
A study of Linux Containers
and their ability to quickly offer
scalability for web services
Using Kubernetes and Docker

Ravn Steinholt
Master’s Thesis Spring 2015

A study of Linux Containers and their ability
to quickly offer scalability for web services

Ravn Steinholt

18th May 2015

ii

Abstract

The purpose of the thesis is to explore and investigate Linux container’s
ability to allow for quick scaling of web services. This is important for
many web service providers, because there is a desire to keep a low amount
of resources running when there are low amounts of traffic. This can
have economical and environmental benefits. Being able to scale up the
amount of resources quickly, is important when the traffic increases to
keep within service level agreements and to keep the service running for
the customers. Linux containers are a relatively new type of technology
that allows for virtualization and running of applications. The focus of
the thesis became to compare this new type of technology with a more
commonly used technology, which is virtual machines based on templates.
Two experiments were designed to test the two types of technologies.
The first experiment wanted to test how long it would take to launch a
new web server, while the second experiment was used to test how long
it took to replace a web server with a newly launched database server.
Kubernetes and Docker were the software used for Linux containers and
MLN and Openstack were used for the virtual machine templates. The
results showed a significant difference in relation to how quickly these
two types of software combinations were able to scale. The results and
analysis showed that Kubernetes was able to scale faster than MLN. Given
the results, it became evident that Kubernetes should be chosen over MLN
when considering quick scalability. Even though research and theory
regarding Linux containers gives an indication of it being significantly
faster than virtual machines and templates, it is impossible to definitely
conclude that all software that uses Linux containers would perform better
than software using virtual machines and templates. It is however likely to
assume that it would be the case in most setups.

iii

iv

Contents

I Introduction 1

1 Introduction 3
1.1 Problem statement . 5
1.2 Thesis contributions . 5
1.3 Thesis outline . 6

2 Background 7
2.1 Web service . 7
2.2 Scalability . 8
2.3 Cloud computing/clusters/data center 8
2.4 Software Configuration Management 9

2.4.1 Conventional configuration management tools 11
2.5 Cloud and configuration management 14

2.5.1 Hypervisor and virtual machines 15
2.5.2 Openstack . 16
2.5.3 MLN . 16
2.5.4 Linux containers . 16
2.5.5 Docker . 17
2.5.6 Apache Mesos . 18
2.5.7 Kubernetes . 19

II The project 23

3 Planning the project 25
3.1 Approach . 25
3.2 Configuration and setup of the environment 29

3.2.1 MLN . 29
3.2.2 Kubernetes . 30
3.2.3 Benchmarking scripts 31
3.2.4 Templates and initialization scripts 33
3.2.5 SuperPuTTY . 37
3.2.6 Versions of software 37

v

III Conclusion 39

4 Results 41
4.1 Results and analysis . 41

4.1.1 Scenario 1 . 42
4.1.2 Scenario 2 . 45

5 Discussion and conclusion 51
5.1 Discussion . 51
5.2 Conclusion . 53

vi

List of Figures

2.1 Single tier web service . 8
2.2 Multi tier web service . 8
2.3 Visualization of a cloud . 9
2.4 Principles for software configuration management 10
2.5 Common configuration management setup 12
2.6 Pull architecture . 13
2.7 Push architecture . 14
2.8 Hypervisor and virtual machines 15
2.9 Visualization of MLN . 17
2.10 Linux containers . 18
2.11 Network setup in Docker . 19
2.12 Master-minion relationship in Kubernetes 20
2.13 Replication controllers in Kubernetes 21
2.14 Services in Kubernetes . 22

3.1 Scenario 1 . 26
3.2 Scenario 2 . 27
3.3 .openstack file . 30
3.4 The output from the hello-world command 31
3.5 Superputty GUI . 37

4.1 Histogram for scenario 1 using MLN 43
4.2 Histogram for scenario 1 using Kubernetes 43
4.3 Standard deviation for scenario 1 44
4.4 Mean for scenario 1 . 44
4.5 Min/max for scenario 1 . 45
4.6 Confidence intervals for scenario 1 46
4.7 Histogram for scenario 2 using MLN 46
4.8 Histogram for scenario 2 using Kubernetes 47
4.9 Standard deviation for scenario 2 48
4.10 Mean for scenario 2 . 48
4.11 Min/max for scenario 2 . 49
4.12 Confidence intervals for scenario 2 49

vii

viii

Preface

In this section I would like to show my appreciation for some of the persons
that has supported me throughout this thesis:

My supervisor, Ismail Hassan: For supporting and motivating me and
providing great insight.

My family: My parents, Kristine and Jan, and my brother and sister, Vanja
and Varg, for great support my whole life including this thesis and this 5
year study programme.

My friends: For offering me support throughout the project.

ix

x

Part I

Introduction

1

Chapter 1

Introduction

In the later years there has been an increased focus on web services such as
online banking, video streaming, online trading and so on [10]. Services
such as banks, tax registration, games, television etc are all gradually
being more and more accessed through the Internet instead of through
traditional methods. A survey done by Statistisk sentralbyrå (SSB) showed
that approximately 90 % of the norwegian population between ages 16-74
was using online banking in 2014, 2nd quarter [27].

Downtime of a service can have a big financial impact on the corporation
responsible. Customers may become disgruntled with and unsubscribe
from the service or the company might have to give out compensations [24].
Whether a compensation has to be given out or not, depends on the quality
of service requirements that are manifested in a service level agreement
(SLA). The quality of service (QoS) requirements could be values such as
response time, throughput etc. A violation of the values agreed upon,
would force penalties on the service provider [10].

Due to the nature of web services, there will be a fluctuation in the amount
of load during different time periods [3]. One way to deal with this
fluctuation, is through the method of capacity planning. Capacity planning
is to determine the amount of resources that are necessary in order to fulfill
the quality of service agreement. It is based on an estimate of the maximum
amount of users. Considering that it is based upon a maximum amount of
usage, resources will be wasted in periods with less traffic. Even though it
helps to ensure that the QoS are met, it does have its cost. Firstly the energy
consumption. In large server farms a lot of electricity is required to run the
computers and cooling facilities [24]. Electricity is not free neither in terms
of finances nor the environment [15]. In 2013 the ICT (information and
communications technology) eco system was measured to account for a
little under 10 % usage of global electricity consumption [15]. Another issue
is that the amount of uptime is directly related to the life span of hardware,
which means that using more computing resources than necessary will
reduce the lifetime of hardware [25]. Production and installation of new
hardware is also costly for a company or organisation in terms of climate

3

and financial resources. Also the larger amount of computers and services,
the more time is spent by system administrators maintaining these systems
which is time and resources spent unnecessary when there is no need for
all that capacity. The mentioned problems are both true in the case of
corporations renting cloud services and those using their own server farms,
but there is also a cost in terms of finances when renting resources from
a cloud provider. The web service provider then has to pay directly for
the amount of resources used, and running more resources than required
would be an unnecessary financial cost [24].

Considering all the problems with capacity planning, a more dynamic
approach is desired by service providers. Dynamic allocation of resources
would allow a web service to be able to deal with the most extreme loads,
as well as reducing the amount of resources used when the traffic is lower
[24]. One technology that has enabled system administrators to implement
a more dynamic approach, is virtualization. By splitting the available
physical resources into virtual machines, system administrators are able to
both isolate important applications in the infrastructure as well as utilizing
hardware more efficiently than when separating applications by physical
machines [23].

Configuration management allows for better management and deployment
of software by allowing new machines to be quickly deployed with all the
necessary software for a specific service, faster and less error prone than
when done manually [29]. It also simplifies the management of a large
number of machines. This is ideal for web services with a large variance
in load where new servers have to be configured and maintained regularly
when in periods with an increased amount of traffic.

Conventional configuration management tools such as Puppet, Chef etc,
implement infrastructure as code. Infrastructure as code means that most
configuration actions can be automated through scripts and programming.
Infrastructure as code targets to achieve automation and cost reduction
of service management. The problem is that these types of configuration
management tools are not specialized in dealing with web services
running in cloud environments [29]. These conventional configuration
management tools look at a group of computers as a group of individuals
as opposed to cloud management tools. For web services with unstable
traffic which require large and complex systems, it is better to abstract
the hardware resources and look upon them as a pool of resources instead
[7]. Both the process of writing the code for complex and large systems as
well as executing the scripts, are time consuming [29]. This is problematic
when the system should be flexible and fast to meet the quality of service
agreements [24].

