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FOREWORD 

This preprint is a result of the first part of the work devoted to classification of 
three- and four-dimensional homogeneous spaces. 

We consider classification of lower-dimensional homogeneous spaces as an imme
diate continuation and global version of classification results obtained by Sophus 
Lie. Two-dimensional homogeneous spaces were classified locally over the field CC 
by Sophus Lie [Ll] and globally by G.D. Mostow [M]. (The complete classification 
of two-dimensional homogeneous spaces can also be found in [KTD ]. ) Sophus Lie 
also obtained the classification of maximal effective subalgebras of codimension 3 
and classifications of various classes of subalgebras in g((3, C) and g(( 4, CC) [L2]. 

The problem of classification of three- and four-dimensional homogeneous spaces 
(even in the simplest case--locally over CC) is an extremely difficult one. Quite a 
large subclass of three-dimensional homogeneous spaces was described in [KT]. 

The classification of maximal (and moreover, of primitive and almost primitive) 
effective subalgebras in Lie algebras over IP?. and CC was completed by B. Kom
rakov [Kl-K4]. There one can also find the history of the question. All maximal 
subalgebras in reductive Lie algebras can be extracted from these works. But since 
we are interested in all subalgebras of low codimension (which, certainly, include all 
maximal ones), we develop the techniques introduced in works of B. Komrakov so 
that they are suitable to the solution of our problem. V./e describe these methods 
from the very beginning. Thus the present work can be read independently. 

The work on this preprint was completed during the author's stay at the Centre 
for Advanced Study (SHS) at the Norwegian Academy of Science and Letters in 
Oslo. I am grateful to the staff and collaborators of the Centre for their hospitality. 
I am also very indebted to B. Komrakov for stating the problem and for engaging 
in fruitful discussions. 
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We shall make use of the following notation: 
k is a field of zero characteristic; 
g a nonzero finite-dimensional Lie algebra over k; 
Aut(g) the group of automorphisms of g; 
t(g) the radical (or equivalently, the largest solvable ideal) of g; 
.s(g) the nilpotent radical of g, that is the intersection of kernels of all 

finite-dimensional representations of g: .s(g) = [g, t(g)J = [g, g] n t(g); let us remark 
that .s(g) is equal to the intersection of all maximal ideals in g; 

M(g) the set of all maximal subalgebras of g; 
<p(g) the Frattini ideal of g, i.e., the largest ideal in g that is contained in 

each maximal subalgebra of g; 
A(g) ={go E M(g)l.s(g) rt flo}= {go E M(g)l.s(g) +flo= g}; 
.C(g) the set of all maximal submodules of the g-module .s(g); 
B(g) ={mE .C(g)l[g,.s(g)J rt m} ={mE .C(g)l[g,.s(g)J + m = .s(g)}; 
Z(g0 ) the centralizer of a subalgebra g0 in g; 
N(g0 ) the normalizer of a subalgebra go in g; 
f.L(g 0 ) = f.L(g, g0 ) the largest ideal in g contained in the subalgebra g0 . 

All the references to be made are to the book "Lie Groups and Lie Algebras" by 
N. Bourbaki [Bou]. 

Let us recall some definitions. A special automorphism of g is an automorphism 
of g of the form exp ad x, where x E .s(g). 

Any subalgebra of g complementary to the radical t(g) is called a Levi subalgebra 
of g. Any two Levi subalgebras of g can be mapped into each other by means of 
special automorphisms (Chapter I, §6, no. 8, Theorem 5). 

A Cartan subalgebra is a nilpotent subalgebra that coincides with its own nor
malizer. Any two Cartan subalgebras of a solvable Lie algebra can be mapped 
into each other by means of special automorphisms (Chapter VII, §3, no. 4, Theo
rem 3). If~ is a Cartan subalgebra of g, then b + [g, g] = g (Chapter VII, §2, no. 1, 
Corollary 3 to Proposition 4). 

Let .p be a Levi subalgebra of g and b a Cartan subalgebra of the Lie algebra 
Z(.p) n t(g). The subalgebra q = .p EB b is called a Levi-Cartan subalgebra of g. 
Any two Levi-Cartan subalgebras of g can be mapped into each other by means 
of special automorphisms. This immediately follows from the similar property for 
Levi subalgebras and Cartan subalgebras of solvable Lie algebras. 

Suppose b is a finite-dimensional nilpotent Lie algebra over k and V is a finite
dimensional b-module. Set 

V0 (b) = { v E vI hi.v = 0 for all hE band sufficiently large i E 1\1}, 

v+(o) = L(nhi.v). 
hE~ iEN 

The b-module Vis a direct sum ofthe submodules V0 (b) and v+(b), and moreover 

o.v+(o) = v+(o). 

The decomposition 



SUBALGEBRAS OF LOW CODIMENSION IN REDUCTIVE LIE ALGEBRAS 5 

is called the Fitting decomposition of the ~-module V (Chapter VII, §1, no. 1, 
Corollary 2 to Theorem 1). 

If ~ is a Cartan subalgebra of g, then 

go(~) = ~ 

(Chapter VII, §2, no. 1, Proposition 4). 

1.1. Lemma. Suppose q = .)J EB ~ is a Levi-Cartan subalgebra of g; then 

Z(.)J) c t(g); 

g = .)J EB ~ EB ( Z ( .)J)) + ( ~) EB [tJ, t(g)]; 

t(g) = ~ EB (Z(.)J))+(~) EB [.)J,t(g)]; 

E(g) = ([~, ~] + ~ n [s(g), s(g)]) EB (Z(.)J)) + (~) EB [.)J, t(g)]. 

If a is a solvable ideal in g, then 

a=(~ n a) EB ((Z(tJ))+(~) n a) EB ([-\J, r(g)] n a). 

Proof. a) The .)J-module g is semisimple (Chapter I, §6, no. 8, Corollary 2 to The
orem 5, and no. 2, Theorem 2), and a = ( Z(.)J) n a) EB [.)J, a] (Chapter I, §3, no. 5, 
Proposition 6), and also 

[.)J, a] = [-\J, [.)J, a]], 

[Z(.)J), [.)J, a]] = [-\J, [Z(.)J), al] c [.)J, a], 

g = Z(.)J) EB [.)J,g] = Z(.)J) EB [.)J,t(g)] EB [.)J,.)J] = (Z(.)J) nr(g)) EB [.)J,t(g)] EBg. 

Consequently Z(.)J) c t(g) and a= (Z(.)J) n a) EB ([-\J, t(g)] n a). Furthermore 

(Z(.)J) n a) 0 (~) = (Z(tJ)) 0 (~) n a=~ n a, 

(Z(.)J) n a)+(~)= (Z(-\J))+(~) n a 

(Chapter VII, §1, no. 1, Corollary 2 to Theorem 1), which implies 

Z(.)J) n a=(~ n a) EB ((Z(tJ))+(~) n a). 

b) s(g) = [-\J EB Z(.)J) EB [.)J, t(g)], Z(.)J) EB [.)J, t(g)l] 

= [Z(.)J), Z(.)J)] + [.)J, t(g)] + [s(g),s(g)], 

[Z(.)J), Z(.)J)] = [~ EB (Z(.)J))+(~), ~ EB (Z(.)J))+(~)] 

= [~, ~] + (Z(.)J))+(~) + [s(g),s(g)], 

(since (Z(.)J))+(~) = [~, (Z(.)J)(~))] C s(g)), 

s(g) = ([~, ~] EB (Z(.)J )+ (~) EB [.)J, t(g)l) + [s(g), s(g)] = 

= ([~, ~] + ~ n [s(g),s(g)]) EB (Z(tJ))+(~) EB [-\J,t(g)] 

(for [s(g),s(g)J c (~ n [s(g),s(g)]) EB (Z(tJ))+(Q) EB [.)J,t(g)]). 
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1.2. Lemma. Suppose .Go E M(g); then t-t(.Go) = {0} if and only if one of the 
following conditions holds: 

( i) g is simple and g0 is a maximal subalgebra of g; 
(ii) g =a EBb and go= {a+ (f)( a) I a E a}, where ip: a~ b is an isomorphism 

of simple ideals of g; 
(iii) g = a EB g0 , a being a minimal commutative ideal in g which is, at the 

same time, a faithful simple g0 -module 

If go E A(g) and t-t(.Go) = {0}, then condition (iii) is satisfied, and also g0 i= {0}, 
s(g) =a, and g0 is a Levi-Cartan subalgebra of g. 

Proof. It is clear that subalgebras .Go specified in the lemma are maximal in g and 
t-t(.Go) = {0}. 

Conversely, suppose that g0 E M(g), t-t(.Go) = {0}, and a is a minimal ideal in g. 
Then a+ g0 = g and either [a, a] =a or [a, a] = {0}. 

a) If [a, a] = a, then the ideal a is simple (for it cannot contain proper charac
teristic ideals of g), and its centralizer b is an ideal complementary to a: g = a EBb 
(Chapter I, §5, no. 5, Corollary 2 to Proposition 5; §1, no. 4, Proposition 2 and 
Proposition 3; §6, no. 2, Proposition 2 and no. 1, Corollary 3 to Proposition 1). 

If g0 n a/= {0}, then N(g0 n a) is different from g, and contains g0 + b; therefore 
b = { 0} and g = a. 

If g0 n a= {0}, then g = a EB .Go = a EBb, .Go i= {0} (since dimg ;;::: 3), b i= {0}, 
and for every bE b there exists a unique 1/J(b) E a such that 1/J(b) +bE g0 . It is clear 
that the mapping 1/J: b ~ a is a homomorphism of Lie algebras. It is injective (since 
ker'I/J c J-L(.Go)) and surjective (since go C 1/J(b) EBb, g0 i= 1/J(b) EBb, and therefore 
1/J(b) EBb= g =a EBb). Let (f)= 1/J-\ then .Go= {a+ (f?(a) I a E a}. 

b) If [a, a] = {0}, then a+ .Go c N(go n a), .Go n a c t-t(.Go), and g =a EB g0 . Since 
the kernel 

{ x E .Go I [ x, a] = { 0} } 

of the g0-module a lies in t-t(g0 ), we see that the module is simple and faithful. 
c) If g0 E A(g) and t-t(.Go) = {0}, then s(g) i= {0}, which is possible only if 

condition (iii) is satisfied. If g0 = {0}, then g =a and s(g) = {0}, which leads to 
a contradiction. Thus g0 is a nonzero reductive Lie algebra (Chapter I, §6, no. 4, 
Proposition 5). Consequently t(g) = a EB t(g0 ) and s(g) = [a EB g0 , a EB t(g0 )] 

[go, a] = a. 
Let .p be a Levi subalgebra of go, then 

.Go = .P EB t(go), 

g = .p EB t(go) EB a= .p EB t(g), 

that is .p is a Levi subalgebra of g. If .p i= {0} then [.p, t(g)] = a = s(g) and 
Z(.p) = t(g0 ), but if .p = {0}, then Z(.p) = g =.Go EB g+(go). Therefore, go is a 
Levi-Cartan subalgebra of g. 

