
Duality for elliptic normal surface scrolls 

RAQUEL MALLAVIBARRENA1 AND RAGNI PIENE2 

Abstract. Let C be a smooth, integral, complete curve, and consider a decom­
posable locally free sheaf on C. Given a realization of the associated projective 
vector bundle over Cas a ruled, nondevelopable variety, or scroll, in some projec­
tive space, we consider its higher order osculating spaces and dual varieties. We 
obtain results about the higher order dual varieties of such scrolls analogous to 
those obtained in the case of rational normal scrolls by Sacchiero and the second 
author (8]. These general results are then applied to scrolls defined by locally 
free rank 2 sheaves on an elliptic curve. If the sheaf is decomposable, we obtain 
directly a description of the dual varieties, in particular their dimension and de­
gree. If the sheaf is indecomposable, it follows from a result of C. Segre (9] that 
the surface is the projection of a decomposable scroll, and we conclude with a 
comparison of the dual varieties of a scroll with those of its projection. 

1. Introduction. IT X C pN is a projective variety, one defines mth order 
dual varieties X~ C (PN)v as in [7) and [8). The mth order dual variety 
parametrizes hyperplanes having order of contact at least m + 1 with X. Each 
such hyperplane contains an mth order osculating space to X. In fact, at each 
smooth point x E X the various osculating spaces form a flag of linear subspaces, 
whose dimensions are independent of x when x is a general point [8, p.1042]. 
The dual variety corresponding to the largest of these linear spaces is called the 
strict dual variety and denoted by X*. 

Sacchiero and the second author [8) gave a complete description of the higher 
order dual varieties, in particular of the strict dual varieties, in the case that X is 
a rational normal scroll. This description was obtained by considering a rational 
normal scroll of dimension r as the variety swept out by ( r - 1 )-dimensional 
linear spaces spanned by corresponding points on r rational normal curves. 

Our paper adds to the study of dual varieties of ruled varieties by considering 
more general cases. The description in [8) is given in terms of the behavior at a 
general point of X. We consider the varieties swept out by ( r - 1 )-dimensional 
linear spaces spanned by corresponding points on r linearly normal curves of 
genus g and obtain analogous results. We call these varieties "decomposable 
normal scrolls" because they are defined, generalizing the rational case, by pro­
jectivizations of decomposable locally free sheaves on a curve C of genus g. 
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In Section 2 we make a local study of the homomorphisms defining the oscu­
lating spaces of decomposable scrolls using the definitions and techniques of [8]. 
We obtain a description of the "type" of the dual varieties x:::. In particular 
we determine their dimensions and degrees (Propositions 4, 5, 6). We also give 
necessary and sufficient conditions for reflexivity, the condition that the strict 
dual of the strict dual of the variety is equal to the variety itself (Proposition 7). 

In Section 3 we study the case that C is elliptic - this being the simplest 
case where indecomposable sheaves appear. We give necessary and sufficient 
conditions for the projectivization of a rank 2 locally free sheaf£ over an elliptic 
curve C to be embedded as a linearly normal scroll (Proposition 9). Here, we use 
Atiyah's classification [1] in terms of an invariant e of the associated projective 
bundle. Moreover, following ideas of C. Segre [9], we realize every indecompos­
able normal elliptic scroll as the projection of a decomposable one from a point 
on it (Proposition 10). 

In Section 4 we deduce our main duality results, the following two theorems. 

THEOREM 1. H-X C p2d-e-l is a decomposable normal elliptic scroll of dimen­
sion 2, with invariant e and degree 2d- e, where d ~ e + 3, then 
(i) if e = 0, then X*= X'j_1 is of dimension 2 and degree 2d(d- 1); 
(ii) if e = 1, then X*= X'j_ 2 is of dimension 3 and degree 2~- 5d + 2; 
(iii) if e ~ 2, then X*= X'j_ 2 is of dimension 1 and degree d(d- 1). 

THEOREM 2. H X C P 2d-e-l is an indecomposable normal elliptic scroll of 
dimension 2, with invariant e and degree 2d- e, where d ~ e + 3, then 
(i) if e = -1, then X*= X'j_1 is of dimension 3 and degree 2d2 - 3; 
(ii) if e = 0, then X*= X'j_1 is of dimension 2 and degree 2~- d- 2. 