Virtual machine (VM) forking and templates are better equipped for cloud
environments. VM forking is the process of cloning a VM into multiple
replicas which then can be run on different hosts [13]. This is ideal when
dealing with web services with fluctuating traffic, because it allows swift
instantiation of more resources when needed [13]. New virtual machines

4

can also be created from pre configured templates. It could either be an
image template or a text file template. An image template will be based
on a working virtual machine and new machines can then be instantiated
using that template [3]. A text file template will have a specific syntax that
would specify characteristics of the virtual machine [19].

A new type of software based on Linux Containers, Docker, is a new tech-
nology that challenges virtual machine cloning/templates. An application
and its dependencies can be packed inside a container [23] and distrib-
uted and launched depending on traffic requirements. While linux con-
tainers also are virtualized, they do not virtualize hardware [23]. How-
ever, containers still provide the same isolation of applications as virtual
machines[23] and they can be easily stopped and started like applications
[17]. The resources used by a container can also be changed and configured
while the container is running. This should in theory mean that Docker
should bring some improvements over virtual machine forking/templates
in scaling scenarios.

As this study is focused on web services that have quick and large
variations in their traffic load, performance becomes an essential variable
for these cloud management systems to increase the uptime of the web
service. It is essential to get the service up and running as fast as possible to
reduce financial costs because of unsatisfied users or to satisfy the quality
of service agreements [10][24]. Depending on the service and the traffic,
one more server or a couple of hundred may be required. It is therefore
important that the cloud management tools are performing well in different
scaling scenarios [10].

1.1 Problem statement

The problem of this study is to find out if Linux Containers are able to scale
quickly when there are heavy decreases or increases in the amount of traffic
for a web service.

The following problem statement was defined:

"Can Linux Containers provide quicker scalability for demanding web ser-
vices with fluctuating traffic than traditional virtual machine templates?"

1.2 Thesis contributions

The desired impact of this study given significant results, is that it will
aid system administrators of large scale systems with traffic fluctuations to
make a better decision in terms of which software solution to implement for
their system. Correct decision and usage of that solution will then increase
uptime and flexibility of the services provided and allow for better usage
of the available resources.

5

1.3 Thesis outline

The thesis is divided into five chapters:

Chapter 1 (Introduction) presents the motivation behind the research, the
problem statement and discusses possible impacts of the research.

Chapter 2 (Background) will explain concept and technology that is
important in regards to web services, Linux Containers, cloud management
and virtual machines.

Chapter 3 (Approach) will explain how the experiments were designed,
the reasoning behind them and how the setup was configured to perform
the experiments. It will also discuss limitations and challenges of the
experiments.

Chapter 4 (Results and Analysis) will present the data from the experi-
ments and then use statistical methods to further analyze the data. The
output of the statistical methods will then be further explained and invest-
igated in terms of what they say about the data from the experiments.

Chapter 5 (Discussion and Conclusion) will look at what the results
represent, further research, a summary and a conclusion of the thesis.

6

Chapter 2

Background

This section will use background literature and research to explain concepts
and technologies in regard to web services, cloud computing, software
configuration and virtualization.

2.1 Web service

A web service is described as "a software system designed to support
interoperable machine-to-machine interaction over a network" [28]. Figure
2.1 shows the concept. Many web services have defined minimum
performance requirements for their services. The specific requirements are
known as a quality of service (QoS) and they are a part of a service level
agreement (SLA). QoS could be variables such as response time, error rate,
uptime etc. Breaching the SLA agreement will force a financial penalty
on the service provider or the ones responsible for hosting the service if the
maintenance of the service has been outsourced to a third party. The service
providers therefore want to keep in line with the service level agreements,
while at the same time use as little resources as possible [24].

In a multilevel web service, different parts of the architecture will be
divided into isolated environments (virtual machines, physical machines
or containers). A web application can for instance be divided into
presentation and data layer [10]. The presentation layer could be provided
by a web server and the data by a database server. This example is
visualized in Figure 2.2. This means that the whole web service depends
on different isolated services for it to function correctly, which means that
each service must have been allocated enough resources to meet the SLA.

7

Figure 2.1: Single tier web service

Figure 2.2: Multi tier web service

2.2 Scalability

In cloud management, scalability is achieved by either horizontal or
vertical scaling. In horizontal scaling, the system is scaled by scaling up
or scale down the amount of servers. It does not allow the system to
alter the amount of resources a machine is allocated while it is running.
This is opposed to vertical scaling where a machine’s amount of allocated
resources (e.g. RAM, CPU) can be altered without rebooting the machine
[24].

2.3 Cloud computing/clusters/data center

A cloud can be described as a set of virtualized resources that can be
managed as a unit. The cloud relies on the use of virtualization to more
effectively allocate resources [9].

8

Figure 2.3: Visualization of a cloud

A cloud can be either public or private. A public cloud is a pool of
resources that can be accessed through the Internet. The cloud provider
owns the infrastructure of the cloud and resources are accessed through
subscription based fees [9]. A private cloud is an internal data center only
available to that business or organisation. Even though it belongs to a
certain organisation or business, it can still be managed and administered
by a third party [9].

2.4 Software Configuration Management

Software configuration management (SCM or CM) is used to centrally
manage and deploy software solutions on machines in a network. It
can be used for tasks such as installing every software needed for a web
server, mail server, normal client PC etc. One of the main purposes of
configuration management is to automate the configuration of machines
[14]. It does this through the use of infrastructure as code [29]. The
problem with manual configurations is that once a new machine is added
to the network, then the same configuration procedure has to be done all
over again even though the machine’s function should be the same as an
already configured machine [14]. Doing the same procedures multiple
times is both time consuming and prone to errors [14]. It is time consuming
because the script to configure for instance a web server can be run several
times, but during a manual configuration all the commands has to be run

9

again, configuration files has to be edited and so forth. Such a method
is also prone to errors because the administrator might do a typo in
the configuration file, install the wrong package and so on. Reducing
time consumption and error rates are central values to companies or
organizations because it indirectly increases productivity. Having pre-
written scripts for installation processes also help to provide flexibility to
the system administrator [14]. If, for instance, CM scripts have been written
to install a web server on Ubuntu 12.04, but the new servers are running
Ubuntu 14+, then it would be an easy task for the system administrator to
change some of the code in the configuration script instead of having to do
the whole procedure of installing and configuring files for each machine.

Another strong point of configuration management is its ability to allow
servers and clients to restore a functional state [14]. If for instance the
database server in the network had a software issue that required a reinstall
of the operating systems, then the machine could automatically be restored
into a functioning database server once more a lot more efficiently than
using manual configuration and with less potential for errors [14].

Software configuration management consists of certain principles shown
in the Figure below (2.4).

Figure 2.4: Principles for software configuration management

Identification is the process of identifying the different software items in
an information technology system [12]. Identifying all the items and their
version is necessary for the next principle which is control, because in
order to control or change the item there has to be a way to reference that
item. For instance if a web server should be stopped, then it would be
necessary to identify the httpd process. Control is the actual managing of
the different items in the IT system [12]. Status accounting is the process
of recording and reporting all the changes to the configuration items. It
includes information about what has been changed, when it has been
changed, which items were affected by the change and what the status of
the change is [12]. Audit is the process to ensure that the actions taken have

10

actually been implemented according to plan [12].

These principles describe what an ideal configuration management system
should consist of. However a lot of the CM tools are not able to fulfill all
these principles on their own and need support from other applications as
well. These applications together with the CM tool then become a part of
the whole CM system. Employees and documentation is also part of this
system that the CM tool cannot implement by itself. CM tools has to as
a minimum implement the principle of control and identification, because
the tool has to be able to identify the different parts of software in the IT
system as well as being able to manage and change them. Several tools
also implements part of the status accounting principle through logs and
response messages.

2.4.1 Conventional configuration management tools

Conventional configuration management tools such as Puppet, Chef etc,
implements infrastructure as code. They have been used and can be used
to get web services automatically up and running [29].

The most common setup for environments using configuration manage-
ment tools, is pictured in Figure 2.5.

The figure shows a client-server architecture which is used in many CM
solutions such as Puppet and Chef. The PC in the middle of the figure is
the configuration management server. It will contain all the scripts that
will be used to configure the clients. The clients receive instructions either
by the server pushing out the scripts to each client over a network, or by
the clients doing regular pulls from the server to look for new or updated
instructions.