1.3. Lemma. 

(i) [s(g),s(g)] c (f?(g) c s(g). 
(ii) s(g) n g0 = s(g) n t-t(.Go) for all .Go E M(g). 
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(iii) If go E A(g), then s(g) n 9o E B(g). 
(iv) Suppose m E B(g), q = .p EB b is a Levi-Cartan subalgebra of g, and 

9o=q+m. ThengoEA(g), s(g)ngo=m, qnm=[b,b]+bn[s(g),s(g)], 
and q is a Levi-Cartan subalgebra of g0 . 

( v) If 91,92 E A(g) and s(g) n 91 = s(g) n 92, then the subalgebras 91 and g2 
can be mapped into each other by means of special automorphisms. 

(vi) Two subalgebras 91,92 E A(g) are conjugate with respect to Aut(g) if and 
only if so are the ideals s(g) n 9b s(g) n 92 E B(g). 

(vii) If B(g) =/= 0, then 

<p(g) = n m. 
mEB(g) 

Proof. a) It is clear that <p(g) lies in each commutative ideal of g. Consequently 
<p(g) c s(g). 

If 9o E A(g), g' = gj tL(9o), and 9S = 9o/ tL(9o), then 

9S E A(g'), 
tL(9S) = {o}, 
s(g') is a minimal ideal in g', 
[g',s(g')] = s(g') 

(Chapter I, §6, no. 2, Corollary 2 to Proposition 2). Therefore 

[g, s(g)] C:. tL(9o), 
s(g) n tL(9o) E B(g), 
[s(g), s(g)] C tL(9o). 

Further 
[s(g) + 9o, s(g) n go] c [s(g), s(g)] + s(g) n 9o = s(g) n 9o, 

and therefore s(g) n 9o = s(g) n !L(9o). 
b) Let 91,92 E A(g), s(g) n 91 = s(g) n 92 = m, g' = gjm, g~ = gl/m, and 

g; = g2jm. Then g~ and g; are Levi-Cartan subalgebras of g'. Suppose x' is an 
element of s(g') such that 

exp ad x' (g~) = g;, 

and x E s(g) n x'; then 
expadx(g1) = 92· 

c) Let m E B(g) and let q = .p EB b be a Levi-Cartan subalgebra of g, g' 
g/[s(g), s(g)], and 1r: g -----+ g' a canonical surjection. Set m' = 1r(m), .p' = 1r(.p ), 
b' = 1r(f)), and q' = 1r(q). Then m' E B(g'), and since .p' + t(g') = g' and .p' is 
isomorphic to .p, we see that .p' is a Levi subalgebra of g'. Since 1r(Z(.p)) C Z(.p'), 
1r([.p, t(g)]) = [.p', t(g')], and 1r(Z(.p) EB [.p, t(g)]) = Z(.p') EB [.p', t(g')], we conclude 
that Z(.p') = 1r(Z(.p)). Furthermore, b' is a Levi subalgebra of the Lie algebra Z(.p') 
(Chapter VII, §2, no. 1, Corollary 2 to Proposition 4) and, consequently, q' = .p' EBb' 
is a Levi-Cartan subalgebra of the Lie algebra g'. It is clear that 

s(g') = [1)', IJ'] EB (Z(.p'))+(IJ') EB [.p', t(g')], 

[g',s(g')] = [IJ', [IJ', IJ']] EB (Z(.p'))+(IJ') EB [.p',t(g')], 
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m' = ([o',b'] nm') EB ((Z(f!'))+(b') nm') EB ([f!',r(g')] nm'), 

and therefore 
[b'' b'] n m' + [o'' [o'' o'll = [o'' o']. 

Suppose that o" = o' /([8', o'] n m'); then [o", [b", o"]] = [b", o"]. From that the 
Lie algebra o" is nilpotent it follows that [o", o"] = { 0} and [o', o'] c [o', o'] n m'. 
Therefore [o', o'] n m' = [0', o'] and either ( Z (f!')) + (o') r/. m' or [f!', t(fl')] r/. m'. 
Consequently the subalgebra 

g~ = q' +m' =f!' EB o' EB ((Z(p'))+(o') nm') EB ([f!',t(fl')] nm') 

lies in A(fl') and s(fl')nfl~ = m'. It is obvious that flo= ?r- 1 (fl~) E A(fl), s(fl)nflo = 
m, and q c flO· Moreover q' nm' = [o', o'] and q nm = 0 nm = [o, o] + 0 n [s(fl), 5(fl)]. 
Notice that the centralizer of p in flo is equal to 0 EB ( ( Z ( p)) + ( o) n m) and also 

[o, (Z(p))+(o) n m] = (Z(p))+(o) n m. Therefore o is a Cartan subalgebra of the 
just mentioned centralizer. 

1.4. Consider the case where fl is a semisimple Lie algebra. 
Let 0 be a Cartan subalgebra of g and k the algebraic closure of the field k. Then 

the Lie algebra g = k ®kg is semisimple (Chapter I, §6, no. 10), and its subalgebra 
~ = kEBkQ is its Cartan subalgebra (Chapter VII, §2, no. 1, Proposition 3); moreover, 
every derivation ad h (h_ E 5) is diagonalizable (Chapter VII, §2, no. 4, Theorem 2). 
For a linear form a on 0 put 

ga(5) = {x E g I [h,x] = a(h)x for all hE 5}. 

If a=/:- 0 and ga(5) =/:- {0}, then the form a is called a root of the Lie algebra g with 
respect to the Cartan subalgebra 6. _'!he set R = R(g, b) of all such roots is called 
the root system of g with respect to O· We have 

g = 6E9 ( E9 ga(5)) and g0 (~) = 6 
aER 

(Chapter VII, §1, no. 1, Proposition 3 and Theorem 1). The set R = R(g, 5) is 
a reduced root system of the space 6*; in other words, 1) R generates the whole 
of~*, 2) ~R n R = 0, 3) if, for a E R, Ha is an element of 6 such that a(Ha) = 2, 
then the mapping sa: A f---+ A - A(Ha)a (A E 6*) maps R into itself, and also 
4) R(Ha) C ;l (Chapter VII, §2, no. 2, Theorem 2). Each vector subspace ga(5) 
(a E R) is one-dimensional, and moreover 

[ga(~),g-a(5)] = kHa (a E R), 

[ga(~), gf3(5)] = ga+f3(5) (a, f3 E R, a+ f3 =/:- 0) 

(Chapter VIII, §2, no. 2, Theorem 1 and Proposition 4). A subset 

B={al, ... ,az}CR 
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is called a base of the root system R, if B is a basis of b* and every root a E R can 
be written as 

Suppose B is the subset of R that contains B together with all roots a E R such 
that a- ai ¢:. R for all i = 1, 2, ... , l. Then B is called an extended base of R. 
To each base (extended base) of R one can assign a Dynkin diagram (extended 
Dynkin diagram) (Chapter VI, §4, no. 2). For a subset B 0 C B, by R(Bo) denote 
the following subset of R: 

{ L n13{3 E R I n13 E lZ for all {3 E B0 }. 

(3EBo 

If Eo c B, by P(B0 ) denote the following subset of R: 

l 

R( B 0 ) U { t; n, "' E R I ni E :Z 1 for all i = 1, . . . , l} . 

It is obvious that the subspaces 

g(Bo) = 6 EB ( EB ga(6))' 
aER(Bo) 

p(Bo) = 6 EB ( EB ga(6)) 
aEP(Bo) 

are subalgebras of the Lie algebra g. Moreover, the subalgebra g(B0 ) is reductive 
in g (Chapter VIII, §3, no. 1, Proposition 2), and is a Levi-Cartan subalgebra 
of p ( B 0 ). The subspace 

s(Bo) = E9 
aEP(Bo)\R(Bo) 

is the nilpotent radical of the Lie algebra P(B0 ). The subalgebra P(B0 ) is said to 
be the parabolic subalgebra of g associated with 6, B and B 0 C B. A subalgebra g0 

of g is called parabolic if there exist a Cartan subalgebra fJ of g, a base B of the 
root system R = R(g, b), and a subset Eo C B such that 

i.e., if g0 is a parabolic subalgebra of g associated with f), B, and B 0 C B. 
It is known that a maximal subalgebra of a semisimple Lie algebra g is either 

reductive or parabolic in g (Chapter VIII, §10, no. 1, Corollary 1 to Theorem 2). 
Suppose k = C and r: g ~ g is a mapping satisfying the following conditions: 

(i) r(x+y)=r(x)+r(y) forallx,yEg, 
(ii) r(ax) = ar(x) for all a E C, x E g, 

(iii) r([x, y]) = [r(x), r(y)] for all x, y E g, 
(iv) r 2 = idg. 
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Then T is called an anti-involution of g, while the subset 

f1 7 = {x E fllr(x) = x} 

is called the real form of g associated with T. The g7 is, of course, a real Lie 
algebra, and 

g = g7 EB /=Ig7 (over m.). 
Let now k = m. and k = C. The Lie algebra g can be identified with the subset 

1 ® g, and moreover 
g = g EB H g (over m.). 

The mapping O": g -----+ g defined by 

O"( x + H y) = x - H y for all x, y E g 

is an anti-involution of g and ga =g. An endomorphism J of g such that 

J([x, y]) = [x, J(y)] for all x, y E g; 

J 2 = -idg, 

is called a complex structure on g. If a real Lie algebra g possesses a complex 
structure J, then by g(J) we denote the complex Lie algebra defined on the set g 
by extension of the base field: 

(a+ Hb)x =ax+ bJ(x) for all x E g. 

If, in addition, T is an anti-involution of g( J), then T is an involutorial automor
phism of g, and the complexification g of g can be written as a direct sum of the 
following two ideals: 

g± = {x±HJ(x) I x E g}. 

These two ideals are mapped into each other by O" and by the involution f, where 
f is the complexification ofT. Furthermore, each of them is isomorphic to the Lie 
algebra g(J): 

1 
g ( J) -----+ g-, x f--+ 2 ( x - H J ( x)) for all x E g ( J), 

and is an eigensubspace the endomorphism J, where J is the complexification of J. 

Lemma. 

(i) If k = k and flo E M(g), then the subalgebra flo is either semisimple or 
parabolic in g. 

(ii) If k = m., k = C, g0 E M(g), but iJo tf_ M(g), then there exists a 
subalgebra 9o E M(g) such that iJo = 9o n O"(go). 

(iii) If k = m., k = C, and g is simple and possesses a complex structure J, 
then the set M (g) is equal to the union of the set M (g ( J)) and the set of 
all real forms of g ( J). 
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Proof. ( i) Suppose that 9o is a reductive subalgebra of g and the center 3o of g0 is 
nonzero. Then g0 = Z(30 ) and there exists a Cartan subalgebra 0 of g such that 
Q C go and 3o C f) (Chapter VII, §2, no. 3, Proposition 10). Set 

Ro = {a E R(g, f)) I a(3o) = {0} }. 

Then 

3o ={hE f:JIRo(h) = {0} }. 

