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Abstract

In a unified framework we study equilibrium in the presence of an insider having information on the

signal of the firm value, which is naturally connected to the fundamental price of the firm related asset.

The fundamental value itself is announced at a future random (stopping) time. We consider the two cases

in which this release time of information is known and not known, respectively, to the insider. Allowing

for very general dynamics, we study the structure of the insider’s optimal strategies in equilibrium and

we discuss market efficiency. With respect to market efficiency, we show that in the case the insider

knows the release time of information, the market is fully efficient. In the case the insider does not

know this random time, we see that there is no full efficiency, but there is nevertheless an equilibrium

where the sensitivity of prices is decreasing in time according with the probability that the announcement

time is greater than the current time. In other words, the prices become more and more stable as the

announcement approaches.
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1 Introduction

Models of financial markets with the presence of an insider or informational asymmetries have a large

literature, see e.g. Karatzas and Pikovsky (1996), Amendiger et al. (1998), Imkeller et al. (2001), Corcuera

et al. (2004), Biagini and Øksendal (2005), (2006), Kohatsu-Higa (2007), Di Nunno et al. (2006, 2008),

Biagini et al. (2012) and the references therein. In most of these models prices are fixed exogenously, i.e.

the insider does not affect the stock price dynamics, and the privileged information is a functional of the

stock price process: the maximum, the final value, etc. As pointed by Danilova (2010), in an equilibrium

situation market prices are determined by the demand of market participants, so in such a situation the

privileged information cannot be a functional of the stock price process because this implies the knowledge

of future demand and it is unrealistic. Then the privileged information is exogenous like the value of the

fundamental price, or some signal of it, or the announcement time of the release of the fundamental price,

which evolves independently of the demand. The questions considered in this paper deal with the existence

of an equilibrium and the properties of the insider’s optimal strategies. Moreover another question studied

is the efficiency of the market, namely the conditions in which market prices converge to the fundamental

one. These problems have been addressed in different works, with different degrees of generality, and with

very different types of insider’s privileged information and demands of the uninformed traders.

The original model is due to Kyle (1985), he considers three kind of actors in the market: market makers,

uninformed traders and one insider who knows the fundamental or liquidation value of an asset at certain

fixed released time, there is also, in the model, a price function establishing the relation between market

prices and the total demand. He works in the discrete time setting, and with Gaussian random walks as

noises. Back (1992) extends the work to the continuous time case. These are the two seminal papers.

From then there has been several generalizations of the model: Back and Pedersen (1998) who consider

a dynamic fundamental price and Gaussian noises with time varying volatility; Cho (2003) who considers

pricing functions depending on the path of the demand process and studies what happens when the informed

trader is risk-averse; Lasserre (2004) who considers a multivariate setting; Aase et al. (2012a), (2012b) who

put emphasis in filtering techniques to solve the equilibrium problem; Campi and Çetin (2007), who consider

a defaultable bond, in the place of the stock in the Kyle-Back model, and the default time, as privileged

information; Danilova (2010) where the author considers non-regular pricing rules; Caldentey and Stacchetti

(2010) who consider a random release time, and Campi et al. (2013) where again the authors consider a

defaultable bond and the privileged information is not the default time anymore, but some dynamic signal

related with it, see example 23 below for more details. The list could be completed with the references in

the mentioned papers.
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The present paper extends the previous contributions in different ways. We consider general noises for the

demand processes, general pricing rules, random release times, and general dynamic information, all in the

same model. Then, we study in detail which are the necessary conditions needed to have an equilibrium.

These conditions are new in the literature. Specifically we consider the very general case in which an insider

has access to some signal related to the firm value, which is in fact released at some stopping time. We

first consider the case where the insider knows the random time of release of information and then the case

where this is also unknown to her. We study these two situations in the same framework with the purpose

of analyzing equilibrium and efficiency of the market.

Except for the multivariate setting of Lasserre (2004) and the risk-aversion considered in previous works,

this is a general setting for the previous extensions of the Kyle-Back model, as we show through different

examples.

Our study shows explicitly how equilibrium is a specific state of the market induced by the interplay of agents

with different roles and asymmetric information. Indeed, the market makers set rational prices which are

assumed to be a function H of the aggregate demand and time. For such H given, the insider optimizes her

position to maximize her expected wealth. The necessary conditions for the existence of an equilibrium show

how this optimization is possible only for some given pricing rules and under some available information

flows.

In this study we show that the presence of the insider can be beneficial to the market from an efficiency point

of view. In fact, if the insider knows the random release time, then the market is efficient. However, if this

time of release is unknown also to the insider, then the market is not fully efficient, nevertheless equilibrium

can be reached if the sensitivity of prices decreases in time according to the survival probability of the

announcement. In other words, the prices become more stable as the announcement time approaches.

As far as we know this generality of the insider’s information together with the presence of a random time

of release has never been studied before. Moreover, our contribution includes also very general dynamics for

the demand process. In fact the insider’s demand is allowed to be a general semimartingale. The present

paper includes also various examples in which we give explicit insider’s optimal strategies for a given pricing

rule and define the concept of admissibility for pricing rules and insider strategies. Here we show how our

results, coupled with the mathematical tools of enlargement of filtrations or filtering techniques, allow to

finding the insider’s optimal strategy in various cases presented in the literature, but here treated in a unified

framework.

The paper is structured as follows. In the next section we describe the model that gives rise the stock prices

and we discuss the insider’s optimal strategies for a given pricing rule and define the concept of admissibility
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for pricing rules and insider strategies. In section 3 and 4 we discuss what happens when the release time is

known to the insider or not, respectively. Finally, in section 5, we give some examples.

2 The model and equilibrium

We consider a market with two assets, a stock of a firm and a bank account with interest rate r equal to zero

for the sake of simplicity. With abuse of terminology we will just write prices even though they are sometimes

“discounted” prices. The trading is continuous in time over the period [0,∞) and it is order driven. There

is a (possibly random) release time τ < ∞ a.s., when the fundamental value of the stock is revealed. The

fundamental value process, that we shall define in a precise way later, is denoted by V . We shall denote the

market price of the stock at time t by Pt. Just after the revelation time the price of the stock coincides with

the fundamental value. Then we consider Pt defined only on t ≤ τ . In principle, it is possible that Pt 6= Vt

if t ≤ τ, stopping our studies at this (random) time of release.

We assume that all the random variables and processes mentioned are defined in the same, complete, proba-

bility space (Ω,F ,P) and that the filtrations are complete and right-continuous by taking, if it is necessary,

the usual augmentation of them, as we shall specify below.

There are three kinds of traders. A large number of liquidity traders, who trade for liquidity or hedging

reasons, an informed trader or insider, who has privileged information about the firm and can deduce its

fundamental value, and the market makers, who set the market price and clear the market.

2.1 The agents and equilibrium

Let X be the demand process of the informed trader. At time t, her information is given by Ht and her flow

of information is given by the filtration H = (Ht)t≥0. It is natural to assume that X is an H-predictable

process. The informed trader, like any other trader, observes the market prices P and, in addition, she has

access to the firm value, having access to some signal process η directly related to the firm value. Moreover,

she will have some knowledge about the random time τ . In the sequel we will consider two cases:

• Ht = σ̄(Ps, ηs, τ, 0 ≤ s ≤ t), i.e. the informed trader has knowledge of the time of release of information

• Ht = σ̄(Ps, ηs, τ ∧ s, 0 ≤ s ≤ t), i.e. the informed trader has no knowledge of this release time, but she

will instantly know when it happens.

4



Here σ̄ denotes the usual augmentation of a natural filtration σ (see [32], Ch. I, Def. 4.13). That is, e.g.,

σ̄(Ps, ηs, τ, 0 ≤ s ≤ t) :=
⋂
r>t

(σ(Ps, ηs, τ, 0 ≤ s ≤ r) ∪N ) ,

where N is the family of P-null sets in F , and σ(Ps, ηs, τ, 0 ≤ s ≤ r) is the natural filtration generated by

P, η, and τ.

In both the cases above, the insider has access to the fundamental value V which, in terms of the insider’s

information flow, is assumed to be a càdlàg H-martingale such that σ2
V (t) :=

d[V,V ]ct
dt is well defined (where

[V, V ]c indicates the continuous part of the quadratic variation of V ) and V is taken in the form:

Vt = E(f(ητ )|Ht), t ≥ 0, (1)

where f is a non-negative deterministic function and η is some signal process related to the firm value. The

explicit presence of f gives a structure to the relationship between the type of signal and the fundamental

value, see Example 22 and Remark 10.