The advantages of such an approach is first and foremost centralized
management. Centralized management allows for simplicity, because it
is easier to control one or a few machines instead of all the machines in a
network. The system administrator will have access to all the scripts for
that network in one place and security and access rules only need to be
configured there. It also gives a better overview of the machines and their
configurations [16]. With a good structure of the different configuration
scripts and CM experience, the system administrator will be able to see
what is installed and configured on the different machines. This will
help when troubleshooting, which has to be done when there are errors
in the configuration. The system administrator will be able to see all the
steps previously done, whereas when doing manual troubleshooting many
things are often tested at once with the administrator forgetting many of
the steps that were taken. The disadvantages of such an architecture is
that it has a single point of failure, meaning that if the server breaks down
in any way, then the configuration management system in that network
environment will cease to function [16].

11

Figure 2.5: Common configuration management setup

In these kind of CM setups, the computer environment is being controlled
through the use of different scripts. In these scripts two things are
described: What should be configured and on which machines [29]? Each
CM tool usually has its own unique syntax which are later compiled into
other scripting languages. Depending on the software being used, the
CM clients will either receive the script and the CM client software will
then compile it into scripting languages such as Python or Perl, or receive
already compiled scripts. The instructions are then executed by the client
[21].

CM tools that function in a client-server architecture use either a pull or
push method. A general consensus of the pull method for a CM system is
shown in Figure 2.6.

As shown in the drawing, the client initiates the connection [20]. The CM
software that uses the pull method are set up to send regular requests to
the server asking for new instructions [20]. The server then has to find out
which machine the request is from [20]. In many systems instructions are
assigned to a certain machine by using their hostnames. If any instructions
are found for that machine, then it has to check if the changes has already

12

Figure 2.6: Pull architecture

been implemented or not. In some systems this can also be done by the
client [20]. Depending on the outcome of that action, it will either send
the instructions to the client or reply that there are no more instructions to
be implemented. The client will then send a report message back to the
server that explains whether the instructions could be implemented or not
along with other variables [20]. The drawing only specifies that instructions
are found and transferred to the client and not exactly how this is done,
because it varies between the different software solutions. In for instance
Puppet, this list of instructions to be applied is called a catalog [20].

In a push architecture, all connections are initiated by the CM server. The
CM server will look for instructions in scripts that are not yet implemented,
and push those changes. The clients have to report back to the server,
because the server needs to know whether it has to push the changes again
or if scripts have to be modified. Figure 2.7 shows the general principle, but
it will slightly differ between different configuration management software
solutions.

One major advantage of the push architecture, is that it enables the
administrator to send instructions to all CM clients with commands only
executed at the server [8]. It will also instantly provide feedback if
something went wrong and can then be corrected quickly [8]. It can also
create a lot of load on the network during that period. One problem
with the push architecture is that since more work is being done on the
server, it can become overloaded quickly when it administers a lot of
computers [8]. It also requires the server to know about all the hosts in
the network, which can be a problem when booting new machines that
have to be configured [8]. One advantage of the pull method is that there
will be a stable load on the CM server, because the CM clients will ask

13

Figure 2.7: Push architecture

for instructions independently of each other [8]. It also allows for newly
spawned machines to automatically receive instructions from the server
[8]. Another advantage of the pull technology, is that the pull request from
the client in itself identifies that the client is ready to receive instructions. A
pull system has the problem that it is difficult to apply changes to many
computers at the same time. For these reasons, pull systems are often
better when small changes to a system are made regularly. For more drastic
changes, a push system is often preferred.

2.5 Cloud and configuration management

The problem with the configuration management systems mentioned in
the previous section, is that they are not specialized in dealing with web
services running in cloud environments. This is because they are slow in

14

execution of the scripts and the scripts can in large networks become very
complex [29].

2.5.1 Hypervisor and virtual machines

A hypervisor is a software platform which allows several virtual machines
to run on one physical host. Each virtual machine will have its own
operating system and kernel. The hypervisor keeps the virtual machines
isolated from each other and allows them to interact with the physical
hardware. Each virtual machine has access to its own virtual hardware
which then has to be translated into commands for usage of the physical
hardware by the hypervisor [9].

Figure 2.8: Hypervisor and virtual machines

Figure 2.8 shows the concept of the hypervisor and the virtual machines
running on top of it. The hypervisor can also run on top of an operating
system, it does not have to run directly on specialized hardware as shown
in the Figure [9].

Many virtual machine technologies offers more than isolation between
the different machines and effective resource management. By using
virtual machine templates, a system administrator is able to easily start
fully configured virtual machines [11]. A system administrator could for
instance create a virtual machine and install a web server on it and save the
image (often referred to as snapshot). The next time a new virtual machine
is configured, it could be booted using that template which then would,
after the initial boot process, create a fully operational web server [3]. This

15

is known as image-based provisioning [3]. This can be applied to cluster
or cloud management of web services by being able to boot new machines
using pre configured templates based on the need for resources determined
by traffic load [11] [3].

Even though virtual machines allow for isolation of machines for different
roles in the network and allows a system administrator to allocate resources
more effectively, they do have the problem that running multiple kernels
uses more resources. Considering that it is the applications at the virtual
machines that are the most important thing to separate when hosting
web services, using resources on several kernels are resources spent
unnecessary [23]. A problem with using virtual machine templates, is
that each virtual machine still has to be booted using the template which
consumes time [11].

2.5.2 Openstack

Openstack is an open source bundle of software tools that together allow
an administrator to create and operate a cloud. Virtual machines can
be launched using the resources available in the cloud which allows for
horizontal scaling [18]. Image templates can be created using Openstack by
saving a running virtual machine as a snapshot, which then can be booted
from when new virtual machines are created.

2.5.3 MLN

MLN stands for manage large networks and it was developed to simplify
deployment and management in a large scale virtualization structure. It
allows the user to perform actions on groups/clusters of virtual machines
instead of individual handling of virtual machines, which is the standard
of most systems. These groups in MLN are called projects. File systems
in MLN are copied from templates, which helps to automate the process
of formatting disks when installing new systems. MLN has support
for several virtualization platforms such as VMware, KVM, Xen, User-
Mode Linux, Amazon EC2 and OpenStack. MLN has functionality for
both managing (starting, deleting, upgrading) and deployment of virtual
machines. Managing is done through the use of the mln command. New
machines are deployed through the use of mln scripts(.mln) and the scripts
are used as arguments for the mln command [2]. Figure 2.9 below shows
how MLN works.

2.5.4 Linux containers

Linux containers is a relatively new virtualization technology that differs
from the virtual machines. It is implemented in the Linux Kernel. A
container is able to hold isolated processes and resources without the need

16

Figure 2.9: Visualization of MLN

for virtualization of the hardware. Containers are able to run their own
operating system, but the kernel is shared between all the containers.
Each container will have its own filesystem and network interfaces [23].
Each container will also have its own networking layer and processes.
Considering that Linux Containers are only a virtualiazation layer of
software on top of an operating system, they can easily be started and
stopped like other applications [17]. Containers enable the administrator
to have the means for both vertical and horizontal scaling.

Figure 2.10 shows the concept of containers. Since the kernel is shared
between the containers, it therefore uses less resources than virtual
machines [23].

2.5.5 Docker

With the increased focus on containers, they are being explored in terms
of configuration management. Docker is a piece of software that allows
an administrator to pack an application into a container with all its
dependencies [23]. This differs from more conventional configuration
management systems which would provide a list of dependencies to the
client and rely on the client’s package management system to handle it
[22]. One thing Docker lacks compared to configuration management tool
such as Puppet and Chef, is the distribution. In a standard Docker system,
containers have to be transferred to the client through manual methods
such as ssh [22]. This functionality is however implemented by Kubernetes,

17

Figure 2.10: Linux containers

and other docker orchestration tools.

When the Docker service is started, it creates a virtual network interface
called docker0. Docker0 creates a virtual ip address range and new
containers are created within this network. The bridge allows the
containers to communicate with each other in addition to the host. Without
this bridge, the containers would not be able to connect to other containers
or to the Internet and they would not be accessible from any container or
host. Figure 2.11 shows the concept [4].

In order to run a container using Docker, the command docker run
<baseimage> is used. The base image could either be a local customized
image or an image that will be downloaded from the Docker hub, which is
a centralized database of pre-configured docker images.

2.5.6 Apache Mesos

Apache Mesos perceives a number of machines as one abstract block of re-
sources. This allows the software to easily manage large data centers/cloud

18

Figure 2.11: Network setup in Docker

environments. Mesos is split into three different components: Master, slave
and framework. The Master is a daemon responsible for controlling the
slaves, the slaves are daemons running a task and the framework is a mesos
application. A framework consists of a scheduler and an executor [22].
Some of the frameworks are able to distribute and manage docker contain-
ers by using the block of resources available.

