
Towards efficient and
cost-effective live migrations of
virtual machines
Fredrik Meyn Ung

Master’s Thesis Spring 2015

Towards efficient and cost-effective live
migrations of virtual machines

Fredrik Meyn Ung

18th May 2015

ii

Abstract

As cloud computing and the use of virtual machines (VMs) have become
a widespread phenomenon, a wide variety of optimization techniques
have been invented for this field. One of them is live migration, which
enables relocation of VMs between physical hosts without shutting them
down.

Since this feature has been implemented and simplified in the majority of
popular virtualization platforms, IT administrators have begun migrating
VMs regularly. There are many reasons for this, including load balancing,
server consolidation and disaster recovery.

This thesis have used a machine learning based algorithm to partition mi-
gration marked VMs into migration groups, with the goals of minimizing
network load and lower the time consumption. A new algorithm, proposed
by this thesis, is used to provide additional cost-optimization.

iii

iv

Contents

1 Introduction 1
1.1 Problem statement . 3

1.1.1 Efficiency . 3
1.1.2 Cost effectiveness . 4

2 Background 5
2.1 Virtualization concepts . 5

2.1.1 Full virtualization . 6
2.1.2 Paravirtualization . 6
2.1.3 QEMU and KVM . 7
2.1.4 Libvirt . 8

2.2 Live migration . 8
2.2.1 Pre-copy Migration . 9
2.2.2 Post-copy Migration 9

2.3 Issues with live migration . 11
2.4 Relevant research . 12
2.5 Measuring migration impact 14

2.5.1 Total migration time 14
2.5.2 VM traffic impact . 15

2.6 Bin packing . 16
2.7 Graph partitioning . 17
2.8 Learning Automata partitioning 18

3 Approach 21
3.1 Migration Design . 21

3.1.1 The Learning automata 22
3.2 Design of experiment . 30

3.2.1 Bulk migration . 31
3.3 Lab setup . 31

3.3.1 Libvirt live migration 32
3.3.2 Test VMs . 32

3.4 Traffic generation . 33
3.4.1 Bandwidth altering . 33

v

3.5 Requirements for solution . 34
3.6 Revised Approach . 34

3.6.1 Host system load . 34
3.6.2 Dirty rate . 35

3.7 Simulating migration cost . 35

4 Results and analysis 37
4.1 Testbed configuration . 37

4.1.1 Containment of VMs 38
4.2 VM-to-VM traffic . 38

4.2.1 Matrix Usage . 39
4.3 Subgroup scheduling . 40
4.4 Workflow of testing . 42
4.5 Example test . 44
4.6 Experiments . 45

4.6.1 Non-dedicated link . 45
4.6.2 Dedicated link . 49
4.6.3 Simulation results . 51
4.6.4 Affinity algorithm . 54

5 Discussion and conclusion 59
5.1 Evaluation . 59

5.1.1 Problem statement . 60
5.2 Future work . 61

5.2.1 Traffic patterns . 61
5.2.2 Latency . 62
5.2.3 More sophisticated scheduling 62
5.2.4 Conclusion . 63

6 Appendix 69

vi

List of Figures

2.1 Simplified architecture of para- and full virtualization 7
2.2 Pre-copy method for live migration 9
2.3 Pre- vs. Post-copy migration sequence 10
2.4 Bin packing in VM context . 17
2.5 Nodes connected in a network 18

3.1 States within a subgroup . 23
3.2 Simple cases of GPLA transitions 29
3.3 Bandwidth notations in a non-dedicated migration link . . . 31
3.4 Triangular matrix for traffic generation 35

4.1 Physical lab . 37
4.2 Separate inter-site traffic occurring during migrations 42
4.3 Workflow of testing environment 42
4.4 Asymmetrical (left) and symmetrical traffic matrices (right) . 43
4.5 Parallel migration performance 46
4.6 Impact of migration random groups 47
4.7 The effects which increasing dirty rates has on migration time 50
4.8 Migration simulation without any dirty rate 52
4.9 The effects of adding constantly changing memory to the VMs 53
4.10 Increasing the dirty rate . 53
4.11 Less separate traffic when using the affinity algorithm 55
4.12 Histogram showing separate traffic amounts for random

sequences . 55

vii

viii

List of Tables

2.1 Variables used in formulas in the VMbuddies system 15

3.1 The four cases of reward and penalty 22
3.2 Notations used in the learning automata algorithm. 24
3.3 Physical lab hardware specifications 32

4.1 Baseline test configuration . 46
4.2 Comparing migration time with random groups 48
4.3 Separated traffic during different dirty rates 50
4.4 Similar migration times using only the affinity algorithm . . 56

ix

x

Acknowledgments

This thesis concludes my two-year Network and System Administration
master’s degree at Oslo and Akershus University College of Applied
Sciences. This program has been highly rewarding, but also demand-
ing.

I would first and foremost like to thank my supervisor, Anis Yazidi, for
all the meaningful and inspiring guidance provided to me throughout this
thesis period. You are a brilliant person, and you have been very patient,
optimistic and kind.

I would also likt to extend my gratitude to Hårek Haugerud and Kyrre
Begnum for essential input and technical support.

I would also like to thank my friends and family for the strong support and
encouragement these past two years.

Lastly, I would like to thank my patient and understanding girlfriend,
Ninni Cecilie Eriksen. You have been very comforting, understanding and
helpful.

xi

xii

Chapter 1

Introduction

Modern IT infrastructures run on virtual platforms. The physical resources
which power these solutions can provide a layer of abstraction which al-
lows Virtual Vachines (VMs) to run through the technology of virtualiza-
tion. A very prominent form of virtualization enables a complete and fully
usable operating system (OS) to run virtualized. This is principle is com-
monly referred to as OS virtaualization [1]. Users with sufficient access to
these infrastructures can provision and start their own, fully controllable
"machines". Most of the state-of-the-art data centers use this technology to
provide flexibility and simplicity for their customers. The principle of host-
ing multiple virtual machines on a virtaulized environment is commonly
referred to as cloud computing [2], and it is thought to be one of the most
essential aspect of future computing [3]. Flexibility and scalability are im-
portant aspects of this form om computing.

The virtual machines are assigned attributes, such as memory (RAM) and
disk space, from resource pools in the cloud. Portions of each resource type
is bound to a VM. [4] The VMs themselves see these units as physically
connected, and therefore fully utilizable by the system. A runnign VM
will consume the physical resources very similarly to how a traditional
computer would, but all the operations go through a management process
at the virtualization layer. Through the means of virtualization, a VM
will shrink the amount of resources available on the physical machine
(PM) on which it resides. The distribution of VMs on PMs in a cloud is
therefore significant in order to reduce the possibility of a physical host
being overloaded. The placement is also important for resource balancing
purposes [5].

Cloud provider is a term used to describe a company or an institution
which provides customers or users with a resource pool from which they
can create and administer VMs. These providers tend to offer users a
web based front-end interface (sometimes referred to as a dashboard)

1

for simple creation, manipulation and destruction of VMs. The users
do not control the VMs physical attributes, such as where the memory
or disk data is stored. From the user’s perspective, it’s all just "in
the cloud". This means that the cloud operating system, which the
cloud provider has configured, places the VMs automatically, based on
how the environment is configured. Other underlying mechanisms,
such as network communication links and virtualization engines (called
hypervisors) are also abstracted for the users. In this case, the provider is
distributing the VMs as products in accordance with the Infrastructure-as-
a-Service model (IaaS). They administer the cloud’s concrete aspects (the
hardware) and the virtualization functions, while the users manage their
OS instances (VMs) completely on their own [6]. The users are therefore
also responsible for maintaining and configuring VMs.

The servers and virtualization software is maintained by the cloud
provider. Controlling and optimizing the placement of virtual machines,
with respect to the physical hosts, is one of the challenges facing the IT
administrators working in cloud computing institutions.

Live migration is a very unique feature to cloud computing that introduces
the possibility to move VMs between different physical locations, without
having to shut the instances down. This feature allows for an extremely
low service disruption time (SDT), compared to the case where the machine
is shut down, moved and then powered on again. SDT refers to the
time period where a VM is unavailable due to being suspended at the
source, and not yet up and running at the target destination.[7]. Popular
virtualization providers like Xen [8], VMware (VMotion) [9], and Hyper-
V [10] all offer live migration features in their solutions. Load balancing,
system maintenance, server consolidation, and electricity saving are all
reasons why live migration is a key feature in modern cloud environments
[11] [12].

Load balancing refers to the principle of reducing the computational load
on a physical unit, by relieving it of running tasks. In a case where a node is
running out of resources due to hosting to many VMs, for example, moving
some of them to another host is a form of load balancing. For multiple VMs
cooperating in an applications, load balancing can be achieved by splitting
application requests among them. The main goal of load balancing cloud
based systems are to increase performance and prevent congestions on PMs
[13]. For the latter, one can use live migration to relieve the PM.

In a system maintenance case, live migrations can be used to evacuate
running VMs from a PM which needs to be powered off. PMs regularly
need hardware upgrades or replacement of failing components. Once
the PM is not serving any VMs, it can be powered off and managed by

2

technicians.

Some institutions which provide cloud computing services initially places
VMs on PMs with load balancing in mind, but later find that they can get
by with fewer running PMs. Live migration can be used to move VMs
running on a lightly used PM over to other PMs [12], [14], so the PM can be
shut down. This would lead to more "tightly packed", consolidated PM. A
good reason for doing this is to save energy.

Another way to save on electricity, is to consume the same amount
(avoiding consolidation), but at a lower monetary cost. Live migration
can be used to move VMs over the Wide Area Network (WAN) to another
data center based in a geographical area where electricity can be bought
at a lower price, or is produced in a more environment friendly way. This
principle of transferring nourishment demanding objects (VMs demanding
electricity) to a more cost-effective placement is referred to as the follow-the-
sun convention [15].

There are a lot of variations when it comes to the mechanics behind
the different live migration techniques proposed in the research field of
computer science. It is clear that a carefully thought through approach for
scheduling the VMs in a migration task can benefit the overall migration
performance, and subsequently yield other positive effects. Fast migrations
are important to achieve better adaptability of resource utilization and is
essential for moving VMs quickly, while keeping them running for the
users. [16].

This thesis aims to construct and test a framework for making live
migrations more efficient and application friendly. The goals are to lower
the time it takes to complete a live migration of multiple running VMs, and
to reduce the network traffic amount caused by migrations. The framework
will be based on machine learning, more specifically a learning automata
system.

1.1 Problem statement

"How can we achieve cost-effective and efficient live migrations of virtual machines
in a cloud environment?"

1.1.1 Efficiency

The migration scheme should be able to perform migration quickly, and
with certainty that it will complete. If this is achieved, efficiency is is

3

accomplished.

1.1.2 Cost effectiveness

In chapter 2, the workings of different live migration techniques will be
outlined. The proposed solution in this thesis will focus on minimizing per-
formance degradation of communication intensive applications running on
virtual machines. Cost effectiveness is considered to be archived if this im-
pact is minimized.

4

Chapter 2

Background

2.1 Virtualization concepts

VMware, which is one of the world’s largest companies specializing in
virtualization describes it simply as "the separation of a service request from
the underlying physical delivery of that service" [17].

What WMware points to with the term "underlying delivery" of a service is
that the actual execution of the instruction initiated by a VM, for example
a processor request or a memory operation, is handled by a proxy. The VM
may or may not be aware or that this is happening, depending on the mode
of virtualization used in the infrastructure.

One can build a virtualization platform in a number of different ways.
In order to comprehend the differences and specifications behind each of
them, there are some often used terms which require explanation:

• The guest is a virtual machine running on top of a virtualization
infrastructure. The guest is usually, in itself, a fully functional
operating system (OS).

• The host is a machine which delegates resources to a guest.

• The hypervisor is the abstraction layer between the physical hard-
ware and the host. The hypervisor is sometimes referred to as a "vir-
tual machine manager" (VMM). This is the proxy that carries out in-
structions on behalf of the guest.

There are essentially two widely used virtualization architectures available
today - full virtualization and paravirtualization.

5

2.1.1 Full virtualization

This is, design wise, the simplest form of virtualization. A hypervisor is
installed directly onto the physical unit, which has one or more of each
of the standard computer devices installed - network card, hard drive,
processor, and memory (RAM). The hypervisor type which is used here is
a bare metal hypervisor, which is also referred to as "type 1". The OS that the
guest uses is unmodified, and therefore sees the devices as "real", which
means that the OS cannot determine that it is being virtualized. Behind
the scenes, the guest OS is allocated resources from the PM. The fact that
the hypervisor has direct access to the hardware, can make this mode of
operation more flexible and efficient [17].

However, this virtualization mode relies on binary translation of CPU
instructions between the guest and host, as it simulates all the underlying
hardware to the guests, which can have negative effects on efficiency in
terms of overhead [18]. Full virtualization provides guests with a complete
blue print of a computer system. This means that the hypervisor must serve
all components, including a virtualized BOIS and a memory shadow table
[19].

If security is an important concern, it is recommended to use a full
virtualization suite, as they can provide thorough isolation of running
applications. The hypervisor can split resources into pools, and it is
common practice to only allow one pool to a VM and only host one
application per VM. If a PM is running multiple VMs which together serve
many applications, the occurrence of a security breach can cause a lot of
damage [20].

2.1.2 Paravirtualization

This way of configuring virtualization relies on modifying the OS of the
guest [21] and adding the hypervisor layer on top of the host. The
hypervisor then exists between the host and the guests. This requires a
"type 2" hypervisor, which is also called a hosted hypervisor, and hence this
type of virtualization is also known as hosted virtualization. It is essentially
a program that runs on the host OS. In this architecture, each VM can be
aware that it is being run virtualized, as modifications have to be made on
the guest OS. With modern OS images, this happens automatically during
installation.

The resource requests from the guest has to go through the hypervisor
on the host before reaching the physical resources, which can make it
more overhead-heavy. However, since the VMM is small and simple in

6

paravirtualization, guests can often achieve "near-native" performance [22].
This means that a VMs is very close to executing instructions as fast as
a physical computer with the same specifications. The guests do not run
on emulated devices, as in full virtualization, but rather access resources
through special device drivers [23].

In the x86 architecture, there is the concept of privilege rings. An x86 OS
typically runs in the most privileged level, "ring 0", while rings 1, 2 and 3
are lesser privileged modes ("user level rings"). An OS needs to perform
it’s executions in ring 0. When a VM initiates such an instruction (called a
hypercall), it is captured and executed by the hypervisor running alongside
the host OS, on behalf of the guest.

Figure 2.1 compares the two architectures.

Figure 2.1: Simplified architecture of para- and full virtualization

2.1.3 QEMU and KVM

QEMU is a software which provides machine emulation and virtualization.
The program operates in different modes, including "full system emula-
tion", where it is able to host a wide variety of machine types as guests.
This is achieved by a recompiler in the QEMU software which translates
binary code destined for one CPU type to another. QEMU also contains
many emulators for other computer components, such as network cards,
hard drives and USB. In other words, QEMU is a hypervisor which uses
emulation to provide virtualization capabilities [24].

KVM, which stands for Kernel Virtual Machine, is a variant of the QEMU
program and hence also a hypervisor. It is built into the Linux OS, and
transforms the standard Linux kernel into a hypervisor, if activated. It
runs guests as if they were processes on the host, which means they can
be controlled like any other program. They are assigned process IDs with
which KVM can interact. The KVM program can be started from the Linux
command line, which could make one think it is a type 2 hypervisor (since

7

it is running "on top" of an OS), but the VMs on KVM actually run on bare
metal, effectively making it a type 1 (bare metal virtualization). [25]. The
discrepancy of which solutions lie within the different architectures can
sometimes be unclear [26]. KVM is reliant on the host having installed
a processor which supports virtualization features, such as one from the
"Intel VT" or the "AMD-V" series.