Let Z be the aggregate demand process of the liquidity traders. We recall that these are a large number of

traders motivated by liquidity or hedging reasons. They are perceived as constituting noise in the market,

thus also called noise traders. From the insider’s perspective we assume that Z is a continuous H-martingale,

independent of η and V , such that that σ2
Z(t) := d[Z,Z]t

dt is well defined.

Market makers clear the market giving the market prices. They rely on the information given by the total

aggregate demand Y := X+Z which they observe and, just like the noise traders, they instantly know about

the time of release of information when that occurs. Hence their information flow is: F = (Ft)t≥0, where

Ft = σ̄(Ys, τ ∧ s, 0 ≤ s ≤ t).

Due to the competition among market makers, the market prices are rational, or competitive, in the sense

that

Pt = E(Vt|Ft), 0 ≤ t ≤ τ.

Finally we suppose that market makers give market prices through a pricing rule, which consists of a formula,

here assumed of the form:

Pt = H(t, ξt), t ≥ 0 (2)

involving

ξt :=

∫ t

0

λ(s)dYs,
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where λ ∈ C1 is a strictly positive deterministic function, H ∈ C1,2, H(t, ·) is strictly increasing for all t ≥ 0.

Note that Ft = σ̄(Ps, τ ∧ s, 0 ≤ s ≤ t), for all t. We have the following definition.

Definition 1 Denote the class of such pairs (H,λ) above by H. An element of H is called a pricing rule.

The informed trader is assumed risk-neutral and she aims at maximizing her expected final wealth. Let W

be the wealth process corresponding to insider’s portfolio X. We introduce the following definitions.

Definition 2 A strategy X is called optimal with respect to a price process P if it maximizes E(Wτ ).

Definition 3 Let (H,λ) ∈ H and consider a strategy X. The triple (H,λ,X) is an (a local) equilibrium, if

the price process P· := H(·, ξ·) is rational, given X, that is

Pt = E(Vt|Ft), 0 ≤ t ≤ τ, (3)

and the strategy X is (locally) optimal, given (H,λ).

Remark 4 It is important to remark that the effect of the total demand in prices is due not only to the

function λ, but also to the function H. In fact, as we shall see later, in some equilibrium cases, see Proposition

13,

dPt = ∂2H(t, ξt)λ(t)dYt,

and some authors give the name market depth to the quantity

1

∂2H(t, ξt)λ(t)
.

Here and in the sequel ∂iH denotes the derivative with respect to the ith variable. So, to say that the market

depth is constant is not equivalent to say that λ(t) is constant. Only if the equilibrium pricing rule is linear,

the two statements are equivalent. See Back and Pedersen (1998).

2.2 Wealth and admissible strategies

To illustrate the relationship among the processes V, P,X, and W we first consider a multi-period model

where trades are made at times i = 1, 2, . . . N, and where τ = N is random. If at time i−1, there is an order

to buy Xi −Xi−1 shares, its cost will be Pi(Xi −Xi−1), so, there is a change in the bank account given by

−Pi(Xi −Xi−1).
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Then the total (cumulated) change at τ = N is

−
N∑
i=1

Pi(Xi −Xi−1),

and due to the convergence of the market and the fundamental prices at time τ = N , there is the extra

income: XNVN . So, the total wealth Wτ at τ is

Wτ = −
N∑
i=1

Pi(Xi −Xi−1) +XNVN

= −
N∑
i=1

Pi−1(Xi −Xi−1)−
N∑
i=1

(Pi − Pi−1)(Xi −Xi−1) +XNVN .

Consider now the continuous time setting where we have the processes X,P, and V, and we take N trading

periods, where N is random and the trading times are: 0 ≤ t1 ≤ t2 ≤ ... ≤ tN = τ, then we have

Wτ = −
N∑
i=1

Pti−1
(Xti −Xti−1

)−
N∑
i=1

(Pti − Pti−1
)(Xti −Xti−1

) +XtNVtN ,

so if the time between trades goes to zero we will have

Wτ = XτVτ −
∫ τ

0

Pt−dXt − [P,X]τ

=

∫ τ

0

Xt−dVt +

∫ τ

0

Vt−dXt + [V,X]τ −
∫ τ

0

Pt−dXt − [P,X]τ

=

∫ τ

0

(Vt− − Pt−) dXt +

∫ τ

0

Xt−dVt + [V,X]τ − [P,X]τ , (4)

where (and throughout the whole article) Pt− = lims↑t Ps a.s. We shall asume that X is an H-predictable

càdlàg semimartingale, so that the stochastic integrals above can be seen as Itô’s integrals. Moreover, by

applying Itô’s formula to Pt = H(t, ξt), t ≥ 0, where ξ is now a càdlàg H-semimartingale, we can see that P

is also an H-semimartingale.

In the next subsection we discuss the characterization of an insider’s optimal strategy in equilibrium in terms

of fundamental value and insider information. Namely, we consider a process X that is optimal in the sense

that it maximizes

J(X) := E (Wτ ) = E
(∫ τ

0

(Vt− −H(t, ξt−))dXt +

∫ τ

0

Xt−dVt + [V,X]τ − [P,X]τ

)
,

for a pricing rule (H,λ) ∈ H. However for technical and modelling reasons, we require additional properties
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to the triplet (H,λ,X). In this way, we characterize the admissible triplets (H,λ,X) as those processes X

(that include, by hypothesis, the process X ≡ 0) and price functions (H,λ) ∈ H satisfying:

(A1) Xt = Mt + At +
∫ t

0
θsds, for all t ≥ 0,where M is a continuous H-martingale, A a finite variation

H-predictable process with At =
∑

0<s≤t (Xs −Xs−), and θ a càdlàg H-adapted process

(A2) E
(∫ τ

0
(∂2H(s, ξs))

2 (
σ2
Z(s)ds+ σ2

M (s)ds
))

<∞, where σ2
M (s) := d[M,M ]s

ds

(A3) E
(∫ τ

0
∂2H(s, ξs)|θs|ds

)
<∞

(A4) E (
∑τ

0 ∂2H(s, ξs−)|∆Xs|) <∞, ∆Xs := Xs −Xs−

(A5) E
(∫ τ

0
|Xs|2 d[V, V ]s

)
<∞

(A6) E
(∫ τ

0
λ(s)|∂22H(s, ξs)|

(
σ2
M (s) + |σM,Z(s)|

)
)ds
)
<∞, where σM,Z(s) := d[M,Z]s

ds .

Recall that ∂i indicates the derivative w.r.t. the ith argument.

Remark 5 Note that, since (Xt)t≥0 is a càdlàg H-predictable process, its martingale part cannot have

jumps, see Corollary 2.31 in Jacod and Shiryaev (1987). Similarly, we have chosen Z to be continuous

before.

We can recall the essential assumptions of the model as follows. Our stochastic basis is a complete filtered

space (Ω,F ,F,H,P), where F ⊆ H are the filtrations defined in the subsection 2.1. Roughly speaking,

F contains information about market prices or total demand and H includes also information about the

fundamental value V . We have market prices Pt = H(t, ξt), where H is a C1,2 function, H(t, ·) strictly

increasing, ξt =
∫ t

0
λ(s)dYs, and λ is a C1 strictly positive function. From the rationality assumption (3)

we have that P is an F-martingale. The total demand process is given by Y = X + Z , with Z an H-

continuous martingale such that σ2
Z(s) := d[Z,Z]s

ds . The fundamental value V is a càdlàg H-martingale such

that σ2
V (t) :=

d[V,V ]ct
dt and V has the structure (1). Finally the release time τ is a stopping time with respect

to F and H.

2.3 The optimality condition

In the sequel we will consider two kinds of stopping times: τ bounded, or τ finite but independent of

(V, P, Z). In both cases, by the assumptions that V is an H-martingale and X an H-predictable càdlàg
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H-semimartingale satisfying (A5) we have that E(
∫ τ

0
XtdVt) = 0. In fact, if τ is bounded we can apply

Doob’s Optional Sampling Theorem and if τ is finite but independent of (V, P, Z), we have that

E
(∫ τ

0

XtdVt

)
= E

(
E
(∫ τ

0

XsdVs

∣∣∣∣ τ = t

)∣∣∣∣
t=τ

)
= E

(
E
(∫ t

0

XsdVs

)∣∣∣∣
t=τ

)
= 0.

Hence,

J(X) := E (Wτ ) = E
(∫ τ

0

(Vt− −H(t, ξt−))dXt + [V,X]τ − [P,X]τ

)
. (5)

First, note that

∫ τ

0

(Vt− −H(t, ξt−))dXt + [V,X]τ − [P,X]τ =

∫ τ−

0

(Vt− −H(t, ξt−))dXt + [V,X]τ− − [P,X]τ−

+ (Vτ −H(τ, ξτ )) ∆Xτ .