Let z be a nonzero element of the set 

then the subspace 

is a parabolic subalgebra of g that contains g0 and is different from g (Chapter VI, 
§1, no. 7, Definition 4 and Proposition 20 when P = {a E R I a(z) ;?: 0} ). We are 
led to a contradiction. 

(ii) This statement is clear, since there exists a subalgebra g1 C g such that 
iJ1 =go n O"(go). 

(iii) Let g0 E M(g) and let g~ be a projection of g0 tog± parallel to g'f. 
a) If 96 -1- g+, then 

and 

It is clear that 
g~ E M(g±), J(go) = iJo, 

J(go) = J(go n g) = J(go) n J(g) = iJo n g = 9o, 

and also flo(Jigo) E M(g(J)). 
b) We now show that if iJci = g+, then g+ ngo = {0}. We have 

[9, 9+ n iJol = Wo + 9-, 9+ n iJol = Wo, 9+ n iJol c 9+ n iJo. 

If g+ n iJo -1- {0}, then g+ n iJo = g+' g+ c iJo, and g- = O"(g+) c O"(go) = iJo, 
i.e., g0 = g and g0 = g, which yields a contradiction. Thus g+ n g0 = {0} and 
g- n 9o = O"(g+ n 9o) = {0}. Therefore, for any X E g+ there exists a unique 
<p(x) E g- such that x + <p(x) E g0 ; in addition, the mapping <p:g+ ---+ g- is an 
isomorphism of Lie algebras and iJo = {x + <p(x) I x E g+}. It remains to note 
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that 9o + J(go) = g and 9o n J(go) = {0}; therefore f1 = flo EB J(flo) (since if 
flo n J(flo) -/= {0} then 9o n J(go) -/= {0}, and besides, flo+ J(go) is a subalgebra 
of g). 

c) If flo E M (g( J)) \M (g), then let g~ E M (g) be a subalgebra containing g0 . 

Clearly g~ ~ M(g(J)); but then g = fl~ EB J(g~), which contradicts the conditions 
flo c g~ n J(g~) and flo -1= {0}. 

d) If g0 is a real form of the Lie algebra g(J) such that g0 ~ M(g), then let 
g~ E M(g) denote a subalgebra containing g0 . It is clear that g~ cannot be a real 
form of g(J); but then J(fl~) = fl~ and f1 =flo EB J(go) C g~, and we are again led 
to a contradiction. 

1.5. Lemma. Suppose k = C, g is simple, g0 E M(g), and codimg0 ~ 4. Then 
there exists a Cartan subalgebra b of g lying in flo, and the root system R = R(g, b) 
has a base B such that 

(i) if g0 is parabolic, then g0 = .p(B0 ) for some subset B0 C B, and the 
pair (g, flo) can be given by one of the following Dynkin diagrams: 

0 codimg0 = 1; 

e-o codimg0 = 2; 

e-e--o co dim flo = 3; 

G[(D codimgo = 3; 

o:n. codimgo = 3; 

e----o----e codimg0 = 4; 

• • • 0 codimflo = 4; 

(black vertices on the diagram of B correspond to roots lying in B0 ); 

(ii) if flo is semisimple, then flo = g(Bo) for some subset Bo C B, and the 
pair (~, g0 ) can be given by the following Dynkin diagram of the extended 
base B: 

~ codimg0 = 4, 

where the black vertices correspond to the roots lying in B 0 . 

Proof. (i) Let flo = .p(Bo) be a parabolic subalgebra of g, associated with certain 
b, B, and B0 (see section 1.4). Then B = B0 U {a} for some a E B and the 
fi(B0 )-module g is a direct sum of the submodules g(B0 ), .s(B0 ), and 

cxEP(Bo)\R(Bo) 

It is known that there exists an automorphism e of the Lie algebra g such that 
B(b) =band B(ga(b)) = fl-a(b) for all a E R (Chapter VIII, §4, no. 4, Proposi
tion 5). It is clear that .s*(Bo) = B(.s(Bo)) and B(fi(Bo)) = g(Bo). Therefore the 
kernel of the g(B0 )-module .s*(Bo) is also the kernel of the g(B0 )-module .s(B0 ) 

and, consequently, an ideal in g. So the fi(B0 )-module .s*(Bo) is faithful and 
codimg0 = dim.s*(B0 ). Therefore dimf1(B0 ) ~ 42 = 16 and dimg ~ 16+4+4 = 24. 
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We now list Dynkin diagrams for complex Lie algebras of dimension ~ 24 and for 
their maximal parabolic subalgebras: 

0 dimg = 3: 0 dimg0 = 2; 

o-o dimg = 8: e-o dimg0 = 6; 

m:o dimg = 10: .s::o dimgo = 7; 
m;. dimg0 = 7; 

dimg = 14: E;D dimg0 = 9; 
m;o dimgo = 9; 

o-o-o dimg = 15: e-o---e dimgo = 11; 

e-e-o dimgo = 12; 

o-m:n dimg = 21: e-m:- dimg0 = 14; 

.-.m dimg0 = 15; 

~ dimg0 = 16; 

dimg = 21: ~ dimg0 = 14; 

o---a:m dimgo = 15; 

o---a:m dimgo = 16; 

o-o---o-o dim g = 24 : e---.---o--e dimgo = 18; 

• • • 0 dimgo = 20. 

(ii) Let V be a submodule of the g0-module g such that g = g0 E9 V. It is 
clear that V is faithful. Therefore g0 is isomorphic to some subalgebra of the Lie 
algebra s((V), and also dimg0 ~ 42 - 1 = 15 and dimg ~ 19. Note that the 
rank of g0 does not exceed that of g (Chapter VII, §2, no. 2, Definition 2; no. 3, 
Corollary 1 to Theorem 1 and Proposition 10). Below we list Dynkin diagrams for 
semisimple complex Lie algebras p of dimension~ 15 and rank~ 3 together with 
minimal dimensions m of faithful p-modules: 

o dimp = 3, m = 2; 

o o dimp = 6, m = 4 (m:o); 
o-o dimp = 8, m = 3; 

o o o dimp = 9, m = 6; 

m:o dimp = 10, m = 4 (<W); 
o-o o dim.p = 11, m = 5; 

m:o o dimp = 13, m = 6; 

m;o dimp = 14, m = 7; 

o-o-o dim.p = 15, m = 4. 

In parentheses we indicate Dynkin diagrams of simple complex Lie algebras g satis
fying the conditions rang g ~ rang p and dim p + m ~ dim g ~ dim p + 4. It remains 
to list Dynkin diagrams for proper semisimple maximal rank subalgebras of these 
Lie algebras: 
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~-
' 

ED----e . 
' 

where the Dynkin diagram of the subalgebra corresponds to the subdiagram of the 
extended Dynkin diagram of g formed by black vertices. 

1.6. Suppose that k = C and that g is simple and has one of the following Dynkin 
diagrams: 

0 

o-o 
o-o-o . 

' 
o-o-o-o 
om . 

' 
Let us describe the sets M(g) and Aut(g), and also the set ~(g) of anti-involutions 
of g. 

Az) Let V be a complex vector space of dimension l + 1 (l = 1, 2, 3, 4); then the 
Lie algebra sl(V) is a simple Lie algebra of type Az, i.e., its Dynkin diagram has 
the form: 

The mapping sl(V) -t sl(V*) defined by 

x ~ _tx for all x E sl(V), 

is a canonical isomorphism of Lie algebras 

1 o. By ~(V) denote the set of all anti-involutions of V. For each T E ~(V) the 
subset 

VT = { v E vI T ( v) = v} 

is a real vector space of dimension l + 1 and 

The mapping 7*: V* -t V* defined by 

(v,T*(v*)) = (T-1(v),v*) for all v E V, v* E V* 

lies in ~(V*), and moreover (V7 )* can be naturally identified with (V*t*: 

v*- (v ~ (v,v*)) for all v E V 7 , v* E (V*t*. 

The mapping :;: sl(V) -t sl(V) such that 

:;(x) =To X o T-l for all X E s((V) 
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0 

is an anti-involution of s((V). We shall denote the real form (sr(v)r by s((V,7). 
It is obvious that s((V, 7) is isomorphic to the Lie algebra s((V7 ). Notice that if 
71, 72 E m.(V), then 

0 0 

71 = 72 ~ 71 = a72 for some a E 1I' = {a E C I aa = 1 }. 

2°. Let IHI(V) denote the set of antilinear mappings J-L: V --7 V such that J-L 2 = 
- id v. It is clear that IHI(V) # 0 if and only if V is even-dimensional, since for 
every 1-L E IHI(V) the space V is made into the right quaternion space V (J-L) of 
regularity ~(l + 1). Indeed, it is convenient to consider the quaternion field as the 
sub ring 

of the ring of all complex 2 x 2 matrices. We put 

v ( :!'_b ~) = av + J-L(bv) for all a, b E C, v E V 

The mapping 1-L*: V* --7 V* defined by 

(v,J-L*(v*)) = (J-L- 1 (v),v*) for all v E V, v* E V*, 

lies in IHI(V*), and the mapping~: s[(V) --7 s[(V), such that 

~(x) = 1-L 0 X 0 J-L- 1 for all X E sr(V), 

0 

is an anti-involution of s((V). The real form (sr(V))"" is denoted by sl(V, J-L). It is 
clear that s((V, 1-L) consists of those endomorphisms of the quaternion space V (J-L) 
whose reduced trace is equal to zero. (Recall that the reduced trace of an endomor
phism x of V (J-L) is the number ~ tr x, x being considered as a real endomorphism 
of the space obtained from V by reduction of the base field toR It is equal to tr x, 
if x is considered as a complex endomorphism of V.) Note that if /-Lb J-L 2 E IHI(V), 
then 

0 0 

/-L1 = /-L2 ~ /-L1 = a/-L2 for some a E 1I'. 

3°. Let IE(V) denote the set of all nondegenerate Hermitian forms on V. We 
identify a form ~ E IE(V) with the antilinear isomorphism V --7 V* such that 

the mapping e: V* X V* --7 c defined by 

lies in IE(V*), and the signature of the form C coincides with that of ~- The 
0 

mapping~: sl(V) --7 s[(V) such that 

0 

~(x) = _t(~ ox o ~- 1 ) for all x E s[(V), 
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0 

is an anti-involution of sl(V). The real form (st(V) / is denoted by sl(V, ~). Clearly 

Note that if 6, 6 E IE(V), then 

0 0 

~1 = ~2 ~ 6 = a6 for some a E .!Pl.*. 

4°. For each cp E GL(V) the mapping &: sl(V) ----+ sl(V) defined by 

&(x) = cp ox o cp-1 for all x E sl(V) 

is an automorphism of the Lie algebra s[(V), and the mapping cp*: V* ----+ V* defined 
by 

(v,cp*(v*)) = (cp-1(v),v*) for all v E V,v* E V* 

lies in GL(V*). The mapping cp r--+ cp* is an isomorphism of the groups GL(V) 
and GL(V*). Note that if cp1, cp2 E GL(V), then 

0 0 

cp1 = cp2 ~ cp1 = acp2 for some a E C*. 