2.1.4 Libvirt

Libvirt is a Red Hat developed application programming interface (API)
and program daemon for managing virtualization services. It allows you
to connect to VM remotely through the network and to launch VMs via the
virsh command line interface. Libvirt can set up a virtual network switch
on the host and have the guests connect to it and pass their network traffic
through. The virtual switch is an optional feature. By default it performs
network address translation (NAT) using the masquerade options, so that
all VMs which connect to external sources will look like traffic sourced from
the IP of the virtual bridge (virbr0 interface by default). The switch program
can also operate in "routed mode", where it puts VMs on a separate subnet,
unknown to the host. In this mode, computers from the outside can access
the VMs through a static route on on the host, which forwards traffic
destined to the VMs to the bridge interface. A third option in Libvirt is
to use an existing virtual switch on the host where a physical interface is
connected. Each VM would then get a tap-interface attached to the existing
bridge. This is a virtual interface seen as a physical by the host, and as a
switch port by the switch software.

When setting up hosted virtualization on a Linux platform, it is common
to use a combination of QEMU, KVM and Libvirt.

2.2 Live migration

Current hypervisors in virtual cloud environments include different
functionality for migrating virtual machines. Migration is performed either
sequentially or in parallel. The sequential method migrates one VM at a time.
In parallel migration, multiple MVs assigned to the same migration task are
moved simultaneously [27]. The main focus of in this chapter is the parallel
approach, which is where the potential for speed optimization lies. This is
essentially about optimizing the available network bandwidth.

8

2.2.1 Pre-copy Migration

The most common way for virtual machine migration is the pre-copy method
[28]. During such a process, the complete disk image of the VM is first
copied over to the destination. If anything was written to the disk during
this process, the changed disk blocks are logged. Next, the changed disk
data is migrated. Disk blocks can also change during this stage, and once
again the changed blocks are logged. Migration of changed disk blocks are
repeated until the generation rate of changed blocks are lower than a given
threshold or a certain amount of iterations have passed [29] [30]. After the
virtual disk is transferred, the RAM is migrated, using the same principle
of iteratively copying changed content. Next, the VM is suspended at
the source machine, and resumed at the target machine. The states of
the virtual processor are also copied over, ensuring that the machine is
the very same in both operation and specifications, once it resumes at
the destination. The rate at which disk or memory changes during the
migration is referred to as dirty rate (DR).

It is important to note that the disk image migration phase is only needed if
the VM doesn’t have its image on a network location, such as an NFS share,
which is quite common for data centers. [31].

Figure 2.2: Pre-copy method for live migration

2.2.2 Post-copy Migration

This is the most primitive form of virtual machine migration [32]. The
basic outline of the post-copy method is as follows. The VM is suspended
at the source PM. The minimum required processor states, which allows
the VM to run, is transferred to the destination PM. Once this is done, the

9

VM is resumed at the destination PM. This first part of the migration is
common to all post-copy migration schemes. Once the VM is resumed
at the destination, memory pages are copied over the network as the VM
requests them, and this is where the post-copy techniques differ [33]. The
main goal in this latter stage is to push the memory pages of the suspended
VM to the newly spawned VM, which is running at the destination PM. In
this case, the VM will have a short SDT, but along performance degradation
time (PDT).

Figure 2.3: Pre- vs. Post-copy migration sequence

Figure 2.3 illustrates the difference between these two migration tech-
niques. The diagram only depicts memory and CPU state transfers, and
not the disk image of the VM. The latter is performed similarly in both
the migration techniques, and does not affect the performance of the VM,
and is therefore disregarded from the comparison. The "performance de-
gradation of VM" in the pre-copy method refers to the hypervisor having
to keep track of the dirty pages; the RAM which has changed since the
last pre-copy round. In the post-copy scenario, the degradation is greater
and lasts longer. In essence, the post-copy method activates the VMs on
the destination faster, but all memory is still located at the source. When a
VM migrated with post-copy requests a specific portion of memory not yet
local to the VM, the relevant memory pages will have to be pushed over the
network. The "stop-and-copy" phase in the pre-copy method is the period
where VM is suspended at the source PM and the last dirtied memory and
CPU states are transferred to the destination PM. SDT is the time where the
VM is inaccessible.

10

2.3 Issues with live migration

Moving virtual machines between physical hosts has its challenges.
Research papers propose different ways to tackle the various impact this
process has on resources. The following sub sections show which concerns
are commonly addressed.

Application performance degradation

A multi-tier application is an application which communicates with many
VMs simultaneously. These are typically configured with the different
functionality spread over multiple VMs [34]. For example might the
database part of an application be stored on one set of VMs, and the
web server functionality on another set. In a scenario where an entire
application is to be moved to a new site which has a limited bandwidth
network link to the original site, the application will deteriorate in
performance during the migration period for the following reason. If
one of the application’s member VMs are resumed at the destination site,
any traffic destined to that machine will be slower than usual due to the
limited inter site bandwidth, and the fact that the rest of the application
is still running at the source site. Several researchers have proposed ways
of handling this problem of geographically split VMs during migration.
Like Zheng et al. [27], this thesis will refer to this as the split components
problem.

Network congestion

Live Migrations which take place within a data center, where no VMs end
up at the other end of a slow WAN-link, are not as concerned about the
performance of running applications. It is common to use management links
in production cloud environments, which allow management operations
like live migrations to proceed without affecting the VMs and their
allocated network links. The occurrence of some amount of SDT is
unavoidable. However, such an implementation could be costly. In a
setting where management links are absent, live migrations would directly
affect the total available bandwidth on the links it uses. One issue that
could arise from this, is that several migrations could end up using the
same migration paths, effectively overflowing one or more network links,
and hence slow the performance of multi-tiered applications.

11

Migration time

In a scenario where a system administrator needs to shut down a physical
machine for maintenance, all the VMs currently running on that machine
will have to be moved, so that they can keep serving the customers. For
such a scenario, it would be favorable if the migration took the least
time possible. In a case where the migration system is only concerned
about fast migration, optimal target placement of the VMs might not be
attained.

2.4 Relevant research

Sequencer (CQNCR)

Bari et al. [35] have created a system called CQNCR (read "sequencer"),
which goal is to make a planned migration perform as fast as possible,
given a source and target organization of the VMs. The tool created for
this research focuses in intra-site migrations. The researches claim to
be able to increase the migration speed significantly, by reducing total
migration time by up to 35%. They also introduce the concept of virtual
data centers (VDCs) and residual bandwidth. In practical terms, a VDC is
a logically separated group of VMs and their associated virtual network
links. As each VM has a virtual link, it too needs to be moved to the target
PM. When this occurs, the bandwidth available to the migration process
changes. The CQNCR-system takes this continuous change into account
and does extended recalculations to provide efficient bandwidth usage, in
a parallel approach. The system also prevents potential bottlenecks when
migrating.

The COMMA system

Another system, COMMA [27], groups VMs together and migrates one
group at a time. Within a group are VMs which have a high degree of
affinity; VMs which communicate a lot with each other. After the migration
groups are decided, the system performs inter- and intra-group scheduling.
The former is about deciding the order of the groups, while the latter
optimizes the order of VMs within each group. The goal of COMMA is to
address the issue mentioned in section 2.3. The main function of COMMA
is to migrate associated VMs at the same time, in order to minimize the
traffic which has to go through a slow network link. The system is therefore
especially suitable for inter-site migrations. It is structured so that each

12

VM has a process running, which reports to a centralized controller which
performs the calculations and scheduling.

The COMMA system defines the impact as the amount of inter-VM traffic
which becomes separated because of migrations. In a case where a set of
VMs, {VM1, VM2, ..., VMn}, is to be migrated the traffic levels running
between them are measured and stored in matrix TM. Let the migration
completion time for vmi be ti. Equation 2.1 represents the impact that their
system should minimize.

impact =
n

∑
i=1

n

∑
j>i
|ti − tj| · TM[i, j] (2.1)

VMbuddies

The VMbuddies system [36] also address the challenges in migrating
VMs which is used by multi-tier applications. The authors formulate the
problem as a correolated VM migration problem, and is tailored towards VM
hosting multi-tier applications. Correlated VMs are machines that work
closely together, and therefore send a lot of data to one another. An
example would be a set of VMs hosting the same application, where two
or three VM subsets perform different roles in different tiers, as described
in section 2.3. Their work lead to the implementation of an algorithm for
optimizing network bandwidth and a mechanism for reducing the cost
of a live migration. Tests the have conducted show clear improvements
compared to current migration techniques, including a 36% reduced
migration time, compared to Xen.

Clique Migration

A system called Clique Migration [37], also migrates VMs based on their
level of interaction, and is directed at inter-site migrations. When Clique
migrates a set of VMs, the first thing it does is to analyze the traffic patterns
between them and try to profile their affinity. This is similar to the COMMA
system. It then proceeds to create groups of VMs. All VMs within a group
will be initiated for migration at the same time. The order of the groups is
also calculated to minimize the cost of the process. The authors define the
migration cost as the volume of inter-site traffic caused by the migration.
Due to the fact that a VM will end up at a different physical location (a
remote site), the VMs disk is also transferred along with the RAM.

13

Time bound migration

Chanchio and Thaenkaew [16] have created a time-bound thread-based live
migration (TLM) technique. Their focus was to handle large migrations of
VMs running RAM-heavy applications, by allocating additional processing
power at the hypervisor level to the migration process. TLM can also slow
down the operation of such instances to lower their dirty rate, which will
help in lowering the total migration time. The completion of a migration in
TLM is always within a given time period, proportional to the RAM size of
the VMs.

All the aforementioned solutions migrate groups of VMs simultaneously,
in one way or another, hence utilizing parallel migration to lower the total
migration time. Lu et al. [11] have found, in very recent research, that when
running parallel migrations within data centers, an optimal sequential
approach is preferable. The have implemented a migration system called
vHaul which does this. They argue that the application performance
degradation caused by split components is caused by many VMs at a time,
whereas only a single VM would cause degradation if sequential migration
is used. However, the shortest possible migration time is not reached
because vHaul’s implementation of a no-migration interval between each
VM migration. During this small time period, the pending requests to
the moved VM is answered, which reduces the impact of queued requests
during migration. vHaul is optimized for migrations within data centers
which have dedicated migration links between physical hosts.

2.5 Measuring migration impact

It is common view the live migration sequence into three parts, when
talking about the pre-copy method:

1. Disk image migration phase

2. Pre-copy phase

3. Stop-and-copy phase

The last two phases are shown in figure 2.3.

2.5.1 Total migration time

Bari et al. [35] and Mann et al. [38] use the following mathematical formulas
to calculate the time it takes to complete the different parts of the migration.
Let W be the disk image size in megabytes (MB), L the bandwidth allocated

14

to the VM’s migration in MBps and T the predicted time in seconds.
X is the amount of RAM which is transferred in each of the pre-copy
iterations.

The time it takes to copy the image from the source PM to destination PM
is:

Ti = W/L (2.2)

Once the VM’s image is copied over, the pre-copy phase is initiated. It’s
time duration can be calculated as follows:

Tp+s =
M · 1−(R/L)n

1−(R/L)

L
(2.3)

The stop-and-copy period is the last phase of a pre-copy live migration,
where a VM is suspended at the source PM and resumed at the destination
PM. The completion time for this final phase is given by:

Ts = M/L · (R/L)n (2.4)

The n in the equations 2.3 and 2.4 is given by:

n = min(dlogR/L
T · L

M
e, dlogR/L

X · R
M · (L− R)

e) (2.5)

2.5.2 VM traffic impact

Liu and He [36] provide the following formulas to describe total the total
network traffic amount and total migration duration, respectively. The
number of iterations on the pre-copy phase (n) is not defined here, but is
calculated based on a given threshold.

Variable Description
V Total network traffic during migration
T Time it takes to complete migration
N Number of pre-copy rounds (iterations)
M Size of VM RAM
d Memory dirty rate during migration
r Transmission rate during migration

Table 2.1: Variables used in formulas in the VMbuddies system

15

They first derive general expressions for vi and ti to:

vi =
M · di

ri (2.6)

ti =
M · di

ri+1 (2.7)

Then the total network traffic during migration becomes:

V =
n

∑
i=0

vi = M ·
n

∑
i=0

di

ri
(2.8)

Table 2.1 denotes the variables used in equation 2.8.

Another possible metric for measuring how impactful a migration was, is
to look at the total amount of data the migrating VMs have sent between
the source and destination PMs during the migration process. This would
vary depending on how the scheduling of the VMs is orchestrated.

2.6 Bin packing

The mathematical concept of bin packing centers around the practical
optimization problem of packing a set of different sized "items" into a given
number of "bins". The constraints of this problem is that all the bins are of
the same size and that none of the items are larger than the size of one
bin. The size of the bin can be thought of as its capacity. The optimal
solution is the one which uses the smallest number of bins [39]. This
problem is known to be NP-hard, which in simple terms means that finding
the optimal solution is computationally heavy. There are many real-life
situations which relate to this principle. For instance, using the smallest
number of boxes when moving things from one location to another, by
packing them as tightly as possible.

In VM migration context, one can regard the VMs to be migrated as the
items and the network links between the source and destination host as
bins. The capacity in such a scenario would be the amount of available
bandwidth which the migration process can use. Each VM requires a
certain amount of bandwidth in order to complete in a given time frame.
If a VM scheduling mechanism utilized parallel migration, the bin packing
problem is relevant because the start time of each migration is based on
calculations of when it is likely to be finished, which in turn is based on

16

bandwidth estimations. A key difference between traditional bin packing
of physical objects and that of virtual machines on network links, is that the
VMs are infinitely flexible. This is show in figure 2.4. In this hypothetical
scenario, VM1 is being migrated between time t0 and t4, and using three
different levels of bandwidth before completion, since VM2 and VM3 are
being migrated at times where VM1 is still migrating.

The main reason for performing parallel migrations, is to utilize bandwidth
more efficiently, but it could also be used to schedule migration of certain
VMs at the same time.

Figure 2.4: Bin packing in VM context

2.7 Graph partitioning

Graph partitioning refers to a set of techniques used for dividing a network
of virtecies and edges into smaller parts. One appliance for such a technique
could be to group VMs together in such a way that the VMs with a high
degree of affinity are placed together. This could mean, for example,
that they have a lot of network traffic running between them. In graph
partitioning context, the network links between virtual machines would
be the edges and the VMs vertices. Figure 2.5 shows an example of the
interconnection of nodes in a network.

The "weight" in the illustration could represent the average traffic amount
between two VMs in a given time interval, for example. This can be
calculated for the entire network, so that every network link (edge) would
have a value. The "cut" illustrates how one could devide the network into
two parts, which means that the cut must go through the entire network,
effectively crossing edges so that the output is two disjoint subsets of
nodes.

17

Figure 2.5: Nodes connected in a network

If these nodes were MVs marked for simultaneous migration, and the
sum of the their dirty rate was greater than the bandwidth available for
the migration task, the migration will not converge [27]. It is therefore
imperative to divide the network into smaller groups of VMs, so that each
group is valid for migration. For a migration technique which uses VM
grouping, it is prudent to cut a network of nodes (which is too large to
migrate all together), using a minimum cut algorithm, in order to minimize
the traffic that goes between the subgroups during migration [37]. The goal
of a minimum cut, when applied to a weighted graph, is to cut the graph
across the vertices in the way that leads to the smallest sum of weights. The
resulting subsets of the cut are not connected after this.

In a similar problem called the uniform graph partitioning problem, the
number of nodes in the resulting two sets have to be equal. This is known to
be NP-complete [40], which means that there is no efficient way of finding
a solution to the problem, but it is takes very little time to verify if a given
solution is in fact valid.