Then suppose that X is (locally) optimal and we modify only the the last jump of this strategy, by taking

(1 + εγ)∆Xτ with γ an Hτ−-measurable and bounded random variable and ε > 0 small enough. We recall

that Hτ− := H0 ∨ σ(A ∩ (τ > t) : A ∈ Ht, t ≥ 0) (see, e.g., Revuz and Yor (1999), page 46). Denote X(ε)

this new strategy.

Then we obtain

d

dε
J(X(ε))

∣∣∣
ε=0

= E
(
γ
(

(Vτ −H(τ, ξτ )) ∆Xτ − λ(τ)∂2H(τ, ξτ ) (∆Xτ )
2
))

,

so

E
(

(Vτ −H(τ, ξτ )) ∆Xτ − λ(τ)∂2H(τ, ξτ ) (∆Xτ )
2
∣∣∣Hτ−) = 0. (6)

Now we modify the strategyX by taking an H-adapted càdlàg process β such thatX·+ε
∫ ·

0
βsds is admissible,

with ε > 0 small enough.
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We have

0 =
d

dε
J(X· + ε

∫ ·
0

βsds)

∣∣∣∣
ε=0

=
d

dε
E
(∫ τ

0

(Vt− −H(t,

∫ t−

0

λ(s)(dXs + εβsds+ dZs)))(dXt + εβtdt)

)∣∣∣∣
ε=0

− d

dε
E
(

[V,X· + ε

∫ ·
0

βsds]τ − [H(·,
∫ ·

0

λ(s)(dXs + εβsds+ dZs), X· + ε

∫ ·
0

βsds]τ

)∣∣∣∣
ε=0

= E
(∫ τ

0

(Vt− −H(t, ξt))βtdt

)
− E

(∫ τ

0

∂2H(t, ξt−)

(∫ t

0

λ(s)β(s)ds

)
dXt

)
− E

([
∂2H(·, ξ·)

(∫ ·
0

λ(s)β(s)ds

)
, X·

]
τ

)
= E

(∫ τ

0

(
(Vt −H(t, ξt))− λ(t)

∫ τ

t∧τ
∂2H(s, ξs−)dXs

)
βtdt

)
− E

(∫ τ

0

(∫ t

0

λ(s)β(s)ds

)
d [∂2H(·, ξ·), X·]t

)
= E

(∫ τ

0

(
(Vt −H(t, ξt))− λ(t)

(∫ τ

t∧τ
∂2H(s, ξs−)dXs + [∂2H(·, ξ·), X·]τt

))
βtdt

)
,

where [·, ·]τt = [·, ·]τ− [·, ·]t. Since we can take βt = αu1(u,u+h](t) αu, with αu Hu-measurable and bounded,

we have

E

(∫ u+h

u

(
E(1[0,τ ](t) (Vt −H(t, ξt))

∣∣Ht)− λ(t)E
(∫ τ

t∧τ
∂2H(s, ξs−)dXs + [∂2H(·, ξ·), X·]τt∧τ

∣∣∣∣Ht)) dt

∣∣∣∣∣Hu
)

= 0

(7)

and this means that the process Ξt, t ≥ 0:

Ξt :=

∫ t

0

(
E(1[0,τ ]Vu|Hu)− E(1[0,τ ](u)H(u, ξu)|Hu)− λ(u)E(

∫ τ

u∧τ
∂2H(s, ξs−)dXs + [∂2H(·, ξ·), X·]τu∧τ |Hu

)
du

is an H-martingale with bounded variation. In particular this implies that, for a.a. t ≥ 0,

E
(
1[0,τ ](t)Vt

∣∣Ht)−E (1[0,τ ](t)H(t, ξt)
∣∣Ht)−λ(t)E

(∫ τ

t∧τ
∂2H(s, ξs−)dXs + [∂2H(·, ξ·), X·]τt∧τ |Ht

)
= 0, a.s.

Since τ is an H-stopping time, then for a.a. t and for a.a. ω ∈ {τ ≥ t}, or equivalently a.s. on the stochastic

interval [0, τ ] , we can write

Vt −H(t, ξt)− λ(t)E
(∫ τ

t

∂2H(s, ξs)d
−Xs

∣∣∣∣Ht) = 0. (8)

Where we have used a shorthand notation by means of d−Xs as the backward integral in the sense of Revuz

and Yor (1999) (see page 144), here extended to semimartingales with jumps. As a summary we have the
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following necessary condition to help identifying good candidates as insider’s optimal strategies.

Theorem 6 An admissible triple (H,λ,X) such that X is locally optimal for the insider satisfies equations

(6) and (8) a.s. in [0, τ ].

Remark 7 Note that (6) and (8) are also true in the case that λ(t) is a piecewise strictly positive constant

function including the situation treated in Danilova (2010).

In the sequel we study two different cases of knowledge of τ from the insider’s perspective. First the case in

which the insider knows τ , the exact time of release of information about the firm value, then we study the

case when the insider does not know τ .

3 Case when τ is known to the insider

Let σ(τ) be the σ-algebra generated by τ . Then we consider the case in which σ(τ) ⊆ H0. At any time t,

the insider relies on the information given by:

Ht = σ̄(Ps, ηs, τ, 0 ≤ s ≤ t).

Moreover, we assume that τ is bounded, so the analysis here below is consistent with the one of the previous

section.

3.1 Necessary conditions for the equilibrium

Our first observation is that optimal strategies lead the market price to the fundamental one, making the

market be efficient. In fact we have the following proposition.

Proposition 8 If τ is known to the insider and (H,λ,X) is admissible with X locally optimal, then the

optimal strategy X has no jump at τ and the market is efficient, i.e.

Vτ− = H(τ, ξτ−) = H(τ, ξτ ) = Pτ a.s.
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Proof. By the assumptions (A1) and (A2), equation (8) can be rewritten:

Vt −H(t, ξt)− λ(t)E
(∫ τ

t

∂2H(s, ξs)d
−Xs

∣∣Ht)
= Vt −H(t, ξt)− λ(t)

∫ τ

t

E(∂2H(s, ξs)θs|Ht)ds

− λ(t)

τ∑
t

E (∂2H(s, ξs)∆Xs|Ht)

− λ(t)E
(∫ τ

t

λ(s)∂22H(s, ξs)(σ
2
M (s) + σZ,M (s))ds

∣∣∣∣Ht)
= 0, a.s. on [0, τ ].

Now by assumption (A3) and Corollary (2.4) in Revuz and Yor (1999), we have that

lim
t↑τ

E
(∫ τ

t

∂2H(s, ξs)|θs|ds
∣∣∣∣Ht) = 0.

Analogously for the term

lim
t↑τ

λ(t)E
(∫ τ

t

λ(s)∂22H(s, ξs)(σ
2
M (s) + σZ,M (s))ds

∣∣∣∣Ht) = 0, a.s.

Whereas

lim
t↑τ

λ(t)

τ∑
t

E (∂2H(s, ξs)∆Xs|Ht)

= λ(τ)∂2H(τ, ξτ )∆Xτ ,

and consequently

Vτ− −H(τ, ξτ−)− λ(τ)∂2H(τ, ξτ )∆Xτ = 0. (9)

Now consider equation (6) and recall that H0 ⊆ Hτ−. Since V is an H-martingale and τ ∈ H0, then

E(Vτ |Hτ−) = Vτ− (see Revuz and Yor (1999), Ch. 2, Prop. 2.7). Moreover, since X is H-predictable, Z is

continuous, and τ ∈ H0, we have

E
(

(H(τ, ξτ )) ∆Xτ + λ(τ)∂2H(τ, ξτ ) (∆Xτ )
2
∣∣∣Hτ−) = H(τ, ξτ )∆Xτ + λ(τ)∂2H(τ, ξτ ) (∆Xτ )

2
.

Therefore equation (6) gives

(Vτ− −H(τ, ξτ )) ∆Xτ − λ(τ)∂2H(τ, ξτ ) (∆Xτ )
2

= 0. a.s. (10)

12



and if ∆Xτ 6= 0, it turns out that

Vτ− −H(τ, ξτ )− λ(τ)∂2H(τ, ξτ )∆Xτ = 0.

Comparing the above equation with (19) we have that H(τ, ξτ ) = H(τ, ξτ−), which contradicts ∆Xτ 6= 0,

being H strictly increasing in the second variable. This shows that a (locally) optimal strategy X has no

jump at τ and, by (19), that Vτ− = H(τ, ξτ−) = H(τ, ξτ ).

Remark 9 In Aase et al. (2012a) it was already observed that market efficiency, that is the convergence

of market prices to the fundamental ones, is a consequence of the optimality of the insider’s strategy. Here

we obtain an extension of this result for a more general behavior of the fundamental value and the demand

process of the noise traders.