2.5.7 Kubernetes

Kubernetes is a cluster manager for Docker. It allows the system adminis-
trator to schedule and launch containers, while Kubernetes automatically
selects the servers on which the containers are launched [6]. Similar to
Mesos, it abstracts physical machines into a pool of available resources.
The two most important roles in a cluster managed by Kubernetes, is the
master and the minion roles. The master is the machine which has control
over a group of minions. Minions are responsible for running tasks given
to them by the masters [6].

The minions report backs to the master about eventual errors or successes

19

Figure 2.12: Master-minion relationship in Kubernetes

in regards to the creation of containers. Kubernetes mainly consists of three
different work units: Pods, Replication Controllers and Services. Pods
represents a single container or a group of containers. The containers in
a pod are based on the same application and will be running the same
Docker image. Replication Controllers handles the pods. This means
that the Replication Controllers are responsible for keeping track of their
assigned pods and manage them so that the specified amount of pods are
always running in the Kubernetes cloud [5]. Figure 2.13 shows the concept
of replication controllers.

Services are used to direct traffic to the appropriate containers. Containers
in Docker will be using a virtual network on the physical host and services
are responsible for directing that traffic to the containers from an external
machine. By being assigned to a Replication Controller, they can redirect
all traffic to the correct machines and then to the containers [5]. It is done
by the master machine sending a request to the minions to change their
firewall to forward traffic to the right containers. Figure 2.14 shows the
concept of services in Kubernetes.

There are some important commands in Kubernetes that are important to
know in order to operate the cluster. /opt/bin/kubectl get po will show all
the pods running on the cluster. In order to shut down a container in
Kubernetes, the following command has to be used: /opt/bin/kubectl stop
pods,replicationControllers -l run-container=apache4. run-container=apache4 is

20

Figure 2.13: Replication controllers in Kubernetes

the name of the label of the replicationController. In order to run a
container, /opt/bin/kubectl run-container apache –image=ravn/<dockerimage>
can be used.

21

Figure 2.14: Services in Kubernetes

22

Part II

The project

23

Chapter 3

Planning the project

This section aims to explain how the experiments were designed, the
reasoning behind them and how the setup was configured to perform
the experiments. It will also discuss limitations and challenges of the
experiments.

3.1 Approach

This study will gather quantitative data. For the experiment, several
infrastructure and software solutions are required. Considering that the
experiment will be run on virtual machines, there is a need for both
physical resources and hypervisors. This is provided by the use of a
cloud running Openstack. The Openstack cloud is being used because it
has resources that are easily available to the researcher, free of cost and
based on open-source software. Using the cloud, an internal network of
virtual machines has been created called ravnnett. All the required virtual
machines will be created and connected within this network.

The experiments will be divided into two parts. The first part will be using
Kubernetes and Docker combined to launch new containers according to
specifications. The seconds part will consist of launching a new virtual
machine from a template using MLN according to the specifications. Each
part will consist of two scenarios designed to test performance in relation
to scalability. In the first scenario, a new web server will be initialized
first using containers and then using templates. Using Kubernetes in the
first scenario, there will be cluster with one Kubernetes master and one
Kubernetes minion running. A third virtual machine, benchmarker, within
the same network will then be running a script to see how long it takes
after the Kubernetes instructions to launch a container is executed, until
its web server responds. This will then also be tested using MLN to boot
from a snapshot that has a web server installed and configured to see the
differences, using the same benchmarker machine. The collected data will

25

be the number of seconds until a HTTP reply is received. Figure 3.1 shows
the setup for scenario 1 using both Kubernetes and MLN.

Figure 3.1: Scenario 1

In the second scenario the focus is on re-balancing the use of resources.
In this scenario there is a need for more database capacity and less web
servers. The web server will be shut down and replaced by a database
server. A SQL request will then be sent and the amount of seconds it
takes before the new server responds will be recorded. Using Kubernetes,
the web server container will be shut down and a database container will
be launched on the minion in its place. Using MLN, the virtual machine
running the web server will be stopped, and a new database server will be
created using a pre-configured snapshot.

Each scenario for both the Kubernetes and template experiments, will have
a sample size of 30. 30 was chosen as the sample size because it is often
said that the sample size should be larger than 30 for the statical analysis to
provide a more reliable output. Any extreme results will be removed from
the sample. New data points from the experiment will be put in their place.
This is done to try to remove any errors, which devalues the calculated
means, standard deviations and confidence intervals.

26

Figure 3.2: Scenario 2

Docker was chosen because it focuses on using containers to run applica-
tions and services, which is in line with this project focusing on web ser-
vices. Docker also has a good community which provides information and
guides regarding the software. The official documentation is well struc-
tured and Docker is highly popular, which is helpful when searching for
help and guidance on upcoming problems. Kubernetes was chosen be-
cause it is a system that is built around using Docker containers. There
are other orchestration tools for Docker, but Kubernetes is a large project
supported and created by large and influential companies such as Google,
which often is a sign of reliability and stability. This is important consid-
ering that Docker and orchestration tools are relatively new technologies
and software. Kubernetes is also based on open-source development and
its main focus is on running applications in containers which is in line with
this project based on web services.

MLN was chosen because it was one of the tools that were available to use
with the cloud provided by the educational institution. The experiments
were originally thought to just showcase how containers could contribute
to quick scalability without testing other types of technology that are

27

presently being used. However, it became apparent later in the project
that it would be more interesting to compare a technology using templates,
which is one of the most used methods today, with Linux Containers.
Considering that both Kubernetes, Docker and cluster management in
general have a pretty steep learning curve and will be time consuming,
it was necessary to use a technology the researcher had some previous
experience with. MLN is also more similar to some other template
technologies than writing very complex nova commands (to communicate
with the Openstack server). It is also a tool that could be used on several
different cloud technologies in case the cloud provided to the researcher
would not work correctly, which there were some problems with initially.

These scenarios have been designed in order to test both systems in terms
of how quickly they can offer scalability and specifically the ability to
scale up to meet an increase in users of a web service. As outlined in the
introduction, there are lots of reasons why a cloud should not be running on
full capacity when it is not necessary. It is therefore assumed that there are
more resources available up to a certain point, when the amount of users
of a web service increases. In modern web services, the traffic loads are
fluctuating and it is therefore important to be able to quickly scale up when
the traffic increases [3]. These fluctuations are very difficult to plan ahead
[3]. When the amount of users increases, there are mainly two methods of
dealing with that problem. One way is to simply use more of the available
resources, which is the purpose behind the design of scenario 1. The other
method is to better re-balance the resources that are already in use and that
is the purpose of the design behind scenario 2. The general principle is that
there is a need to make more resources available [3].

The approach for testing the scenarios was to focus on that the web service
should be up and running. It was therefore important to actually test that
the required web service was running and not only relying on Kubernetes
reporting on the status of the containers. The same applies to the virtual
machines.

There are some limitations in regard to these experiments. These
limitations are mainly caused by the fact that it is difficult to directly
compare two technologies that, even though they perform similar tasks, are
very different in the way they are constructed. It is therefore very difficult
to design an experiment which is a 100 percent fair and where the setup
is exactly the same. The focus on this experiment has therefore only been
to focus on that the web services should be accessible to the user in the
same manner regardless of the underlying technology. Another limitation
is that the recorded time of the scenarios are likely to vary between each
time the experiments are run. The reasons for this is mainly that there
are several different computers and software that need to communicate
with each other. For instance, when running one of the Kubernetes
experiments, the speed of the script will depend on: Execution of the
script, network layer between several virtual machines and containers,
Kubernetes master and minion communications, Kubernetes to Docker

28

communication, Kubernetes to iptables/firewall communication. An
operating system will be running plenty of others processes than those
who are the main focus of this experiment. All actions will therefore have
different queue and execution times between the runs of the experiments.
The data from the experiments, even though they will vary to a certain
degree between the different runs, should however show whether or not
there is a significant difference in time consumption between the two
technologies. Hence, the purpose of the experiments is therefore more
about seeing if a trend can be plotted instead of concluding that a container
always uses a certain amount of seconds.

The assumption before going into these experiments is that containers,
based on the literature available on the subject, should perform better in
these experiments than virtual machine templates.

3.2 Configuration and setup of the environment

3.2.1 MLN

In order to install MLN, the following was done.