4.1°. If cp E GL(V) and T E .IP?.(V), then 

0 0 0 0 1 £ cp o T =To cp ~To cp o T- = acp or some a E Jr. 

Moreover there exists a cp' E GL(V) such that 

&' = & and T o cp' o T - 1 = cp'. 

Set 
GL(V,r) = {cp E GL(V) ITo cp o r-1 = cp}. 

The group GL(V, r) can be identified with the group GL(V7 ) in an obvious way. 
Note that if cp1, cp2 E GL(V, T), then 

0 0 

cp1 = cp2 ~ cp1 = acp2 for some a E .IP?.*. 

4.2°. If cp E GL(V) and f.-l E IHI(V), then 

0 0 0 0 1 
cp o f.-l = f.-l o cp ~ f.-l o cp o f.-l- = acp for some a E Jr. 

Moreover there exists a cp' E GL(V) such that 

&' = !'p and f.-l o cp' o f.-l - 1 = cp'. 

Set 
GL(V, f.-l) = { cp E GL(V) I f.J, 0 cp 0 f.J,- 1 = cp}. 
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The group GL(V, J-L) consists of automorphisms of the quaternion space V(J-L). Note 
that if cp1, cp2 E GL(V, J-L), then 

0 0 

tp1 = tp2 -¢::=::} tp1 = acp2 for some a E lR *. 

4.3°. If cp E GL(V) and~ E IE(V), then 

0 0 0 0 

cp o ~ = ~ o cp-¢::=::} ~ o cp o ~- 1 = acp* for some a E JR*. 

Moreover there exists a cp' E GL(V) such that 

&' = !p and ~ o cp' o ~- 1 = ±( cp')*, 

where the sign of ( cp')* is uniquely determined by the sign of a. Set 

and 
GL(V, ~) = GL + (V, ~) U GL- (V, ~). 

It can be easily seen that 

besides, GL- (V, ~) -=/=- 0 if and only if the space V is even-dimensional and the 
signature of the form ~ is equal to 0. Note that if cp1, cp2 E GL(V, ~), then 

0 0 

tp1 = tp2 -¢::=::} tp1 = acp2 for some a E 'IT'. 

5°. By IL(V) denote the set of all isomorphisms V --t V*. We identify a 
'1/J E IL(V) with a nondegenerate bilinear form on V: 

0 

The mapping '1/J: s((V) --t s((V) defined by 

0 

'ljJ(x) = _t('I/J ox o '1/J- 1) for all x E s((V) 

is an automorphism of the Lie algebra sr(V). Note that if 'ljJ1, 'I/J2 E IL(V), then 

0 0 

'I/J1 = 'I/J2 -¢::=::} 'I/J1 = a'I/J2 for some a E C*. 

Let S (V) be the set of nondegenerate symmetric bilinear forms on V and let 
A(V) be the set of nondegenerate skew-symmetric bilinear forms on V. It is clear 
that A(V) -=/=- 0 if and only if Vis even-dimensional. 
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The sets S(V) and A(V) can be identified with subsets of IL(V). If 'lj; E IL(V), 
then 

0 

'lj;2 = id5 r(v) ~ 'lj; E S(V) U A(V). 

0 

By .5l(V, 'lj;) denote the subalgebra of fixed points of the automorphism 'lj;. It can be 
easily seen that 

Note that if dim V?: 3 and 'lj; E S(V)UA(V), then.5l(V, 'lj;) is a semisimple maximal 
subalgebra in sl(V). 

5.1 o. If 'lj; E IL(V) and T E Jlli.(V), then 

0 0 0 0 

'lj; o T =To 'lj; ~ T* o 'lj; o T-1 = a'lj; for some a E 'Il. 

Moreover there extists a 'lj;' E IL(V) such that 

0 0 

'lj;'='lj; and T*o'lj; 1 oT-1 ='lj;'. 

Set 
IL(V,T) = {'lj; E IL(V) IT* o'lj;oT-1 = 'lj;}. 

The set IL(V, T) can be naturally identified with the set IL(V7 ). Note that if 
'lj;1, 'lj;2 E IL(V, T), then 

0 0 

ifJ1 = ifJ2 ~ tp1 = arp2 for some a E Till.*. 

Put 
s(v, T) = S(V) n IL(V, T) 

and 
A(V, T) = A(V) n IL(V, T). 

If 'lj; E S(V) U A(V) and T E Jlli.(V), then the subalgebra .5l(V, 'lj;) is stable under :f. 
if and only if 

a'lj; E S(V, T) U A(V, T) for some a E IC*. 

In this case the subalgebra .5l(V, 'lj;) n .5l(V, T) corresponds to .5l(V7 , a'lj;). 

5.2°. If 'lj; E IL(V) and f--l E JHI(V), then 

0 0 0 0 

'lj; o 1-l = 1-l o 'lj; ~ 1-l* o 'lj; o f--l- 1 = a'lj; for some a E 'Il. 

Moreover there exists a 'lj;' E IL(V) such that 

0 0 

'lj; 1 ='lj; and f--l*o'lj;1 of--l-1 ='1j;1• 
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Set 
IL(V, p,) = { 1/J E IL(V) I p,* 0 1/J 0 IL-l = 1/J }. 

It is clear that the set IL(V, p,) consists of isomorphisms of quaternion spaces 
V(p,)--+ V*(p,*). Note that if1jl1,1jl2 E IL(V,p,), then 

Now set 

0 0 

1/!1 = 1/!2 {:::::::?- 1/!1 = a1/!2 for some a E ~ *. 

S(V, p,) = S(V) n IL(V, p,), 

A(V, p,) = A(V) n IL(V, p,). 

If 1jJ E S(V) UA(V) and fL E IHI(V), then the subalgebra s((V, 1/!) is stable under {t 
if and only if 

a1j! E S(V, p,) U A(V, p,) for some a E C*. 

5.3°. If 1/J E IL(V) and~ E IE(V), then 

0 0 0 0 

1jJ o ~ = ~ o 1jJ {:::::::?- C ( 1/J ( v 1), 1jJ ( v2)) = a~ (VI, v2) for some a E ~ * 

and all v1, v2 E V. Moreover there exists a 1/J' E IL(V) such that 

0 0 

1/!' = 1/! and C(1/J(vi),1jl(v2)) = ±~(v1,v2) for all v1,v2 E V, 

where the sign of ~ ( ·, ·) is uniquely determined by that of a. Set 

IL±(V,~) = {1/! E IL(V) I C(1/J(vi),1jl(v2)) = ±~(v1,v2) for all v1,v2 E V}, 

IL(V, ~) = IL +(V, ~) U IL -(v, ~). 

It is clear that IL- (V, ~) #- 0 if and only if V is even-dimensional and the signature 
of~ equals 0. Note that if 1/!1, 1/!2 E IL(V, ~), then 

Now set 

0 0 

1/!1 = 1/!2 {:::::::?- 1/!1 = a1jl2 for some a E 1f. 

s±(v,~) = s(v) nrL±(v,o, 

A ±(v, ~) = A(V) n IL±(V, ~), 

s(v, ~) = s+(v, ~)us- (V, ~), 

A(V, ~)=A +(v, ~) U A -(v, ~). 

Suppose 1jJ E S (V) U A(V) and fL E IE(V); then the subalgebra s((V, 1jJ) is stable 
0 

under ~ if and only if 

a1j! E S(V, ~) U A(V, ~) for some a E C*. 
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Let ~ E JE(V) and 'ljJ E S(V, ~) U A(V, ~). 
( ++) If 'ljJ E s+(v, ~), then T =~-I o 'ljJ E IR(V) and there exists a '1/Jo E S(V7 ) 

such that the restrictions of 'ljJ and ~ to V 7 coincide with '1/Jo. 
(--)If 'ljJ E A-(v, ~),then T =~-I o 'ljJ E IR(V) and there exists a '1/Jo E A(V7 ) 

such that the restrictions of 'ljJ and ~ to V 7 coincide with yCI '1/Jo. 
( +-) If 'ljJ E s- (V, ~), then JL =~-I o 'ljJ E IHI(V) and there exists a subspace W 

in V such that V =WEB JL(W), ~(W, JL(W)) = {0}, and the restriction of~ toW 
is positive definite, while the restriction of~ to JL(W) is negative definite. Moreover 

~(JL(vi), JL(v2)) =-~(vi, v2) and 

'1/J(vt, v2) =~(vi, JL(v2)) 

for all VI, v2 E V. 
(-+) If 'ljJ E A+ (V, ~), then JL = ~-I o 'ljJ E IHI(V) and there exists a subspace W 

in V such that V = WEB JL(W), ~(W, JL(W)) = {0}, and the restrictions of the 
form~ toW and to JL(W) are nondegenerate and have the same signature, which 
is half that of ~. Moreover 

~ (JL( v1), JL( v2)) =~(VI, v2) and 

'ljJ(vi,v2) = ~(vi,JL(v2)) 

for all VI, v2 E V. 
Note that in any of the cases just described 

6°. For every proper subspace V0 in V the subalgebra 

sl(V, Vo) = { x E sl(V) I x(Vo) c Vo} 

is parabolic and is maximal in s((V). The canonical isomorphism sl(V) -+ s[(V*) 
maps it into the subalgebra sl(V*, tVo), where 

tvo = { v* E V* I (Vo, v*) = {0} }. 

Notice that V0 is the only proper subspace of V which is stable with respect 
to sl(V, Vo). 

6.1 o. Suppose V0 is a proper subspace of V and T E IR(V). Then sl(V, V0 ) 

is stable under ~ if and only if Vo is stable under T. It can be easily seen that 
the subalgebra sl(V, V0) n sl(V, T) of the Lie algebra sl(V, T) corresponds to the 
subalgebra sl(V7 , V07 ) of sl(V7 ), where V07 = V0 n V 7 . 

6.2°. Let V0 be a proper subspace of V and JL E IHI(V). Then the subalge

bra s((V, V0 ) is stable under '/t if and only if V0 is stable under f-L· In this case V0 is 
even-dimensional, since it is a subspace of the quaternion space V (JL). 
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6.3°. Let again V0 be a proper subspace of V and~ E JE(V). Then the subal-
o 

gebra st(V, Vo) is stable under ~ if and only if the restriction of ~ to V0 equals 0 
and Vl = V0 , where 

V0j_ = { v E VI~(Vo, v) = {0}}. 

This is possible only if the space V is even-dimensional, the signature of ~ is equal 
to 0, and dim Vo =~dim V. 

7°. Let T E IP&(V) and let g0 be a maximal subalgebra of the Lie algebra st(V, T). 

Assume that the g0-module V 7 is simple but there exists a proper subspace V0 

in V such that go C sl(V, Vo). Then V = Vo EB T(Vo) and there exists a unique 
J E GL(V, T) such that 

J(v) = H v for all v E Vo. 

Moreover J 2 =- idv, f1 =To J =JoT E IHI(V) and 

9o = st(V, Vo) n st(V, T) 

= st(V, J) n st(V, T) 

= st(V, 11) n st(V, T), 

0 

where st(V, J) is the subalgebra of fixed points of the second-order automorphism J. 