To prove Theorem 2 we view the scroll as a (special) projection of a decompos­
able scroll (Proposition 10). We then apply a result relating the dual varieties 
of a scroll to those of its projection (Lemma 12). 

Acknowledgments. We would like to thank Steven Kleiman and Gianni Sac­
chiero for their helpful remarks concerning the first version of this paper. 

2. The dual varieties of decomposable scrolls. Fix an algebraically closed 
ground field of characteristic 0 (or of characteristic p, where p is strictly greater 
than the integer dr below), and let C be a smooth, integral, complete curve of 
genus g. Fori= 1, ... , r let Mi be invertible sheaves on C and assume that each 
Mi is generated by a subspace V; of H 0(C,Mi) so that we have surjections 

denote the corresponding morphisms, and set Ci := h( C). 
Set V := EBf=1 V; and N := dim V = I:~=1 di + r- 1. Set M := EBi=1 Mi. The 

canonical surjection 
Vc~M 
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induces a morphism 
f: P(M)--+ P(V). 

Set X:= f(P(M)). 
By construction, Ci is contained in X fori = 1, ... , r. Assume from now on 

that the morphisms fi are birational onto their images, then f is also birational 
onto its image. Indeed, let 1r: P(M) --+ C denote the projection. Then for each 
P E C, f ( 7r -l ( P)) is an ( r - 1 )-dimensional linear space, or an ( r - 1 )-plane, 
spanned by the points fi(P), i = 1, ... , r. Since the morphisms fi are generically 
injective, almost all these (r -1 )-planes are distinct- in fact disjoint. Therefore 
f is generically injective. Hence, in order to show that f is birational onto its 
image, it suffices to show that it is generically unramified. This is equivalent to 
showing that the homomorphism a 1 defined below is generically surjective, and 
this holds because the maps fi are generically unramified by assumption. 

Thus X is a (possibly singular) variety ruled by ( r -1 )-planes - the generators 
of X- in P(V). Note that by construction X is not contained in any hyperplane. 
We call X a decomposable scroll and write X = ( C1 , ••• , Cr ). The degree of X is 
equal to 

r 

c1(CJP(V)(1)1xY = cl(OP(M)(1)Y = c1(M) = L deg Mi. 
i=1 

The subspace V of H 0 (P(M), OP(M)(1)) defines a linear system on P(M). We 
call X a decomposable normal scroll, if this linear system is complete. 

LEMMA 3. H the linear system on P(M) corresponding to V is complete, a 
sufficient condition for f to be an embedding is that deg Mi 2:: 4g + 1, for 
i = 1, ... ,r. 

PROOF. We adapt the argument for rational normal scrolls [8, Lemma 1, 
p. 1045]: It suffices to show that OP(M)(1) is very ample. Let£ be an invertible 
sheaf on C which is very ample and which is such that M 0 c-1 is generated 
by its global sections. Note that these assumptions hold if the degree of£ is at 
least 2g + 1 and deg Mi 2:: deg £ + 2g for i = 1, ... , r. Set Ni := Mi 0 c-1 , set 
W := H 0 (C, (JJN'i), and consider the sequence of embeddings 

where the last map is the Segre embedding. Since the composition is an embed­
ding,£ 0 OP(M®.C-1)(1) is very ample. But this invertible sheaf is isomorphic 
to OP(M)(1). 

As with rational normal scrolls, we study the mth order dual varieties of 
decomposable scrolls by studying the homomorphisms 

where P.X(1) denotes the sheaf of principal parts of order m of the invertible 
sheaf Ox(1) := f*OP(V) (see [6, 6, p. 492] or [4, pp. 342-346]). The mth order 
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osculating space to X at a point x is defined by the image of the map am ( x), 
i.e., as P(Im am(x )) C P(V). 

At a point P E C, let t denote a local (analytic) parameter for C so that 
fi(P) = (xo(O), ... , Xd;(O)) for i = 1, ... , r. Then for each fi: C -+ P(Vi) the 
homomorphism 

aj.: (Vi)c -+ Pc(Mi) 

is given locally around the point P E C by the matrix 

xo(t) X1(t) Xd; (t) 

M:J: = 
x~(t) xi (t) x~1 (t) 

x~m)(t) x~m\t) x~7)(t) 

The linear space spanned by the row vectors of this matrix for t = 0 defines the 
mth order osculating space to Ci at the point fi(P). 

vVe may choose coordinates on P(Vi) such that the orders of vanishing at t = 0 
of the functions xi ( t) are strictly increasing. IT P is not a point of hyperosculation 
of C with respect to the map fi, and if m :::; di, then 

0 

* 

0 
0 0) 0 

0 ' 

... 0 
where the ai's are non-zero constants [5, (9), p. 57]. Note that if m > di, then 
any mth order osculating space to Ci is the whole space P(Vi). 