The first thing that had to be done, was to add the havana cloud archive to
apt-get and then update apt-repository list. This is done in order to be able
to download the nova tool.

apt-get install python-software-properties
add-apt-repository cloud-archive:havana
apt-get update

Then the operating system and the packet repository should be updated.

apt-get upgrade
apt-get dist-upgrade
reboot

Then the nova tool can be installed, which will be used by MLN to
communicate with the OpenStack server API.

apt-get install python-novaclient

MLN is provided as a git repository, and Git therefore has to be install in
order to be able to download the software. The command git clone was used
to download the MLN git repository.

apt-get install git
git clone https://github.com/kybeg/mln.git

Next the actual MLN software can be installed:

cd mln
./mln setup

29

During the first prompt, option 2 (Entire system), should be selected. The
rest should be kept as default by just pressing enter until the prompts
finishes.

In order to verify that MLN has been installed correctly, the following
command can be executed:

mln write_config

In order to communicate with the Openstack Server, a .openstack file has
to be created as shown in Figure 3.3.

Figure 3.3: .openstack file

Then source has to be run to use the file as input for the nova commands.

source .openstack

In order to test that the source file contains the correct information, a nova
command can be tested.

nova list

The installation process is based on the guide from the MLN guide at
Github [1].

3.2.2 Kubernetes

The following steps apply for both the Kubernetes master and the minion.
First Docker has to be installed together with git and make by:

apt-key adv --keyserver hkp://keyserver.ubuntu.com:80
--recv-keys 36A1D7869245C8950F966E92D8576A8BA88D21E9

sh -c "echo deb https://get.docker.com/ubuntu docker main >
/etc/apt/sources.list.d/docker.list"

apt-get update
apt-get install -y lxc-docker git make
source /etc/bash_completion.d/docker

sudo docker run hello-world will download a test container and run it to see
if Docker is installed correctly. [26] This command should present a similar
output to the one shown in Figure 3.4.

Then the Kubernetes binaries has to be installed:

wget https://github.com/GoogleCloudPlatform/kubernetes/releases/
download/v0.12.0/kubernetes.tar.gz

30

Figure 3.4: The output from the hello-world command

tar xfvz kubernetes.tar.gz
cd kubernetes/cluster/ubuntu-cluster/
./build.sh
mkdir /opt/bin
sudo cp ./binaries/* /opt/bin
./configure.sh

configure.sh will prompt the user and and request IP-addresses of the master
and minions. Once finished, the minions should show in the output of
/opt/bin/kubectl get minions.

3.2.3 Benchmarking scripts

Scenario 1

In scenario 1, the purpose was to test how long it takes to launch a new web
server using Kubernetes and MLN. The web servers should be accessible in
a similar fashion, which means that the script can be used for testing both
Kubernetes and MLN. The Python script shown below was designed for
that purpose.

import httplib

while True:
try:

connection=httplib.HTTPConnection("ipaddress")
connection.request("HEAD","/")
status=connection.getresponse()
statuscode=status.status

if statuscode==200:
break

except:
pass

The script, while running, tries to continuously connect to the web server
that is initialized. It does this by looking for the status code 200, which

31

indicates that the web server is up and running and that everything is
working correctly. When a status code 200 is received, it will break out
of the infinite loop. Error handling was added with try and except to handle
replies that states that the socket is closed when the container or virtual
machine is being initialized. Using the function time python scenario1.py,
it will print out a real value that calculates how long the script used to
finish executing. This value will then be added to the results scenario 1.
When designing this script, it was important to try to limit the amount
of input/output operations that are done, because these operations will
vary between different runs of the experiment. The script was therefore
designed not to print out any information and just execute the necessary
operations to test the web server.

Then time python scenario1.py was used to run the python script from the
benchmarker at the same time as MLN and Kubernetes initiates a new
server to see how long it takes before a response from the web server
is received. The real output was then used to determine how long the
script used to execute connecting to the http server. This process was then
repeated 30 times for both technologies.

Scenario 2

In scenario 2, the purpose was to test how long it takes to stop a web server
and then launch a MySQL server using Kubernetes and MLN. In order to
connect to the MySQL server, the python module for communicating with
MySQL has to be downloaded. This is done with apt-get install python-
mysql-connector. The following python script was created:

import mysql.connector
from mysql.connector import Error

def connect():
try:

conn = mysql.connector.connect(host=’ipaddress’,
database=’testdb’,
user=’username’,
password=’password’)

if conn.is_connected():
return True

except Error as e:
pass

while True:
if connect()==True:

break

32

The design of the script follows a lot of the same guidelines as the script
for scenario 1. The script will run an infinite loop to try and connect to the
MySQL server and to the database testdb. When it is able to connect, the
script will finish. Error handling was added with try and except to handle
replies that states that the socket is closed when the container or virtual
machine is being initialized. Using the function time python scenario2.py,
it will then print out a real value that calculates how long the script
used to finish executing. This process is then repeated 30 times for both
technologies. It was not necessary to test that the Apache server had been
stopped, because the operation to do that is queued before the launching
of the new container or virtual machine.

3.2.4 Templates and initialization scripts

The purpose of this subsection is to explain the steps taken to create the
image templates for the containers and virtual machines, as well as the
commands to initiate them. Even though ssh is not a service that is tested
by the scripts, it is the best way to connect to the newly configured machine
in Openstack, which is helpful when testing the scripts and searching for
errors. Ssh is not necessary to connect to the containers, but it seemed fairer
to also launch the ssh service on the containers when it was done on the
virtual machines. The ssh service is queued first in order for it to launch
before the apache service.

Scenario 1 : Kubernetes

The containers launched in this experiment will be running a web server,
apache2 and ssh, and an image for this has to be created before containers
can be launched with it. This is done by first creating a Dockerfile with
instructions for the container. In order to run the Apache service inside a
container, there is a need to first specify the operating systems upon which
the custom Docker image should use as a base. This is done through the use
of FROM. Then there is a need to install Apache and ssh because the image
is based on a clean ubuntu installation without Apache/ssh pre-installed.
This command is run through the use of run. The installation of Apache
will then be a part of that image. Apache and ssh is kept running inside the
container through the use of supervisor, which allows several processes to
run inside a container. CMD specifies the command to be run when the
container is launched. The whole Dockerfile used in this experiment is
shown below.

FROM ubuntu:14.04
MAINTAINER ravn@example.com
RUN apt-get update && apt-get install -y openssh-server
apache2 supervisor
RUN mkdir -p /var/lock/apache2 /var/run/apache2 /var/run/sshd

33

/var/log/supervisor
COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf
EXPOSE 22 80
CMD ["/usr/bin/supervisord"]

When using supervisor to run several services inside a container, a
configuration file has to be created to specify which services to run.

[supervisord]
nodaemon=true

[program:sshd]
command=/usr/sbin/sshd -D

[program:apache2]
command=/bin/bash -c "source /etc/apache2/envvars
&& exec /usr/sbin/apache2 -DFOREGROUND"

The custom Docker image can now be built using the Dockerfile with sudo
docker build -t <ouruser>/<nameofimage> <sourceofimage>. The image can
now be used as a basis for new containers using Kubnernetes and Docker.

Using a bash script, the container can then be launched and made available
from other machines in the network using:

/opt/bin/kubectl run-container <podname> --image=<imagename>
/opt/bin/kubectl expose <rcname> --port=80 --container-port=80
--public-ip=192.168.127.21 --selector=run-container=apache

Scenario 1 : MLN

First a snapshot was made by first booting a new server with Ubuntu 14.04
and installing apache on it with apt-get install apache2. Creating startup
scripts for the new virtual machine running Apache can then be done using
mln build -f scenario1.mln. The MLN script will create one small virtual
machine(1 CPU and 2 GB RAM) based on the snapshot created of the
Ubuntu 14.04 machine with Apache running and connect it to the virtual
network in the Openstack cloud.

34

Listing 3.1: scenario1.mln
1 g l oba l {
2 p r o j e c t p r o j e c t 1
3 }
4
5 host machine1 {
6 openstack {
7 image Apacheimage
8 f l a v o r m1. smal l
9 keypa i r gate

10 }
11 network eth0 {
12 net ravnnett
13 address dhcp
14 }
15 }

Then the command mln start -p project1 will be run to start the virtual
machine. For each time the experiment is done, the machine will be
deleted. Then it will be started again with the mln start -p project1 and the
time spent recorded by the benchmarking server.

Scenario 2 : Kubernetes

An image with a fully configured MySQL has to be created before new
containers can be launched. This is done in the same way as in scenario 1
by creating a Dockerfile with instructions for the image to be created. The
image is created with docker build -t <iamgename> <Dockerfilelocation.