8°. Let 11 E IHI(V) and let g0 be a maximal subalgebra of the Lie algebra st(V, 11). 
Assume that the g0-module V(fJ) is simple but there exists a proper subset V0 

in V such that 9o C st(V, Vo). Then V = Vo EB fJ(Vo) and there exists a unique 
J E GL(V, 11) such that 

J ( v) = -/=l v for all v E Vo. 

Moreover J 2 = - idv, T = 11 o J = J o 11 E IHI(V) and 

9o = st(V, Vo) n st(V, p,) 

= st(V, J) n st(V, 11) 

= st(V, T) n st(V, fJ). 

7°-8°. Let g0 , J, and T be define as in 7° or 8°. Then 

9o = st(V, J) n st(V, T). 

Suppose ] 7 is the restriction of J to V 7 and V 7 ( ] 7 ) is the corresponding complex 
space. Then g0 consists of linear extensions to V of those endomorphisms y E 

gt(V7 (J7 )) that satisfy try +try= 0. 

go. Suppose ~ E JE(V), g0 is a maximal subalgebra of the Lie algebra st(V, ~), 
and g0 C st(V, Vo) for some proper subspace V0 in V. Assume that V0 is a minimal 
subspace with this property. It is clear that 

g0 = st(V, Vo) n st(V, ~) = st(V, V0j_) n st(V, ~). 
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Therefore the restriction of ~ to V0 is either zero or nondegenerate. In the former 
case, flo is parabolic in sl(V, ~); in the latter case, V = V0 EB V0.l, flo is reductive 
in sl(V, ~), and in addition 

flo = s[(V, L) n sl(V, ~), 

where L E GL + (V, ~) and 

L(v+u) = v -u for all v E V0 , u E VQ.l. 

So we have described the sets M(fl), Aut(fl), llR(fl), and M(f17 ), Aut(f17 ) for 
each T E llR(g), where f1 = s((V). 

C2 ) Let V be a complex vector space of dimension 4 and 'lj! E A(V). Then 
s((V, 'lj!) is a simple Lie algebra of type C2 , i.e., its Dynkin diagram has the form: 

Recall that 

GL(V,'Ij;) = {cp E GL(V) I 'lj;ocpo'lj;-1 = cp*}. 

Every automorphism of sf(V, 'lj!) has the form: 

for some cp E GL(V, 'lj! ). It is obvious that 

Note that if cp1, cp2 E GL(V, 'lj;), then 

2°. Now set 

It is easily seen that 

llR(V,'Ij;) = {T E llR(V) I 'lj! OTO'lj!-1 = T*}, 

IHI(V, 'lj;) = {tt E IHI(V) I 'lj! 0 fL 0 'lj;-1 = tt*}. 

llR(V,'lj!) = {T E llR(V) I '1j;(T(v1),T(v2)) = 'lj;(v1,v2) for all v1,v2 E V}, 

IHI(V,'lj!) = {tt E IHI(V) I '1j;(tt(v1),p(v2)) = 'lj;(v1,v2) for all v1,v2 E V}. 

If T E llR(V, 'lj;), then the restriction of 'lj! to V 7 lies in A(V7 ). 
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If f-L E IHI(V, 1/J), then~= 1/J o f-L E IE(V), and 

~(f-L(vl),f-L(v2)) = ~(v1,v2), 

1jJ(v1,v2) = -~(v1,/-L(v2)) 

for all v1 , v2 E V. In addition, there exists a subspace W in V such that V = 
W EB tL(W), ~ (W, t-t(W)) = { 0}, and the restrictions of ~ to W and to tL(W) are 
nondegenerate and have the same signature, which is half that of~· 

Each anti-involution of sl(V, 1/J) has the form: 

i] = ~lst(V,~) for some 7] E IP?.(V, 1/J) U IHI(V, 1/J). 

We shall denote the real form (st(V,'I/J))ii by sl(V,1/J,7J). Note that if 771,7]2 E 
IP?.(V, 1/J) U IHI(V, 1/J), then 

il1 = il2 ~ 7]1 = ±772 · 

3°. Every maximal subalgebra of sl(V, 1/J) has the form: 

sl(V, 1/J, Vo) = sl(V, 1/J) n sl(V, V0 ) 

where Vo is a proper subspace of V such that the restriction of 1/J to V0 is either 
zero or nondegenerate. Set 

Vl = {v E V 11/J(v, Vo) = {0}}; 

then sl(V, 1/J, Vl) = sl(V, 1/J, Vo). If Vo C V0_L, then sl(V, 1/J, Vo) is a parabolic subal
gebra, but if V = V0 EB Vl, then sl(V, 1/J, V0 ) is semisimple. Notice that V0 and V0_L 

are the only proper subsets of V stable with respect to sl(V, 1/J, V0 ). 

4°. Let V0 be a proper subspace of V such that the restriction of 1/J to V0 is either 
zero or nondegenerate, and let 7] E IP?.(V, 1/J) U IHI(V, 1/J). The subalgebra sl(V, 1/J, V0 ) 

is stable under ~ if and only if 7] preserves the set {Vo, V0_L}. 
5°. Suppose 7 E IP?.(V, 1/J) and g0 is a maximal subalgebra of the Lie alge

bra sl(V, 1/J, 7). Now assume that the g0-module V 7 is simple, but there exists 
a proper subspace V0 in V such that g0 C sl(V, Vo). Then V = Vo E97(V0 ) and there 
exists a unique J E GL(V, 7) such that 

J(v) =V-I v for all v E Vo. 

In addition, J 2 = - idv, f-L = 7 o J = J o 7 E IHI(V), and 

9o = sl(V, Vo) n sl(V, 1/J, 7) 

= sl(V, J) n sl(V, 1/J, 7) 

=sl(V,fL) nsl(V,1/J,7). 

In a similar way we construct the J_L E GL(V, 7) such that 
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It can be easily verified that 

Therefore, J +Jl_ E s[(V, 1jJ, 7) and [J +Jl_, go] = {0}, and consequently, J+Jl_ E g0 

and V0 is stable with respect to J 1_, which implies that J o J 1_ = J 1_ o J and 
( J o J 1_) 2 = id v. Note that the restriction of J o J 1_ to V 7 is an automorphism of 
the g0-module V 7 • It follows that J o Jl_ = ±idv. 

If J o Jl_ = -idv, then Jl_ = J E GL(V,1jJ), V0l_ = VQ, 11 E IHI(V,1jJ), and 

If J o Jl_ = idv, then Jl_ = -J, J=IJ E GL(V,1jJ), Vol_= 7(V0 ), and 

go= st(V, HJ) n s[(V, 1jJ, 7), 

and also, the restriction of 1jJ to V0 is nondegenerate. 

6°. Let f1 E IHI(V, 1jJ) and let g0 be a maximal subalgebra of the Lie alge
bra s[(V, 1jJ, f1). Now assume that the g0-module V(f1) is simple and there exists 
a proper subspace Vo in V such that go C s[(V, Vo). Then V = Vo EB f1(V0 ) and there 
exists a unique J E GL(V, 11) such that 

J ( v) = H v for all v E V0 . 

In addition, J 2 =- idv, 7 = f1 o J = J o f1 E IP?.(V), and 

go = s((V, Vo) n sl(V, 1jJ, 11) 

= s[(V, J) n sr(V, 1jJ, 11) 

= sr(V, 7) n st(V, 1jJ, f1). 

In a similar way we construct the Jl_ E GL(V, 11) such that 

It is easy to see that 

Therefore J + Jl_ E st(V,1jJ,f1) and [J + Jl_,go] = {0}. It follows that J + Jl_ E g0 

and that V0 is stable with respect to Jl_, and so J o Jl_ = Jl_ o J and (J o J1_) 2 = 

idv. Note that J o Jl_ is an automorphism of the g0-module V(f1). Therefore, 
J o Jl_ = ±idv. 

If J o Jl_ = -idv, then Jl_ = J E GL(V,1jJ), Vl = V0 , 7 E IP?.(V,1jJ), and 
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If J o Jl_ = idv, then Jl_ = -J, ~J E GL(V,?jl), V0l_ = p(V0 ), 

and the restriction of ?/! to V0 is nondegenerate. 

5°-6°. Let now g0 , J, Jl_, and T be defined as in 5° or 6°. Then for J = Jl_, 

9o = 5[(V, J) n 5[(V, ?/!, T). 

Suppose J 7 is the restriction of J to V 7 and V 7 ( J 7 ) is the corresponding complex 
space. Then the mapping~: V7 (J7 ) x V7 (J7 ) --7 C defined by 

lies in IE, (V 7 ( J 7 )), and g0 consists of linear extensions to V of those endomor
phisms y E g((V7 ( J 7 )) which satisfy the condition 

~(y(vi),v2) +~(v1,y(v2)) = 0 for all v1,v2 E V 7 . 

7°. If7J E ~(V,?jl) UIBI(V,?jl) and cp E GL(V,?jl), then 

Put 

and 
GL(V, ?/!, rJ) = GL + (V, ?/!, rJ) U GL- (V, ?/!, rJ). 

Each automorphism of the Lie algebra 5l(V, ?/!, rJ) can be written as the restriction 
of some automorphism(/;, where cp E GL(V, ?/!, rJ), to 5[(V, ?/!, rJ). 

1.7. Lemma. Suppose k = ~' g is simple, g0 E M(g), and codimg0 ~ 4. Then 
the pair (g, g0 ) can be written in one and only one of the forms: 

[1,1] g =5((2;~), 

g0 = 5t(2; JR) = { ( ~ !a) I a, f3 E 1R}; 

[2,1] g = 5[(2;1R), 

[2,2] 

g0 = 5o(2; JR) = { ( ~ -Oa) I a E ~ }; 

g = 5u(2) = { (~a -Ra) I a Em, a E C }, 

9o = 5Uo (2) = { (~a -A a) I a E ~}; 
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[2,3] g = s((2; C), 

9o = si(2; C) = { ( ~ ~a) I a, b E C}; 

[2,4] g = sf(3; IR), 

go = { ( - ~ A ~ ) I A E g [( 2; IR), B E IR 2 }; 

[3,1] g =s((2;C), 

go =s[(2;IR); 

[3,2] g = s((2; C), 

9o = su(2); 

[3,3] 

[3,4] g = sc( 4; IR) 

={ G 

[3,5] g =sc(4,IR), 

a ~c a ~") <>, fJ E ~; a, b, c E C}, 

1") <> E ~; a, b E C}; 

z -/3
6
, )\ j' a, /3, /, 8, a-, T, v, f1, E, p E IR 

-T 

a- -a 

f3 
T 

-a:+ A) I a E IR; A, B, C E s((2; IR)}, 

~T ;:) a,fJ,1, 8, T,V,E E ~ }; 

Bo = { (~ ~ ; ;:) a,fJ,1, 8,~,T, v E ~} 
= { (aE;A -a:+A)IaEIR; A,BEs[(2;IR)}; 
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[3,6] g = sc(2, lEI) 

