]).

By [8, Lemma 2, p. 33] dinfgq) is an even integer. Hence
My, = (dim Q@)/Q +c1im§'72(ﬁ is an integer. We wish to apply[3, Theorem 2]
again, and have by the identity (1) above,

o = Ogm0)(uy) + (@i G/ +dim §29

(Ao-p)(mw) +m
dim( G2 -1, if Og-p)(ay) <0
dim(§®) +din( §¥ +1, if Og=p)(u) >0,

Ao

which, in both cases, is an integer. Hence again X is irre-

ducible. So the proof is complete.

Assume now that G has finite center. Let D'(G) denote the
space of distributions on Q endowed with the weak topology,
tr : @ - D'(G) the injective map which assigns to each = in é
its distribution character +tr(w) , and @ the closure of tr(G)

in D'(G) . By Harish-Chandra's character formula [1, Theorem 2]

the character of any irreducible complementary series representation

* ., A €CT, is given by integration against a continuous function

on G which depends continuously on the parameter i , |

' |

te(n (£)) = f, 8, (x)f(x)dx , all fec_(6) ,
1

where G, is a certain closed subgroup of G6.. We prove next the /

main result of this section.

Proposition 3. Let G be a connected, noncompact, semisimple

Lie group. Then its unitary dual space G equipped with the hull-

kernel topology is not a Hausdorff space.

Proof. We may clearly assume that G has finite center. Suppose

A
{n n}n'1 5 is a sequence of irreducible complementary series’
- 9L g0 80 .




representations of G, wheré A, €ECI for each n = 1,2,..+, and
‘An-p s -An+p are conjugate under the Weyl group W , and that An
converges to a boundary point i, of CI . Then by Harish-Chandra's

character formula [1, Theorem 2] and the Lebesgue convergence theorem

A
tr(n D(E)) = leeAn(X)f(X)dx — !GIGAO(X)f(X)dX = 1o(£) ,

N>

for all f ECC(G).

Hence 1, is a central distribution, T, €8, and TO is the
character of the representation 7% which is associated to the
reducible ‘A -module x™o0 (Lemma 2).

Now, by a result of Mili¢ié, [6, Theorem 5.81, T, 1s uniquely decom-

posable into the sum of finitely many distribution characters of

elements of G, Ty, £  n_ tr(wr) , where n, is a positive
1€l (1q)
integer, and P(TO) is a unique finite subset of ¢ called the
- A
carrier of T, - Moreover, by [6, Theorem 5.6] the sequence {rm P}
converges to w for each = er(ro) , as An > Ay By Lemma 2 0

is reducible, and to show that & is non-Hausdorff it suffices to
prove that T(t,) consists of more than one element. This follows
from the fact that n° contains a spherical component w;, with
multiplicity one (the only X-fixed vectors are the functions constant

A .
on K). Thus 1« 9 contains at least two non-equivalent components.

The proof is éomplete.
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