Listing 3.2: Dockerfile scenario 2
1 FROM ubuntu : 1 4 . 0 4
2 MAINTAINER ravn@example . com
3 RUN apt−get update && apt−get i n s t a l l −y openssh−s e r v e r mysql−s e r v e r

↪→ s upe rv i s o r
4 RUN sed − i −e" s/^bind−address \\ s∗=\\s ∗127 . 0 . 0 . 1 / bind−address ␣=␣

↪→ 0 . 0 . 0 . 0 / " / e tc /mysql/my. cn f
5 RUN /usr / sb in /mysqld & \
6 s l e e p 10 s &&\
7 echo "GRANT␣ALL␣ON␣ ∗ .∗ ␣TO␣monty@’% ’␣IDENTIFIED␣BY␣ ’12345 ’ ␣WITH␣

↪→ GRANT␣OPTION; ␣FLUSH␣PRIVILEGES" | mysql
8 COPY supe rv i s o rd . conf / e t c / supe rv i s o r / conf . d/ supe rv i s o rd . conf
9 EXPOSE 22 3306

10 CMD ["/ usr /bin / supe rv i s o rd "]

This Dockerfile is based on the script provided by http://txt.fliglio.com/2013/11/creating-
a-mysql-docker-container/ but slighly customized.

Then the instructions to start the services has to be added to super-
visord.conf.

[supervisord]
nodaemon=true

[program:sshd]
command=/usr/sbin/sshd -D

35

[program:mysql-server]
command=/usr/bin/mysqld_safe

The custom Docker image can now be built using the Dockerfile with sudo
docker build -t <ouruser>/<nameofimage> <sourceofimage>.

The container can then be launched using:

/opt/bin/kubectl stop replicationcontroller apache
/opt/bin/kubectl stop services apache
/opt/bin/kubectl run-container mysql --image=ravn/scenario2
/opt/bin/kubectl expose mysql --port=3306 --container-port=3306
--public-ip=192.168.127.21 --selector=run-container=mysql

Scenario 2 : MLN

A snapshot of a working mysql server has to be created so that it later can
be booted from using MLN. First apt-get install mysql-server has to be run
to install the server. Then log in to root with mysql -uroot -p<password>.
Then a new user has to be created with CREATE USER ’username’@’%’
IDENTIFIED BY ’password’;. Then it has to be granted access with GRANT
ALL PRIVILEGES ON *.* TO ’username’@’%’. After that a database has
to be created with CREATE DATABASE databasename. Lastly change the
bind-address in /etc/my.cnf to the IP of the interface. Then a snapshot of
the current configurations is taken and can now be booted with a virtual
machine using mln build -f scenario2.mln.

Listing 3.3: scenario2.mln
1 g l oba l {
2 p r o j e c t p r o j e c t 2
3 }
4
5 host databaser {
6 openstack {
7 image Mysqlworking
8 f l a v o r m1. smal l
9 keypa i r gate

10 }
11 network eth0 {
12 net ravnnett
13 address dhcp
14 }
15 }

On the MLN-machine, a script was created to stop the apache machine and
start and create the mysql machine.

1 mln stop -p project1
2 mln start -p project2

36

3.2.5 SuperPuTTY

SuperPuTTy is a program that was used in order to ensure that both
the benchmarking script and the launching of container/virtual machines
starts simultaneously. It allows the user to send a command to several
machines through ssh at the same time.

Figure 3.5: Superputty GUI

3.2.6 Versions of software

The following versions of software will be used in all the experiments:

• Kubernetes master and client version 0.12

• Docker version 1.6

• MySQL-server version 5.5

• Apache version 2.4.7

37

38

Part III

Conclusion

39

Chapter 4

Results

In this chapter, the results for the experiments designed and explained in
the approach section, will be presented. This data will then be analyzed
using different statistical methods and tools.

4.1 Results and analysis

All of the statistical analysis is done using the program R. Values for the
results are shortened to just one decimal when presented in graphs or
charts.

The statistical analysis and tools that will be used are sample mean,
standard deviation, confidence intervals and the welsh two sample t test
if the distribution of the data are verified as being normally distributed.

The sample mean is calculated by:

x̄ = x1+x2+x3...
N

where xn are the individual results from the sample and N is the number of
repetitions of the experiment. When the data set is normally distributed,
the mean becomes interesting, because a majority of the values in the
experiment should be close to it (1 standard deviation away). If assuming
that the results are close to a realistic representation of the experiment, the
mean together with the standard deviation should give an indication of
where most new data points for this experiment should be within.

The standard deviation of the sample is being calculated with the formula:

s =
√

1
N−1 ∑N

i=1(xi − x)2

N is the number of results, x is a specific result and x̄ is the mean of the
sample. Standard deviation is a statistical values that gives insight in terms
of how spread out the data points are.

41

In the process of analyzing whether the result data are approaching a
normal distribution, the following formulas are being used:

P(µ− σ ≤ X ≤ µ + σ) = 0.68

P(µ− 2σ ≤ X ≤ µ + 2σ) = 0.95

P(µ− 3σ ≤ X ≤ µ + 3σ) = 0.99

If the results are close to being distributed in this manner, they will be
defined as normally distributed.

The confidence interval for the tests can be calculated using:

x̄± Z ∗ σ÷
√

N

Confidence intervals are an indicator on the precision and consistency of
the data. It gives an interval as output which, depending on the percentage
of the confidence interval (0.99 will be used here), will give an interval
where most sample means of the experiment should be within.

The welsh two sample t test is calculated using: t = x̄1−x̄2

sqrt(
s2
1

N1
+

s2
2

N2
)

This test is used to see how much of a time difference there is between
the results using two hypotheses. The first hypothesis is that the time
difference between the two samples is not significant and that it is likely
that a sample mean for Containers could be within the same interval as the
MLN test. The alternative hypothesis is that there is a significant difference
and that is unlikely that the two software types could have a sample mean
within the interval of the other. The p value shows how likely it is that the
two data sets have a sample mean within the same interval.

4.1.1 Scenario 1

In scenario 1 the experiment was about testing out how long it would take
to spawn a new web server using Kubernetes together with Docker and
MLN together with Openstack.

The histogram 4.1, shows the distribution of the data from scenario 1 using
MLN:

The histogram 4.2, shows the distribution of the data from scenario 1 using
Kubernetes:

Looking at the distributions of the results, it is necessary to further
investigate which kind of distribution the results lie within. The MLN
histogram seems to be approaching a normal distribution from its shape,
but the Kubernetes histogram is more difficult to interpret. It should
therefore be further investigated. To do that there is a need to know the
standard deviation which is shown in Figure 4.3. Approximately 67 %
of the values for Kubernetes are within 1 standard deviation away from
the mean (interval between 16,72 and 22,8). The rest of the values are

42

Figure 4.1: Histogram for scenario 1 using MLN

Figure 4.2: Histogram for scenario 1 using Kubernetes

within 2 standard deviations away from the mean. The Kubernetes results
are therefore normally distributed because the values of sd+-1 are close
to 68 % and the values of sd+-2 are close to 95 %. Regarding the MLN
distribution, about 73 % of the values are within 1 standard deviation away
from the mean (interval between 39,43 and 52,29). Approximately 23 %
of the data points are within 2 standard deviation away from the mean
(interval between 33 and 58,72). The results from the MLN experiments
also points toward a normal distribution of the results.

The Kubernetes experiment has a lower standard deviation than the MLN
experiment. A higher standard deviation means that there is a higher
spread of the data points, which implies that the amount of seconds it takes
are less consistent than with Kubernetes.

43

Figure 4.3: Standard deviation for scenario 1

Looking at the mean in 4.4, Kubernetes highly outperformed MLN in
this experiment with the mean being more than half of the mean of the
experiment using MLN. Kubernetes performed in average scenario 1 26,1
seconds faster than MLN.

Figure 4.4: Mean for scenario 1

44

Analyzing the highest and lowest points of the experiment in Figure 4.5, it
becomes clear that Kubernetes highest data point is 8,6 seconds faster than
the lowest data point using MLN. It further enhances the impression after
the comparisons of the means, that there is big difference in terms of time
consumed between the two technologies.

Figure 4.5: Min/max for scenario 1

Looking at the confidence intervals for scenario 1 in 4.6, it shows that
Kubernetes has a lot lower values with the interval being 18.2-21.3
compared to 42.6-49.1. The interval for Kubernetes is around half that of
MLN. The interval in itself is also a lot more narrow with being 3.1 seconds
wide, while the interval for MLN is 6.5 seconds wide. With Kubernetes
having a more narrow interval, it shows that it is more consistent than
MLN.