= { (~~ 
b 

Ha c ) } -~ -Ha a,,8ElR; 
-a b a, b, c, d E C 
-b -a 

={ (aE(A -a:+A)IaElR; A,B,CEsu(2)}, 

g0 = { ( aE 0+ A -a:+ A) I a E JR; A, BE su(2) }; 

[3,7] g =5((4,JR), 

g0 = { ( troA !) I A E gl(3,JR), BE JR3 }; 

[4,1] g = su(3), 

{(
y=Ta a 

9o = ~a ~,8 ~ ) a, ,8 E JR; a E c}; 
-H(a+,8) 

[4,2] g = su(2, 1) 

={(~a A,B ~ ) a,,8ElR; a,b,cEC}, 
b c -H(a+,B) 

go= { (0o~a A
0

1,8 ~ ) a,,B E JR; a E c}; 
-H(a+,8) 

[4,3] g = su(2, 1), 

g0 = { (-A~H'Y) A~ ~ ) ,8,1 E JR; c E c}; 
o c y=r, 

[4,4] 

g = { ( -ai + B aE ~B) I a E JR; A, B, C E sl(2, JR)}, 

9o = { ( t ~) I A, C E s[(2, JR)}; 

[4,5] 

_ { ( A Ffa§J + B) I a E JR, A E sl(2, C), } 
g - -FfaE + B A BE sl(2,JR) ' 

9o = { ( t ~) I A E s[(2, C)}; 
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[4,6] 

= { ( A aE +{=IE) I a E ill?., A E s((2, C),} 
fl -aE +HE A B E s((2, ill?.) ' 

[4,7] 

fl = { ( -ai + B aE; B) I a E ill?.; A, B, C E su(2) }, 

flo= { ( ~ ~)I A, C E su(2) }; 

[4,8] 

{ ( A HaE +HE) I a E ill?., } 
fl = -HaE +HE C A, B, C E su(2) ' 

[4,9] f1 =s((4,JR?.), 

flo={(~ g)IA,B,CEs((2,JR?.); trA+trC=o}; 

[4,10] f1 = s((2, IHI) 

__ [ (Au A12) I } l \ A 21 A 22 Aij E IHI; tr An + tr A22 = 0 , 

where IHI = { ( ~b ~) I a, b E C}, 

flo = { ( A~ 1 ~~~) I Aij E IHI; tr Au + tr A22 = 0}; 

[4,11] 

{ ( A HaE +B) I a,/3 E ill?., A E f1((2, C), } 
fl = Hf3E + C _tJI B, C E su(2), tr A= tr A ' 

_ {(A HaE!_ +B) I a E ill?., A E f1((2, C),_}· 
flo - 0 _tA B E su(2), tr A= tr A ' 

[4,12] f1 = s((3, C), 

flo = { (-~A ! ) I A E f1((2, C), B E C2 }; 

[4,13] f1 = s((5, ill?.), 
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{ ( - tr A B ) I 4} flo = O A A E gt( 4, m.), B E JR1,. • 

Remark. Here each pair (g, flo) is equipped with two numbers [n, m], where n = 
co dim flo and m is the ordinal number of the pair. 

Proof. The statement of the lemma follows immediately from the previous lemmas. 

1.8. Suppose k = m., g is semisimple but not simple, flo E M(g), f.L(flo) = {0}, and 
co dim flo ~ 4. Then (g, flo) can be represented as one and only one of the following 
pairs: 

[3,8] fl = s[(2, m.) x s((2, m.), 

flo = {(A, A) I A E s((2, m.)}; 

[3,9] g = su(2) x su(2), 

flo = {(A, A) I A E s((2)}. 

1.9. A Lie algebra fl is called quasi-reductive if its nilpotent radical s(g) is a 
semisimple g-module and contains no trivial simple submodules. It is obvious that 
the nilpotent radical of a quasi-reductive Lie algebra is commutative, and the direct 
product of quasi-reductive Lie algebras is again quasi-reductive. 

A Levi-Cartan subalgebra q = .pEBf) of a quasi-reductive Lie algebra g is reductive 
in g and 

s(g) = (Z(.p))+(f)) EB [.p,s(g)], 

where the ideals (Z(.p))+(f)) and [.p,s(fl)] do not depend on the choice of a Levi
Cartan subalgebra. 

The following conditions are equivalent: 

(i) a Lie algebra g is quasi-reductive; 
(ii) the Frattini ideal cp(g) of fl is equal to zero. 

1.10. Lemma. If fl is a quasi-reductive Lie algebra, then every ideal flo in f1 is 
also quasi-reductive, and moreover, there exists a quasi-reductive subalgebra fll of g 
complementary to flo. 

Proof. Let q = .p EB f) be a Levi-Cartan subalgebra of g. Then .Po = .p n flo is a 
Levi subalgebra of flo and t(g0 ) = t(fl) n flo (Chapter I, §6, no. 9, Corollary 4 to 
Theorem 5). In addition, s(flo) = [flo, t(flo)] C s(g) and 

t(flo) = (fJ n t(go)) EB ((Z(.p))+(f)) ns(go)) EB ([.p,s(g)] ns(flo)). 

Let us note that the flo-module s(flo) is semisimple (Chapter I, §6, no. 5, Corol
lary 4 to Theorem 4) and that in the Lie algebra Z(.p0 ) ng0 C t(flo) there is a Cartan 
subalgebra f) 0 that lies in Z(fJ nr(g0 )) (Chapter VII, §2, no. 3, Proposition 10). It 
is clear that 

bo = (fJ nt(flo)) EB (s(fl) n fJo), 

and consequently, f) 0 is commutative and qo = .Po EB fJo is a Levi-Cartan subalgebra 
of the quasi-reductive Lie algebra flo. 
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Now put .PI = Z(.JJo) n.p and let V be a subspace of b complementary to b nt(flo), 
and b a submodule of the fl-module s(fl) complementary to the submodule s(flo). 
Then the subspace fii =.PI EB V EBb is a subalgebra complementary to flo· Note that 
.PI is a Levi subalgebra of fib t(fii) = V EB b, and the fii-module b is semisimple 
(Chapter I, §6, no. 5, Theorem 4); in addition, in the Lie algebra Z(.JJI) nfii c t(fii) 
there is a Cartan subalgebra OI that belongs to Z(V). Obviously, qi =.PI EB OI is a 
Levi-Cartan subalgebra of the quasi-reductive Lie algebra fii· 

1.11. Assume that a Lie algebra f1 is quasi-reductive but not reductive and that 
flo E M(fl) and p,(flo) = {0}. Then flo is a Levi-Cartan subalgebra of fl, the 
flo-module s(fl) is faithful and simple, and 

fl =flo EB s(fl). 

If now k is the algebraic closure of the field k, then the Lie algebra g = k ®k fl 
is also quasi-reductive (Chapter I, §6, no. 10 and §3, no. 8). 

Let .}Jo be a Levi subalgebra of flo and 3o the center of flo; then flo= .}Jo EB3o· Now 
let Oo be a Cartan subalgebra in .jJo. It is clear that bo EB 3o is a Cartan subalgebra 
in flo· For a simple submodule V of the .Bo-module s(g), a linear form A on bo, and 
a linear form v on 3o, put 

yA+v(bo EB3o) = {v E VI [h+ z,v] = (A(h) + v(z))(v) Vh E bo, z E 3o}. 

If yA+v(bo EB3o) f. {0}, then the form A+v is called a weight of the g0 -module V 
with respect to the Cartan subalgebra bo EB 3o, and the set x = x(V, bo EB 3o) of all 
such weights is called the weight system of the .Bo -module V with respect to bo EB 3o. 
Besides, p,(Ha) E lZ for all p, E x and a E R = R(~o, bo), and also 

V = EB VIL(bo EB 3o) 
JLEX 

(Chapter VIII, §7, no. 1, Proposition 1). In addition 

for all a E R and p, E x (Chapter VII, §1, no. 3, Proposition 10). If B is a base 
of the root system R, then there exists a unique w E x such that w + a t/. x for 
all a E B. It is called the highest weight of the g0 -module V with respect to B. We 
have w(Ha) E .!Z+ for all a E Band 

dim yw (bo EB 3o) = 1 

(Chapter VIII, §6, no. 2, Proposition 3 and §7, no. 2, Theorem 1). The highest 
weight w =A+ v, where A E bo and v E 30, is normally given by a diagram. The 
vertex of the Dynkin diagram of B corresponding to a root a E B is marked by 
the number w(Ha) = A(Ha)· The form v is specified next to the diagram. (If 
w(Ha) = 0, the mark can be omitted.) 
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1.12. Suppose k = C, g is quasi-reductive but not reductive, g0 E M(g), ,u(g0 ) = 
{0}, and codimg0 = 4. Then the g0-module .s(g) can be given by one of the following 
diagrams: 

(c) codimg0 = 1; 
1 (c) codimg0 = 2; 0 
1 

codimgo = 2; 0 
1 (c) codimgo = 3; o-o 
1 

codimgo = 3; o-o 
2 (c) codimgo = 3; 0 
2 

codimgo = 3; 0 
1 
o-o--o (c) codimgo = 4; 
1 

codimg0 = 4; o-o--o 
1 

(c) codimg0 = 4; om 
1 

codimg0 = 4; om 
1 1 (c) codimg0 = 4; 0 0 
1 1 

codimg0 = 4; 0 0 
3 (c) codimg0 = 4; 0 
3 

codimg0 = 4. 0 

The sign (c) attached to a diagram shows that the subalgebra g0 has one
dimensional center Jo = Ce, c E Jo, and c( e) = 1. 