Remark 10 This efficiency situation is also the case in Campi and Çetin (2007). In our notation they have

the signal η = τ̄ , with τ̄ an H-stopping time, Vt = 1{τ̄>1} and the release time is τ = τ̄ ∧ 1. So, τ ∈ H0 and

it is bounded. Then, they obtain

1{τ̄>1} −H(τ̄ ∧ 1, ξτ̄∧1) = 0, a.s.

They also assume that τ̄ is the first passage time of a standard Brownian motion independent of Z.

Remark 11 If we take Vt ≡ V and τ ≡ 1 then we are in Back’s framework (1992). There it is shown that

market prices converge to V when t→ 1.

Hereafter we consider necessary conditions for the existence of an equilibrium. These conditions show the

synergy between the optimal insider strategy and the pricing rule in an equilibrium state. Note that one

cannot use these conditions to (uniquely) identify a pricing rule. The choice of pricing rules is not unique.

In the next subsection we will study necessary and sufficient conditions for the existence of an equilibrium

for a wide class of pricing rules. Before that we have the following.

Proposition 12 Consider an admissible triple (H,λ,X). If (H,λ,X) is a local equilibrium, we have:

(i) H(τ, ξτ ) = Vτ− a.s.

(ii) ∂1H(t, ξt) +
1

2
∂22H(t, ξt)λ

2(t)E
(
σ2
Z(t)− σ2

M (t)|Ft
)

= 0 a.s.on [0, τ).

13



Proof. (i) It is just Proposition 8. (ii) By using Itô’s formula on H(t,ξt)
λ(t) , with (A2) applied, we have

E
(∫ τ

t

1

λ(s)
∂2H(s, ξs−)dξs |Ht

)
= E

(
H(τ, ξτ )

λ(τ)

∣∣∣∣Ht)− H(t, ξt)

λ(t)

− E
(∫ τ

t

(
− λ
′(s)

λ2(s)
H(s, ξs) +

∂1H(s, ξs)

λ(s)
+

1

2
∂22H(s, ξs)λ(s)σ2

Y (s)

)
ds

∣∣∣∣Ht)

− E

 ∑
t≤s≤τ

(
∆H(s, ξs)

λ(s)
− ∂2H(s, ξs−)∆Xs

)∣∣∣∣Ht
 ,

where σ2
Y (s) :=

d[Y,Y ]cs
ds . Now X is locally optimal, given (H,λ) , by the equation (8) and the Proposition 8

we can write:

0 = Vt − λ(t)E
(

Vτ
λ(τ)

∣∣∣∣Ht)
+ λ(t)

∫ τ

t

E
(
− λ
′(s)

λ2(s)
H(s, ξs) +

∂1H(s, ξs)

λ(s)
+

1

2
∂22H(s, ξs)λ(s)σ2

Y (s)

∣∣∣∣Ht)ds

+ λ(t)
∑
t≤s≤τ

E
(

∆H(s, ξs)

λ(s)
− ∂2H(s, ξs)∆Xs

∣∣∣∣Ht)
− λ(t)

∫ τ

t

E
(
λ(s)∂22H(s, ξs)(σ

2
M (s) + σZ,M (s))ds|Ht

)
.

Hence, we have

0 =
Vt
λ(t)

− Vt
λ(τ)

+

∫ τ

t

E
(
− λ
′(s)

λ2(s)
H(s, ξs) +

∂1H(s, ξs)

λ(s)
+

1

2
∂22H(s, ξs)λ(s)(σ2

Y (s)− 2σM,Y (s))

∣∣∣∣Ht)ds

+
∑
t≤s≤τ

E
(

∆H(s, ξs)

λ(s)
− ∂2H(s, ξs)∆Xs

∣∣∣∣Ht) . (11)

where σM,Y (t) := d[M,Y ]t
dt = σ2

M (t) + σM,Z(t). By taking increments of the different terms of the previous

expression when we have an infinitesimal increment of time, we can identify the predictive and martingale

parts. In fact

d

(
Vt
λ(t)

− Vt
λ(τ)

)
= − λ

′(t)

λ2(t)
Vtdt+

(
1

λ(t)
− 1

λ(τ)

)
dVt,

d

∫ τ

t

E
(
− λ
′(s)

λ2(s)
H(s, ξs) +

∂1H(s, ξs)

λ(s)
+

1

2
∂22H(s, ξs)λ(s)(σ2

Y (s)− 2σM,Y (s))

∣∣∣∣Ht)ds

=

(
λ′(t)

λ2(t)
H(t, ξt)−

∂1H(t, ξt)

λ(t)
− 1

2
∂22H(t, ξt)λ(t)(σ2

Y (t)− 2σM,Y (t))

)
dt+ dM

(t)
t ,

14



where, for fixed u, M (u) is the martingale

M
(u)
t := E

(∫ τ

u

(
− λ
′(s)

λ2(s)
H(s, ξs) +

∂1H(s, ξs)

λ(s)
+

1

2
∂22H(s, ξs)λ(s)(σ2

Y (s)− 2σM,Y (s))

)
ds

∣∣∣∣Ht) , t ≥ 0

and

d
∑
t≤s≤τ

E
(

∆H(s, ξs)

λ(s)
− ∂2H(s, ξs)∆Xs

∣∣∣∣Ht)
= −∆H(t, ξt)− ∂2H(t, ξt)∆ξt

λ(t)
+ dL

(t)
t ,

with

L
(u)
t := E

 ∑
u≤s≤τ

∆H(s, ξs)

λ(s)
− ∂2H(s, ξs)∆Xs

∣∣∣∣Ht
 .

Therefore we have that

0 =
λ′(t)

λ2(t)
Vt −

λ′(t)

λ2(t)
H(t, ξt) +

∂1H(t, ξt)

λ(t)
+

1

2
∂22H(t, ξt)λ(t)(σ2

Y (t)− 2σM,Y (t))

+
∆H(t, ξt)− ∂2H(t, ξt)∆ξt

λ(t)
, a.s. on [0, τ ] . (12)

Then a.s on [0, τ ], the continuous and jump parts of the r.h.s of the previous equation will be equal to zero.

So
∆H(t, ξt)− ∂2H(t, ξt)∆ξt

λ(t)
= 0, a.s. on [0, τ ] (13)

and

0 =
λ′(t)

λ2(t)
Vt −

λ′(t)

λ2(t)
H(t, ξt) +

∂1H(t, ξt)

λ(t)
+

1

2
∂22H(t, ξt)λ(t)(σ2

Y (t)− 2σM,Y (t)). (14)

Now, since we are in a local equilibrium, prices are rational, given X, so by taking conditional expectations

w.r.t Ft we have

0 =
λ′(t)

λ2(t)
(E(Vt|Ft)− E(H(t, ξt)|Ft)) +

∂1H(t, ξt)

λ(t)
+

1

2
∂22H(t, ξt)λ(t)E

(
σ2
Y (t)− 2σM,Y (t)|Ft

)
=
∂1H(t, ξt)

λ(t)
+

1

2
∂22H(t, ξt)λ(t)

(
σ2
Y (t)− 2E (σM,Y (t)|Ft)

)
. (15)

Proposition 13 If the pricing rule H(t, ·) is linear, for any t, or the optimal strategy X is absolutely
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continuous, then we have: (i) Y is a local martingale (ii) If Vt 6= Pt a.s.on [0, τ), then λ(t) = λ0,

Proof. (i) In those cases, from (13) and (15) we have

dPt = dH(t, ξt) = λ(t)∂2H(t, ξt−)dYt,

and, since P· is a martingale and λ(t)∂2H(t, y) > 0, we have that Y is a local martingale. (ii) From (13)

and (15) we have that
λ′(t)

λ2(t)
Vt −

λ′(t)

λ2(t)
H(t, ξt) = 0,

then Vt 6= H(t, ξt) om [0, τ) implies that λ′(t) = 0.

3.2 Characterization of the equilibrium

In this subsection we shall give necessary and sufficient conditions to guarantee that (H,λ,X) is an equilib-

rium in the context of pricing rules satisfying

0 = ∂1H(t, y) +
1

2
∂22H(t, y)λ(t)2σ2

Z(t) , a.a. t ≥ 0, y ∈ R. (16)

Note that this condition is close to condition (ii) in Proposition 12, that is a necessary condition for the

equilibrium. We shall also assume that σ2
Z(t) is deterministic and that V is continuous. Then, when the

release time τ is known and independent of Z, we have the following necessary and sufficient conditions for

the equilibrium:

Theorem 14 Consider an admissible triple (H,λ,X) with (H,λ) satisfying (16). If

(i) λ(t) = λ0,

(ii) H(τ, ξτ ) = Vτ

(iii) [Xc, Xc] ≡ 0,

(iv) Y = X + Z is an F- local martingale without jumps ,

then (H,λ,X) is an equilibrium. If Vt 6= Pt for all t ≤ τ , the conditions (i)-(iv) above are also necessary.