Suppose now that P = P(O) E Cis not hyperosculating for any of the maps 
fi, and let y be a point on the generator Xp corresponding toP. Let AI, ... , Ar 
denote homogeneous coordinates obtained by trivializing the shea£ M around 

-m-1 
P. Then X has a local parametrization y(t; AI, ... , Ar) at y. Let M d; denote 

M:J:-1 if m - 1 :::; di and Mt: otherwise. As in the case of rational normal 
scrolls, the matrix corresponding to the map am at a point y where Ar = 1, is 
row equivalent to 

where Am is the matrix 

0 0 

0 0 

-~-1 
0 M dr-1 

Ar-1 M:J: _1 
Mm 

dr 

We see that if m:::; d1, then rk am(x(t; A))= rm + 1, and that if m ;;=:: dr + 1, 
then rk am(x(t; A)) = N + 1. By setting A1 = ... = Ar-1 = 0, we see that the 
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mth order osculating space to X at the point Yr(t) = fr(P(t)) = Cr n XP(t) is 
equal to the space spanned by the. ( m - 1 )th order osculating spaces to Ci at 
Yi(t) := Ci n XP(t)l for i = 1, ... , r- 1, and the mth order osculating space at 
Yr(t), and similarly for the points Yi(t) fori~ r- 1. 

Recall some definitions from [8]. For each m, we let s(m) denote the generic 
rank of the map am. Define the mth order dual variety X~ of X as the closure 
in P(Vv) of the set of hyperplanes containing an s( m )-dimensional mth order 
osculating space to X. We set 

s := max{s(m)ls(m) < N}, 

and put m = min{mls(m) = s}. The strict dual variety X* of X is defined by 
X*=X:::!.... m 

For each integer m such that 1 ~ m ~ m, let i( m) denote the integer such 
that 0 ~ i( m) ~ r - 1 and di(m) + 1 ~ m ·~ di(m)+I where do := 0. 

Given subvarieties Yt, ... , Yu of some projective space, we let [Yt, ... , Yu] denote 
the smallest linear subspace containing these varieties. For each ordered subset 
(it, ... is) of (1, ... ,r), we let Xi 1 , ... i. = (Cip ... ,Ci.) denote the corresponding 
ruled variety in [Cip ... , Ci.] = P(l/i1 EEl ... EEl l/i.). 

Let 8 1 ( Cr) denote the tangent developable of the curve Cr. Let 

denote the variety in P(V) swept out by the r-dimensionallinear spaces spanned 
by the points h(P), ... , fr-t(P) and the tangent line to Cr at fr(P) for P E C. 

The strict dual curve Cj c P(V/) of C; c P(Vj) is equal to the curve 

under the natural identification P(v~,V) = [Ct, ... , C;, ... , Cr]v. 
The following proposition can be seen from the local description of the maps 

am; the proof is the same as for rational normal scrolls [8, Prop. 1, p. 1057]. 

PROPOSITION 4. Hi( m) ~ r - 2, then 

i(m) 

dim X~= N + 1- rm + L(m -1- d;). 
i=l 

Hi(m) = r -1, then 

r-1 

dim X~= N- rm + L(m -1- d;) = dr- m. 
j=l 

Moreover, if i( m) ~ 1, we have 

xv -(X· )v n [X · ]v m - z(m)+I, ... ,r m l, ... ,z(m) · 
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PROPOSITION 5. The strict dual variety X* of X has the following description, 
depending on the relation between dr and dr-1· 

a) Suppose dr = dr-1· Let j be the integer such that dj < dj+1 = ... = dr-1 = dr. 
Then m = dr and i( m) = j. Moreover, 

X*= (CJ+1, ... ,c;) c [Xt, ... ,Xj]v. 

b) Suppose dr = dr-1 + 1. Let j be the integer such that dj < dj+1 = ... = dr-l· 
Then m = dr-l and i(m) = j. Moreover, 

X*= cc;+1, ... , c;_1, S1(C;)) c [X1, ... ,Xj]v. 

c) Suppose dr ~ dr-1 + 2. Then m = dr- 1 and 

X*= c; C [Xl, ... ,r-I]v. 