2.8 Learning Automata partitioning

Multiple algorithms have been proposed for solving the graph partitioning
problem. In a small scale, as the example shown in figure 2.5, the time
required to computationally discover the minimum cut is very low, as there
are few possibilities (cuts over vertices) which lead to exactly four nodes in
each subset. Note that the referenced figure’s cut is not a uniform graph
cut resulting in two equal sized subsets, nor shows the weight of all the
vertices. It merely illustrates a graph cut.

To exemplify the complexity growth of graph cutting, one could regard two
networks, where one has 10 nodes and the other has 100. The amount of

18

valid cuts and hence the solution space in the former case is 126, and 1029

for the latter [40]. This clearly shows that a brute force approach would use
a lot of time finding the optimal solution, when there are many vertices. A
number of heuristic and genetic algorithms have been proposed in order to
try and find near optimal solutions to this problem.

Learning Automata is a science which divisions under the scope of adaptive
control in uncertain and random environments. Adaptive control is
about managing a controller so that it can adapt to changing variables
using adjustment calculations. The learning aspect refers to the way
the controller in the environment gradually starts to pick more desirable
actions, based on feedback. The reaction from the environment is to give
either a reward or a penalty for the chosen action. In general control
theory, control of a process is based on the control mechanism having
complete knowledge of the environment’s characteristics, meaning that the
probability distribution in which the environment operates is deterministic,
and that the future behavior of the process is predictable. Learning
automata can, over time and by querying the environment, gain knowledge
about a process where the probability distribution is unknown [41].

In a stochastic environment, it is impossible to accurately predict a sub-
sequent state, due to the non-deterministic nature of it. If a learning auto-
mata mechanism is initiated in such an environment, one can gradually
attain more and more certain probabilities of optimal choices. This is done
in a query-and-response fashion. The controller has a certain amount of
available options, which initially has an equal opportunity of being a cor-
rect and optimal choice. One action is chosen, and the en environment
responds with either a reward or a penalty. Subsequently, the probabilities
are altered based on the response. If a selected action got rewarded, the
probability of this same action should be increased before the next interac-
tion (iteration) with the system, and lowered otherwise. This concept can
be referred to as learning automation. [41]

The following is an example of how learning automation would work.
Consider a program which expects an integer n as input, and validates it if
0 < n < 101 and n mod 4 = 0. A valid input is a number between 1 and
100, which is divisible by 4. Now, let’s say that the learning automation
only knows the first constraint. Initially, all the valid options (1-100) has the
probability value of 0.01 each, and the automata chooses one at random. A
penalty or reward is received, and the probabilities are altered, with the
constraint that ∑x∈A fX(x) = 1, where x is a valid option. After many
iterations, all the numbers which the environment would validate should
have an approximately equal probability, higher than the rest.

Oommen, Croix et al. [40] have proposed a learning automata based

19

algorithm for splitting any graph into equal sized subgroups, where the
result is such that the sum of the edges that go between the subgroups is
as small ass possible. In other words, the proposed algorithm ensures that
a minimum cut has been reached between any two resulting subgroups of
the input graph.

20

Chapter 3

Approach

This chapter will outline an overview of how the experiments for this thesis
will be conducted, as well as what can be expected from them. The goal is
that the experiments will give answers to the problem statement described
below.

"How can we achieve cost-effective and efficient live migrations of virtual machines
in a cloud environment?"

As the introduction specifies, a scheme for migrating VMs is needed. It
should try to minimize the impact which migrations will have on running
multi-tiered applications. Section 3.1 will clarify how an envisioned system
will behave.

3.1 Migration Design

A matrix will be used to illustrate the traffic amount between VMs marked
for migration. In the following example we have extracted the average
traffic amount running between a selection of 10 VMs. The top-left to
bottom-right diagonal is all zeros, since loopback traffic on the machines
in not considered. Let VMs be VM and n the number of VMs in the group.
The variables i and j are the number of columns and rows, respectively. We
could then end up with a n · n matrix like this:

VM1,1 VM1,2 VM1,n

VM2,1 VM2,n

...

... VMi,j ...
VMn,1 VMn,2 VMn,n

 (3.1)

21

The total network traffic running between a pair of VMs is VMi,j + VMj,i.
It will not be considered traffic if a VM talks to itself, meaning VMj,i = 0,
where j = i.

Both dedicated management network links and non-dedicated links will
be used when testing migrations. For the latter, the migration traffic will
have to share the bandwidth with VMs which are communicating with
each other from different hosts, meaning that both the VMs dirty rates
and shared traffic will affect migration performance. It is likely that the
effectiveness of the migration scheme will be more evident when migration
traffic and inter-VM traffic runs on the same link. This is because the
grouping of the VMs are made with a minimum cut method, such that a
minimum amount of inter-group traffic is present on the migration link
during the process.

A migration over a dedicated link path, where no inter-VM traffic is sent,
can be expected to complete faster, but is not necessary to measure to
amount of separated traffic caused by migrations, as this would be the same
in both cases. Separated traffic will occur in any migration scenario where
VMs are communicating during the migration process, and where not all
VMs finish migration at the same time.

3.1.1 The Learning automata

This section will simplistically express the nature of the algorithm found
in the paper ‘Graph partitioning using learning automata’ [40], which will
be used in this project in order to create VM groups. It should, in theory,
output equal size subgroups where the sum of the weight on the vertices
between them is close to minimal.

The algorithm uses the concept of similarity and dissimilarity, and moves
nodes between subgroups and between states within a subgroup. Similar
nodes belong in the same subgroup. Since the system is learning automata
based, it continuously rewards or penalizes nodes by comparing them, as
described in in the example in section 2.8. The nodes being similar and
in different subgroups, yields a penalty (because they are not in the same
subgroup) or a reward, if they are in fact residing in the same one. There
are two additional cases, and all four as shown in table reftab:reward-
penalty.

Similar Dissimilar
Same Subgroup reward penalty
Different Subgroup penalty reward

Table 3.1: The four cases of reward and penalty

22

The state in a subgroup is a measure of certainty, where the internal state
is the most certain. The figure 3.1 shows that a node can be sent to a more
secure state, a less secure state, or to another subgroup. The latter will be
explained later in this section.

Figure 3.1: States within a subgroup

Both rewards and penalties can move nodes towards and away from
the boundary states. This all depends on which of the four cases is
matched when the comparison takes place. It is important to know that
multiple nodes can share the same state in the same subgroup. In fact, the
initialization of the algorithm places all nodes in the boundary state.

The algorithm iteratively picks two and two random nodes from the entire
graph and finds the weight of the vertex connecting them. It then needs to
decide if these two nodes are similar or dissimilar. This decision is based on
a metric which could be user specified, but by default it is the mean weight
of all the vertices in the graph. Calculating this is therefore a prerequisite
for running the automata. Let Cij be the weight between node vi and vj, z
the mean weight in the graph, and p a user specified value. The nodes are
then considered similar if Cij > (1+ p) · z and dissimilar if Cij < (1− p) · z.
z will be referred to as Mean_Edge_Cost is the algorithm.

The goal of the algorithm is to take in a group of nodes V, connected in a
graph with edges E, and output K subgroups.

Table 3.2 show the notations used in the algorithm 1, which follows
underneath.

23

Variable Description
V = V1, V2, ..., VKN The nodes which are to be partitioned

K Number of subsets
E Edges between the nodes

(α1, α2, ..., αK)
Set of actions a node can fall into.
Each action belongs in a certain subgroup

Φ1, Φ2, ..., ΦKM number of memory states in automata
β0, 1 input set, where 0 is reward and 1 is penalty

Q transition function which moves nodes
G function which partitions the set of states for the subgroups

Table 3.2: Notations used in the learning automata algorithm.

24

Algorithm 1: Graph Partitioning Learning Automata (GPLA)
Preprocess:

Compute Mean_Edge_Cost.
Randomly partition V into {V1, V2, ..., VK}
Assign all nodes to the boundary state of the actions
Data: Set of nodes to be partitioned: V = {V1, V2, ..., VKN}

Result: The final solution to the GPLA
for Iteration :=1 to Max_Iterations do

for a random edge Eij do
if Cij > (1 + p) ·Mean_Edge_Cost then

if vi and vj are in same subgroup then
RewardSimilarNodes(i,j)

else
PenalizeSimilarNodes(i,j)

else

if Cij < (1− p) ·Mean_Edge_Cost then
if vi and vj are in same subgroup then

PenalizeDissimilarNodes(i,j)

else
RewardDissimilarNodes(i,j)

return final partitions {V1, V2, ..., VK}

Procedure RewardSimilarNodes(i,j)
Data: Node indices i and j, where ωi and ωj are the state indices of

similar nodes in the same subgroup.
if ωi mod M 6= 1 then

ωi = ωi − 1
if ωj mod M 6= 1 then

ωj = ωj − 1

Procedure RewardDissimilarNodes(i,j)
Data: Node indices i and j, where ωi and ωj are the state indices of

dissimilar nodes in the different subgroups.
if ωi mod M 6= 1 then

ωi = ωi − 1
if ωj mod M 6= 1 then

ωj = ωj − 1

25

Procedure PenalizeSimilarNodes(i,j)
Data: Node indices i and j, where ωi and ωj are the state indices of

similar nodes in the different subgroups.
if (((wi mod M) 6= 0)and((wi mod M) 6= 0)) then

ωi = ωi + 1
ωj = ωj + 1 else

if ωi mod M 6= 0 then
ωi = ωi + 1
temp = ωj

ωj = (ωidivM) ·M
t = index of a node in vi subgroup with vt 6= vi and vt closest
to the boundary state of ωi

ωt = temp
else

if ωj mod M 6= 0 then
ωj = ωj + 1
temp = ωi

ωi = (ωjdivM) ·M
t = index of a node in vj’s subgroup with vt 6= vj and vt

closest to the boundary state of ωj

ωt = temp

26

Procedure PenalizeDissimilarNodes(i,j)
Data: Node indices i and j where ωi and ωj are the state indices of

dissimilar nodes in the same subgroup
if ((wi mod M) 6= 0)and(wi mod M) 6= 0)) then

ωi = ωi + 1
ωj = ωj + 1

else

if ωi mod M 6= 0 then
ωi = ωi + 1
TempState1 = ωj

Pres_Cost = EvaluateCost of current partitioning for all remaining
K− 1 partitions do

ωp = state of node closest to boundary in this current
subgroup
TempState2 = ωp

ωj = (ωpdivM + 1) ·M
ωp = TempState1
New_Cost = EvaluateCost of current partitioning
if NewCost > PresCost then

ωp = TempState2
ωj = TempState1

else
Pres_Cost = New_Cost

else
ωj = ωj + 1
TempState1 = ωi

Pres_Cost = EvaluateCost of current partitioning
for all remaining K− 1 partitions do

ωp = state of node closest to boundary in this current subgroup,
αZ

TempState2 = ωp

ωi = (ωpdivM + 1) ·M
ωp = TempState1
New_Cost = EvaluateCost of current partitioning
if NewCost > PresCost then

ωp = TempState2
ωi = TempState1

else
Pres_Cost = New_Cost

27

Algorithm procedures

The sub routines "RewardSimilarNodes", "PenalizeSimilarNodes", "Penal-
izeDissimilarNodes", and "RewardDissimilarNodes" are explained in this
sub section. A clarification of each case (all possible circumstances) in each
routine is attempted here, for the sake of informing the reader about the
inner workings of the algorithm.

Reward Similar Nodes The two compared VMs are in the same subgroup
and similar, which means they will be rewarded. They are pushed one step
towards the most internal (secure) state. If a node is already at state M,
which is the most secure, it is not moved. This could also be the same for
both nodes.

Penalize Similar Nodes The nodes are in different subgroups, but should
be residing in the same one.

Case 1: This is the simplest case, since they are both in internal states
(neither in a boundary state) and moved towards boundary state. If this
is not the case, then one or both nodes are at the boundary state of their
respective subgroups.

Case 2: Node vi is in internal state. This means that node vj is in the
boundary state, since Case 1 is not true. vj can not advance to a more
insecure state, and has to jump over to another subgroup - the subgroup
where vi is currently residing. After all, vi and vj should be together. vi is
advanced one hop towards the boundary state, and vj takes the place of a
node vk in the subgroup of vi which is closest to it’s boundary state. vk is
then moved to the old position of vj.

Case 3: Node vj is in internal state and vi is in a boundary state. This
case is the same as in case 2, except for the fact that vi is moved to the
subgroup of vj and vj is advanced towards the boundary state within it’s
own subgroup.

Penalize Dissimilar Nodes The nodes are in the same subgroup, but
should be in different ones, as they don’t belong together because of their
dissimilarity.

Case 1: Both the compared nodes vi and vj are in internal states and are
advanced one step towards the boundary state. One or both of them could
reach the boundary state with this movement.

28

Case 2: One or both of the nodes are in the boundary state of their current
subgroup. A node in this state, say vi is repeatedly moved to all the other
subgroups (of which there are K− 1) and finally stationed in the subgroup
which is most suited, which is the one which causes the minimum amount
of inter subgroup cost. One of the nodes in the subgroup which acquired vi

is then moved to the original subgroup of vi, and it will be the one closest
to the boundary state.

Reward Dissimilar Nodes The nodes are in different subgroups, which
they should be, as they are dissimilar. Here, the nodes will be moved
towards the most internal (secure) state. No movement is done to a node if
it currently occupies this state, which means that nothing at all happens if
they are both in that state.

Figure 3.2 shows how the nodes "move" within subgroups in the different
cases. The cases where a node switch to another subgroup is not
illustrated.

Figure 3.2: Simple cases of GPLA transitions

Once the subgroups are created by the learning automata algorithm, it is
known which VMs have a high degree of communication with each other.
A second algorithm is needed to optimize the sequence of them. One can
assume that the movement of a group with high affinity to VMs residing
at the destination (already migrated) would be beneficial for lowering the
amount of separated traffic the migration process causes.

Conclusively, the migration system will be based on two algorithms.
One is the implementation of the learning automata algorithm created by

29

Oommen, Croix et al. [40] and the other is developed for this thesis. The
latter is found in section 4.3.

3.2 Design of experiment

A matrix will be generated with the dimensions n · n, where n is the number
of nodes to be migrated. The matrix will be used to model the network
traffic between all the VMs, and should have higher values where VMs
communicate intensively. As an example, let’s consider a scenario with 100
VMs, and that we want to have a lot of traffic running between VMs VM1

through VM10, VM11 through VM20, and so on (ten groups of ten). Within
one group, there is a lot of traffic running between the individual VMs.
Elsewhere, the communication pattern is scattered randomly, with small
values, so that small amounts of inter-subgroup traffic is also accounted
for.

The learning automata partitioning scheme should cut the graph into
approximately these groups by looking at the values in each position in the
matrix. In other words, we have a clear impression of what the "solution"
(the subgroups the algorithm outputs), and can easily check if it works
in our scenario. We consider the traffic amount on link VMi, VMj to be
(VMi ,VMj)+(VMj,VMi)

2 , because the solution will not take the flow direction of
traffic into account.

Once a set of VMs are up and running, and have also started transmitting
traffic to one another, they will be migrated based on the two algorithms.
The metrics that the system should be able to produce values in relation to,
are:

• Total migration time

• Total amount of separated traffic

A script for calculating the separated traffic is needed. It should read
the a matrix representing the traffic, and also get information about the
distribution of VMs in subgroups and the total migration time for each
subgroup. Based on this, the script can know where all VMs are (source
or destination PM) at any time, and from there calculate the amount of
traffic going between VMs currently located in different PMs.