Proof. Assume (i)-(iv). The proof follows the same steps as in Corcuera et al. (2014). Set, for T ∈ [0,∞),

i(y, v, T ) (ω) :=

∫ H−1(T,·)(v)

y

v −H(T, x)

λ0
dx,
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and

I(t ∧ τ, y, v) := E( i(y + λ0(Zτ − Zt∧τ ), v, τ)| τ), t ≥ 0.

First note that

E( H(τ, y + λ0(Zτ − Zt∧τ ))| τ) = H(t ∧ τ, y).

In fact, by (16) and (A2) (also for X ≡ 0) , (H(t ∧ τ, λ0Zt∧τ ))t≥0 is an H-martingale, so, since Z and τ are

independent, Z has independent increments, and τ is bounded, we have that,

H(t ∧ τ, y) = E(H(τ, λ0Zτ )|λ0Zt∧τ = y, τ) = E( H(τ, y + λ0(Zτ − Zt∧τ ))| τ), for all t ≥ 0.

(I(t ∧ τ, Zt∧τ , v))t≥0 is also an H- martingale. In fact, since Z and τ are independent and Z has independent

increments:

I(t ∧ τ, y, v) = E( i(y + λ0(Zτ − Zt∧τ ), v, τ)| τ)

= E( i(λ0Zτ , v, τ)|λ0Zt∧τ = y, τ),

and we have that

∂2I(t ∧ τ, y, v) = E (∂1i(y + λ0(Zτ − Zt∧τ ), v, τ)| τ)

= E
(
−v −H(τ, y + λ0(Zτ − Zt∧τ )

λ0

∣∣∣∣ τ) = −v −H(t ∧ τ, y)

λ0
. (17)

We can take the derivative under the integral sign because H(τ (ω) , ·) is monotone and E(H(τ, λ0Zτ )) <∞

and, from (16) we obtain

∂12I +
1

2
∂222Iλ

2
0σ

2
Z(t) = 0

so

∂1I +
1

2
∂22Iλ

2
0σ

2
Z(t) = C(t, v),

where C(t, v) is a function depending only on t and v. Now since (I(t ∧ τ, Zt∧τ , v))t≥0 is a martingale, it

turns out that C(t, v) = 0 a.a. t ≥ 0. Then we obtain that

∂1I +
1

2
∂22Iλ

2
0σ

2
Z(t) = 0. (18)
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Now, consider any admissible strategy X, by using Itô’s formula, we have

I(τ, ξτ , Vτ ) = I(0, 0, V0) +

∫ τ

0

∂3I(t, ξt, Vt)dVt +

∫ τ

0

∂1I(t, ξt, Vt)dt

+

∫ τ

0

∂2I(t, ξt−, Vt)dξt +
1

2

∫ τ

0

∂22I(t, ξt, Vt)d[ξc, ξc]t

+

∫ τ

0

∂23I(t, ξt, Vt)d[ξc, V ]t +
1

2

∫ τ

0

∂33I(t, ξt, Vt)σ
2
V dt

+
∑

0≤t≤τ

(∆I(t, ξt, Vt)− ∂2I(t, ξt−, Vt)∆ξt) .

By construction, ξ0 = 0, by (i) dξt = λ0dYt. Now we have that

d[ξc, ξc]t = λ2
0d[Xc, Xc]t + 2λ2

0d[Xc, Z]t + λ2
0σ

2
Z(t)dt.

Also by (17) and the fact that V and Z are independent,

∂23I(t, ξt, Vt)d[ξc, V ]t = − 1

λ0
d[ξc, V ]t = −d[X,V ]t,

then using (17) and (18), and the fact that Z has not jumps, we get

I(τ, ξτ , Vτ ) = I(0, 0, V0) +

∫ τ

0

∂3I(t, ξt, Vt)dVt +

∫ τ

0

(Pt− − Vt)(dXt + dZt)

+
1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d[Xc, Xc]t − [X,V ]τ +

1

2

∫ τ

0

∂33I(t, ξt, Vt)σ
2
V dt

+

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d[Xc, Zc] +

∑
0≤t≤τ

(∆I(t, ξt, Vt)− ∂2I(t, ξt−, Vt)λ0∆Xt)

Subtracting [P,X]τ from both sides and rearranging the terms, we obtain

∫ τ

0

(Vt − Pt−)dXt − [P,X]τ + [X,V ]τ −
(
I(0, 0, V0) +

1

2

∫ τ

0

∂33I(t, ξt, Vt)σ
2
V dt

)
= −I(τ, ξτ , Vτ ) +

∫ τ

0

∂3I(t, ξt−, Vt)dVt +

∫ τ

0

(Pt − Vt)dZt

+
1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d[Xc, Xc]t +

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d[Xc, Zc]t

+
∑

0≤t≤τ

(∆I(t, ξt, Vt)− ∂2I(t, ξt−, Vt)λ0∆Xt)− [P,X]τ . (19)

We have that

[P,X]τ = [P c, Xc]τ +
∑

0≤t≤τ

∆Pt∆Xt.
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Then Itô’s formula for H shows that the continuous local martingale part of P is
∫
∂H
∂y (t, ξt)dξ

c
t , so by using

(17), we obtain

[P c, Xc]τ =

[∫ ·
0

∂1H(t, ξt)dξ
c
t , X

c

]
τ

=

∫ τ

0

∂1H(t, ξt)d [ξc, Xc]t

=

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d [Xc, Xc]t +

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d [Xc, Z]t ,

and

λ0∂2I(t, ξt−, Vt)∆Xt + ∆Pt∆Xt = (Pt− − Vt)∆Xt + ∆Pt∆Xt

= (Pt − Vt)∆Xt = λ0∂2I(t, ξt, Vt)∆Xt.

Substituting the above relationships in the right-hand side of the equation (19), it becomes

− I(τ, ξτ , Vτ ) +

∫ τ

0

∂3I(t, ξt, Vt)dVt +

∫ τ

0

(Pt − Vt)dZt −
1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d[Xc, Xc]t

+
∑

0≤t≤τ

(I(t, ξt, Vt)− I(t, ξt−, Vt)− λ0∂2I(t, ξt, Vt)∆Xt) .

Now it is important to note that ∂33I(t, y, v) does not depend on y and so ∂33I(t, ξt, Vt) does not depend of

ξ. Then I(0, 0, V0) + 1
2

∫ τ
0
∂33I(t, ξt, Vt)σ

2
V dt is actually fixed ω, a lower bound for any strategy. Then we

will show that, taken the expectation, the right-hand side of (19) is non-positive. The result follows from

the following points.

1. We know that λ0∂22I(τ, ξτ , Vτ ) = ∂2H(τ, ξτ ) > 0 and that λ0∂2I(τ, ξτ , Vτ ) = −Vτ + H(τ, ξτ ) so by

hypothesis (ii) we have a maximum value of −I(τ, ξτ , Vτ ) for our strategy.

2. The processes
∫ ·

0
∂3I(t, ξt, Vt)dVt and

∫ ·
0
(Pt − Vt)dZt are H-martingales, hence they have null expecta-

tion.

3. By (17) and H being increasing monotone, we have that ∂22I > 0, and the measure d[Xc, Xc] ≥ 0, so

−1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d[Xc, Xc]t ≤ 0,

and by hypothesis (iv) we obtain the maximum value for our strategy.

4. ∂22I > 0 (convexity) implies that

I(t, x+ h, v)− I(t, x, v)− ∂2I(t, x+ h, v)h ≤ 0.
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So, ∑
0≤t≤τ

(I(t, ξt− + λ0∆Xt, Vt)− I(t, ξt−, Vt)− ∂2I(t, ξt, Vt)λ0∆Xt) ≤ 0,

and has its maximum if and only if ∆Xt = 0, which is assumed at (iv).

5. Assumption (iv) and (ii) together with condition (A2) guarantee the rationality of prices. In fact from

condition (A2) and (16) we have that H(· ∧ τ, ξ·∧τ ) is an F-martingale, then from (ii), and on the set

{t ≤ τ} we have

E (H(τ, ξτ )| Ft) = E (Vτ | Ft) = E (E (Vτ |Ht)| Ft) = E (Vt| Ft) .