PROOF. The proof is similar to that of [8, Prop. 2, p. 1057]. 

PROPOSITION 6. Let (Ci)~_ 1 C P(v?) denote the (m-1)th dual variety of the 
curve Ci C P(Vi). Then 

r 

deg X~= Ldeg (Ci)~_ 1 . 
i=1 

PROOF. Let j be the largest integer such that m > dj. For each integer i > j, 
let Li C P(Vi) C P(V) be a linear subspace of dimension di-m- 1 in general 
position with respect to Ci. Set L := [Lj+1, ... , Lr]· Then L is a linear subspace 
of P(V)"" pN of dimension N- M -1, where M = I:{=1 dk + (r- j)m + r -1, 
and Lis "general" with respect to X in the sense that the projection X C pM 

-v -v -• -
of X from L satisfies Xm =X~ n Lv. But Xm =X , and X falls into case a) 
of Proposition 5. Note that, by definition, (Ci)~_1 = 0 if m > di. 

PROPOSITION 7. We have X** = X if and only if d1 = ... = dr-1 and either 
dr = dr-1 or dr = dr-1 + 1. In all other cases, X** is a cone containing X. 

PROOF. This assertion follows from Proposition 5, compare [8, Theorem, 1) 
and 3), p. 1043]. (Note that in case b) the study of X** does not require the 
tangent developable to be decomposable.) 

Remark 8. The preceding results imply that if X is self-dual (i.e., isomorphic to 
its strict dual variety), then the di's are equal and all the curves Ci are selfdual. 
In particular, if the maps fi are all linearly normal embeddings, X is self-dual 
only if C is rational. 

3. Elliptic normal scrolls of dimension 2. Let C be a smooth elliptic curve, 
and£ a locally free sheaf of rank 2 on C. We study the dual varieties of the ruled 
surface P( £) with respect to various linearly normal projective embeddings using 
results of Atiyah [1], as explained in Hartshorne [3, Ch.V, 2]. In particular, we 
assume that£ is normalized; that is, H 0 (C, £) =f:. 0, but for all invertible sheaves 
£on C with deg £ < 0, we have H 0 (C, £0 £) = 0. Recall that e := -deg £is 
an invariant of P(£) [3, Ch. V, 2.8, p. 372]. If£ is decomposable, £ = Oc EB £ 
and e = -deg £ ~ 0 [3, Ch. V, 2.11.2, 2.11.3, p. 374). If£ is indecomposable, 
there are only two possible values of e, namely, 0 and -1, and £ is uniquely 
determined [3, Ch. V, 2.15, p. 377]. 
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PROPOSITION 9. Let M be an invertible sheaf on C of degree d. If d ~ e + 3, 
then OP(E®M)(1) yields an embedding ofP(t'®M) ~ P(£) as a linearly normal 
scroll X C P 2d-e-1 of degree 2d- e. Moreover, any linearly nonnal embedding 
of P( £) as a scroll is of this type. 

PROOF. Let 1r: P( £) --+ C denote the natural projection, and let Co be a 
section of 1r with C~ =-e. It is known that (1r* M)(Co) = 1r* M ® OP(e)(1) is 
very ample on P(£) if and only if d ~ e + 3 [3, Ch. V, Ex. 2.12, p. 385]. Hence, 
if d > e + 3, then H 0 (P(£), 1r* M ® Op(e)(1)) defines a projective embedding 
such that the fibres of 1r are lines. Let X denote this linearly normal, embedded 
scroll. The degree of X is equal to the degree of the sheaf£® M which is 2d- e. 
Using this and the Riemann-Roch theorem on the elliptic curve C, we find that 
H 0 (P(£), 1r* M ® OP(e)(1)) is of dimension 2d- e as desired. 

As each embedding of P ( £) as a scroll is given by ( 7r* M) ( C 0 ) for some in vert­
ible sheaf M on C [3, Ch. V, Prop. 2.9, p. 373], the proof is finished. 

Following ideas of C. Segre [9], as explained by Edge [2, 278, p. 217], we shall 
now see that the study of the dual varieties of indecomposable elliptic scrolls 
reduces to the study of the dual varieties of decomposable ones and of their 
projections. 