Through the two mentioned metrics, we can tell if the migration scheme
is successful in terms of the attributes defined in the problem statement in
section 1.1. Total migration time corresponds to efficiency and total amount of
seperated traffic to cost effectiveness.

30

3.2.1 Bulk migration

Migrations will be done in a sub-grouped fashion, using the pre-copy
live migration method. The reason for dividing the group of migration
marked VMS into subgroups, is to be sure that the whole process can
converge. If one were to instantiate parallel migration of all the VMs, one
could in theory achieve a fast migration with no separated traffic, if the
migrations finish at the same time. Intuitively, this makes sense in that all
VMs would be restarted at the target at the same time and then resume
their communications. Inter-VM traffic would in such a case not cross the
migration link, and thus not become separated. However, this approach is
not possible if one or more of the VMs are generating new memory pages
at a higher rate than the amount of available migration bandwidth, at the
time that particular VM is migrating. Also, if a subgroup’s collective dirty
rate is higher than this residual bandwidth, the group can not be migrated
with the pre-copy method. Therefore, based on the dirty rate conditions of
the VMs, a suitable group size needs to be found.

In figure 3.3, B represents the total bandwidth, S the separated traffic and
R the residual bandwidth. From this, we can understand the concept of
residual bandwidth and that it changes as S increases or decreases.

Figure 3.3: Bandwidth notations in a non-dedicated migration link

A valid migration subgroup has to satisfy 3.2.

∑
VMi∈subgroup

{DirtyRatei} ≤ R (3.2)

3.3 Lab setup

We will implement a series of test in a physical virtualization environment.
This paravirtualized setup consists of two PMs, each with the following
specifications:

31

Hardware / attribute Details
Processing Intel Core 2 Dual Core CPU @ 2.93 GHz
Memory 4 x 2048 MB DIMM @ 1066 MHz
Operating System Ubuntu 14.04.2 (x64) LTS
Virtualization Solution Libvirt, version 1.2.2
Storage 2 x 250 GB 7200 RPM hard drives

Networking
Interface 1 (eth0): up to 1000 Mb/s
Interface 2 (eth1): up to 1000 Mb/s

Table 3.3: Physical lab hardware specifications

The PMs have the Linux system Ubuntu, which allows for easy accom-
modation with the KVM virtualization environment. KVM will modify the
Linux kernel automatically during installation and add features for hard-
ware management. An altered version of QEMU is used for the actual vir-
tualization. This package is called the KVM/QEMU driver.

3.3.1 Libvirt live migration

Libvirt supports live migrations, and uses the pre-copy method to conduct
them. This form of migration copies the entire disk (if any) and memory
iteratively, while keeping track of data that has been altered during the
migration process. Section 2.2.1 describes this method in detail. Libvirt
does not migrate VMs in parallel, but sequentially. However, parallel
migrations can be achieved by using threads in a program which initiated
the migration calls. Libvirt migrations is typically done over a secure
channel (SSH) which uses TCP.

3.3.2 Test VMs

The virtual machines which will be orchestrated to create the inter-VM
traffic is called "TinyCore" [42]. This is a very small and open-source Linux
distribution. It can run with as little as 46 MB RAM, and using a disk
with it is storage is optional, which means that it can run directly from
memory. One can simply boot it from an image file, and it will run with the
image’s preconfigured settings and packages installed. Since inspection of
live migrations and how they affect the network utilization is the core of
this thesis, disk storage is not required. It was therefore chosen to take
advantage of TinyCore’s disk-less capabilities, and to modify the standard
TinyCore-image to make it run a perform some actions each time it boots.
When a VM boots, it will:

• Start an SSH-server

32

• Create a user with root privileges

• Create script files for client and server socket

• Start the server socket and wait for incoming connections

• Install and configure the Python programming language

3.4 Traffic generation

The test environment needs to be able to set some different levels of traffic
between the test VMs. This is because we need to distinguish between
the sending rates, so that we are able to tell "a lot" from "little" traffic.
The learning automata program, which will take a traffic matrix as input,
will need these differences in order to perform it’s optimizations. Since
the iterative comparison of traffic amount between two VMs is based on
the mean edge cost amongst all migrating VMs, and a user specified value
(see section 3.1.1), no optimization can be expected to be achieved where
the traffic pattern is flat in the migration graph. Experimentation on how
the physical lab reacts to varying traffic levels are needed to find suitable
transmission rates. They should be high enough to actually impact the
migration performance.

The transmission and propagation of the traffic requires a CPU friendly
and simple sending protocol with little overhead, which is why the User
Datagram Protocol (UDP) will be incorporated. The test VMs should be
able to be called with instructions on which other VMs to target, and with
which traffic levels.

3.4.1 Bandwidth altering

The network link between the two PMs used in the testing can support up
to 100 Megabit (mbit) per second transfer speed. That is 12.5 Megabytes
(MB) per second, which theoretically means that a 100 MB VM can be
transferred between the PMs in 8 seconds. This assumption is disregarding
the fact that the sending protocol (TCP) needs to transmit overhead
information back and forth to control the transmissions in the migrations.
SSH, which is the application level protocol for Libvirt migrations, also
has some overhead. This includes Public Key Infrastructure (PKI) related
calculations and key transmissions. In practical terms, this means that the
actual transmission rate (throughput) of a migrating VM will be lower than
12.5 Megabytes per second.

33

The implementation of the proposed algorithms, which regulates and
schedules the migrations, will likely have a more profound effect if the
migration link is more congested. As the residual bandwidth shrinks, each
migration will take longer. The expected effect of a slower migration is a
greater amount of separated traffic, in addition to a longer total migration
time.

3.5 Requirements for solution

Ultimately, a proposed solution should accomplish the following

1. Load the predefined traffic matrix

2. Loop though the matrix

3. Obtain traffic metric between each VM (if any)

4. Instantiate traffic metric (data transmissions) between VMs

5. Migrate the VMs corresponding to the imported matrix to another
PM, using the grouping and sequencing from the algorithms

3.6 Revised Approach

The results gathered in the initial testing, called for altercations to certain
parts of the test environment. This section contains information about the
changes which was done to the initial approach described above. These
were necessary in order to get rational data out of the experiments. The
individual corrections are outlined in the following sub sections.

3.6.1 Host system load

Initially, the plan was to instantiate network traffic between VMs, and
have varying levels of communication in both directions between all
communicating peers. This meant that for any traffic instantiated pair of
VMs, VMi and VMj, there would be non-zero values in the traffic matrix in
positions i, j as well as j, i. This impacted the load on the VMs and hence the
physical machines hosting them quite significantly. When running many
VMs, and spawning high levels of traffic in large groups, the processors on
the hosts were processing at near maximum capacity.

It was therefore decided to only initiate traffic in one direction for
all the communicating peers. By doing it this way, the amount of

34

connections which the hosts and VMs had to keep track of was reduced
considerably.

This was solved by utilizing the concept of triangular matrices. If VMi and
VMj are selected as communication partners, only one of them would send
traffic to the listening server process on the other end. An example of such
a matrix is shown in figure 3.4. T is a given traffic value set of VMs.

VMj

0 T T T
VMi 0 0 Tij T

0 0 0 T
0 0 0 0

Figure 3.4: Triangular matrix for traffic generation

3.6.2 Dirty rate

It was decided to test migrations with different dirty rates and group
sizes, over a dedicated migration link. The reason for this is the following
hypothesis. Let L be the expected completion time (latency) for the
migration of a subgroup, M the memory size of the VMs, R the residual
bandwidth, N the number of VMs in the subgroup and D the collective
dirty rate of the subgroup. It is then suspected that L will increase rapidly
when N is also increased. Equation 3.3 shows the suspected correlation
between the attributes in a group based migration.

L =
M

R
N − D

(3.3)

When many dirty rate dominated VMs must share the same residual
bandwidth, migrations become very slow as the number of simultaneously
migrating VMs increase.

3.7 Simulating migration cost

Preliminary migration testing in the physical lab created some uncertain-
ties related to the different test types which was planned. A simulation
program was therefore created, based on the Learning Automata imple-
mentation. It can calculate the amounts of separated traffic caused by a
migration, by reading the traffic matrix and each subgroup’s completion
time.

35

Adjustable parameters in the simulation program include dirty rate,
migration link speed and VM memory size. With this feature, it becomes
easy to gather information about traffic separation.

The calculation in the script sums of the traffic between all communication
between VMs located in different PMs, in both directions. It is based on the
cost-formula (equation 2.1) used by the COMMA system [27].

36

Chapter 4

Results and analysis

This chapter contains the measurements from various experiments derived
from the approach. The analyses of the results are present underneath each
result. It also describes the physical setup of the test bed used to conduct
them.

4.1 Testbed configuration

A physical lab has been set up with the hardware described in section 3.3.
Figure 4.1 shows the interconnection between the VMs and the hosts. As
we can see, the VMs which are spawned in this habitat are attached to
a virtual bridge, where a physical interface is connected to provide the
migration capabilities. The dotted unidirectional arrows show the possible
migration path of a node VM3 from PM1 to PM2. The non-dedicated
migration path is also the path that VMs communicate with each other over,
if they are located on different PMs.

Figure 4.1: Physical lab

37

4.1.1 Containment of VMs

An organized system for keeping control of multiple VMs had to be
created. Since the VMS all boot from the same image and request an
IP address during the boot process, the use of an addressing protocol
was needed. The environment with the two PMs was therefore set up
two identical DHCP server instances (one on each PM) with static host
configurations based on the MAC-addresses of the VMs. The environment
was set up to be able to create up to a hundred VMs. The script which
starts the hosts with Libvirt reads the MAC-addresses and names the hosts
so that we can be sure that the host-part of the assigned IP matches the host
name. The VMs are spawned on the network 192.168.1.0/24. The first VM
gets the IP 192.168.1.101 and the last of the VMs will get 192.168.1.200. The
snippet underneath shows that the host "vm25" gets an address ending in
25:

1 host vm25 {
2 hardware e t h e r n e t 5 2 : 5 4 : 0 0 : 4 F :DD: 8A;
3 f ixed−address 1 9 2 . 1 6 8 . 1 . 1 2 5 ;
4 }

Since the VMs are continuously requesting the local DHCP server for an IP-
address, and will do so once migrated to the other host, an identical DHCP
instance needs to be running on the destination. Before the lease time of
the assigned IP has expired, the DHCP client (the VM) will request to keep
it’s existing IP, and because the host definitions are the same on both PMs,
this IP will be kept. Using this technique, one can be sure of which virtual
machine is actually being targeted by the tests defined later.

4.2 VM-to-VM traffic

The program which generates the traffic on the hosts, continuously sends a
1350 Bytes message to the target. This is included the IP and UDP header
lengths of the 20 and 8 Bytes, respectively. The raw data sent is therefore a
string of 1322 Bytes, since the message is a 104 character long word. This
word never changes, so that the clients avoid the processing it takes to
create a new one before each datagram is created and sent.

Four different traffic rates have been set up. They are based on different
sleep timers in the program which sends the data. The code snippet
underneath illustrates how this works. The variable sleep_lenght is based
on input from the script which initiates the traffic on the VMs, which in
turn is based on the traffic matrix sent as an input parameter to the script.
Message is the variable containing the string which is transmitted on the

38

network by UDP. Level is the parameter which indirectly determines the
transmission rate, as the loop which sends traffic sleeps a certain amount
of time based on it.

1 while True :
2 sock . sendto (s t r . encode (message) , server_address)
3 s leep (s l e e p _ l e n)

The lowest sleep timer which can be set by the script is 0.05 seconds.
This equals a bit rate of 0.216 mbit per second, which is given by 1350 ·
(1÷ 0.05) ∗ 8/1000000, or PacketSize · (1÷ level) ∗ 8÷ 1000000. This rate
will be the fastest any VM can communicate in the test environment, per
connection. This is not a particularly fast data rate, compared to today’s
standards, but each VM will have multiple connections with the others.
The most important thing is, in any case, that the test environment can
run different traffic levels, and that it is possible to distinguish them. With
multiple VMs in a test, the amount of consumed network bandwidth used
will quickly become significant. The other three levels are 0.1, 0.072, and
0.054 mbit per second. The different levels in kbit/s are 216, 108, 72 and 54.
These traffic levels decrease linearly.

4.2.1 Matrix Usage

Underneath, some example matrices from a 6 node network are shown.
The matrix generation script creates these. The asymmetrical matrix is
used by the traffic initiation script and, while symmetrical one is fed to
the learning automata for partitioning.

Asymmetrical (left) and corresponding symmetrical matrix (right)
1 ([[0 . , 3 . , 2 . , 1 . , 0 . , 0 .] , | ([[0 . , 5 4 . , 3 6 . , 2 7 . , 0 . , 0 .] ,
2 [0 . , 0 . , 0 . , 2 . , 0 . , 0 .] , | [5 4 . , 0 . , 0 . , 3 6 . , 0 . , 0 .] ,
3 [0 . , 0 . , 0 . , 4 . , 2 . , 0 .] , | [3 6 . , 0 . , 0 . , 1 0 8 . , 3 6 . , 0 .] ,
4 [0 . , 0 . , 0 . , 0 . , 0 . , 0 .] , | [2 7 . , 3 6 . , 1 0 8 . , 0 . , 0 . , 0 .] ,
5 [0 . , 0 . , 0 . , 0 . , 0 . , 4 .] , | [0 . , 0 . , 3 6 . , 0 . , 0 . , 1 0 8 .] ,
6 [0 . , 0 . , 0 . , 0 . , 0 . , 0 .]]) | [0 . , 0 . , 0 . , 0 . , 1 0 8 . , 0 .]])

Notice that the matrix on the right is mirrored around one of the diagonals.
Position (0,1) (the first "3" in the left matrix) represents traffic level 3, which
is 108 kbit/s. Since this is then made symmetrical, it becomes 54 kbit/s, as
seen in position (0,1) and (1,0) in the right matrix.

Once a VM is has it’s traffic level instantiated for a given test, it will
send data at the corresponding rate as long as the client UDP script is
running.

39

4.3 Subgroup scheduling

The first and most important part of the migration scheduling is to apply
the minimum cut principle on the network traffic graph using the learning
automata algorithm. The idea for using graph partitioning with minimum
cut is to decrease the impact the migration will have on inter-VM network
traffic. As indicated in section 2.3, the performance of a multi-tiered
application will decrease because of the split components problem. The
solution proposed in this thesis will therefore migrate VMs from one group
at a time, in order to keep the traffic running between VMs located at the
source- and destination PM minimized, and is hence optimized for minimal
amount of traffic between VMs during the migration.

The order of which the groups are migrated can affect the total amount of
separated traffic during the migration. This thesis proposes a loop based
algorithm which decides which subgroup is to be migrated next at any
time, until all subgroups (and hence all VM) are running at the target
PM. Coupled with the learning automata algorithm, it should result in an
efficient migrations scheme, which produces a low network impact.

Let G be subgroups, S and D be source and destination PM respectively,
and T the amount of traffic between subgroups. For any two subgroups
Gi and Gj, the exchanged traffic between these groups is the sum of the
exchanged traffic between the VMs belonging to these two groups. In
formal terms, this is defined as.