Conversely, if (H,λ,X) is an equilibrium, by point 3. σ2
M = 0 and now by (14)

0 =
λ′(t)

λ2(t)
Vt −

λ′(t)

λ2(t)
H(t, ξt),

so if Vt 6= Pt, we have that λ(t) = λ0. Condition (ii) is (i) in Proposition 12. Also from (16), (13) and (15)

dPt = dH(t, ξt) = λ0∂2H(t, ξt−)dYt,

and, since P· is an F-martingale and λ0∂2H(t, y) > 0, we have that Y is an F-local martingale. Finally

from point 4, ∆Xt = 0 and Y = X + Z is a local martingale without jumps.

4 Case when τ is unknown to the insider

In this section we consider the case when the insider does not know the precise time τ of release of information.

Namely, the insider’s information flow is given by:

Ht = σ(Ps, ηs, τ ∧ s, 0 ≤ s ≤ t).

Moreover we assume that τ finite is independent of (V, P, Z), that P(τ > t) > 0 for all t ≥ 0 and that τ has

a density. Going back to Proposition 6, we can see that, on [0, τ ], equation (8) can be written as:

Vt −H(t, ξt)− λ(t)E(

∫ ∞
t

1[0,τ ](s)
(
∂2H(s, ξs)d

−Xs

)
|Ht) = 0.
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Here we recall that the optimal total demand X for the insider satisfies (A1) - (A6). Then we have

0 =Vt −H(t, ξt)− λ(t)E
(∫ ∞

t

P(τ > s|Ht)
(
∂2H(s, ξs)d

−Xs

)∣∣∣∣Ht)
= Vt −H(t, ξt)−

λ(t)

P (τ > t)
E
(∫ ∞

t

P(τ > s)
(
∂2H(s, ξs)d

−Xs

)∣∣∣∣Ht)
= Vt −H(t, ξt)−

λ(t)

P(τ > t)
E
(∫ ∞

t

P(τ > s)∂2H(s, ξs)θsds

∣∣∣∣Ht)
− λ(t)

P(τ > t)
E

( ∞∑
t

P(τ > s)∂2H(s, ξs)∆Xs

∣∣∣∣∣Ht
)

− λ(t)

P(τ > t)
E
(∫ ∞

t

λ(s)P(τ > s)∂22H(s, ξs)(σ
2
M (s) + σZ,M (s))ds

∣∣∣∣Ht) on [0, τ ]. (20)

First of all we note that, by assumption (A3), and Corollary (2.4) in Revuz and Yor (1999) we have that

lim
t→∞

E
(∫ ∞

t

P(τ > s)∂2H(s, ξs)|θs|ds
∣∣∣∣Ht) = 0, a.s.

Analogously for E (
∑∞
t P(τ > s)∂2H(s, ξs−)|∆Xs||Ht) and E

(∫∞
t
λ(s)P(τ > s)∂22H(s, ξs)(σ

2
M (s) + σZ,M (s))ds

∣∣Ht).
Then, from (20), we have that

lim
t→∞

(Vt −H(t, ξt))P(τ > t)

λ(t)
= 0, a.s. (21)

Applying the Itô’s formula to H(t,ξt)P(τ>t)
λ(t) , t ≤ T , and studying the limit for T →∞, we have

E
(∫ ∞

t

P (τ > s) ∂2H(s, ξs−)dXs

∣∣∣∣Ht)
= lim
T→∞

E
(
H(T, ξT )P(τ > T )

λ(T )

∣∣∣∣Ht)− H(t, ξt)P(τ > t)

λ(t)

− E
(∫ ∞

t

(∂s

(
P (τ > s)

λ(s)

)
H(s, ξs) +

P (τ > s)

λ(s)
∂1H(s, ξs)

+
1

2
∂22H(s, ξs)P (τ > s)λ(s)σ2

Y (s))ds

∣∣∣∣Ht)
− E

( ∞∑
t

P(τ > s)∆H(s, ξs)

λ(s)
− P(τ > s)∂2H(s, ξs−)∆Xs

∣∣∣∣∣Ht
)
. (22)

Moreover, by (21), we have

lim
T→∞

E
(
H(T, ξT )P (τ > T )

λ(T )

∣∣∣∣Ht) = lim
T→∞

E
(
VTP (τ > T )

λ(T )

∣∣∣∣Ht)
= Vt lim

T→∞

P(τ > T )

λ(T )
:= cVt, (23)
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where we assume that limT→∞
P(τ>T )
λ(T ) = c < ∞. By substituting (22) and (23) into (20), we obtain the

equation

0 = Vt

(
c− P (τ > t)

λ(t)

)
− E

(∫ ∞
t

(
∂s

(
P(τ > s)

λ(s)

)
H(s, ξs)

+
P(τ > s)

λ(s)
∂1H(s, ξs) +

1

2
∂22H(s, ξs)P (τ > s)λ(s)(σ2

Y (s)− 2σM,Y (s))

)
ds

∣∣∣∣Ht)
− E

( ∞∑
t

P(τ > s)∆H(s, ξs)

λ(s)
− P(τ > s)∂2H(s, ξs)∆Xs

∣∣∣∣∣Ht
)
. (24)

In the same way we did for the stochastic process appearing in the r.h.s. of the equation (11) we can identify

the predictive and martingale parts and we will obtain that

0 = ∂t

(
P (τ > t)

λ(t)

)
(Vt −H(t, ξt))+

+
P(τ > t)

λ(t)
∂1H(t, ξt) +

1

2
∂22H(t, ξt)P (τ > t)λ(t)(σ2

Y (t)− 2σM,Y (t))

+

(
P(τ > t)∆H

λ(t)
− P(τ > t)

λ(t)
∂2H(t, ξt)∆ξt

)
. (25)

Now since we are in a local equilibrium prices are rational and by taking conditional expectations w.r.t Ft,

we obtain

0 =
P(τ > t)

λ(t)
∂1H(t, ξt) +

1

2
∂22H(t, ξt)P (τ > t)λ(t)

(
σ2
Y (t)− 2E(σM,Y (t)|Ft)

)
+

(
P(τ > t)∆H

λ(t)
− P(τ > t)

λ(t)
∂2H(t, ξt)∆ξt

)
. (26)

So we have proved the following results:

Proposition 15 Consider an admissible triple (H,λ,X). Assume that limt→∞
P(τ>t)
λ(t) = c <∞. If (H,λ,X)

is a local equilibrium, we have:

∂1H(t, ξt) +
1

2
∂22H(t, ξt)λ

2(t)E
(
σ2
Z(t)− σ2

M (t)|Ft
)

= 0 a.s. on [0, τ ].

Proposition 16 Consider an admissible triple (H,λ,X). If (H,λ,X) is a local equilibrium, σ2
Z(t) is deter-

ministic and satisfies (16) and limt→∞
P(τ>t)
λ(t) , we have:

(i) Y is a local martingale (27)

(ii) If Vt 6= Pt a.s.on [0, τ), then λ(t) = cP(τ > t), a.a.t ≥ 0 (c > 0) . (28)
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Remark 17 Analogously to the Proposition 13, we have that the same result is true when σ2
Z(t) is not

deterministic but H(t, ·) is linear or the strategies are absolutely continuous, in both cases (27) and (28) are

also true.

Remark 18 Here we can draw conclusions similar to the one in Cho (2003) where he considers a risk-averse

insider (and a deterministic release time). Cho concludes that, in equilibrium, a risk-adverse insider would

do most of her trading early to avoid the risk that the prices get closer to the asset value, unless the trading

conditions become more favorable over time. Similarly in our case, when the (risk-neutral) insider does not

know the release time of information, she would trade early in order to use her piece of information before

the announcement time comes. This behavior would continue unless the price pressure decreases over time

providing more favorable trading also at a later time. A similar conclusion is obtained by Baruch (2002),

who studies exactly the same problem about the effect of risk-aversion for the insider, by assuming that the

noise trading is a Brownian motion with time varying instantaneous variance.

Example 19 We can consider the context of Caldentey and Stacchetti (2010) where the authors assume

that V and Z are arithmetic Brownian motion with variances σV and σZ respectively, and τ follows an

exponential distribution with scale parameter µ, independent of (V, P, Z) . Then, by Proposition 16, we have

that, for a.a. t and a.a. ω ∈ {t < τ},

Vt −H(t, ξt)− λ(t)E
(∫ ∞

t

e−µ(s−t)∂2H(s, ξs)dXs

∣∣∣∣Ht) = 0.

And to have a local equilibrium, provided that Vt −H(t, ξt) 6= 0, we need λ(t) = λ0e
−µt.

5 Explicit insider’s optimal strategies

In this section we shall apply our results to explicitly find the insider’s optimal strategy in equilibrium. We

will show how our general framework serves different models known in the literature presented as extensions

of the Kyle-Back model. In order to perform the explicit computations we will use techniques of enlargements

of filtrations.