PROPOSITION 10. Suppose £ is indecomposable and X C P 2d-e-1 is an em­
bedding ofP(£) given by an invertible sheaf M on C of degree d ~ e + 3 as in 
Prop. 9. Then there exists a decomposable scroll X' C P 2d-e such that X is the 
projection of X' from a point on X'. 

PROOF. Note that the sections of X of degree d' correspond to invertible 
quotients £ ® M --+ M' with deg M' = d', hence to invertible quotients £ --+ £' 
with deg £' = d' - d. 

First assume that e = -1. Then we have an exact sequence 

0--+ Oc --+ £ --+ Oc(P) --+ 0 

for some point P on C. This sequence defines a section C' of X of degree d + 1. 
Since £ is normalized, this section is of minimal degree. Indeed, suppose £ --+ £' 
is a 1-quotient such that deg £' :::; 0. If K, denotes the kernel, we have deg K, ~ 1, 
and we get 

0 --+ Oc --+ £ ® x:,-1 --+ £' ® x:,-1 --+ 0. 

Therefore H 0 ( C, £ ®K..-1 ) "I 0, which contradicts the fact that £was normalized. 
Let Q E C, Q "I P. The Riemann-Roch theorem gives 

dim H 0 (C,£ ® Oc(Q- P)) = 1. 

(Note that h1(C,£ ® Oc(Q- P)) = h0 (C,£v ® Oc(P- Q)) = 0 since£ has no 
1-quotients of degree :::; 0.) This section corresponds to an exact sequence 

0 --+ Oc(P- Q) --+ £ --+ LQ --+ 0, 
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where .CQ has degree 1. The sheaf .CQ must be locally free, since if not, it would 
have a locally free rank 1 quotient of nonpositive degree, but & is normalized. 
Thus we get a section CQ of X of degree d + 1. 

We have 

.CQ = A2& ® 0 0 (Q- P) = Oc(P) ® Oc(Q- P) = Oc(Q). 

Consider the exact sequence 

0--+ & --+ Oc(P) E9 Oc(Q)--+ n--+ 0, 

where n is a sheaf of length 1. The sheaf n is supported on the point Q; this 
claim can be seen from the following commutative diagram: 

0 0 

1 1 
0 -----+ Oc Oc(Q) Oc(Q)/Oc -----+ 0 

1 1 II 
0 ----+ & Oc(P) E9 Oc(Q) n -----+0 

1 1 
Oc(P) Oc(P) 

1 1 
0 0 

Define X':= P(M(P)EBM(Q)) C p2d+I. Then XC P2d is obtained from X' 
via projection from the point R := P(n) EX'. Note that X' is decomposable, 
with invariant e' = 0, and that X is an elementary transformation of X'. 

Assume next that e = 0 and that X C P 2d-I is given by an invertible sheaf 
M of degree d > 3. The exact sequence 

0 --+ Oc --+ & --+ Oc --+ 0 

corresponds to a section Co of X of degree d. Since & is normalized and inde­
composable, this is a section of minimal degree, and it is unique. 

Let Q E C. By the Riemann-Roch theorem, 

Each section corresponds to an exact sequence 

0 --+ Oc( -Q) --+ & --+ .CQ --+ 0, 

where .CQ is a sheaf of degree 1. If .CQ is not invertible, then it has an invertible 
quotient .C of nonpositive degree. By the uniqueness of the minimal degree 
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quotient of£, the quotient£--+£ is equal to£--+ Oc. Therefore, the surjection 
£Q--+ Oc induces a homomorphism of exact sequences 

0 ---+ Oc( -Q) ---+ £ ---+ £Q ---+ 0 

1 II 1 
0 -----+ Oc £ Oc ---+ 0 

where the map Oc( -Q)--+ Oc is injective. Since there is only one such injection, 
there exists at most one section of£ 0 Oc( Q) such that the corresponding sheaf 
.CQ is not invertible. 

Thus we may take an invertible quotient 

of degree 1. We have 

This quotient corresponds to a section CQ of X of degree d + 1. 
Consider the exact sequence 

0 --+ £ --+ Oc EB Oc( Q) --+ n --+ 0. 