T(Gi → Gj) = ∑
VMi∈Gi ,VMj∈Gj

VMij (4.1)

The algorithm 2 migrates groups of VMS based on "affinity", which is a
term that has been used to some degree by previous research (i.e. [43], [27]).
If a VM has a high degree of affinity to another, it means that they have a
lot in common. In our case, this translates to a pair of VMs communicating
intensively over the network. The algorithm works in the following way.
Initially, the list of already migrated VMs is empty, and all the VMs marked
for migration are in the S list. The algorithm then enters a loop where, in
each iteration, the subgroup with the highest affinity to the destination PM
is migrated. The group is then removed from the list S and appended to list
D. This continues until all groups have been migrated, which is until S is
empty. Migrating the group with the highest affinity to the destination will
intuitively lower the amount of separated traffic. If a group with a high
degree of affinity to the destination is not migrated for a long time, then
VMs residing in this group will populate the data network link between
the source and destination PM, during this period. Consequences of this

40

Algorithm 2: Affinity algorithm
Data: List of groups to be migrated: S = {G1, G2, ..., GN}
Result: All VMs from each subgroup is migrated
D = ∅
while S 6= ∅ do

for Gi ∈ S do
T(Gi → D) = ∑Gk∈D T(Gi → Gk)

T(Gi → S \ Gi) = ∑Gk∈S\Gi
T(Gi → Gk)

∆i = T(Gi → D)− T(Gi → S \ Gi)

i0 = get first elemet of list S
imax = i0
for i in S \ i0 do

if ∆i > ∆max then
∆max = ∆i

imax = i

Gimax = arg
Gi

max ∆i

Migrate Gimax

D = D ∪ Gimax

S = S \ Gimax

will be lower residual bandwidth and a larger amount of separated traffic,
which are the two metrics the proposed solution seeks to lower.

Algorithm 2 will hereafter be referred to as the "affinity algorithm".

The inter-site traffic amount changes after each group of VMs arrives at the
destination. In diagram 4.2, one can imagine that subgroups {G3, G4, G5}
have been migrated and {G1, G2, G6} are still running at the source PM.
In this thought scenario, all subgroups G are being transferred live to PM2,
which means that either G1, G2 or G6 is next to migrate. The figure show
the full mesh nature of possible split traffic relations. In other words, the
implementation of algorithm 2 need to know which VMs are located in
each groups, to have a complete picture.

41

Figure 4.2: Separate inter-site traffic occurring during migrations

4.4 Workflow of testing

The following diagram presents the work flow and architecture behind the
testing environment.

Figure 4.3: Workflow of testing environment

All migration tests will be conducted following this sequence of
events:

1. A script generates traffic matrices

2. Traffic is initiated on the running VMs, based on the asymmetrical
matrix

3. The learning automata also reads this matrix and outputs subgroups
for migration

42

4. Migration program reads the set of subgroups and decides the
order of their migration, and subsequently migrates them based on
resulting order

It is important to note that, when testing in this manner, one could simply
migrate the subgroups where the matrix generation creates a lot of traffic,
and likely get good results. For example, if the matrix script is told to create
groups of five, then it will create dense traffic between the first five hosts,
and these nodes could simply be grouped for migration. One would only
need the learning automata if the distribution of traffic levels is unknown,
which would be a more realistic case. It therefore interesting to see how
similar the suggested migration subgroups will be to the ones the matrix
generation creates.

As the revised approach points out, the test bed could not handle dense
traffic in both directions for communicating VMs. It was therefore decided
to only let one of any two communicating nodes send traffic. This reduced
the overall system load, and enabled simultaneous testing of more nodes
than previously.

The following figures graphically reveal how the traffic is distributed
when the matrix generator is asked to group 4 and 4 VMs in a 12 by 12
matrix.

Figure 4.4: Asymmetrical (left) and symmetrical traffic matrices (right)

The blue areas is where there is absence of traffic, such as in the diagonal
from the bottom left to the top right corner. The orange and brown areas
are where VMs communicate heavily. The asymmetrical figure portrays
the pattern of groups most evidently. The symmetrical matrix is needed
to get the average traffic between nodes into the learning automata, since
it’s calculations are based on the average traffic running on a given link
between any two VMs.

43

4.5 Example test

This section will demonstrate the solution using 12 VMs. No measurements
will be made here, but the example will serve as an introduction to how the
solution can be used on a Linux command line.

The following command will be used to create the VMs from the TinyCore
image. Each VM will get 100 MB of RAM. It can be called without the –
thread option, but using it speeds up the spawning process, as it will make
the host receive all the tasks at the same time and schedule processing
between them. Running without the option will sequentialize the process,
so that the next VM spawning will have to wait for the previous task to
complete.

1 python spawn_vms . py −n 12 −r 100 −−thread

After a while, the VMs are available and can be listed with:

1 vi rsh l i s t
2 Id Name S t a t e
3 −−
4 29 vm1 running
5 27 vm2 running
6 (. . .)
7 35 vm11 running
8 37 vm12 running

The VMs will be referenced by their name, or the number in the name, as
the listing of VMs seldom will be sequential. This is because the completion
of the installations are dependent on which thread will be completed
first.

1 python generate_matr ix_genera l . py −n 12 −g 4 −d

The option -d dumps binary files on the disk, so that other scripts can read
them. After this, the traffic is initiated with:

1 python s e t _ t r a f f i c . py −m asym . p

The set_traffic.py script uses an SSH module to connect to and execute
the script udp_client.py on the clients, one process per connection to the
other hosts. This initiation takes the asymmetrical matrix as input (the
file asym.p). Next, the learning automata is given the corresponding
symmetrical matrix for group scheduling. This program is a Python
implementation of algorithms 1 (in section 3.1.1) and 2.

1 python p a r t i t i o n . py −a <number of a c t i o n s in learn ing
automata> −n <nodes in each act ion >

44

This outputs the calculated subgroups to a file, which is later read as input
by the migration program. The file looks like this:

1 vm9, vm11 , vm12
2 vm5, vm6, vm7
3 vm4, vm8, vm10
4 vm1, vm2, vm3

This file is the rank of the migration tasks, where the first line represents the
first subgroup to be migrated. This means that VMs 9, 11, and 12 will be the
first group to be sent to the destination. The migration itself is started witht
the migrate_vms.py script, where -t is the target host and -f is the sequence
file which contains the order of the migration groups listed above.

1 python migrate_vms . py −t 1 9 2 . 1 6 8 . 1 . 2 −f sequence . t x t

The output of this last command is how long each group took to migrate.
Adding these together will give the total migration time, which can be used
conclude whether the migration was efficient or not.

4.6 Experiments

There are a number of parameters who’s values can be altered which
likely will affect either the total migration time or separated traffic amount.
Preliminarily, this is thought to include group size, traffic levels, migration
link capacity and obviously amount of VMs. If any of these are changed
before a test, the changes will be explained in the appropriate parts of this
section.

4.6.1 Non-dedicated link

Here, the results from migrations done over a non-dedicated migration link
is outlined.

Like in the example test scenario in section 4.5, the same scripts were
executed in order to get the decided migration subgroups and the
calculated sequence of them.

Experiment 1: Timing parallel migrations

This experiment is done over a non-dedicated link, and the purpose is
to see how the effects of running migrations in parallel affects the total
migration time. The grouped migration tasks will be the subgroups which

45

the Learning Automata has produced. It will also be observed how the
affinity algorithm’s scheduling will affect the migration time.

Attribute Value
Amount of RAM 200 MB
Number of nodes 16

Group size 4
Highest traffic level 216 kbit/s
Migration link type Non-dedicated
Migration link speed 1000 mbit/s

Table 4.1: Baseline test configuration

Figure 4.5: Parallel migration performance

Analysis

This results show the effectiveness of migrating multiple VMs in parallel.
The scheduled column shows the performance of the migration method
decided by the Learning Automata (LA) and the affinity algorithm. The
non-scheduled column shows the performance of the same migration, but
with random orders of the subgroups. It is clear the scheduling the LA
subgroups with the affinity algorithm is has very little effect on total
migration time. It only produces a 4.3% faster migration time, compared
to the non-scheduled migrations; 24.5 seconds vs. 25.6 seconds. The
reason for this is that there is very little inter-subgroup traffic found in the
matrix, and very few groups, which renders the optimization by the affinity
scheduling trivial, compared to the graph partitioning.

Lastly, it can be observed that the sequential approach is outperformed
greatly by parallel migration. The keyword "sorted", as displayed in the
graph, means that migrations were done in the order VM1, VM2, ...VMN .

46

The reason this noteworthy is that VMs are initiated with high levels of
traffic sequentially through the VM names. If α is the subgroup size, then
the first subgroup would be the VMs in set {VM1, VM2, ..., VMα}, and the
second {VMα+1, VMα+2, ..., VM2α}. This makes the sequential approach
comparable to the grouping mechanism (the Learning Automata), which
is supposed to find subgroups similar to these optimal sets. The reason
why this is so much slower than the other two approaches is that during
sequential migration, much more split traffic occurs, which lowers the
residual bandwidth.

Conclusively, this experiment can disclose that if the Affinity algorithm is
used, there is very little to save in terms of total migration time, although a
slight advantage can be ovserved.

Experiment 2: Amounts of separated traffic

The focus of this experiment is to observe the different amounts of
separated traffic which our migration approach generates, versus those
of random groups of the same sizes. The attributes of the VMs is kept
the same, as well as the group size and number of VMs. Graph 4.6
represents the sums of traffic, based on migration data from 11 tests. The
first migration test was for our "calculated subgroup", which is the same
migration sequence as "scheduled" in the previous experiment. When this
is run multiple times, the level of separate traffic will be identical each time,
as the same VMs always will spawn on the destination PM at regular time
intervals. The ten other tests are for the random subgroups. The value
presented is the average of these tests.

Figure 4.6: Impact of migration random groups

Analysis

47

This clearly shows that there is a clear benefit, in terms of separated traffic,
to cutting a traffic graph with a minimum cut method. The random
subgroups generated an average of 6.53 MB (52.24 mbit) of inter-site
communication during migration, against 2.34 MB (18.72 mbit) with the
approach this thesis proposes. Random grouping creates 179% more traffic.
It can be argued that the proposed solution is 64.16% more cost-effective in
this scenario, since this is the percentage decrease.

Experiment 3: Speed comparison with random groups

It has been observed that separated traffic can be lowered quite a lot by
using the graph partitioning algorithm, and even a bit more by adding
scheduling to the groups. Despite this, the problem statement asks for an
efficient way of performing migrations, meaning that the solution should
be fast when migrating multiple talkative VMs. A good way to investigate
whether it is efficient or not is to time the migrations of random groups and
compare the results with timing of random groups. The VM attributes and
subgroup size is still the same. The transmission speed of the migrations
link has been set to the lowest speed that the network cards support, 10
mbit/s. Presumably, migration completion times should be different with
any link speed, if there are varying levels of split traffic on the link. Yet, the
distinctions should be more clear on a slower link.

It was found that the migration times were indistinguishable when the
traffic matrix was applied to the 16 VMs. Applying the same traffic
matrix two times would double the amount of traffic running between
the them. It was only after tripling the traffic amount that there was
any notable difference in migration time. Table 4.2 shows the average
total migration times from this comparison. The numbers are from 10
experiments each.

Scheduled LA subgroups Random subgroups
Total migration time 29.53 30.62

Table 4.2: Comparing migration time with random groups

Analysis

Using the subgroup sequence outputted by the algorithms does actually
produce faster migration times, but not to the extent which was hoped for.
However, one can assume this small advantage be more significant if the
migration link would have less capacity. It this scenario, one can see that
the scheduled migration is only 3.55% faster.

48

4.6.2 Dedicated link

The following experiments have been conducted on a dedicated migration
link. This means that any separated inter-VM traffic would not affect the
migration, as it would not inhabit the migration link. The purpose of this
test is to find the optimal number of VMs to put in each migration subgroup
in order to achieve the best possible network throughput and a low amount
of separated traffic. If the group size is to large, the sum of the dirty rate
in the group could exceed the available migration bandwidth. This is the
optimal for reducing the separated VM traffic, but would result in a failed
migration, or a so-called "deadlock"[44].

A script has been made to create dirty rate on the VMs. It works in a similar
manner as in the script which starts UDP traffic, which is based on a sleep
timer. When started, it copies pseudo random bits to a file of a certain size,
sleeps for a given time period and repeats. It can be initiated using the
following script and syntax:

1 python s e t _ d i r t y . py −s 1 9 2 . 1 6 8 . 1 . 0 −S <s leep time >
2 −b <block s ize > −C <block count >

The variables block size and block count can be multiplied together to get the
number of bytes which will be written to the file. The sleep time parameter
is used to calculate the dirty rate per second. The subnet address is given
to option -s, so the script knows where to look for VMs. In an example
where the script is called with block size and block count 100, and a sleep
time of 1, 10.000 Bytes would be written in 1 second. From this we can
calculate what the dirty rate will be, based on subtracting the time it takes
to complete the write operation from this one second, and sleeping for the
reminding period.

Experiment 1: Introducing dirty rate

In this experiment, the purpose was to observe the correlation between the
subgroup size and migration time, with varying dirty rates. A group of 16
VMs, each with 200 MB RAM, was migrated using parallel migration with
two different subgroup sizes, 2 and 4, and four different dirty rate levels.
The results are shown in figure 4.7.

49

Figure 4.7: The effects which increasing dirty rates has on migration time

These VMs were also sending traffic between each other, in addition to
dirty rate. The same matrix file as in the previous experiment was applied
once. The following amounts of separated traffic has been calculated from
the matrix, and are based on estimations on when each subgroup was
finished migrating.

Dirty rate (mbit/s) Subgroup size 2 Group size 4
0 135626.4 84556.8

1.28 149040.0 92851.2
1.53 149040.0 96076.8
2.04 151275.6 96307.2

Table 4.3: Separated traffic during different dirty rates

Analysis

Graph 4.7 could indicate that a higher amount of simultaneously migrating
VMs results in a longer migration time, and that the time difference is more
significant on higher dirty rates. Since the number of running VMs was 16,
only factors of 16 could be used as group sizes, such that all VMs would
reside in equal sized subgroup. The same migration tests were therefore
also attempted with subgroup size 8 (2 groups). None of the migration
involving any of the previously tested dirty rate resulted in successful
migrations when the subgroup size was this big. In other words, these
migrations resulted in a deadlock situation. However, when migrating
groups of 8 VMs without any dirty rate, the whole process completed
within 140 seconds, which is 15.8% faster than subgroup size 2 with no

50

dirty rate. The effectiveness of threading migration of many VMs at the
same time is therefore quickly suppressed when dirty rate is introduced as
a factor.

When it comes to separated traffic, the best result is obviously subgroup
size 4 with zero dirty rate. This size is nonetheless preferable with all the
presented dirty rates. With migrations with subgroup size 8 not converging
on any dirty rate, 4 is the optimal subgroup size for minimizing traffic
separation, and therefore the impact any running multi-tiered application
hosted by the VMs. However, it takes longer to complete compared to
migrating two and two.

4.6.3 Simulation results

Since it is time consuming and impractical to manually perform physical
tests, a simulation script was used to facilitate all the variables needed to
run virtual migrations, and observe effects related to separated traffic. It
takes dirty rate, available migration bandwidth and VM memory size as
input.

The simulation can yield credible results when it comes to random
subgroups, as it can create as many of them as needed. Results from a small
number of random subgroups could be polluted by the optimal grouping
being chosen by random. The number of permutations of few groups can
be low, making it probable that this sequence will be picked.

For all these simulations, a similar traffic matrix has been created, of 16 by
16 nodes, with high traffic levels between groups of four. The simulation
will demonstrate the effects of adjusting the parameters dirty rate and
group size. In order to be able to compare these results with the actual
physical migration, the memory size of each VM is set to 1600 mbit (200
MB) and the migration link to 100 mbit/s, as in the real test scenarios. The
simulations have gathered data for three cases:

• No dirty rate

• Dirt rate of 5 mbit per VM

• Dirt rate of 10 mbit per VM

All dirty rate cases are tested with subgroup sizes 2, 4 and 8.