1.13. Suppose k = JE., g is a quasi-reductive but not reductive Lie algebra, g0 E 

M(g), ,u(g0 ) = {0}, and codimg0 ~ 4. Then the pair (g, go) can be written in one 
and only one of the forms: 

[1,2] 

g { ( ~ g) I a, jJ E lE.}, 

9o = {(~ ~)laElE.}; 
[2,8] 

g = { ( ~ tg) I A E g((2,JE.), BE JE.2 }, 

9o = { ( ~ ~)I A E g[(2,JE.) }; 

[2,9] 

g {(~ tg) I A E .s((2,JE.), BE JE.2 }, 

9o = {(~ ~)I A E .s((2, JE.)}; 
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[2,10] 

[2,11] 

[3,23] 

[3,24] 

[3,25] 

[3,26] 

[4,50] 

ALEXEI TCHOURIOUMOV 

g = { ( ~ ~) I a, b E C}, 
9o = { ( ~ ~) I a E C}; 

g = { ( ev-z~a ~)I a E ~' bE C}, 
g0 = { ( ev-z~a ~)I a E ~}, 

where cp E [0, 1r /2]; 

g = { (t t~)IAEg((3,~), BE~3 }, 

9o = { ( t ~)I A E g((3, ~)}; 

g = { (t t~)IAEs((3,~), BE~3 }, 

9o = { ( t ~)I A E st(3, ~) }; 

_ {(aE+A 9o- 0 

t~) I a E ~; A E so(p,q;~), BE ~3 }, 

~)I a E ~; A E so(p, q; ~)}, 
where p > q, p+q = 3; 

g = {(t t~)IAEso(p,q;~), BE~3 }, 

9o = { ( t ~)I A E so(p, q; ~)}, 
where p > q, p+q = 3; 
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[4,51] 

[4,52] 

[4,53] 

[4,54] 

[4,55] 

[4,56] 

g = { ( t t~) I A E s((4,~), BE ~4 }, 

go = { ( t ~)I A E s(( 4, ~)}; 

_ { (aE+A go- 0 

t~)laE~; AEso(p,q;~), BE~4 }, 

~)I a E ~; A E so(p, q; ~)}, 
where p ~ q, p + q = 4; 

g = { (t t~)IAEso(p,q;~), BE~4 }, 

go= { (t ~)IAEso(p,q;~)}, 
where p ~ q, p + q = 4; 

_ f(aE+A 
g - L o 

go= { ( aE0+A 

t~ ) I a E ~; A E sp ( 4, ~), B E ~ 4 }, 

~ ) I a E ~; A E sp ( 4, ~)}; 

g = { (t t~)IAEsp(4,~), BE~4 }, 

g0 = { ( t ~)I A E sp( 4, ~)}; 

g = { (t t~)IAEg[(2,C), BEC2 }, 

g0 = { ( t ~)I A E g[(2, C)}; 
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[4,57] 

[4,58] 

[4,59] 

[4,60] 

ALEXEI TCHOURIOUMOV 

n = { ( ev=T'P a0 E +A tB) I } v O a E IR; A E s((2, C), B E C2 , 

flo = { ( ev=T'P ~E +A ~) I a E IR; A E s[(2, C)}, 
where cp E [0, 1r /2]; 

fl = { (~ tg)IAEs((2,C); BEC2 }, 

flo = { ( ~ ~) I A E s[(2, C)}; 

fl 

flo= 

flo= 

(
3a+8 

31 
0 

\ ~ 
3a+8 

31 
0 
0 
0 

f3 
a+8 

21 
0 
0 

f3 
a+8 

21 
0 
0 

(~~ f ~ 
3a f3 0 
31 a 2{3 
o 21 -a 
0 0 1 
0 0 0 

0 
2{3 

-a+8 

I 
0 

0 
2{3 

-a+8 

I 
0 

0 a 
0 T 

3{3 v 
-3a f-L 

0 0 

0 0 
0 0 

3{3 0 
-3a 0 

0 0 

0 a 
0 T 

3{3 v 
-3a + 8 1-L 

0 0 

0 0 
0 0 

3{3 0 
-3a + 8 0 

0 0 

a,f3,1,8EIR 
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TABLE 1 

Effective subalgebras of codimension ~ 4 in reductive 
complex Lie algebras. 

[1] g = c: 
f!o = {0}, 

N(g0 ) = g, codimgo = 1, g0 is maximal in g; 

[2] g = El(2, C) : 

a) g0 = Et(2, C) = { ( ~ ~a) I a, bE C}, 

N(go) = f!o, codimgo = 1, f!o is maximal in g; 

b) g0 = Ea(2, C)= { ( ~ ~a) I a E C }, 

N(go) = f!o, codimgo = 2; 

c) g0 = Eb(2, C)= { ( ~ ~)I bE C }, 

N(g0 ) = Et(2, C), codimg0 = 2; 

d) f!o = {0}, 

N(g0 ) = g, codimgo = 3. 

[3] g = El(3, C) : 

{ ( -tr A 
a) f!o = 0 

N(g0 ) = g0 , codimgo = 2, f!o is maximal in g; 

{ (
an a12 a13 ) 

b) f!o = Et(3, C) = 0 a22 a23 

0 0 -an- a22 

N(go) = f!o, codimgo = 3; 

c) f!o = { (~ !) lA E E[(2,C), BE C2 }, 

N(g0 ) = [3a], codimg0 = 3; 

d) g0 = { (-~A ~) I A E g[(2, C)}, 

N(go) = f!o, codimgo = 4; 

{(
an 0 a13 ) 

e) f!o = 0 a22 a23 

0 0 -a11- a22 

N(go) = f!o, codimgo = 4; 
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{(
an 

f) 9o = ~ 
a12 a13 ) } 

(A- 1)an a23 aij E C , 
0 -Aan 

where A E C; IAI < 1 or IAI = 1, arg A E [0, 1r], 
N(g0 ) = st(3, C), codimg0 = 4. 

[4] g = sc( 4, C) 

= { C Jh !! J:) a,b,c,d,e,f,g,h,i,j E C} 
= { ( aE0+ A B ) I } -aE +A a E C; A, B, C E s[(2, C) : 

a) 9o = { (~ { !f ~c) a,b,c,d,f,g,i E c}, 
0 0 0 -a 

N(go) = £!o, codimgo = 3, g0 is maximal in g; 

b) g0 = { ( aE; A -a:+ A) I a E C; A, B E s((2, C)}, 

N(go) = £!o, codimgo = 3, £!o is maximal in g; 

c) go= { G f ~ ~J a,d,j,g,i,j E C }· 

N(go) = g0 , codimgo = 4, g0 is maximal in g; 

d) = {(aE+A B )I aEC, AEst(2,C),} 
9o 0 -aE + A B E s[(2, C) ' 

N(go) = £!o, codimgo = 4; 

e) go= { G f g -c c d) } 
-: ~ b,c,d,j,g,i E C , 

N(g0 ) = [4a], codimg0 = 4; 

f) 9o = { ( t ~) I A, B E s((2, C)}, 

N(g0 ) = [4b], codimg0 = 4. 

[5] g = s(( 4, C) : 

{ ( -tr A B) I } a) 9o = O A A E g((3, C), B E C 3 , 

N(go) = £!o, codimgo = 3, 9o is maximal in g; 
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b) g0 = { (~ ~)IA,B,CEg((2,C); trA+trB=O}, 

N(go) =go, codimgo = 4, go is maximal in g; 

c) go= { ( ~ ~)I A E s((3, C), BE C3 }, 

N(g0 ) = [5a], codimg0 = 4. 

[6] g = s((5, C) : 

go= { (-~A ~)IAEg((4,C), BE c4 }, 

N(g0 ) = g0 , codimg0 = 4, g0 is maximal in g. 

[7] g = C x s[(2,C): 

a) go = { (a, ( ~ !a)) I a, b E C}, 
N(g0 ) = C x st(2, C), codimgo = 2; 

b) go = { (a, ( ~ ~a)) I a E C}, 
N(g0 ) = C x sa(2, C), codimg0 = 3; 

c) g0 ={ (b,(~ ~))lbEC}, 
N(g0 ) = C x sb(2, C), codimgo = 3. 

[8] g = C x s((3, C) : 
r 1 ( - tr A v \ \ 1 'l 

a) go=t (trA, 0 ~))IAEg((2,C), BEC2 J, 
N(g0 ) = C x [3a], codimg0 = 3; 

b)go={((A-1)a11 -a22 ,(a~ 1 ~~~ ~~: )) aijEC}, 
0 0 -an- a22 

where A E C; IAI < 1 or IAI = 1, argA E [0,1r], 

N(g0 ) = C x [3b], codimg0 = 4. 

[9] g = C x sc( 4, C) : 

a) ~o ~ {(a, G ~ ~ i:)) a,b,c,d,f,g,i E C }· 

N(g0 ) = C x [4a], codimg0 = 4; 

b) g0 = { (a, ( aE; A -a:+ A)) I a E C; A, B E s((2, C)}, 

N(g0 ) = C x [4b], codimg0 = 4. 
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[10] g = c X 5((4, C) : 

g0 ={ (trA,(-~A !))IAEg((3,C), BEC3 }, 

N(g0 ) = C x [5a], codimgo = 4. 

[11] g = 5((2, C) X 5[(2, C) : 

a) go= {(A, A) I A E 5((2,C) }, 

N(go) =go, codimgo = 3, go is maximal in g; 

b) go = { ( ~ ~a) , (~a _~a) I a, b, c E C}, 

where A E C*; IAI < 1 or IAI = 1, arg A E [0, 1r], 

N(g0 ) = st(2, C) x st(2, C), codimg0 = 3; 

where A E C* and arg A E [0, 1r), 

N(g0 ) = sa(2, C) x st(2, C), codimg0 = 4; 

d) go = { ( ~ ~) , ( ~ ~b) I b, c E C}, 

N(g0 ) = sb(2, C) x st(2, C), codimg0 = 4; 

N(go) =go, codimgo = 4. 

[12] g = s((2, C) x s[(3, C) : 

go = { ( ( C t0r A a ) (- tr A B)) I a E C, B E C2
,} 

-C tr A ' 0 A A E g((2, C) ' 

where C E C*, 

N(g0 ) = st(2, C) x [3a], codimg0 = 4. 

[13] g = C x s((2, C) x s((2, C) : 

a) go = { ( Aa- c, ( ~ ~a) , ( ~ !c)) I a, b, c, dEC}, 

where A E C*; IAI < 1 or IAI = 1, arg A E [0, 1r], 

N(g0 ) = C x st(2, C) x st(2, C), codimg0 = 3; 

where A E C*; IAI < 1 or IAI = 1, argA E [0,1r], 

N(g0 ) = C x st(2, C) x st(2, C), codimgo = 4; 
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where A E C* and arg A E [0, 1r), 

N(g0 ) = C x sa(2, C) x st(2, C), codimg0 = 4; 

d) 9o = { (a - b, ( ~ ~) , ( ~ ~a)) I a, b, c, E C}, 
N(go) = c X sb(2, C) X st(2, C), codimgo = 4. 

[14] g = c X s((2, C) X s((3, C) : 

90 = { (\a _ c tr A, ( 0a b ) ( - tr A E)) I a, b E C, E E C2
, } 

-a ' 0 A A E g((2, C) ' 

where C E C*, 

N(go) = c X st(2, C) X [3a], codimgo = 4. 

[15] g = s((2, C) x s((2, C) x s((2, C) : 

where A, E E C* and one of the following conditions holds: 

(i) IAI < lEI ::::; 1; 

(ii) IAI =lEI< 1 and argA::::; argE; 

(iii) IAI =lEI= 1 and 2argA::::; argE::::; 2?T- argA, 

N(g0 ) = st(2, C) x st(2, C) x st(2, C), codimg0 = 4. 

[16] g = c X s((2, C) X sl(2, C) X s[(2, C) : 

{ ( ( a d ) ( b e ) ( c f ) ) I a, b, c E C } 9o = a- Eb- Cc, 0 -a ' 0 -b ' 0 -c d, e, f E C ' 
where E, C E C* and one of the following conditions holds: 

(i) lEI < ICI ::::; 1; 

(ii) lEI = ICI < 1 and arg E ::::; arg C; 

(iii) lEI= ICI = 1 and 2argE::::; argC::::; 2?T- argE, 

N(g0 ) = C x st(2, C) x st(2, C) x st(2, C), codimg0 = 4. 

[17] All other pairs of this class have the form 

g = g' X g" 

where the pairs (g', g~) and (g", g~) are also of this class. 
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TABLE 2 

N onmaximal effective subalgebras of codimension ~ 4 
in reductive real Lie algebras. 