Then 
n is a sheaf of length 1, and one sees, arguing as in the case e = -1 above, 

that n is supported on the point Q. Set X' := P(M EB M(Q)) c P 2a. Then 
X C P 2d-l is obtained via projection from the point R := P(R) E X'. Note 
that X is an elementary transformation of X', and X' is decomposable, with 
invariant e' = 1. 

Remark 11. In both cases considered in the proof of Proposition 10 (e = -1 and 
e = 0), if 1r1 : X' --+ C denotes the projection, then we have 1r1(R) = Q. 

4. Dual varieties of elliptic normal scrolls. In this section we prove Theo­
rems 1 and 2 of the Introduction. Let C be an elliptic curve and £ a normalized 
rank 2 sheaf on C with invariant e. Let M be an invertible sheaf of degree 
d 2::: e + 3 on C, and consider the corresponding linearly normal embedding of 
P( £) in P 2d-e-l as a scroll of degree 2d - e. Denote this scroll by X. 

To prove Theorem 1, assume £ is decomposable. Consider first the "balanced" 
case, e = 0. Then X is of degree 2d in P 2d-l. This scroll has two disjoint sections, 
C1 and C2 , of degree d. Each Ci is an elliptic normal curve in a linear subspace 
pd-1 of p2d-1. 

Recall that the strict dual curve of an elliptic normal curve of degree dis a 
curve of degree d(d- 1) with J2 ordinary cusps and no other singularities [6, 
Ex. 2, p. 480). 

Applying Proposition 5 to X, with r = 2 and di = d- 1 fori= 1, 2, we get 
m = d - 1. Hence the strict dual variety of X is the surface X* = X'f_1 = 
( c;' c;), and its degree is 2d( d- 1). 
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Consider next the "semi-balanced" case, e = 1. Then X= (C1 , C2 ) C pzd-Z is 
of degree 2d-1, with deg C1 = d1 +1 = d-1 and deg C2 = dz+1 =d. Proposition 
5 gives X*= X'd_ 2 = (C;,S1(C2)), so X* has dimension 3. Proposition 6 and 
[6, Ex. 2, p. 480] give 

2 

deg X*= L deg (Ci)~_3 = (d -1)(d- 2) + d(d- 2) = 2d2 - 5d + 2. 
i=l 

IT e ~ 2, then m = d- 2 and X* = X'd_ 2 = Ci. Hence X* is a curve of degree 
d(d-1) with~ ordinary cusps and no other singularities [6, Ex. 2, p. 480]. Thus 
Theorem 1 is proved. 

To prove Theorem 2, assume£ is indecomposable. Then e = -1, ore= 0. By 
Proposition 10, if M is an invertible sheaf of degree d ~ e+3, then X C p2d-e-l 
is normal of degree 2d- e and X is the projection of a decomposable scroll X' 
in p2d-e. By Theorem 1, (X')* = (X')~-e-I· Finally, it follows from the local 
study of the maps am for X' in [8, p. 1060] that almost all mth osculating spaces 
of X' are of dimension 2m form~ d-e -1. 

IT e = -1 and m = d, then the projection of almost every dth osculating space 
of X' is the whole space pzd unless the center of projection R belongs to all of 
them. But this is impossible because (X')* spans (P2d+l )v by Proposition 5. 
Hence we conclude that X* = X'f_1 holds. 

IT e = 0 and m = d -1, then the projection of almost every ( d -1 )th osculating 
space of X' is a (2d- 2)-dimensional space in pZd-I, so again we get X* = X'f_ 1 . 

To continue the proof of Theorem 2 we need the following variant of the 
"section and projection" theorem for duality [7, Prop. 2, p. 338]. 

LEMMA 12. Let X' C pN+l be a ruled surface not contained in a hyperplane, 
and let X C pN be the projection of X' from a smooth point R E X'. Let 
m < [ ~]. Assume that almost all the mth order osculating spaces to X' along 
the generator containing R have dimension 2m and are not constant along this 
generator. Let HR = (PN)v denote the hyperplane of (PN+l )v dual to the 
point R, and let X.R denote the generator containing the point R. Then 

(X')v n H = xv U (X' )v m R m R · 

Moreover, 
deg X~= Jdeg (X')~ -1. 