Abbreviations used in the graphs are:

51

Abbreviation Explanation
LA The Learning Automata has been used to

decide the subgroups
AF The affinity based algorithm has been used

to decide subgroup migration order
RG Random subgroups have been used

Simulation 1: no dirty rate

This first simulation is used as a baseline to only identify the effects of
changing the group size. Figure 4.8 can reveal that the optimal subgroup
size for achieving low amounts of separate traffic is 4. It also show that
the best performance, by the same metric, is achieved by a combination
of the two implemented algorithms (LA+AF). When the subgroup size is
8, there are only two of them, and hence random grouping would result
in the same amount of separate traffic as in the sequenced method. This
column has therefore been omitted. This is explained by the fact that
the separated traffic is the sum of traffic running between the migrated
subgroups. If there are only two, then this traffic occurs after one of them
has been migrated, and is absent when the last is migrated. Therefore it
will be the same in both cases.

Figure 4.8: Migration simulation without any dirty rate

Analysis

One can notice that the is an advantage to using the LA in combination
with the affinity algorithm. When both are used to schedule the migrations
(the three leftmost columns), the optimal group size is 4. Sizes 4 and 8 are
comparable, but it can be concluded that a grouping of 2 is two small as it
leads to more traffic separation. Also, when migrating only two nodes at a

52

time without applying the affinity scheduling (hence random grouping), the
separated traffic is more than doubled, meaning that the affinity algorithm
can double the cost effectiveness in this case. Lastly, it can be observed
that random grouping is substantially more ineffective, when the optimal
subgroup size is applied.

Simulation 2: with dirty rates

Figure 4.9 shows the results of setting a consistent 5 mbit/s dirty rate on
the VMs in the simulation. Still, the proposed solution gives the best result
with all the different subgroup sizes.

Figure 4.9: The effects of adding constantly changing memory to the VMs

Figure 4.10 shows what happens when the dirty rate is doubled, to 10
mbit/s.

Figure 4.10: Increasing the dirty rate

53

Analysis

When comparing the two previous graphs, 4.9 and 4.10, with the non-
dirty rate scenario, it becomes clear the optimal group size is 4, when both
algorithms are used. Focusing on this size, we also see that it is only a
marginally favorable to include the affinity algorithm. The LA+AF reduces
cost by 4%, with the measurements being 253440 mbit for LA+AF and
264192 with random grouping.

When random groups of two VMs are migrated with the highest dirty
rate, a massive amount of separated traffic occurs, which can be seen in
figure 4.10. This is because separation happens very fast after the migration
starts. It takes very little time to move the two first VMs to the destination,
and it exists from then on, until the migration completes. When 8 VMs
are beginning to migrate, all VMs still run at the source PM, and traffic
separation does not occur until the first group is migrated. Thus, traffic
separation has less time to occur.

4.6.4 Affinity algorithm

In cases where VMs have high dirty rates, parallel migrations could be
rendered impossible, as since grouping is out of the question due to
violation of the following constraint.

∑
VMi∈subgroup

DirtyRatei ≤ Bandwidth (4.2)

Such a scenario could occur when planning migrations between data
centers located in different geographical areas, where the migration link
is significantly slower than local management links.

So far, only the LA algorithm has been tested with or without the Affinity
algorithm for deciding sequence. The simulation script was altered so that
the affinity method, which is an implementation of the pseudo code in
algorithm 2, could be used in the simulation program by itself. It would
be interesting to examine the performance of this algorithm in isolation.
In this experiment, a list of migration marked VMs is fed to the affinity
algorithm, which should output the recommended sequential migration
sequence.

The traffic matrix the calculation is based on is the same as in the previous
experiment. The following is the decided sequence, which should result in
a modest amount of separated traffic.

54

1 (’ vm14 ’ , ’vm15 ’ , ’vm13 ’ , ’vm16 ’ , ’vm9’ , ’vm10 ’ , ’ vm11 ’ , ’vm1
’ , ’vm12 ’ , ’vm7’ , ’vm6’ , ’vm5’ , ’vm3’ , ’vm4’ , ’vm2’ , ’
vm8 ’)

Figure 4.11 shows that the proposed solution will produce less separate
traffic during a sequential migration. The right column represents the
average of 30 random sequences.

Figure 4.11: Less separate traffic when using the affinity algorithm

When comparing the calculated separated traffic amounts for a thousand
random sequences, and removing any duplicate values, we are left with 462
unique values. The affinity algorithm is among the best results from this
set. Only three sequences produces less separated traffic, which means that
only 0.64% were better. It can therefore be said that the affinity algorithm
improves sequencing for over 99% of the cases, compared to choosing a
sequence at random.

The following histogram shows the distribution of these samples.

Separated traffic in kilobit

F
re

qu
en

cy

350000 450000 550000

0
10

25

Figure 4.12: Histogram showing separate traffic amounts for random sequences

55

Analysis

It is noticeable from the output sequence above that high levels of traffic
have been initiated in groups and based on VM names. For example
high traffic between VMs vm1 to vm4. Intuitively, the VMs belonging to
a given subgroup should be listed after one another in some permutation.
Nevertheless, a few VMs are displaced, outside their respective subgroups,
namely vm1 and vm8. This might be caused by the low level traffic which
is present in about 30% elsewhere in the traffic matrix. The result shows
that while using the Affinity algorithm alone, low separate traffic can still
be achieved. In this experiment, the reduction was 32.9%.

Sequential migration time

After observing the affinity algorithm’s positive effect with sequential
migration, it was thought that the total migration time for a group of
VMs would be somewhat lower when this sequence is used, compared to
random sequences. The reason being that less separated traffic would leave
a greater amount of available migration bandwidth. The following table
shows the resulting migration times (in seconds) after applying different
levels of traffic between the VMs. The traffic matrix was applied to the VMs
up to four times. The experiment was done over a non-dedicated link, so
that the split VM traffic would impact the completion time. Intuitively, the
gap between the results should widen the more times the traffic matrix is
applied. However, very similar values were observed on these different
stages.

Times applied traffic matrix
Scheduling 1 2 3 4
Using Affinity algorithm 36.51 39.08 41.87 43.76
Random 36.59 39.05 41.94 43.81

Table 4.4: Similar migration times using only the affinity algorithm

Analysis

This results of this experiment shows that migration time is not signific-
antly lowered when applying only the affinity algorithm to the migration
plan. This is somewhat surprising. Logically, there should be more sep-
arated traffic occupying the non-dedicated migration link when a random
sequence is chosen. During this testing, it was discovered that the pro-
cessor utilizations on the PMs were nearing the maximum limit when the

56

quadruple of the original matrix was applied. Applying it any more times
could possibly impair them, and hence the traffic application only went up
to four times.

57

58

Chapter 5

Discussion and conclusion

It was discovered, during the course of this thesis, that optimizing live
migrations is a popular computer research field which has lead to lots
of interesting contributions and discoveries. In this chapter, the various
aspects of the thesis will be reflected upon.

The main idea in this project was primarily that applying a minimum cut
algorithm to a traffic graph and migrating the resulting groups of VMs,
would be beneficial for lowering migration time. By grouping all the
talkative VMs and migrating them in parallel, one will reduce the amount
of traffic running between groups. Following this principle, one can be
sure that less VM-traffic would "pollute" a migration link. This initial idea
was what started the research and lead to the application of the learning
automata (LA) algorithm. The paper it was published in claimed it was
both accurate and efficient, and was therefore chosen for this assignment.
As other proposed live migration systems have already used minimum-
cut methods for dividing networks, such as Clique Migration [37], another
algorithm was developed with the hopes that further optimization could
be achieved.

5.1 Evaluation

Results from the proposed solution in this thesis have disclosed some
interesting findings. The most noteworthy is that the LA partitioning
reduces the amount of separated traffic to a substantial degree. The
contribution of this thesis, on the other hand, is the affinity algorithm.
When testing this without the use of LA partitioned subgroups, the
separated traffic caused by the migration was lowered substantially,
compared to random groupings. Results in section 4.6.4 show that
optimization is achieved in over 99% of the cases with sequential migration.

59

This algorithm is therefore effective for lessening inter-subgroup traffic.
However, the experiments applying only the affinity algorithm are only
done in simulated environments, and should also be tested in a real testbed.
Measuring the actual separated traffic occurring during migration is the
only way to be completely sure if any optimization is actually happening.
This could, for example, have been done by setting up a firewall, such as
iptables, between the PMs and configure rules to match inter-site traffic.
One could then count the number of bytes matched by the rules after the
migration has completed.

The time difference between migrating LA-suggested subgroups and
random subgroups is real, although not compelling. It is feasible to believe
that further lowering the migration link’s capacity would lead to a greater
difference in migration completion time, because a larger portion of the
total bandwidth would be used by split traffic.

As discovered, memory dirty rate can stall migrations due to the nature
of the iterative page fetching from destination to source. The goal of
the tests involving dirty rate, was to explore how the different subgroup
sizes were affected by it, in terms of separated traffic and migration time.
Cost-effective migrations is defined in the approach as network-friendly
migrations. Accordingly, dirty rate was not was not that important for the
experiments.

5.1.1 Problem statement

The following was the problem statement which this thesis set out to
solve.

"How can we achieve cost-effective and efficient live migrations of virtual machines
in a cloud environment?"

All in all, by implementing a combination of minimum cut graph
partitioning and affinity aware scheduling, it was possible to reduce the
amount of separated traffic. Test case 4.6.1 resulted in a 64% improvement
over random parallel migrations. By this, we can say that cost-effective
migrations can be performed, and thus this part of the problem statement
is answered. On the other hand, the performance of the solution has not
been measured against any existing migration systems, so it can obviously
not be concluded that it is better other solutions.

When it comes to the efficiency, we can only conclude that the algorithms
used results in marginally faster migrations, compared to random parallel
migrations of equal sized subgroups. Since the migrations were only tested
on a high capacity link, and with few VMs, only a 3.5% time reduction

60

was found, as shown in section 4.6.1. Again, no other existing works were
compared against, which means the current solution is only a little faster
than choosing random sequences.

The most prominent result is how the algorithms can reduce the amount of
separated traffic. The algorithm introduced in this thesis helps migrations
to accomplish more cost-effective relocations of virtual machines.

5.2 Future work

Using the physical lab had it’s challenges, even though it provided the
necessary platform needed to run migrations. It did not, however, allow
much more than 20 simultaneously running VMs on one PM, when they
all had traffic running between them. The main issue with the test bed
was processing power. The CPU usage neared the maximum of 200% (2
cores) when running 20 such VMs, and therefore the most used amount
was 16.

The first goal of forthcoming work is to upgrade the physical test bed
to more capable and robust hardware, capable of running hundreds of
memory- and network-intensive VMs. Subsequently, large scale migrations
can be conducted in order to see if the algorithms produce efficient and
cost-effective migrations in such cases. Migrating larger subgroups should
also be tested. Since the affinity algorithm optimizes scheduling based on
the inter-subgroup traffic, it would be interesting to see how it performs in
a large scale environment, where more such traffic would be present. By
increasing the amounts of VMs in each subgroup, the probability for more
inter-subgroup traffic increases. It is suspected that the affinity algorithm
can perform better, in terms of cost-reduction, in environments with high
degrees of inter-subgroup traffic.

5.2.1 Traffic patterns

The traffic generation script, which outputs the matrix the traffic initiation
is based on, was made because a clear traffic pattern was needed. An
alternative approach would be to acquire some real traffic data, and create
a matrix from this. This would likely not produce a matrix where groups
containing the same amounts of nodes are communicating intensely, as in
a constructed case. The most flexible alternative approach would perhaps
be to create a program which can scan network activity automatically, and
output a traffic graph based on average values. But if this is incorporated,
the time spent analyzing the network would become a factor in the
overall completion time for the migrations, and would have to be taken

61

into consideration. Using a limited time network analysis, it could be
interesting to see if a longer time produces a more credible pattern, and
if a more "correct" migration decision is made because of it.

The proposed solution has been tested with the pre-copy live migration
method on the Libvirt virtualization platform. It is encouraged to try other
platforms, to verify that migration performance is enhanced on those, as
well as in Libvirt.

5.2.2 Latency

This thesis did not focus on maintaining low response times of VMs,
which is a major goal for cloud computing companies today. Demanding
services like online gaming and video streaming are particularly vulnerable
if server response times go up. Latency optimization should be included as
a metric in the future.

If the system were to accommodate this functionality, one could test
response times on all migrating VMS, by pinging (gathering timed
responses) all VMs during a migration, and compare the results to the
current scheduling system proposed in this thesis. One could also compare
response times of VMs located in the same migration subgroup with those
of distinct subgroups. Intuitively, there would be less performance delay
on the VMs migrated together, but this hypothesis would have to be
tested.

5.2.3 More sophisticated scheduling

In order to make the migration planning more refined, one could create
features for timing migrations, so that all VMs in a given subgroup are
resumed at the destination at the same time. This is where bin packing
could be used to "pack" migration tasks (individual VMs) on a migration
link. The COMMA system has support for this. The idea is that different
sized VMs need different bandwidth amounts to complete migration
within a given time. As an example, when COMMA (see section 2.4)
migrates two VMs together, they are started at different times and spawn
simultaneously at the destination. Doing so enables maximum network
utilizations, while eliminating split traffic between the VMs. This approach
is very attractive and will be included in future work.

62

5.2.4 Conclusion

This thesis conveys a proof-of-concept like approach to tackling multiple-
VM live migrations, using a combination of two algorithms. Through the
proposed solution, we were able to observe the cost-reducing effects when
performing migration experiments, as well as a slight shortening of total
migration time.

Using both real and simulated VM migrations, the memory- and network
related properties were examined and understood, and the main obstacle
was defined as a "split components problem". The algorithms were tested
on a KVM based virtualization using Libvirt as the management tool.

The thesis’ main contribution is the affinity algorithm, which iteratively
migrates VMs with strong connections to the target host and little affiliation
to VMs at the source. Experiments show that, on average, more than 30%
of this traffic can be eliminated by using it.

63

64

Bibliography

[1] Oren Laadan and Jason Nieh. ‘Operating system virtualization:
practice and experience’. In: Proceedings of the 3rd Annual Haifa
Experimental Systems Conference. ACM. 2010, p. 17.

[2] Charles David Graziano. ‘A performance analysis of Xen and KVM
hypervisors for hosting the Xen Worlds Project’. In: (2011).

[3] Liang Liu et al. ‘GreenCloud: a new architecture for green data
center’. In: Proceedings of the 6th international conference industry session
on Autonomic computing and communications industry session. ACM.
2009, pp. 29–38.

[4] Ching-Huang Lin et al. ‘Resource allocation in cloud virtual ma-
chines based on empirical service traces’. In: International Journal of
Communication Systems 27.12 (2014), pp. 4210–4225. ISSN: 1099-1131.
DOI: 10.1002/dac.2607. URL: http://dx.doi.org/10.1002/dac.2607.

[5] Timothy Wood et al. ‘Black-box and Gray-box Strategies for Virtual
Machine Migration.’ In: NSDI. Vol. 7. 2007, pp. 17–17.

[6] Wentao Liu. ‘Research on cloud computing security problem and
strategy’. In: Consumer Electronics, Communications and Networks
(CECNet), 2012 2nd International Conference on. IEEE. 2012, pp. 1216–
1219.

[7] William Voorsluys et al. ‘Cost of Virtual Machine Live Migration in
Clouds: A Performance Evaluation’. English. In: Cloud Computing.
Ed. by MartinGilje Jaatun, Gansen Zhao and Chunming Rong.
Vol. 5931. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, pp. 254–265. ISBN: 978-3-642-10664-4. DOI: 10.1007/
978-3-642-10665-1_23. URL: http://dx.doi.org/10.1007/978-3-642-
10665-1_23.

[8] Masamitsu Honjo, Atsushi Kubota and Toshiaki Kitamura. ‘Paral-
lel programming framework for heterogeneous computing environ-
ment with Xen virtualization’. In: TENCON 2010-2010 IEEE Region 10
Conference. IEEE. 2010, pp. 1100–1105.