Using the welch two sample t test to compare the results between the two
experiments, a p value of 2.2e-16 is received. 2.2e-16 is an extremely low
value which further underlines how different the results using MLN and
Kubernetes are and the alternative hypotheses is true.

4.1.2 Scenario 2

The histogram 4.7, shows the distribution of the data from scenario 2 using
MLN:

The histogram 4.8 shows the distribution of the data from scenario 2 using
Kubernetes:

45

Figure 4.6: Confidence intervals for scenario 1

Figure 4.7: Histogram for scenario 2 using MLN

Both of the histograms shows signs of approaching a "bell curve" which
often represents a normal distribution. However to further investigate
what kind of distribution it is, there is a need to know the standard
deviation which is shown in 4.9. Approximately 73 % of the values for
Kubernetes are within 1 standard deviation away from the mean (interval
between 21,41 and 27,49). Approximately 96 % of the values are within 2
standard deviations of the mean (interval between 18,37 and 30,53). When
doing the same for the MLN part of the scenario, 80 % of the values are

46

Figure 4.8: Histogram for scenario 2 using Kubernetes

within 1 standard deviation of the mean (interval between 43,2 and 54,04).
Approximately 16 % is within 2 standard deviations of the mean (interval
between 37,78 and 59,46). Even though 80 % within 1 sd of the mean is
quite high for a normal distribution, there are only 30 data points in this
experiment so the percentage will vary quite a bit. It still shows a pattern
of being normally distributed. The fact that 70-80 % of the results for both
Kubernetes and MLN are within 1 sd of the mean shows a certain degree
of predictability in the results and it shows that there is a high chance of
getting a result within +- 1 sd when using both technologies.

The Kubernetes experiment has a lower standard deviation than the MLN
experiment. A higher standard deviation means that there is a higher
spread of the data points, which means that the time spent is less consistent
than with Kubernetes. The difference is however less than in scenario 1.

The bar diagram 4.10 shows the means for both of the technologies.
Looking at the mean, Kubernetes performed considerably better than MLN
with the difference being 22.1 seconds, or almost twice as many seconds.

Analyzing the lowest and highest data points of the experiments, the
Figure 4.11 further amplifies the huge difference in time spent between
Kubernetes and MLN. The lowest value of MLN is over twice as big as the
value of Kubernetes and the highest point of Kubernetes is approximately
6 seconds less than the highest point of MLN.

Next up is the 99 % confidence intervals for scenario 2 shown in 4.12.

The confidence interval for Kubernetes is calculated to between 22.9-26
and the interval for MLN is 45.9-51.3. Kubernetes has narrower interval
and provides more consistent results. MLN does however better than in
scenario 1 with the interval difference being less than in the first scenario.

47

Figure 4.9: Standard deviation for scenario 2

Figure 4.10: Mean for scenario 2

Using the welch two sample t test to compare the results between the
two experiments, a p value of 2.2e-16 is received. 2.2e-16 is a very low
value which further underlines how different the results using MLN and
Kubernetes are, just like in scenario 1.

48

Figure 4.11: Min/max for scenario 2

Figure 4.12: Confidence intervals for scenario 2

49

50

Chapter 5

Discussion and conclusion

This section will discuss what the output from the results and analysis
represents and eventual problems with them and what future research that
can be done within this topic. It will also summarize the thesis and try to
answer whether the problem statement has been answered or not.

5.1 Discussion

The analysis shows that Kubernetes clearly performs better when adding
more resources in scenario 1, and when the amount of resources are
rebalanced between different services in scenario 2. This is in line with
theory and literature on the subject that describes Linux Containers as
lightweight virtual machines, which has every prerequisite to actually
outperform software using templates and virtual machines. The difference
in performance using Kubernetes and Docker, gives Linux Containers
an edge over virtual machines when it comes to being able to quickly
scale up and rebalance the use of resources for web services. Service
Level Agreements will contain different requirements for a web solution
from company to company, but values such as response time and uptime
requirements are often present. Given the nature of web services, traffic
can to a certain degree be unpredictable and fluctuating [3]. Being able
to adapt quickly is therefore essential to fulfill uptime and response time
requirements [3], and Kubernetes and Docker clearly performs better than
using MLN and Nova. In both the scenarios, the mean using containers is
almost half or less than that of MLN which is a substantial difference.

It is interesting to note that the difference between the means and standard
deviations values, are less in scenario 2. The difference is however quite a
lot, and the welsh t test states there is almost 0 % chance of the sample
means using these two technologies that they will be within the same
interval.

This thesis has been conducted as a comparative study between one type

51

of software that uses linux containers and one that uses virtual machines
and templates. The study has however also been investigative in the sense
Kubernetes had to be set up in an Openstack cloud. The documentation
on configuring a Kubernetes cloud for a different cloud provider than the
likes of Digitiloccean, Amazon and Google, was not that easy to come
by. A lot of the documentation on Kubernetes was also outdated, which
meant that several scripts and commands mentioned, had been removed
or replaced. This thesis, as well as showing the differences between
Kubernetes and virtual machines, will hopefully also help introduce how
to configure Kubernetes in a private cloud. Given the results of this study,
it might persuade more web service providers to experiment using Linux
containers.

In this project, containers and virtual machines have been tested in terms of
how they deal with horizontal scaling. There are however other factors that
also can contribute to scalability such as vertical scaling and load balancing.
Virtual machines have a set cap of resources available to them, including
disk space, RAM and CPU. While they will not use all those resources when
it is not necessary, they cannot go above that cap. Therefore, if for instance
a web server running on a virtual machine needs 100 MB more RAM than
it has been assigned during a period of heavy load, a new virtual machine
with new specifications has to replace that virtual machine if resources are
limited in the cloud.

Another thing that may affect scalability, is that with using Kubernetes
services, there is a natural load balancer already implemented in the cloud.
The advantage of having to use the Kubernetes master as the load balancer
is that it knows about the state of the services running in the cloud. When
a new container is being launched, then Kubernetes already knows that
it is present and up and running. This will however not be the case
with an external load balancer that either has to be modified manually or
by sending out requests to check if servers within a certain IP range are
available in a certain interval.

Containers can also help with scalability, by using less resources because
they share the Kernel with the host operating system, instead of each
container having its own like it is the case with virtual machines. This
can reduce resource consumption which in theory could provide more
resources to other services, thereby increasing the amount of users the web
service can handle.

One interesting thing to note from these experiments, was that there were
more results that were removed from the experiment that used Kubernetes
than the ones that used MLN. When referring to errors here, it means either
that the container could not be launched or that a given result had a value
that was too high compared to the other data points in the sample. The
error rate was however pretty low and errors only occured a couple of times
during the running of the experiment.

One problem with this experiment is that even though the focus is on

52

comparing Linux containers to virtual machines in their ability to provide
web services, is that it only tests Kubernetes and Docker against MLN and
Openstack. According to the theory of containers, comparing other types
of software should also provide a significant difference between containers
and virtual machines. However at this point there are too few experiments
testing these two types of technologies against each other like it has been
done in this thesis. This is something that could be further explored in
other research projects. There are several software solutions that are being
developed and created in regards to orchestration of Docker containers.
One such tool is the new orchestration tool that is being developed by
Docker. This could actually have been used and explored in this project,
but it had its first release near the end of February which was after the
master project had begun. Further research on the topic could also be to
test containers and virtual machines in large scale scenarios where there is
a need to launch a lot of new containers and virtual machines to maintain
the stability of a web service. Further research on Kubernetes and Docker
down the line will also be interesting, because they are both relatively
new types of software and they might receive updates which enhances
their performance, which would provide different test results. There are
also a lot of new projects that are using Linux Containers, including Core
OS, Mesosphere and Project Atomic, which can be tested in terms of their
ability to scale fast in future studies and research.

Kubernetes and Docker works well with other cloud management soft-
ware, such as Apache Mesos. With a cloud management software like
Mesos, parts of the physical computers in the cloud can be shut down
when there is not a need for all the available resources. When they are
turned back on, they become once again a part of the cloud. This enables
cloud providers to save electricity when there is no need for the capacity.
Using these kinds of software can therefore integrate well with Kubernetes
and Docker, because it allows for quick downscaling while Containers can
quickly scale the system back up when traffic increases again.