To explain how enlargement of filtration enters the topic we consider a total demand Y = Z+X in equilibrium

given by:

Yt = Zt +

∫ t

0

θ(ηt;Yu, 0 ≤ u ≤ s)ds, 0 ≤ t ≤ T. (29)
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Here X is absolutely continuous process with respect to the Lebesgue measure. We recall that Z is perceived

by the insider as anH-martingale independent of V· = E(f(ητ )|H·) and η. So since FY,η ⊆ H and Z is adapted

to FY,η, it is also an FY,η-martingale. Here FY,η = (FY,ηt )t≥0 is the filtration FY,ηt := σ̄(Ys, ηs, 0 ≤ s ≤ t).

On the other hand, Y is a local martingale when in equilibrium, as for the cases of Theorem 14, Proposition

12 and Proposition 16. Consequently (29) becomes the Doob-Meyer decomposition of Y when we enlarge

the filtration FY with the process η. We are then into a problem of enlargement of filtrations. However, in

our problem Z is fixed in advance and we want to obtain Y as a function of Z, fixed η, so we look in fact

for strong solutions of (29), whereas the results on enlargement of filtrations provide weak solutions. In this

sense the celebrated Yamada-Watanabe’s theorem is the result, when Z is Gaussian, that can be used to

obtain strong solutions from weak solutions. See, for instance, Theorem 1.5.4.4. in Jeanblanc et al. (2009).

These various examples correspond to different models that are extensions of the Kyle-Back model and where

the results about enlargement of filtrations can be applied, but we do not enter, however, into details to

show that the solutions of the corresponding stochastic differential equations appearing in the equilibrium

equation, are in fact strong solutions.

Example 20 (Back (1992)) Assume that Z is a Brownian motion with variance σ2 , V· ≡ V1 and the release

time τ = 1 . In equilibrium, if the strategy of the insider is optimal V1 = H(1, Y1). Since H(1, ·) can be

chosen freely because it is the boundary condition of equation (16) and if V1 has a continuous cumulative

distribution function, we can assume w.l.o.g that Y1 ≡N(0, σ2) . It is assumed that V1 (and consequently Y1)

is independent of Z. Then, see Example 1, page 306, in Jeulin and Yor (1985), we have that

Yt = Zt +

∫ t

0

Y1 − Ys
1− s

ds,

is a Brownian motion with variance σ2. Hence, prices are rational and we recognize the equilibrium strategy

to be

Xt =

∫ t

0

Y1 − Ys
1− s

ds, 0 ≤ t < 1.

Example 21 (Aase et al. (2012a)) Assume that τ = 1 and suppose that Z is given by

Zt =

∫ t

0

σsdWs

where σ is deterministic and V· ≡ Y1 is a N(0,
∫ 1

0
σ2
sds) independent of Z. Then by Jeulin (1980), page 51,

Yt = Zt +

∫ t

0

Ys − Y1∫ 1

t
σ2
udu

σ2
sds,

24



has the same law as Z. Then

Xt =

∫ t

0

Ys − Y1∫ 1

t
σ2
udu

σ2
sds

is the optimal strategy.

Example 22 (Campi and Çetin (2007)) If we want the aggregate process Y to be a Brownian motion that

reaches the value −1 for the first time at time τ̄ , and Z is also a Brownian motion then, by Example 3 in

Jeulin and Yor (1985), page 306,

Yt = Zt +

∫ t

0

(
1

1 + Ys
− 1 + Ys

τ̄ − s

)
1[0,τ̄ ](s)ds,

so, in this case ηt ≡ τ̄ , Vt ≡ 1{τ̄>1} and the release time is τ̄ ∧ 1.

Example 23 (Back and Pedersen (1998), Wu (1999), Danilova (2010)) The insider receives a continuous

signal

ηt = η0 +

∫ t

0

σsdWs,

where σs is deterministic, η0 is a zero mean normal random variable, W is a Brownian motion, both inde-

pendent of the Brownian motion Z, τ = 1. It is assumed that var(η1) = var(η0) +
∫ 1

0
σ2
sds = 1, then

Yt = Zt +

∫ t

0

ηs − Ys
var(ηs)− s

ds, 0 ≤ t ≤ 1.

is a Brownian motion. This result can be obtained by the following proposition.

Set

Vt = V0 +

∫ t

0

σsdW
1
s , 0 ≤ t ≤ 1,

where σs is a deterministic function, V0 is a zero mean normal random variable, and
(
W 1,W 2

)
is a 2-

dimensional Brownian motion independent of V0.

Proposition 24 Assume that V ar(V1) = 1 and that

∫ t

0

ds

V ar(Vs)− s
<∞ for all 0 ≤ t < 1,

then

Bt = W 2
t +

∫ t

0

Vs −Bs
V ar(Vs)− s

ds, 0 ≤ t ≤ 1
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is a Brownian motion with B1 = V1.

Proof. Denote vr := V ar(Vr)

Bt =

∫ t

0

exp

(
−
∫ t

u

1

vr − r
dr

)
dW 2

u +

∫ t

0

exp

(
−
∫ t

u

1

vr − r
dr

)
Vu

vu − u
du,

so B is a centered Gaussian process, and for s ≤ t < 1,

E (BtBs) = exp

(
−
∫ t

s

1

vr − r
dr

)
+ E

(∫ t

0

∫ s

0

exp

(
−
∫ t

u

1

vr − r
dr

)
exp

(
−
∫ s

v

1

vr − r
dr

)
VuVv

(vu − u) (vv − v)
dudv

)
= exp

(
−
∫ t

s

1

vr − r
dr

)∫ s

0

exp

(
−2

∫ s

u

1

vr − r
dr

)
du

+

∫ t

s

∫ s

0

exp

(
−
∫ t

u

1

vr − r
dr

)
exp

(
−
∫ s

v

1

vr − r
dr

)
vv

(vu − u) (vv − v)
dudv

+ 2

∫ s

0

∫ u

0

exp

(
−
∫ t

u

1

vr − r
dr

)
exp

(
−
∫ s

v

1

vr − r
dr

)
vv

(vu − u) (vv − v)
du.

Then , since ∫ s

0

exp

(
−
∫ s

v

1

vr − r
dr

)
vv

vv − v
dv = s,

and

2

∫ s

0

exp

(
−2

∫ s

v

1

vr − r
dr

)
vv

vv − v
dv = 2s+

∫ s

0

exp

(
−2

∫ s

u

1

vr − r
dr

)
du

we obtain that E (BtBs) = s. So for 0 ≤ t < 1 we have that (Bt) is a standard Brownian motion. On the

other hand

E(BtVt) = E

(∫ t

0

exp

(
−
∫ t

u

1

vr − r
dr

)
VuVt
vu − u

du

)
=

∫ t

0

exp

(
−
∫ t

u

1

vr − r
dr

)
vu

vu − u
du

= t,

therefore

E((Bt − Vt)2) = E(B2
t ) + E(Vt

2)− 2E(BtVt)

= t+ vt − 2t = vt − t,
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and, since by hypothesis v1 = 1, this means that

lim
t→1

Bt
L2

= V1,

then for all 0 ≤ t < 1

E

(∫ t

0

|Vs −Bs|
vs − s

ds

)
<

∫ t

0

E
(

(Vs −Bs)2
) 1

2

vs − s
ds =

∫ t

0

√
vs − sds <

√
2,

and this implies, by the monotone convergence theorem, that

lim
t→1

∫ t

0

|Vs −Bs|
vs − s

ds =

∫ 1

0

|Vs −Bs|
vs − s

ds <∞

and that B1 = limt→1Bt is well defined. Now, we have, by the uniqueness of the limit in probability, that

V1 = B1 a.s.

Another view of the problem of finding the equilibrium strategy is the following. Market makers observe Y

with dynamics

dYt = dZt + θ(Vt, Ys, 0 ≤ s ≤ t)dt,

V is not observed. Then, the dynamics of mt := E(Vt|FYt ) can be obtained in certain cases, basically when

Z and V are Gaussian diffusions, from the filtering theory, see for instance Theorem 12.1 in Liptser and

Shiryaev (1978). Now we can try to deduce θ(Vt, Ys, 0 ≤ s ≤ t) from the equilibrium condition: Pt = mt.

Even if V is not a Gaussian diffusion, but can be written in the form Vt = h(Dt) where h is a strictly

increasing function and D is a Gaussian diffusion, we can still apply the filtering results for the couple

(Y,D) .

In the following example we use the filtering approach to find the equilibrium strategy.

Example 25 (Caldentey and Stacchetti (2010)) The release time τ is unknown (so we cannot apply Propo-

sition 24),

dVt = σv(t)dB
v
t , V0 ∼ N(P0,Σ0), dZt = σz(t)dB

z
t , Z0 = 0.