(1) g = .s((2, ll) : 

[2,5] g0 = .sa(2, ll) = { ( ~ _0a) I a Ell}, 

N(go) =go, codimg0 = 2; 

[2,6] g0 = .sb(2, ll) = { ( ~ ~)I {3 Ell}, 

N(g0 ) = .st(2, ll), codimgo = 2; 

[3,10] go = {0}, 

N(go) = g, codimgo = 3. 

(2) g = .su(2) : 

[3,11] go= {0}, 

N(go) = g, codimgo = 3. 

(3) g = .s((2, CC) : 

{ ( ev'=I'Pa a )I } [3,12] g0 = 0 _ ev'=I'P a a Ell, a E CC , 

where r.p E [0, n /2], 
N(g0 ) = .st(2, CC), codimg0 = 3; 

[4,14] g0 = .sb(2, CC) = { ( ~ ~)I bE CC}, 

N(g0 ) = .st(2, CC), codimgo = 4; 

[4,15] g0 = .sa(2, CC) = { ( ~ ~a) I a E CC}, 

N(go) =go, codimg0 = 4; 

[4,16] go = .st(2, ll), 

N(go) =go, codimg0 = 4. 

N(go) =go, codimgo = 3; 

[3,14] go = { ( ~ ~)I A E .s((2, ll), B E ll2 }, 

N(g0 ) = [2, 4], codimgo = 3; 
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[4,17] go = { (-~A ~)I A E g((2, IF?.)}, 

N(go) =go, codimgo = 4; 

[4,18] { (
all 0 a13 ) 

go= 0 a22 a23 

0 0 -an- a22 

N(go) =go, codimgo = 4; 

[4,19] { (
all a12 

g0 = ~ (A-01)an 

where A E [-1, 1], 
N(g0 ) = ,st(3, Ill?.), codimgo = 4. 

a, j3 E IF?., } 
a E C ' 

(6) g = ,sc( 4, IF?.) (see [3,4]): 

- f (~ ~ 2 
[4,21] go - l ~ ~ ~7 

N(go) =go, codimgo = 4; 

[4,22] (3,"(,8,T,V,E: E JP1 }• 

N(g0 ) = [3, 4], codimg0 = 4; 

[4,23] g0 = { ( t ! ) I A, B E ,s[(2, IF?.)}, 

N(g0 ) = [3, 5], codimg0 = 4. 

(7) g = ,sc(2, IHI) (see [3,6]): 

[4,24] go = { ( t ! ) I A, B E ,su(2)}, 

N(g0 ) = [3, 6], codimgo = 4. 
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(8) g = s(( 4, TIR) : 

[4,25] go = { ( ~ ~)I A E sf(3, TIR), B E JJR3 }, 

N(go) = [3, 7], codimg0 = 4. 

(9) g = llR x s((2, TIR) : 

[2,7] 9o={(a,(~ !a))la,f)EllR}, 

N(g0 ) = llR x st(2, TIR), codimgo = 2; 

[3,15] go = { (a, ( ~ -Oa)) I a E llR}, 

N(g0 ) = llR x so(2, TIR), codimg0 = 3; 

[3,16] go = { (a, ( ~ !a)) I a E llR}, 

N(g0 ) = llR x sa(2, TIR), codimg0 = 3; 

[3,17] go= { (!3, (~ g)) I !3 E llR }, 

N(g0 ) = llR x sb(2, TIR), codimg0 = 3. 

(10) g = llR x su(2) : 

[3,18] 9o = { (a, (~a -Aa)) I a E llR}' 

N(g0 ) = llR x suo(2) (see [2, 2]), codimgo = 3. 

(11) g = llR x s((2, C) : 

{ f -1 ~ 11 ) (a [3,19] go= ~v-1(e-v- 1'Pa-ev-l'Pa,, 0 
b \\1 - } -a)) J a, b E C , 

where cp E [0, 1r /2], 
N(g0 ) = llR x st(2, C), codimg0 = 3; 

[4,26] g0 = { (a, ( ev:'P a _ e~'P a)) I a E TIR, a E C}, 

where cp E [0, 1r /2], 
N(go) = llR x st(2, C), codimg0 = 4. 

(12) g = llR x sf(3, JJR) : 

[3,20] g0 = { (tr A, (-~A ~))I A E gf(2,TIR), BE TIR2 }, 

N(g0 ) = llR x [2, 4], codimg0 = 3; 

[4,27] go~ { ((A- l)on- "''' ( T ~~: 
where A E [-1, 1], 

N(g0 ) = llR x [3, 13], codimg0 = 4. 
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b 
a-a J=Ta) } =~ a, (3 E m.; a, b, c E C : 

b 
a-a 

0 

where cp E [0, 1r /2], 

N(g0 ) = m. x [3, 3], codimg0 = 4. 

(14) g = m. x sc(4,m.): 

J=Ta)) } 
-b a Em., 

_ a, bE C ' 
-a 

[4,29[ go= { (a, (~ ~ ~T ~:)) a,~''' 8, T,v,c E ~ }· 
N(go) = m. x [3, 4], codimg0 = 4; 

[4,30] g0 = { (a, ( aE 0+ A -a:+ A)) I a E m.; A, B E s((2, m.)}, 

N(g0 ) = m. x [3, 5], codimg0 = 4. 

(15) g = m. x sc(2, IHI) : 

[4,31] go= {(a, ( aE 0+ A 

N(go) = m. X [3, 6]. 

(16) g = m. x s((4,m.): 

[4,32] g0 = { ( tr A, (-~A 
N(go) = m. X [3, 7]. 

(17) g = s((2, m.) x s((2, m.) : 

[3,21] go={((~ !a),(~a -~a),)la,f3,1Em.}, 
where A E [-1, 1] and A =1- 0, 

N(g0 ) = st(2, m.) x st(2, m.), codimgo = 3; 

where A E m.:;_, 
N(g0 ) = so(2, m.) x st(2, m.), codimgo = 4; 

[4,34] 9o = { ( ( ~ _0a), (~a -~a)) I a,(3 Em.}, 

where A E m.:;_, 
N(g0 ) =sa(2,m.) x st(2,m.), codimg0 = 4; 



44 ALEXEI TCHOURIOUMOV 

[4,35] go = { ( ( ~ g) , ( g _113 )) I fJ, IE TI{}, 

N(g0 ) = sb(2, TI{) x st(2, TI{), codimg0 = 4; 

[4,36] 9o = { ( ( ~ !a) ' ( ~ !a)) I a, f3 E TI{}' 

N(go) = 9o, codimg0 = 4. 

(18) g = s[(2, TI{) x su(2) : 

[4,37] 9o = { ( (~a -~a) ' ( 7a -Aa)) I a, f3 E TI{}' 

where A Eli{+, 

N(flo) = st(2, TI{) x suo(2), codimflo = 4. 

(19) g = s[(2, TI{) x s((2, CC) : 

[4,38] flo= { ( ( F-l(A;- Aa) -F-l(Aa- Aa)) ' ( ~ ~a)) I :, bEETI{C }, 

where A E CC* and arg A E [0, 7r /2], 

N(flo) = st(2, TI{) x st(2, CC), codimflo = 4. 

(20) f1 = s((2, TI{) x sf(3, TI{) : 

[4,39] flo={((c~A -C~rA),(-~A ~))la~='flff2~li{~2'}, 
where C Eli{*, 

N(flo) = st(2, TI{) x [2, 4], codimflo = 4. 

(21) f1 = TI{ x st(2, TI{) x z[(2, TI{) : 

[3,22] flo= { ( Aa -1, ( ~ !a), ( 6 !, ) ) I a,/3,/,D E TI{ }, 

where A E [-1, 1] and A 1- 0, 
N(flo) = li{ x st(2, TI{) x st(2, TI{), codimflo = 3; 

[4,40] flo={ (a,(~ !a),(~a -~a))la,/3,/Eli{}, 
where A E [-1, 1] and A 1- 0, 

N(flo) = li{ x st(2, TI{) x st(2, TI{), codimflo = 4; 

[4,41] flo= { ( Aa- /3, ( ~ -Oa), (g _713 )) I a,/3,/ E TI{ }, 

where A E li{+, 
N(flo) = TI{ x so(2, TI{) x st(2, TI{), codimflo = 4; 

[4,42] flo= { (Aa- /3, ( ~ _0a), (g _713 )) I a,/3,/ E TI{ }, 

where A E TI{+, 
N(g0 ) = TI{ x sa(2, TI{) x st(2, TI{), codimg0 = 4; 
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[4,43] 9o = { (a- /3, ( ~ g) , ( ~ -'a)) I a, /3, I E ~}, 
N(g0 ) = ~ x sb(2, ~) x st(2, ~), codimg0 = 4. 

(22) g = ~ x s((2, ~) x su(2) : 

[4,44] 9o={ (a-A,,(~ !a),(~' -A,))Ia,/3,/E~}, 
where A E ~+, 

N(g0 ) = ~ x st(2,~) x su0 (2), codimg0 = 4. 

(23) g = ~ x s[(2, ~) x s[(2, C) : 

[4,45] go={(a-H(Aa-Aa),(~ !a),(~ ~a))l~:~:~}, 
where A E C* and arg A E [0, 1r /2], 

N(g0 ) = ~ x st(2, ~) x st(2, C), codimg0 = 4. 

(24) g = ~ x s((2, ~) x s[(3, ~) : 

[4,46] g0 = { (a -C tr A, ( ~ 
where C E ~*, 

j3 ) (- tr A E)) I a, j3 E ~' E E ~2 
} 

-a ' 0 A A E g((2, ~) ' 

N(g0 ) = ~ x st(2, ~) x [2, 4], codimg0 = 4. 

(25) g = s[(2, ~) x s((2, ~) x s((2, ~) : 

[4,47] 9o = { (( Aa;Ej3 -Aa~Ej3) ' ( ~ !) (g ~/3 )) I ab~;~ ~~ }, 
where A, E E ~* and one of the following conditions holds: 

(i) IAI < lEI ~ 1; 

(ii) A= lEI ~ 1, 

N(g0 ) = st(2, ~) x st(2, ~) x st(2, ~), codimg0 = 4. 

(26) g = c X s((2, C) : 

[4,48] go = { (a, ( ~ ~a)) I a, b E C}, 

N(go) = c X st(2, C), codimgo = 4. 

(27) g = ~ x s[(2, ~) x s((2, ~) x s((2, ~) : 

[4,49] 9o = { (a-E/3-C/, ( ~ !a)' (g ~!3) ' ( 6 :, ) )I~:~,';::}, 
where E,C E ~*, 

N(g0 ) = ~ x st(2, ~) x st(2, ~) x st(2, ~), codimg0 = 4. 
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(28) All other pairs of this class have the form 

g = g' X g" 
I II go= go x go, 

where the pairs (g', gS) and (g", g~) are either maximal or also belong to this class. 

To make the picture complete, we write out one more maximal pair: 

g=m 
[1, OJ go = {0} 

N(go) = g, codimg0 = 1. 
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