PROOF. The first equation is obvious for hyperplanes containing both R and 
an mth order osculating space to a point not on X1z. By assumption, almost 
all the mth order osculating spaces to X' along X.R have dimension 2m and 
their union spans a (2m+ 1)-dimensionallinear subspace of pN+l. IT H' is any 
hyperplane containing X1z, either H' contains this union, or H' intersects it in 
a linear space of dimension 2m. However, such a space must contain the mth 
order osculating space to X' at some point of X1z. 
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Example 13. Let X be the quintic elliptic scroll in P 4 • Let X' C P 5 be a 
sextic elliptic scroll such that X is the projection of X' from a point R E X'. 
Then X* = xv has degree 5, whereas (X')v has degree 6. Let H denote the 
hyperplane in P 5 dual to R, and let L denote the generator of X' containing R. 
Then (X')v n H = xv U Lv. 

To apply Lemma 12 to prove Theorem 2, we need the following observation of 
C. Segre [9) (see also Edge [2, p. 218]). 

LEMMA 14. Let XC pn-1 be a normal elliptic surface scroll of degree n. Then 
any section D of X of degree c :::; n - 1 is an elliptic normal curve. 

PROOF. We must show that D spans a ( c- 1 )-dimensional linear subspace of 
pn-1 . Set Ox(1) := Opn-1(1)lx and Ov(1) := 0pn-1(1)jv. Since X is linearly 
normal, we have 

dim H0 (X, Ox(1)) = n. 

Applying the Riemann-Roch theorem to the elliptic curveD, we get 

dim H 0 (D, Ov(1)) =c. 

Therefore it suffices to show that the restriction map 

is surjective, or equivalently that its kernel H 0 (X, Ox( -D)® Ox(1)) has di­
mensiOn n - c. 

Suppose, in the notation of Proposition 9, that X= P(£) "'"'P(£ ® M). Let 
£--+ £' denote the 1-quotient corresponding to the section D, and define JC by 

0 --+ JC --+ £ ® M --+ £' ® M --+ 0. 

Then JC is invertible and of degree n - c. Since by assumption n - c 2: 1, we 
have H 1 ( C, JC) = 0. Hence 

dim H 0 (C,JC) = n- c. 

However, by [3, Ch. V, 2.6, p. 371) we have 

7r.(Ox( -D)® Ox(1)) = JC. 

The proof is now complete. 

We now finish the proof of Theorem 2. First consider the case e = -1. Then 
X' is decomposable and balanced, of type ( C', Cq), where C' and Cq are elliptic 
normal curves of degree d + 1. These curves have no points of hyperosculation 
of order:::; d -1 [6, p. 480 and p. 483). Now, it follows from the local description 
of the maps am for X' in [8, p. 1060) that all the mth osculating spaces are 
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of dimension 2m and non-constant along a generator for m ~ d - 1. So the 
hypotheses of Lemma 12 are satisfied, and we obtain 

dim X* =dim (X')~_1 - 1 = 3 and deg X* = deg (X')~_ 1 - 1. 

By Proposition 6 the degree of (X')~_ 1 is equal to twice the degree of the ( d-2)th 
dual of an elliptic normal curve of degree d + 1, hence to 2(d- 1)(d + 1) [6, 
Thm. 3.2, p. 481]. Therefore, 

deg X* = 2d2 - 3. 

Next consider the case e = 0. Let Co C X denote the minimal section; it is 
of degree d. Choose a point Q on C such that the corresponding point Qo on 
Co is not a point of hyperosculation. Choose a section CQ of degree d + 1 as 
in the proof of Proposition 10. Then, by Propostion 10, X is the projection of 
a decomposable and semi-balanced scroll X' from a point R E X'. Since Co 
lifts isomorphically to a section C~ of X', the point Xk n C~ is not a point of 
hyperosculation on C~. The section Cq lifts to a section CQ, which is an elliptic 
normal curve of degree d + 1. Therefore CQ has no points of hyperosculation 
of order ~ d - 1. Again, from the local description of osculating spaces in the 
decomposable case we know that the generator Xk satisfies the hypotheses of 
Lemma 12 for m ~ d - 1. Therefore 

dim X* =dim (X')~_1 - 1 = 2. 

Since (X')~_ 1 =(X')*= ((C~)*, S1((CQ)*)), Proposition 6 implies 

deg X* = d( d - 1) + ( d - 1 )( d + 1) - 1 = 2d2 - d - 2. 

The proof of Theorem 2 is now complete. 
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