Bv and Bz being independent Brownian motions, σv(t) and σz(t) deterministic functions. Then, if we look

for pricing rules such that

dPt = λtdYt
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and strategies

dXt = βt(Vt − Pt)dt

with βt deterministic, we have

dPt = λtβt(Vt − Pt)dt+ λtσz(t)dB
z
t .

Let denote mt = E(Vt|FYt ), by standard filtering results (see for instance Lipster and Shiryayev (2001)) we

have

dmt =
Σtβt
λtσ2

z(t)
(dPt − λtβt(mt − Pt)dt),

d

dt
Σt = σ2

v(t)− (Σtβt)
2

σ2
z(t)

,

where Σt is the filtering error. Now, we can recover the identity Pt = mt, if and only if we impose Σtβt =

λtσ
2
z(t) (remember that by construction P0 = m0 = E(V0)) . Then

Σt = Σ0 +

∫ t

0

σ2
v(s)ds−

∫ t

0

σ2
z(s)λ2

sds, βt =
λtσ

2
z(t)

Σt
.

Note that in particular we obtain that

Yt = Zt +

∫ t

0

λsσ
2
z(s)

(
Vs −

∫ s
0
λudYu

)
Σs

ds,

is the Doob-Meyer decomposition of the martingale Y in the filtration generated by (Z, V ). Now if we assume

σ2
z(t) = σ2

z , independent of t, and we take into account that in the equilibrium λt = λ0e
−µt, we have that

Σt = Σ0 +

∫ t

0

σ2
v(s)ds− σ2

z

λ2
0

2µ
(1− e−2µt), βt =

σ2
zλ0e

−µt

Σt
.

However λ0 is not determined. We need an additional condition to fix λ0. One possibility is to impose that

lim
t→∞

Σt = 0.

In such a case

0 = Σ0 +

∫ ∞
0

σ2
v(s)ds− σ2

z

λ2
0

2µ
,

and

λ0 =

√
2µ(Σ0 +

∫∞
0
σ2
v(s)ds)

σ2
z

.

Note that if σ2
v(t) = σ2

v there is no solution! Another possibility, according with Proposition 16, is to take T
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such that

Σt = 0, for all t ≥ T

and then Pt = Vt for t ≥ T . But this implies, for σ2
v(t) = σ2

v ,

0 = Σ0 + σ2
vT − σ2

z

λ2
0

2µ
(1− e−2µT )

= Σ0 + σ2
vT − σ2

z

λ2
T

2µ
(e2µT − 1).

Now if we assume a smooth transition from the absolutely continuous strategy then σ2
v − σ2

zλ
2
t = 0 for all

t ≥ T and λt = λT = σv
σz
, for all t ≥ T . Finally

dPt = λtdYt = λtdXt + λtdZt = dVt, t ≥ T

so

dXt =
σz
σv

dVt − dZt,

and T is the solution of

Σ0 + σ2
vT =

σ2
v

2µ
(e2µT − 1).

This is exactly what Caldentey and Stacchetti (2010) obtain. It is important to remark that the authors

obtain a limit of optimal strategies when passing from the discrete version of the model to the continuous

one. This limit strategy is such that there is an endogenously determined time T such that, if t ≤ T , then

the limit strategy is absolutely continuous with respect to the Lebesgue measure and, if t > T , the strategy is

not of bounded variation. In this case an insider’s optimal strategy, between times T and τ , would yield to

giving out the full information to the market by making the market prices match the fundamental value. They

claim that this limit strategy is not optimal for the continuous time model and that we need to consider the

discrete time model to realize about its existence. However this limit strategy can be obtained has a limit of

strategies for the continuous model when we restrict the class of strategies to the set of absolutely continuous

strategies and we try to maximize the wealth. In fact if we have a sequence of strategies
(
X(n)

)
n≥1

, their

corresponding wealth is given by

W (n)
τ = X(n)

τ V (n)
τ −

∫ τ

0

P
(n)
t− dX

(n)
t − [P (n), X(n)]τ .
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Then, if we assume that (X(n), P (n), V (n))
u.c.p→
n→∞

(X,P, V ) we obtain that

X(n)
τ V (n)

τ −
∫ τ

0

P
(n)
t− dX

(n)
t

u.c.p→
n→∞

XτVτ −
∫ τ

0

Pt−dXt

but in general

[P (n), X(n)]τ 9 [P,X]τ ,

For instance if X(n) is a bounded variation process X is not necessarily a bounded variation one. Then the

gain limit for this limit of strategies after T, on the set {τ > T}, is given by

VτXτ − VTXT −
∫ τ

T

Pt−dXt =

∫ τ

T

Xt−dVt +

∫ τ

T

Vt−dXt +

∫ τ

T

d[V,X]t −
∫ τ

T

Pt−dXt

=

∫ τ

T

(Vt− − Pt−) dXt +

∫ τ

T

d[V,X]t +

∫ τ

T

Xt−dVt.

Now if we take the (conditional) expectation, last term of the right-hand side cancels and we obtain that

E
(
VτXτ − VTXT −

∫ τ

T

Pt−dXt

∣∣∣∣HT) = E
(∫ τ

T

(Vt− − Pt−) dXt +

∫ τ

T

d[V,X]t

∣∣∣∣HT) .
Finally, since for the limit strategy Vt− = Pt− , t > T , in the conditions of Example 19, we obtain that there

is a profit after T given by

E
(∫ ∞

T

e
−µ(t−T )

d[V,X]t

∣∣∣∣HT) = σzσv

∫ ∞
T

e
−µ(t−T )

dt =
σzσv
µ

> 0.

Now we can justify the condition Σ̇T = 0. The expected wealth for the insider with this kind of strategies is

given by

J(X) = E

(∫ T∧τ

0

(Vt − Pt)θtdt

)
+ E

(∫ τ

T∧τ
d[V,X]t

)
= E

(∫ T∧τ

0

βt(Vt − Pt)2dt

)
+ E

(∫ τ

T∧τ
d[V,X]t

)

= E

(∫ T

0

1[0,τ ](t)βt(Vt − Pt)2dt

)
+ E

(∫ ∞
T

1[0,τ ](t)d[V,X]t

)
=

∫ T

0

P(τ > t)βtΣtdt+

∫ ∞
T

P(τ > t)
σ2
v

λt
dt

=

∫ T

0

e
−µt

βtΣtdt+ σ2
v

∫ ∞
T

e
−µt

λt
dt = σ2

z

∫ T

0

e
−µt

λtdt+ σ2
v

∫ ∞
T

e
−µt

λt
dt.

Then if we impose that T is optimal, we have the condition

σ2
ze

−µT
λT − σ2

v

e
−µT

λT
= 0,
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that is

λT =
σv
σz
,

and this is equivalent to Σ̇T = 0. Note that other equilibria are possible by taking λt 6= λT when t > T.

Remark 26 It can be proved that the linearity of the strategies assumed in the previous example implies that

the equilibrium pricing rules have to be linear as well. This interesting result can be seen also in Aase et al.

(2012a).

Example 27 Another interesting example is that of Campi et al. (2013). There, authors consider a default-

able stock. The default time is modeled as the first time that a Brownian motion, say B, hits the barrier −1,

as in the above Example 22 . However in this case the default time, δ = inf{t ≥ 0, Bt = −1}, is not known

by the insider, but it is a stopping time for every trader. Instead, she observes the process
(
Br(t)

)
where r(t)

is a deterministic, increasing function with r(t) > t for t ∈ (0, 1), r(0) = 0, and r(1) = 1. This circumstance

allows the insider to know in advance the default time. The horizon of the market is t = 1. They also consider

a payoff of the kind f(B1) in case of no default. Note that δ = r(τ), where τ = inf{t ≥ 0, Br(t) = −1}. Then,

in this example the release time r(τ), the signal is ηt = Br(t) and the fundamental value is

Vt = 1{τ>t}E(f(B1)|Br(t)).

Moreover the aggregate demand of noise traders follows a Brownian motion, say W , so Z = W. Even though

τ , and consequently, δ is not known for the insider, they are predictable stopping times, and, by an extension

of the case considered in section 3, we will have that, the price pressure is constant and that the optimal

strategy moves prices to the fundamental one:

lim
δn↑δ

Pδn = Vδ,

where (δn) is any increasing sequence of stopping times that grows to δ. To find the explicit form of an

equilibrium strategy is not straightforward. However, if τ ≤ s ≤ V (τ) an equilibrium strategy is obtained

from a strong solution of

Ys = Ws +

∫ s

0

(
1

1 + Yu
− 1 + Yu
V (τ)− u

)
(u)du,

as we deduce from Example 22 above, the difficult part is to see what happens until time τ. It requires a quite

involved use of enlargement of filtrations and filtering techniques. See Campi et al. (2013b) for the details.
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