5.2 Conclusion

This thesis project has focused on how web services can be quickly scaled
up to meet the problems that fluctuating traffic creates. The focus was to
notice the difference in how software using an image template performs
versus software using Linux Containers. Kubernetes and Docker was used
to test Linux Containers, while MLN and Openstack was used to test
image templates. This particular research problem was found important to
investigate, because of the demands of modern web services [3]. Modern
web services should be able to cope with differentiating amount of users,
while at the same time use as little resources as possible when web traffic
is lower [3].

The experiments were designed to see if Linux Containers could in any

53

way help with the problems of uneven traffic loads, to maintain uptime
and help keep the service providers within the service level agreements.

The results and analysis shows that Kubernetes and Docker clearly
outperforms MLN in terms of being able to scale quickly, both when using
more resources and re-balancing the resources already in use. Kubernetes
does not only scale faster, its results are also more consistent. With the
confidence interval stating that 99 % of means from the same experiment
should be within 18 and 21 for scenario 1 and 23 and 26 for scenario 2
using Kubernetes, it should be over twice as effective when many tests are
performed compared to MLN and Openstack.

The problem statement for this thesis was: Can Linux containers provide
quicker scalability for demanding web services with fluctuating traffic than
traditional virtual machine templates? After getting the results of the
experiments, it is clear that Kubernetes will scale faster than using MLN.
The problem is however that this cannot be said about Linux Containers
and virtual machine template technologies in general, because only two
combinations of software have been tested. The results are however in line
with the theory about Linux Containers, that describes them as lightweight
virtual machines with a shared kernel. So even though it can be assumed
that Linux Containers will scale faster in most scenarios, it is not possible
to definitely conclude that this is true in all cases.

54

Bibliography

[1] Kyrre Begnum. MLN + OpenStack Havana + Ubuntu 12.04. 2015. URL:
https://github.com/kybeg/mln/blob/master/README.rst.

[2] Kyrre Begnum, Nii Apleh Lartey and Lu Xing. ‘Cloud-Oriented
Virtual Machine Management with MLN’. In: Proceedings of the 1st
International Conference on Cloud Computing. CloudCom ’09. Beijing,
China: Springer-Verlag, 2009, pp. 266–277. ISBN: 978-3-642-10664-4.
DOI: 10.1007/978-3-642-10665-1_24. URL: http://dx.doi.org/10.1007/
978-3-642-10665-1_24.

[3] T.C. Chieu et al. ‘Dynamic Scaling of Web Applications in a Virtu-
alized Cloud Computing Environment’. In: e-Business Engineering,
2009. ICEBE ’09. IEEE International Conference on. Oct. 2009, pp. 281–
286. DOI: 10.1109/ICEBE.2009.45.

[4] Docker. Network Configuration. 2015. URL: http : //www . ehow . com/
info_12213044_disadvantages-centralized-network-scheme.html.

[5] Justing Ellingwood. An Introduction to Kubernetes. 2014. URL: https :
/ /www . digitalocean . com/community / tutorials / an - introduction - to -
kubernetes.

[6] Laura Frank. What is Google’s Kubernetes and How to Use It. 2014. URL:
http://www.centurylinklabs.com/what- is-kubernetes-and-how-to-use-
it/.

[7] Marisol García-Valls, Tommaso Cucinotta and Chenyang Lu. ‘Chal-
lenges in real-time virtualization and predictable cloud computing’.
In: Journal of Systems Architecture 60.9 (2014), pp. 726–740. ISSN: 1383-
7621. DOI: http : //dx . doi . org/10 . 1016/ j . sysarc . 2014 . 07 . 004. URL:
http://www.sciencedirect.com/science/article/pii/S1383762114001015.

[8] Grig Gheorghiu. Automated deployment systems: push vs. pull. 2010.
URL: http://agiletesting.blogspot.no/2010/03/automated-deployment-
systems-push-vs.html.

[9] Md. Iqbal Hossain and Md. Iqbal Hossain. ‘Dynamic scaling of a
web-based application in a Cloud Architecture’. MA thesis. KTH,
Radio Systems Laboratory (RS Lab), 2014, pp. xv, 105.

[10] Dong Huang, Bingsheng He and Chunyan Miao. ‘A Survey of Re-
source Management in Multi-Tier Web Applications’. In: Communic-
ations Surveys Tutorials, IEEE 16.3 (Mar. 2014), pp. 1574–1590. ISSN:
1553-877X. DOI: 10.1109/SURV.2014.010814.00060.

[11] Wei Huang et al. ‘A Case for High Performance Computing with
Virtual Machines’. In: Proceedings of the 20th Annual International

55

Conference on Supercomputing. ICS ’06. Cairns, Queensland, Australia:
ACM, 2006, pp. 125–134. ISBN: 1-59593-282-8. DOI: 10.1145/1183401.
1183421. URL: http://doi.acm.org/10.1145/1183401.1183421.

[12] T. Kilpi. ‘Choosing a SCM-tool: a framework and evaluation’. In:
Software Engineering Environments, Eighth Conference on. Apr. 1997,
pp. 164–172. DOI: 10.1109/SEE.1997.591828.

[13] Horacio Andrés Lagar-Cavilla et al. ‘SnowFlock: Rapid Virtual
Machine Cloning for Cloud Computing’. In: Proceedings of the
4th ACM European Conference on Computer Systems. EuroSys ’09.
Nuremberg, Germany: ACM, 2009, pp. 1–12. ISBN: 978-1-60558-482-
9. DOI: 10.1145/1519065.1519067. URL: http://doi.acm.org/10.1145/
1519065.1519067.

[14] Cory Lueninghoener. ‘Getting Started with Configuration Manage-
ment’. In: 36.2 (Apr. 2011), ??–?? ISSN: 1044-6397. URL: https://www.
usenix.org/publications/login/april-2011-volume-36-number-2/getting-
started-configuration-management.

[15] Mark P. M. ‘The cloud begins with coal’. In: CoRR abs/1411.5077
(2013). URL: http://www.tech-pundit.com/wp-content/uploads/2013/
07/Cloud_Begins_With_Coal.pdf.

[16] Matt McGew. The Disadvantages of a Centralized Network Scheme. 2015.
URL: http://www.ehow.com/info_12213044_disadvantages-centralized-
network-scheme.html.

[17] Dirk Merkel. Docker: Lightweight Linux Containers for Consistent
Development and Deployment. May 2014. URL: http://www.linuxjournal.
com / content / docker - lightweight - linux - containers - consistent -
development-and-deployment.

[18] Opensource.com. What is OpenStack? May 2015. URL: http : / /
opensource.com/resources/what-is-openstack.

[19] Openstack. Heat. 2015. URL: https://wiki.openstack.org/wiki/Heat.
[20] Puppetlabs. Learning Puppet — Basic Agent/Master Puppet. 2015. URL:

https://docs.puppetlabs.com/learning/agent_master_basic.html.
[21] Puppetlabs. Puppet Internals. 2015. URL: https://docs.puppetlabs.com/

guides/puppet_internals.html.
[22] Jake Sanders. Applications at scale: Running Docker Containers on

Apache Mesos. 2015. URL: http://www.livewyer.com/blog/2015/02/
04/applications-scale-running-docker-apache-mesos.

[23] Virtualization and Containerization of Application Infrastructure: A Com-
parison. Vol. 21. June 23. University of Twente, 2014.

[24] Yasir Shoaib and Olivia Das. ‘Performance-oriented Cloud Provision-
ing: Taxonomy and Survey’. In: CoRR abs/1411.5077 (2014). URL:
http://arxiv.org/abs/1411.5077.

[25] C. Tradowsky et al. ‘Determination of on-chip temperature gradients
on reconfigurable hardware’. In: Reconfigurable Computing and FPGAs
(ReConFig), 2012 International Conference on. Dec. 2012, pp. 1–8. DOI:
10.1109/ReConFig.2012.6416738.

[26] unknown. Docker installation. 2015. URL: https ://docs .docker . com/
installation/ubuntulinux/.

56

[27] W3. Bruk av IKT i husholdningene, 2014, 2. kvartal. 2014. URL: http://
www.ssb.no/ikthus.

[28] W3. Webservice definition. 2015. URL: http://www.w3.org/TR/2004/
NOTE-ws-gloss-20040211/#webservice.

[29] Johannes Wettinger et al. ‘Integrating Configuration Management
with Model-Driven Cloud Management Based on TOSCA’. In:
Proceedings of the 3rd International Conference on Cloud Computing
and Service Science, CLOSER 2013,8-10 May 2013, Aachen, Germany.
SciTePress, 2013, pp. 437–446.

57