65

http://dx.doi.org/10.1002/dac.2607
http://dx.doi.org/10.1002/dac.2607
http://dx.doi.org/10.1007/978-3-642-10665-1_23
http://dx.doi.org/10.1007/978-3-642-10665-1_23
http://dx.doi.org/10.1007/978-3-642-10665-1_23
http://dx.doi.org/10.1007/978-3-642-10665-1_23

[9] Christopher Clark et al. ‘Live migration of virtual machines’. In:
Proceedings of the 2nd conference on Symposium on Networked Sys-
tems Design & Implementation-Volume 2. USENIX Association. 2005,
pp. 273–286.

[10] Wenjin Hu et al. ‘A quantitative study of virtual machine live
migration’. In: Proceedings of the 2013 ACM Cloud and Autonomic
Computing Conference. ACM. 2013, p. 11.

[11] Hui Lu et al. ‘vHaul: Towards Optimal Scheduling of Live Multi-VM
Migration for Multi-tier Applications’. In: (2015).

[12] Kejiang Ye et al. ‘Live migration of multiple virtual machines with
resource reservation in cloud computing environments’. In: Cloud
Computing (CLOUD), 2011 IEEE International Conference on. IEEE.
2011, pp. 267–274.

[13] Yi Zhao and Wenlong Huang. ‘Adaptive distributed load balancing
algorithm based on live migration of virtual machines in cloud’. In:
INC, IMS and IDC, 2009. NCM’09. Fifth International Joint Conference
on. IEEE. 2009, pp. 170–175.

[14] Kejiang Ye et al. ‘Two optimization mechanisms to improve the
isolation property of server consolidation in virtualized multi-core
server’. In: High Performance Computing and Communications (HPCC),
2010 12th IEEE International Conference on. IEEE. 2010, pp. 281–288.

[15] Fereydoun Farrahi Moghaddam, Mohamed Cheriet and Kim Khoa
Nguyen. ‘Low carbon virtual private clouds’. In: Cloud Computing
(CLOUD), 2011 IEEE International Conference on. IEEE. 2011, pp. 259–
266.

[16] Kasidit Chanchio and Phithak Thaenkaew. ‘Time-bound, thread-
based live migration of virtual machines’. In: Cluster, Cloud and Grid
Computing (CCGrid), 2014 14th IEEE/ACM International Symposium on.
IEEE. 2014, pp. 364–373.

[17] Vmware. Understanding Full Virtualization, Paravirtualization, and
Hardware Assist. Feb. 2015. URL: http://www.vmware.com/files/pdf/
VMware_paravirtualization.pdf.

[18] Wei Chen et al. ‘A novel hardware assisted full virtualization
technique’. In: Young Computer Scientists, 2008. ICYCS 2008. The 9th
International Conference for. IEEE. 2008, pp. 1292–1297.

[19] Tim Abels, Puneet Dhawan and Chandrasekaran Balasubramanian.
An Overview of Xen Virtualization. May 2015. URL: http://courses.cs.vt.
edu/~cs5204/fall07-kafura/Papers/Virtualization/Xen-ShortOverview.
pdf.

[20] Karen Scarfone. Guide to security for full virtualization technologies.
DIANE Publishing, 2011.

66

http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://courses.cs.vt.edu/~cs5204/fall07-kafura/Papers/Virtualization/Xen-ShortOverview.pdf
http://courses.cs.vt.edu/~cs5204/fall07-kafura/Papers/Virtualization/Xen-ShortOverview.pdf
http://courses.cs.vt.edu/~cs5204/fall07-kafura/Papers/Virtualization/Xen-ShortOverview.pdf

[21] Yuan-Cheng Lee, Chih-Wen Hsueh and Rong-Guey Chang. ‘Inline
emulation for paravirtualization environment on embedded sys-
tems’. In: Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2011 IEEE 17th International Conference on. Vol. 1. IEEE. 2011,
pp. 388–392.

[22] Jyotiprakash Sahoo, Subasish Mohapatra and Radha Lath. ‘Virtual-
ization: A survey on concepts, taxonomy and associated security is-
sues’. In: Computer and Network Technology (ICCNT), 2010 Second In-
ternational Conference on. IEEE. 2010, pp. 222–226.

[23] Lucas Nussbaum et al. ‘Linux-based virtualization for HPC clusters’.
In: Montreal Linux Symposium. 2009.

[24] Juan Carlos Chaves. ‘Enabling high productivity computing through
virtualization’. In: DoD HPCMP Users Group Conference, 2008. DOD
HPCMP UGC. IEEE. 2008, pp. 403–408.

[25] Open Virtualization Alliance (OVA). Kvm: The Rise Of Open
Enterprise-Class Virtualization. Feb. 2015. URL: https://software. intel .
com/sites/default/files/OVM_KVM_wp_Final7.pdf.

[26] Wikipedia. Hypervisor. Apr. 2015. URL: https://en.wikipedia.org/wiki/
Hypervisor.

[27] Jie Zheng et al. ‘COMMA: Coordinating the Migration of Multi-tier
Applications’. In: SIGPLAN Not. 49.7 (Mar. 2014), pp. 153–164. ISSN:
0362-1340. DOI: 10.1145/2674025.2576200. URL: http://doi.acm.org/
10.1145/2674025.2576200.

[28] Avi Kivity et al. ‘kvm: the Linux virtual machine monitor’. In:
Proceedings of the Linux Symposium. Vol. 1. 2007, pp. 225–230.

[29] Robert Bradford et al. ‘Live wide-area migration of virtual machines
including local persistent state’. In: Proceedings of the 3rd international
conference on Virtual execution environments. ACM. 2007, pp. 169–179.

[30] Timothy Wood et al. ‘CloudNet: dynamic pooling of cloud resources
by live WAN migration of virtual machines’. In: ACM SIGPLAN
Notices. Vol. 46. 7. ACM. 2011, pp. 121–132.

[31] Fabio Checconi, Tommaso Cucinotta and Manuel Stein. ‘Real-time
issues in live migration of virtual machines’. In: Euro-Par 2009–
Parallel Processing Workshops. Springer. 2010, pp. 454–466.

[32] Peng Lu, Antonio Barbalace and Binoy Ravindran. ‘HSG-LM:
hybrid-copy speculative guest OS live migration without hyper-
visor’. In: Proceedings of the 6th International Systems and Storage Con-
ference. ACM. 2013, p. 2.

67

https://software.intel.com/sites/default/files/OVM_KVM_wp_Final7.pdf
https://software.intel.com/sites/default/files/OVM_KVM_wp_Final7.pdf
https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/Hypervisor
http://dx.doi.org/10.1145/2674025.2576200
http://doi.acm.org/10.1145/2674025.2576200
http://doi.acm.org/10.1145/2674025.2576200

[33] Michael R Hines, Umesh Deshpande and Kartik Gopalan. ‘Post-
copy live migration of virtual machines’. In: ACM SIGOPS operating
systems review 43.3 (2009), pp. 14–26.

[34] Adnan Ashraf et al. ‘Feedback control algorithms to deploy and scale
multiple web applications per virtual machine’. In: Software Engineer-
ing and Advanced Applications (SEAA), 2012 38th EUROMICRO Confer-
ence on. IEEE. 2012, pp. 431–438.

[35] M.F. Bari et al. ‘CQNCR: Optimal VM migration planning in cloud
data centers’. In: Networking Conference, 2014 IFIP. June 2014, pp. 1–9.
DOI: 10.1109/IFIPNetworking.2014.6857120.

[36] Haikun Liu and Bingsheng He. ‘VMbuddies: coordinating live
migration of multi-tier applications in cloud environments’. In:
(2013).

[37] Tao Lu et al. ‘Clique Migration: Affinity Grouping of Virtual Ma-
chines for Inter-cloud Live Migration’. In: Networking, Architecture,
and Storage (NAS), 2014 9th IEEE International Conference on. Aug.
2014, pp. 216–225. DOI: 10.1109/NAS.2014.40.

[38] Vijay Mann et al. ‘Remedy: Network-aware steady state VM man-
agement for data centers’. In: NETWORKING 2012. Springer, 2012,
pp. 190–204.

[39] Marcela Quiroz-Castellanos et al. ‘A grouping genetic algorithm
with controlled gene transmission for the bin packing problem’. In:
Computers & Operations Research 55 (2015), pp. 52–64.

[40] B. John Oommen, De St Croix et al. ‘Graph partitioning using
learning automata’. In: Computers, IEEE Transactions on 45.2 (1996),
pp. 195–208.

[41] Kumpati S Narendra and MLAA Thathachar. ‘Learning automata-
a survey’. In: Systems, Man and Cybernetics, IEEE Transactions on 4
(1974), pp. 323–334.

[42] Team Tiny Core. Welcome to The Core Project - Tiny Core Linux. Apr.
2015. URL: http://distro.ibiblio.org/tinycorelinux/.

[43] Jianhai Chen et al. ‘Aaga: Affinity-aware grouping for allocation of
virtual machines’. In: Advanced Information Networking and Applica-
tions (AINA), 2013 IEEE 27th International Conference on. IEEE. 2013,
pp. 235–242.

[44] Tusher Kumer Sarker and Maolin Tang. ‘Performance-driven live
migration of multiple virtual machines in datacenters’. In: Proceedings
of the 2013 IEEE International Conference on Granular Computing (GrC).
IEEE. 2013, pp. 253–258.

68

http://dx.doi.org/10.1109/IFIPNetworking.2014.6857120
http://dx.doi.org/10.1109/NAS.2014.40
http://distro.ibiblio.org/tinycorelinux/

Chapter 6

Appendix

VM migration script

1

2 #!/ usr/bin/python
3

4 import ppr int
5 import os
6 import re
7 import time
8 import sys
9 from threading import Thread

10 import argparse
11 import subprocess
12 import math
13

14 def read_batch (f i lename) :
15 " " " Gets the s t r u c t u r e f o r vm migration
16 f i lename : name of the f i l e
17 " " "
18

19 vms = { }
20 with open (fi lename , ’ r ’) as f :
21 f o r id , l i n e in enumerate (f . r e a d l i n e s ()) :
22 l = l i n e . s t r i p () . s p l i t (’ , ’)
23 vms[id] = l
24 re turn vms
25

26 def read_vm_names (f i lename) :
27 vms = []
28 with open (fi lename , ’ r ’) as f :
29 f o r l i n e in f . r e a d l i n e s () :
30 vms . append (l i n e)
31 re turn vms
32

69

33

34 def migrate_batch (vms , t a r g e t) :
35 " " " Migrates s e l e c t e d vms to desired host
36 vms : [vms]
37 t a r g e t : ip of des ired host
38 " " "
39 threads = []
40 f o r vm in vms :
41 thread = Thread (t a r g e t =migrate_vm , args =[vm, t a r g e t

])
42 thread . s t a r t ()
43 threads . append (thread)
44

45 f o r thread in threads :
46 thread . j o i n ()
47

48 def migrate_vm (vm, t a r g e t , s i n g l e =Fa l se) :
49 " " " Migrates a vm from a host to s p e c i f i c t a r g e t
50 host : ip of host
51 vm: s p e c i f i c vm
52 t a r g e t : ip of t a r g e t
53 " " "
54 cmd = " v i rsh migrate −−l i v e %s qemu+ssh://%s/system " %

(vm, t a r g e t)
55 i f s i n g l e :
56 output = subprocess . c h e c k _ c a l l (cmd, s h e l l =True)
57 i f output :
58 p r i n t " s i n g l e vm done : %s " % time . time ()
59 e l s e :
60 p r i n t " s i n g l e vm done : %s " % time . time ()
61

62 e l s e :
63 migrate = os . popen (cmd)
64

65 def run_the_batches (batch , t a r g e t) :
66 timedone = { }
67 f o r batch , vms in batch . i t e r i t e m s () :
68 curr_t ime = time . time ()
69 migrate_batch (vms , t a r g e t)
70 timedone [batch] = (time . time ()−curr_t ime)
71

72 re turn timedone
73

74 def main (args) :
75 p r i n t " s t a r t time ,%s " % time . time ()
76 i f args . s i n g l e :
77 migrate_vm (args . s ing le , args . t a r g e t , True)
78 e l s e :
79 batch = read_batch (args . f i lename)

70

80

81 timedone = run_the_batches (batch , args . t a r g e t)
82

83 with open (" seq_completion_time_groups . t x t " , "w+") as f :
84

85 vm_names = read_vm_names (args . f i lename)
86 f o r batch , t imes in timedone . i t e r i t e m s () :
87 t i m e s t r i n g = s t r (t imes)
88 vm_numbers = []
89 p r i n t vm_names [batch] # gives : vm13 , vm14 , vm15 ,

vm16
90 f o r item in vm_names [batch] . s p l i t (’ , ’) :
91 vm_numbers . append (s t r (i n t (item [2 :]) −1))
92 p r i n t vm_numbers
93 l o g _ s t r i n g = "%s ,%s\n" % (t imest r ing , " , " . j o i n (

vm_numbers))
94 f . wri te (l o g _ s t r i n g)
95

96

97 i f __name__ == ’ __main__ ’ :
98 parser = argparse . ArgumentParser (
99 d e s c r i p t i o n = ’ threaded s c r i p t to allow concurrent /

p a r a l l e l migrat ions (l i b v i r t) ’)
100 parser . add_argument (
101 ’− f ’ , ’−−f i lename ’ , type= s t r , help = ’ Filename of

b a t c h f i l e ’ , required=Fa lse)
102 parser . add_argument (
103 ’− t ’ , ’−− t a r g e t ’ , type= s t r , help = ’ Target Host IP ’ ,

required=True)
104 parser . add_argument(’− s ’ , ’−−s ing le ’ , type= s t r , help = ’

migrate a s i n g l e vm: name ’)
105 args = parser . parse_args ()
106

107 main (args)

Traffic matrix generator

1

2 #!/ usr/bin/env python
3 # −*− coding : utf−8 −*−
4

5 import random
6 import ppr int
7 import numpy
8 import argparse
9 import sys

10 import p i c k l e
11

12 LOW_LEVELS = [1 , 2]

71

13 HIGH_LEVELS = [3 , 4]
14

15 def dump_matrix (fi lename , matrix) :
16 p i c k l e .dump(matrix , open (fi lename , "wb"))
17

18

19 def s e t _ d e n s e _ t r a f f i c (matrix , arms , groupsize , nodes) :
20 f o r counter in range (1 , (arms +1)) :
21 d = (groupsize * counter)
22 f o r i in range ((d−groupsize) , (d+1)) :
23 f o r j in range ((d−groupsize) , (d+groupsize)) :
24 i f ((i /d) == 0 and (j /d) == 0 and i != j and

j > i) :
25 matrix [i] [j] = random . choice (

HIGH_LEVELS)
26 re turn matrix
27

28 def s e t _ s p a r s e _ t r a f f i c (matrix , nodes) :
29 f o r i in range (0 , nodes) :
30 f o r j in range (0 , nodes) :
31 i f matrix [i] [j] == 0 and i != j and j > i :
32 i f random . randint (0 , 1 0 0) < 3 0 :
33 matrix [i] [j] = random . choice (LOW_LEVELS

)
34 re turn matrix
35

36 def symmetrical (matrix , nodes) :
37 f o r i in range (0 , nodes) :
38 f o r j in range (0 , nodes) :
39 i f i < j :
40 a = (matrix [i] [j] + matrix [j] [i]) *1 .0/2
41 matrix [j] [i] = a
42 matrix [i] [j] = a
43 re turn matrix
44

45 def r e a l _ t r a f f i c _ v a l u e s (matrix , nodes) :
46 " " " s e t t i n g r e a l mbit values in the matrix f o r sep .

t r a f f i c
47 c a l c u l a t i o n , which i s based on time * sep t r a f f i c " " "
48 m a t r i x _ r e a l = numpy . zeros (shape =(nodes , nodes))
49 f o r i in range (0 , nodes) :
50 f o r j in range (0 , nodes) :
51 i f matrix [i] [j] == 4 :
52 m a t r i x _ r e a l [i] [j] = 216 # k i l o b i t s here
53 e l i f matrix [i] [j] == 3 :
54 m a t r i x _ r e a l [i] [j] = 108
55 e l i f matrix [i] [j] == 2 :
56 m a t r i x _ r e a l [i] [j] = 72
57 e l i f matrix [i] [j] == 1 :

72

58 m a t r i x _ r e a l [i] [j] = 54
59 re turn m a t r i x _ r e a l
60

61 def main (args) :
62 matrix = numpy . zeros (shape =(args . nodes , args . nodes))
63

64 arms = divmod (i n t (args . nodes) , i n t (args . groupsize))
65 i f arms [1] != 0 :
66 p r i n t " nodes not d i v i s i b l e by groupsize "
67 sys . e x i t (1)
68 e l s e :
69 arms = i n t (arms [0])
70 matrix = s e t _ d e n s e _ t r a f f i c (matrix , arms , i n t (args .

groupsize) , i n t (args . nodes))
71 i f not args . zeros :
72 matrix = s e t _ s p a r s e _ t r a f f i c (matrix , args . nodes)
73

74 matrix_real_asym = r e a l _ t r a f f i c _ v a l u e s (matrix , args .
nodes)

75

76 i f args .dump:
77 dump_matrix (" asym . p " , matrix)
78 dump_matrix (" asym_real . p " , matrix_real_asym)
79 e l s e :
80 p r i n t "asym matrix not saved "
81 pprint . ppr int (matrix)
82 pprint . ppr int (m a t r i x _ r e a l)
83

84 matrix = symmetrical (matrix , args . nodes)
85 matrix_real_sym = symmetrical (matrix_real_asym , args .

nodes)
86

87 i f args .dump:
88 dump_matrix (" sym . p " , matrix)
89 dump_matrix (" sym_real . p " , matrix_real_sym)
90 e l s e :
91 p r i n t "sym matrix not saved "
92 pprint . ppr int (matrix_asym)
93

94

95 i f __name__ == " __main__ " :
96 parser = argparse . ArgumentParser (
97 d e s c r i p t i o n = ’ S c r i p t makes a symmetric matrix ’)
98 parser . add_argument (
99 ’−n ’ , ’−−nodes ’ , type=int , help = ’Number of nodes in

LA’ , required=True)
100 parser . add_argument (
101 ’−g ’ , ’−−groupsize ’ , type=int , help = ’number of

nodes in each arm ’ , required=True)

73

102 parser . add_argument (
103 ’−d ’ , ’−−dump’ , a c t i o n = ’ s t o r e _ t r u e ’ , d e f a u l t =False ,

help = ’ i f true , dump bin f i l e s of matrices ’)
104 parser . add_argument (
105 ’−z ’ , ’−−zeros ’ , a c t i o n = ’ s t o r e _ t r u e ’ , d e f a u l t =False

, help = ’ i f true , a l l zeros outs ide grous ’)
106 args = parser . parse_args ()
107 main (args)

Script for spawning VMs

1 #!/ usr/bin/env python
2 # −*− coding : utf−8 −*−
3

4 import random
5 import subprocess
6 import re
7 import ppr int
8 import shlex
9 import sys

10 import argparse
11 from time import s leep
12 from threading import Thread
13

14 def remove_vm (nr) :
15 t r y :
16 cmd = "/ usr/bin/vi rsh undefine vm%s && /usr/bin/

vi rsh destroy vm%s " % (nr , nr)
17 output = subprocess . c h e c k _ c a l l (cmd, s h e l l =True)
18 re turn True
19 except :
20 re turn Fa l se
21

22 def spawn_vm(mac , nr , ram) :
23 p r i n t " Spawning %s nr " % s t r (nr)
24 removed = remove_vm (nr)
25 subprocess . c a l l ([" v i r t−i n s t a l l " ,
26 "−−v i r t−type " , "kvm" ,
27 "−−name " , "vm%s " % s t r (nr) ,
28 "−−ram=%s " % s t r (ram) ,
29 "−−cdrom " , "my. i s o " ,
30 "−−network " , " bridge=br0 , mac=%s " % s t r (mac) ,
31 "−−nodisk " ,
32 "−−vnc " ,
33 "−−noautoconsole "])
34

35 def spawn_vms (macs , ram , s leept ime =17 , use_thread=Fa lse) :
36 threads = []
37 f o r nr , mac in enumerate (macs) :

74

38 i f use_thread :
39 thread = Thread (t a r g e t =spawn_vm , args =[mac , nr

+1 , ram])
40 p r i n t thread
41 thread . s t a r t ()
42 threads . append (thread)
43 e l s e :
44 spawn_vm(mac , nr +1 , ram)
45 i f not nr == len (macs)−1:
46 s leep (s leept ime)
47 i f threads :
48 p r i n t threads
49 f o r thread in threads :
50 thread . j o i n ()
51

52 def check_env (c r e a t e _ a l l =Fa l se) :
53

54 cmd_get_nets = (" v i r sh net− l i s t −−a l l | egrep −v ’ "
55 "^\ s+?#|^\s +?$|^−Name’ | awk { ’ p r i n t $1 ’ } ")
56 nets=subprocess . check_output (cmd_get_nets , s h e l l =True)
57

58 i f not nets :
59 p r i n t "No networks defined in l i b v i r t ! "
60 p r i n t "Need a network to continue . e x i t i n g . . . "
61 sys . e x i t ()
62

63 def get_macs (dhcp_f i le , nodes) :
64

65 with open (d h c p _ f i l e) as f :
66 content = f . r e a d l i n e s ()
67 mac_regex = "([0−9a−fA−F] { 2 } :) {5}[0−9 a−fA−F] { 2 } "
68 macs = []
69 f o r l i n e in content :
70 m = re . search (mac_regex , l i n e)
71 i f m:
72 i f len (macs) < nodes : # num here i s num of VMs

created
73 macs . append (m. group ())
74 re turn macs
75

76

77 def main (args) :
78

79 i f args . nodes :
80 check_env (c r e a t e _ a l l =" True ")
81 e l s e :
82 check_env ()
83

84 i f args . nodes :

75

85 macs = get_macs (’ isc_dhcp_hosts ’ , args . nodes)
86 e l i f args . vm_nr :
87 macs = get_macs (’ isc_dhcp_hosts ’ , 100)
88

89 i f args . vm_nr and macs :
90 spawn_vm(macs [args . vm_nr−1] , args . vm_nr , args . ram)
91 e l i f args . nodes :
92 i f args . thread :
93 spawn_vms (macs , args . ram , use_thread=True)
94 e l s e :
95 spawn_vms (macs , args . ram)
96 e l i f not macs :
97 p r i n t "No mac addresses "
98

99 i f __name__ == ’ __main__ ’ :
100

101 parser = argparse . ArgumentParser (
102 d e s c r i p t i o n = ’ s c r i p t f o r i n i t i a t i n g t r a f f i c l e v e l s

on VMs based on matrix ’)
103 parser . add_argument(’−n ’ , ’−−nodes ’ , type=int ,
104 help = ’number of nodes to spawn ’ , required=Fa lse

)
105 parser . add_argument(’− r ’ , ’−−ram ’ , type=int ,
106 help = ’amount of RAM f o r VMs’ , required=True)
107 parser . add_argument(’−v ’ , ’−−vm_nr ’ , type=int ,
108 help = ’ case : spawn one vm, nr of i t ’ , required=

Fa lse)
109 parser . add_argument(’− t ’ , ’−−thread ’ , d e f a u l t =False ,

a c t i o n = ’ s t o r e _ t r u e ’ ,
110 help = ’ Threads the spawning of vms ’)
111

112 args = parser . parse_args ()
113

114 main (args)

Script for instantiating traffic among VMs

1

2 #!/ usr/bin/env python
3 # −*− coding : utf−8 −*−
4

5 import subprocess
6 import argparse
7 import paramiko
8 import p i c k l e
9 import ppr int

10 import logging
11 from os import path
12 from sys import e x i t , exc_ in fo

76

13 from threading import Thread
14

15 UDP_COMMAND = " s leep 30;/home/ t c /udp_cl ient . py −t %s − l %s
−s %s &" # ip , t r a f f i c l e v e l , s t r l e n

16 USERNAME = " t c "
17 PASSWORD = " Rekesalat123 "
18

19 logging . bas icConf ig (f i lename = ’ s e t _ t r a f f i c . log ’ , f i lemode = ’a
’ , l e v e l =logging .DEBUG)

20

21

22 def get_matr ix (m a t r i x _ f i l e) :
23 with open (m a t r i x _ f i l e , ’ rb ’) as input :
24 matrix = p i c k l e . load (input)
25 re turn matrix
26

27

28 def i p _ f i x (nr) :
29 " " " F ixes r e l a t i o n between place nr and ip o c t e t " " "
30 i f nr < 9 :
31 re turn "10% s " % s t r (i n t (nr) +1)
32 e l s e :
33 re turn "1%s " % s t r (i n t (nr) +1)
34

35

36 def c o n v e r t _ l e v e l s (l e v e l) :
37 re turn 5− i n t (l e v e l)
38

39

40 def host_connect ions (t r a f f i c _ c o n n e c t i o n , i p _ p r e f i x
="192 .168 .1 .% s ") :

41 " " " I t e r a t e s through the hosts l i s t and f i n d s out which
s e r v e r s to connect to

42 Input : t r a f f i c _ c o n n e c t i o n : l i s t of connect ionrate ,
where host o c t e t i s item placement

43 Returns : Dict of host : con nec t i onra te
44 " " "
45 hosts = { }
46 f o r i , t r a f f i c in enumerate (t r a f f i c _ c o n n e c t i o n) :
47 i f t r a f f i c > 0 :
48 hosts [i p _ p r e f i x % s t r (i p _ f i x (i))] = t r a f f i c
49

50 re turn hosts
51

52

53 def g e t _ h o s t _ t r a f f i c (matrix) :
54 " " " I t e r a t e s over the matrix to get a d i c t i o n a r y with
55 Returns : Dic t ionary : { from : { to : t r a f f i c l e v e l } }
56 " " "

77

57 i p _ p r e f i x = " 1 9 2 . 1 6 8 . 1 . % s "
58 h_matrix = { }
59

60 f o r i in range (0 , len (matrix)) :
61 h_matrix [i p _ p r e f i x % s t r (i p _ f i x (i))] =

host_connect ions (matrix [i])
62 re turn h_matrix
63

64

65 def run_cmd_on_hosts (hosts , cmd, username=USERNAME,
password=PASSWORD) :

66 " " " runs command on remote l inux system
67 hosts : should be l i s t : [ip1 , ip2 , . . . , ipN]
68 cmd : s t r i n g : any l inux command
69 " " "
70 ssh = paramiko . SSHClient ()
71 ssh . se t_miss ing_host_key_pol icy (paramiko . AutoAddPolicy

())
72 f o r host in hosts :
73 p r i n t host
74 t r y :
75 ssh . connect (host , username=username , password=

password , timeout =5)
76 stdin , stdout , s t d e r r = ssh . exec_command (cmd)
77 ssh . c l o s e ()
78 except :
79 p r i n t " Unexpected e r r o r : " , exc_ in fo () [0]
80 p r i n t "Command not run at host %s " % host
81

82

83

84 def i n s t a n t i a t e (host ip , hos td ic t , s t r l e n) :
85 " " " Runs the commands on the remote host (loops through

e x t e r n a l host and t r a f f i c l e v e l s)
86 Input : hos t ip : IP to run commands from
87 h o s t d i c t : e x t e r n a l i p : t r a f f i c v a l u e
88 " " "
89 p r i n t " Connecting to %s " % host ip
90 ssh = paramiko . SSHClient ()
91 ssh . se t_miss ing_host_key_pol icy (paramiko . AutoAddPolicy

())
92 ssh . connect (hostip , username=USERNAME, password=

PASSWORD)
93

94 f o r ex terna l , l e v e l in h o s t d i c t . i t e r i t e m s () :
95 stdin , stdout , s t d e r r = ssh . exec_command (

UDP_COMMAND % (externa l , c o n v e r t _ l e v e l s (l e v e l) ,
s t r l e n)) # ip , t r a f l e v

96 ssh . c l o s e ()

78

97

98

99 def main (m a t r i x _ f i l e , do_thread , s t r l e n) :
100 matrix = get_matr ix (m a t r i x _ f i l e)
101

102 h o s t _ t r a f f i c = g e t _ h o s t _ t r a f f i c (matrix)
103 threads = []
104

105 f o r host , h o s t d i c t in h o s t _ t r a f f i c . i t e r i t e m s () :
106 i f do_thread :
107 thread = Thread (t a r g e t = i n s t a n t i a t e , args =[host ,

h o s t d i c t])
108 thread . s t a r t ()
109 threads . append (thread)
110 e l s e :
111 i n s t a n t i a t e (host , hos td ic t , s t r l e n)
112

113 i f do_thread and threads :
114 f o r thread in threads :
115 thread . j o i n ()
116

117

118 i f __name__ == ’ __main__ ’ :
119 parser = argparse . ArgumentParser (
120 d e s c r i p t i o n = ’ s c r i p t f o r i n i t i a t i n g t r a f f i c l e v e l s

on VMs based on matrix ’)
121 parser . add_argument (
122 ’−m’ , ’−−m a t r i x _ f i l e ’ , type= s t r , help = ’ matrix f i l e

to read from ’ ,
123 required=True)
124 parser . add_argument (
125 ’−s ’ , ’−− s t r l e n ’ , type=int , help = ’ length of s t r i n g

in UDP packet ’ ,
126 required=True)
127 parser . add_argument(’− t ’ , ’−−thread ’ , d e f a u l t =False ,

a c t i o n = ’ s t o r e _ t r u e ’ ,
128 help = ’ Threads the i n s t a n t i a t i n g of t r a f f i c ’)
129

130 args = parser . parse_args ()
131 p r i n t args
132 i f not path . e x i s t s (args . m a t r i x _ f i l e) :
133 p r i n t " F i l e %s does not e x i s t " % m a t r i x _ f i l e
134 sys . e x i t (1)
135

136 main (args . m a t r i x _ f i l e , args . thread , args . s t r l e n)

79

	Introduction
	Problem statement
	Efficiency
	Cost effectiveness

	Background
	Virtualization concepts
	Full virtualization
	Paravirtualization
	QEMU and KVM
	Libvirt

	Live migration
	Pre-copy Migration
	Post-copy Migration

	Issues with live migration
	Relevant research
	Measuring migration impact
	Total migration time
	VM traffic impact

	Bin packing
	Graph partitioning
	Learning Automata partitioning

	Approach
	Migration Design
	The Learning automata

	Design of experiment
	Bulk migration

	Lab setup
	Libvirt live migration
	Test VMs

	Traffic generation
	Bandwidth altering

	Requirements for solution
	Revised Approach
	Host system load
	Dirty rate

	Simulating migration cost

	Results and analysis
	Testbed configuration
	Containment of VMs

	VM-to-VM traffic
	Matrix Usage

	Subgroup scheduling
	Workflow of testing
	Example test
	Experiments
	Non-dedicated link
	Dedicated link
	Simulation results
	Affinity algorithm

	Discussion and conclusion
	Evaluation
	Problem statement

	Future work
	Traffic patterns
	Latency
	More sophisticated scheduling
	Conclusion

	Appendix

